WO2023228927A1 - Conductive substrate and touch panel - Google Patents

Conductive substrate and touch panel Download PDF

Info

Publication number
WO2023228927A1
WO2023228927A1 PCT/JP2023/019062 JP2023019062W WO2023228927A1 WO 2023228927 A1 WO2023228927 A1 WO 2023228927A1 JP 2023019062 W JP2023019062 W JP 2023019062W WO 2023228927 A1 WO2023228927 A1 WO 2023228927A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
group
layer
formula
silver
Prior art date
Application number
PCT/JP2023/019062
Other languages
French (fr)
Japanese (ja)
Inventor
智史 田中
亜矢 中山
優樹 中川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023228927A1 publication Critical patent/WO2023228927A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a conductive substrate and a touch panel.
  • Conductive substrates having conductive thin wires are widely used in various applications such as touch panels, solar cells, and EL (electro luminescence) elements.
  • touch panels solar cells
  • EL electro luminescence
  • the mounting rate of touch panels on mobile phones and mobile game devices has increased, and the demand for conductive substrates for capacitive touch panels capable of multi-point detection is rapidly expanding.
  • Patent Document 1 describes an electrode having a plurality of repeating units consisting of an image unit having a conductive pattern made of metal, a peripheral wiring part connected to the conductive pattern, and a non-conductive part that makes it impossible to connect adjacent image units.
  • Techniques related to the manufacturing method of pattern sheets are disclosed, and methods for forming conductive patterns and peripheral wiring portions include a printing method, a photolithography method, and a method using a silver salt photosensitive material as a conductive material precursor. has been done.
  • Such a touch panel includes a conductive substrate and various members mounted around the conductive substrate. Cushioning materials, adhesives, and the like used for these peripheral members may contain sulfur-containing compounds. Further, sulfur components such as H 2 S and SO 2 are also present in the environment in which the touch panel is used. As a result of studying conductive substrates having conductive thin wires with reference to Patent Document 1, the present inventor found that these sulfur sources existing around the conductive substrate cause a sulfurization reaction in the metal thin wires constituting the wiring. It has been found that this causes a problem in that the conductivity of the wiring decreases, causing failures such as decreased sensitivity and malfunction of the touch panel.
  • a conductive substrate having a base material and a conductive layer disposed on the base material, wherein the conductive layer includes a conductive thin wire portion containing a metal and a conductive thin wire portion containing a metal. an adjacent transparent insulating part that does not contain metal, and the conductive layer contains a compound represented by formula (1), formula (2), formula (3) or formula (4) described below.
  • conductive substrate [2] The conductive substrate according to [1], wherein each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group.
  • the above compound is 5-methyl-1,3,4-thiadiazole-2-thiol, 5-(propan-2-yl)-1,3,4-thiadiazole-2-thiol, 5-phenyl-1 , 3,4-thiadiazole-2-thiol, 3-mercapto-1H-1,2,4-triazole, 3-methyl-4H-1,2,4-triazole-5-thiol, 4-methyl-1,2 , 4-triazole-3-thiol, 1,2,3-benzotriazole, 5-methylbenzotriazole, and 2,2'-(4-methyl-1H-benzotriazol-1-ylmethylimino)bisethanol.
  • FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a conductive substrate of the present invention.
  • FIG. 3 is a plan view showing an example of a mesh pattern of the conductive layer of the conductive substrate of the present invention.
  • a numerical range expressed using " ⁇ ” means a range that includes the numerical values written before and after " ⁇ " as lower and upper limits.
  • the “content” of the component means the total content of the two or more types of components.
  • “g” and “mg” represent “mass g” and “mass mg”, respectively.
  • polymer or “polymer compound” means a compound having a weight average molecular weight of 2000 or more.
  • the weight average molecular weight is defined as a polystyrene equivalent value measured by GPC (Gel Permeation Chromatography).
  • GPC Gel Permeation Chromatography
  • the conductive substrate according to the present invention includes a base material and a conductive layer disposed on the base material.
  • the conductive layer has a conductive thin wire portion and a transparent insulating portion adjacent to the conductive thin wire portion.
  • the conductive thin wire portion contains metal, and the transparent insulating portion does not contain metal.
  • the conductive layer further contains a compound represented by formula (1), formula (2), formula (3), or formula (4) described below.
  • FIG. 1 is a schematic cross-sectional view showing an example of the structure of a conductive substrate according to the present invention.
  • the conductive substrate 10 shown in FIG. 1 includes a base material 12 and a conductive layer 14 disposed on the surface of the base material 12.
  • the conductive layer 14 includes a conductive thin wire portion 16 and a transparent insulating portion 18 adjacent to the conductive thin wire portion 16 .
  • FIG. 1 shows two conductive thin wire portions 16 extending perpendicularly to the paper surface, the arrangement form of the conductive thin wire portions 16 and the number thereof are not particularly limited.
  • the type of the base material is not particularly limited as long as it can support the photosensitive layer and the conductive thin wire portion, and examples thereof include a plastic substrate, a glass substrate, and a metal substrate, with a plastic substrate being preferred.
  • a flexible base material is preferable since the resulting conductive member has excellent bendability.
  • Examples of the flexible base material include the above-mentioned plastic substrate.
  • the thickness of the base material is not particularly limited, and is often 25 to 500 ⁇ m. Note that when the conductive substrate is applied to a touch panel and the surface of the base material is used as a touch surface, the thickness of the base material may exceed 500 ⁇ m.
  • Materials constituting the base material include polyethylene terephthalate (PET) (258°C), polycycloolefin (134°C), polycarbonate (250°C), acrylic film (128°C), polyethylene naphthalate (269°C), polyethylene ( 135°C), polypropylene (163°C), polystyrene (230°C), polyvinyl chloride (180°C), polyvinylidene chloride (212°C), and triacetyl cellulose (290°C), etc. Certain resins are preferred, with PET, polycycloolefin, or polycarbonate being more preferred. Among them, PET is particularly preferable because it has excellent adhesion to the conductive thin wire portion.
  • the numerical value in parentheses above is the melting point or glass transition temperature.
  • the total light transmittance of the base material is preferably 85 to 100%.
  • the total light transmittance is measured using "Plastics - How to determine total light transmittance and total light reflectance" specified in JIS (Japanese Industrial Standard) K 7375:2008.
  • An undercoat layer may be disposed on the surface of the base material.
  • the undercoat layer preferably contains a specific polymer described below. When this undercoat layer is used, the adhesion of the conductive layer described later to the base material is further improved.
  • the method for forming the undercoat layer is not particularly limited, and examples thereof include a method in which a composition for forming an undercoat layer containing a specific polymer, which will be described later, is applied onto a base material and, if necessary, a heat treatment is performed.
  • the undercoat layer forming composition may contain a solvent as necessary.
  • the type of solvent is not particularly limited, and examples include solvents used in the photosensitive layer forming composition described below.
  • the composition for forming an undercoat layer containing a specific polymer a latex containing particles of a specific polymer may be used.
  • the thickness of the undercoat layer is not particularly limited, and is preferably 0.02 to 0.3 ⁇ m, more preferably 0.03 to 0.2 ⁇ m, in terms of better adhesion of the conductive layer to the base material.
  • the conductive layer has a conductive thin wire portion and a transparent insulating portion. That is, on the surface of the base material of the conductive substrate, a conductive thin wire portion containing metal and a transparent insulating portion not containing metal are arranged as a conductive layer.
  • the arrangement of the conductive thin wire portion and the transparent insulating portion in the conductive layer is not particularly limited.
  • the conductive layer may have a pattern formed by conductive thin wire portions and transparent insulating portions.
  • the pattern is not particularly limited, and includes, for example, triangles such as equilateral triangles, isosceles triangles, and right triangles, quadrilaterals such as squares, rectangles, rhombuses, parallelograms, and trapezoids, (regular) hexagons, and (regular) octagons, etc.
  • the shape is a (regular) n-gon, a circle, an ellipse, a star shape, or a geometric figure that is a combination of these figures, and more preferably a mesh shape (mesh pattern).
  • FIG. 2 is a plan view showing an example of a mesh pattern that the conductive layer has.
  • the mesh shape is intended to mean a shape that includes a plurality of non-thin wire portions (grids) 20 that are composed of intersecting conductive thin wire portions 16 and transparent insulating portions 18, and are spaced apart from each other. do.
  • the non-thin line portion 20 has a square shape with one side length L, but the non-thin line portion of the mesh pattern may have another shape, for example, a polygonal shape ( For example, it may be a triangle, a quadrilateral (diamond, rectangle, etc.), a hexagon, or a random polygon.
  • the shape of the side may be a curved shape other than a straight line, or may be an arc shape.
  • an arcuate shape for example, two opposing sides may have an outwardly convex arcuate shape, and the other two opposing sides may have an inwardly convex arcuate shape.
  • the shape of each side may be a wavy line shape in which an outwardly convex circular arc and an inwardly convex circular arc are continuous.
  • the shape of each side may be a sine curve.
  • the length L of one side of the non-thin wire portion 20 is not particularly limited, but is preferably 1500 ⁇ m or less, more preferably 1300 ⁇ m or less, and even more preferably 1000 ⁇ m or less.
  • the lower limit of the length L is not particularly limited, but is preferably 5 ⁇ m or more, more preferably 30 ⁇ m or more, and even more preferably 80 ⁇ m or more. If the length of one side of the non-thin line part is within the above range, it is possible to maintain good transparency, and when the conductive substrate is attached to the front of the display device, the display can be viewed without discomfort. can do.
  • the aperture ratio of the mesh pattern formed by the conductive thin wire portions is preferably 90% or more, more preferably 95% or more, and still more preferably 99% or more.
  • the upper limit is not particularly limited, but may be less than 100%.
  • the aperture ratio means the ratio (area ratio) of the area occupied by the transparent insulating part to the entire area occupied by the mesh pattern in the area where the mesh pattern of the conductive substrate is formed.
  • the thickness of the conductive layer is not particularly limited, but is preferably 0.5 to 3.0 ⁇ m, more preferably 1.0 to 2.0 ⁇ m.
  • the thickness of the conductive layer is determined by selecting five arbitrary points corresponding to the thickness of one conductive thin wire part using a scanning electron microscope, and calculating the arithmetic mean value of the parts corresponding to the thickness of the five points. Therefore, it is required.
  • the conductive thin wire portion is a portion that ensures the conductive properties of the conductive substrate by containing metal.
  • a metal one selected from the group consisting of silver (metallic silver), copper (metallic copper), gold (metallic gold), nickel (metallic nickel), and palladium (metallic palladium) because of its superior conductive properties. Mixtures with the above metals are preferred. Among these, a metal containing silver, ie, simple silver or a mixture of silver and copper is more preferable, and simple silver is even more preferable.
  • the conductive thin wire portion is intended to be a thin wire-shaped region disposed on the surface of the base material and integrally formed of a material containing metal.
  • the silver halide-free layer formed in Step H, which will be described later, and the protective layer, which will be formed in Step I, which will be described later are different from the thin wire-shaped metal-containing layer (silver Containing layer) together with the conductive thin wire portion.
  • the conductive thin wire portion may or may not be electrically connected to a member external to the conductive substrate.
  • a portion of the conductive thin wire portion may be a dummy electrode electrically insulated from the outside.
  • the metal contained in the conductive thin wire portion is usually in the form of solid particles.
  • the average particle diameter of the metal is preferably 10 to 1000 nm, more preferably 10 to 200 nm, in equivalent sphere diameter.
  • the equivalent sphere diameter is the diameter of spherical particles having the same volume, and the average particle diameter of metal particles is obtained as the average value obtained by measuring the equivalent sphere diameters of 100 objects and arithmetic averaging them. It will be done.
  • the shape of the metal particles is not particularly limited, and examples include shapes such as spherical, cubic, tabular, octahedral, and dodecahedral. Further, the metal particles may be partially or entirely bonded by fusion.
  • the conductive thin wire portion may have a structure in which a plurality of metals are dispersed in a polymer compound described below, or metal particles may aggregate in the polymer compound and exist as an aggregate. Further, at least some of the plurality of metals included in the conductive thin wire portion may be bonded to each other by a metal derived from metal ions used in a plating process to be described later.
  • the metal content in the conductive thin wire portion is not particularly limited, and is preferably 3.0 to 20.0 g/m 2 , and 5.0 to 15.0 g/m 2 in terms of better conductivity of the conductive substrate. is more preferable.
  • the conductive thin wire portion may contain a polymer compound in addition to metal.
  • the type of polymer compound contained in the conductive thin wire portion is not particularly limited, and known polymer compounds can be used. Among these, polymer compounds different from gelatin (hereinafter also referred to as "specific polymers") are preferred in that they can form a silver-containing layer with better strength and a conductive thin wire portion.
  • the type of specific polymer is not particularly limited as long as it is different from gelatin, and preferably a polymer that is not decomposed by proteolytic enzymes or oxidizing agents that decompose gelatin, which will be described later.
  • Specific polymers include hydrophobic polymers (water-insoluble polymers), such as (meth)acrylic resins, styrene resins, vinyl resins, polyolefin resins, polyester resins, polyurethane resins, At least one resin selected from the group consisting of polyamide resin, polycarbonate resin, polydiene resin, epoxy resin, silicone resin, cellulose polymer, and chitosan polymer, or comprising these resins Examples include copolymers consisting of monomers.
  • the specific polymer has a reactive group that reacts with a crosslinking agent described below. It is preferable that the specific polymer is in the form of particles. That is, it is preferable that the conductive thin wire portion contains particles of a specific polymer.
  • a polymer (copolymer) represented by the following general formula (1) is preferable.
  • A, B, C, and D each represent a repeating unit represented by the following general formulas (A) to (D).
  • R 11 represents a methyl group or a halogen atom, and preferably a methyl group, a chlorine atom, or a bromine atom.
  • p represents an integer of 0 to 2, preferably 0 or 1, and more preferably 0.
  • R 12 represents a methyl group or an ethyl group, preferably a methyl group.
  • R 13 represents a hydrogen atom or a methyl group, preferably a hydrogen atom.
  • L represents a divalent linking group, and is preferably a group represented by the following general formula (2).
  • X 1 represents an oxygen atom or -NR 30 -.
  • R 30 represents a hydrogen atom, an alkyl group, an aryl group, or an acyl group, each of which may have a substituent (eg, a halogen atom, a nitro group, and a hydroxyl group).
  • R 30 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms (e.g., methyl group, ethyl group, n-butyl group, and n-octyl group), or an acyl group (e.g., acetyl group, and benzoyl group) is preferred.
  • X 1 is preferably an oxygen atom or -NH-.
  • X 2 represents an alkylene group, an arylene group, an alkylene arylene group, an arylene alkylene group, or an alkylene arylene alkylene group, and these groups include -O-, -S-, -CO-, -COO-, -NH -, -SO 2 -, -N(R 31 )-, -N(R 31 )SO 2 -, etc. may be inserted in the middle.
  • R 31 represents a linear or branched alkyl group having 1 to 6 carbon atoms.
  • X 2 is dimethylene group, trimethylene group, tetramethylene group, o-phenylene group, m-phenylene group, p-phenylene group, -CH 2 CH 2 OCOCH 2 CH 2 -, or -CH 2 CH 2 OCO ( C 6 H 4 )- is preferred.
  • r represents 0 or 1.
  • q represents 0 or 1, preferably 0.
  • R 14 represents an alkyl group, an alkenyl group, or an alkynyl group, preferably an alkyl group having 5 to 50 carbon atoms, more preferably an alkyl group having 5 to 30 carbon atoms, and still more preferably an alkyl group having 5 to 20 carbon atoms.
  • R 15 represents a hydrogen atom, a methyl group, an ethyl group, a halogen atom, or -CH 2 COOR 16 , preferably a hydrogen atom, a methyl group, a halogen atom, or -CH 2 COOR 16 ; , or -CH 2 COOR 16 is more preferred, and a hydrogen atom is even more preferred.
  • R 16 represents a hydrogen atom or an alkyl group having 1 to 80 carbon atoms, and may be the same as or different from R 14 , and the carbon number of R 16 is preferably 1 to 70, more preferably 1 to 60.
  • x, y, z, and w represent the molar ratio of each repeating unit.
  • x is 3 to 60 mol%, preferably 3 to 50 mol%, and more preferably 3 to 40 mol%.
  • y is 30 to 96 mol%, preferably 35 to 95 mol%, and more preferably 40 to 90 mol%.
  • z is 0.5 to 25 mol%, preferably 0.5 to 20 mol%, and more preferably 1 to 20 mol%.
  • w is 0.5 to 40 mol%, preferably 0.5 to 30 mol%.
  • x is preferably 3 to 40 mol%
  • y is 40 to 90 mol%
  • z is 0.5 to 20 mol%
  • w is 0.5 to 10 mol%.
  • the polymer represented by the general formula (1) is preferably a polymer represented by the following general formula (2).
  • the polymer represented by the general formula (1) may contain repeating units other than the repeating units represented by the above-mentioned general formulas (A) to (D).
  • monomers for forming other repeating units include acrylic acid esters, methacrylic acid esters, vinyl esters, olefins, crotonic acid esters, itaconic acid diesters, maleic acid diesters, and fumaric acid diesters.
  • examples include acrylamides, unsaturated carboxylic acids, allyl compounds, vinyl ethers, vinyl ketones, vinyl heterocyclic compounds, glycidyl esters, and unsaturated nitriles. These monomers are also described in paragraphs 0010 to 0022 of Japanese Patent No. 3754745.
  • the polymer represented by general formula (1) preferably contains a repeating unit represented by general formula (E).
  • L E represents an alkylene group, preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 2 to 6 carbon atoms, and even more preferably an alkylene group having 2 to 4 carbon atoms.
  • a polymer represented by the following general formula (3) is particularly preferable.
  • a1, b1, c1, d1, and e1 represent the molar ratio of each repeating unit, a1 is 3 to 60 (mol%), b1 is 30 to 95 (mol%), and c1 is 0.5 ⁇ 25 (mol%), d1 represents 0.5 to 40 (mol%), and e1 represents 1 to 10 (mol%).
  • the preferable range of a1 is the same as the above-mentioned preferable range of x
  • the preferable range of b1 is the same as the above-mentioned preferable range of y
  • the preferable range of c1 is the same as the above-mentioned preferable range of z
  • the preferable range of d1 is the same as the above-mentioned preferable range of y.
  • the preferred range is the same as the preferred range for w described above.
  • e1 is 1 to 10 mol%, preferably 2 to 9 mol%, and more preferably 2 to 8 mol%.
  • the specific polymer can be synthesized with reference to, for example, Japanese Patent No. 3305459 and Japanese Patent No. 3754745.
  • the weight average molecular weight of the specific polymer is not particularly limited, and is preferably 1,000 to 1,000,000, more preferably 2,000 to 750,000, and even more preferably 3,000 to 500,000.
  • the conductive thin wire portion may contain other materials than the above-mentioned materials, if necessary.
  • antistatic agents for example, antistatic agents, nucleation accelerators, spectral sensitizing dyes, surfactants, antifoggants, hardeners, black spot prevention agents, as described in paragraphs 0220 to 0241 of JP-A-2009-004348.
  • agents for example, agents, redox compounds, monomethine compounds, and dihydroxybenzenes.
  • the photosensitive layer may contain physical development nuclei.
  • the conductive thin wire portion may contain a crosslinking agent used for crosslinking the above-mentioned specific polymers. By including the crosslinking agent, crosslinking between the specific polymers progresses, and the metals in the conductive thin wire portion are kept connected to each other.
  • the line width Wa of the conductive thin wire portion is preferably less than 5.0 ⁇ m, more preferably 2.5 ⁇ m or less, and even more preferably 2.0 ⁇ m or less, since the conductive thin wire portion is difficult to be visually recognized.
  • the lower limit is not particularly limited, it is preferably 0.5 ⁇ m or more, and more preferably 1.2 ⁇ m or more, since the conductivity of the conductive thin wire portion is more excellent.
  • the line width of the conductive thin wire portion refers to the total length of the conductive thin wire portion in the direction along the surface of the base material and perpendicular to the direction in which the conductive thin wire portion extends.
  • the line width Wa of the conductive thin wire portion described above is determined by selecting five arbitrary points corresponding to the line width of one conductive thin wire portion using a scanning electron microscope, and calculating the arithmetic average of the line widths of the five points. Let the value be the line width Wa.
  • the thickness T of the conductive thin wire portion is not particularly limited, but is preferably 0.5 to 3.0 ⁇ m, more preferably 1.0 to 2.0 ⁇ m.
  • the thickness T of the conductive thin wire portion described above can be measured according to the method for measuring the thickness of a conductive layer.
  • the wire resistance value of the conductive thin wire portion is preferably less than 200 ⁇ /mm. Among these, from the viewpoint of operability when used as a touch panel, it is more preferably less than 100 ⁇ /mm, and even more preferably less than 60 ⁇ /mm.
  • the wire resistance value is the resistance value measured by the four-probe method divided by the distance between the measurement terminals. More specifically, after disconnecting both ends of any one conductive thin wire part constituting the mesh pattern and separating it from the mesh pattern, four microprobes (A, B, C, D) (Co., Ltd.
  • the conductive layer has a transparent insulating portion adjacent to the conductive thin wire portion. As shown in FIG. 1, the conductive thin wire portion and the transparent insulating portion are arranged side by side in the in-plane direction on the surface of the substrate.
  • the transparent insulating portion is a region that does not contain conductive metal and does not exhibit conductivity.
  • the expression that the transparent insulating part "does not contain metal” means that the metal content in the transparent insulating part is 0.1% by mass or less based on the total mass of the transparent insulating part.
  • the metal content in the transparent insulating part is preferably 0.05% by mass or less based on the total mass of the transparent insulating part.
  • transparent means that the average transmittance of visible light with a wavelength of 400 to 700 nm is 80% or more.
  • the average transmittance of the visible light of the transparent insulating portion is preferably 90% or more.
  • the upper limit is not particularly limited, and is, for example, 99% or less. Transmittance can be measured using a spectrophotometer.
  • the transparent insulating portion preferably contains a polymer compound as a main component.
  • the polymer compound contained in the transparent insulating part include those contained in the conductive thin wire part, and specific polymers are preferable. Among these, it is more preferable to include the same polymer compound (preferably a specific polymer) contained in the conductive thin wire portion.
  • the expression that the transparent insulating part "contains a polymer compound as a main component" means that the content of the polymer compound is 50% by mass or more based on the total mass of the transparent insulating part.
  • the content of the polymer compound in the transparent insulating part is preferably 90% by mass or more, more preferably 95% by mass or more.
  • the upper limit is not particularly limited and may be 100% by mass.
  • the method for forming the transparent insulating portion is not particularly limited, and for example, in the method for manufacturing a conductive substrate described below, an unexposed portion may be formed by performing an exposure treatment in which a silver halide-containing photosensitive layer is exposed in a pattern. Then, by performing a development process on the unexposed area, a transparent insulating part containing a polymer compound as a main component is formed. In addition, by performing a treatment to remove gelatin as necessary, a transparent insulating portion containing a specific polymer as a main component is formed.
  • the conductive substrate may include other members in addition to the above-described base material, conductive thin wire portion, and transparent insulating portion.
  • Other members that may be included in the conductive substrate include a conductive portion having a different configuration from the conductive thin wire portion described below.
  • the conductive layer contains a compound represented by the following formula (1), formula (2), formula (3), or formula (4) (hereinafter also referred to as a "specific compound").
  • R 1 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a phenyl group, or a C 1 to 6 alkyl group. Represents an alkoxy group, an alkylthio group having 1 to 3 carbon atoms, an amino group, a hydroxyl group, or a carboxylic acid group.
  • R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an amino group.
  • R 3 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms and having at least one substituent selected from the group consisting of a carboxylic acid group, a hydroxyl group, and an amino group.
  • the sulfidation resistance of the conductive thin wire portion is improved. More specifically, as mentioned above, in conductive substrates mounted on electronic devices such as touch panels, sulfur compounds originating from surrounding members or the surrounding environment permeate into the conductive layer and cause the conductive thin wires to penetrate into the conductive layer. It is thought that the conductivity of the conductive thin wire portion decreases as a result of reacting with the thin metal wire in the conductive wire portion to form sulfide.
  • the sulfur compound that has penetrated into the conductive layer from the outside reacts with the specific compound and combines with it, resulting in sulfur resistance that suppresses sulfurization of the thin metal wire in the conductive thin wire section. It is assumed that this will improve.
  • the fact that the conductive thin wire portion has excellent sulfurization resistance is also referred to as "the effect of the present invention is excellent.”
  • R 1 is preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group, and more preferably a hydrogen atom, a methyl group, an ethyl group, or a phenyl group, since the effects of the present invention are more excellent. .
  • R 1 is an alkyl group having 1 to 6 carbon atoms, a phenyl group, an alkoxy group having 1 to 6 carbon atoms, a thioalkyl group having 1 to 3 carbon atoms, an amino group, A hydroxyl group or a carboxylic acid group is preferable, an alkyl group having 1 to 6 carbon atoms, or a phenyl group is more preferable, and a methyl group, a propan-2-yl group, or a phenyl group is preferable because the effects of the present invention are more excellent. More preferred are groups.
  • Specific compounds represented by formula (1) include, for example, 5-methyl-1,3,4-thiadiazole-2-thiol, 5-ethyl-1,3,4-thiadiazole-2-thiol, 5-( propan-2-yl)-1,3,4-thiadiazole-2-thiol, 5-phenyl-1,3,4-thiadiazole-2-thiol, 5-amino-1,3,4-thiadiazole-2-thiol , and 5-(methylthio)-1,3,4-thiadiazole-2-thiol.
  • 5-methyl-1,3,4-thiadiazole-2-thiol, 5-(propan-2-yl)-1,3,4-thiadiazole-2-thiol, or 5-phenyl-1,3 ,4-thiadiazole-2-thiol is preferred, and 5-methyl-1,3,4-thiadiazole-2-thiol is more preferred.
  • Specific compounds represented by formula (2) include 3-mercapto-1H-1,2,4-triazole, 1-methyl-1,2,4-triazole-3-thiol, 5-amino-1H-1 , 2,4-triazole-3-thiol, 5-methyl-1H-1,2,4-triazole-3-thiol, and 5-ethyl-1H-1,2,4-triazole-3-thiol. It will be done. Among them, 3-mercapto-1H-1,2,4-triazole is preferred.
  • Specific compounds represented by formula (3) include 3-methyl-4H-1,2,4-triazole-5-thiol, 4-methyl-1,2,4-triazole-3-thiol, 4,5 -dimethyl-1,2,4-triazole-3-thiol, 4-amino-1,2,4-triazol-3-thiol, 5-mercapto-4H-1,2,4-triazol-3-ol, 4 -Ethyl-1,2,4-triazole-3-thiol, 5-ethyl-4H-1,2,4-triazole-3-thiol, 4-amino-5-methyl-1,2,4-triazole-3 -thiol, 5-amino-4-methyl-1,2,4-triazole-3-thiol, 5-mercapto-4-methyl-1,2,4-triazol-3-ol, 5-ethyl-4-methyl -1,2,4-triazole-3-thiol, 3-isopropyl-4H-1,2,4-triazole-5-thiol, 4-ethyl
  • Specific compounds represented by formula (4) include 1,2,3-benzotriazole, 5-methylbenzotriazole, 4-methylbenzotriazole, 2,2'-(4-methyl-1H-benzotriazole-1 -ylmethylimino)bisethanol, 2,2'-(5-methyl-1H-benzotriazol-1-ylmethylimino)bisethanol, 1-(1',2'-dicarboxyethyl)benzotriazole, 1- Examples include (2,3-dicarboxypropyl)benzotriazole, 5-carboxybenzotriazole, 5,6-dimethylbenzotriazole, and 5-aminobenzotriazole. Among them, 1,2,3-benzotriazole, 5-methylbenzotriazole, 4-methylbenzotriazole, or 2,2'-(4-methyl-1H-benzotriazol-1-ylmethylimino)bisethanol preferable.
  • the specific compound has the above formula (The specific compound represented by 4) is preferable, and 1,2,3-benzotriazole or 5-methylbenzotriazole is more preferable.
  • a compound represented by the following formula (1a) can be mentioned.
  • the specific compound herein includes the compound represented by formula (1) as well as the proton tautomer of the compound represented by formula (1) represented by formula (1a). shall be held.
  • the specific compound in this specification refers to the proton tautomer of the compound represented by the formula (2) represented by the compound represented by the following formula (2a), and the proton tautomer of the compound represented by the following formula (2a).
  • the proton tautomer of the compound represented by formula (3) represented by the compound represented by (3a) is also included.
  • R 1 in formula (1a), formula (2a) and formula (3a) is the same as R 1 in formula (1), formula (2) and formula (3) above.
  • R 2 in formula (2a) and formula (3a) is the same as R 2 in formula (2) and formula (3) above.
  • the number of specific compounds contained in the conductive layer may be one, or two or more.
  • the content of the specific compound contained in the conductive layer is preferably 0.005 ⁇ g/cm 2 or more per area of the conductive layer, more preferably 0.01 ⁇ g/cm 2 or more, in that the effect of the present invention is more excellent. More preferably, it is 0.02 ⁇ g/cm 2 or more.
  • the upper limit of the content of the specific compound is not particularly limited, but it is preferably 8.0 ⁇ g/cm 2 or less per area of the conductive layer, since it is more effective in suppressing color change of the conductive substrate after long-term storage.
  • the mixing ratio when using two or more types of specific compounds may be arbitrarily adjusted as long as the content of the specific compounds contained in the conductive layer is within the above range.
  • the ratio of the content of one specific compound to the content of another specific compound may be, for example, 0.01 to 200 in terms of mass ratio.
  • the specific compound may be contained in both the conductive thin wire portion and the transparent insulating portion that constitute the conductive layer, it is preferably contained in at least the transparent insulating portion.
  • the content of the specific compound contained in the conductive layer can be measured by immersing the conductive substrate having the conductive layer in a solvent, extracting the specific compound, and then quantifying the content of the specific compound in the solvent. .
  • a detailed method for measuring the content of the specific compound will be described in the Examples below.
  • the conductive layer may contain compounds other than the specific compound.
  • examples include benzimidazole, benzoxazole, benzothiazole, 2-mercaptobenzimidazole, sodium 2-mercapto-5-benzimidazole sulfonate, 2-mercaptobenzoxazole, and 2-mercaptobenzothiazole.
  • benzimidazole, benzoxazole, and benzothiazole are preferred.
  • Other compounds are preferably those that suppress the decomposition of the specific compound, and more preferably those that stabilize the specific compound by forming electrostatic interactions with the specific compound such as hydrogen bonds and ⁇ - ⁇ interactions. preferable.
  • the mixing ratio when the specific compound and the above-mentioned other compounds are used together may be arbitrarily adjusted as long as the content of the specific compound contained in the conductive layer is within the above-mentioned content range.
  • the ratio of the content of other compounds to the content of the specific compound is preferably 0.01 to 200 by mass, more preferably 0.1 to 20, and even more preferably 0.5 to 10.
  • the content of other compounds other than the specific compound can be measured according to the method described as a method for measuring the content of the specific compound.
  • a method of bringing a specific compound into contact with the conductive layer is preferred.
  • a method in which a specific compound is brought into contact with the conductive layer in step P described below is more preferable.
  • the content of the specific compound contained in the conductive thin wire portion is not particularly limited, but the ratio A of the content of the specific compound to the metal content in the conductive thin wire portion (metal content)) is preferably from 0.05 to 8.0, more preferably from 0.1 to 5.0, and more preferably from 0.2 to 5.0. More preferred.
  • the sulfurization resistance of the conductive thin wire portion can be further improved, especially when the conductive substrate is stored in the form of a laminate with other members such as an adhesive sheet and a release sheet.
  • the sulfurization resistance of the conductive thin wire portion can be further improved.
  • the ratio A is preferably equal to or less than the above upper limit because the effect of suppressing color change of the conductive substrate after long-term storage is more excellent.
  • the above ratio A in the conductive thin wire portion is measured by analyzing the conductive thin wire portion using a time-of-flight secondary ion mass spectrometer (TOF-SIMS). be exposed.
  • TOF-SIMS time-of-flight secondary ion mass spectrometer
  • the method for measuring the content A of the specific compound will be explained in more detail.
  • secondary ions fragment peaks
  • TOF-SIMS time-of-flight secondary ion mass spectrometer
  • the amount of specific compound and the amount of metal are determined.
  • fragment peaks derived from metals those of zero-valent metals (for example, metallic silver, etc.) and metal anions (for example, silver iodide, etc.) contained in the conductive thin wire are used.
  • the maximum value of the fragment peak intensity of the specific compound present in the conductive thin wire portion is calculated as B, and the maximum value of the fragment peak intensity derived from the metal is calculated as C.
  • the method for manufacturing the conductive substrate is not particularly limited as long as the conductive substrate having the above-mentioned configuration can be manufactured, and a known method may be employed. For example, a method of exposing and developing using silver halide, forming a metal-containing layer on the entire surface of the support, and then removing a part of the metal-containing layer using a resist pattern to form a thin line-shaped metal-containing layer. and a method in which a thin line-shaped metal-containing layer is formed by discharging a composition containing a metal and a resin onto a substrate using a known printing method such as inkjet printing.
  • a method in which exposure and development are performed using silver halide is preferred in terms of productivity and superior conductivity of the conductive thin wire portion.
  • a method for manufacturing a conductive substrate that includes steps A to D which will be described later, in this order.
  • steps A to D which will be described later, in this order.
  • a method for manufacturing a conductive substrate having steps A to D will be described in detail, but the method for manufacturing a conductive substrate according to the present invention is not limited to the following manufacturing method.
  • step A a silver halide-containing photosensitive layer (hereinafter also referred to as "photosensitive layer”) containing silver halide, gelatin, and a specific polymer (a polymer compound different from gelatin) is formed on a base material.
  • photosensitive layer a silver halide-containing photosensitive layer
  • a specific polymer a polymer compound different from gelatin
  • the halogen atom contained in the silver halide may be any of a chlorine atom, a bromine atom, an iodine atom, and a fluorine atom, or a combination of these may be used.
  • silver halide mainly composed of silver chloride, silver bromide or silver iodide is preferred, and silver halide mainly composed of silver chloride or silver bromide is more preferred.
  • silver chlorobromide, silver iodochlorobromide, and silver iodobromide are also preferably used.
  • silver halide mainly composed of silver chloride refers to silver halide in which the molar fraction of chloride ions to all halide ions in the silver halide composition is 50% or more.
  • This silver halide mainly composed of silver chloride may contain bromide ions and/or iodide ions in addition to chloride ions.
  • the silver halide may contain a metal compound other than silver, and compounds described in paragraphs 0031 to 0038 of JP-A No. 2006-332459 can be preferably used.
  • the silver halide is subjected to chemical sensitization treatment using a chemical sensitizer exemplified in paragraphs 0039 to 0045 of JP-A No. 2006-332459.
  • a chemical sensitizer exemplified in paragraphs 0039 to 0045 of JP-A No. 2006-332459.
  • Silver halide is usually in the form of solid particles, and the average particle diameter of silver halide is preferably 10 to 1000 nm, more preferably 10 to 300 nm, in equivalent sphere diameter.
  • the grain size of the silver halide it is possible to reduce light scattering by the silver halide particles when exposing the silver halide photosensitive layer in step B described below, so the line width of the conductive thin line due to light scattering can be reduced. This is preferable because it can suppress the increase in .
  • the silver halide grain size is made too small, the surface area of the developed silver formed in step B will increase, and there is a risk that surface adsorbed matter will increase, which will cause a decrease in conductivity.
  • the average particle diameter is preferably in the above range.
  • the spherical equivalent diameter is the diameter of spherical particles having the same volume.
  • the "equivalent sphere diameter" used as the average particle diameter of the silver halide mentioned above is an average value, which is the arithmetic average of 100 equivalent sphere diameters of silver halide measured.
  • the shape of the silver halide grains is not particularly limited, and examples thereof include spherical, cubic, tabular (hexagonal tabular, triangular tabular, quadrilateral tabular, etc.), octahedral, and tetradecahedral.
  • octahedral octahedral
  • tetradecahedral tetradecahedral
  • gelatin The type of gelatin is not particularly limited, and examples include lime-treated gelatin and acid-treated gelatin. Further, gelatin hydrolysates, gelatin enzymatically decomposed products, gelatin modified with amino groups and/or carboxy groups (phthalated gelatin, acetylated gelatin), etc. may be used.
  • the photosensitive layer contains the above-mentioned specific polymer.
  • this specific polymer By including this specific polymer in the photosensitive layer, the strength of the conductive thin wire portion and the transparent insulating portion formed from the photosensitive layer is further improved.
  • the method for forming the photosensitive layer containing the above-mentioned components in Step A is not particularly limited, but from the viewpoint of productivity, a composition for forming a photosensitive layer containing silver halide, gelatin, and a specific polymer is coated on the base material.
  • a preferred method is to form a photosensitive layer on a substrate by bringing it into contact with the substrate.
  • the composition for forming a photosensitive layer contains the above-mentioned silver halide, gelatin, and specific polymer. Note that, if necessary, the specific polymer may be contained in the composition for forming a photosensitive layer in the form of particles.
  • the composition for forming a photosensitive layer may contain a solvent as necessary. Examples of the solvent include water, organic solvents (for example, alcohols, ketones, amides, sulfoxides, esters, and ethers), ionic liquids, and mixed solvents thereof.
  • the method of bringing the composition for forming a photosensitive layer into contact with the base material is not particularly limited. Examples include a method of dipping the base material. Note that after the above-mentioned treatment, a drying treatment may be performed as necessary.
  • the photosensitive layer formed by the above procedure contains silver halide, gelatin, and a specific polymer.
  • the content of silver halide in the photosensitive layer is not particularly limited, and is preferably 3.0 to 20.0 g/m 2 in terms of silver, and 5.0 to 15 g/m 2 in terms of silver, since the conductive substrate has better conductivity. .0 g/m 2 is more preferred.
  • Silver conversion means conversion into the mass of silver produced by reducing all of the silver halide.
  • the content of the specific polymer in the photosensitive layer is not particularly limited, and is preferably 0.04 to 2.0 g/m 2 and 0.08 to 0.40 g/m 2 in terms of better conductivity of the conductive substrate. m 2 is more preferable, and 0.10 to 0.40 g/m 2 is even more preferable.
  • a single silver halide photosensitive layer may be used, it is also preferable to laminate a plurality of photosensitive layers as necessary.
  • a layer closer to the light source when exposing the photosensitive layer (hereinafter referred to as the "upper layer") is opposed to a layer farther from the light source (hereinafter referred to as the "lower layer”).
  • the sensor it is preferable to design the sensor to increase its sensitivity. The intensity of light reaching the lower layer decreases due to absorption and scattering by the silver halide in the upper layer, so by increasing the sensitivity of the lower layer, the lower photosensitive layer can be exposed to even the lower intensity light. This is preferable because the amount of silver per constant line width of the conductive thin wire can be increased.
  • the grain size of the silver halide grains in the upper layer is smaller than that of the silver halide grains in the lower layer.
  • the problem of the light scattering of the upper layer silver halide grains expanding the irradiation area of the light reaching the lower layer and increasing the line width of the conductive thin wire can be suppressed by reducing the grain size of the upper layer silver halide grains. That's preferable.
  • the surface area of developed silver can be reduced compared to when the grain size of the silver halide grains in the lower layer is made smaller. This is preferable because it can reduce the amount of adsorbed substances.
  • the preferable sensitivity ratio between the upper and lower silver halide photosensitive layers is determined by the light absorption and scattering properties that vary depending on the particle size of the silver halide grains, halogen composition, thickness of the photosensitive layer, wavelength of the light source used for exposure, etc. Therefore, the sensitivity of the lower layer relative to the sensitivity of the upper layer is preferably in the range of 1.1 to 10 times, and more preferably in the range of 1.5 to 4 times, although it cannot be generalized. Further, the average particle diameter of the silver halide is preferably in the range of 40 to 180 nm in the upper layer and 100 to 300 nm in the lower layer.
  • Step B is a step of exposing the photosensitive layer to light and then developing it to form a thin line-shaped silver-containing layer containing metallic silver, gelatin, and a specific polymer.
  • the method of development treatment is not particularly limited, and examples thereof include known methods used for silver salt photographic films, photographic papers, films for printing plates, and emulsion masks for photomasks.
  • a developer is usually used.
  • the type of developer is not particularly limited, and examples include PQ (phenidone hydroquinone) developer, MQ (metol hydroquinone) developer, and MAA (methol ascorbic acid) developer.
  • This step may further include a fixing treatment performed for the purpose of removing and stabilizing silver halide in unexposed areas.
  • the fixing process is performed simultaneously with and/or after the development.
  • the fixing treatment method is not particularly limited, and examples thereof include methods used for silver salt photographic films, photographic paper, printing plate-making films, and emulsion masks for photomasks.
  • a fixing solution is usually used.
  • the type of fixer is not particularly limited, and examples thereof include the fixer described in "Chemistry of Photography" (written by Sasai, published by Photo Industry Publishing Co., Ltd.), p. 321.
  • the width of the silver-containing layer is preferably 1.0 ⁇ m or more and less than 5.0 ⁇ m, and more preferably 2.0 ⁇ m or less since the formed conductive thin wire portion is difficult to be visually recognized.
  • the silver-containing layer obtained by the above procedure is in the form of a thin line, and the width of the silver-containing layer refers to the length (width) of the silver-containing layer in the direction perpendicular to the direction in which the thin line-shaped silver-containing layer extends. means.
  • the superheated steam may be superheated steam or a mixture of superheated steam and other gas.
  • the contact time between the superheated steam and the silver-containing layer is not particularly limited, and is preferably 10 to 70 seconds.
  • the amount of superheated steam supplied is preferably 500 to 600 g/m 3 , and the temperature of superheated steam is preferably 100 to 160°C (preferably 100 to 120°C) at 1 atmosphere.
  • the heating conditions in the method of heating the silver-containing layer etc. with a temperature adjustment device are preferably heating at 100 to 200 °C (preferably 100 to 150 °C) for 1 to 240 minutes (preferably 60 to 150 minutes).
  • the proteolytic enzyme used in Method 1 includes known plant or animal enzymes that can hydrolyze proteins such as gelatin.
  • proteolytic enzymes include pepsin, rennin, trypsin, chymotrypsin, cathepsin, papain, ficin, thrombin, renin, collagenase, bromelain, and bacterial protease, with trypsin, papain, ficin, or bacterial protease being preferred.
  • the procedure in Method 1 may be any method as long as it brings the silver-containing layer etc. into contact with the above-mentioned protease. ).
  • the contact method include a method in which the silver-containing layer, etc.
  • the oxidizing agent used in method 2 may be any oxidizing agent that can decompose gelatin, and preferably has a standard electrode potential of +1.5 V or more.
  • the standard electrode potential herein refers to the standard electrode potential (25° C., E0) relative to a standard hydrogen electrode in an aqueous solution of an oxidizing agent.
  • oxidizing agents include persulfuric acid, percarbonic acid, perphosphoric acid, hypoperchloric acid, peracetic acid, metachloroperbenzoic acid, hydrogen peroxide, perchloric acid, periodic acid, potassium permanganate,
  • Examples include ammonium persulfate, ozone, hypochlorous acid or its salts, but from the viewpoint of productivity and economy, hydrogen peroxide (standard electrode potential: 1.76V), hypochlorous acid or its salts are preferable. , sodium hypochlorite is more preferred.
  • the method for manufacturing a conductive substrate may include a step E in which the silver-containing layer obtained in step D is subjected to a plating treatment. By carrying out this step, the space inside the silver-containing layer formed by removing gelatin can be filled with metal (plated metal), and the conductivity of the conductive thin wire portion can be improved.
  • the type of plating treatment is not particularly limited, but includes electroless plating (chemical reduction plating or displacement plating) and electrolytic plating, with electroless plating being preferred.
  • electroless plating a known electroless plating technique is used.
  • the plating treatment include silver plating treatment, copper plating treatment, nickel plating treatment, and cobalt plating treatment, and silver plating treatment or copper plating treatment is preferable because the conductivity of the conductive thin wire portion is better. , silver plating treatment is more preferred.
  • the components contained in the plating solution used in the plating process are not particularly limited, but usually, in addition to a solvent (for example, water), 1. Metal ions for plating, 2. reducing agent, 3. Additives (stabilizers) that improve the stability of metal ions; 4. Mainly contains pH adjusters.
  • the plating bath may contain known additives such as a plating bath stabilizer.
  • the type of metal ion for plating contained in the plating solution can be appropriately selected depending on the type of metal to be deposited, and examples thereof include silver ion, copper ion, nickel ion, and cobalt ion.
  • the method for manufacturing a conductive substrate may include a step F in which the silver-containing layer obtained in the above step is further subjected to a smoothing treatment.
  • the method of smoothing treatment is not particularly limited, and for example, a calendar treatment step in which a base material having a silver-containing layer or the like is passed between at least a pair of rolls under pressure is preferred.
  • calender process the smoothing process using a calender roll will be referred to as calender process.
  • Rolls used for calendering include plastic rolls and metal rolls, with plastic rolls being preferred from the viewpoint of wrinkle prevention.
  • the pressure between the rolls is not particularly limited, and is preferably 2 MPa or more, more preferably 4 MPa or more, and preferably 120 MPa or less. Note that the pressure between the rolls can be measured using Prescale (for high pressure) manufactured by Fujifilm Corporation.
  • the temperature of the smoothing treatment is not particularly limited, and is preferably 10 to 100°C, more preferably 10 to 50°C.
  • the method for manufacturing a conductive substrate may include a step G of subjecting the silver-containing layer etc. obtained in the above steps to a heat treatment. By carrying out this step, a conductive thin wire portion with better conductivity can be obtained.
  • the method of heat-treating the conductive thin wire portion is not particularly limited, and the method described in Step C may be used.
  • the method for producing a conductive substrate may include, before Step A, Step H of forming a silver halide-free layer containing gelatin and a specific polymer on the base material.
  • Step H of forming a silver halide-free layer containing gelatin and a specific polymer on the base material.
  • a silver halide-free layer is formed between the substrate and the silver halide-containing photosensitive layer.
  • This silver halide-free layer plays the role of a so-called antihalation layer and also contributes to improving the adhesion between the conductive layer and the base material.
  • the silver halide-free layer contains the above-mentioned gelatin and specific polymer. On the other hand, the silver halide-free layer does not contain silver halide.
  • the ratio of the mass of the specific polymer to the mass of gelatin (mass of specific polymer/mass of gelatin) in the silver halide-free layer is not particularly limited, and is preferably 0.1 to 5.0, and 1. More preferably 0 to 3.0.
  • the content of the specific polymer in the silver halide-free layer is not particularly limited, and is often 0.03 g/m 2 or more. 2 or more is preferred.
  • the upper limit is not particularly limited, but is often 1.63 g/m 2 or less.
  • the method for producing a conductive substrate may include, after step A and before step B, step I of forming a protective layer containing gelatin and a specific polymer on the silver halide-containing photosensitive layer.
  • a protective layer By providing a protective layer, the scratch prevention and mechanical properties of the photosensitive layer can be improved.
  • the ratio of the mass of the specific polymer to the mass of gelatin in the protective layer is not particularly limited, and is preferably greater than 0 and less than or equal to 2.0, and more than 0 and less than or equal to 1.0. More preferred.
  • the content of the specific polymer in the protective layer is not particularly limited, and is preferably more than 0 g/m 2 and 0.3 g/m 2 or less, and more preferably 0.005 to 0.1 g/m 2 .
  • the method of forming the protective layer is not particularly limited, and for example, a method of applying a protective layer-forming composition containing gelatin and a specific polymer onto a silver halide-containing photosensitive layer and subjecting it to a heat treatment if necessary. can be mentioned.
  • the composition for forming a protective layer may contain a solvent as necessary. Examples of the solvent include those used in the photosensitive layer forming composition described above.
  • the thickness of the protective layer is not particularly limited, and is preferably 0.03 to 0.3 ⁇ m, more preferably 0.075 to 0.20 ⁇ m.
  • Step H, Step A, and Step I described above may be performed simultaneously by simultaneous multilayer coating.
  • the method for manufacturing a conductive substrate includes a step P of bringing a specific compound into contact with the conductive layer formed on the above-mentioned base material to produce the conductive substrate of the present invention in which the conductive layer contains the specific compound.
  • the method of bringing the conductive layer into contact with the specific compound is not particularly limited, and examples include a method of immersing the base material on which the conductive layer is formed in a treatment solution containing the specific compound, and a method of bringing the conductive layer into contact with the specific compound. Examples include a method of coating the surface of a base material on which a conductive layer is formed.
  • the treatment liquid containing the above-mentioned specific compound is preferably a solution obtained by dissolving the specific compound in a solvent.
  • the type of solvent used is not particularly limited, and examples thereof include the solvents used in the photosensitive layer forming composition described above.
  • Preferred solvents include alcohols and ethers.
  • Specific examples of preferred solvents include ethanol, 1-propanol, 2-propanol, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monopropyl ether, and diethylene glycol monobutyl ether.
  • this conductive substrate other than those mentioned above include, for example, electromagnetic shielding that blocks electromagnetic waves such as radio waves and microwaves (ultra-high frequency waves) generated from electronic devices such as personal computers and workstations, and prevents static electricity. It will be done.
  • electromagnetic shield can be used not only for personal computers but also for electronic equipment such as video imaging equipment and electronic medical equipment.
  • This conductive substrate can also be used for transparent heating elements.
  • the present conductive substrate may be used in the form of a laminate having the conductive substrate and other members such as an adhesive sheet and a release sheet during handling and transportation.
  • the release sheet functions as a protective sheet to prevent scratches on the conductive substrate during transportation of the laminate.
  • the adhesive sheet include sheets made of known adhesives used in optical systems, such as optical clear adhesives (OCA) and acrylic adhesives.
  • the conductive substrate may be handled in the form of a composite body including, for example, a conductive substrate, an adhesive sheet, and a protective layer in this order.
  • Example 1 [Preparation of silver halide emulsion A] To the following liquid 1 maintained at 38°C and pH 4.5, an amount equivalent to 90% of each of the following liquids 2 and 3 was added simultaneously over 20 minutes while stirring the liquid 1 to obtain 0.16 ⁇ m core particles. was formed. Next, the following liquids 4 and 5 were added to the obtained solution over 8 minutes, and the remaining 10% of the following liquids 2 and 3 were added over 2 minutes to grow the core particles to 0.21 ⁇ m. I let it happen. Furthermore, 0.15 g of potassium iodide was added to the obtained solution and aged for 5 minutes to complete particle formation.
  • the final emulsion contains 0.08 mol% of silver iodide, and the ratio of silver chlorobromide is 70 mol% of silver chloride and 30 mol% of silver bromide, and has an average grain size (equivalent sphere diameter). It was a silver chlorobromide cubic grain emulsion with a particle diameter of 200 nm and a coefficient of variation of 9%.
  • the resulting emulsion is also referred to as "silver halide emulsion A" or simply "emulsion A.”
  • a polymer represented by the following structural formula (P-1) (hereinafter also referred to as "polymer 1") and dialkylphenyl PEO (PEO is an abbreviation for polyethylene oxide) sulfuric ester.
  • a polymer latex containing a dispersant and water (the ratio of the mass of the dispersant to the mass of polymer 1 (mass of dispersant/mass of polymer 1, unit: g/g) is 0.02, solid content is 22% by mass), and the ratio of the mass of polymer 1 to the total mass of gelatin in the composition (mass of polymer 1/mass of gelatin, unit g/g) is 0.
  • a polymer latex-containing composition was obtained by adding at a ratio of 25/1.
  • the ratio of the mass of gelatin to the mass of silver derived from silver halide is 0. It was 11. Furthermore, EPOXY RESIN DY 022 (trade name: manufactured by Nagase ChemteX Co., Ltd.) as a crosslinking agent was added to the above polymer latex-containing composition. The amount of the crosslinking agent added was adjusted so that the amount of the crosslinking agent in the silver halide-containing photosensitive layer described below was 0.09 g/m 2 .
  • a composition for forming a photosensitive layer was prepared as described above. In addition, polymer 1 was synthesized with reference to Japanese Patent No. 3305459 and Japanese Patent No. 3754745.
  • undercoat layer The above-mentioned polymer latex was applied to the surface of a base material made of a polyethylene terephthalate film having a thickness of 40 ⁇ m (“rolled long film manufactured by Fuji Film Corporation”) to provide an undercoat layer having a thickness of 0.05 ⁇ m. This treatment was performed roll-to-roll, and the following treatments (steps) were similarly performed roll-to-roll. Note that the roll width at this time was 1 m and the length was 1000 m.
  • the thickness of the silver halide-free layer is 2.0 ⁇ m, and the mixing mass ratio of polymer 1 and gelatin in the silver halide-free layer (polymer 1/gelatin) is 2/1.
  • the content of molecule 1 was 1.3 g/ m2 .
  • the thickness of the silver halide-containing photosensitive layer is 2.5 ⁇ m, and the mixing mass ratio of polymer 1 and gelatin (polymer 1/gelatin) in the silver halide-containing photosensitive layer is 0.25/1.
  • the content of polymer 1 was 0.19 g/m 2 .
  • the obtained sample was developed with a developer described below, and further developed using a fixer (trade name: N3X-R for CN16X, manufactured by Fuji Film Corporation). After that, it is rinsed with pure water at 25°C and dried to form a conductive layer containing a conductive thin wire portion containing metallic silver and a transparent insulating portion, and the conductive thin wire portion is formed in a mesh pattern.
  • Sample A of the substrate was obtained. In sample A, a conductive mesh pattern area with a size of 21.0 cm x 29.7 cm was formed.
  • the obtained above-mentioned sample was immersed in warm water at 50°C for 180 seconds. After this, the water was removed using an air shower and the material was allowed to air dry.
  • Step C1 The sample obtained in step B1 was carried into a superheated steam treatment tank at 110° C., and left to stand still for 30 seconds to perform superheated steam treatment. Note that the steam flow rate at this time was 100 kg/h.
  • proteolytic enzyme aqueous solution 40° C.
  • the sample was taken out from the proteolytic enzyme aqueous solution and washed by immersing it in warm water (liquid temperature: 50°C) for 120 seconds. After this, the water was removed using an air shower, and the sample was air-dried.
  • the protease aqueous solution used was prepared according to the following procedure. Triethanolamine and sulfuric acid were added to an aqueous solution (proteolytic enzyme concentration: 0.5% by mass) of a proteolytic enzyme (Bioplase 30L manufactured by Nagase ChemteX) to adjust the pH to 8.5.
  • step D1 The sample obtained in step D1 was carried into a superheated steam treatment tank at 110° C., and left standing for 30 seconds to perform superheated steam treatment. Note that the steam flow rate at this time was 100 kg/h.
  • step G1 The sample obtained in step G1 was immersed in treatment liquid A (40° C.) for 60 seconds. The sample was taken out from treatment solution A and washed by immersing it in water at 25° C. for 50 seconds.
  • the composition of treatment liquid A (total amount: 1200 g) was as follows. The following components used were all manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. (Composition of treatment liquid A) ⁇ 5-Methyl-1,3,4-thiadiazole-2-thiol 2.4g ⁇ Ethanol 90g ⁇ Water remainder
  • step P1 The sample obtained in step P1 was heated at 65° C. for 90 seconds and dried. Through the above steps, a sample of a conductive substrate having a mesh pattern electrode was produced.
  • Examples 2-14, 18-33 When preparing the treatment liquid used in step P1, the mixed solvent listed in Tables 1 and 2 described below was used, and the type and content of the specific compound contained in the treatment liquid and the content of the mixed solvent. Examples 2 to 2 were carried out in accordance with the procedure described in Example 1, except that the content of the specific compound per area of the conductive layer was adjusted as appropriate to the values listed in Tables 1 and 2 below. Samples of conductive substrates Nos. 14 and 18 to 33 were prepared, respectively. All components of the processing liquid used were manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • Example 15 The sample obtained in step D1 of Example 1 was immersed in a plating solution (30° C.) having the following composition for 5 minutes. The sample was taken out from the plating solution and washed by immersing it in warm water (50° C.) for 120 seconds. The composition of the plating solution (total volume 1200 mL) was as follows. The pH of the plating solution was 9.9, which was adjusted by adding a predetermined amount of potassium carbonate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). The following components used were all manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
  • composition of plating solution ⁇ AgNO3 2.1g ⁇ Sodium sulfite 86g ⁇ Sodium thiosulfate pentahydrate 60g ⁇ Aron T-50 (manufactured by Toagosei Co., Ltd., solid content concentration 40%) 36g ⁇ Methylhydroquinone 7g ⁇ Prescribed amount of potassium carbonate ⁇ Remainder of water
  • the silver halide emulsion B finally obtained contains 0.08 mol% of silver iodide, the ratio of silver chlorobromide is 70 mol% of silver chloride and 30 mol% of silver bromide, and has an average grain size ( It was a silver chlorobromide cubic grain emulsion with an equivalent sphere diameter of 200 nm and a coefficient of variation of 9%.
  • Emulsion C was prepared by changing the temperature of the first liquid, the addition rate of the second and third liquids, and the amounts of materials added as shown below in the method for preparing silver halide emulsion B described above.
  • the name of the material whose addition amount was changed and the addition amount are as follows.
  • the smoothing by a calender was carried out using metal rolls at 25° C. under the condition that the pressure between the rolls was 10 MPa.
  • the only difference was that photosensitive material C was used instead of photosensitive material B, and the exposure amount in step B1 was changed so that the line width of the conductive thin line portion was 2.5 ⁇ m.
  • Samples of conductive substrates were produced using different methods, and the obtained sample was designated as sample C2.
  • the only difference was that photosensitive material D was used instead of photosensitive material B, and the exposure amount in step B1 was changed so that the line width of the conductive thin line portion was 2.5 ⁇ m.
  • Samples of conductive substrates were produced using different methods, and the obtained sample was designated as sample D2.
  • sample D2 in which the photosensitive layer has a two-layer laminated structure, has improved conductivity compared to sample B2 and sample C2, in which the photosensitive layer has a single-layer structure. Furthermore, since the exposure amount when preparing sample C2 was 2.3 times the exposure amount when preparing sample B2, the photosensitive layer using emulsion B was less sensitive than the photosensitive layer using emulsion C. This suggests that the lower emulsion layer of sample D2 has 2.3 times more sensitivity than the upper emulsion layer.
  • the conductivity was calculated by measuring the resistance value (R0) of a sample having a mesh pattern shape by the method described below, and calculating the reciprocal of the obtained resistance value.
  • the ratio A of the specific compound content to the metal content in the conductive thin wire portion of the sample obtained in each example was measured by the following method.
  • Each sample was analyzed using a time-of-flight secondary ion mass spectrometer (TOF-SIMS, manufactured by ION-TOF) equipped with a Bi ion gun (Bi 3 +) to detect secondary ion species emitted from the conductive thin wire section.
  • TOF-SIMS time-of-flight secondary ion mass spectrometer
  • Bi 3 + Bi ion gun
  • the calculated ratio A for each example sample is shown in Tables 1 to 3 below.
  • ⁇ Sulfidation resistance test 1> The resistance value (R0) of the prepared sample having a mesh pattern shape was measured. In the measurement, the electrical resistance (unit: k ⁇ ) between terminals at a distance of 4 cm was measured for each sample using an Agilent 34405A multimeter device. Next, the vulcanized EPDM (ethylene propylene diene rubber) "E-4408" (manufactured by INOAC Corporation) was cut into pieces with a length of 3.5 cm, a width of 3 mm, and a thickness of 1 mm, and the pieces of EPDM were used as conductive layers. It was fixed to the sample so that it was in contact with the side surface. After the sample with the section fixed thereon was allowed to stand at 80° C.
  • E-4408 ethylene propylene diene rubber
  • the section was removed from the sample, and the resistance value (R1) of the sample was measured by the method described above.
  • the laminate sample was pressurized in an autoclave (40° C., 0.5 MPa, 20 minutes) and irradiated with ultraviolet light (metal halide light source, 200 mW/cm 2 , 3 J/cm 2 ). Furthermore, the laminate sample was cut so that the distance from the cut end to the mesh pattern formed by the conductive thin wire portion was 1 mm to obtain a sample for evaluation.
  • a beaker containing the evaluation sample and 100 g of sulfur was placed in a sealed desiccator and left at 70° C. for 4 days. After taking out the evaluation sample, the OCA film was peeled off while heating the evaluation sample at 70° C., and the resistance value (R1) of the sample was measured in the same manner as above.
  • the sample subjected to the storage test was returned to room temperature, and the b * value (b * 1) of the surface of the sample on the conductive layer side was measured again using a reflection densitometer.
  • Tables 1, 2, and 3 below show whether or not plating treatment (step E1) was performed in the production of the conductive substrate, the type and content of specific compounds contained in the conductive substrate, and the amount of metal contained in the conductive substrate.
  • the ratio A of the content of the specific compound to the content, the type of solvent contained in the treatment liquid used in step P1, and the evaluation results of sulfur resistance and color change ⁇ b * are shown.
  • the "Name” column of "Solvent” in each table indicates the type of solvent contained in the processing liquid used in step P1
  • the conductive layer was made of 1,2,3-benzotriazole or 5-methylbenzo, which is a compound represented by the above formula (4). It was confirmed that when triazole was included, the sulfidation resistance of the conductive thin wire portion was better when stored in the form of a laminate of the conductive substrate and the adhesive sheet.
  • Conductive substrate 12 Base material 14
  • Conductive layer 16 Conductive thin wire portion 18
  • Transparent insulating portion 20 Non-fine wire portion

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

The present invention addresses the problem of providing a conductive substrate in which the sulfuration resistance of a conductive fine wire section is excellent, as well as a touch panel having said conductive substrate. A conductive substrate according to the present invention has a base material and a conductive layer that is positioned on the base material, wherein the conductive layer has a conductive fine wire section that includes metal, and a transparent insulating section that is adjacent to the conductive fine wire section and does not include metal, and the conductive layer includes a compound that is represented by formula (1), formula (2), formula (3), or formula (4).

Description

導電性基板、タッチパネルConductive substrate, touch panel
 本発明は、導電性基板およびタッチパネルに関する。 The present invention relates to a conductive substrate and a touch panel.
 導電性細線(導電性を示す細線状の配線)を有する導電性基板は、タッチパネル、太陽電池、および、EL(エレクトロルミネッセンス:Electro luminescence)素子等種々の用途に幅広く利用されている。特に、近年、携帯電話および携帯ゲーム機器へのタッチパネルの搭載率が上昇しており、多点検出が可能な静電容量方式のタッチパネル用の導電性基板の需要が急速に拡大している。 Conductive substrates having conductive thin wires (thin wire-like wiring exhibiting conductivity) are widely used in various applications such as touch panels, solar cells, and EL (electro luminescence) elements. In particular, in recent years, the mounting rate of touch panels on mobile phones and mobile game devices has increased, and the demand for conductive substrates for capacitive touch panels capable of multi-point detection is rapidly expanding.
 例えば、特許文献1には、金属からなる導通パターンと該導通パターンと接続した周辺配線部を有する画像単位と、隣り合う画像単位を接続不能とする非導電部からなる繰り返し単位を複数個有する電極パターンシートの製造方法に関する技術が開示されており、導通パターンおよび周辺配線部の形成方法として、印刷方式、フォトリソグラフィー方式、および、銀塩写真感光材料を導電性材料前駆体として用いる方法などが記載されている。 For example, Patent Document 1 describes an electrode having a plurality of repeating units consisting of an image unit having a conductive pattern made of metal, a peripheral wiring part connected to the conductive pattern, and a non-conductive part that makes it impossible to connect adjacent image units. Techniques related to the manufacturing method of pattern sheets are disclosed, and methods for forming conductive patterns and peripheral wiring portions include a printing method, a photolithography method, and a method using a silver salt photosensitive material as a conductive material precursor. has been done.
特開2015-133239号公報Japanese Patent Application Publication No. 2015-133239
 このようなタッチパネルには、導電性基板とともに、その周辺に様々な部材が搭載されている。それら周辺部材に使用されているクッション材および接着剤等には、硫黄含有化合物が混入していることがある。また、タッチパネルの使用環境中にもHSおよびSO等の硫黄成分が存在している。
 本発明者は、特許文献1を参照しながら導電性細線を有する導電性基板について検討した結果、導電性基板の周囲に存在するこれらの硫黄源により、配線を構成する金属細線の硫化反応が生じることにより、配線の導電性が低下し、タッチパネルの感度低下および動作不良等の故障が引き起こされるという問題があることを知見した。
Such a touch panel includes a conductive substrate and various members mounted around the conductive substrate. Cushioning materials, adhesives, and the like used for these peripheral members may contain sulfur-containing compounds. Further, sulfur components such as H 2 S and SO 2 are also present in the environment in which the touch panel is used.
As a result of studying conductive substrates having conductive thin wires with reference to Patent Document 1, the present inventor found that these sulfur sources existing around the conductive substrate cause a sulfurization reaction in the metal thin wires constituting the wiring. It has been found that this causes a problem in that the conductivity of the wiring decreases, causing failures such as decreased sensitivity and malfunction of the touch panel.
 本発明は、上記実情に鑑みて、導電性細線部の硫化耐性に優れる導電性基板を提供することを課題とする。 In view of the above circumstances, it is an object of the present invention to provide a conductive substrate with excellent sulfidation resistance of the conductive thin wire portion.
 本発明者は、上記課題について鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。 As a result of intensive study on the above-mentioned problem, the present inventor found that the above-mentioned problem can be solved by the following configuration.
〔1〕基材と、上記基材上に配置された導電性層と、を有する導電性基板であって、上記導電性層が、金属を含む導電性細線部と、上記導電性細線部に隣接し、金属を含まない透明絶縁部とを有し、上記導電性層が、後述の式(1)、式(2)、式(3)または式(4)で表される化合物を含む、導電性基板。
〔2〕上記Rが、それぞれ独立に、水素原子、炭素数1~6のアルキル基、または、フェニル基を表す、〔1〕に記載の導電性基板。
〔3〕上記化合物が、5-メチル-1,3,4-チアジアゾール-2-チオール、5-(プロパン-2-イル)-1,3,4-チアジアゾール-2-チオール、5-フェニル-1,3,4-チアジアゾール-2-チオール、3-メルカプト-1H-1,2,4-トリアゾール、3-メチル-4H-1,2,4-トリアゾール-5-チオール、4-メチル-1,2,4-トリアゾール-3-チオール、1,2,3-ベンゾトリアゾール、5-メチルベンゾトリアゾール、および、2,2’-(4-メチル-1H-ベンゾトリアゾール-1-イルメチルイミノ)ビスエタノールからなる群より選択される少なくとも1つを含む、〔1〕または〔2〕に記載の導電性基板。
〔4〕上記導電性層の面積あたりの上記化合物の含有量が0.01~8μg/cmである、〔1〕~〔3〕のいずれかに記載の導電性基板。
〔5〕上記金属が銀を含む、〔1〕~〔4〕のいずれかに記載の導電性基板。
〔6〕上記導電性細線部における上記金属の含有量に対する上記化合物の含有量の比率Aが、0.1~5.0である、〔1〕~〔5〕のいずれかに記載の導電性基板。
〔7〕上記導電性細線部によって形成されたメッシュパターンを有する、〔1〕~〔6〕のいずれかに記載の導電性基板。
〔8〕〔1〕~〔7〕のいずれかに記載の導電性基板を有する、タッチパネル。
[1] A conductive substrate having a base material and a conductive layer disposed on the base material, wherein the conductive layer includes a conductive thin wire portion containing a metal and a conductive thin wire portion containing a metal. an adjacent transparent insulating part that does not contain metal, and the conductive layer contains a compound represented by formula (1), formula (2), formula (3) or formula (4) described below. conductive substrate.
[2] The conductive substrate according to [1], wherein each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group.
[3] The above compound is 5-methyl-1,3,4-thiadiazole-2-thiol, 5-(propan-2-yl)-1,3,4-thiadiazole-2-thiol, 5-phenyl-1 , 3,4-thiadiazole-2-thiol, 3-mercapto-1H-1,2,4-triazole, 3-methyl-4H-1,2,4-triazole-5-thiol, 4-methyl-1,2 , 4-triazole-3-thiol, 1,2,3-benzotriazole, 5-methylbenzotriazole, and 2,2'-(4-methyl-1H-benzotriazol-1-ylmethylimino)bisethanol. The conductive substrate according to [1] or [2], comprising at least one selected from the group consisting of:
[4] The conductive substrate according to any one of [1] to [3], wherein the content of the compound per area of the conductive layer is 0.01 to 8 μg/cm 2 .
[5] The conductive substrate according to any one of [1] to [4], wherein the metal contains silver.
[6] The conductivity according to any one of [1] to [5], wherein the ratio A of the content of the compound to the content of the metal in the conductive thin wire portion is 0.1 to 5.0. substrate.
[7] The conductive substrate according to any one of [1] to [6], which has a mesh pattern formed by the conductive thin wire portions.
[8] A touch panel comprising the conductive substrate according to any one of [1] to [7].
 本発明によれば、導電性細線部の硫化耐性に優れる導電性基板を提供できる。 According to the present invention, it is possible to provide a conductive substrate with excellent sulfidation resistance of the conductive thin wire portion.
本発明の導電性基板の構成の一例を示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a conductive substrate of the present invention. 本発明の導電性基板の導電性層が有するメッシュパターンの一例を示す平面図である。FIG. 3 is a plan view showing an example of a mesh pattern of the conductive layer of the conductive substrate of the present invention.
 以下、図面を参照しながら、本発明の導電性基板について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施形態に基づいてなされるものであり、本発明はそのような実施形態に制限されない。また、以下に示す図は、本発明を説明するための例示的なものであり、以下に示す図によって本発明は制限されない。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、ある成分が2種以上存在する場合、その成分の「含有量」は、それら2種以上の成分の合計含有量を意味する。
 本明細書において、「g」および「mg」は、「質量g」および「質量mg」をそれぞれ表す。
 本明細書において、「高分子」または「高分子化合物」は、重量平均分子量が2000以上である化合物を意味する。ここで、重量平均分子量は、GPC(Gel Permeation Chromatography)測定によるポリスチレン換算値として定義される。
 本明細書において、具体的な数値で表された角度、並びに、「平行」、「垂直」および「直交」等の角度に関する表記は、特に記載がなければ、該当する技術分野で一般的に許容される誤差範囲を含む。
 本明細書中における「有機基」とは、少なくとも1個の炭素原子を含む基をいう。
Hereinafter, the conductive substrate of the present invention will be described in detail with reference to the drawings.
The description of the constituent elements described below is based on typical embodiments of the present invention, and the present invention is not limited to such embodiments. Moreover, the figures shown below are illustrative for explaining the present invention, and the present invention is not limited by the figures shown below.
In this specification, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as lower and upper limits.
In this specification, when two or more types of a certain component are present, the "content" of the component means the total content of the two or more types of components.
In this specification, "g" and "mg" represent "mass g" and "mass mg", respectively.
As used herein, "polymer" or "polymer compound" means a compound having a weight average molecular weight of 2000 or more. Here, the weight average molecular weight is defined as a polystyrene equivalent value measured by GPC (Gel Permeation Chromatography).
In this specification, angles expressed as specific numerical values and expressions related to angles such as "parallel,""perpendicular," and "perpendicular" are generally accepted in the relevant technical field, unless otherwise specified. Includes error range.
The term "organic group" as used herein refers to a group containing at least one carbon atom.
[導電性基板]
 本発明に係る導電性基板は、基材と、基材上に配置された導電性層とを有する。導電性層は、導電性細線部と、導電性細線部に隣接する透明絶縁部とを有する。導電性細線部は金属を含み、透明絶縁部は金属を含まない。また、導電性層は、更に、後述する式(1)、式(2)、式(3)または式(4)で表される化合物を含む。
[Conductive substrate]
The conductive substrate according to the present invention includes a base material and a conductive layer disposed on the base material. The conductive layer has a conductive thin wire portion and a transparent insulating portion adjacent to the conductive thin wire portion. The conductive thin wire portion contains metal, and the transparent insulating portion does not contain metal. Moreover, the conductive layer further contains a compound represented by formula (1), formula (2), formula (3), or formula (4) described below.
 図1は、本発明に係る導電性基板の構成の一例を示す模式的断面図である。
 図1に示す導電性基板10は、基材12と、基材12の表面上に配置された導電性層14とを有する。導電性層14は、導電性細線部16と、導電性細線部16に隣接する透明絶縁部18とで構成されている。なお、図1では、紙面に対して垂直方向に延びる導電性細線部16が2つ示されているが、導電性細線部16の配置形態、および、その数は特に制限されない。
FIG. 1 is a schematic cross-sectional view showing an example of the structure of a conductive substrate according to the present invention.
The conductive substrate 10 shown in FIG. 1 includes a base material 12 and a conductive layer 14 disposed on the surface of the base material 12. The conductive layer 14 includes a conductive thin wire portion 16 and a transparent insulating portion 18 adjacent to the conductive thin wire portion 16 . Although FIG. 1 shows two conductive thin wire portions 16 extending perpendicularly to the paper surface, the arrangement form of the conductive thin wire portions 16 and the number thereof are not particularly limited.
〔基材〕
 基材は、感光性層および導電性細線部を支持できる部材であれば、その種類は特に制限されず、プラスチック基板、ガラス基板および金属基板が挙げられ、プラスチック基板が好ましい。
 基材としては、得られる導電性部材の折り曲げ性に優れる点で、可撓性を有する基材が好ましい。可撓性を有する基材としては、上記プラスチック基板が挙げられる。
 基材の厚みは特に制限されず、25~500μmの場合が多い。なお、導電性基板をタッチパネルに応用する際に、基材表面をタッチ面として用いる場合は、基材の厚みは500μmを超えていてもよい。
〔Base material〕
The type of the base material is not particularly limited as long as it can support the photosensitive layer and the conductive thin wire portion, and examples thereof include a plastic substrate, a glass substrate, and a metal substrate, with a plastic substrate being preferred.
As the base material, a flexible base material is preferable since the resulting conductive member has excellent bendability. Examples of the flexible base material include the above-mentioned plastic substrate.
The thickness of the base material is not particularly limited, and is often 25 to 500 μm. Note that when the conductive substrate is applied to a touch panel and the surface of the base material is used as a touch surface, the thickness of the base material may exceed 500 μm.
 基材を構成する材料としては、ポリエチレンテレフタレート(PET)(258℃)、ポリシクロオレフィン(134℃)、ポリカーボネート(250℃)、アクリルフィルム(128℃)、ポリエチレンナフタレート(269℃)、ポリエチレン(135℃)、ポリプロピレン(163℃)、ポリスチレン(230℃)、ポリ塩化ビニル(180℃)、ポリ塩化ビニリデン(212℃)、および、トリアセチルセルロース(290℃)等の融点が約290℃以下である樹脂が好ましく、PET、ポリシクロオレフィン、または、ポリカーボネートがより好ましい。なかでも、導電性細線部との密着性が優れることから、PETが特に好ましい。上記の( )内の数値は融点またはガラス転移温度である。
 基材の全光線透過率は、85~100%が好ましい。全光透過率は、JIS(日本工業規格) K 7375:2008に規定される「プラスチック-全光線透過率および全光線反射率の求め方」を用いて測定される。
Materials constituting the base material include polyethylene terephthalate (PET) (258°C), polycycloolefin (134°C), polycarbonate (250°C), acrylic film (128°C), polyethylene naphthalate (269°C), polyethylene ( 135℃), polypropylene (163℃), polystyrene (230℃), polyvinyl chloride (180℃), polyvinylidene chloride (212℃), and triacetyl cellulose (290℃), etc. Certain resins are preferred, with PET, polycycloolefin, or polycarbonate being more preferred. Among them, PET is particularly preferable because it has excellent adhesion to the conductive thin wire portion. The numerical value in parentheses above is the melting point or glass transition temperature.
The total light transmittance of the base material is preferably 85 to 100%. The total light transmittance is measured using "Plastics - How to determine total light transmittance and total light reflectance" specified in JIS (Japanese Industrial Standard) K 7375:2008.
 基材の表面上には、下塗り層が配置されていてもよい。
 下塗り層は、後述する特定高分子を含むことが好ましい。この下塗り層を用いると、後述する導電性層の基材に対する密着性がより向上する。
 下塗り層の形成方法は特に制限されず、例えば、後述する特定高分子を含む下塗り層形成用組成物を基材上に塗布して、必要に応じて加熱処理を施す方法が挙げられる。下塗り層形成用組成物には、必要に応じて、溶剤が含まれていてもよい。溶剤の種類は特に制限されず、後述する感光性層形成用組成物で使用される溶剤が例示される。また、特定高分子を含む下塗り層形成用組成物として、特定高分子の粒子を含むラテックスを使用してもよい。
 下塗り層の厚みは特に制限されず、導電層の基材に対する密着性がより優れる点で、0.02~0.3μmが好ましく、0.03~0.2μmがより好ましい。
An undercoat layer may be disposed on the surface of the base material.
The undercoat layer preferably contains a specific polymer described below. When this undercoat layer is used, the adhesion of the conductive layer described later to the base material is further improved.
The method for forming the undercoat layer is not particularly limited, and examples thereof include a method in which a composition for forming an undercoat layer containing a specific polymer, which will be described later, is applied onto a base material and, if necessary, a heat treatment is performed. The undercoat layer forming composition may contain a solvent as necessary. The type of solvent is not particularly limited, and examples include solvents used in the photosensitive layer forming composition described below. Further, as the composition for forming an undercoat layer containing a specific polymer, a latex containing particles of a specific polymer may be used.
The thickness of the undercoat layer is not particularly limited, and is preferably 0.02 to 0.3 μm, more preferably 0.03 to 0.2 μm, in terms of better adhesion of the conductive layer to the base material.
〔導電性層〕
 導電性層は、導電性細線部と透明絶縁部とを有する。即ち、導電性基板の基材の表面上には、導電性層として、金属を含む導電性細線部と、金属を含まない透明絶縁部が配置されている。
[Conductive layer]
The conductive layer has a conductive thin wire portion and a transparent insulating portion. That is, on the surface of the base material of the conductive substrate, a conductive thin wire portion containing metal and a transparent insulating portion not containing metal are arranged as a conductive layer.
 導電性層における導電性細線部および透明絶縁部の配置は特に制限されない。
 導電性層は、導電性細線部および透明絶縁部によって形成されたパターンを有してもよい。そのパターンは特に制限されず、例えば、正三角形、二等辺三角形および直角三角形等の三角形、正方形、長方形、菱形、平行四辺形および台形等の四角形、(正)六角形および(正)八角形等の(正)n角形、円、楕円、星形、並びに、これらの図形を組み合わせた幾何学図形であることが好ましく、メッシュ状(メッシュパターン)であることがより好ましい。
The arrangement of the conductive thin wire portion and the transparent insulating portion in the conductive layer is not particularly limited.
The conductive layer may have a pattern formed by conductive thin wire portions and transparent insulating portions. The pattern is not particularly limited, and includes, for example, triangles such as equilateral triangles, isosceles triangles, and right triangles, quadrilaterals such as squares, rectangles, rhombuses, parallelograms, and trapezoids, (regular) hexagons, and (regular) octagons, etc. It is preferable that the shape is a (regular) n-gon, a circle, an ellipse, a star shape, or a geometric figure that is a combination of these figures, and more preferably a mesh shape (mesh pattern).
 図2は、導電性層が有するメッシュパターンの一例を示す平面図である。
 メッシュ状とは、図2に示すように、交差する導電性細線部16により、透明絶縁部18により構成され、それぞれが互いに離間している複数の非細線部(格子)20を含む形状を意図する。図2において、非細線部20は、一辺の長さがLである正方形の形状を有しているが、メッシュパターンの非細線部は、他の形状であってもよく、例えば、多角形状(例えば、三角形、四角形(ひし形、長方形等)、六角形、および、ランダムな多角形)であってもよい。また、辺の形状は、直線以外の湾曲した形状であってもよいし、円弧状であってもよい。円弧状とする場合は、例えば、対向する二辺については、外方に凸の円弧状とし、他の対向する二辺については、内方に凸の円弧状としてもよい。また、各辺の形状を、外方に凸の円弧と内方に凸の円弧が連続した波線形状としてもよい。もちろん、各辺の形状を、サイン曲線にしてもよい。
FIG. 2 is a plan view showing an example of a mesh pattern that the conductive layer has.
As shown in FIG. 2, the mesh shape is intended to mean a shape that includes a plurality of non-thin wire portions (grids) 20 that are composed of intersecting conductive thin wire portions 16 and transparent insulating portions 18, and are spaced apart from each other. do. In FIG. 2, the non-thin line portion 20 has a square shape with one side length L, but the non-thin line portion of the mesh pattern may have another shape, for example, a polygonal shape ( For example, it may be a triangle, a quadrilateral (diamond, rectangle, etc.), a hexagon, or a random polygon. Further, the shape of the side may be a curved shape other than a straight line, or may be an arc shape. In the case of an arcuate shape, for example, two opposing sides may have an outwardly convex arcuate shape, and the other two opposing sides may have an inwardly convex arcuate shape. Moreover, the shape of each side may be a wavy line shape in which an outwardly convex circular arc and an inwardly convex circular arc are continuous. Of course, the shape of each side may be a sine curve.
 非細線部20の一辺の長さLは特に制限されないが、1500μm以下が好ましく、1300μm以下がより好ましく、1000μm以下が更に好ましい。長さLの下限値は特に制限されないが、5μm以上が好ましく、30μm以上がより好ましく、80μm以上が更に好ましい。非細線部の一辺の長さが上述の範囲である場合には、更に透明性も良好に保つことが可能であり、導電性基板を表示装置の前面にとりつけた際に、違和感なく表示を視認することができる。 The length L of one side of the non-thin wire portion 20 is not particularly limited, but is preferably 1500 μm or less, more preferably 1300 μm or less, and even more preferably 1000 μm or less. The lower limit of the length L is not particularly limited, but is preferably 5 μm or more, more preferably 30 μm or more, and even more preferably 80 μm or more. If the length of one side of the non-thin line part is within the above range, it is possible to maintain good transparency, and when the conductive substrate is attached to the front of the display device, the display can be viewed without discomfort. can do.
 可視光透過率の点から、導電性細線部により形成されるメッシュパターンの開口率は、90%以上が好ましく、95%以上がより好ましく、99%以上が更に好ましい。上限は特に制限されないが、100%未満が挙げられる。
 開口率とは、導電性基板のメッシュパターンが形成された領域において、透明絶縁部が占める領域のメッシュパターンが占める領域全体に対する割合(面積比)を意味する。
From the viewpoint of visible light transmittance, the aperture ratio of the mesh pattern formed by the conductive thin wire portions is preferably 90% or more, more preferably 95% or more, and still more preferably 99% or more. The upper limit is not particularly limited, but may be less than 100%.
The aperture ratio means the ratio (area ratio) of the area occupied by the transparent insulating part to the entire area occupied by the mesh pattern in the area where the mesh pattern of the conductive substrate is formed.
 導電性層の厚みは特に制限されないが、0.5~3.0μmが好ましく、1.0~2.0μmがより好ましい。
 導電性層の厚みは、走査型電子顕微鏡を用いて、1本の導電性細線部の厚みに相当する任意の5箇所を選択し、5箇所の厚みに相当する部分の算術平均値を算出することにより、求められる。
The thickness of the conductive layer is not particularly limited, but is preferably 0.5 to 3.0 μm, more preferably 1.0 to 2.0 μm.
The thickness of the conductive layer is determined by selecting five arbitrary points corresponding to the thickness of one conductive thin wire part using a scanning electron microscope, and calculating the arithmetic mean value of the parts corresponding to the thickness of the five points. Therefore, it is required.
<導電性細線部>
 導電性細線部は、金属を含むことにより導電性基板の導電特性を担保する部分である。
 金属としては、導電特性がより優れる点で、銀(金属銀)、銅(金属銅)、金(金属金)、ニッケル(金属ニッケル)およびパラジウム(金属パラジウム)からなる群より選択される1つ以上の金属との混合物が好ましい。なかでも、銀を含む金属、即ち、銀単体、または、銀と銅の混合物がより好ましく、銀単体が更に好ましい。
<Conductive thin wire part>
The conductive thin wire portion is a portion that ensures the conductive properties of the conductive substrate by containing metal.
As a metal, one selected from the group consisting of silver (metallic silver), copper (metallic copper), gold (metallic gold), nickel (metallic nickel), and palladium (metallic palladium) because of its superior conductive properties. Mixtures with the above metals are preferred. Among these, a metal containing silver, ie, simple silver or a mixture of silver and copper is more preferable, and simple silver is even more preferable.
 本明細書において、導電性細線部は、基材の表面に配置され、金属を含む材料で一体的に形成された細線状の領域を意図する。例えば、後述する工程Hにより形成されるハロゲン化銀不含有層、および、後述する工程Iにより形成される保護層は、後述する工程Aおよび工程Bにより形成される細線状の金属含有層(銀含有層)とともに、導電性細線部を構成する。
 また、導電性細線部は、導電性基板の外部の部材と電気的に接続していてもよく、電気的に接続していなくてもよい。導電性細線部の一部は、外部と電気的に絶縁されたダミー電極であってもよい。
In this specification, the conductive thin wire portion is intended to be a thin wire-shaped region disposed on the surface of the base material and integrally formed of a material containing metal. For example, the silver halide-free layer formed in Step H, which will be described later, and the protective layer, which will be formed in Step I, which will be described later, are different from the thin wire-shaped metal-containing layer (silver Containing layer) together with the conductive thin wire portion.
Furthermore, the conductive thin wire portion may or may not be electrically connected to a member external to the conductive substrate. A portion of the conductive thin wire portion may be a dummy electrode electrically insulated from the outside.
 導電性細線部に含まれる金属は、通常、固体粒子状である。金属の平均粒子径は、球相当径で10~1000nmが好ましく、10~200nmがより好ましい。なお、球相当径とは、同じ体積を有する球形粒子の直径であり、金属粒子の平均粒子径は、100個の対象物の球相当径を測定して、それらを算術平均した平均値として得られる。
 金属粒子の形状は特に制限されず、例えば、球状、立方体状、平板状、八面体状、および、十四面体状等の形状が挙げられる。また、金属粒子が融着により一部または全体にわたって結合していてもよい。
 導電性細線部は、複数の金属が後述する高分子化合物中に分散してなる構造を有してもよく、高分子化合物中で金属粒子が凝集して凝集体として存在してもよい。また、導電性細線部に含まれる複数の金属の少なくとも一部同士が、後述するめっき処理に用いる金属イオンに由来する金属によって接合されていてもよい。
 導電性細線部における金属の含有量は特に制限されず、導電性基板の導電性がより優れる点で、3.0~20.0g/mが好ましく、5.0~15.0g/mがより好ましい。
The metal contained in the conductive thin wire portion is usually in the form of solid particles. The average particle diameter of the metal is preferably 10 to 1000 nm, more preferably 10 to 200 nm, in equivalent sphere diameter. Note that the equivalent sphere diameter is the diameter of spherical particles having the same volume, and the average particle diameter of metal particles is obtained as the average value obtained by measuring the equivalent sphere diameters of 100 objects and arithmetic averaging them. It will be done.
The shape of the metal particles is not particularly limited, and examples include shapes such as spherical, cubic, tabular, octahedral, and dodecahedral. Further, the metal particles may be partially or entirely bonded by fusion.
The conductive thin wire portion may have a structure in which a plurality of metals are dispersed in a polymer compound described below, or metal particles may aggregate in the polymer compound and exist as an aggregate. Further, at least some of the plurality of metals included in the conductive thin wire portion may be bonded to each other by a metal derived from metal ions used in a plating process to be described later.
The metal content in the conductive thin wire portion is not particularly limited, and is preferably 3.0 to 20.0 g/m 2 , and 5.0 to 15.0 g/m 2 in terms of better conductivity of the conductive substrate. is more preferable.
 導電性細線部は、金属に加えて高分子化合物を含んでいてもよい。
 導電性細線部に含まれる高分子化合物の種類は特に制限されず、公知の高分子化合物が使用できる。なかでも、強度がより優れる銀含有層および導電性細線部を形成できる点で、ゼラチンとは異なる高分子化合物(以下、「特定高分子」とも記載する。)が好ましい。
 特定高分子の種類はゼラチンと異なれば特に制限されず、後述するゼラチンを分解する、タンパク質分解酵素または酸化剤で分解しない高分子が好ましい。
 特定高分子としては、疎水性高分子(非水溶性高分子)が挙げられ、例えば、(メタ)アクリル系樹脂、スチレン系樹脂、ビニル系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリジエン系樹脂、エポキシ系樹脂、シリコーン系樹脂、セルロース系重合体、および、キトサン系重合体からなる群から選ばれる少なくともいずれかの樹脂、または、これらの樹脂を構成する単量体からなる共重合体等が挙げられる。
 また、特定高分子は、後述する架橋剤と反応する反応性基を有することが好ましい。
 特定高分子は、粒子状であることが好ましい。つまり、導電性細線部は、特定高分子の粒子を含むことが好ましい。
The conductive thin wire portion may contain a polymer compound in addition to metal.
The type of polymer compound contained in the conductive thin wire portion is not particularly limited, and known polymer compounds can be used. Among these, polymer compounds different from gelatin (hereinafter also referred to as "specific polymers") are preferred in that they can form a silver-containing layer with better strength and a conductive thin wire portion.
The type of specific polymer is not particularly limited as long as it is different from gelatin, and preferably a polymer that is not decomposed by proteolytic enzymes or oxidizing agents that decompose gelatin, which will be described later.
Specific polymers include hydrophobic polymers (water-insoluble polymers), such as (meth)acrylic resins, styrene resins, vinyl resins, polyolefin resins, polyester resins, polyurethane resins, At least one resin selected from the group consisting of polyamide resin, polycarbonate resin, polydiene resin, epoxy resin, silicone resin, cellulose polymer, and chitosan polymer, or comprising these resins Examples include copolymers consisting of monomers.
Moreover, it is preferable that the specific polymer has a reactive group that reacts with a crosslinking agent described below.
It is preferable that the specific polymer is in the form of particles. That is, it is preferable that the conductive thin wire portion contains particles of a specific polymer.
 特定高分子としては、以下の一般式(1)で表される高分子(共重合体)が好ましい。
  一般式(1): -(A)-(B)-(C)-(D)
 なお、一般式(1)中、A、B、C、およびDはそれぞれ、下記一般式(A)~(D)で表される繰り返し単位を表す。
As the specific polymer, a polymer (copolymer) represented by the following general formula (1) is preferable.
General formula (1): -(A) x -(B) y -(C) z -(D) w -
In addition, in the general formula (1), A, B, C, and D each represent a repeating unit represented by the following general formulas (A) to (D).
 R11は、メチル基またはハロゲン原子を表し、メチル基、塩素原子、または、臭素原子が好ましい。pは0~2の整数を表し、0または1が好ましく、0がより好ましい。
 R12は、メチル基またはエチル基を表し、メチル基が好ましい。
 R13は、水素原子またはメチル基を表し、水素原子が好ましい。Lは、2価の連結基を表し、下記一般式(2)で表される基が好ましい。
 一般式(2):-(CO-X)r-X
 一般式(2)中、Xは、酸素原子または-NR30-を表す。ここでR30は、水素原子、アルキル基、アリール基、または、アシル基を表し、それぞれ置換基(例えば、ハロゲン原子、ニトロ基、および、ヒドロキシル基)を有してもよい。R30としては、水素原子、炭素数1~10のアルキル基(例えば、メチル基、エチル基、n-ブチル基、および、n-オクチル基)、または、アシル基(例えば、アセチル基、および、ベンゾイル基)が好ましい。Xとしては、酸素原子または-NH-が好ましい。
 Xは、アルキレン基、アリーレン基、アルキレンアリーレン基、アリーレンアルキレン基、または、アルキレンアリーレンアルキレン基を表し、これらの基には-O-、-S-、-CO-、-COO-、-NH-、-SO-、-N(R31)-、または、-N(R31)SO-等が途中に挿入されてもよい。R31は、炭素数1~6の直鎖状または分岐鎖状のアルキル基を表す。Xとしては、ジメチレン基、トリメチレン基、テトラメチレン基、o-フェニレン基、m-フェニレン基、p-フェニレン基、-CHCHOCOCHCH-、または、-CHCHOCO(C)-が好ましい。
 rは0または1を表す。
 qは0または1を表し、0が好ましい。
R 11 represents a methyl group or a halogen atom, and preferably a methyl group, a chlorine atom, or a bromine atom. p represents an integer of 0 to 2, preferably 0 or 1, and more preferably 0.
R 12 represents a methyl group or an ethyl group, preferably a methyl group.
R 13 represents a hydrogen atom or a methyl group, preferably a hydrogen atom. L represents a divalent linking group, and is preferably a group represented by the following general formula (2).
General formula (2): -(CO-X 1 ) r-X 2 -
In general formula (2), X 1 represents an oxygen atom or -NR 30 -. Here, R 30 represents a hydrogen atom, an alkyl group, an aryl group, or an acyl group, each of which may have a substituent (eg, a halogen atom, a nitro group, and a hydroxyl group). R 30 is a hydrogen atom, an alkyl group having 1 to 10 carbon atoms (e.g., methyl group, ethyl group, n-butyl group, and n-octyl group), or an acyl group (e.g., acetyl group, and benzoyl group) is preferred. X 1 is preferably an oxygen atom or -NH-.
X 2 represents an alkylene group, an arylene group, an alkylene arylene group, an arylene alkylene group, or an alkylene arylene alkylene group, and these groups include -O-, -S-, -CO-, -COO-, -NH -, -SO 2 -, -N(R 31 )-, -N(R 31 )SO 2 -, etc. may be inserted in the middle. R 31 represents a linear or branched alkyl group having 1 to 6 carbon atoms. X 2 is dimethylene group, trimethylene group, tetramethylene group, o-phenylene group, m-phenylene group, p-phenylene group, -CH 2 CH 2 OCOCH 2 CH 2 -, or -CH 2 CH 2 OCO ( C 6 H 4 )- is preferred.
r represents 0 or 1.
q represents 0 or 1, preferably 0.
 R14は、アルキル基、アルケニル基、または、アルキニル基を表し、炭素数5~50のアルキル基が好ましく、炭素数5~30のアルキル基がより好ましく、炭素数5~20のアルキル基が更に好ましい。
 R15は、水素原子、メチル基、エチル基、ハロゲン原子、または、-CHCOOR16を表し、水素原子、メチル基、ハロゲン原子、または、-CHCOOR16が好ましく、水素原子、メチル基、または、-CHCOOR16がより好ましく、水素原子が更に好ましい。
 R16は、水素原子または炭素数1~80のアルキル基を表し、R14と同じでも異なってもよく、R16の炭素数は1~70が好ましく、1~60がより好ましい。
R 14 represents an alkyl group, an alkenyl group, or an alkynyl group, preferably an alkyl group having 5 to 50 carbon atoms, more preferably an alkyl group having 5 to 30 carbon atoms, and still more preferably an alkyl group having 5 to 20 carbon atoms. preferable.
R 15 represents a hydrogen atom, a methyl group, an ethyl group, a halogen atom, or -CH 2 COOR 16 , preferably a hydrogen atom, a methyl group, a halogen atom, or -CH 2 COOR 16 ; , or -CH 2 COOR 16 is more preferred, and a hydrogen atom is even more preferred.
R 16 represents a hydrogen atom or an alkyl group having 1 to 80 carbon atoms, and may be the same as or different from R 14 , and the carbon number of R 16 is preferably 1 to 70, more preferably 1 to 60.
 一般式(1)中、x、y、z、およびwは各繰り返し単位のモル比率を表す。
 xは、3~60モル%であり、3~50モル%が好ましく、3~40モル%がより好ましい。
 yは、30~96モル%であり、35~95モル%が好ましく、40~90モル%がより好ましい。
 zは、0.5~25モル%であり、0.5~20モル%が好ましく、1~20モル%がより好ましい。
 wは、0.5~40モル%であり、0.5~30モル%が好ましい。
 一般式(1)において、xは3~40モル%、yは40~90モル%、zは0.5~20モル%、wは0.5~10モル%の場合が好ましい。
In general formula (1), x, y, z, and w represent the molar ratio of each repeating unit.
x is 3 to 60 mol%, preferably 3 to 50 mol%, and more preferably 3 to 40 mol%.
y is 30 to 96 mol%, preferably 35 to 95 mol%, and more preferably 40 to 90 mol%.
z is 0.5 to 25 mol%, preferably 0.5 to 20 mol%, and more preferably 1 to 20 mol%.
w is 0.5 to 40 mol%, preferably 0.5 to 30 mol%.
In the general formula (1), x is preferably 3 to 40 mol%, y is 40 to 90 mol%, z is 0.5 to 20 mol%, and w is 0.5 to 10 mol%.
 一般式(1)で表される高分子としては、下記一般式(2)で表される高分子が好ましい。 The polymer represented by the general formula (1) is preferably a polymer represented by the following general formula (2).
 一般式(2)中、x、y、zおよびwは、上述の定義の通りである。 In general formula (2), x, y, z and w are as defined above.
 一般式(1)で表される高分子は、上述の一般式(A)~(D)で表される繰り返し単位以外の他の繰り返し単位を含んでもよい。
 他の繰り返し単位を形成するためのモノマーとしては、例えば、アクリル酸エステル類、メタクリル酸エステル類、ビニルエステル類、オレフィン類、クロトン酸エステル類、イタコン酸ジエステル類、マレイン酸ジエステル類、フマル酸ジエステル類、アクリルアミド類、不飽和カルボン酸類、アリル化合物、ビニルエーテル類、ビニルケトン類、ビニル異節環化合物、グリシジルエステル類、および、不飽和ニトリル類が挙げられる。これらのモノマーとしては、特許第3754745号公報の段落0010~0022にも記載されている。疎水性の観点から、アクリル酸エステル類またはメタクリル酸エステル類が好ましく、ヒドロキシアルキルメタクリレートまたはヒドロキシアルキルアクリレートがより好ましい。
 一般式(1)で表される高分子は、一般式(E)で表される繰り返し単位を含むことが好ましい。
The polymer represented by the general formula (1) may contain repeating units other than the repeating units represented by the above-mentioned general formulas (A) to (D).
Examples of monomers for forming other repeating units include acrylic acid esters, methacrylic acid esters, vinyl esters, olefins, crotonic acid esters, itaconic acid diesters, maleic acid diesters, and fumaric acid diesters. Examples include acrylamides, unsaturated carboxylic acids, allyl compounds, vinyl ethers, vinyl ketones, vinyl heterocyclic compounds, glycidyl esters, and unsaturated nitriles. These monomers are also described in paragraphs 0010 to 0022 of Japanese Patent No. 3754745. From the viewpoint of hydrophobicity, acrylic esters or methacrylic esters are preferred, and hydroxyalkyl methacrylates or hydroxyalkyl acrylates are more preferred.
The polymer represented by general formula (1) preferably contains a repeating unit represented by general formula (E).
 上述の式中、Lはアルキレン基を表し、炭素数1~10のアルキレン基が好ましく、炭素数2~6のアルキレン基がより好ましく、炭素数2~4のアルキレン基が更に好ましい。 In the above formula, L E represents an alkylene group, preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 2 to 6 carbon atoms, and even more preferably an alkylene group having 2 to 4 carbon atoms.
 一般式(1)で表される高分子としては、下記一般式(3)で表される高分子が特に好ましい。 As the polymer represented by the general formula (1), a polymer represented by the following general formula (3) is particularly preferable.
 上述の式中、a1、b1、c1、d1、およびe1は各繰り返し単位のモル比率を表し、a1は3~60(モル%)、b1は30~95(モル%)、c1は0.5~25(モル%)、d1は0.5~40(モル%)、e1は1~10(モル%)を表す。
 a1の好ましい範囲は上述のxの好ましい範囲と同じであり、b1の好ましい範囲は上述のyの好ましい範囲と同じであり、c1の好ましい範囲は上述のzの好ましい範囲と同じであり、d1の好ましい範囲は上述のwの好ましい範囲と同じである。
 e1は、1~10モル%であり、2~9モル%が好ましく、2~8モル%がより好ましい。
In the above formula, a1, b1, c1, d1, and e1 represent the molar ratio of each repeating unit, a1 is 3 to 60 (mol%), b1 is 30 to 95 (mol%), and c1 is 0.5 ~25 (mol%), d1 represents 0.5 to 40 (mol%), and e1 represents 1 to 10 (mol%).
The preferable range of a1 is the same as the above-mentioned preferable range of x, the preferable range of b1 is the same as the above-mentioned preferable range of y, the preferable range of c1 is the same as the above-mentioned preferable range of z, and the preferable range of d1 is the same as the above-mentioned preferable range of y. The preferred range is the same as the preferred range for w described above.
e1 is 1 to 10 mol%, preferably 2 to 9 mol%, and more preferably 2 to 8 mol%.
 特定高分子は、例えば、特許第3305459号公報および特許第3754745号公報等を参照して合成できる。
 特定高分子の重量平均分子量は特に制限されず、1000~1000000が好ましく、2000~750000がより好ましく、3000~500000が更に好ましい。
The specific polymer can be synthesized with reference to, for example, Japanese Patent No. 3305459 and Japanese Patent No. 3754745.
The weight average molecular weight of the specific polymer is not particularly limited, and is preferably 1,000 to 1,000,000, more preferably 2,000 to 750,000, and even more preferably 3,000 to 500,000.
 導電性細線部には、必要に応じて、上述した材料以外の他の材料が含まれていてもよい。
 例えば、特開2009-004348号公報の段落0220~0241に記載されるような、帯電防止剤、造核促進剤、分光増感色素、界面活性剤、カブリ防止剤、硬膜剤、黒ポツ防止剤、レドックス化合物、モノメチン化合物、および、ジヒドロキシベンゼン類も挙げられる。更には、感光性層には、物理現像核が含まれていてもよい。
 また、導電性細線部には、上述の特定高分子同士を架橋するために使用される架橋剤が含まれていてもよい。架橋剤が含まれることにより、特定高分子同士間での架橋が進行し、導電性細線部中の金属同士の連結が保たれる。
The conductive thin wire portion may contain other materials than the above-mentioned materials, if necessary.
For example, antistatic agents, nucleation accelerators, spectral sensitizing dyes, surfactants, antifoggants, hardeners, black spot prevention agents, as described in paragraphs 0220 to 0241 of JP-A-2009-004348. Also included are agents, redox compounds, monomethine compounds, and dihydroxybenzenes. Furthermore, the photosensitive layer may contain physical development nuclei.
Further, the conductive thin wire portion may contain a crosslinking agent used for crosslinking the above-mentioned specific polymers. By including the crosslinking agent, crosslinking between the specific polymers progresses, and the metals in the conductive thin wire portion are kept connected to each other.
 導電性細線部の線幅Waは、導電性細線部が視認されにくい点から、5.0μm未満が好ましく、2.5μm以下がより好ましく、2.0μm以下が更に好ましい。下限は特に制限されないが、導電性細線部の導電性がより優れる点から、0.5μm以上が好ましく、1.2μm以上がより好ましい。なお、導電性細線部の線幅とは、基材の表面に沿った方向のうち、導電性細線部が延在する方向に対して直交する方向における導電性細線部の全長を意味する。
 上述の導電性細線部の線幅Waは、走査型電子顕微鏡を用いて、1本の導電性細線部の線幅に相当する任意の5箇所を選択し、5箇所の線幅相当の算術平均値を線幅Waとする。
The line width Wa of the conductive thin wire portion is preferably less than 5.0 μm, more preferably 2.5 μm or less, and even more preferably 2.0 μm or less, since the conductive thin wire portion is difficult to be visually recognized. Although the lower limit is not particularly limited, it is preferably 0.5 μm or more, and more preferably 1.2 μm or more, since the conductivity of the conductive thin wire portion is more excellent. Note that the line width of the conductive thin wire portion refers to the total length of the conductive thin wire portion in the direction along the surface of the base material and perpendicular to the direction in which the conductive thin wire portion extends.
The line width Wa of the conductive thin wire portion described above is determined by selecting five arbitrary points corresponding to the line width of one conductive thin wire portion using a scanning electron microscope, and calculating the arithmetic average of the line widths of the five points. Let the value be the line width Wa.
 導電性細線部の厚みTは特に制限されないが、0.5~3.0μmが好ましく、1.0~2.0μmがより好ましい。
 上述の導電性細線部の厚みTは、導電性層の厚みの測定方法に準じて測定できる。
The thickness T of the conductive thin wire portion is not particularly limited, but is preferably 0.5 to 3.0 μm, more preferably 1.0 to 2.0 μm.
The thickness T of the conductive thin wire portion described above can be measured according to the method for measuring the thickness of a conductive layer.
 導電性細線部の線抵抗値は、200Ω/mm未満であることが好ましい。なかでも、タッチパネルとして用いた際の操作性の点から、100Ω/mm未満であることがより好ましく、60Ω/mm未満が更に好ましい。
 線抵抗値とは、4探針法で測定した抵抗値を測定端子間距離で除したものである。より具体的には、メッシュパターンを構成する任意の1本の導電性細線部の両端を断線させてメッシュパターンから切り離した後に、4本(A、B、C、D)のマイクロプローブ(株式会社マイクロサポート製タングステンプローブ(直径0.5μm))を該切り離された導電性細線部に接触させて、最外プローブA、Dにソースメーター(KEITHLEY製ソースメーター 2400型汎用ソースメーター)を用いて内部プローブB、C間の電圧Vが5mVになるよう定電流Iを印加し、抵抗値Ri=V/Iを測定し、得られた抵抗値RiをB、C間距離で除して線抵抗値を求める。
The wire resistance value of the conductive thin wire portion is preferably less than 200Ω/mm. Among these, from the viewpoint of operability when used as a touch panel, it is more preferably less than 100 Ω/mm, and even more preferably less than 60 Ω/mm.
The wire resistance value is the resistance value measured by the four-probe method divided by the distance between the measurement terminals. More specifically, after disconnecting both ends of any one conductive thin wire part constituting the mesh pattern and separating it from the mesh pattern, four microprobes (A, B, C, D) (Co., Ltd. A tungsten probe made by Micro Support (diameter 0.5 μm)) was brought into contact with the separated conductive thin wire section, and a source meter (source meter 2400 type general purpose source meter made by KEITHLEY) was used to measure the inside of the outermost probes A and D. Apply a constant current I so that the voltage V between probes B and C becomes 5 mV, measure the resistance value Ri = V/I, and divide the obtained resistance value Ri by the distance between B and C to obtain the line resistance value. seek.
<透明絶縁部>
 導電性層は、導電性細線部に隣接する透明絶縁部を有する。図1に示すように、導電性細線部と透明絶縁部とは、基板の表面上において面内方向に並んで配置されている。
 透明絶縁部は、導電性の金属を含まず、導電性を示さない領域である。ここで、透明絶縁部が「金属を含まない」とは、透明絶縁部における金属の含有量が、透明絶縁部の総質量に対して0.1質量%以下であることを意味する。透明絶縁部における金属の含有量は、透明絶縁部の総質量に対して0.05質量%以下が好ましい。
 また、本明細書において「透明」とは、波長400~700nmの可視光の平均透過率が80%以上であることを意味する。透明絶縁部の上記可視光の平均透過率は、90%以上が好ましい。上限値は特に制限されず、例えば99%以下である。透過率は、分光光度計を用いて測定できる。
<Transparent insulation part>
The conductive layer has a transparent insulating portion adjacent to the conductive thin wire portion. As shown in FIG. 1, the conductive thin wire portion and the transparent insulating portion are arranged side by side in the in-plane direction on the surface of the substrate.
The transparent insulating portion is a region that does not contain conductive metal and does not exhibit conductivity. Here, the expression that the transparent insulating part "does not contain metal" means that the metal content in the transparent insulating part is 0.1% by mass or less based on the total mass of the transparent insulating part. The metal content in the transparent insulating part is preferably 0.05% by mass or less based on the total mass of the transparent insulating part.
Furthermore, in this specification, "transparent" means that the average transmittance of visible light with a wavelength of 400 to 700 nm is 80% or more. The average transmittance of the visible light of the transparent insulating portion is preferably 90% or more. The upper limit is not particularly limited, and is, for example, 99% or less. Transmittance can be measured using a spectrophotometer.
 透明絶縁部は、高分子化合物を主成分として含むことが好ましい。
 透明絶縁部に含まれる高分子化合物としては、導電性細線部に含まれる高分子化合物が挙げられ、特定高分子が好ましい。なかでも、導電性細線部に含まれる高分子化合物(好ましくは特定高分子)と同じ高分子化合物を含むことがより好ましい。
 透明絶縁部が高分子化合物を「主成分として含む」とは、高分子化合物の含有量が透明絶縁部の総質量に対して50質量%以上であることを意味する。透明絶縁部における高分子化合物の含有量は、90質量%以上が好ましく、95質量%以上がより好ましい。上限値は特に制限されず、100質量%であってよい。
The transparent insulating portion preferably contains a polymer compound as a main component.
Examples of the polymer compound contained in the transparent insulating part include those contained in the conductive thin wire part, and specific polymers are preferable. Among these, it is more preferable to include the same polymer compound (preferably a specific polymer) contained in the conductive thin wire portion.
The expression that the transparent insulating part "contains a polymer compound as a main component" means that the content of the polymer compound is 50% by mass or more based on the total mass of the transparent insulating part. The content of the polymer compound in the transparent insulating part is preferably 90% by mass or more, more preferably 95% by mass or more. The upper limit is not particularly limited and may be 100% by mass.
 透明絶縁部の形成方法は、特に制限されず、例えば、後述する導電性基板の製造方法において、ハロゲン化銀含有感光性層をパターン状に露光する露光処理を施すことにより未露光部を形成し、続いて未露光部に対して現像処理を実施することにより、高分子化合物を主成分とする透明絶縁部が形成される。また、必要に応じてゼラチンを除去する処理を実施することにより、特定高分子を主成分とする透明絶縁部が形成される。 The method for forming the transparent insulating portion is not particularly limited, and for example, in the method for manufacturing a conductive substrate described below, an unexposed portion may be formed by performing an exposure treatment in which a silver halide-containing photosensitive layer is exposed in a pattern. Then, by performing a development process on the unexposed area, a transparent insulating part containing a polymer compound as a main component is formed. In addition, by performing a treatment to remove gelatin as necessary, a transparent insulating portion containing a specific polymer as a main component is formed.
<他の部材>
 導電性基板は、上述の基材、導電性細線部および透明絶縁部以外に他の部材を有してもよい。
 導電性基板が有してもよい他の部材としては、後述する導電性細線部とは構成が異なる導電部が挙げられる。
<Other parts>
The conductive substrate may include other members in addition to the above-described base material, conductive thin wire portion, and transparent insulating portion.
Other members that may be included in the conductive substrate include a conductive portion having a different configuration from the conductive thin wire portion described below.
<特定化合物>
 導電性層は、下記式(1)、式(2)、式(3)または式(4)で表される化合物(以下、「特定化合物」ともいう。)を含む。
<Specific compound>
The conductive layer contains a compound represented by the following formula (1), formula (2), formula (3), or formula (4) (hereinafter also referred to as a "specific compound").






 式(1)、式(2)、式(3)および式(4)中、Rは、それぞれ独立に、水素原子、炭素数1~6のアルキル基、フェニル基、炭素数1~6のアルコキシ基、炭素数1~3のアルキルチオ基、アミノ基、水酸基、または、カルボン酸基を表す。
 式(2)および式(3)中、Rは、それぞれ独立に、水素原子、炭素数1~6のアルキル基、または、アミノ基を表す。
 式(4)中、Rは、水素原子、または、カルボン酸基、水酸基およびアミノ基からなる群より選択される少なくとも1つの置換基を有する炭素数1~6のアルキル基を表す。
In formula (1), formula (2), formula (3) and formula (4), R 1 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a phenyl group, or a C 1 to 6 alkyl group. Represents an alkoxy group, an alkylthio group having 1 to 3 carbon atoms, an amino group, a hydroxyl group, or a carboxylic acid group.
In formulas (2) and (3), R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an amino group.
In formula (4), R 3 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms and having at least one substituent selected from the group consisting of a carboxylic acid group, a hydroxyl group, and an amino group.
 本発明に係る導電性基板は、導電性層が特定化合物を含むことにより、導電性細線部の硫化耐性が向上する。より具体的には、上記のとおり、タッチパネル等の電子機器に搭載された導電性基板において、その周辺の部材または周囲の環境に由来する硫黄化合物は、導電性層内に浸透し、導電性細線部の金属細線と反応して硫化物を形成する結果、導電性細線部の導電性が低減すると考えられる。それに対して、導電性層が特定化合物を含む場合、外部から導電性層内に浸透した硫黄化合物が特定化合物と反応して結合するため、導電性細線部において金属細線の硫化を抑制する硫化耐性が向上するものと推測される。
 以下、本明細書において、導電性細線部の硫化耐性が優れることを「本発明の効果が優れる」とも記載する。
In the conductive substrate according to the present invention, since the conductive layer contains a specific compound, the sulfidation resistance of the conductive thin wire portion is improved. More specifically, as mentioned above, in conductive substrates mounted on electronic devices such as touch panels, sulfur compounds originating from surrounding members or the surrounding environment permeate into the conductive layer and cause the conductive thin wires to penetrate into the conductive layer. It is thought that the conductivity of the conductive thin wire portion decreases as a result of reacting with the thin metal wire in the conductive wire portion to form sulfide. On the other hand, when the conductive layer contains a specific compound, the sulfur compound that has penetrated into the conductive layer from the outside reacts with the specific compound and combines with it, resulting in sulfur resistance that suppresses sulfurization of the thin metal wire in the conductive thin wire section. It is assumed that this will improve.
Hereinafter, in this specification, the fact that the conductive thin wire portion has excellent sulfurization resistance is also referred to as "the effect of the present invention is excellent."
 Rとしては、本発明の効果がより優れる点で、水素原子、炭素数1~6のアルキル基、または、フェニル基が好ましく、水素原子、メチル基、エチル基、または、フェニル基がより好ましい。 R 1 is preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group, and more preferably a hydrogen atom, a methyl group, an ethyl group, or a phenyl group, since the effects of the present invention are more excellent. .
 式(1)で表される特定化合物においては、Rは、炭素数1~6のアルキル基、フェニル基、炭素数1~6のアルコキシ基、炭素数1~3のチオアルキル基、アミノ基、水酸基、または、カルボン酸基が好ましく、炭素数1~6のアルキル基、または、フェニル基がより好ましく、本発明の効果がより優れる点で、メチル基、プロパン-2-イル基、または、フェニル基が更に好ましい。
 式(1)で表される特定化合物としては、例えば、5-メチル-1,3,4-チアジアゾール-2-チオール、5-エチル-1,3,4-チアジアゾール-2-チオール、5-(プロパン-2-イル)-1,3,4-チアジアゾール-2-チオール、5-フェニル-1,3,4-チアジアゾール-2-チオール、5-アミノ-1,3,4-チアジアゾール-2-チオール、および、5-(メチルチオ)-1,3,4-チアジアゾール-2-チオールが挙げられる。
 なかでも、5-メチル-1,3,4-チアジアゾール-2-チオール、5-(プロパン-2-イル)-1,3,4-チアジアゾール-2-チオール、または、5-フェニル-1,3,4-チアジアゾール-2-チオールが好ましく、5-メチル-1,3,4-チアジアゾール-2-チオールがより好ましい。
In the specific compound represented by formula (1), R 1 is an alkyl group having 1 to 6 carbon atoms, a phenyl group, an alkoxy group having 1 to 6 carbon atoms, a thioalkyl group having 1 to 3 carbon atoms, an amino group, A hydroxyl group or a carboxylic acid group is preferable, an alkyl group having 1 to 6 carbon atoms, or a phenyl group is more preferable, and a methyl group, a propan-2-yl group, or a phenyl group is preferable because the effects of the present invention are more excellent. More preferred are groups.
Specific compounds represented by formula (1) include, for example, 5-methyl-1,3,4-thiadiazole-2-thiol, 5-ethyl-1,3,4-thiadiazole-2-thiol, 5-( propan-2-yl)-1,3,4-thiadiazole-2-thiol, 5-phenyl-1,3,4-thiadiazole-2-thiol, 5-amino-1,3,4-thiadiazole-2-thiol , and 5-(methylthio)-1,3,4-thiadiazole-2-thiol.
Among them, 5-methyl-1,3,4-thiadiazole-2-thiol, 5-(propan-2-yl)-1,3,4-thiadiazole-2-thiol, or 5-phenyl-1,3 ,4-thiadiazole-2-thiol is preferred, and 5-methyl-1,3,4-thiadiazole-2-thiol is more preferred.
 式(2)で表される特定化合物としては、3-メルカプト-1H-1,2,4-トリアゾール、1-メチル-1,2,4-トリアゾール-3-チオール、5-アミノ-1H-1,2,4-トリアゾール-3-チオール、5-メチル-1H-1,2,4-トリアゾール-3-チオール、および、5-エチル-1H-1,2,4-トリアゾール-3-チオールが挙げられる。
 なかでも、3-メルカプト-1H-1,2,4-トリアゾールが好ましい。
Specific compounds represented by formula (2) include 3-mercapto-1H-1,2,4-triazole, 1-methyl-1,2,4-triazole-3-thiol, 5-amino-1H-1 , 2,4-triazole-3-thiol, 5-methyl-1H-1,2,4-triazole-3-thiol, and 5-ethyl-1H-1,2,4-triazole-3-thiol. It will be done.
Among them, 3-mercapto-1H-1,2,4-triazole is preferred.
 式(3)で表される特定化合物としては、3-メチル-4H-1,2,4-トリアゾール-5-チオール、4-メチル-1,2,4-トリアゾール-3-チオール、4,5-ジメチル-1,2,4-トリアゾール-3-チオール、4-アミノ-1,2,4-トリアゾール-3-チオール、5-メルカプト-4H-1,2,4-トリアゾール-3-オール、4-エチル-1,2,4-トリアゾール-3-チオール、5-エチル-4H-1,2,4-トリアゾール-3-チオール、4-アミノ-5-メチル-1,2,4-トリアゾール-3-チオール、5-アミノ-4-メチル-1,2,4-トリアゾール-3-チオール、5-メルカプト-4-メチル-1,2,4-トリアゾール-3-オール、5-エチル-4-メチル-1,2,4-トリアゾール-3-チオール、3-イソプロピル-4H-1,2,4-トリアゾール-5-チオール、4-エチル-5-メチル-1,2,4-トリアゾール-3-チオール、5-プロピル-4H-1,2,4-トリアゾール-3-チオール、および、4-アミノ-5-エチル-1,2,4-トリアゾール-3-チオールが挙げられる。
 なかでも、3-メチル-4H-1,2,4-トリアゾール-5-チオール、または、4-メチル-1,2,4-トリアゾール-3-チオールが好ましい。
Specific compounds represented by formula (3) include 3-methyl-4H-1,2,4-triazole-5-thiol, 4-methyl-1,2,4-triazole-3-thiol, 4,5 -dimethyl-1,2,4-triazole-3-thiol, 4-amino-1,2,4-triazol-3-thiol, 5-mercapto-4H-1,2,4-triazol-3-ol, 4 -Ethyl-1,2,4-triazole-3-thiol, 5-ethyl-4H-1,2,4-triazole-3-thiol, 4-amino-5-methyl-1,2,4-triazole-3 -thiol, 5-amino-4-methyl-1,2,4-triazole-3-thiol, 5-mercapto-4-methyl-1,2,4-triazol-3-ol, 5-ethyl-4-methyl -1,2,4-triazole-3-thiol, 3-isopropyl-4H-1,2,4-triazole-5-thiol, 4-ethyl-5-methyl-1,2,4-triazole-3-thiol , 5-propyl-4H-1,2,4-triazole-3-thiol, and 4-amino-5-ethyl-1,2,4-triazole-3-thiol.
Among these, 3-methyl-4H-1,2,4-triazole-5-thiol or 4-methyl-1,2,4-triazole-3-thiol is preferred.
 式(4)で表される特定化合物としては、1,2,3-ベンゾトリアゾール、5-メチルベンゾトリアゾール、4-メチルベンゾトリアゾール、2,2’-(4-メチル-1H-ベンゾトリアゾール-1-イルメチルイミノ)ビスエタノール、2,2’-(5-メチル-1H-ベンゾトリアゾール-1-イルメチルイミノ)ビスエタノール、1-(1’,2’-ジカルボキシエチル)ベンゾトリアゾール、1-(2,3-ジカルボキシプロピル)ベンゾトリアゾール、5-カルボキシベンゾトリアゾール、5,6-ジメチルベンゾトリアゾール、および、5-アミノベンゾトリアゾールが挙げられる。
 なかでも、1,2,3-ベンゾトリアゾール、5-メチルベンゾトリアゾール、4-メチルベンゾトリアゾール、または、2,2’-(4-メチル-1H-ベンゾトリアゾール-1-イルメチルイミノ)ビスエタノールが好ましい。
Specific compounds represented by formula (4) include 1,2,3-benzotriazole, 5-methylbenzotriazole, 4-methylbenzotriazole, 2,2'-(4-methyl-1H-benzotriazole-1 -ylmethylimino)bisethanol, 2,2'-(5-methyl-1H-benzotriazol-1-ylmethylimino)bisethanol, 1-(1',2'-dicarboxyethyl)benzotriazole, 1- Examples include (2,3-dicarboxypropyl)benzotriazole, 5-carboxybenzotriazole, 5,6-dimethylbenzotriazole, and 5-aminobenzotriazole.
Among them, 1,2,3-benzotriazole, 5-methylbenzotriazole, 4-methylbenzotriazole, or 2,2'-(4-methyl-1H-benzotriazol-1-ylmethylimino)bisethanol preferable.
 特定化合物としては、本発明の効果がより優れる点で、上記の式(1)~式(4)のいずれかで表される特定化合物の具体例のうち、好ましい化合物として挙げられた化合物が好ましく、5-メチル-1,3,4-チアジアゾール-2-チオール、5-(プロパン-2-イル)-1,3,4-チアジアゾール-2-チオール、5-フェニル-1,3,4-チアジアゾール-2-チオール、3-メルカプト-1,2,4-トリアゾール、3-メチル-1,2,4-トリアゾール-5-チオール、4-メチル-1,2,4-トリアゾール-3-チオール、1,2,3-ベンゾトリアゾール、5-メチルベンゾトリアゾール、または、2,2’-(4-メチル-1H-ベンゾトリアゾール-1-イルメチルイミノ)ビスエタノールが好ましい。 As the specific compound, compounds listed as preferred compounds among the specific examples of the specific compound represented by any of the above formulas (1) to (4) are preferable in that the effects of the present invention are more excellent. , 5-methyl-1,3,4-thiadiazole-2-thiol, 5-(propan-2-yl)-1,3,4-thiadiazole-2-thiol, 5-phenyl-1,3,4-thiadiazole -2-thiol, 3-mercapto-1,2,4-triazole, 3-methyl-1,2,4-triazole-5-thiol, 4-methyl-1,2,4-triazole-3-thiol, 1 , 2,3-benzotriazole, 5-methylbenzotriazole, or 2,2'-(4-methyl-1H-benzotriazol-1-ylmethylimino)bisethanol are preferred.
 また、特定化合物は、導電性基板と、粘着シートおよび剥離シート等の他の部材との積層体の形態で保管した際の導電性細線部の硫化耐性がより優れる点からは、上記の式(4)で表される特定化合物が好ましく、1,2,3-ベンゾトリアゾール、または、5-メチルベンゾトリアゾールがより好ましい。 In addition, the specific compound has the above formula ( The specific compound represented by 4) is preferable, and 1,2,3-benzotriazole or 5-methylbenzotriazole is more preferable.
 なお、式(1)で表される化合物のプロトン互変異性体として、下記式(1a)で表される化合物が挙げられる。本明細書における特定化合物は、特に言及しない限り、式(1)で表される化合物とともに、式(1a)に代表される式(1)で表される化合物のプロトン互変異性体をも含むものとする。
 同様に、本明細書における特定化合物は、特に言及しない限り、下記式(2a)で表される化合物に代表される式(2)で表される化合物のプロトン互変異性体、および、下記式(3a)で表される化合物に代表される式(3)で表される化合物のプロトン互変異性体をも含むものとする。
In addition, as a proton tautomer of the compound represented by formula (1), a compound represented by the following formula (1a) can be mentioned. Unless otherwise specified, the specific compound herein includes the compound represented by formula (1) as well as the proton tautomer of the compound represented by formula (1) represented by formula (1a). shall be held.
Similarly, unless otherwise specified, the specific compound in this specification refers to the proton tautomer of the compound represented by the formula (2) represented by the compound represented by the following formula (2a), and the proton tautomer of the compound represented by the following formula (2a). The proton tautomer of the compound represented by formula (3) represented by the compound represented by (3a) is also included.
 式(1a)、式(2a)および式(3a)におけるRは、上記式(1)、式(2)および式(3)におけるRと同じである。
 また、式(2a)および式(3a)におけるRは、上記式(2)および式(3)におけるRと同じである。
R 1 in formula (1a), formula (2a) and formula (3a) is the same as R 1 in formula (1), formula (2) and formula (3) above.
Further, R 2 in formula (2a) and formula (3a) is the same as R 2 in formula (2) and formula (3) above.
 一方、式(1)、式(2)または式(3)で表される化合物の中には、導電性細線部において金属配線を構成する銀等の金属と反応し、チオール基の硫黄原子が水素原子の代わりに銀等の金属と結合する化合物が存在すると推測される。このような式(1)、式(2)または式(3)で表される化合物が金属に結合してなる化合物は、式(1)、式(2)または式(3)で表される化合物および特定化合物のいずれにも含まれず、また、硫黄化合物との反応性が低いため、硫化耐性の向上にも寄与しないと考えられる。 On the other hand, some compounds represented by formula (1), formula (2), or formula (3) react with metals such as silver that constitute the metal wiring in the conductive thin wire portion, and the sulfur atom of the thiol group It is presumed that there are compounds that bond with metals such as silver instead of hydrogen atoms. A compound formed by bonding a compound represented by formula (1), formula (2) or formula (3) to a metal is a compound represented by formula (1), formula (2) or formula (3). Since it is not included in any of the compounds or specific compounds and has low reactivity with sulfur compounds, it is thought that it does not contribute to improving sulfidation resistance.
 導電性層に含まれる特定化合物は、1種のみであってもよく、2種以上であってもよい。
 導電性層に含まれる特定化合物の含有量は、本発明の効果がより優れる点で、導電性層の面積あたり0.005μg/cm以上が好ましく、0.01μg/cm以上がより好ましく、0.02μg/cm以上が更に好ましい。
 特定化合物の含有量の上限値は特に制限されないが、長期保管後の導電性基板の色味変化を抑制する効果がより優れる点で、導電性層の面積あたり8.0μg/cm以下が好ましく、5.0μg/cm以下がより好ましく、2.0μg/cm以下が更に好ましい。
 特定化合物を2種以上用いる際の混合比は、導電性層中に含まれる特定化合物の含有量が上述の範囲ならば、任意に調整してよい。導電性層が2種以上の特定化合物を含む場合、1種の特定化合物の含有量に対する他の特定化合物の含有量の比率は、例えば、質量比で0.01~200であってよい。
 特定化合物は、導電性層を構成する導電性細線部および透明絶縁部のいずれにも含まれていてよいが、少なくとも透明絶縁部に含まれていることが好ましい。
The number of specific compounds contained in the conductive layer may be one, or two or more.
The content of the specific compound contained in the conductive layer is preferably 0.005 μg/cm 2 or more per area of the conductive layer, more preferably 0.01 μg/cm 2 or more, in that the effect of the present invention is more excellent. More preferably, it is 0.02 μg/cm 2 or more.
The upper limit of the content of the specific compound is not particularly limited, but it is preferably 8.0 μg/cm 2 or less per area of the conductive layer, since it is more effective in suppressing color change of the conductive substrate after long-term storage. , more preferably 5.0 μg/cm 2 or less, and even more preferably 2.0 μg/cm 2 or less.
The mixing ratio when using two or more types of specific compounds may be arbitrarily adjusted as long as the content of the specific compounds contained in the conductive layer is within the above range. When the conductive layer contains two or more specific compounds, the ratio of the content of one specific compound to the content of another specific compound may be, for example, 0.01 to 200 in terms of mass ratio.
Although the specific compound may be contained in both the conductive thin wire portion and the transparent insulating portion that constitute the conductive layer, it is preferably contained in at least the transparent insulating portion.
 導電性層に含まれる特定化合物の含有量は、導電性層を有する導電性基板を溶媒に浸漬し、特定化合物を抽出した後、溶媒中の特定化合物の含有量を定量することにより、測定できる。特定化合物の含有量の詳しい測定方法は、後述する実施例に記載する。 The content of the specific compound contained in the conductive layer can be measured by immersing the conductive substrate having the conductive layer in a solvent, extracting the specific compound, and then quantifying the content of the specific compound in the solvent. . A detailed method for measuring the content of the specific compound will be described in the Examples below.
 導電性層は、特定化合物以外のその他の化合物を含んでいてもよい。例えば、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾチアゾール、2-メルカプトベンゾイミダゾール、2-メルカプト-5-ベンゾイミダゾールスルホン酸ナトリウム、2-メルカプトベンゾオキサゾール、および、2-メルカプトベンゾチアゾールが挙げられる。
 なかでも、ベンゾイミダゾール、ベンゾオキサゾール、ベンゾチアゾールが好ましい。
 その他の化合物としては特定化合物の分解を抑制するものが好ましく、例えば特定化合物と水素結合、π-π相互作用などの静電的な相互作用をすることにより、特定化合物を安定化するものがより好ましい。
 特定化合物と上記その他の化合物を併用する場合の混合比は、導電性層中に含まれる特定化合物の含有量が上述の含有量の範囲ならば、任意に調整してよい。特定化合物の含有量に対するその他の化合物の含有量の比率は、質量比で0.01~200が好ましく、質量比は0.1~20がより好ましく、0.5~10が更に好ましい。
 特定化合物以外のその他の化合物の含有量は、特定化合物の含有量の測定方法として記載する方法に従って測定できる。
The conductive layer may contain compounds other than the specific compound. Examples include benzimidazole, benzoxazole, benzothiazole, 2-mercaptobenzimidazole, sodium 2-mercapto-5-benzimidazole sulfonate, 2-mercaptobenzoxazole, and 2-mercaptobenzothiazole.
Among these, benzimidazole, benzoxazole, and benzothiazole are preferred.
Other compounds are preferably those that suppress the decomposition of the specific compound, and more preferably those that stabilize the specific compound by forming electrostatic interactions with the specific compound such as hydrogen bonds and π-π interactions. preferable.
The mixing ratio when the specific compound and the above-mentioned other compounds are used together may be arbitrarily adjusted as long as the content of the specific compound contained in the conductive layer is within the above-mentioned content range. The ratio of the content of other compounds to the content of the specific compound is preferably 0.01 to 200 by mass, more preferably 0.1 to 20, and even more preferably 0.5 to 10.
The content of other compounds other than the specific compound can be measured according to the method described as a method for measuring the content of the specific compound.
 導電性層に特定化合物を含有させる方法は特に制限されないが、基材上に導電性細線部と透明絶縁部とを有する導電性層を形成して導電性基板を製造する途中または製造した後において、導電性層に特定化合物を接触させる方法が好ましい。なかでも、後述する工程Pにより、特定化合物を導電性層に接触させる方法がより好ましい。
 導電性層を特定化合物または特定化合物を含む組成物に接触させる際の接触時間、および、組成物の濃度等を変更することにより、導電性細線部を含む導電性層に含まれる特定化合物の含有量を調整できる。
 また、上記の方法に従って、特定化合物以外のその他の化合物を導電性層に含有させることができる。
There are no particular restrictions on the method of incorporating the specific compound into the conductive layer, but during or after manufacturing a conductive substrate by forming a conductive layer having a conductive thin wire portion and a transparent insulating portion on a base material. , a method of bringing a specific compound into contact with the conductive layer is preferred. Among these, a method in which a specific compound is brought into contact with the conductive layer in step P described below is more preferable.
By changing the contact time when the conductive layer is brought into contact with the specific compound or the composition containing the specific compound, the concentration of the composition, etc., the content of the specific compound contained in the conductive layer including the conductive thin wire portion can be controlled. You can adjust the amount.
Further, according to the above method, other compounds than the specific compound can be contained in the conductive layer.
(導電性細線部における金属の含有量に対する特定化合物の含有量の比率A)
 本発明の導電性基板において、導電性細線部に含まれる特定化合物の含有量は特に制限されないが、導電性細線部における金属の含有量に対する特定化合物の含有量の比率A((特定化合物の含有量)/(金属の含有量))が、0.05~8.0であることが好ましく、0.1~5.0であることがより好ましく、0.2~5.0であることが更に好ましい。
 比率Aが上記下限値以上であると、導電性細線部の硫化耐性をより向上させることができ、特に、導電性基板と粘着シートおよび剥離シート等の他の部材との積層体の形態で保管した際の導電性細線部の硫化耐性をより向上させることができる。
 また、長期保管後の導電性基板の色味変化を抑制する効果がより優れる点で、比率Aは上記上限値以下が好ましい。
(Ratio A of the specific compound content to the metal content in the conductive thin wire part)
In the conductive substrate of the present invention, the content of the specific compound contained in the conductive thin wire portion is not particularly limited, but the ratio A of the content of the specific compound to the metal content in the conductive thin wire portion (metal content)) is preferably from 0.05 to 8.0, more preferably from 0.1 to 5.0, and more preferably from 0.2 to 5.0. More preferred.
When the ratio A is equal to or higher than the above lower limit value, the sulfurization resistance of the conductive thin wire portion can be further improved, especially when the conductive substrate is stored in the form of a laminate with other members such as an adhesive sheet and a release sheet. The sulfurization resistance of the conductive thin wire portion can be further improved.
In addition, the ratio A is preferably equal to or less than the above upper limit because the effect of suppressing color change of the conductive substrate after long-term storage is more excellent.
 導電性細線部における上記比率Aの測定は、飛行時間型2次イオン質量分析装置(TOF-SIMS:Time-of-Flight Secondary Ion Mass Spectrometry)を用いて導電性細線部を分析することにより、行われる。 The above ratio A in the conductive thin wire portion is measured by analyzing the conductive thin wire portion using a time-of-flight secondary ion mass spectrometer (TOF-SIMS). be exposed.
 特定化合物の含有量Aの測定方法をより具体的に説明する。
 イオン銃を備える飛行時間型2次イオン質量分析装置(TOF-SIMS)を用いて、導電性細線部から放出される2次イオン(フラグメントピーク)を検出することにより、導電性細線部に存在する特定化合物の量、および、金属の量が求められる。なお、金属に由来するフラグメントピークは、導電性細線に含まれる0価の金属(例えば、金属銀等)および金属アニオン(例えばヨウ化銀等)のものを使用する。
The method for measuring the content A of the specific compound will be explained in more detail.
By detecting secondary ions (fragment peaks) emitted from the conductive thin wire using a time-of-flight secondary ion mass spectrometer (TOF-SIMS) equipped with an ion gun, The amount of specific compound and the amount of metal are determined. Note that, as fragment peaks derived from metals, those of zero-valent metals (for example, metallic silver, etc.) and metal anions (for example, silver iodide, etc.) contained in the conductive thin wire are used.
 導電性細線部に存在する特定化合物のフラグメントピーク強度の最大値をB、金属に由来するフラグメントピーク強度の最大値をCとして算出する。次いで、導電性細線部に含まれる金属の含有量に対する特定化合物の含有量の比率Aが、得られたBおよびCから、A=B/Cの式を用いることにより算出される。 The maximum value of the fragment peak intensity of the specific compound present in the conductive thin wire portion is calculated as B, and the maximum value of the fragment peak intensity derived from the metal is calculated as C. Next, the ratio A of the content of the specific compound to the content of the metal contained in the conductive thin wire portion is calculated from the obtained B and C using the formula A=B/C.
〔導電性基板の製造方法〕
 次に、導電性基板の製造方法について説明する。
 導電性基板の製造方法は、上述した構成の導電性基板が製造できれば特に制限されず、公知の方法が採用される。例えば、ハロゲン化銀を用いて露光および現像を行う方法、支持体の全面に金属含有層を形成した後、レジストパターンを用いて金属含有層の一部を除去して、細線状の金属含有層を形成する方法、並びに、金属および樹脂を含む組成物をインクジェット等の公知の印刷方法により基材上に吐出して細線状の金属含有層を形成する方法が挙げられる。
 なかでも、生産性および導電性細線部の導電性がより優れる点で、ハロゲン化銀を用いて露光および現像を行う方法が好ましい。具体的には、後述する工程A~工程Dをこの順に有する導電性基板の製造方法が挙げられる。
 以下、工程A~工程Dを有する導電性基板の製造方法について詳述するが、本発明に係る導電性基板の製造方法は、下記の製造方法に制限されない。
[Method for manufacturing conductive substrate]
Next, a method for manufacturing the conductive substrate will be described.
The method for manufacturing the conductive substrate is not particularly limited as long as the conductive substrate having the above-mentioned configuration can be manufactured, and a known method may be employed. For example, a method of exposing and developing using silver halide, forming a metal-containing layer on the entire surface of the support, and then removing a part of the metal-containing layer using a resist pattern to form a thin line-shaped metal-containing layer. and a method in which a thin line-shaped metal-containing layer is formed by discharging a composition containing a metal and a resin onto a substrate using a known printing method such as inkjet printing.
Among these, a method in which exposure and development are performed using silver halide is preferred in terms of productivity and superior conductivity of the conductive thin wire portion. Specifically, there is a method for manufacturing a conductive substrate that includes steps A to D, which will be described later, in this order.
Hereinafter, a method for manufacturing a conductive substrate having steps A to D will be described in detail, but the method for manufacturing a conductive substrate according to the present invention is not limited to the following manufacturing method.
<工程A>
 工程Aは、基材上に、ハロゲン化銀とゼラチンと特定高分子(ゼラチンとは異なる高分子化合物)とを含むハロゲン化銀含有感光性層(以下、「感光性層」ともいう。)を形成する工程である。本工程により、後述する露光処理が施される感光性層付き基材が製造される。
 まず、工程Aで使用される材料および部材について詳述し、その後、工程Aの手順について詳述する。
 なお、工程Aで使用される基材、および、特定高分子については上述の通りである。
<Process A>
In step A, a silver halide-containing photosensitive layer (hereinafter also referred to as "photosensitive layer") containing silver halide, gelatin, and a specific polymer (a polymer compound different from gelatin) is formed on a base material. This is the process of forming. Through this step, a base material with a photosensitive layer to which the exposure treatment described below is performed is manufactured.
First, the materials and members used in step A will be explained in detail, and then the procedure of step A will be explained in detail.
Note that the base material and specific polymer used in Step A are as described above.
(ハロゲン化銀)
 ハロゲン化銀に含まれるハロゲン原子は、塩素原子、臭素原子、ヨウ素原子およびフッ素原子のいずれであってもよく、これらを組み合わせでもよい。例えば、塩化銀、臭化銀またはヨウ化銀を主体としたハロゲン化銀が好ましく、塩化銀または臭化銀を主体としたハロゲン化銀がより好ましい。なお、塩臭化銀、ヨウ塩臭化銀またはヨウ臭化銀も、好ましく用いられる。
 ここで、例えば、「塩化銀を主体としたハロゲン化銀」とは、ハロゲン化銀組成中、全ハロゲン化物イオンに占める塩化物イオンのモル分率が50%以上のハロゲン化銀をいう。この塩化銀を主体としたハロゲン化銀は、塩化物イオンのほかに、臭化物イオンおよび/またはヨウ化物イオンを含んでいてもよい。
 また、ハロゲン化銀は銀以外の金属化合物を含んでもよく、特開2006-332459号公報の段落0031~0038記載の化合物を好ましく使用することができる。
 また、ハロゲン化銀は、特開2006-332459号公報の段落0039~0045に例示される化学増感剤により、化学増感処理を施されることも好ましい。
 これらの金属化合物や化学増感剤の使用によってハロゲン化銀含有感光性層の光に対する感度や階調などの特性を制御することで、感光性層を現像することで形成される導電性細線部の銀密度を高めることができ、導電性をより向上することが可能となる。
(silver halide)
The halogen atom contained in the silver halide may be any of a chlorine atom, a bromine atom, an iodine atom, and a fluorine atom, or a combination of these may be used. For example, silver halide mainly composed of silver chloride, silver bromide or silver iodide is preferred, and silver halide mainly composed of silver chloride or silver bromide is more preferred. Note that silver chlorobromide, silver iodochlorobromide, and silver iodobromide are also preferably used.
Here, for example, "silver halide mainly composed of silver chloride" refers to silver halide in which the molar fraction of chloride ions to all halide ions in the silver halide composition is 50% or more. This silver halide mainly composed of silver chloride may contain bromide ions and/or iodide ions in addition to chloride ions.
Further, the silver halide may contain a metal compound other than silver, and compounds described in paragraphs 0031 to 0038 of JP-A No. 2006-332459 can be preferably used.
Further, it is also preferable that the silver halide is subjected to chemical sensitization treatment using a chemical sensitizer exemplified in paragraphs 0039 to 0045 of JP-A No. 2006-332459.
By using these metal compounds and chemical sensitizers to control the characteristics such as sensitivity to light and gradation of the silver halide-containing photosensitive layer, conductive thin wire portions are formed by developing the photosensitive layer. It is possible to increase the silver density of , and it is possible to further improve the conductivity.
 ハロゲン化銀は、通常、固体粒子状であり、ハロゲン化銀の平均粒子径は、球相当径で10~1000nmが好ましく、10~300nmがより好ましい。
 ハロゲン化銀の粒子径を小さくすることで、後述の工程Bにおいてハロゲン化銀感光性層に露光を施す際のハロゲン化銀粒子による光散乱を低減できるため、光散乱による導電性細線の線幅の増加を抑制することができ好ましい。一方、ハロゲン化銀粒子径を小さくしすぎると、工程Bで形成される現像銀の表面積が増加し、導電性の低下要因となる表面吸着物が増加する恐れがあるため、ハロゲン化銀粒子の平均粒子径は前述の領域が好ましい。
 なお、球相当径とは、同じ体積を有する球形粒子の直径である。
 上述のハロゲン化銀の平均粒子径として用いられる「球相当径」は平均値であり、100個のハロゲン化銀の球相当径を測定して、それらを算術平均したものである。
Silver halide is usually in the form of solid particles, and the average particle diameter of silver halide is preferably 10 to 1000 nm, more preferably 10 to 300 nm, in equivalent sphere diameter.
By reducing the grain size of the silver halide, it is possible to reduce light scattering by the silver halide particles when exposing the silver halide photosensitive layer in step B described below, so the line width of the conductive thin line due to light scattering can be reduced. This is preferable because it can suppress the increase in . On the other hand, if the silver halide grain size is made too small, the surface area of the developed silver formed in step B will increase, and there is a risk that surface adsorbed matter will increase, which will cause a decrease in conductivity. The average particle diameter is preferably in the above range.
Note that the spherical equivalent diameter is the diameter of spherical particles having the same volume.
The "equivalent sphere diameter" used as the average particle diameter of the silver halide mentioned above is an average value, which is the arithmetic average of 100 equivalent sphere diameters of silver halide measured.
 ハロゲン化銀の粒子の形状は特に制限されず、例えば、球状、立方体状、平板状(6角平板状、三角形平板状、4角形平板状等)、八面体状、および、14面体状等の形状が挙げられる。 The shape of the silver halide grains is not particularly limited, and examples thereof include spherical, cubic, tabular (hexagonal tabular, triangular tabular, quadrilateral tabular, etc.), octahedral, and tetradecahedral. One example is the shape.
(ゼラチン)
 ゼラチンの種類は特に制限されず、例えば、石灰処理ゼラチン、および、酸処理ゼラチンが挙げられる。また、ゼラチンの加水分解物、ゼラチンの酵素分解物、並びに、アミノ基および/またはカルボキシ基で修飾されたゼラチン(フタル化ゼラチン、および、アセチル化ゼラチン)等を用いてもよい。
(gelatin)
The type of gelatin is not particularly limited, and examples include lime-treated gelatin and acid-treated gelatin. Further, gelatin hydrolysates, gelatin enzymatically decomposed products, gelatin modified with amino groups and/or carboxy groups (phthalated gelatin, acetylated gelatin), etc. may be used.
 感光性層には、上述の特定高分子が含まれる。この特定高分子が感光性層に含まれることにより、感光性層より形成される導電性細線部および透明絶縁部の強度がより向上する。 The photosensitive layer contains the above-mentioned specific polymer. By including this specific polymer in the photosensitive layer, the strength of the conductive thin wire portion and the transparent insulating portion formed from the photosensitive layer is further improved.
(工程Aの手順)
 工程Aにおいて上述の成分を含む感光性層を形成する方法は特に制限されないが、生産性の点から、ハロゲン化銀とゼラチンと特定高分子とを含む感光性層形成用組成物を基材上に接触させ、基材上に感光性層を形成する方法が好ましい。
 以下に、この方法で使用される感光性層形成用組成物の形態について詳述し、その後、工程の手順について詳述する。
(Procedure of process A)
The method for forming the photosensitive layer containing the above-mentioned components in Step A is not particularly limited, but from the viewpoint of productivity, a composition for forming a photosensitive layer containing silver halide, gelatin, and a specific polymer is coated on the base material. A preferred method is to form a photosensitive layer on a substrate by bringing it into contact with the substrate.
Below, the form of the composition for forming a photosensitive layer used in this method will be explained in detail, and then the steps of the process will be explained in detail.
(感光性層形成用組成物に含まれる材料)
 感光性層形成用組成物には、上述したハロゲン化銀とゼラチンと特定高分子とが含まれる。なお、必要に応じて、特定高分子は粒子状の形態で感光性層形成用組成物中に含まれていてもよい。
 感光性層形成用組成物には、必要に応じて、溶剤が含まれていてもよい。
 溶剤としては、水、有機溶剤(例えば、アルコール類、ケトン類、アミド類、スルホキシド類、エステル類およびエーテル類)、イオン性液体、並びに、これらの混合溶剤が挙げられる。
(Materials included in the photosensitive layer forming composition)
The composition for forming a photosensitive layer contains the above-mentioned silver halide, gelatin, and specific polymer. Note that, if necessary, the specific polymer may be contained in the composition for forming a photosensitive layer in the form of particles.
The composition for forming a photosensitive layer may contain a solvent as necessary.
Examples of the solvent include water, organic solvents (for example, alcohols, ketones, amides, sulfoxides, esters, and ethers), ionic liquids, and mixed solvents thereof.
 感光性層形成用組成物と基材とを接触させる方法は特に制限されず、例えば、感光性層形成用組成物を基材上に塗布する方法、および、感光性層形成用組成物中に基材を浸漬する方法等が挙げられる。
 なお、上述の処理後、必要に応じて、乾燥処理を実施してもよい。
The method of bringing the composition for forming a photosensitive layer into contact with the base material is not particularly limited. Examples include a method of dipping the base material.
Note that after the above-mentioned treatment, a drying treatment may be performed as necessary.
(ハロゲン化銀含有感光性層)
 上述の手順により形成された感光性層には、ハロゲン化銀とゼラチンと特定高分子とが含まれる。
 感光性層中におけるハロゲン化銀の含有量は特に制限されず、導電性基板の導電性がより優れる点で、銀換算で3.0~20.0g/mが好ましく、5.0~15.0g/mがより好ましい。銀換算とは、ハロゲン化銀が全て還元されて生成される銀の質量に換算したことを意味する。
 感光性層中における特定高分子の含有量は特に制限されず、導電性基板の導電性がより優れる点で、0.04~2.0g/mが好ましく、0.08~0.40g/mがより好ましく、0.10~0.40g/mが更に好ましい。
(Silver halide-containing photosensitive layer)
The photosensitive layer formed by the above procedure contains silver halide, gelatin, and a specific polymer.
The content of silver halide in the photosensitive layer is not particularly limited, and is preferably 3.0 to 20.0 g/m 2 in terms of silver, and 5.0 to 15 g/m 2 in terms of silver, since the conductive substrate has better conductivity. .0 g/m 2 is more preferred. Silver conversion means conversion into the mass of silver produced by reducing all of the silver halide.
The content of the specific polymer in the photosensitive layer is not particularly limited, and is preferably 0.04 to 2.0 g/m 2 and 0.08 to 0.40 g/m 2 in terms of better conductivity of the conductive substrate. m 2 is more preferable, and 0.10 to 0.40 g/m 2 is even more preferable.
 ハロゲン化銀感光性層は一層でもよいが、必要に応じて複数の感光性層を積層することも好ましい。複数のハロゲン化銀感光性層を積層する場合、感光性層を露光する際の光源に近い層(以降、「上層」と呼ぶ)に対し、光源から遠い層(以降、「下層」と呼ぶ)の感度を高める設計をすることが好ましい。上層のハロゲン化銀による吸収や散乱によって、下層に到達する光の強度が低下するため、下層の感度を高めておくことで低下した強度の光でも下層の感光性層が感光できるようになり、導電性細線の一定線幅当たりの銀量を高めることができ好ましい。また、下層のハロゲン化銀粒子の粒子径に対し、上層のハロゲン化銀粒子の粒子径をより小さく設計することが好ましい。上層のハロゲン化銀粒子の光散乱により下層に到達する光の照射領域が広がり、導電性細線の線幅が太くなる問題に対し、上層のハロゲン化銀粒子の粒子径を小さくすることで抑制可能となり好ましい。また、下層のハロゲン化銀粒子の粒子径をより大きくすることで、下層のハロゲン化銀粒子の粒子径を小さくした場合に対し現像銀の表面積が低減できるため、導電性の阻害要因となる表面吸着物質を低減でき好ましい。
 上層と下層のハロゲン化銀感光性層の好ましい感度比は、ハロゲン化銀粒子の粒子径、ハロゲン組成、感光性層の厚み、露光に使用する光源の波長等により光吸収や散乱特性が変化するため一概には言えないが、上層の感度に対する下層の感度が、1.1倍から10倍の範囲が好ましく、1.5倍から4倍の範囲がより好ましい。また、ハロゲン化銀の平均粒子径は、上層が40~180nm、下層が100~300nmの範囲にある事が好ましい。
Although a single silver halide photosensitive layer may be used, it is also preferable to laminate a plurality of photosensitive layers as necessary. When multiple silver halide photosensitive layers are laminated, a layer closer to the light source when exposing the photosensitive layer (hereinafter referred to as the "upper layer") is opposed to a layer farther from the light source (hereinafter referred to as the "lower layer"). It is preferable to design the sensor to increase its sensitivity. The intensity of light reaching the lower layer decreases due to absorption and scattering by the silver halide in the upper layer, so by increasing the sensitivity of the lower layer, the lower photosensitive layer can be exposed to even the lower intensity light. This is preferable because the amount of silver per constant line width of the conductive thin wire can be increased. Further, it is preferable to design the grain size of the silver halide grains in the upper layer to be smaller than that of the silver halide grains in the lower layer. The problem of the light scattering of the upper layer silver halide grains expanding the irradiation area of the light reaching the lower layer and increasing the line width of the conductive thin wire can be suppressed by reducing the grain size of the upper layer silver halide grains. That's preferable. In addition, by increasing the grain size of the silver halide grains in the lower layer, the surface area of developed silver can be reduced compared to when the grain size of the silver halide grains in the lower layer is made smaller. This is preferable because it can reduce the amount of adsorbed substances.
The preferable sensitivity ratio between the upper and lower silver halide photosensitive layers is determined by the light absorption and scattering properties that vary depending on the particle size of the silver halide grains, halogen composition, thickness of the photosensitive layer, wavelength of the light source used for exposure, etc. Therefore, the sensitivity of the lower layer relative to the sensitivity of the upper layer is preferably in the range of 1.1 to 10 times, and more preferably in the range of 1.5 to 4 times, although it cannot be generalized. Further, the average particle diameter of the silver halide is preferably in the range of 40 to 180 nm in the upper layer and 100 to 300 nm in the lower layer.
<工程B>
 工程Bは、感光性層を露光した後、現像処理して、金属銀とゼラチンと特定高分子とを含む細線状の銀含有層を形成する工程である。
<Process B>
Step B is a step of exposing the photosensitive layer to light and then developing it to form a thin line-shaped silver-containing layer containing metallic silver, gelatin, and a specific polymer.
 感光性層に露光処理を施すことにより、露光領域において潜像が形成される。
 露光はパターン状に実施してもよく、例えば、後述する導電性細線部からなるメッシュパターンを得るためには、メッシュ状の開口パターンを有するマスクを介して、露光する方法、および、レーザー光を走査してメッシュ状に露光する方法が挙げられる。
 露光の際に使用される光の種類は特に制限されず、ハロゲン化銀に潜像を形成できるものであればよく、例えば、可視光線、紫外線、および、X線が挙げられる。
By exposing the photosensitive layer to light, a latent image is formed in the exposed area.
Exposure may be carried out in a pattern. For example, in order to obtain a mesh pattern consisting of conductive thin wire portions, which will be described later, there is a method of exposing through a mask having a mesh-like opening pattern, and a method of exposing with laser light. One example is a method of scanning and exposing in a mesh pattern.
The type of light used during exposure is not particularly limited as long as it can form a latent image on the silver halide, and examples include visible light, ultraviolet light, and X-rays.
 露光された感光性層に現像処理を施すことにより、露光領域(潜像が形成された領域)では、金属銀が析出する。
 現像処理の方法は特に制限されず、例えば、銀塩写真フィルム、印画紙、印刷製版用フィルム、および、フォトマスク用エマルジョンマスクに用いられる公知の方法が挙げられる。
 現像処理では、通常、現像液を用いる。現像液の種類は特に制限されず、例えば、PQ(phenidone hydroquinone)現像液、MQ(Metol hydroquinone)現像液、および、MAA(メトール・アスコルビン酸)現像液が挙げられる。
By performing a development treatment on the exposed photosensitive layer, metallic silver is deposited in the exposed area (the area where the latent image is formed).
The method of development treatment is not particularly limited, and examples thereof include known methods used for silver salt photographic films, photographic papers, films for printing plates, and emulsion masks for photomasks.
In the development process, a developer is usually used. The type of developer is not particularly limited, and examples include PQ (phenidone hydroquinone) developer, MQ (metol hydroquinone) developer, and MAA (methol ascorbic acid) developer.
 本工程は、未露光部分のハロゲン化銀を除去して安定化させる目的で行われる定着処理を更に有してもよい。
 定着処理は、現像と同時および/または現像の後に実施される。定着処理の方法は特に制限されず、例えば、銀塩写真フィルム、印画紙、印刷製版用フィルム、および、フォトマスク用エマルジョンマスクに用いられる方法が挙げられる。
 定着処理では、通常、定着液を用いる。定着液の種類は特に制限されず、例えば、「写真の化学」(笹井著、株式会社写真工業出版社)p321記載の定着液が挙げられる。
This step may further include a fixing treatment performed for the purpose of removing and stabilizing silver halide in unexposed areas.
The fixing process is performed simultaneously with and/or after the development. The fixing treatment method is not particularly limited, and examples thereof include methods used for silver salt photographic films, photographic paper, printing plate-making films, and emulsion masks for photomasks.
In the fixing process, a fixing solution is usually used. The type of fixer is not particularly limited, and examples thereof include the fixer described in "Chemistry of Photography" (written by Sasai, published by Photo Industry Publishing Co., Ltd.), p. 321.
 上述の処理を実施することにより、金属銀とゼラチンと特定高分子とを含む、細線状の銀含有層が形成されるとともに、金属銀を含まず、ゼラチンと特定高分子とを含む絶縁層が形成される。
 銀含有層の幅を調整する方法としては、例えば、露光時に使用されるマスクの開口幅を調整する方法が挙げられる。例えば、マスクの開口幅を1.0μm以上5.0μm未満にすることにより、露光領域を調整できる。
 また、露光時にマスクを使用する際には、露光量を調整することにより、形成される銀含有層の幅を調整することもできる。例えば、マスクの開口幅が目標とする銀含有層の幅よりも狭い場合には、露光量を通常よりも増加させることにより、潜像が形成される領域の幅を調整できる。すなわち、露光量により、導電性細線部の線幅を調整できる。
 更に、レーザー光を用いる場合は、レーザー光の集光範囲および/または走査範囲を調整することにより、露光領域を調整できる。
By carrying out the above-mentioned treatment, a thin line-shaped silver-containing layer containing metallic silver, gelatin, and a specific polymer is formed, and an insulating layer that does not contain metallic silver and contains gelatin and a specific polymer is formed. It is formed.
An example of a method for adjusting the width of the silver-containing layer is a method of adjusting the opening width of a mask used during exposure. For example, the exposure area can be adjusted by setting the opening width of the mask to 1.0 μm or more and less than 5.0 μm.
Moreover, when using a mask during exposure, the width of the silver-containing layer to be formed can also be adjusted by adjusting the exposure amount. For example, when the opening width of the mask is narrower than the target width of the silver-containing layer, the width of the region where the latent image is formed can be adjusted by increasing the exposure amount more than usual. That is, the line width of the conductive thin line portion can be adjusted by adjusting the exposure amount.
Furthermore, when using laser light, the exposure area can be adjusted by adjusting the focusing range and/or scanning range of the laser light.
 銀含有層の幅は、1.0μm以上5.0μm未満が好ましく、形成される導電性細線部が視認されにくい点から、2.0μm以下がより好ましい。
 なお、上述の手順によって得られる銀含有層は細線状であり、銀含有層の幅とは細線状の銀含有層が延在する方向に直交する方向における銀含有層の長さ(幅)を意味する。
The width of the silver-containing layer is preferably 1.0 μm or more and less than 5.0 μm, and more preferably 2.0 μm or less since the formed conductive thin wire portion is difficult to be visually recognized.
The silver-containing layer obtained by the above procedure is in the form of a thin line, and the width of the silver-containing layer refers to the length (width) of the silver-containing layer in the direction perpendicular to the direction in which the thin line-shaped silver-containing layer extends. means.
<工程C>
 工程Cは、工程Bで得られた銀含有層および絶縁層(以下、両者を「銀含有層等」ともいう。)に対して加熱処理を施す工程である。本工程を実施することにより、銀含有層等中の特定高分子間での融着が進行し、銀含有層等の強度が向上する。
<Process C>
Step C is a step in which the silver-containing layer and the insulating layer (hereinafter both are also referred to as "silver-containing layer etc.") obtained in Step B are subjected to heat treatment. By carrying out this step, fusion between specific polymers in the silver-containing layer, etc. progresses, and the strength of the silver-containing layer, etc. improves.
 加熱処理の方法は特に制限されず、銀含有層等に過熱蒸気を接触させる方法、および、温度調整装置(例えば、ヒーター)で加熱する方法が挙げられ、銀含有層等と過熱蒸気とを接触させる方法が好ましい。 The heat treatment method is not particularly limited, and examples include a method of bringing superheated steam into contact with the silver-containing layer, etc., and a method of heating with a temperature adjustment device (e.g., a heater). The preferred method is to
 過熱蒸気としては、過熱水蒸気でもよいし、過熱水蒸気に他のガスを混合させたものでもよい。
 過熱蒸気と銀含有層等との接触時間は特に制限されず、10~70秒間が好ましい。
 過熱蒸気の供給量は、500~600g/mが好ましく、過熱蒸気の温度は、1気圧で100~160℃(好ましくは100~120℃)が好ましい。
The superheated steam may be superheated steam or a mixture of superheated steam and other gas.
The contact time between the superheated steam and the silver-containing layer is not particularly limited, and is preferably 10 to 70 seconds.
The amount of superheated steam supplied is preferably 500 to 600 g/m 3 , and the temperature of superheated steam is preferably 100 to 160°C (preferably 100 to 120°C) at 1 atmosphere.
 温度調整装置で銀含有層等を加熱する方法における加熱条件としては、100~200℃(好ましくは100~150℃)で1~240分間(好ましくは60~150分間)加熱する条件が好ましい。 The heating conditions in the method of heating the silver-containing layer etc. with a temperature adjustment device are preferably heating at 100 to 200 °C (preferably 100 to 150 °C) for 1 to 240 minutes (preferably 60 to 150 minutes).
<工程D>
 工程Dは、工程Cで得られた銀含有層等中のゼラチンを除去する工程である。本工程を実施することにより、銀含有層等からゼラチンが除去され、銀含有層等の内部に空間が形成される。
<Process D>
Step D is a step of removing gelatin in the silver-containing layer etc. obtained in Step C. By performing this step, gelatin is removed from the silver-containing layer, etc., and a space is formed inside the silver-containing layer, etc.
 ゼラチンを除去する方法は特に制限されず、例えば、タンパク質分解酵素を用いる方法(以下、「方法1」ともいう。)、および、酸化剤を用いてゼラチンを分解除去する方法(以下、「方法2」ともいう。)が挙げられる。 The method for removing gelatin is not particularly limited, and examples include a method using a protease (hereinafter also referred to as "Method 1") and a method of decomposing and removing gelatin using an oxidizing agent (hereinafter referred to as "Method 2"). ).
 方法1において用いられるタンパク質分解酵素としては、ゼラチン等のタンパク質を加水分解できる植物性または動物性酵素で公知の酵素が挙げられる。
 タンパク質分解酵素としては、例えば、ペプシン、レンニン、トリプシン、キモトリプシン、カテプシン、パパイン、フィシン、トロンビン、レニン、コラゲナーゼ、ブロメライン、および、細菌プロテアーゼが挙げられ、トリプシン、パパイン、フィシン、または、細菌プロテアーゼが好ましい。
 方法1における手順としては、銀含有層等と上述のタンパク質分解酵素とを接触させる方法であればよく、例えば、銀含有層等とタンパク質分解酵素を含む処理液(以下、「酵素液」ともいう。)とを接触させる方法が挙げられる。接触方法としては、銀含有層等を酵素液中に浸漬させる方法、および、銀含有層等上に酵素液を塗布する方法が挙げられる。
 酵素液中におけるタンパク質分解酵素の含有量は特に制限されず、ゼラチンの分解除去の程度が制御しやすい点で、酵素液全量に対して、0.05~20質量%が好ましく、0.5~10質量%がより好ましい。
 酵素液には、上述のタンパク質分解酵素に加え、水が含まれることが多い。
 酵素液には、必要に応じて、他の添加剤(例えば、pH緩衝剤、抗菌性化合物、湿潤剤、および、保恒剤)が含まれていてもよい。
 酵素液のpHは、酵素の働きが最大限得られるように選ばれるが、5~9が好ましい。
 酵素液の温度は、酵素の働きが高まる温度が好ましい。具体的には20~45℃が好ましい。
The proteolytic enzyme used in Method 1 includes known plant or animal enzymes that can hydrolyze proteins such as gelatin.
Examples of proteolytic enzymes include pepsin, rennin, trypsin, chymotrypsin, cathepsin, papain, ficin, thrombin, renin, collagenase, bromelain, and bacterial protease, with trypsin, papain, ficin, or bacterial protease being preferred. .
The procedure in Method 1 may be any method as long as it brings the silver-containing layer etc. into contact with the above-mentioned protease. ). Examples of the contact method include a method in which the silver-containing layer, etc. is immersed in an enzyme solution, and a method in which the enzyme solution is applied onto the silver-containing layer, etc.
The content of the protease in the enzyme solution is not particularly limited, and is preferably 0.05 to 20% by mass, and 0.5 to 20% by mass based on the total amount of the enzyme solution, since the degree of gelatin decomposition and removal can be easily controlled. 10% by mass is more preferable.
In addition to the above-mentioned proteolytic enzymes, the enzyme solution often contains water.
The enzyme solution may contain other additives (for example, a pH buffer, an antibacterial compound, a wetting agent, and a preservative) as necessary.
The pH of the enzyme solution is selected to maximize the enzyme's function, and is preferably between 5 and 9.
The temperature of the enzyme solution is preferably a temperature at which the action of the enzyme is enhanced. Specifically, the temperature is preferably 20 to 45°C.
 なお、必要に応じて、酵素液での処理後に、得られた銀含有層等を温水にて洗浄する洗浄処理を実施してもよい。
 洗浄方法は特に制限されず、銀含有層等と温水とを接触させる方法が好ましく、例えば、温水中に銀含有層等を浸漬する方法、および、銀含有層等上に温水を塗布する方法が挙げられる。
 温水の温度は使用されるタンパク質分解酵素の種類に応じて適宜最適な温度が選択され、生産性の点から、20~80℃が好ましく、40~60℃がより好ましい。
 温水と銀含有層等との接触時間(洗浄時間)は特に制限されず、生産性の点から、1~600秒間が好ましく、30~360秒間がより好ましい。
Note that, if necessary, after the treatment with the enzyme solution, a cleaning treatment of cleaning the obtained silver-containing layer and the like with warm water may be performed.
The cleaning method is not particularly limited, and a method of bringing the silver-containing layer, etc. into contact with hot water is preferable; for example, a method of immersing the silver-containing layer, etc. in hot water, and a method of applying hot water on the silver-containing layer, etc. are preferable. Can be mentioned.
The optimum temperature of the hot water is selected depending on the type of proteolytic enzyme used, and from the viewpoint of productivity, it is preferably 20 to 80°C, more preferably 40 to 60°C.
The contact time (cleaning time) between hot water and the silver-containing layer, etc. is not particularly limited, and from the viewpoint of productivity, it is preferably 1 to 600 seconds, more preferably 30 to 360 seconds.
 方法2で用いられる酸化剤としては、ゼラチンを分解できる酸化剤であればよく、標準電極電位が+1.5V以上である酸化剤が好ましい。なお、ここで標準電極電位とは、酸化剤の水溶液中における標準水素電極に対する標準電極電位(25℃、E0)を意図する。
 上述の酸化剤としては、例えば、過硫酸、過炭酸、過リン酸、次過塩素酸、過酢酸、メタクロロ過安息香酸、過酸化水素水、過塩素酸、過ヨウ素酸、過マンガン酸カリウム、過硫酸アンモニウム、オゾン、次亜塩素酸またはその塩等が挙げられるが、生産性、経済性の観点で、過酸化水素水(標準電極電位:1.76V)、次亜塩素酸またはその塩が好ましく、次亜塩素酸ナトリウムがより好ましい。
The oxidizing agent used in method 2 may be any oxidizing agent that can decompose gelatin, and preferably has a standard electrode potential of +1.5 V or more. Note that the standard electrode potential herein refers to the standard electrode potential (25° C., E0) relative to a standard hydrogen electrode in an aqueous solution of an oxidizing agent.
Examples of the above-mentioned oxidizing agents include persulfuric acid, percarbonic acid, perphosphoric acid, hypoperchloric acid, peracetic acid, metachloroperbenzoic acid, hydrogen peroxide, perchloric acid, periodic acid, potassium permanganate, Examples include ammonium persulfate, ozone, hypochlorous acid or its salts, but from the viewpoint of productivity and economy, hydrogen peroxide (standard electrode potential: 1.76V), hypochlorous acid or its salts are preferable. , sodium hypochlorite is more preferred.
 方法2における手順としては、銀含有層等と上述の酸化剤とを接触させる方法であればよく、例えば、銀含有層等と酸化剤を含む処理液(以下、「酸化剤液」ともいう。)とを接触させる方法が挙げられる。接触方法としては、銀含有層等を酸化剤液中に浸漬させる方法、および、銀含有層等上に酸化剤液を塗布する方法が挙げられる。
 酸化剤液に含まれる溶剤の種類は特に制限されず、水、および、有機溶剤が挙げられる。
The procedure in Method 2 may be a method of bringing the silver-containing layer etc. into contact with the above-mentioned oxidizing agent, for example, a treatment liquid containing the silver-containing layer etc. and the oxidizing agent (hereinafter also referred to as "oxidizing agent liquid"). ). Examples of the contact method include a method in which the silver-containing layer, etc. is immersed in an oxidizing agent solution, and a method in which the oxidizing agent solution is applied onto the silver-containing layer, etc.
The type of solvent contained in the oxidizing agent liquid is not particularly limited, and examples include water and organic solvents.
<工程E>
 導電性基板の製造方法は、工程Dで得られた銀含有層に対してめっき処理を施す工程Eを有してもよい。本工程を実施することにより、ゼラチンを除去することにより形成された銀含有層の内部の空間に金属(めっき金属)を充填し、導電性細線部の導電性を向上させることができる。
<Process E>
The method for manufacturing a conductive substrate may include a step E in which the silver-containing layer obtained in step D is subjected to a plating treatment. By carrying out this step, the space inside the silver-containing layer formed by removing gelatin can be filled with metal (plated metal), and the conductivity of the conductive thin wire portion can be improved.
 めっき処理の種類は特に制限されないが、無電解めっき(化学還元めっき、または、置換めっき)および電解めっきが挙げられ、無電解めっきが好ましい。無電解めっきとしては、公知の無電解めっき技術が用いられる。
 めっき処理としては、例えば、銀めっき処理、銅めっき処理、ニッケルめっき処理、および、コバルトめっき処理が挙げられ、導電性細線部の導電性がより優れる点で、銀めっき処理または銅めっき処理が好ましく、銀めっき処理がより好ましい。
The type of plating treatment is not particularly limited, but includes electroless plating (chemical reduction plating or displacement plating) and electrolytic plating, with electroless plating being preferred. As the electroless plating, a known electroless plating technique is used.
Examples of the plating treatment include silver plating treatment, copper plating treatment, nickel plating treatment, and cobalt plating treatment, and silver plating treatment or copper plating treatment is preferable because the conductivity of the conductive thin wire portion is better. , silver plating treatment is more preferred.
 めっき処理で用いられるめっき液に含まれる成分は特に制限されないが、通常、溶剤(例えば、水)の他に、1.めっき用の金属イオン、2.還元剤、3.金属イオンの安定性を向上させる添加剤(安定剤)、4.pH調整剤が主に含まれている。このめっき浴には、これらに加えて、めっき浴の安定剤等、公知の添加剤が含まれていてもよい。
 めっき液に含まれるめっき用の金属イオンの種類は析出させたい金属種に応じて適宜選択でき、例えば、銀イオン、銅イオン、ニッケルイオン、および、コバルトイオンが挙げられる。
The components contained in the plating solution used in the plating process are not particularly limited, but usually, in addition to a solvent (for example, water), 1. Metal ions for plating, 2. reducing agent, 3. Additives (stabilizers) that improve the stability of metal ions; 4. Mainly contains pH adjusters. In addition to these, the plating bath may contain known additives such as a plating bath stabilizer.
The type of metal ion for plating contained in the plating solution can be appropriately selected depending on the type of metal to be deposited, and examples thereof include silver ion, copper ion, nickel ion, and cobalt ion.
 上述のめっき処理の手順は特に制限されず、銀含有層とめっき液とを接触させる方法であればよく、例えば、めっき液中に銀含有層を浸漬させる方法、および、めっき液を銀含有層に塗布する方法が挙げられる。
 銀含有層とめっき液との接触時間は特に制限されず、導電性細線部の導電性がより優れる点および生産性の点から、20秒間~30分間が好ましい。
The above-mentioned plating procedure is not particularly limited and may be any method that brings the silver-containing layer into contact with the plating solution.For example, a method of immersing the silver-containing layer in the plating solution, One method is to apply it to the surface.
The contact time between the silver-containing layer and the plating solution is not particularly limited, and is preferably from 20 seconds to 30 minutes from the viewpoint of better conductivity of the conductive thin wire portion and productivity.
<工程F>
 導電性基板の製造方法は、上記の工程で得られた銀含有層等に、更に平滑化処理を施す工程Fを有してもよい。
<Process F>
The method for manufacturing a conductive substrate may include a step F in which the silver-containing layer obtained in the above step is further subjected to a smoothing treatment.
 平滑化処理の方法は特に制限されず、例えば、銀含有層等を有する基材を、少なくとも一対のロール間を加圧下で通過させるカレンダー処理工程が好ましい。以下、カレンダーロールを用いた平滑化処理をカレンダー処理と記す。
 カレンダー処理に用いられるロールとしては、プラスチックロール、および、金属ロールが挙げられ、シワ防止の点から、プラスチックロールが好ましい。
 ロール間の圧力は特に制限されず、2MPa以上が好ましく、4MPa以上がより好ましく、120MPa以下が好ましい。なお、ロール間の圧力は、富士フイルム株式会社製プレスケール(高圧用)を用いて測定できる。
 平滑化処理の温度は特に制限されず、10~100℃が好ましく、10~50℃がより好ましい。
The method of smoothing treatment is not particularly limited, and for example, a calendar treatment step in which a base material having a silver-containing layer or the like is passed between at least a pair of rolls under pressure is preferred. Hereinafter, the smoothing process using a calender roll will be referred to as calender process.
Rolls used for calendering include plastic rolls and metal rolls, with plastic rolls being preferred from the viewpoint of wrinkle prevention.
The pressure between the rolls is not particularly limited, and is preferably 2 MPa or more, more preferably 4 MPa or more, and preferably 120 MPa or less. Note that the pressure between the rolls can be measured using Prescale (for high pressure) manufactured by Fujifilm Corporation.
The temperature of the smoothing treatment is not particularly limited, and is preferably 10 to 100°C, more preferably 10 to 50°C.
<工程G>
 導電性基板の製造方法は、上記の工程で得られた銀含有層等に加熱処理を施す工程Gを有してもよい。本工程を実施することにより、導電性により優れる導電性細線部が得られる。
 導電性細線部に加熱処理を施す方法は特に制限されず、工程Cで述べた方法が挙げられる。
<Process G>
The method for manufacturing a conductive substrate may include a step G of subjecting the silver-containing layer etc. obtained in the above steps to a heat treatment. By carrying out this step, a conductive thin wire portion with better conductivity can be obtained.
The method of heat-treating the conductive thin wire portion is not particularly limited, and the method described in Step C may be used.
<工程H>
 導電性基板の製造方法は、工程Aの前に、基材上にゼラチンおよび特定高分子を含むハロゲン化銀不含有層を形成する工程Hを有してもよい。本工程を実施することにより、基材とハロゲン化銀含有感光性層との間にハロゲン化銀不含有層が形成される。このハロゲン化銀不含有層は、いわゆるアンチハレーション層の役割を果たすと共に、導電性層と基材との密着性向上に寄与する。
 ハロゲン化銀不含有層には、上述したゼラチンと特定高分子とが含まれる。一方、ハロゲン化銀不含有層には、ハロゲン化銀が含まれない。
 ハロゲン化銀不含有層中における、ゼラチンの質量に対する、特定高分子の質量の比(特定高分子の質量/ゼラチンの質量)は特に制限されず、0.1~5.0が好ましく、1.0~3.0がより好ましい。
 ハロゲン化銀不含有層中の特定高分子の含有量は特に制限されず、0.03g/m以上の場合が多く、導電性細線部の密着性がより優れる点で、1.0g/m以上が好ましい。上限は特に制限されないが、1.63g/m以下の場合が多い。
<Process H>
The method for producing a conductive substrate may include, before Step A, Step H of forming a silver halide-free layer containing gelatin and a specific polymer on the base material. By carrying out this step, a silver halide-free layer is formed between the substrate and the silver halide-containing photosensitive layer. This silver halide-free layer plays the role of a so-called antihalation layer and also contributes to improving the adhesion between the conductive layer and the base material.
The silver halide-free layer contains the above-mentioned gelatin and specific polymer. On the other hand, the silver halide-free layer does not contain silver halide.
The ratio of the mass of the specific polymer to the mass of gelatin (mass of specific polymer/mass of gelatin) in the silver halide-free layer is not particularly limited, and is preferably 0.1 to 5.0, and 1. More preferably 0 to 3.0.
The content of the specific polymer in the silver halide-free layer is not particularly limited, and is often 0.03 g/m 2 or more. 2 or more is preferred. The upper limit is not particularly limited, but is often 1.63 g/m 2 or less.
 ハロゲン化銀不含有層の形成方法は特に制限されず、例えば、ゼラチンと特定高分子とを含有する層形成用組成物を基材上に塗布して、必要に応じて加熱処理を施す方法が挙げられる。
 層形成用組成物には、必要に応じて溶剤が含まれていてもよい。溶剤の種類は、上述した感光性層形成用組成物で使用される溶剤が例示される。
 ハロゲン化銀不含有層の厚みは特に制限されず、0.05μm以上の場合が多く、導電性細線部の密着性がより優れる点で、1.0μm超が好ましく、1.5μm以上がより好ましい。上限は特に制限されないが、3.0μm未満であることが好ましい。
The method of forming the silver halide-free layer is not particularly limited, and for example, a method of applying a layer-forming composition containing gelatin and a specific polymer onto a base material and subjecting it to a heat treatment as necessary may be used. Can be mentioned.
The layer-forming composition may contain a solvent as necessary. Examples of the solvent include those used in the photosensitive layer forming composition described above.
The thickness of the silver halide-free layer is not particularly limited, and is often 0.05 μm or more, preferably more than 1.0 μm, more preferably 1.5 μm or more, since the adhesion of the conductive thin wire portion is better. . Although the upper limit is not particularly limited, it is preferably less than 3.0 μm.
<工程I>
 導電性基板の製造方法は、工程Aの後で工程Bの前に、ハロゲン化銀含有感光性層上にゼラチンと特定高分子とを含む保護層を形成する工程Iを有してもよい。保護層を設けることにより、感光性層の擦り傷防止および力学特性を改良できる。
 保護層中における、ゼラチンの質量に対する、特定高分子の質量の比(特定高分子の質量/ゼラチンの質量)は特に制限されず、0超2.0以下が好ましく、0超1.0以下がより好ましい。
 また、保護層中の特定高分子の含有量は特に制限されず、0g/m超0.3g/m以下が好ましく、0.005~0.1g/mがより好ましい。
<Step I>
The method for producing a conductive substrate may include, after step A and before step B, step I of forming a protective layer containing gelatin and a specific polymer on the silver halide-containing photosensitive layer. By providing a protective layer, the scratch prevention and mechanical properties of the photosensitive layer can be improved.
The ratio of the mass of the specific polymer to the mass of gelatin in the protective layer (mass of specific polymer/mass of gelatin) is not particularly limited, and is preferably greater than 0 and less than or equal to 2.0, and more than 0 and less than or equal to 1.0. More preferred.
Further, the content of the specific polymer in the protective layer is not particularly limited, and is preferably more than 0 g/m 2 and 0.3 g/m 2 or less, and more preferably 0.005 to 0.1 g/m 2 .
 保護層の形成方法は特に制限されず、例えば、ゼラチンと特定高分子とを含む保護層形成用組成物をハロゲン化銀含有感光性層上に塗布して、必要に応じて加熱処理を施す方法が挙げられる。
 保護層形成用組成物には、必要に応じて溶剤が含まれていてもよい。溶剤の種類は、上述した感光性層形成用組成物で使用される溶剤が例示される。
 保護層の厚みは特に制限されず、0.03~0.3μmが好ましく、0.075~0.20μmがより好ましい。
The method of forming the protective layer is not particularly limited, and for example, a method of applying a protective layer-forming composition containing gelatin and a specific polymer onto a silver halide-containing photosensitive layer and subjecting it to a heat treatment if necessary. can be mentioned.
The composition for forming a protective layer may contain a solvent as necessary. Examples of the solvent include those used in the photosensitive layer forming composition described above.
The thickness of the protective layer is not particularly limited, and is preferably 0.03 to 0.3 μm, more preferably 0.075 to 0.20 μm.
 なお、上述した工程H、工程Aおよび工程Iは、同時重層塗布によって同時に実施してもよい。 Note that Step H, Step A, and Step I described above may be performed simultaneously by simultaneous multilayer coating.
<工程P>
 導電性基板の製造方法は、上記の基材上に形成された導電性層に特定化合物を接触させ、導電性層に特定化合物が含まれている本発明の導電性基板を作製する工程Pを有する。
 導電性層と特定化合物とを接触させる方法は特に制限されず、例えば、特定化合物を含む処理液中に導電性層が形成された基材を浸漬する方法、および、特定化合物を含む処理液を導電性層が形成された基材の表面に塗布する方法が挙げられる。
 工程Pを実施し、特定化合物が導電性層を構成する導電性細線部および透明絶縁部に浸透および吸着させることにより、導電性細線部の硫化耐性が向上する。
<Process P>
The method for manufacturing a conductive substrate includes a step P of bringing a specific compound into contact with the conductive layer formed on the above-mentioned base material to produce the conductive substrate of the present invention in which the conductive layer contains the specific compound. have
The method of bringing the conductive layer into contact with the specific compound is not particularly limited, and examples include a method of immersing the base material on which the conductive layer is formed in a treatment solution containing the specific compound, and a method of bringing the conductive layer into contact with the specific compound. Examples include a method of coating the surface of a base material on which a conductive layer is formed.
By carrying out step P and causing the specific compound to permeate and adsorb into the conductive thin wire portion and the transparent insulating portion constituting the conductive layer, the sulfidation resistance of the conductive thin wire portion is improved.
 上記の特定化合物を含む処理液は、特定化合物を溶剤に溶解させてなる溶液であることが好ましい。使用される溶剤の種類は特に制限されず、上述した感光性層形成用組成物で使用される溶剤が挙げられる。好ましい溶剤としては、アルコール類、および、エーテル類が挙げられる。好ましい溶剤の具体例としては、エタノール、1-プロパノール、2-プロパノール、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノプロピルエーテル、ジエチレングリコールモノブチルエーテルが挙げられる。
 上記の処理液における特定化合物の含有量は、目的とする導電性層に含有させる特定化合物の量、および、処理条件に応じて適宜すればよいが、処理液の総質量に対して、0.01~2質量%が好ましく、0.05~1質量%がより好ましい。
 上記処理液を導電性層に接触させる際の処理液の温度は、例えば、25~60℃である。
 特定化合物と導電性層との接触時間は特に制限されないが、0.1~10分間が好ましく、0.2~3分間がより好ましい。
The treatment liquid containing the above-mentioned specific compound is preferably a solution obtained by dissolving the specific compound in a solvent. The type of solvent used is not particularly limited, and examples thereof include the solvents used in the photosensitive layer forming composition described above. Preferred solvents include alcohols and ethers. Specific examples of preferred solvents include ethanol, 1-propanol, 2-propanol, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monopropyl ether, and diethylene glycol monobutyl ether.
The content of the specific compound in the above-mentioned treatment liquid may be determined as appropriate depending on the amount of the specific compound to be contained in the intended conductive layer and the treatment conditions, but the content of the specific compound in the treatment liquid may be determined as appropriate depending on the total mass of the treatment liquid. 0.01 to 2% by mass is preferred, and 0.05 to 1% by mass is more preferred.
The temperature of the treatment liquid when it is brought into contact with the conductive layer is, for example, 25 to 60°C.
The contact time between the specific compound and the conductive layer is not particularly limited, but is preferably 0.1 to 10 minutes, more preferably 0.2 to 3 minutes.
〔導電性基板の用途〕
 上述のようにして得られた導電性基板は、種々の用途に適用でき、タッチパネル(または、タッチパネルセンサー)、半導体チップ、各種電気配線板、FPC(Flexible Printed Circuits)、COF(Chip on Film)、TAB(Tape Automated Bonding)、アンテナ、多層配線基板、および、マザーボード等の用途に適用できる。なかでも、本導電性基板は、タッチパネル(静電容量式タッチパネル)に用いることが好ましい。
 本導電性基板を有するタッチパネルにおいて、上述した導電性細線部は、検出電極として有効に機能し得る。本導電性基板をタッチパネルに用いる場合、導電性基板と組み合わせて使用する表示パネルとしては、例えば、液晶パネル、および、OLED(Organic Light Emitting Diode)パネルが挙げられ、OLEDパネルとの組合せが好ましい。
[Applications of conductive substrate]
The conductive substrate obtained as described above can be applied to various uses, such as touch panels (or touch panel sensors), semiconductor chips, various electric wiring boards, FPC (Flexible Printed Circuits), COF (Chip on Film), It can be applied to applications such as TAB (Tape Automated Bonding), antennas, multilayer wiring boards, and motherboards. Among these, the present conductive substrate is preferably used for a touch panel (capacitive touch panel).
In the touch panel having the present conductive substrate, the conductive thin wire portion described above can effectively function as a detection electrode. When the present conductive substrate is used in a touch panel, display panels used in combination with the conductive substrate include, for example, liquid crystal panels and OLED (Organic Light Emitting Diode) panels, and combinations with OLED panels are preferred.
 なお、導電性基板は、導電性細線部を有する導電性層とは別に、導電性層とは構成が異なる導電部を有してもよい。この導電部は、上述した導電性細線部と電気的に接続して、導通していてもよい。導電部としては、例えば、上述した導電性細線部に電圧を印加する機能を有する周辺配線、および、導電性基板と積層する部材の位置を調整するアライメントマーク等が挙げられる。 Note that the conductive substrate may have a conductive part having a different configuration from the conductive layer, in addition to the conductive layer having the conductive thin wire part. This conductive part may be electrically connected to the above-described thin conductive wire part for conduction. Examples of the conductive portion include peripheral wiring having a function of applying a voltage to the conductive thin wire portion described above, and alignment marks for adjusting the position of a member laminated with the conductive substrate.
 本導電性基板の上記以外の用途としては、例えば、パーソナルコンピュータおよびワークステーション等の電子機器から発生する電波およびマイクロ波(極超短波)等の電磁波を遮断し、かつ静電気を防止する電磁波シールドが挙げられる。このような電磁波シールドは、パーソナルコンピュータ本体以外に、映像撮影機器および電子医療機器等の電子機器にも使用できる。
 本導電性基板は、透明発熱体にも使用できる。
Applications of this conductive substrate other than those mentioned above include, for example, electromagnetic shielding that blocks electromagnetic waves such as radio waves and microwaves (ultra-high frequency waves) generated from electronic devices such as personal computers and workstations, and prevents static electricity. It will be done. Such an electromagnetic shield can be used not only for personal computers but also for electronic equipment such as video imaging equipment and electronic medical equipment.
This conductive substrate can also be used for transparent heating elements.
 本導電性基板は、取り扱い時および搬送時において、導電性基板と、粘着シートおよび剥離シート等の他の部材とを有する積層体の形態で用いられてもよい。剥離シートは、積層体の搬送時に、導電性基板における傷の発生を防止するための保護シートとして機能する。粘着シートとしては、例えば、光学透明接着剤(OCA:Optical Clear Adhesive)、および、アクリル系粘着剤等の光学系に用いられる公知の粘着剤からなるシートが挙げられる。
 また、導電性基板は、例えば、導電性基板、粘着シートおよび保護層をこの順で有する複合体の形態で取り扱われてもよい。
The present conductive substrate may be used in the form of a laminate having the conductive substrate and other members such as an adhesive sheet and a release sheet during handling and transportation. The release sheet functions as a protective sheet to prevent scratches on the conductive substrate during transportation of the laminate. Examples of the adhesive sheet include sheets made of known adhesives used in optical systems, such as optical clear adhesives (OCA) and acrylic adhesives.
Further, the conductive substrate may be handled in the form of a composite body including, for example, a conductive substrate, an adhesive sheet, and a protective layer in this order.
 本発明は、基本的に以上のように構成されるものである。本発明の導電性基板について詳細に説明したが、本発明は上述の実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更を行ってもよい。 The present invention is basically configured as described above. Although the conductive substrate of the present invention has been described in detail, the present invention is not limited to the above-described embodiments, and various improvements or changes may be made without departing from the gist of the present invention.
 以下に本発明の実施例を挙げて本発明をさらに具体的に説明する。なお、以下の実施例に示される材料、使用量、割合、処理内容、および、処理手順などは、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 The present invention will be described in more detail below with reference to Examples. Note that the materials, amounts used, proportions, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be interpreted as being limited by the specific examples shown below.
[実施例1]
〔ハロゲン化銀乳剤Aの調製〕
 38℃、pH4.5に保たれた下記1液に、下記の2液および3液の各々90%に相当する量を、1液を攪拌しながら同時に20分間にわたって加え、0.16μmの核粒子を形成した。続いて、得られた溶液に下記4液および5液を8分間にわたって加え、さらに、下記の2液および3液の残りの10%の量を2分間にわたって加え、核粒子を0.21μmまで成長させた。さらに、得られた溶液にヨウ化カリウム0.15gを加え、5分間熟成し、粒子形成を終了した。
[Example 1]
[Preparation of silver halide emulsion A]
To the following liquid 1 maintained at 38°C and pH 4.5, an amount equivalent to 90% of each of the following liquids 2 and 3 was added simultaneously over 20 minutes while stirring the liquid 1 to obtain 0.16 μm core particles. was formed. Next, the following liquids 4 and 5 were added to the obtained solution over 8 minutes, and the remaining 10% of the following liquids 2 and 3 were added over 2 minutes to grow the core particles to 0.21 μm. I let it happen. Furthermore, 0.15 g of potassium iodide was added to the obtained solution and aged for 5 minutes to complete particle formation.
 1液:
   水                    750mL
   ゼラチン                  8.6g
   塩化ナトリウム                 3g
   1,3-ジメチルイミダゾリジン-2-チオン 20mg
   ベンゼンチオスルホン酸ナトリウム      10mg
   クエン酸                  0.7g
 2液:
   水                    300mL
   硝酸銀                   150g
 3液:
   水                    300mL
   塩化ナトリウム                38g
   臭化カリウム                 32g
   ヘキサクロロイリジウム(III)酸カリウム
    (0.005%KCl 20%水溶液)    5mL
   ヘキサクロロロジウム酸アンモニウム
     (0.001%NaCl 20%水溶液)  7mL
 4液:
   水                    100mL
   硝酸銀                    50g
 5液:
   水                    100mL
   塩化ナトリウム                13g
   臭化カリウム                 11g
   黄血塩                    5mg
1 liquid:
750mL water
Gelatin 8.6g
Sodium chloride 3g
1,3-dimethylimidazolidine-2-thione 20mg
Sodium benzenethiosulfonate 10mg
Citric acid 0.7g
2 liquid:
300mL water
Silver nitrate 150g
3 liquid:
300mL water
Sodium chloride 38g
Potassium bromide 32g
Potassium hexachloroiridate(III) (0.005% KCl 20% aqueous solution) 5 mL
Ammonium hexachlororhodate (0.001% NaCl 20% aqueous solution) 7mL
4 liquid:
100mL water
Silver nitrate 50g
5 liquid:
100mL water
Sodium chloride 13g
Potassium bromide 11g
Yellow blood salt 5mg
 その後、常法に従ってフロキュレーション法によって水洗した。具体的には、上述の得られた溶液の温度を35℃に下げ、硫酸を用いてハロゲン化銀が沈降するまでpHを下げた(pH3.6±0.2の範囲であった)。次に、得られた溶液から上澄み液を約3リットル除去した(第1水洗)。次に、上澄み液を除去した溶液に、3リットルの蒸留水を加えてから、ハロゲン化銀が沈降するまで硫酸を加えた。再度、得られた溶液から上澄み液を3リットル除去した(第2水洗)。第2水洗と同じ操作をさらに1回繰り返して(第3水洗)、水洗および脱塩工程を終了した。水洗および脱塩後の乳剤をpH6.4、pAg7.5に調整し、ゼラチン2.5g、ベンゼンチオスルホン酸ナトリウム10mg、ベンゼンチオスルフィン酸ナトリウム3mg、チオ硫酸ナトリウム15mgおよび塩化金酸10mgを加え、55℃にて最適感度を得るように化学増感を施した。その後、さらに、得られた乳剤に、安定剤として1,3,3a,7-テトラアザインデン100mg、および、防腐剤としてプロキセル(商品名、ICI Co.,Ltd.製)100mgを加えた。最終的に得られた乳剤は、ヨウ化銀を0.08モル%含み、塩臭化銀の比率を塩化銀70モル%、臭化銀30モル%とする、平均粒子径(球相当径)200nm、変動係数9%の塩臭化銀立方体粒子乳剤であった。得られた乳剤を「ハロゲン化銀乳剤A」または単に「乳剤A」とも称する。 Thereafter, it was washed with water using the flocculation method according to a conventional method. Specifically, the temperature of the solution obtained above was lowered to 35° C., and the pH was lowered using sulfuric acid until silver halide precipitated (pH was in the range of 3.6±0.2). Next, about 3 liters of supernatant liquid was removed from the obtained solution (first water washing). Next, 3 liters of distilled water was added to the solution from which the supernatant liquid had been removed, and then sulfuric acid was added until the silver halide precipitated. Again, 3 liters of supernatant liquid was removed from the obtained solution (second water washing). The same operation as the second water washing was repeated once more (third water washing) to complete the water washing and desalting process. After washing with water and desalting, the emulsion was adjusted to pH 6.4 and pAg 7.5, and 2.5 g of gelatin, 10 mg of sodium benzenethiosulfonate, 3 mg of sodium benzenethiosulfinate, 15 mg of sodium thiosulfate, and 10 mg of chloroauric acid were added. Chemical sensitization was performed at 55°C to obtain optimal sensitivity. Thereafter, 100 mg of 1,3,3a,7-tetraazaindene as a stabilizer and 100 mg of Proxel (trade name, manufactured by ICI Co., Ltd.) as a preservative were further added to the obtained emulsion. The final emulsion contains 0.08 mol% of silver iodide, and the ratio of silver chlorobromide is 70 mol% of silver chloride and 30 mol% of silver bromide, and has an average grain size (equivalent sphere diameter). It was a silver chlorobromide cubic grain emulsion with a particle diameter of 200 nm and a coefficient of variation of 9%. The resulting emulsion is also referred to as "silver halide emulsion A" or simply "emulsion A."
〔感光性層形成用組成物の調製〕
 上述の乳剤Aに1,3,3a,7-テトラアザインデン(1.2×10-4モル/モルAg)、ハイドロキノン(1.2×10-2モル/モルAg)、クエン酸(3.0×10-4モル/モルAg)、2,4-ジクロロ-6-ヒドロキシ-1,3,5-トリアジンナトリウム塩(0.90g/モルAg)、および、微量の硬膜剤を添加し、組成物を得た。次に、クエン酸を用いて組成物のpHを5.6に調整した。
 上述の組成物に、下記構造式(P-1)で表される高分子(以下、「高分子1」ともいう。)とジアルキルフェニルPEO(PEOはポリエチレンオキシドの略号である。)硫酸エステルからなる分散剤と水とを含有するポリマーラテックス(高分子1の質量に対する分散剤の質量の比(分散剤の質量/高分子1の質量、単位はg/g)が0.02であって、固形分含有量が22質量%である。)を、組成物中のゼラチンの合計質量に対する、高分子1の質量の比(高分子1の質量/ゼラチンの質量、単位g/g)が0.25/1となるように添加して、ポリマーラテックス含有組成物を得た。ここで、ポリマーラテックス含有組成物において、ハロゲン化銀由来の銀の質量に対するゼラチンの質量の比(ゼラチンの質量/ハロゲン化銀由来の銀の質量、単位はg/gである。)は0.11であった。
 さらに、架橋剤としてEPOXY RESIN DY 022(商品名:ナガセケムテックス株式会社製)を上記のポリマーラテックス含有組成物に添加した。なお、架橋剤の添加量は、後述するハロゲン化銀含有感光性層中における架橋剤の量が0.09g/m2となるように調整した。
 以上のようにして感光性層形成用組成物を調製した。
 なお、高分子1は、特許第3305459号公報および特許第3754745号公報を参照して合成した。
[Preparation of composition for forming photosensitive layer]
The above emulsion A contains 1,3,3a,7-tetraazaindene (1.2×10 −4 mol/mol Ag), hydroquinone (1.2×10 −2 mol/mol Ag), and citric acid (3. 0x10 -4 mol/mol Ag), 2,4-dichloro-6-hydroxy-1,3,5-triazine sodium salt (0.90 g/mol Ag), and a trace amount of hardener, A composition was obtained. Next, the pH of the composition was adjusted to 5.6 using citric acid.
From the above composition, a polymer represented by the following structural formula (P-1) (hereinafter also referred to as "polymer 1") and dialkylphenyl PEO (PEO is an abbreviation for polyethylene oxide) sulfuric ester. A polymer latex containing a dispersant and water (the ratio of the mass of the dispersant to the mass of polymer 1 (mass of dispersant/mass of polymer 1, unit: g/g) is 0.02, solid content is 22% by mass), and the ratio of the mass of polymer 1 to the total mass of gelatin in the composition (mass of polymer 1/mass of gelatin, unit g/g) is 0. A polymer latex-containing composition was obtained by adding at a ratio of 25/1. Here, in the polymer latex-containing composition, the ratio of the mass of gelatin to the mass of silver derived from silver halide (mass of gelatin/mass of silver derived from silver halide, unit: g/g) is 0. It was 11.
Furthermore, EPOXY RESIN DY 022 (trade name: manufactured by Nagase ChemteX Co., Ltd.) as a crosslinking agent was added to the above polymer latex-containing composition. The amount of the crosslinking agent added was adjusted so that the amount of the crosslinking agent in the silver halide-containing photosensitive layer described below was 0.09 g/m 2 .
A composition for forming a photosensitive layer was prepared as described above.
In addition, polymer 1 was synthesized with reference to Japanese Patent No. 3305459 and Japanese Patent No. 3754745.
〔下塗り層の形成〕
 厚み40μmのポリエチレンテレフタレートフィルム(「富士フイルム株式会社製ロール状の長尺フィルム」)からなる基材の表面に上述のポリマーラテックスを塗布して、厚み0.05μmの下塗り層を設けた。この処理はロール・トゥ・ロールで行い、以下の各処理(工程)もこれと同様にロール・トゥ・ロールで行った。なお、このときのロール幅は1m、長さは1000mであった。
[Formation of undercoat layer]
The above-mentioned polymer latex was applied to the surface of a base material made of a polyethylene terephthalate film having a thickness of 40 μm (“rolled long film manufactured by Fuji Film Corporation”) to provide an undercoat layer having a thickness of 0.05 μm. This treatment was performed roll-to-roll, and the following treatments (steps) were similarly performed roll-to-roll. Note that the roll width at this time was 1 m and the length was 1000 m.
〔工程H1、工程A1、工程I1〕
 次に、下塗り層上に、上述のポリマーラテックスとゼラチンとを混合したハロゲン化銀不含有層形成用組成物と、上述の感光性層形成用組成物と、ポリマーラテックスとゼラチンとを混合した保護層形成用組成物とを、同時重層塗布し、下塗り層上にハロゲン化銀不含有層と、ハロゲン化銀含有感光性層と、保護層とを形成した。得られた感光性層含有積層体を、感光性材料Aとした。
 なお、ハロゲン化銀不含有層の厚みは2.0μmであり、ハロゲン化銀不含有層中における高分子1とゼラチンとの混合質量比(高分子1/ゼラチン)は2/1であり、高分子1の含有量は1.3g/mであった。
 また、ハロゲン化銀含有感光性層の厚みは2.5μmであり、ハロゲン化銀含有感光性層中における高分子1とゼラチンとの混合質量比(高分子1/ゼラチン)は0.25/1であり、高分子1の含有量は0.19g/mであった。
 また、保護層の厚みは0.15μmであり、保護層中における高分子1とゼラチンとの混合質量比(高分子1/ゼラチン)は0.1/1であり、高分子1の含有量は0.015g/mであった。
[Step H1, Step A1, Step I1]
Next, on the undercoat layer, a protective layer containing a silver halide-free layer-forming composition prepared by mixing the above-mentioned polymer latex and gelatin, the above-mentioned photosensitive layer-forming composition, and a mixture of polymer latex and gelatin is applied. A layer-forming composition was simultaneously coated in multiple layers to form a silver halide-free layer, a silver halide-containing photosensitive layer, and a protective layer on the undercoat layer. The obtained photosensitive layer-containing laminate was designated as photosensitive material A.
The thickness of the silver halide-free layer is 2.0 μm, and the mixing mass ratio of polymer 1 and gelatin in the silver halide-free layer (polymer 1/gelatin) is 2/1. The content of molecule 1 was 1.3 g/ m2 .
The thickness of the silver halide-containing photosensitive layer is 2.5 μm, and the mixing mass ratio of polymer 1 and gelatin (polymer 1/gelatin) in the silver halide-containing photosensitive layer is 0.25/1. The content of polymer 1 was 0.19 g/m 2 .
Further, the thickness of the protective layer is 0.15 μm, the mixing mass ratio of polymer 1 and gelatin in the protective layer (polymer 1/gelatin) is 0.1/1, and the content of polymer 1 is It was 0.015g/ m2 .
〔工程B1〕
 作製した上述の感光性材料Aに、格子状のフォトマスクを介して高圧水銀ランプを光源とした平行光を用いて露光した(以下、「メッシュパターン電極」ともいう。)。フォトマスクとしてはパターン形成用のマスクを用いており、図2に示すような格子を形成する単位正方格子の線幅は1.2μm、格子(開口部)の一辺の長さLは600μmになるようにした。
[Process B1]
The photosensitive material A prepared above was exposed to parallel light using a high-pressure mercury lamp as a light source through a grid-shaped photomask (hereinafter also referred to as "mesh pattern electrode"). A pattern-forming mask is used as the photomask, and the line width of the unit square lattice that forms the lattice shown in Figure 2 is 1.2 μm, and the length L of one side of the lattice (opening) is 600 μm. I did it like that.
 露光後、得られたサンプルに対して、後述する現像液で現像し、さらに定着液(商品名:CN16X用N3X-R:富士フイルム株式会社製)を用いて現像処理を行った。その後、25℃の純水でリンスし、乾燥して、金属銀を含む導電性細線部および透明絶縁部を含む導電性層を有し、導電性細線部がメッシュパターン状に形成されてなる導電性基板のサンプルAを得た。サンプルAにおいては、21.0cm×29.7cmの大きさの導電性メッシュパターン領域が形成されていた。 After exposure, the obtained sample was developed with a developer described below, and further developed using a fixer (trade name: N3X-R for CN16X, manufactured by Fuji Film Corporation). After that, it is rinsed with pure water at 25°C and dried to form a conductive layer containing a conductive thin wire portion containing metallic silver and a transparent insulating portion, and the conductive thin wire portion is formed in a mesh pattern. Sample A of the substrate was obtained. In sample A, a conductive mesh pattern area with a size of 21.0 cm x 29.7 cm was formed.
(現像液の組成)
 現像液1リットル(L)中に、以下の化合物が含まれる。
    ハイドロキノン          0.037mol/L
    N-メチルアミノフェノール    0.016mol/L
    メタホウ酸ナトリウム       0.140mol/L
    水酸化ナトリウム         0.360mol/L
    臭化ナトリウム          0.031mol/L
    メタ重亜硫酸カリウム       0.187mol/L
(Composition of developer)
The following compounds are contained in 1 liter (L) of developer solution.
Hydroquinone 0.037mol/L
N-methylaminophenol 0.016mol/L
Sodium metaborate 0.140mol/L
Sodium hydroxide 0.360mol/L
Sodium bromide 0.031mol/L
Potassium metabisulfite 0.187mol/L
 得られた上述のサンプルを、50℃の温水中に180秒間浸漬させた。この後、エアシャワーで水を切り、自然乾燥させた。 The obtained above-mentioned sample was immersed in warm water at 50°C for 180 seconds. After this, the water was removed using an air shower and the material was allowed to air dry.
〔工程C1〕
 工程B1で得られたサンプルを、110℃の過熱水蒸気処理槽に搬入し、30秒間静置して、過熱水蒸気処理を行った。なお、このときの蒸気流量は100kg/hであった。
[Step C1]
The sample obtained in step B1 was carried into a superheated steam treatment tank at 110° C., and left to stand still for 30 seconds to perform superheated steam treatment. Note that the steam flow rate at this time was 100 kg/h.
〔工程D1〕
 工程C1で得られたサンプルを、タンパク質分解酵素水溶液(40℃)に30秒間浸漬した。サンプルをタンパク質分解酵素水溶液から取り出し、サンプルを温水(液温:50℃)に120秒間浸漬して、洗浄した。この後、エアシャワーで水を切り、サンプルを自然乾燥させた。
 なお、使用したタンパク質分解酵素水溶液は、以下の手順に従って調製した。
 タンパク質分解酵素(ナガセケムテックス社製ビオプラーゼ30L)の水溶液(タンパク質分解酵素の濃度:0.5質量%)に、トリエタノールアミンおよび硫酸を加えてpHを8.5に調整した。
[Process D1]
The sample obtained in step C1 was immersed in a proteolytic enzyme aqueous solution (40° C.) for 30 seconds. The sample was taken out from the proteolytic enzyme aqueous solution and washed by immersing it in warm water (liquid temperature: 50°C) for 120 seconds. After this, the water was removed using an air shower, and the sample was air-dried.
The protease aqueous solution used was prepared according to the following procedure.
Triethanolamine and sulfuric acid were added to an aqueous solution (proteolytic enzyme concentration: 0.5% by mass) of a proteolytic enzyme (Bioplase 30L manufactured by Nagase ChemteX) to adjust the pH to 8.5.
〔工程G1〕
 工程D1で得られたサンプルを、110℃の過熱水蒸気処理槽内に搬入し、30秒間静置して、過熱水蒸気処理を行った。なお、このときの蒸気流量は100kg/hであった。
[Process G1]
The sample obtained in step D1 was carried into a superheated steam treatment tank at 110° C., and left standing for 30 seconds to perform superheated steam treatment. Note that the steam flow rate at this time was 100 kg/h.
〔工程P1〕
 工程G1で得られたサンプルを、処理液A(40℃)に60秒間浸漬した。サンプルを処理液Aから取り出し、サンプルを25℃の水に50秒間浸漬して、洗浄した。処理液A(全量1200g)の組成は、以下の通りであった。また、使用した以下の成分は、すべて富士フイルム和光純薬株式会社製を用いた。
(処理液Aの組成)
・5-メチル-1,3,4-チアジアゾール-2-チオール   2.4g
・エタノール   90g
・水   残部
[Process P1]
The sample obtained in step G1 was immersed in treatment liquid A (40° C.) for 60 seconds. The sample was taken out from treatment solution A and washed by immersing it in water at 25° C. for 50 seconds. The composition of treatment liquid A (total amount: 1200 g) was as follows. The following components used were all manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
(Composition of treatment liquid A)
・5-Methyl-1,3,4-thiadiazole-2-thiol 2.4g
・Ethanol 90g
・Water remainder
〔乾燥工程〕
 工程P1で得られたサンプルを、65℃で90秒間加熱し、乾燥させた。
 上記工程により、メッシュパターン電極を有する導電性基板のサンプルを作製した。
[Drying process]
The sample obtained in step P1 was heated at 65° C. for 90 seconds and dried.
Through the above steps, a sample of a conductive substrate having a mesh pattern electrode was produced.
[実施例2~14、18~33]
 工程P1において使用する処理液を調製する際、後述する表1および表2に記載の混合溶剤を用いたこと、更には、処理液に含まれる特定化合物の種類および含有量並びに混合溶剤の含有量を、導電性層の面積あたりの特定化合物の含有量が後述する表1および表2に記載の数値となるように適宜調整したこと以外は、実施例1に記載の手順に従って、実施例2~14、18~33の導電性基板のサンプルをそれぞれ作製した。使用した処理液の成分は、すべて富士フイルム和光純薬株式会社製を用いた。
[Examples 2-14, 18-33]
When preparing the treatment liquid used in step P1, the mixed solvent listed in Tables 1 and 2 described below was used, and the type and content of the specific compound contained in the treatment liquid and the content of the mixed solvent. Examples 2 to 2 were carried out in accordance with the procedure described in Example 1, except that the content of the specific compound per area of the conductive layer was adjusted as appropriate to the values listed in Tables 1 and 2 below. Samples of conductive substrates Nos. 14 and 18 to 33 were prepared, respectively. All components of the processing liquid used were manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
[実施例15]
〔工程E1〕
 実施例1の工程D1で得られたサンプルを、下記の組成のめっき液(30℃)に5分間浸漬した。サンプルをめっき液から取り出し、温水(50℃)に120秒間浸漬して、洗浄した。
 めっき液(全量1200mL)の組成は、以下の通りであった。なお、めっき液のpHは9.9であり、炭酸カリウム(富士フイルム和光純薬株式会社製)を所定量加えることにより調整した。また、使用した以下の成分は、すべて富士フイルム和光純薬株式会社製を用いた。
[Example 15]
[Process E1]
The sample obtained in step D1 of Example 1 was immersed in a plating solution (30° C.) having the following composition for 5 minutes. The sample was taken out from the plating solution and washed by immersing it in warm water (50° C.) for 120 seconds.
The composition of the plating solution (total volume 1200 mL) was as follows. The pH of the plating solution was 9.9, which was adjusted by adding a predetermined amount of potassium carbonate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.). The following components used were all manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
(めっき液の組成)
・AgNO           2.1g
・亜硫酸ナトリウム        86g
・チオ硫酸ナトリウム五水和物   60g
・アロンT-50(東亞合成株式会社製、固形分濃度40%)  36g
・メチルヒドロキノン       7g
・炭酸カリウム          所定量
・水               残部
(Composition of plating solution)
AgNO3 2.1g
・Sodium sulfite 86g
・Sodium thiosulfate pentahydrate 60g
・Aron T-50 (manufactured by Toagosei Co., Ltd., solid content concentration 40%) 36g
・Methylhydroquinone 7g
・Prescribed amount of potassium carbonate ・Remainder of water
 その後、下記の組成の処理液(40℃)に90秒間浸漬した。サンプルを処理液から取り出し、温水(30℃)に40秒間浸漬して、洗浄した。
 得られたサンプルを、110℃の過熱水蒸気処理槽内に搬入し、30秒間静置して、過熱水蒸気処理を行った。なお、このときの蒸気流量は100kg/hであった。
 処理液(全量1200mL)の組成は、以下の通りであった。また、使用した以下の成分は、すべて富士フイルム和光純薬株式会社製を用いた。
Thereafter, it was immersed for 90 seconds in a treatment solution (40° C.) having the following composition. The sample was taken out from the treatment solution and washed by immersing it in warm water (30° C.) for 40 seconds.
The obtained sample was carried into a superheated steam treatment tank at 110° C., and left to stand for 30 seconds to perform superheated steam treatment. Note that the steam flow rate at this time was 100 kg/h.
The composition of the treatment liquid (total volume: 1200 mL) was as follows. The following components used were all manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.
(処理液の組成)
・2-メルカプト-5-ベンゾイミダゾールスルホン酸ナトリウム五水和物 3.2g
・水               残部
(Composition of treatment liquid)
・Sodium 2-mercapto-5-benzimidazole sulfonate pentahydrate 3.2g
・Water remainder
 工程P1において、工程D1で得られたサンプルに代えて上記の工程E1で得られたサンプルを用いること以外は実施例1に記載の手順に従って、導電性基板のサンプルを作製した。 In step P1, a sample of a conductive substrate was produced according to the procedure described in Example 1, except that the sample obtained in step E1 above was used instead of the sample obtained in step D1.
[実施例16~17、34~45]
 上記工程P1においてサンプルを浸漬する処理液として、後述する表1および表2に示す特定化合物および混合溶剤を含む処理液をそれぞれ調製した。処理液を調製する際、導電性層の面積あたりの特定化合物の含有量が後述する表1および表2に記載の数値となるように、工程P1において使用する処理液に含まれる特定化合物および溶剤の種類および含有量を適宜調整した。調製された各処理液を使用したこと以外は、実施例15に記載の手順に従って導電性基板のサンプルをそれぞれ作製した。
[Examples 16-17, 34-45]
As the treatment liquid in which the sample is immersed in the above step P1, treatment liquids containing specific compounds and mixed solvents shown in Tables 1 and 2, which will be described later, were prepared. When preparing the treatment solution, the specific compound and solvent contained in the treatment solution used in step P1 are adjusted so that the content of the specific compound per area of the conductive layer is the value listed in Tables 1 and 2 described later. The type and content of were adjusted as appropriate. Samples of conductive substrates were prepared according to the procedure described in Example 15, except that each of the prepared treatment solutions was used.
[比較例1~2]
 工程D1で得られたサンプルに対して、工程P1を実施せずに工程G1を実施したこと以外は実施例1に記載の手順に従って、導電性基板のサンプルを作製した(比較例1)。
 また、工程E1で得られたサンプルに対して、工程P1を実施せずに工程G1を実施したこと以外は実施例15に記載の手順に従って、導電性基板のサンプルを作製した(比較例2)。
[Comparative Examples 1-2]
A conductive substrate sample was produced according to the procedure described in Example 1, except that Step G1 was performed on the sample obtained in Step D1 (Comparative Example 1).
In addition, a conductive substrate sample was produced according to the procedure described in Example 15, except that Step G1 was performed on the sample obtained in Step E1 without performing Step P1 (Comparative Example 2). .
[導電性基板のサンプルB2、C2およびD2の作製]
〔ハロゲン化銀乳剤Bの調製〕
 38℃、pH4.5に保たれた下記1液に、下記の2液および3液の各々90%に相当する量を、1液を攪拌しながら同時に20分間にわたって加え、0.18μmの核粒子を形成した。続いて、得られた溶液に下記4液および5液を8分間にわたって加え、さらに、下記の2液および3液の残りの10%の量を2分間にわたって加え、核粒子を0.20μmまで成長させた。さらに、得られた溶液にヨウ化カリウム0.15gを加え、5分間熟成し、粒子形成を終了した。
[Preparation of conductive substrate samples B2, C2, and D2]
[Preparation of silver halide emulsion B]
To the following liquid 1 kept at 38°C and pH 4.5, an amount equivalent to 90% of each of the following liquids 2 and 3 was added simultaneously over 20 minutes while stirring the liquid 1 to obtain 0.18 μm core particles. was formed. Next, the following liquids 4 and 5 were added to the obtained solution over 8 minutes, and the remaining 10% of the following liquids 2 and 3 were added over 2 minutes to grow the core particles to 0.20 μm. I let it happen. Furthermore, 0.15 g of potassium iodide was added to the obtained solution and aged for 5 minutes to complete particle formation.
 1液:
   水                    640mL
   ゼラチン                   24g
   塩化ナトリウム               1.6g
   1,3-ジメチルイミダゾリジン-2-チオン 20mg
   ベンゼンチオスルホン酸ナトリウム      10mg
   クエン酸                  0.7g
 2液:
   水                    300mL
   硝酸銀                   150g
 3液:
   水                    300mL
   塩化ナトリウム                39g
   臭化カリウム                 32g
   ヘキサクロロイリジウム(IV)酸カリウム
    (0.05%KCl 20%水溶液)     5mL
   ヘキサクロロロジウム酸アンモニウム
     (0.001%NaCl 20%水溶液)  7mL
 4液:
   水                    100mL
   硝酸銀                    50g
 5液:
   水                    100mL
   塩化ナトリウム                13g
   臭化カリウム                 11g
   黄血塩                    5mg
1 liquid:
Water 640mL
24g gelatin
Sodium chloride 1.6g
1,3-dimethylimidazolidine-2-thione 20mg
Sodium benzenethiosulfonate 10mg
Citric acid 0.7g
2 liquid:
300mL water
Silver nitrate 150g
3 liquid:
300mL water
Sodium chloride 39g
Potassium bromide 32g
Potassium hexachloroiridate (IV) (0.05% KCl 20% aqueous solution) 5 mL
Ammonium hexachlororhodate (0.001% NaCl 20% aqueous solution) 7mL
4 liquid:
100mL water
Silver nitrate 50g
5 liquid:
100mL water
Sodium chloride 13g
Potassium bromide 11g
Yellow blood salt 5mg
 その後、常法に従ってフロキュレーション法によって水洗した。具体的には、上述の得られた溶液の温度を35℃に下げ、蒸留水800mL、沈降剤(カルボキシ基含有ポリオレフィン)1.5gおよび硫酸を用いてハロゲン化銀が沈降するまでpHを下げた(pH3.6±0.2の範囲であった)。次に、得られた溶液から上澄み液を約1.5リットル除去した(第1水洗)。次に、上澄み液を除去した溶液に、1.5リットルの蒸留水を加えてから、ハロゲン化銀が沈降するまで硫酸を加えた。再度、得られた溶液から上澄み液を2リットル除去した(第2水洗)。第2水洗と同じ操作をさらに2回繰り返して(第3水洗および第4水洗)、水洗および脱塩工程を終了した。水洗および脱塩後の乳剤をpH5.9、pAg7.5に調整し、ゼラチン2.5g、ベンゼンチオスルホン酸ナトリウム10mg、ベンゼンチオスルフィン酸ナトリウム3mg、チオ硫酸ナトリウム15mgおよび塩化金酸10mgを加え、55℃にて最適感度を得るように化学増感を施した。その後、さらに、得られた乳剤に、安定剤として1,3,3a,7-テトラアザインデン100mg、および、防腐剤としてプロキセル(商品名、ICI Co.,Ltd.製)100mgを加えた。最終的に得られたハロゲン化銀乳剤Bは、ヨウ化銀を0.08モル%含み、塩臭化銀の比率を塩化銀70モル%、臭化銀30モル%とする、平均粒子径(球相当径)200nm、変動係数9%の塩臭化銀立方体粒子乳剤であった。 Thereafter, it was washed with water using the flocculation method according to a conventional method. Specifically, the temperature of the solution obtained above was lowered to 35 ° C., and the pH was lowered using 800 mL of distilled water, 1.5 g of a precipitant (carboxy group-containing polyolefin), and sulfuric acid until the silver halide precipitated. (pH was in the range of 3.6±0.2). Next, about 1.5 liters of supernatant liquid was removed from the obtained solution (first water washing). Next, 1.5 liters of distilled water was added to the solution from which the supernatant liquid had been removed, and then sulfuric acid was added until the silver halide precipitated. Again, 2 liters of supernatant liquid was removed from the obtained solution (second water washing). The same operation as the second water washing was repeated two more times (third water washing and fourth water washing) to complete the water washing and desalting process. After washing with water and desalting, the emulsion was adjusted to pH 5.9 and pAg 7.5, and 2.5 g of gelatin, 10 mg of sodium benzenethiosulfonate, 3 mg of sodium benzenethiosulfinate, 15 mg of sodium thiosulfate, and 10 mg of chloroauric acid were added. Chemical sensitization was performed at 55°C to obtain optimal sensitivity. Thereafter, 100 mg of 1,3,3a,7-tetraazaindene as a stabilizer and 100 mg of Proxel (trade name, manufactured by ICI Co., Ltd.) as a preservative were further added to the obtained emulsion. The silver halide emulsion B finally obtained contains 0.08 mol% of silver iodide, the ratio of silver chlorobromide is 70 mol% of silver chloride and 30 mol% of silver bromide, and has an average grain size ( It was a silver chlorobromide cubic grain emulsion with an equivalent sphere diameter of 200 nm and a coefficient of variation of 9%.
〔ハロゲン化銀乳剤Cの調製〕
 上述のハロゲン化銀乳剤Bの調製方法に対して、1液の温度、2液と3液の添加速度、および以下に示す素材添加量を変更することにより、乳剤Cを調製した。添加量を変更した素材名および添加量は下記の通りであった。
・ ヘキサクロロロジウム酸アンモニウム
  (0.001%NaCl 20%水溶液) 2mL
・ チオ硫酸ナトリウム 30mg
・ 塩化金酸 20mg
・ 1,3,3a,7-テトラアザインデン 200mg
 ハロゲン化銀乳剤Cは、ヨウ化銀を0.08モル%含み、塩臭化銀の比率を塩化銀70モル%、臭化銀30モル%とする、平均粒子径(球相当径)100nm、変動係数10%の塩臭化銀立方体粒子乳剤であった。
[Preparation of silver halide emulsion C]
Emulsion C was prepared by changing the temperature of the first liquid, the addition rate of the second and third liquids, and the amounts of materials added as shown below in the method for preparing silver halide emulsion B described above. The name of the material whose addition amount was changed and the addition amount are as follows.
・Ammonium hexachlororhodate (0.001% NaCl 20% aqueous solution) 2 mL
・Sodium thiosulfate 30mg
・Chloroauric acid 20mg
・1,3,3a,7-tetraazaindene 200mg
Silver halide emulsion C contains 0.08 mol% of silver iodide, the ratio of silver chlorobromide is 70 mol% of silver chloride and 30 mol% of silver bromide, and has an average grain size (equivalent sphere diameter) of 100 nm. It was a silver chlorobromide cubic grain emulsion with a coefficient of variation of 10%.
〔感光性材料の作製〕
 実施例1に記載の感光性材料Aの作製方法において、感光性層の形成に用いる乳剤Aを乳剤Bに変更し、さらにハロゲン化銀含有感光性層の厚みを3.0μmとしたことのみ異なる方法によって、感光性材料を作製し、これを感光性材料Bとした。感光性材料Bにおける乳剤Bの塗布量は銀換算で7.0g/mであった。
[Preparation of photosensitive material]
The only difference in the method for producing photosensitive material A described in Example 1 is that emulsion A used for forming the photosensitive layer was changed to emulsion B, and the thickness of the silver halide-containing photosensitive layer was set to 3.0 μm. A photosensitive material was produced by the method and designated as photosensitive material B. The coating amount of Emulsion B in Photosensitive Material B was 7.0 g/m 2 in terms of silver.
 上述の感光性材料Bの作製方法において、感光性層の形成に用いる乳剤Bを乳剤Cに変更したことのみ異なる方法によって感光性材料を作製し、これを感光性材料Cとした。感光性材料Cにおける乳剤Cの塗布量は銀換算で7.0g/mであった。
 また、感光性材料Bの作製方法において、感光性層を、乳剤Cを用いて形成した上層と、乳剤Bを用いて形成した下層の2層構成にしたことのみ異なる方法によって感光性材料を作製し、これを感光性材料Dとした。感光性材料Dにおける乳剤Bおよび乳剤Cの塗布量は銀換算でそれぞれ3.5g/mであった。
A photosensitive material was prepared by a method different from the above-described method for preparing photosensitive material B except that emulsion B used for forming the photosensitive layer was changed to emulsion C, and this was designated as photosensitive material C. The coating amount of Emulsion C in Photosensitive Material C was 7.0 g/m 2 in terms of silver.
In addition, in the method for producing photosensitive material B, the photosensitive material was produced by a method that differed only in that the photosensitive layer had a two-layer structure: an upper layer formed using emulsion C and a lower layer formed using emulsion B. This was designated as photosensitive material D. The coating amounts of Emulsion B and Emulsion C in Photosensitive Material D were each 3.5 g/m 2 in terms of silver.
〔導電性基材の作製〕
 得られた感光性材料Bに対し、上述の実施例1と同様に工程B1、工程C1および工程D1を順次施した。さらに工程F1として、カレンダーによる平滑化処理を行った後、実施例1と同様に工程G1を施した。このようにして、金属銀を含む導電性細線部および透明絶縁部を含む導電性層を有する導電性基板のサンプルを作製し、得られたサンプルをサンプルB2とした。ここで、工程B1の露光工程において、露光パターンとしては上述のサンプルAと同じメッシュパターンを形成し、導電性細線部の平均線幅が2.5μmとなるように露光量を調整した。また、カレンダーによる平滑化は、金属ロールを用いて、25℃にて、ロール間圧力が10MPaとなる条件で実施した。
 また、サンプルB2の作製方法に対して、感光性材料Bに代えて感光性材料Cを用い、導電性細線部の線幅が2.5μmになるように工程B1の露光量を変更したことのみ異なる方法によって導電性基板のサンプルを作製し、得られたサンプルをサンプルC2とした。
 また、サンプルB2の作製方法に対して、感光性材料Bに代えて感光性材料Dを用い、導電性細線部の線幅が2.5μmになるように工程B1の露光量を変更したことのみ異なる方法によって導電性基板のサンプルを作製し、得られたサンプルをサンプルD2とした。
[Preparation of conductive base material]
The obtained photosensitive material B was sequentially subjected to Step B1, Step C1, and Step D1 in the same manner as in Example 1 described above. Further, as step F1, a smoothing treatment using a calendar was performed, and then step G1 was performed in the same manner as in Example 1. In this way, a sample of a conductive substrate having a conductive layer including a conductive thin wire portion containing metallic silver and a transparent insulating portion was produced, and the obtained sample was designated as Sample B2. Here, in the exposure step of Step B1, the same mesh pattern as in Sample A described above was formed as the exposure pattern, and the exposure amount was adjusted so that the average line width of the conductive thin wire portion was 2.5 μm. Further, the smoothing by a calender was carried out using metal rolls at 25° C. under the condition that the pressure between the rolls was 10 MPa.
In addition, with respect to the manufacturing method of sample B2, the only difference was that photosensitive material C was used instead of photosensitive material B, and the exposure amount in step B1 was changed so that the line width of the conductive thin line portion was 2.5 μm. Samples of conductive substrates were produced using different methods, and the obtained sample was designated as sample C2.
In addition, with respect to the manufacturing method of sample B2, the only difference was that photosensitive material D was used instead of photosensitive material B, and the exposure amount in step B1 was changed so that the line width of the conductive thin line portion was 2.5 μm. Samples of conductive substrates were produced using different methods, and the obtained sample was designated as sample D2.
 サンプルB2、C2およびD2の導電性および露光量を以下の表に示す。感光性層を2層の積層構成にしたサンプルD2は、感光性層が1層構成であるサンプルB2およびサンプルC2に対し、導電性が向上していることが分かる。また、サンプルB2作製時の露光量に対してサンプルC2作製時の露光量は2.3倍であることから、乳剤Bを用いた感光性層は乳剤Cを用いた感光性層に対し感度が2.3倍高いことが示され、このことから、サンプルD2の下層の乳剤層は上層の乳剤層に対し、2.3倍の感度を有することが示唆される。ここで導電性は、後述の方法によってメッシュ型のパターン形状を有するサンプルの抵抗値(R0)を測定し、得られた抵抗値の逆数を求めることによって算出した。 The conductivity and exposure dose of samples B2, C2 and D2 are shown in the table below. It can be seen that sample D2, in which the photosensitive layer has a two-layer laminated structure, has improved conductivity compared to sample B2 and sample C2, in which the photosensitive layer has a single-layer structure. Furthermore, since the exposure amount when preparing sample C2 was 2.3 times the exposure amount when preparing sample B2, the photosensitive layer using emulsion B was less sensitive than the photosensitive layer using emulsion C. This suggests that the lower emulsion layer of sample D2 has 2.3 times more sensitivity than the upper emulsion layer. Here, the conductivity was calculated by measuring the resistance value (R0) of a sample having a mesh pattern shape by the method described below, and calculating the reciprocal of the obtained resistance value.
[実施例101~106、参考例101]
 実施例1の工程P1と同様に、得られたサンプルD2を処理液Aに浸漬し、洗浄した後、実施例1と同様に65℃90秒間加熱し乾燥することによって、導電性基板のサンプルを作製し、これを実施例101のサンプルとした。
 工程P1において使用する処理液を調製する際、後述する表3に記載の混合溶剤を用いたこと、並びに、処理液に含まれる特定化合物の種類および含有量並びに混合溶剤の含有量を、導電性層の面積あたりの特定化合物の含有量が後述する表3に記載の数値となるように適宜調整したこと以外は、実施例101のサンプル作製方法に従って、導電性基板のサンプルをそれぞれ作製した。得られたサンプルを実施例102~実施例106のサンプルとした。ここで用いた特定化合物の種類は後述の表3に示した。
 また、工程P1および後続の乾燥工程を実施しなかったサンプルD2を、参考例101のサンプルとした。
[Examples 101 to 106, Reference Example 101]
Similarly to Step P1 of Example 1, the obtained sample D2 was immersed in treatment liquid A, washed, and then heated at 65° C. for 90 seconds and dried as in Example 1 to obtain a conductive substrate sample. This was used as the sample of Example 101.
When preparing the treatment liquid used in step P1, the use of the mixed solvent listed in Table 3 below, the type and content of specific compounds contained in the treatment liquid, and the content of the mixed solvent Samples of conductive substrates were prepared in accordance with the sample preparation method of Example 101, except that the content of the specific compound per area of the layer was appropriately adjusted to the values listed in Table 3 below. The obtained samples were designated as Examples 102 to 106. The types of specific compounds used here are shown in Table 3 below.
Further, sample D2, which was not subjected to step P1 and the subsequent drying step, was used as a sample of Reference Example 101.
[測定および評価]
〔特定化合物の定量〕
 実施例、比較例および参考例で作製された各導電性基板に含まれる特定化合物の含有量を、以下の方法で定量した。
 作製されたサンプルを1cm×1cmのサイズにカットした。15枚のカットされたサンプルを100mLのエタノール(温度30℃)中に浸漬し、24時間静置することにより、サンプルに含まれる特定化合物を抽出した。
 エタノール溶液からサンプルを取り出した後、抽出された特定化合物を含むエタノール溶液を、高速液体クロマトグラフィー(HPLC:High Performance Liquid Chromatography-Mass Spectrometry)法により下記の測定条件で測定し、絶対検量線法にて特定化合物を定量した。
 後述する表1~表3に、各サンプルに含まれる特定化合物の含有量(単位:μg/cm)を示す。
 なお、各導電性基板の作製に用いた上記の厚み40μmのポリエチレンテレフタレートフィルムについて、上記の方法でフィルムに含まれる特定化合物の定量を実施したところ、特定化合物の含有量は検出限界以下であった。
[Measurement and evaluation]
[Quantification of specific compounds]
The content of the specific compound contained in each conductive substrate produced in Examples, Comparative Examples, and Reference Examples was determined by the following method.
The prepared sample was cut into a size of 1 cm x 1 cm. The 15 cut samples were immersed in 100 mL of ethanol (temperature: 30° C.) and allowed to stand for 24 hours to extract specific compounds contained in the samples.
After removing the sample from the ethanol solution, the ethanol solution containing the extracted specific compound was measured using the high performance liquid chromatography (HPLC) method under the following measurement conditions, and the absolute calibration curve method was used. The specific compound was quantified.
Tables 1 to 3 described below show the content (unit: μg/cm 2 ) of the specific compound contained in each sample.
In addition, when the above-mentioned 40 μm thick polyethylene terephthalate film used for producing each conductive substrate was quantified for the specific compound contained in the film using the above method, the content of the specific compound was below the detection limit. .
(HPLC測定条件)
 カラム:ODS(Octadecyl Silyl)カラム(4.6mm×50mm)(ジーエルサイエンス株式会社製「InertSustain AQ-C18」)
 溶離液:0.1%リン酸水溶液/0.1%リン酸アセトニトリル(混合比:50/50)
 流 速:0.7mL/min
 検出器:フォトダイオードアレイ
 試料注入量:10μL
(HPLC measurement conditions)
Column: ODS (Octadecyl Silyl) column (4.6 mm x 50 mm) (“InertSustain AQ-C18” manufactured by GL Sciences, Inc.)
Eluent: 0.1% phosphoric acid aqueous solution/0.1% phosphoric acid acetonitrile (mixing ratio: 50/50)
Flow rate: 0.7mL/min
Detector: Photodiode array Sample injection volume: 10μL
〔比率Aの測定〕
 各例で得られたサンプルの導電性細線部における金属の含有量に対する特定化合物の含有量の比率Aを、以下の方法で測定した。
 各サンプルを、Biイオン銃(Bi+)を備える飛行時間型2次イオン質量分析装置(TOF-SIMS、ION-TOF社製)を用いて、導電性細線部から放出される2次イオン種を検出することにより、特定化合物、および金属に由来するフラグメントピーク強度の最大値を分析した。
 上記のTOF-SIMSによる測定は、以下に示す条件で実施した。
 ・一次イオン:Bi
 ・一次イオン加速電圧:25kV
 ・検出極性:ネガ
 ・測定面積:200μm角
[Measurement of ratio A]
The ratio A of the specific compound content to the metal content in the conductive thin wire portion of the sample obtained in each example was measured by the following method.
Each sample was analyzed using a time-of-flight secondary ion mass spectrometer (TOF-SIMS, manufactured by ION-TOF) equipped with a Bi ion gun (Bi 3 +) to detect secondary ion species emitted from the conductive thin wire section. By detecting , the maximum value of fragment peak intensity derived from specific compounds and metals was analyzed.
The above TOF-SIMS measurement was carried out under the conditions shown below.
・Primary ion: Bi 3 +
・Primary ion acceleration voltage: 25kV
・Detection polarity: Negative ・Measurement area: 200μm square
 上記測定で得られた特定化合物および金属に由来するフラグメントピーク強度の最大値BおよびCから、導電性細線部に含まれる金属の含有量に対する特定化合物の含有量の比率Aを、A=B/Cの式を用いて算出した。
 各例のサンプルにつき、算出された比率Aを後述する表1~表3に示す。
From the maximum values B and C of the fragment peak intensities derived from the specific compound and metal obtained in the above measurement, the ratio A of the content of the specific compound to the content of the metal contained in the conductive thin wire portion is calculated as A=B/ It was calculated using the formula of C.
The calculated ratio A for each example sample is shown in Tables 1 to 3 below.
〔硫化耐性1〕
 実施例、比較例および参考例で作製された各導電性基板の硫化耐性を、以下の硫化耐性試験1の方法で評価した。硫化耐性試験1の方法で評価された導電性基板の硫化耐性を「硫化耐性1」と記載する。
[Sulfidation resistance 1]
The sulfidation resistance of each conductive substrate produced in Examples, Comparative Examples, and Reference Examples was evaluated by the method of Sulfidation Resistance Test 1 below. The sulfidation resistance of the conductive substrate evaluated by the method of sulfidation resistance test 1 is described as "sulfidation resistance 1."
<硫化耐性試験1>
 作製されたメッシュ型のパターン形状を有するサンプルの抵抗値(R0)を測定した。測定では、各サンプルについて、Agilent 34405Aマルチメータ装置を用いて距離4cmの端子間の電気抵抗(単位:kΩ)を測定した。
 次いで、加硫されたEPDM(エチレンプロピレンジエンゴム)「E-4408」(株式会社イノアックコーポレーション社製)を長さ3.5cm、幅3mm、厚さ1mmにカットし、EPDMの切片が導電性層側の表面と接するようにサンプルに固定した。切片を固定したサンプルを80℃で5日間静置した後、切片をサンプルから取り除き、上記の方法でサンプルの抵抗値(R1)を測定した。
 測定された抵抗値から、抵抗変化率=(R1/R0-1)×100[%]の式により抵抗変化率を算出した。算出された抵抗変化率から、以下の基準に従って各サンプルの硫化耐性1を評価した。硫化耐性1の評価がAまたはBであれば、実用上問題ないと考えられる。
<Sulfidation resistance test 1>
The resistance value (R0) of the prepared sample having a mesh pattern shape was measured. In the measurement, the electrical resistance (unit: kΩ) between terminals at a distance of 4 cm was measured for each sample using an Agilent 34405A multimeter device.
Next, the vulcanized EPDM (ethylene propylene diene rubber) "E-4408" (manufactured by INOAC Corporation) was cut into pieces with a length of 3.5 cm, a width of 3 mm, and a thickness of 1 mm, and the pieces of EPDM were used as conductive layers. It was fixed to the sample so that it was in contact with the side surface. After the sample with the section fixed thereon was allowed to stand at 80° C. for 5 days, the section was removed from the sample, and the resistance value (R1) of the sample was measured by the method described above.
The resistance change rate was calculated from the measured resistance value using the formula: resistance change rate=(R1/R0-1)×100[%]. From the calculated resistance change rate, the sulfidation resistance 1 of each sample was evaluated according to the following criteria. If the evaluation of sulfidation resistance 1 is A or B, it is considered that there is no problem in practical use.
(硫化耐性1の評価基準)
「A」:抵抗変化率が30%以下。
「B」:抵抗変化率が30%超50%以下。
「C」:抵抗変化率が50%超。
(Evaluation criteria for sulfidation resistance 1)
"A": Resistance change rate is 30% or less.
"B": Resistance change rate is more than 30% and less than 50%.
"C": Resistance change rate exceeds 50%.
〔硫化耐性2〕
 実施例、比較例および参考例で作製された各導電性基板の硫化耐性を、以下の硫化耐性試験2の方法で評価した。硫化耐性試験2の方法で評価された導電性基板の硫化耐性を「硫化耐性2」と記載する。
[Sulfidation resistance 2]
The sulfidation resistance of each conductive substrate produced in Examples, Comparative Examples, and Reference Examples was evaluated by the method of Sulfidation Resistance Test 2 below. The sulfidation resistance of the conductive substrate evaluated by the method of sulfidation resistance test 2 is described as "sulfidation resistance 2."
<硫化耐性試験2>
 作製されたメッシュ型のパターン形状を有するサンプルの抵抗値(R0)を測定した。測定では、各サンプルについて、Agilent 34405Aマルチメータ装置を用いて距離4cmの端子間の電気抵抗(単位:kΩ)を測定した。
 次いで、サンプルの抵抗値を測定した面に対し、OCAフィルム(3M社製「OCA CEF1906」)を貼合し、積層体のサンプルを得た。このとき、OCAフィルムの軽剥離フィルムを剥がした面をサンプルに貼合し、重剥離フィルムはOCAフィルムに貼合させたままとした。その後、積層体サンプルをオートクレーブにて加圧(40℃、0.5MPa、20分間)し、紫外線照射(メタルハライド光源、200mW/cm、3J/cm)した。さらに、裁断後の端部から導電性細線部により形成されるメッシュ型パターンまでの距離が1mmとなるように積層体サンプルを裁断し、評価用サンプルを得た。
 評価用サンプルおよび硫黄100gを入れたビーカーを密閉デシケーター内に入れ、70℃で4日間静置した。評価用サンプルを取り出した後、評価用サンプルを70℃で加熱しながらOCAフィルムを剥がし、上記と同じ方法でサンプルの抵抗値(R1)を測定した。
 測定された抵抗値から、抵抗変化率=(R1/R0-1)×100[%]の式により抵抗変化率を算出した。算出された抵抗変化率から、以下の基準に従って各サンプルの硫化耐性2を評価した。硫化耐性2の評価がA、B、またはCであれば、実用上問題ないと考えられる。
<Sulfidation resistance test 2>
The resistance value (R0) of the prepared sample having a mesh pattern shape was measured. In the measurement, the electrical resistance (unit: kΩ) between terminals at a distance of 4 cm was measured for each sample using an Agilent 34405A multimeter device.
Next, an OCA film ("OCA CEF1906" manufactured by 3M) was laminated to the surface of the sample on which the resistance value was measured, to obtain a laminate sample. At this time, the side of the OCA film from which the light release film was peeled off was attached to the sample, and the heavy release film remained attached to the OCA film. Thereafter, the laminate sample was pressurized in an autoclave (40° C., 0.5 MPa, 20 minutes) and irradiated with ultraviolet light (metal halide light source, 200 mW/cm 2 , 3 J/cm 2 ). Furthermore, the laminate sample was cut so that the distance from the cut end to the mesh pattern formed by the conductive thin wire portion was 1 mm to obtain a sample for evaluation.
A beaker containing the evaluation sample and 100 g of sulfur was placed in a sealed desiccator and left at 70° C. for 4 days. After taking out the evaluation sample, the OCA film was peeled off while heating the evaluation sample at 70° C., and the resistance value (R1) of the sample was measured in the same manner as above.
The resistance change rate was calculated from the measured resistance value using the formula: resistance change rate=(R1/R0-1)×100[%]. From the calculated resistance change rate, the sulfidation resistance 2 of each sample was evaluated according to the following criteria. If the evaluation of sulfidation resistance 2 is A, B, or C, it is considered that there is no problem in practical use.
(硫化耐性2の評価基準)
「A」:抵抗変化率が15%以下。
「B」:抵抗変化率が15%超30%以下。
「C」:抵抗変化率が30%超50%以下。
「D」:抵抗変化率が50%超。
(Evaluation criteria for sulfidation resistance 2)
"A": Resistance change rate is 15% or less.
"B": Resistance change rate is more than 15% and less than 30%.
"C": Resistance change rate is more than 30% and less than 50%.
"D": Resistance change rate exceeds 50%.
〔色味変化Δb
 実施例、比較例および参考例で作製された各導電性基板の色味変化Δbを、以下の方法で評価した。
 作製されたサンプルを3cm×3cmにカットし、反射濃度計(Gretag Macbeth製「SpectroEye(登録商標)LT」)を用いて、カットされたサンプルの導電性層側の表面のb値(b0)を測定した。なおb値は、L表色系における指数の1つであり、b値が正方向に大きくなるほど、黄色味が強くなる。
 次いで、カットされたサンプルに対して、温度60℃、湿度90RH%の環境下で10日間静置した。保管試験を行ったサンプルを室温に戻し、再び反射濃度計を用いてサンプルの導電性層側の表面のb値(b1)を測定した。
 保管試験前後のb値の変化量(Δb)を、Δb=b1-b0の式を用いて計算した。Δbが0に近いほど、経時による導電性基板の色味変化が少なく、実際の使用において問題が起こり難い。
[Color change Δb * ]
The color change Δb * of each conductive substrate produced in Examples, Comparative Examples, and Reference Examples was evaluated by the following method.
The produced sample was cut into 3 cm x 3 cm, and the b * value (b * 0) was measured. Note that the b * value is one of the indices in the L * a * b * color system, and the larger the b * value in the positive direction, the stronger the yellowish tinge.
Next, the cut samples were allowed to stand for 10 days in an environment with a temperature of 60° C. and a humidity of 90 RH%. The sample subjected to the storage test was returned to room temperature, and the b * value (b * 1) of the surface of the sample on the conductive layer side was measured again using a reflection densitometer.
The amount of change in b * value (Δb * ) before and after the storage test was calculated using the formula Δb * =b * 1−b * 0. The closer Δb * is to 0, the less the change in color of the conductive substrate over time occurs, and problems are less likely to occur in actual use.
 下記表1、表2および表3に、導電性基板の作製におけるめっき処理(工程E1)の実施の有無、導電性基板に含まれる特定化合物の種類および含有量、導電性基板に含まれる金属の含有量に対する特定化合物の含有量の比率A、工程P1に用いた処理液に含まれる溶剤の種類、並びに、硫化耐性および色味変化Δbの各評価結果を示す。
 各表の「溶剤」の「名称」欄は、工程P1において使用した処理液に含まれる溶剤の種類を示し、「溶剤」の「比率」欄は、用いた溶剤の混合比率を意味する。例えば実施例1では、処理液に含まれる水とエタノールとの混合比率が、「水/エタノール=92.5/7.5」であったことを意味する。
 表2および表3において、「特定化合物a」欄および「特定化合物b」欄の両者に化合物名が記載されている場合、作製されたサンプルの導電性細線部に、各表に記載の2種の特定化合物が含まれていることを意味し、「比率(a/b)」欄は、2種の特定化合物の含有量の質量比を意味する。例えば、実施例30では、作製されたサンプルの導電性細線部に、特定化合物としての3-メルカプト-1H-1,2,4-トリアゾールおよび1,2,3-ベンゾトリアゾールが、1,2,3-ベンゾトリアゾールに対する3-メルカプト-1H-1,2,4-トリアゾールの質量比が1.0/2.0であって、かつ、導電性細線部の面積当たりの両者の合計含有量が0.11μg/cmになる量で含まれていることを意味する。
Tables 1, 2, and 3 below show whether or not plating treatment (step E1) was performed in the production of the conductive substrate, the type and content of specific compounds contained in the conductive substrate, and the amount of metal contained in the conductive substrate. The ratio A of the content of the specific compound to the content, the type of solvent contained in the treatment liquid used in step P1, and the evaluation results of sulfur resistance and color change Δb * are shown.
The "Name" column of "Solvent" in each table indicates the type of solvent contained in the processing liquid used in step P1, and the "Ratio" column of "Solvent" indicates the mixing ratio of the solvents used. For example, in Example 1, this means that the mixing ratio of water and ethanol contained in the treatment liquid was "water/ethanol = 92.5/7.5".
In Tables 2 and 3, if a compound name is listed in both the "Specific compound a" column and the "Specific compound b" column, two types of compounds listed in each table are added to the conductive thin wire part of the prepared sample. The "ratio (a/b)" column means the mass ratio of the contents of two types of specific compounds. For example, in Example 30, 3-mercapto-1H-1,2,4-triazole and 1,2,3-benzotriazole as specific compounds were added to the conductive thin wire portion of the prepared sample. The mass ratio of 3-mercapto-1H-1,2,4-triazole to 3-benzotriazole is 1.0/2.0, and the total content of both per area of the conductive thin wire portion is 0. This means that it is contained in an amount of .11 μg/cm 2 .
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表1、表2および表3に示すように、本発明の導電性基板によれば、所望の効果が得られることが確認された。 As shown in Tables 1, 2, and 3, it was confirmed that the conductive substrate of the present invention provided the desired effects.
 また、含有量が同程度である実施例1~4、18~20、25、27および29の対比から、特定化合物が、5-メチル-1,3,4-チアジアゾール-2-チオール、5-(プロパン-2-イル)-1,3,4-チアジアゾール-2-チオール、5-フェニル-1,3,4-チアジアゾール-2-チオール、3-メルカプト-1H-1,2,4-トリアゾール、3-メチル-4H-1,2,4-トリアゾール-5-チオール、4-メチル-1,2,4-トリアゾール-3-チオール、1,2,3-ベンゾトリアゾール、5-メチルベンゾトリアゾール、または、2,2’-(4-メチル-1H-ベンゾトリアゾール-1-イルメチルイミノ)ビスエタノールである場合、本発明の効果がより優れることが確認された。 Furthermore, from the comparison of Examples 1 to 4, 18 to 20, 25, 27, and 29, which have similar contents, the specific compounds are 5-methyl-1,3,4-thiadiazole-2-thiol, 5- (Propan-2-yl)-1,3,4-thiadiazole-2-thiol, 5-phenyl-1,3,4-thiadiazole-2-thiol, 3-mercapto-1H-1,2,4-triazole, 3-methyl-4H-1,2,4-triazole-5-thiol, 4-methyl-1,2,4-triazole-3-thiol, 1,2,3-benzotriazole, 5-methylbenzotriazole, or , 2,2'-(4-methyl-1H-benzotriazol-1-ylmethylimino)bisethanol, it was confirmed that the effects of the present invention are more excellent.
 更に、実施例1~4、18~20、25、27および29の対比から、導電性層が上記式(4)で表される化合物である1,2,3-ベンゾトリアゾールまたは5-メチルベンゾトリアゾールを含む場合、導電性基板と粘着シートとの積層体の形態で保管した際の導電性細線部の硫化耐性がより優れることが確認された。 Further, from the comparison of Examples 1 to 4, 18 to 20, 25, 27, and 29, the conductive layer was made of 1,2,3-benzotriazole or 5-methylbenzo, which is a compound represented by the above formula (4). It was confirmed that when triazole was included, the sulfidation resistance of the conductive thin wire portion was better when stored in the form of a laminate of the conductive substrate and the adhesive sheet.
 また、実施例38~43の対比から、導電性細線部における金属の含有量に対する特定化合物の含有量の比率Aが0.1~5.0である場合、本発明の効果(特に、導電性基板と粘着シートとの積層体の形態で保管した際の導電性細線部の硫化耐性)と色味変化Δbの抑制効果とがバランス良く優れることが確認された。 Furthermore, from the comparison of Examples 38 to 43, when the ratio A of the specific compound content to the metal content in the conductive thin wire portion is 0.1 to 5.0, the effects of the present invention (especially the conductive It was confirmed that when stored in the form of a laminate of a substrate and an adhesive sheet, the sulfurization resistance of the conductive thin wire portion) and the effect of suppressing color change Δb * were excellent in a well-balanced manner.
10 導電性基板
12 基材
14 導電性層
16 導電性細線部
18 透明絶縁部
20 非細線部
10 Conductive substrate 12 Base material 14 Conductive layer 16 Conductive thin wire portion 18 Transparent insulating portion 20 Non-fine wire portion

Claims (8)

  1.  基材と、
     前記基材上に配置された導電性層と、を有する導電性基板であって、
     前記導電性層が、金属を含む導電性細線部と、前記導電性細線部に隣接し、金属を含まない透明絶縁部とを有し、
     前記導電性層が、下記式(1)、式(2)、式(3)または式(4)で表される化合物を含む、導電性基板。




     式(1)、式(2)、式(3)および式(4)中、Rは、それぞれ独立に、水素原子、炭素数1~6のアルキル基、フェニル基、炭素数1~6のアルコキシ基、炭素数1~3のアルキルチオ基、アミノ基、水酸基、または、カルボン酸基を表す。
     式(2)および式(3)中、Rは、それぞれ独立に、水素原子、炭素数1~6のアルキル基、または、アミノ基を表す。
     式(4)中、Rは、水素原子、または、カルボン酸基、水酸基およびアミノ基からなる群より選択される少なくとも1つの置換基を有する炭素数1~6のアルキル基を表す。
    base material and
    A conductive substrate having a conductive layer disposed on the base material,
    The conductive layer has a conductive thin wire portion containing metal, and a transparent insulating portion adjacent to the conductive thin wire portion and not containing metal,
    A conductive substrate, wherein the conductive layer contains a compound represented by the following formula (1), formula (2), formula (3), or formula (4).




    In formula (1), formula (2), formula (3) and formula (4), R 1 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a phenyl group, or a C 1 to 6 alkyl group. Represents an alkoxy group, an alkylthio group having 1 to 3 carbon atoms, an amino group, a hydroxyl group, or a carboxylic acid group.
    In formulas (2) and (3), R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an amino group.
    In formula (4), R 3 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms and having at least one substituent selected from the group consisting of a carboxylic acid group, a hydroxyl group, and an amino group.
  2.  前記Rが、それぞれ独立に、水素原子、炭素数1~6のアルキル基、または、フェニル基を表す、請求項1に記載の導電性基板。 The conductive substrate according to claim 1, wherein each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group.
  3.  前記化合物が、5-メチル-1,3,4-チアジアゾール-2-チオール、5-(プロパン-2-イル)-1,3,4-チアジアゾール-2-チオール、5-フェニル-1,3,4-チアジアゾール-2-チオール、3-メルカプト-1H-1,2,4-トリアゾール、3-メチル-4H-1,2,4-トリアゾール-5-チオール、4-メチル-1,2,4-トリアゾール-3-チオール、1,2,3-ベンゾトリアゾール、5-メチルベンゾトリアゾール、および、2,2’-(4-メチル-1H-ベンゾトリアゾール-1-イルメチルイミノ)ビスエタノールからなる群より選択される少なくとも1つを含む、請求項1に記載の導電性基板。 The above compound is 5-methyl-1,3,4-thiadiazole-2-thiol, 5-(propan-2-yl)-1,3,4-thiadiazole-2-thiol, 5-phenyl-1,3, 4-thiadiazole-2-thiol, 3-mercapto-1H-1,2,4-triazole, 3-methyl-4H-1,2,4-triazole-5-thiol, 4-methyl-1,2,4- From the group consisting of triazole-3-thiol, 1,2,3-benzotriazole, 5-methylbenzotriazole, and 2,2'-(4-methyl-1H-benzotriazol-1-ylmethylimino)bisethanol The conductive substrate according to claim 1, comprising at least one selected from the group consisting of:
  4.  前記導電性層の面積あたりの前記化合物の含有量が0.01~8μg/cmである、請求項1~3のいずれか1項に記載の導電性基板。 The conductive substrate according to any one of claims 1 to 3, wherein the content of the compound per area of the conductive layer is 0.01 to 8 μg/cm 2 .
  5.  前記金属が銀を含む、請求項1~3のいずれか1項に記載の導電性基板。 The conductive substrate according to any one of claims 1 to 3, wherein the metal contains silver.
  6.  前記導電性細線部における前記金属の含有量に対する前記化合物の含有量の比率Aが、0.1~5.0である、請求項1~3のいずれか1項に記載の導電性基板。 The conductive substrate according to any one of claims 1 to 3, wherein a ratio A of the content of the compound to the content of the metal in the conductive thin wire portion is 0.1 to 5.0.
  7.  前記導電性細線部によって形成されたメッシュパターンを有する、請求項1~3のいずれか1項に記載の導電性基板。 The conductive substrate according to any one of claims 1 to 3, having a mesh pattern formed by the conductive thin wire portions.
  8.  請求項1~3のいずれか1項に記載の導電性基板を有する、タッチパネル。 A touch panel comprising the conductive substrate according to any one of claims 1 to 3.
PCT/JP2023/019062 2022-05-25 2023-05-23 Conductive substrate and touch panel WO2023228927A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2022-085224 2022-05-25
JP2022085224 2022-05-25
JP2022131908 2022-08-22
JP2022-131908 2022-08-22
JP2022-204533 2022-12-21
JP2022204533 2022-12-21
JP2023-081195 2023-05-17
JP2023081195 2023-05-17

Publications (1)

Publication Number Publication Date
WO2023228927A1 true WO2023228927A1 (en) 2023-11-30

Family

ID=88919313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019062 WO2023228927A1 (en) 2022-05-25 2023-05-23 Conductive substrate and touch panel

Country Status (1)

Country Link
WO (1) WO2023228927A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188360A (en) * 2008-02-08 2009-08-20 Fujifilm Corp Electronic circuit and method of manufacturing the same
JP2014141592A (en) * 2013-01-24 2014-08-07 Fujifilm Corp Composition for forming protective film, transfer material, conductive film laminate, touch panel and image display device
JP2015022397A (en) * 2013-07-17 2015-02-02 富士フイルム株式会社 Layered body for touch panel, and touch panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188360A (en) * 2008-02-08 2009-08-20 Fujifilm Corp Electronic circuit and method of manufacturing the same
JP2014141592A (en) * 2013-01-24 2014-08-07 Fujifilm Corp Composition for forming protective film, transfer material, conductive film laminate, touch panel and image display device
JP2015022397A (en) * 2013-07-17 2015-02-02 富士フイルム株式会社 Layered body for touch panel, and touch panel

Similar Documents

Publication Publication Date Title
JP6129769B2 (en) Transparent conductive film for touch panel, method for manufacturing transparent conductive film, touch panel and display device
US9389503B2 (en) Manufacturing method of conductive sheet and conductive sheet
WO2014156827A1 (en) Conductive sheet, manufacturing method therefor, and touch panel
US10604671B2 (en) Method for producing conductive film, conductive film, and touch panel
JP2019152898A (en) Conductive sheet for touch panel, manufacturing method of conductive sheet for touch panel and touch panel
WO2020158494A1 (en) Method for producing conductive substrate, and conductive substrate
JP2023035785A (en) Conductive substrate and touch panel
WO2023228927A1 (en) Conductive substrate and touch panel
WO2023120109A1 (en) Conductive substrate, and method for manufacturing conductive substrate
JP6267109B2 (en) Conductive film manufacturing method and conductive film
WO2024043032A1 (en) Conductive substrate and touch panel
US11581106B1 (en) Conductive substrate and touch panel
WO2023120297A1 (en) Conductive substrate and conductive substrate manufacturing method
WO2022215465A1 (en) Conductive substrate
WO2023210425A1 (en) Conductive substrate
JP2024110014A (en) Conductive Substrate
JP6335148B2 (en) Manufacturing method of conductive film, conductive film, touch panel
WO2023210488A1 (en) Electroconductive substrate production method
JPWO2019035317A1 (en) Conductive film, touch panel, and method for producing conductive film
JP7324299B2 (en) Plating solution, plating set, manufacturing method of conductive substrate
JP7292500B2 (en) Conductive film, touch panel, photosensitive resin composition, and method for producing conductive film
US20220342300A1 (en) Manufacturing method for conductive substrate and conductive substrate
JP7133526B2 (en) conductive film
JP2023080680A (en) Conductive member
JP2023034082A (en) Production method of electrically-conductive board and electrically-conductive board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811799

Country of ref document: EP

Kind code of ref document: A1