WO2023228913A1 - Illumination device - Google Patents

Illumination device Download PDF

Info

Publication number
WO2023228913A1
WO2023228913A1 PCT/JP2023/019004 JP2023019004W WO2023228913A1 WO 2023228913 A1 WO2023228913 A1 WO 2023228913A1 JP 2023019004 W JP2023019004 W JP 2023019004W WO 2023228913 A1 WO2023228913 A1 WO 2023228913A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
section
axis
detection
light source
Prior art date
Application number
PCT/JP2023/019004
Other languages
French (fr)
Japanese (ja)
Inventor
優太 中村
Original Assignee
ニデックプレシジョン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニデックプレシジョン株式会社 filed Critical ニデックプレシジョン株式会社
Publication of WO2023228913A1 publication Critical patent/WO2023228913A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/70Prevention of harmful light leakage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2103/00Exterior vehicle lighting devices for signalling purposes
    • F21W2103/60Projection of signs from lighting devices, e.g. symbols or information being projected onto the road
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present invention relates to a lighting device.
  • Moving objects such as automobiles have been known in the past that are equipped with lighting devices and perform various displays by projecting light from the lighting devices.
  • the moving body of Patent Document 1 is equipped with an illumination device that illuminates an illuminated area with coherent light emitted from a light source via a diffractive optical element.
  • the direction in which the moving body moves is projected onto this illuminated area according to the pattern formed on the diffractive optical element. That is, the lighting device functions as a direction display device.
  • the coherent light emitted from the light source has high intensity, but by passing through the diffractive optical element, it is attenuated to an intensity that does not have any adverse effect even if it enters the human eye.
  • Patent Document 1 If light whose intensity is not attenuated due to damage etc. is emitted and enters the human eye, there is a risk of harm to the human eye, so it is necessary to detect abnormalities in the device to ensure safety. required.
  • the diffractive optical element and the housing are attached to each other by electrically connecting two terminals, and when the connection between the terminals is interrupted, the falling off of the diffractive optical element is detected.
  • the apparatus of Patent Document 1 cannot detect damage other than falling off, such as a hole being formed in a part of the diffractive optical element. It is necessary to provide a detection section to detect such damage to the diffractive optical element.
  • the provision of the detector within the lighting device increases the outer diameter of the lighting device, making the lighting device larger. Furthermore, there is a problem in that assembly becomes complicated when attaching a plurality of detectors.
  • An illumination device includes a light source that emits illumination light, an optical system, a branching section that branches the illumination light emitted from the light source, and a plurality of light sources that detect the amount of light that has arrived via the branching section.
  • a detection section a holding section that holds each of the plurality of detection sections, the branch section, a housing section that accommodates the plurality of detection sections and the holding section.
  • the housing section is a plane that intersects with a first direction that intersects the optical axis of the optical system, and has a mounting plane on which the holding section that holds the plurality of detection sections is attached from the first direction.
  • the optical system and the light source are attached to the housing part along a second direction along the optical axis.
  • an increase in the outer diameter of the lighting device is suppressed, contributing to miniaturization of the device.
  • FIG. 1 is an external perspective view of a lighting device according to an embodiment.
  • FIG. 2 is a cross-sectional view of the lighting device.
  • FIG. 3A is an external perspective view of the lens barrel.
  • FIG. 3B is a side view of the lens barrel.
  • FIG. 3C is a rear external view of the lens barrel.
  • FIG. 4 is a partial cross-sectional view showing a part of the cross-sectional view shown in FIG. 2 in an enlarged manner.
  • FIG. 5A is an external perspective view of the first holding section, the second holding section, the first detection section, and the second detection section.
  • FIG. 5B is a cross-sectional view taken along line BB in FIG. 5A.
  • FIG. 6 is a block diagram showing the main part configuration of the lighting device.
  • FIG. 7 is a flowchart illustrating the operation of the lighting device.
  • FIG. 8 is a flowchart illustrating the operation of the lighting device.
  • FIG. 9 is a flowchart illustrating the operation
  • the lighting device is installed in a moving body that is a movable device such as a railway vehicle, a car, a trolley, a ship, an airplane, a helicopter, a drone, and a robot.
  • the illumination device emits illumination light in the direction of movement of the moving object, and projects, for example, information regarding the movement of the moving object onto a road surface or the like.
  • the illumination device projects, as information regarding the progress, for example, an arrow indicating the direction of travel and characters such as "go straight", “turn right”, “decelerate”, and "accelerate”.
  • the illumination device is not limited to one that projects the above-mentioned arrows and characters, but may also project patterns, symbols, marks, illustrations, characters, pictograms, and the like. Note that there is no limit to the number of lighting devices that can be mounted on the moving object, and it may be one, or two or more lighting devices.
  • FIG. 1 is an external perspective view of a lighting device 10 according to an embodiment
  • FIG. 2 is a cross-sectional view of the lighting device 10 taken along line AA in FIG. 1.
  • the lighting device 10 includes a lens barrel 30, an inner tube 40, an outer tube 50, and an outer tube 60.
  • the lens barrel 30 is a cylindrical member, and is a holder that holds the light source 11, the branching part 13, the first detection part 15, the second detection part 16, and the first detection part 15 and the second detection part 16. 180 and a part of the optical system 12.
  • the holding section 180 includes a first holding section 18 that holds the first detection section 15 and the branching section 13, and a second holding section 19 that holds the second detection section 16. .
  • an x-axis parallel to the optical axis Ax of the optical system 12 a y-axis perpendicular to the x-axis and along the vertical direction of the paper of FIG. 1, and a z-axis perpendicular to the x-axis and the y-axis.
  • the + side of the x-axis may be referred to as the front, the - side of the x-axis as the rear, the + side of the y-axis as upward, and the - side of the y-axis as downward.
  • the inner cylinder 40 is a cylindrical member that houses the remainder of the optical system 12 inside, and is housed in the lens barrel 30 at one end (x-axis + side) of the lens barrel 30.
  • the outer cylinder 50 is a cylindrical member, and houses the control board 17 and the other end (x-axis ⁇ side) of the lens barrel 30 therein.
  • the outer peripheral tube 60 is a cylindrical member and accommodates an end portion of the lens barrel 30 on one side (x-axis + side).
  • ⁇ Lens barrel 30> 3A is an external perspective view of the lens barrel 30, FIG. 3B is a side view of the lens barrel 30, and FIG. 3C is an external view of the lens barrel 30 on the x-axis ⁇ side (backward).
  • the lens barrel 30 is composed of a first barrel 31 and a second barrel 32 that are concentric with the optical axis Ax of the optical system 12 and have different outer diameters.
  • the light source 11 , the branch section 13 , the first detection section 15 , and the second detection section 16 are assembled into the first barrel 31 .
  • the first barrel 31 is formed with a mounting plane 330 to which the holding portion 18 is mounted.
  • the mounting plane 330 is formed on the y-axis + side (upper side) of the first barrel 31
  • the 1st mounting plane 311 is formed on the y-axis ⁇ side (lower side) of the first barrel 31.
  • the first mounting plane 311 is a plane parallel to the zx plane, which is formed at a position on the y-axis that is shorter in distance from the optical axis Ax than the outer diameter of the first barrel 31 .
  • the first holding part 18 (see FIG. 2), which holds the first detection part 15 and the branch part 13, is attached to the first mounting plane 311.
  • the first holding part 18 that holds the first detection part 15 is arranged on the first mounting plane 311 from the upper side (y-axis + side), and is attached by screwing or the like. That is, the attachment direction of the first holding part 18 is a direction from the upper side along the y-axis (y-axis + side) toward the optical axis Ax.
  • the second mounting plane 312 is a plane parallel to the zx plane formed at a position on the y-axis that is shorter in distance from the optical axis Ax than the outer diameter of the first barrel 31.
  • the second holding section 19 (see FIG. 2), which holds the second detection section 16, is attached to the second mounting plane 312.
  • the second holding part 19 that holds the second detection part 16 is arranged on the second mounting plane 312 from the lower side (y-axis ⁇ side), and is attached by screwing or the like. That is, the mounting direction of the second holding portion 19 is from the lower side along the y-axis (y-axis ⁇ side) toward the optical axis Ax. Note that details of the first holding section 18 and the second holding section 19 will be described later.
  • first mounting plane 311 and the second mounting plane 312 do not need to be parallel to the zx plane. That is, the first attachment plane 311 and the second attachment plane 312 may be planes that intersect with the direction (first direction) intersecting the optical axis Ax.
  • the attachment direction of the first holding part 18 is a direction from the upper side toward the optical axis Ax along the first direction.
  • the mounting direction of the second holding portion 19 is from the lower side toward the optical axis Ax along the first direction.
  • a third mounting surface 313 parallel to the yz plane is formed at the end of the first mounting surface 311 and the second mounting surface 312 on the ⁇ x-axis side.
  • the third mounting surface 313 is the end surface of the lens barrel 30 on the x-axis ⁇ side (the other side in the second direction).
  • a light source holder 111 (see FIG. 2) that holds a light source 11 (details of which will be described later) is attached to the third mounting surface 313 from the x-axis side (backward) by screwing or the like.
  • the light source 11 is attached to the lens barrel 30 on the negative x-axis side with respect to the first detection section 15 and the second detection section 16.
  • a control board 17 is attached to the x-axis negative side (backward) of the light source holder 111 by screws or the like.
  • a through hole 314 having a shape extending in the vertical direction centered around the optical axis Ax is formed in the third mounting surface 313.
  • the through hole 314 is an opening through which a wiring 153 connecting the first detection section 15 and the control board 17 and a wiring 163 connecting the second detection section 16 and the control board 17, details of which will be described later, pass through.
  • a first lens 121 and a second lens 122 that constitute the optical system 12 are attached to the x-axis + side (front) of the first barrel 31.
  • the optical system 12 is attached to the lens barrel 30 on the x-axis + side with respect to the first detection section 15 and the second detection section 16. That is, in the illumination device 10, the lens barrel 30, the optical system 12 provided on the x-axis + side (one side in the second direction) with respect to the first detection section 15 and the second detection section 16, and the The light source 11 provided on the other side in the second direction is assembled integrally.
  • a recess 310 is formed in the outer wall of the first barrel 31 along the outer periphery.
  • the recess 310 is provided with a sealing member 315 such as an O-ring.
  • a screw hole 316 into which the mounting screw 90 is inserted is formed on the x-axis + side of the outer wall of the first barrel 31 with respect to the recess 310. This mounting screw 90 connects the lens barrel 30 and an outer cylinder 50, the details of which will be described later.
  • the second barrel 32 is formed in front of the first barrel 31.
  • the outer diameter of the second barrel 32 is larger than the outer diameter of the first barrel 31.
  • the second barrel 32 accommodates a third lens 123 of the optical system 12 attached to an inner cylinder 40, the details of which will be described later.
  • a fitting portion 320 is formed on the inner peripheral surface near the front end of the second barrel 32 .
  • the fitting portion 320 is a threaded groove, and fits into a threaded portion 403 (see FIG. 4) formed in the inner cylinder 40, which will be described later.
  • a recess 321 is formed in the outer wall of the second barrel 32 along the outer periphery.
  • a sealing member 322 such as an O-ring is provided in the recess 321 .
  • a screw hole 323 into which the mounting screw 91 is inserted is formed on the x-axis ⁇ side of the outer wall of the second barrel 32 with respect to the recess 321 .
  • This mounting screw 91 connects the lens barrel 30 and an outer cylinder 60, the details of which will be described later.
  • a screw hole 324 into which the mounting screw 92 is inserted is formed on the x-axis + side of the outer wall of the second barrel 32 with respect to the recess 321.
  • This mounting screw 92 fixes the inner cylinder 40, which will be described in detail later, to the lens barrel 30.
  • FIG. 4 is an enlarged partial cross-sectional view showing the vicinity of the end on the + side of the x-axis of the cross-sectional view shown in FIG.
  • the inner cylinder 40 is a cylindrical member, and the third lens 123 is attached therein.
  • the inner cylinder 40 is housed within the second barrel 32 of the lens barrel 30.
  • On the outer wall of the inner cylinder 40 a first radial fitting part 401, a second radial fitting part 402, and a threaded part 403 are formed in this order from the x-axis side along the outer peripheral surface.
  • the first radial fitting portion 401 and the second radial fitting portion 402 are protrusions that protrude outward (in a direction away from the optical axis Ax) with respect to the outer circumferential surface 404 of the inner cylinder 40.
  • the first diameter fitting portion 401 and the second diameter fitting portion 402 come into contact with the inner wall of the second barrel 32 of the lens barrel 30 when the inner cylinder 40 is accommodated in the lens barrel 30 .
  • the threaded portion 403 is formed near the end of the inner tube 40 on the x-axis + side, and when the inner tube 40 is accommodated inside the second barrel 32, it fits into the fitting portion 320 formed in the second barrel 32. .
  • the inner cylinder 40 is rotatably attached to the lens barrel 30 around the optical axis Ax.
  • the inner cylinder 40 rotates within the lens barrel 30, the inner cylinder 40 moves in the front-back direction with respect to the lens barrel 30 along the optical axis Ax.
  • the position of the inner tube 40 along the optical axis Ax that is, the position of the third lens 123) can be adjusted. That is, it becomes possible to adjust the position of the inner tube 40 in the optical axis Ax direction with a simple configuration.
  • the outer peripheral surface 404 between the first diameter fitting part 401 and the second diameter fitting part 402 of the outer wall of the inner cylinder 40 is fitted with the lower end of the mounting screw 92 inserted into the threaded hole 324 of the lens barrel 30. This is the contact surface that comes into contact.
  • the diameter of the outer peripheral surface 404 which is the contact surface with the mounting screw 92, is smaller than the diameters of the first radial fitting part 401 and the second radial fitting part 402, which radially fit into the outer cylinder 60.
  • the inner tube 40 whose position has been adjusted is fixed to the lens barrel 30 by the attachment screw 92 coming into contact with the outer circumferential surface 404 .
  • the inner cylinder 40 can be moved along the x-axis direction between the first radial fitting part 401 and the second radial fitting part 402 during position adjustment. Therefore, the third lens 123 of the optical system 12 can be moved and adjusted in the direction of the optical axis Ax, and the spread angle of the illumination light emitted from the light source 11 outside the illumination device 10 can be adjusted.
  • the position of the third lens 123 in the optical axis Ax direction can be fixed easily and with high reliability. It is also conceivable that the force applied during fixation with the mounting screws 92 may cause unevenness on the outer circumferential surface 404 due to curling, gouging, or the like.
  • the diameter of the outer circumferential surface 404 is smaller than the diameter of the first diameter fitting part 401 and the second diameter fitting part 402
  • the area where the unevenness occurs is inner than the first diameter fitting part 401 and the second diameter fitting part 402.
  • the tube 40 is prevented from protruding toward the side (outside) away from the optical axis Ax in the radial direction. As a result, when the inner tube 40 is removed from the lens barrel 30 when repairing the lighting device 10, problems such as uneven portions on the outer peripheral surface 404 coming into contact with the inner wall of the lens barrel 30 may occur. things are suppressed.
  • the first diameter fitting part 401 and the second diameter fitting part 402 come into contact with the inner wall of the second barrel 32 of the lens barrel 30 when the inner tube 40 is accommodated in the lens barrel 30. That is, by contacting the inner cylinder 40 and the lens barrel 30 at two or more places, the inner cylinder 40 is prevented from being inclined with respect to the optical axis Ax within the lens barrel 30. Furthermore, since the outer circumferential surface 404, which is the contact surface of the mounting screw 92, is located between the first diameter fitting part 401 and the second diameter fitting part 402 along the x-axis, the mounting screw 92 can be Due to the force applied, the force that makes the inner tube 40 tilt with respect to the optical axis Ax is suppressed.
  • the outer circumferential tube 60 has a cylindrical shape that extends toward the ⁇ x-axis side with the end wall surface 61 on the x-axis + side as the bottom.
  • An opening 610 is formed in the center of the end wall surface 61.
  • a portion of the illumination light emitted from the light source 11, the details of which will be described later, is emitted to the outside of the illumination device 10 through this opening 610.
  • a diffraction section 14, the details of which will be described later, is attached to the x-axis ⁇ side of the end wall surface 61 via a sealing member 601 such as a waterproof tape.
  • This sealing member 601 prevents water entering from the attachment portion between the diffraction section 14 and the opening 610 through the water intrusion path R1 from reaching the inside of the outer circumferential cylinder 60.
  • the inner diameter of the outer peripheral cylinder 60 is larger than the outer diameter of the second barrel 32 of the lens barrel 30.
  • the lens barrel 30 is inserted into the outer cylinder 60 from the x-axis ⁇ side.
  • the second barrel 32 of the lens barrel 30, the inner cylinder 40 attached to the second barrel 32, and the third lens 123 are accommodated in the outer cylinder 60.
  • a screw hole 602 is formed near the end of the outer circumferential tube 60 on the x-axis ⁇ side.
  • the screw hole 602 is formed at a position overlapping in the x-axis direction with the screw hole 323 formed in the second barrel 32 of the lens barrel 30 housed in the outer peripheral cylinder 60.
  • the second barrel 32 is provided with the sealing member 322 in front of the screw hole 323 (on the x-axis + side).
  • This sealing member 322 prevents water from entering through the water ingress route R2 through the screw holes 323 and 602, and water from entering through the water seepage route R3 from the rear side (x-axis ⁇ side) end of the outer cylinder 60. is suppressed from reaching the inside of the outer cylinder 60. Since the sealing member 322 is provided in the recess 321 formed on the outer circumferential surface of the second barrel 32, the sealing member 322 is provided in the radial direction of the lighting device 10, compared to the case where the sealing member is provided from the outside of the second barrel 32. It is possible to suppress the increase in size.
  • the outer cylinder 50 has a cylindrical shape extending toward the + side of the x-axis with an end wall surface 51 on the x-axis negative side (backward) as the bottom.
  • the inner diameter of the outer cylinder 50 is larger than the outer diameter of the first barrel 31 of the lens barrel 30.
  • the outer cylinder 50 accommodates the first barrel 31 of the lens barrel 30 inside near the end on the + side (front) of the x-axis.
  • the control board 17 attached to the light source holder 111 behind the third attachment surface 313 of the first barrel 31 is housed in the outer cylinder 50 .
  • the outer cylinder 50 is attached to the outside of the first barrel 31 from the x-axis side (backward) of the lens barrel 30.
  • a screw hole 511 is formed at the end of the outer cylinder 50 on the + side of the x-axis.
  • the screw hole 511 is formed at a position overlapping the screw hole 316 formed in the first barrel 31 in the x-axis direction.
  • the first barrel 31 is provided with a sealing member 315 behind the screw hole 316 (on the ⁇ x-axis side).
  • This sealing member 315 prevents water from entering through the water ingress route R4 (see FIG. 2) through the screw holes 316 and 511, and from water entering from the front (x-axis + side) end of the outer cylinder 50 through the water ingress route R5 (see FIG. 2)) is prevented from reaching the inside of the outer cylinder 50. Since the sealing member 315 is provided in the recess 310 formed on the outer circumferential surface of the first barrel 31, the sealing member 315 is provided in the radial direction of the lighting device 10, compared to the case where the sealing member is provided from the outside of the first barrel 31. It is possible to suppress the increase in size.
  • a connector 70 used for connecting the lighting device 10 to an external device is attached to the end wall surface 51.
  • a through hole 501 is formed near the center (optical axis Ax) of the end wall surface 51, through which the wiring connecting the control board 17 and the connector 70 passes.
  • the surface of the connector 70 parallel to the yz plane is larger than the through hole 501, and the connector 70 is attached to the end wall surface 51 via a sealing member 502 such as an O-ring.
  • This sealing member 502 prevents water entering from the attachment portion of the connector 70 and the end wall surface 51 through the water intrusion path R6 (see FIG. 2) from reaching the inside of the outer cylinder 50.
  • the light source 11 is, for example, a laser diode (semiconductor laser), and receives power and emits illumination light, which is laser light (coherent light), in the x-axis + direction.
  • the light source 11 is attached via the light source holder 111 from the x-axis ⁇ side of the third attachment surface 313 of the lens barrel 30 described above.
  • the light source holder 111 is a disc-shaped member having a smaller diameter than the inner diameter of the first barrel 31 of the lens barrel 30.
  • An opening 111a is formed in the light source holder 111 near the center (optical axis Ax).
  • the light source 11 By inserting the light source 11 into this opening 111a from the x-axis negative side, the light source 11 is held by the light source holder 111. By attaching this light source holder 111 to the third mounting surface 313, the light source 11 is arranged on the optical axis Ax.
  • the light source holder 111 is formed with a screw hole for screwing to the third mounting surface 313 and a screw hole for screwing to the control board 17.
  • the light source 11 changes the amount of illumination light by being controlled by a control unit 170 (see FIG. 6) mounted on the control board 17 and described later. Note that the light source 11 is not limited to being attached to the light source holder 111, and the lighting device 10 may not include the light source holder 111 and the light source 11 may be attached to the third attachment surface 313 of the first barrel 31.
  • the optical system 12 is a collimator lens that is arranged on the x-axis + side with respect to the light source 11 and shapes the illumination light emitted from the light source 11 into parallel light.
  • the optical system 12 includes the first lens 121, the second lens 122, and the third lens 123, as described above.
  • the first lens 121 and the second lens 122 are attached within the first barrel 31 of the lens barrel 30 .
  • the third lens 123 is attached to the inner tube 40 and housed in the second barrel 32 of the lens barrel 30 via the inner tube 40.
  • the optical system 12 is not limited to having the three lenses described above, and may have two or less lenses, or four or more lenses.
  • the branching unit 13 is an optical member such as a beam splitter or a half mirror, and branches the traveling direction of the incident illumination light into an x-axis + side and a y-axis + side. That is, the branching section 13 transmits a part of the illumination light emitted from the light source 11 and reflects the other part (remaining part) toward the + side of the y-axis.
  • the branch part 13 is held by a first holding part 18 whose details will be described later, and is housed in the first barrel 31 of the lens barrel 30.
  • the branching section 13 is arranged on the optical axis Ax of the optical system 12. Note that in the illumination device 10 of this embodiment, a case is shown in which the branching section 13 is arranged on the x-axis negative side with respect to the optical system 12; It may be placed on the + side.
  • FIG. 5A is an external perspective view of the first holding part 18, second holding part 19, first detection part 15, and second detection part 16, and FIG. 5B is a cross-sectional view taken along line BB in FIG. 5A.
  • the first detection section 15 includes a substrate 151 and a light receiving section 152 configured by a photoelectric conversion element such as a photodiode.
  • the first detection section 15 is arranged on the + side of the y-axis with respect to the branch section 13 . That is, the first detection unit 15 is housed within the lens barrel 30 on the y-axis + side with respect to the optical axis Ax.
  • the first detection section 15 is held by a first holding section 18 whose details will be described later, and is attached to a first attachment plane 311 formed on the first barrel 31 of the lens barrel 30 together with the branch section 13 from the y-axis + side.
  • the first detection unit 15 is electrically connected to the control board 17 by wiring 153. As described above, the wiring 153 passes through the through hole 314 formed in the third mounting surface 313.
  • the second detection section 16 includes a substrate 161 and a light receiving section 162 formed of a photoelectric conversion element such as a photodiode.
  • the second detection section 16 is arranged on the negative side of the y-axis with respect to the branch section 13. That is, the second detection unit 16 is housed within the lens barrel 30 on the negative side of the y-axis with respect to the optical axis Ax. Thereby, the first detection section 15 and the second detection section 16 are housed in the lens barrel 30, facing each other with the optical axis Ax in between.
  • the second detection unit 16 is held by a second holding unit 19, the details of which will be described later, and is attached to a second attachment plane 312 formed on the first barrel 31 of the lens barrel 30 from the y-axis ⁇ side.
  • the second detection unit 16 is electrically connected to the control board 17 by wiring 163. As described above, the wiring 163 passes through the through hole 314 formed in the third mounting surface 313.
  • the first holding section 18 holds the branch section 13 and the first detection section 15 as described above.
  • the first holding section 18 includes a first mounting section 181 that holds the first detection section 15 and a second mounting section 182 that holds the branch section 13.
  • the first attachment portion 181 is a member having a protrusion 184 that protrudes toward the +y-axis side along the edge of a plate-shaped surface member 183 along the zx plane. An opening 185 is formed near the center of the surface member 183.
  • the substrate 151 of the first detection section 15 is arranged at the upper end (y-axis + side) of the protrusion 184 of the first attachment section 181 .
  • the light receiving section 152 is attached to the surface of the substrate 151 on the negative side of the y-axis. Therefore, the first detection unit 15 receives the light that passes through the aperture 185 and travels toward the + side of the y-axis.
  • the protrusion 184a on the x-axis + side protrudes more toward the y-axis + side than the protrusion 184b on the x-axis - side. Therefore, the substrate 151 attached to the protrusion 184 is inclined with respect to the zx plane. That is, the light receiving section 152 of the first detection section 15 has an inclination with respect to the direction (y-axis direction) orthogonal to the optical axis Ax. Therefore, as will be described later, the illumination light is reflected at the branching section 13 and reaches the light receiving section 152 of the first detection section 15, and the light reflected at the light receiving surface of the light receiving section 152 is transmitted to the light receiving section 152.
  • the light travels in the opposite direction along the same optical path as that at the time of incidence. That is, the light reflected by the light receiving surface of the light receiving section 152 enters the branching section 13 again, is reflected, travels toward the negative side of the x-axis, and is suppressed from entering the light source 11.
  • the protrusion 184b on the x-axis negative side may protrude more toward the y-axis + side than the protrusion 184a on the x-axis plus side. That is, it is sufficient that the height of the protrusion 184 (the amount of protrusion toward the + side of the y-axis) is different in the front-rear direction. Alternatively, the height (amount of protrusion toward the +y-axis side) of the protrusion 184 may be different in the left-right direction (z-axis direction).
  • the second attachment part 182 is a rectangular cylindrical member that is formed on the negative side of the y-axis of the first attachment part 181 and extends toward the negative side of the y-axis from a bottom part 190 arranged on the positive side of the y-axis.
  • An opening 190a is formed in the bottom portion 190.
  • the second attachment part 182 holds the branch part 13 by accommodating the branch part 13 therein from the y-axis negative side.
  • An opening 188 and an opening 189 are formed in the x-axis ⁇ side surface 186 and x-axis + side surface 187 near the center of the second mounting portion 182, respectively.
  • the openings 188 and 189 are aligned on the optical axis Ax.
  • the illumination light emitted from the light source 11 enters the branching section 13 through the opening 188, and the light that has passed through the branching section 13 travels through the opening 189 toward the + side of the x-axis.
  • the light of the illumination light that enters the branching part 13 through the opening 188 and is reflected at the branching part 13 travels toward the first attachment part 181 on the + side of the y-axis through the opening 190a.
  • the second holding section 19 holds the second detection section 16 as described above.
  • the second holding portion 19 is a member having a protrusion 192 that protrudes toward the negative side of the y-axis along the edge of a plate-shaped surface member 191 along the zx plane.
  • An opening 193 is formed near the center of the member 192.
  • the substrate 161 is arranged at the lower end (y-axis ⁇ side) of the protrusion 192 of the second holding part 19.
  • the light receiving section 162 is attached to the surface of the substrate 161 on the y-axis + side. Therefore, the second detection unit 16 receives the light that passes through the aperture 193 and travels toward the negative side of the y-axis.
  • the protrusion 192a on the x-axis + side protrudes more toward the y-axis minus side than the protrusion 192b on the x-axis minus side. Therefore, the substrate 161 attached to the protrusion 192 is inclined with respect to the zx plane. That is, the light receiving section 162 of the second detection section 16 has an inclination with respect to the direction (y-axis direction) orthogonal to the optical axis Ax.
  • the light that travels from the x-axis + side via the diffraction section 14 is reflected at the branching section 13, and reaches the light receiving section 162 of the second detection section 16, the light is received by the light receiving section 162.
  • the light reflected by the surface is suppressed from traveling in the opposite direction along the same optical path as when it is incident on the light receiving section 162. That is, the light reflected by the light receiving surface of the light receiving section 162 is prevented from entering the branching section 13 again, being reflected, and traveling toward the diffraction section 14 on the + side of the x-axis.
  • the protrusion 192b on the negative side of the x-axis may protrude more toward the - side on the y-axis than the protrusion 192a on the positive side of the x-axis. That is, it is sufficient that the height of the protrusion 192 (the amount of protrusion toward the negative side of the y-axis) is different in the front-rear direction. Alternatively, the height (the amount of protrusion toward the ⁇ y-axis side) of the protrusion 192 may be different in the left-right direction (z-axis direction).
  • a protrusion 194 protruding toward the y-axis + side is formed near the end on the x-axis ⁇ side.
  • the protrusion 194 is formed on the surface member 191 along the z-axis. That is, the end portion 194 is a part of the end portion of the surface member 191 of the second holding portion 19 on the ⁇ x-axis side (the other side in the second direction).
  • the top of the protrusion 194 (the tip on the y-axis + side) is located above (on the y-axis + side) the lower end (the tip on the y-axis ⁇ side) of the second attachment portion 182 of the first holding portion 18 . That is, the protrusion 194 that is a part of the end on the x-axis ⁇ side (the other side in the second direction) of the second holding part 19 and the other side in the second direction of the second attachment part 182 of the first holding part 18 A part of the side end portion overlaps in the direction along the optical axis Ax. This prevents part of the illumination light emitted from the light source 11 from passing between the first holding part 18 and the second holding part 19 and becoming stray light.
  • the top of the protrusion 194 is preferably located below (on the y-axis side) the lower end of the opening 188 on the x-axis side formed in the second attachment part 182. Thereby, the illumination light emitted from the light source 11 can pass through the opening 188 and enter the branch portion 13 without being obstructed by the protrusion 194 .
  • the diffraction section 14 is disposed at the x-axis + side end of the above-mentioned outer cylinder 60, that is, on the x-axis + side with respect to the branching section 13, and is illuminated by the light that has passed through the branching section 13 among the illumination light.
  • the diffraction section 14 is, for example, a diffraction grating such as a hologram element.
  • a diffraction grating such as a hologram element.
  • the hologram element various known holograms such as Fourier transform type, Fresnel type, computer synthesis type, analog recording type, and relief type can be used. Information regarding the progress of the moving object described above is recorded on this hologram element.
  • a portion of the light that has passed through the branching section 13 passes through the diffraction section 14 and is emitted to the outside of the illumination device 10 .
  • the information recorded in the diffraction section 14 is projected outside the illumination device 10 (that is, in front of the moving body in the traveling direction).
  • FIG. 6 is a block diagram showing the configuration of main parts of the lighting device 10.
  • the branching section 13 transmits a part of the illumination light L emitted from the light source 11 and reflects the other part (remaining part) toward the + side of the y-axis.
  • the illumination light L the light reflected at the branching part 13 is called a first illumination light L1
  • the light transmitted through the branching part 13 is called a second illumination light L2.
  • the branching section 13 transmits 50% of the illumination light L and reflects the remaining 50%.
  • the first illumination light L1 reflected by the branching part 13 enters the first detection part 15 arranged on the +y-axis side with respect to the branching part 13.
  • the first illumination light L1 that has entered the light receiving section 152 is converted into an electrical signal and output as a first detection signal.
  • This electric signal (that is, the first detection signal) has a value (signal intensity) corresponding to the amount of light incident on the first detection section 15. Therefore, the first detection unit 15 detects the light amount of the first illumination light L1.
  • the second illumination light L2 transmitted through the branching section 13 illuminates the diffraction section 14.
  • a portion of the second illumination light L2 passes through the diffraction section 14 and exits to the outside of the illumination device 10, and the remaining portion is reflected by the diffraction section 14.
  • the information recorded in the diffraction unit 14 is transferred to the outside of the illumination device 10 (that is, in front of the moving object). be projected.
  • the light reflected by the diffraction section 14 travels toward the negative side of the x-axis and enters the branching section 13. This reflected light is reflected toward the negative side of the y-axis at the branching section 13 and enters the second detection section 16 .
  • the second detection unit 16 includes the light that was reflected at the diffraction unit 14 and then reflected at the branching unit 13 out of the second illumination light L2 (that is, the reflected light reflected at the diffraction unit 14), and the illumination light L2.
  • Light (that is, external light) L3 that has passed through the diffraction section 14 and been reflected at the branching section 13 from outside the device 10 is incident. That is, the second detection section 16 detects the amount of light that has entered via the diffraction section 14 .
  • the light receiving section 162 converts the incident light into an electrical signal, and outputs it as a second detection signal.
  • This electric signal (that is, the second detection signal) has a value (signal intensity) that corresponds to the amount of reflected light and external light L3 that entered the second detection section 16.
  • the second detection section 16 detects the amount of reflected light, that is, the amount of second illumination light L2.
  • the second detection signal has a signal strength depending on the amount of reflected light.
  • the control unit 170 is composed of a CPU, a memory, etc., and is mounted on the control board 17 described above.
  • the control unit 170 is a processor that controls each part of the lighting device 10 by reading and executing a control program recorded in advance on a storage medium such as a flash memory.
  • the control unit 170 performs a light amount control process to control the amount of illumination light L emitted by the light source 11 based on the first amount of the first illumination light L1 detected by the first detection unit 15.
  • the control unit 170 performs light source control processing to stop the light source 11 from emitting the illumination light L based on the second amount of light detected by the second detection unit 16. However, when the external light L3 is incident, the control unit 170 causes the light source 11 to continue emitting the illumination light L.
  • the control unit 170 causes the power supply unit 20 to supply a specified power (current) to the light source 11, and causes the light source 11 to emit illumination light L.
  • the control section 170 detects a first light amount that is the light amount of the first illumination light L1, that is, the light amount of the illumination light L emitted from the light source 11, based on the first detection signal output by the first detection section 15.
  • the first illumination light L1 is the light of the illumination light L that is reflected toward the +y-axis side at the branching portion 13.
  • the control section 170 can treat (detect) the first light amount of the first illumination light L1 detected by the first detection section 15 as the light amount of the illumination light L.
  • the control unit 170 compares the detected first light amount of the illumination light L with a preset lower limit value Th1 and an upper limit value Th2.
  • the lower limit specified value Th1 is a value obtained by multiplying the lower limit value of the amount of illumination light L by 50%, which is the reflectance of the branching portion 13.
  • the lower limit value of the amount of light of the illumination light L is the value of the amount of light necessary for the projection pattern formed outside by the light emitted from the illumination device 10 to become visible.
  • the value of the lower limit specified value Th1 is determined based on the results of simulations, etc., and a threshold voltage (current) corresponding to the lower limit specified value Th1 is set in the control unit 170 in advance.
  • the comparator of the control unit 170 compares this threshold voltage (current) with the voltage (current) of the first detection signal, which is the first light amount of the first illumination light L1, and outputs a signal according to the comparison result. Based on this signal, the control unit 170 performs processing according to the comparison result.
  • the upper limit specified value Th2 is a value obtained by multiplying the upper limit value of the light amount of the illumination light L by 50%, which is the reflectance of the branching part 13.
  • the upper limit value of the light amount of the illumination light L is a value of the light amount that does not have an adverse effect even if the light emitted from the illumination device 10 enters the eyes of an outside person.
  • the value of the upper limit specified value Th2 is determined based on the results of simulations, etc., and a threshold voltage (current) corresponding to the upper limit specified value Th2 is set in the control unit 170 in advance.
  • the comparator of the control unit 170 compares this threshold voltage (current) with the voltage (current) of the first detection signal, which is the first light amount of the first illumination light L1, and outputs a signal according to the comparison result. Based on this signal, the control unit 170 performs processing according to the comparison result.
  • the control unit 170 compares the calculated light amount value of the illumination light L with a lower limit specified value Th1, and if the value of the light amount of the illumination light L is smaller than the lower limit specified value Th1, the control unit 170 controls the illumination emitted from the light source 11. Increase the amount of light L. Specifically, the control unit 170 increases the power (current) supplied from the power supply unit 20 to the light source 11. In this case, the control unit 170 increases the amount of power supplied by a predetermined value. Alternatively, the control unit 170 increases the amount of power supplied based on the difference between the calculated value of the light amount of the illumination light L and the lower limit specified value Th1. As a result, the amount of illumination light L emitted from the light source 11 increases, and the projection pattern formed externally by the light emitted from the illumination device 10 becomes visible.
  • the control unit 170 compares the calculated light amount value of the illumination light L with the upper limit specified value Th2, and if the value of the light amount of the illumination light L is larger than the upper limit specified value Th2, the control unit 170 controls the illumination emitted from the light source 11. Decrease the amount of light L. Specifically, the control unit 170 reduces the power (current) supplied from the power supply unit 20 to the light source 11. In this case, the control unit 170 reduces the amount of power supplied by a predetermined value. Alternatively, the control unit 170 reduces the amount of power supplied based on the difference between the calculated amount of illumination light L and the upper limit value Th2. Thereby, even if the light emitted from the illumination device 10 enters the eyes of outsiders, it is possible to suppress any adverse effects.
  • the control unit 170 handling the first light intensity of the first illumination light L1 detected by the first detection unit 15 as the light intensity of the illumination light L
  • the first light intensity of the first illumination light L1 is doubled. By doing so, the amount of illumination light L emitted from the light source 11 may be detected (calculated).
  • the lower limit specified value Th1 is the lower limit value of the light amount of the illumination light L mentioned above
  • the upper limit specified value Th2 is the upper limit value of the light amount of the illumination light L mentioned above.
  • control unit 170 The process performed by the control unit 170 will be described with reference to the flowchart of the light amount control process shown in FIG. Each process shown in the flowchart is performed by the control unit 170 reading a program stored in a storage medium and executing the program.
  • step S10 the control unit 170 detects the value of the first light amount of the first illumination light L1 using the first detection signal output from the first detection unit 15. After that, the process advances to step S11.
  • step S11 the control unit 170 determines whether the value of the first light amount of the first illumination light L1 is smaller than the lower limit specified value Th1. If the value of the first light amount of the first illumination light L1 is smaller than the lower limit specified value Th1, an affirmative determination is made by the control unit 170, and the process proceeds to step S12.
  • step S12 the control unit 170 increases the power supplied from the power supply unit 20 to the light source 11 to increase the amount of illumination light L emitted by the light source 11. After that, the process returns to step S10.
  • step S11 determines whether the value of the first light amount of the first illumination light L1 is equal to or greater than the lower limit specified value Th1 in step S11. If the value of the first light amount of the first illumination light L1 is equal to or greater than the lower limit specified value Th1 in step S11, a negative determination is made by the control unit 170, and the process proceeds to step S13.
  • step S13 the control unit 170 determines whether the value of the light amount of the first illumination light L1 is larger than the upper limit specified value Th2. If the value of the first light amount of the first illumination light L1 is larger than the upper limit specified value Th2, an affirmative determination is made by the control unit 170, and the process proceeds to step S14.
  • step S14 the control unit 170 reduces the power supplied from the power supply unit 20 to the light source 11 to reduce the amount of illumination light L emitted by the light source 11. After that, the process returns to step S10. Further, in step S13, if the value of the first light amount of the first illumination light L1 is equal to
  • the control unit 170 determines the amount of light L4 that has reached the second detection unit 16 via the diffraction unit 14 (hereinafter referred to as arriving light) based on the second detection signal output by the second detection unit 16. 2 Detects the amount of light.
  • the external light L3 may also pass through the diffraction section 14 and enter the second detection section 16. Therefore, the control unit 170 determines whether or not the external light L3 is included in the arriving light L4 based on the second detection signal, and determines whether the arriving light L4 includes the external light L3 or not.
  • the emission of the illumination light L by the light source 11 is controlled differently depending on whether the external light L3 is not included in the external light L3 or not.
  • the diffraction unit 14 When the arriving light L4 does not include the external light L3, as described above, the diffraction unit 14 reflects a part of the second illumination light L2 that has arrived, and this reflected light is transmitted to the second detection unit 16. incident. Since the reflectance of the diffraction section 14 is a known value determined by the material of the diffraction section 14, if the external light L3 is not included in the arriving light L4, the amount of reflected light reflected by the diffraction section 14 (i.e. There is a proportional relationship between the amount of light (based on the second detection signal) and the amount of second illumination light L2 that has reached the diffraction section 14.
  • control section 170 sets the second light amount of the arriving light L4 detected by the second detection section 16 as the light amount of the second illumination light L2. It can be handled (detected). The processing by the control unit 170 will be specifically explained below.
  • the control unit 170 compares the second light amount of the detected arriving light L4 with a preset upper limit value Th3 and lower limit value Th4.
  • the upper limit specified value Th3 is, for example, a value obtained by multiplying the upper limit value of the light amount of the second illumination light L2 by the reflectance of the diffraction section 14.
  • the upper limit value of the amount of light of the second illumination light L2 is a value of the amount of light that does not have an adverse effect even if the light emitted from the lighting device 10 enters the eyes of an outsider.
  • the value of the upper limit specified value Th3 is determined based on the results of simulations, etc., and a threshold voltage (current) corresponding to this upper limit specified value Th3 is set in the control unit 170 in advance.
  • the comparator of the control unit 170 compares this threshold voltage (current) with the voltage (current) of the second detection signal output by the second detection unit 16, which is the second light amount of the arriving light L4, and adjusts the voltage according to the comparison result. Outputs the signal. Based on this signal, the control unit 170 performs processing according to the comparison result.
  • the lower limit specified value Th4 is, for example, a value obtained by multiplying the lower limit value of the light amount of the second illumination light L2 by the reflectance of the diffraction section 14.
  • the lower limit value of the light intensity of the second illumination light L2 is the light intensity necessary for the projection pattern formed externally to be visible by the light emitted from the illumination device 10 when the diffraction part 14 is not damaged. It is a value.
  • the value of the lower limit specified value Th4 is determined based on the results of simulations, etc., and a threshold voltage (current) corresponding to this lower limit specified value Th4 is set in the control unit 170 in advance.
  • the control unit 170 includes, for example, a comparator, and the comparator compares the threshold voltage (current) with the voltage (current) of the second detection signal output by the second detection unit 16, which is the second light amount of the arriving light L4. and outputs a signal according to the comparison result. Based on this signal, the control unit 170 performs processing according to the comparison result.
  • the control unit 170 stops the current supply from the power supply unit 20 to the light source 11, and controls the illumination light L from the light source 11. stop the emission of.
  • the first factor is that, although no abnormality has occurred in the diffraction section 14, for example, when the first detection section 15 fails, the amount of second illumination light L2 that passes through the diffraction section 14 increases.
  • the second factor is that although there is no abnormality in either the first detection unit 15 or the diffraction unit 14, the external light L3 is incident from outside the illumination device 10 via the diffraction unit 14, so the second detection The second light amount of the arriving light L4 incident on the portion 16 is increasing.
  • the control unit 170 stops the current supply from the power supply unit 20 to the light source 11, and controls the illumination light L from the light source 11. stop the emission of.
  • the control unit 170 continues to emit the illumination light L from the light source 11.
  • the control unit 170 causes the second light amount to continue to be equal to or higher than the upper limit specified value Th3 for a predetermined time (specified time) or more. Determine whether or not. In this case, the control unit 170 starts timing at the timing when the second light amount of the arriving light L4 becomes equal to or higher than the upper limit value Th3. If the state in which the second light amount of the arriving light L4 is equal to or higher than the upper limit specified value Th3 continues for a longer time than the specified time, a failure has occurred in the first detection unit 15 and the light amount of the illumination light L has increased.
  • the control unit 170 determines that the external light L3 is not included in the arriving light L4, and reduces the illumination from the light source 11. Emission of light L is stopped.
  • the control unit 170 determines that the external light L3 is included in the arriving light L4, and reduces the illumination from the light source 11. The light L continues to be emitted.
  • the above-mentioned specified time is based on the results of simulations, etc., and is a period of time that allows the external light L3 to be considered to have entered the lighting device 10 for a short period of time due to the movement of the moving object on which the lighting device 10 is mounted.
  • the light source control process described above is executed by the control unit 170 at predetermined time intervals.
  • control unit 170 The process performed by the control unit 170 will be described with reference to the flowchart of the light amount control process shown in FIG. Each process shown in the flowchart is performed by the control unit 170 reading a program stored in a storage medium and executing the program.
  • step S20 the control unit 170 supplies specified power (current) from the power supply unit 20 to the light source 11, and causes the light source 11 to emit illumination light L. After that, the process advances to step S21.
  • step S21 the control unit 170 uses the second detection signal output from the second detection unit 16 to detect the value of the second light amount of the arriving light L4. After that, the process advances to step S22.
  • step S22 the control unit 170 compares the value of the second light amount of the detected arriving light L4 and the lower limit specified value Th4. If the value of the second light amount of the arriving light L4 is larger than the lower limit specified value Th4, an affirmative determination is made by the control unit 170, and the process proceeds to step S23. If the value of the second light amount of the arriving light L4 is equal to or less than the lower limit specified value Th4, the control unit 170 makes a negative determination, and the process proceeds to step S25, which will be described later.
  • step S23 it is determined whether the value of the second light amount of the arriving light L4 is smaller than the upper limit specified value Th3. If the value of the second light amount of the arriving light L4 is smaller than the upper limit specified value Th3, an affirmative determination is made by the control unit 170, and the process returns to step S21. If the value of the second light amount of the arriving light L4 is equal to or greater than the upper limit specified value Th3, a negative determination is made by the control unit 170, and the process proceeds to step S24.
  • step S24 the control unit 170 determines whether the state in which the second light amount of the arriving light L4 is greater than or equal to the upper limit specified value Th3 is shorter than the specified time. If it is shorter than the specified time, the control unit 170 makes an affirmative determination, and the process returns to step S21. If the time is longer than the specified time, the control unit 170 makes a negative determination, and the process proceeds to step S25. In step S25, the control unit 170 stops supplying power to the light source 11, stops emitting the illumination light L from the light source 11, and ends the process.
  • the lens barrel 30 of the illumination device 10 is a plane that intersects with the first direction that intersects the optical axis Ax of the optical system 12, and the holding section 180 (the first It has an attachment plane 330 (a first attachment plane 311 and a second attachment plane 312) to which the first attachment section 18 and the second attachment section 19 are attached.
  • the optical system 12 and the light source 11 are attached to the lens barrel 30 along the second direction along the optical axis Ax.
  • first holding part 18 and the second holding part 19 that hold the first detecting part 15 and the second detecting part 16 are connected to the first mounting plane 311 and the second mounting plane from the y-axis + side and the y-axis - side, respectively. 312. This makes it easy to attach the first detection section 15 and the second detection section 18 to the lens barrel 30 during manufacturing of the illumination device 10, and improves the efficiency of assembly work.
  • the mounting position of the optical system 12 that converts the illumination light L outputted from the light source 11 into parallel light can be determined based on the inner diameter of the lens barrel 30, which is a single member
  • the mounting position of the optical system 12 can be determined based on the inner diameter of the lens barrel 30, which is a single member. Accuracy can be improved.
  • the optical system 12 is attached to the lens barrel 30 on one side in the second direction (x-axis + side) with respect to the first detection section 15 and the second detection section 16, and on the other side in the second direction ( A light source 11 is attached to the x-axis side).
  • the diameter of the illumination light L passing through the negative side of the x-axis of the lens barrel 30 is smaller than the diameter of the first illumination light L1 passing through the positive side of the x-axis of the lens barrel 30, so that the branching portion 13 can be made smaller. It becomes possible.
  • the first detection section 15 and the second detection section 16 are housed in the housing section 180 facing each other with the optical axis Ax in between. This makes it possible to separate the attachment directions of the first detection section 15 and the second detection section 16 to the lens barrel 30, thereby suppressing an increase in the outer diameter of the lens barrel 30.
  • the light receiving surface of the light receiving section 152 of the first detecting section 15 and the light receiving surface of the light receiving section 162 of the second detecting section 16 are arranged in a direction perpendicular to the optical axis Ax of the optical system 12 (y-axis direction). It is housed in the lens barrel 30 with an inclination relative to the lens barrel 30 . This prevents the light reflected by the light-receiving surfaces of the light-receiving sections 152 and 162 from traveling in the opposite direction along the same optical path as that at the time of incidence and becoming stray light.
  • the control board 17 is provided on the other side (x-axis ⁇ side) of the light source 11 in the second direction.
  • the third mounting surface 313, which is the end surface on the ⁇ x-axis side of the lens barrel 30, has a through hole 314 through which the wirings 153, 163 connecting the control board 17 and the first detection section 15 and second detection section 16 pass. provided. This prevents the wiring 153, 163 from being caught between the lens barrel 30 and the outer tube 50 when the lens barrel 30 and the outer tube 50 are attached.
  • the light receiving unit 162 of the second detection unit 16 included in the illumination device 10 of the first modification is an image sensor (imaging device) in which a plurality of imaging pixels (photoelectric conversion elements) are two-dimensionally arranged in the row direction and the column direction. ).
  • the second detection unit 16 detects a second light amount of the arriving light L4 that has entered through the diffraction unit 14 and a distribution area in which the arriving light L4 is distributed on the light receiving surface of the light receiving unit 162 of the second detection unit 16. .
  • the control unit 170 of the first modification performs light source control processing based on the detected second light amount and the distribution area of the arriving light L4.
  • the control unit 170 controls the control unit 170 when there is no abnormality in the diffraction unit 14, no failure or the like in the first detection unit 15, and when the external light L3 is not included in the arriving light L4.
  • the distribution area of the arriving light L4 is used as a reference area.
  • the reference area is a region where the arriving light L4 is on the light receiving surface of the light receiving section 162 of the second detecting section 16 when the arriving light L4 is the reflected light of the second illumination light L2 reflected by the diffraction section 14. This is the area where the distribution is.
  • the reference area can be a distribution area where the second illumination light L2 is distributed on the light receiving surface of the light receiving unit 162 of the second detection unit 16 when the light amount of the second illumination light L2 is at the above-mentioned upper limit value.
  • the reference area is data expressed by the position (coordinates) of the imaging pixel forming the second detection unit 16, and is set in the control unit 170 in advance.
  • the control unit 170 compares the distribution area of the arriving light L4 detected by the second detection unit 16 with the reference area, and determines whether the external light L3 is included in the arriving light L4. Specifically, the control unit 170 determines the position (coordinates of the imaging pixel) where the arriving light L4 is distributed on the light receiving surface of the light receiving unit 162 based on the second detection signal and the position (coordinates) of the imaging pixel in the reference area. Calculate the value of the difference. Then, the control unit 170 determines whether the calculated difference value exceeds a preset reference value.
  • This reference value is a value that defines a shape in which the shape of the distribution region of the arriving light L4 can be considered to be similar to the shape of the reference region.
  • the reference value is, for example, the distribution area when the light intensity of the second illumination light L2 is at the lower limit value. It may be set as the value of the difference between the shape of the distribution region and the shape of the reference region.
  • the control unit 170 determines that the external light L3 is included in the arriving light L4. In other words, if the shape of the distribution area of the arriving light L4 exceeds the reference value and is different from the shape of the reference area, the control unit 170 determines that the external light L3 is included in the arriving light L4.
  • the control unit 170 determines whether the external light L3 is distributed from the distribution area of the arriving light L4 based on the second detection signal. Exclude areas that you want to use. In this case, the control unit 170 generates the correction signal by excluding signals from the imaging pixels corresponding to coordinates outside the reference area from among the signals from each imaging pixel included in the second detection signal. Therefore, the correction signal represents the amount of light in the region overlapping the reference region among the distribution regions of the arriving light L4. In other words, the control unit 170 extracts the amount of light in a region overlapping with the reference region out of the distribution region of the arriving light L4.
  • control unit 170 compares the value of the second light amount of the arriving light L4 based on the correction signal with the lower limit specified value Th4 and the upper limit specified value Th3. Thereafter, as in the embodiment, the control unit 170 causes the light source 11 to stop or continue emitting the illumination light L based on the comparison result.
  • the control unit 170 determines that the external light L3 is not included in the arriving light L4.
  • control unit 17 compares the value of the second light amount of the arriving light L4 based on the second detection signal with the lower limit specified value Th4 and the upper limit specified value Th3, and based on the comparison result. to cause the light source 11 to stop or continue supplying the illumination light L.
  • FIG. 9 is a flowchart showing light source control processing in the first modification. Each process shown in the flowchart is performed by the control unit 170 reading a program stored in a storage medium and executing the program.
  • step S30 the control unit 170 causes the light source 11 to emit the illumination light L. After that, the process advances to step S31.
  • step S31 the control unit 170 uses the second detection signal output from the second detection unit 16 to detect the distribution area and second light amount of the arriving light L4. After that, the process advances to step S32.
  • step S32 the control unit 170 determines whether the shape of the detected distribution region of the arriving light L4 and the shape of the reference region differ by more than a reference value. If the value of the difference between the shape (coordinates of the imaging pixel) of the distribution area of the arriving light L4 and the shape (coordinates) of the reference area is less than or equal to the reference value, a negative determination is made by the control unit 170, and the process will be described later. The process advances to step S34. If the value of the difference between the shape of the distribution area of the arriving light L4 (coordinates of the imaging pixel) and the shape (coordinates) of the reference area exceeds the reference value, an affirmative determination is made by the control unit 170, and the process proceeds to step S33. Proceed to.
  • step S33 the control unit 170 generates a correction signal by excluding the region where the external light L3 is distributed from the distribution region of the arriving light L4 based on the second detection signal. After that, the process advances to step S34.
  • step S34 the control unit 170 compares the value of the second light amount of the arriving light L4 with the lower limit specified value Th4 and the upper limit specified value Th3. Note that when the process proceeds from step S32 to step S34, the control unit 170 uses the second detection signal to compare the value of the second light amount with the lower limit specified value Th4 and the upper limit specified value Th3.
  • step S34 the control unit 170 uses the correction signal generated in step S33 to compare the value of the second light amount with the lower limit specified value Th4 and the upper limit specified value Th3. If the value of the second light amount of the arriving light L4 is larger than the lower limit specified value Th4 and smaller than the upper limit specified value Th3, an affirmative determination is made by the control unit 170, and the process returns to step S31. If the value of the second light amount of the arriving light L4 is less than or equal to the lower limit specified value Th4 or greater than or equal to the upper limit specified value Th3, a negative determination is made by the control unit 170, and the process proceeds to step S35. In step S35, the control unit 170 stops supplying power to the light source 11, stops emitting the illumination light L from the light source 11, and ends the process.
  • the light source control process is not limited to stopping the emission of the illumination light L from the light source 11 when the second light amount detected by the second detection unit 16 is less than or equal to the lower limit specified value Th4 or greater than or equal to the upper limit specified value Th3.
  • the control unit 170 may reduce the amount of illumination light L emitted from the light source 11.
  • the control unit 170 can reduce the amount of illumination light L by reducing the power supplied to the light source 11.
  • the light intensity of the illumination light L at this time may be reduced according to the difference between the second light intensity detected by the second detection section 16 and the upper limit specified value Th3 or the lower limit specified value Th4, or may be determined in advance. may be decreased by a predetermined percentage.
  • control unit 170 may perform only the light source control process.
  • the control unit 170 uses the second detection signal output from the second detection unit 16 to determine whether or not the external light L3 is included in the arriving light L4, and uses this determination result and the second detection signal
  • the illumination light L emitted from the light source 11 may be controlled using the second light amount of the arriving light L4 that has reached the light source 16.
  • control unit 170 determines at least the determination result of whether or not the external light L3 is included in the arriving light L4, the second light amount of the arriving light L4, and the first light amount of the first illumination light L1.
  • the illumination light L emitted by the light source 11 may be controlled based on the result and the second light amount of the arriving light L4.
  • An illumination device includes a light source that emits illumination light, an optical system, a branching section that branches the illumination light emitted from the light source, and a plurality of light sources that detect the amount of light that has arrived via the branching section. It includes a detection section, a holding section that holds each of the plurality of detection sections, the branch section, a housing section that accommodates the plurality of detection sections and the holding section.
  • the housing section is a plane that intersects with a first direction that intersects the optical axis of the optical system, and has a mounting plane on which the holding section that holds the plurality of detection sections is attached from the first direction.
  • the optical system and the light source are attached to the housing part along a second direction along the optical axis.
  • optical system is attached to the housing section on one side in the second direction with respect to the detection section, and the light source is attached on the other side in the second direction with respect to the detection section. lighting equipment.
  • the plurality of detecting sections include a first detecting section and a second detecting section, and the first detecting section and the second detecting section are opposed to each other with the optical axis in between and are arranged in the housing section.
  • the holding section includes a first holding section that holds the first detection section and a second holding section that holds the second detection section, and the mounting plane is such that the first holding section is attached to the mounting plane. and a second mounting plane to which the second holding part is attached, and one end of the first holding part on the other side in the second direction is attached to the first mounting plane.
  • the light-receiving surface of the first detection section and the light-reception surface of the second detection section are accommodated in the accommodation section with an inclination with respect to a direction perpendicular to the optical axis of the optical system. 3) or the lighting device according to (4).
  • a control board provided on the other side in the second direction with respect to the light source, and wiring connecting the control board and the detection section, the other side of the accommodating section in the second direction.
  • the lighting device according to any one of (1) to (5), wherein an end face of the lighting device is provided with a through hole through which the wiring passes.

Abstract

This illumination device 10 comprises: a light source 11 that emits illumination light; an optical system 12; a branching unit 13 that branches illumination light emitted from the light source 11; a plurality of detection units 15, 16 that detect the light quantity of light which has arrived via the branching unit 13; holding parts 180 that respectively hold the plurality of detection units 15, 16; and a lens barrel 30 that accommodates the branching unit 13, the plurality of detection units 15, 16, and the holding parts 180. The lens barrel 30 has a mounting plane, which is a plane intersecting a first direction that intersects the optical axis of the optical system 12, and to which is attached, from the first direction, the holding units 180 for holding the plurality of detection units 15, 16. The optical system 12 and the light source 11 are mounted on the lens barrel 30 along a second direction conforming to the optical axis.

Description

照明装置lighting equipment
 本発明は、照明装置に関する。 The present invention relates to a lighting device.
 従来から、照明装置を搭載し、照明装置によって光を投射することにより各種の表示を行う自動車等の移動体が知られている。特許文献1の移動体は、光源から出射したコヒーレント光が回折光学素子を介して被照明領域を照射する照明装置を搭載している。この被照明領域には、回折光学素子に形成されたパターンに応じて移動体が移動する方向が投影される。すなわち、照明装置が方向表示装置として機能している。光源から出射するコヒーレント光は高強度であるが、回折光学素子を通過することにより人の目に入射しても悪影響を及ぼすことがない強度に減衰されている。 BACKGROUND ART Moving objects such as automobiles have been known in the past that are equipped with lighting devices and perform various displays by projecting light from the lighting devices. The moving body of Patent Document 1 is equipped with an illumination device that illuminates an illuminated area with coherent light emitted from a light source via a diffractive optical element. The direction in which the moving body moves is projected onto this illuminated area according to the pattern formed on the diffractive optical element. That is, the lighting device functions as a direction display device. The coherent light emitted from the light source has high intensity, but by passing through the diffractive optical element, it is attenuated to an intensity that does not have any adverse effect even if it enters the human eye.
特開2021-27014号公報JP 2021-27014 Publication
 破損等により強度が減衰されていない光が出射され、人の目に入射した場合、人の目に障害を及ぼす危険性があるため、安全性を確保するために装置の異常を検出することが要求される。特許文献1では、回折光学素子と筐体との間の装着状態を2つの端子間を電気的に接続し、この端子間の接続が途切れた場合に回折光学素子の脱落が検出される。しかし、回折光学素子の一部に穴が開く等の脱落とは異なる破損については特許文献1の装置では検出することができない。このような回折光学素子の破損等を検出するために検出部を設ける必要がある。しかしながら、照明装置内に検出器を設けることにより、照明装置の外径が増大し、照明装置が大型化するという問題がある。また、複数の検出器を取り付ける際に、組み立てが煩雑になるという問題がある。 If light whose intensity is not attenuated due to damage etc. is emitted and enters the human eye, there is a risk of harm to the human eye, so it is necessary to detect abnormalities in the device to ensure safety. required. In Patent Document 1, the diffractive optical element and the housing are attached to each other by electrically connecting two terminals, and when the connection between the terminals is interrupted, the falling off of the diffractive optical element is detected. However, the apparatus of Patent Document 1 cannot detect damage other than falling off, such as a hole being formed in a part of the diffractive optical element. It is necessary to provide a detection section to detect such damage to the diffractive optical element. However, there is a problem in that the provision of the detector within the lighting device increases the outer diameter of the lighting device, making the lighting device larger. Furthermore, there is a problem in that assembly becomes complicated when attaching a plurality of detectors.
 一実施形態の照明装置は、照明光を出射する光源と、光学系と、前記光源から出射した前記照明光を分岐する分岐部と、前記分岐部を介して到達した光の光量を検出する複数の検出部と、複数の前記検出部をそれぞれ保持する保持部と、前記分岐部と、複数の前記検出部と、前記保持部とを収容する収容部と、を備える。前記収容部は、前記光学系の光軸と交差する第1方向と交わる平面であり、複数の前記検出部を保持する前記保持部が前記第1方向から取り付けられる取付平面を有する。前記収容部には、前記光軸に沿う第2方向に沿って前記光学系と前記光源とが取り付けられる。 An illumination device according to an embodiment includes a light source that emits illumination light, an optical system, a branching section that branches the illumination light emitted from the light source, and a plurality of light sources that detect the amount of light that has arrived via the branching section. A detection section, a holding section that holds each of the plurality of detection sections, the branch section, a housing section that accommodates the plurality of detection sections and the holding section. The housing section is a plane that intersects with a first direction that intersects the optical axis of the optical system, and has a mounting plane on which the holding section that holds the plurality of detection sections is attached from the first direction. The optical system and the light source are attached to the housing part along a second direction along the optical axis.
 本発明によれば、照明装置の外径の増大を抑制し、装置の小型化に寄与する。 According to the present invention, an increase in the outer diameter of the lighting device is suppressed, contributing to miniaturization of the device.
図1は、実施形態の照明装置の外観斜視図である。FIG. 1 is an external perspective view of a lighting device according to an embodiment. 図2は、照明装置の断面図である。FIG. 2 is a cross-sectional view of the lighting device. 図3Aは、レンズバレルの外観斜視図である。FIG. 3A is an external perspective view of the lens barrel. 図3Bは、レンズバレルの側面図である。FIG. 3B is a side view of the lens barrel. 図3Cは、レンズバレルの後方の外観図である。FIG. 3C is a rear external view of the lens barrel. 図4は、図2に示される断面図の一部を拡大して示す部分断面図である。FIG. 4 is a partial cross-sectional view showing a part of the cross-sectional view shown in FIG. 2 in an enlarged manner. 図5Aは、第1保持部、第2保持部、第1検出部及び第2検出部の外観斜視図である。FIG. 5A is an external perspective view of the first holding section, the second holding section, the first detection section, and the second detection section. 図5Bは、図5AのB-B線での断面図である。FIG. 5B is a cross-sectional view taken along line BB in FIG. 5A. 図6は、照明装置の要部構成を示すブロック図である。FIG. 6 is a block diagram showing the main part configuration of the lighting device. 図7は、照明装置の動作を説明するフローチャートである。FIG. 7 is a flowchart illustrating the operation of the lighting device. 図8は、照明装置の動作を説明するフローチャートである。FIG. 8 is a flowchart illustrating the operation of the lighting device. 図9は、第1変形例の照明装置の動作を説明するフローチャートである。FIG. 9 is a flowchart illustrating the operation of the lighting device of the first modification.
 以下、図面を参照しながら実施形態の照明装置について詳細な説明を行う。 Hereinafter, the lighting device of the embodiment will be described in detail with reference to the drawings.
 <照明装置>
 照明装置は、例えば鉄道車両、自動車、台車、船、飛行機、ヘリコプター、ドローン、ロボット等の移動可能な装置である移動体に設けられる。照明装置は、移動体の進行方向に向けて照明光を出射し、例えば移動体の進行に関する情報を路面上等に投影する。照明装置は、進行に関する情報として、例えば進行方向を示す矢印や、「直進」,「右折」,「減速」,「加速」等の文字が投影される。尚、照明装置が上記の矢印や文字を投影するものに限定されず、絵柄、記号、マーク、イラスト、キャラクター、ピクトグラム等を投影してもよい。尚、移動体に搭載される照明装置の個数には制限はなく、1個でもよいし、2個以上の複数個であってもよい。
<Lighting device>
The lighting device is installed in a moving body that is a movable device such as a railway vehicle, a car, a trolley, a ship, an airplane, a helicopter, a drone, and a robot. The illumination device emits illumination light in the direction of movement of the moving object, and projects, for example, information regarding the movement of the moving object onto a road surface or the like. The illumination device projects, as information regarding the progress, for example, an arrow indicating the direction of travel and characters such as "go straight", "turn right", "decelerate", and "accelerate". Note that the illumination device is not limited to one that projects the above-mentioned arrows and characters, but may also project patterns, symbols, marks, illustrations, characters, pictograms, and the like. Note that there is no limit to the number of lighting devices that can be mounted on the moving object, and it may be one, or two or more lighting devices.
 図1は実施形態の照明装置10の外観斜視図であり、図2は図1におけるA-A線での照明装置10の断面図である。照明装置10は、レンズバレル30と、内筒40と、外筒50と、外周筒60とを有する。レンズバレル30は、筒状の部材であり、光源11と、分岐部13と、第1検出部15と、第2検出部16と、第1検出部15及び第2検出部16を保持する保持部180と、光学系12の一部とを収容する収容部である。尚、詳細を後述するように、保持部180は、第1検出部15と分岐部13とを保持する第1保持部18と、第2検出部16を保持する第2保持部19とを有する。 FIG. 1 is an external perspective view of a lighting device 10 according to an embodiment, and FIG. 2 is a cross-sectional view of the lighting device 10 taken along line AA in FIG. 1. The lighting device 10 includes a lens barrel 30, an inner tube 40, an outer tube 50, and an outer tube 60. The lens barrel 30 is a cylindrical member, and is a holder that holds the light source 11, the branching part 13, the first detection part 15, the second detection part 16, and the first detection part 15 and the second detection part 16. 180 and a part of the optical system 12. Note that, as will be described in detail later, the holding section 180 includes a first holding section 18 that holds the first detection section 15 and the branching section 13, and a second holding section 19 that holds the second detection section 16. .
 尚、説明の都合上、光学系12の光軸Axに平行なx軸と、x軸に直交し図1の紙面上下方向に沿ったy軸と、x軸及びy軸に直交するz軸とからなる直交座標系を設定する。また、以下の説明では、x軸+側を前方、x軸-側を後方、y軸+側を上方、y軸-側を下方と呼ぶこともある。 For convenience of explanation, an x-axis parallel to the optical axis Ax of the optical system 12, a y-axis perpendicular to the x-axis and along the vertical direction of the paper of FIG. 1, and a z-axis perpendicular to the x-axis and the y-axis. Set up a Cartesian coordinate system consisting of Furthermore, in the following description, the + side of the x-axis may be referred to as the front, the - side of the x-axis as the rear, the + side of the y-axis as upward, and the - side of the y-axis as downward.
 内筒40は、内部に光学系12の残部を収容する筒状の部材であり、レンズバレル30の一方側(x軸+側)の端部にてレンズバレル30に収容される。外筒50は筒状の部材であり、内部に制御基板17と、レンズバレル30の他方側(x軸-側)の端部とを収容する。外周筒60は、筒状の部材であり、レンズバレル30の一方側(x軸+側)の端部を収容する。 The inner cylinder 40 is a cylindrical member that houses the remainder of the optical system 12 inside, and is housed in the lens barrel 30 at one end (x-axis + side) of the lens barrel 30. The outer cylinder 50 is a cylindrical member, and houses the control board 17 and the other end (x-axis − side) of the lens barrel 30 therein. The outer peripheral tube 60 is a cylindrical member and accommodates an end portion of the lens barrel 30 on one side (x-axis + side).
 <レンズバレル30>
 図3Aはレンズバレル30の外観斜視図であり、図3Bはレンズバレル30の側面図であり、図3Cはレンズバレル30のx軸-側(後方)の外観図である。レンズバレル30は、光学系12の光軸Axを同心とする外径が異なる第1バレル31と第2バレル32とから構成される。第1バレル31には、光源11と、分岐部13と、第1検出部15と、第2検出部16とが組みつけられる。
<Lens barrel 30>
3A is an external perspective view of the lens barrel 30, FIG. 3B is a side view of the lens barrel 30, and FIG. 3C is an external view of the lens barrel 30 on the x-axis − side (backward). The lens barrel 30 is composed of a first barrel 31 and a second barrel 32 that are concentric with the optical axis Ax of the optical system 12 and have different outer diameters. The light source 11 , the branch section 13 , the first detection section 15 , and the second detection section 16 are assembled into the first barrel 31 .
 <第1バレル31>
 第1バレル31は、保持部18が取り付けられる取付平面330が形成される。具体的には、取付平面330は、第1バレル31のy軸+側(上方)に形成される第1取付平面311と、第1バレル31のy軸-側(下方)には形成される第2取付平面312とを有する。第1取付平面311は、y軸において光軸Axからの距離が第1バレル31の外径よりも短い位置に形成されたzx平面に平行な面である。第1取付平面311には、第1検出部15及び分岐部13が保持される第1保持部18(図2参照)が取り付けられる。第1検出部15を保持する第1保持部18は、上方側(y軸+側)から第1取付平面311上に配置され、ねじ止め等により取り付けられる。すなわち、第1保持部18の取り付け方向は、y軸に沿った上方側(y軸+側)から光軸Axに向かう方向である。
<First barrel 31>
The first barrel 31 is formed with a mounting plane 330 to which the holding portion 18 is mounted. Specifically, the mounting plane 330 is formed on the y-axis + side (upper side) of the first barrel 31, and the 1st mounting plane 311 is formed on the y-axis − side (lower side) of the first barrel 31. and a second mounting plane 312. The first mounting plane 311 is a plane parallel to the zx plane, which is formed at a position on the y-axis that is shorter in distance from the optical axis Ax than the outer diameter of the first barrel 31 . The first holding part 18 (see FIG. 2), which holds the first detection part 15 and the branch part 13, is attached to the first mounting plane 311. The first holding part 18 that holds the first detection part 15 is arranged on the first mounting plane 311 from the upper side (y-axis + side), and is attached by screwing or the like. That is, the attachment direction of the first holding part 18 is a direction from the upper side along the y-axis (y-axis + side) toward the optical axis Ax.
 第2取付平面312は、y軸において光軸Axからの距離が第1バレル31の外径よりも短い位置に形成されたzx平面に平行な面である。第2取付平面312には、第2検出部16が保持される第2保持部19(図2参照)が取り付けられる。第2検出部16を保持する第2保持部19は、下方側(y軸-側)から第2取付平面312上に配置され、ねじ止め等により取り付けられる。すなわち、第2保持部19の取り付け方向は、y軸に沿った下方側(y軸-側)から光軸Axに向かう方向である。尚、第1保持部18及び第2保持部19の詳細については後述する。 The second mounting plane 312 is a plane parallel to the zx plane formed at a position on the y-axis that is shorter in distance from the optical axis Ax than the outer diameter of the first barrel 31. The second holding section 19 (see FIG. 2), which holds the second detection section 16, is attached to the second mounting plane 312. The second holding part 19 that holds the second detection part 16 is arranged on the second mounting plane 312 from the lower side (y-axis − side), and is attached by screwing or the like. That is, the mounting direction of the second holding portion 19 is from the lower side along the y-axis (y-axis − side) toward the optical axis Ax. Note that details of the first holding section 18 and the second holding section 19 will be described later.
 尚、第1取付平面311と第2取付平面312とは、zx平面に平行ではなくてもよい。すなわち、第1取付平面311と第2取付平面312とは、光軸Axと交差する方向(第1方向)と交わる平面であればよい。この場合、第1保持部18の取り付け方向は、第1方向に沿って上方側から光軸Axに向かう方向である。第2保持部19の取り付け方向は、第1方向に沿って下方側から光軸Axに向かう方向である。 Note that the first mounting plane 311 and the second mounting plane 312 do not need to be parallel to the zx plane. That is, the first attachment plane 311 and the second attachment plane 312 may be planes that intersect with the direction (first direction) intersecting the optical axis Ax. In this case, the attachment direction of the first holding part 18 is a direction from the upper side toward the optical axis Ax along the first direction. The mounting direction of the second holding portion 19 is from the lower side toward the optical axis Ax along the first direction.
 第1取付平面311及び第2取付平面312のx軸-側の端部には、yz平面に平行な第3取付面313が形成される。換言すると、第3取付面313は、レンズバレル30のx軸-側(第2方向の他方側)の端面である。第3取付面313には、詳細を後述する光源11を保持する光源ホルダ111(図2参照)が、x軸-側(後方)からねじ止め等により取り付けられる。換言すると、レンズバレル30には、第1検出部15及び第2検出部16を基準にしてx軸-側に光源11が取り付けられる。光源ホルダ111のx軸-側(後方)には、制御基板17がねじ止め等により取り付けられる。 A third mounting surface 313 parallel to the yz plane is formed at the end of the first mounting surface 311 and the second mounting surface 312 on the −x-axis side. In other words, the third mounting surface 313 is the end surface of the lens barrel 30 on the x-axis − side (the other side in the second direction). A light source holder 111 (see FIG. 2) that holds a light source 11 (details of which will be described later) is attached to the third mounting surface 313 from the x-axis side (backward) by screwing or the like. In other words, the light source 11 is attached to the lens barrel 30 on the negative x-axis side with respect to the first detection section 15 and the second detection section 16. A control board 17 is attached to the x-axis negative side (backward) of the light source holder 111 by screws or the like.
 第3取付面313には、光軸Ax付近を中心として上下方向に伸びる形状を有する貫通孔314が形成される。貫通孔314は、詳細を後述する第1検出部15と制御基板17とを結ぶ配線153及び第2検出部16と制御基板17とを結ぶ配線163が通過する開口である。 A through hole 314 having a shape extending in the vertical direction centered around the optical axis Ax is formed in the third mounting surface 313. The through hole 314 is an opening through which a wiring 153 connecting the first detection section 15 and the control board 17 and a wiring 163 connecting the second detection section 16 and the control board 17, details of which will be described later, pass through.
 第1バレル31のx軸+側(前方)には、光学系12を構成する第1レンズ121及び第2レンズ122が取り付けられる。換言すると、レンズバレル30には、第1検出部15及び第2検出部16を基準にしてx軸+側に光学系12が取り付けられる。すなわち、照明装置10では、レンズバレル30と、第1検出部15及び第2検出部16に対してx軸+側(第2方向の一方側)に設けられる光学系12と、x軸-側(第2方向の他方側)に設けられる光源11とが一体に組み立てられる。 A first lens 121 and a second lens 122 that constitute the optical system 12 are attached to the x-axis + side (front) of the first barrel 31. In other words, the optical system 12 is attached to the lens barrel 30 on the x-axis + side with respect to the first detection section 15 and the second detection section 16. That is, in the illumination device 10, the lens barrel 30, the optical system 12 provided on the x-axis + side (one side in the second direction) with respect to the first detection section 15 and the second detection section 16, and the The light source 11 provided on the other side in the second direction is assembled integrally.
 第1バレル31の外壁には、外周に沿って凹部310が形成される。凹部310には、例えばOリング等のシール部材315が設けられる。第1バレル31の外壁のうち凹部310に対してx軸+側には、取付ねじ90が挿入されるねじ穴316が形成される。この取付ねじ90により、レンズバレル30と詳細を後述する外筒50とが連結される。 A recess 310 is formed in the outer wall of the first barrel 31 along the outer periphery. The recess 310 is provided with a sealing member 315 such as an O-ring. A screw hole 316 into which the mounting screw 90 is inserted is formed on the x-axis + side of the outer wall of the first barrel 31 with respect to the recess 310. This mounting screw 90 connects the lens barrel 30 and an outer cylinder 50, the details of which will be described later.
 <第2バレル32>
 第2バレル32は、第1バレル31の前方に形成される。第2バレル32の外径は、第1バレル31の外径よりも大きい。第2バレル32には、詳細を後述する内筒40に取り付けられた光学系12の第3レンズ123が収容される。第2バレル32の前方側の端部近傍の内周面には、勘合部320が形成される。勘合部320は、ねじ溝であり、後述する内筒40に形成されたねじ部403(図4参照)と勘合する。
<Second barrel 32>
The second barrel 32 is formed in front of the first barrel 31. The outer diameter of the second barrel 32 is larger than the outer diameter of the first barrel 31. The second barrel 32 accommodates a third lens 123 of the optical system 12 attached to an inner cylinder 40, the details of which will be described later. A fitting portion 320 is formed on the inner peripheral surface near the front end of the second barrel 32 . The fitting portion 320 is a threaded groove, and fits into a threaded portion 403 (see FIG. 4) formed in the inner cylinder 40, which will be described later.
 第2バレル32の外壁には、外周に沿って凹部321が形成される。凹部321には、例えばOリング等のシール部材322が設けられる。第2バレル32の外壁のうち凹部321に対してx軸-側には、取付ねじ91が挿入されるねじ穴323が形成される。この取付ねじ91により、レンズバレル30と詳細を後述する外周筒60とが連結される。第2バレル32の外壁のうち凹部321に対してx軸+側には、取付ねじ92が挿入されるねじ穴324が形成される。この取付ねじ92により、レンズバレル30に対して詳細を後述する内筒40が固定される。 A recess 321 is formed in the outer wall of the second barrel 32 along the outer periphery. A sealing member 322 such as an O-ring is provided in the recess 321 . A screw hole 323 into which the mounting screw 91 is inserted is formed on the x-axis − side of the outer wall of the second barrel 32 with respect to the recess 321 . This mounting screw 91 connects the lens barrel 30 and an outer cylinder 60, the details of which will be described later. A screw hole 324 into which the mounting screw 92 is inserted is formed on the x-axis + side of the outer wall of the second barrel 32 with respect to the recess 321. This mounting screw 92 fixes the inner cylinder 40, which will be described in detail later, to the lens barrel 30.
 <内筒40>
 図4は、図2に示される断面図のx軸+側の端部近傍を拡大して示す部分断面図である。内筒40は、筒状の部材であり、内部に第3レンズ123が取り付けられる。内筒40は、レンズバレル30の第2バレル32内に収容される。内筒40の外壁には、外周面に沿ってx軸-側から第1径勘合部401と、第2径勘合部402と、ねじ部403とがこの順序で形成されている。第1径勘合部401と第2径勘合部402とは、内筒40の外周面404に対して外側(光軸Axから離れる方向)に突出する突部である。第1径勘合部401と第2径勘合部402とは、内筒40がレンズバレル30内に収容されると、レンズバレル30の第2バレル32の内壁と接触する。
<Inner cylinder 40>
FIG. 4 is an enlarged partial cross-sectional view showing the vicinity of the end on the + side of the x-axis of the cross-sectional view shown in FIG. The inner cylinder 40 is a cylindrical member, and the third lens 123 is attached therein. The inner cylinder 40 is housed within the second barrel 32 of the lens barrel 30. On the outer wall of the inner cylinder 40, a first radial fitting part 401, a second radial fitting part 402, and a threaded part 403 are formed in this order from the x-axis side along the outer peripheral surface. The first radial fitting portion 401 and the second radial fitting portion 402 are protrusions that protrude outward (in a direction away from the optical axis Ax) with respect to the outer circumferential surface 404 of the inner cylinder 40. The first diameter fitting portion 401 and the second diameter fitting portion 402 come into contact with the inner wall of the second barrel 32 of the lens barrel 30 when the inner cylinder 40 is accommodated in the lens barrel 30 .
 ねじ部403は内筒40のx軸+側の端部付近に形成され、内筒40が第2バレル32の内部に収容されると、第2バレル32に形成された勘合部320と勘合する。これにより、内筒40は光軸Axの回りに回転可能にレンズバレル30に取り付けられる。内筒40がレンズバレル30内で回転することにより、内筒40は光軸Axに沿ってレンズバレル30に対して前後方向に移動する。この結果、内筒40のレンズバレル30への取り付け時に、内筒40の光軸Axに沿った位置(すなわち第3レンズ123の位置)を調整することができる。すなわち、簡易な構成にて内筒40の光軸Ax方向の位置を調整することが可能となる。 The threaded portion 403 is formed near the end of the inner tube 40 on the x-axis + side, and when the inner tube 40 is accommodated inside the second barrel 32, it fits into the fitting portion 320 formed in the second barrel 32. . Thereby, the inner cylinder 40 is rotatably attached to the lens barrel 30 around the optical axis Ax. As the inner cylinder 40 rotates within the lens barrel 30, the inner cylinder 40 moves in the front-back direction with respect to the lens barrel 30 along the optical axis Ax. As a result, when the inner tube 40 is attached to the lens barrel 30, the position of the inner tube 40 along the optical axis Ax (that is, the position of the third lens 123) can be adjusted. That is, it becomes possible to adjust the position of the inner tube 40 in the optical axis Ax direction with a simple configuration.
 内筒40の外壁のうち、第1径勘合部401と第2径勘合部402との間の外周面404は、レンズバレル30のねじ穴324に挿入された取付ねじ92の下方端部が当接する当接面である。換言すると、取付ねじ92との当接面である外周面404の径は、外周筒60と径勘合する第1径勘合部401及び第2径勘合部402の径よりも小さい。取付ねじ92が外周面404と当接することにより、位置調整が行われた内筒40は、レンズバレル30に対して固定される。換言すると、内筒40は、位置調整の際に、第1径勘合部401と第2径勘合部402との間でx軸方向に沿って移動させることができる。このため、光学系12の第3レンズ123が光軸Ax方向に移動調整させることができ、光源11から出射される照明光が照明装置10の外部での広がり角を調整することができる。 The outer peripheral surface 404 between the first diameter fitting part 401 and the second diameter fitting part 402 of the outer wall of the inner cylinder 40 is fitted with the lower end of the mounting screw 92 inserted into the threaded hole 324 of the lens barrel 30. This is the contact surface that comes into contact. In other words, the diameter of the outer peripheral surface 404, which is the contact surface with the mounting screw 92, is smaller than the diameters of the first radial fitting part 401 and the second radial fitting part 402, which radially fit into the outer cylinder 60. The inner tube 40 whose position has been adjusted is fixed to the lens barrel 30 by the attachment screw 92 coming into contact with the outer circumferential surface 404 . In other words, the inner cylinder 40 can be moved along the x-axis direction between the first radial fitting part 401 and the second radial fitting part 402 during position adjustment. Therefore, the third lens 123 of the optical system 12 can be moved and adjusted in the direction of the optical axis Ax, and the spread angle of the illumination light emitted from the light source 11 outside the illumination device 10 can be adjusted.
 また、取付ねじ92により移動調整後の内筒40を固定するので、第3レンズ123の光軸Ax方向の位置を、容易な方法にて高い信頼性を持たせて固定することができる。また、取付ねじ92による固定時に加わる力によって外周面404にめくれやえぐれ等による凹凸が生じる場合も考えられる。しかし、外周面404の径が第1径勘合部401及び第2径勘合部402の径よりも小さいため、凹凸が生じた個所が第1径勘合部401及び第2径勘合部402よりも内筒40の径方向の光軸Axから離れる側(外側)に突出することが抑制される。この結果、照明装置10を修理する際に内筒40をレンズバレル30から取り外す場合に、外周面404上にて凹凸が生じた個所がレンズバレル30の内壁と接触して傷付ける等の不具合が生じることが抑制される。 Furthermore, since the inner tube 40 after movement adjustment is fixed by the mounting screw 92, the position of the third lens 123 in the optical axis Ax direction can be fixed easily and with high reliability. It is also conceivable that the force applied during fixation with the mounting screws 92 may cause unevenness on the outer circumferential surface 404 due to curling, gouging, or the like. However, since the diameter of the outer circumferential surface 404 is smaller than the diameter of the first diameter fitting part 401 and the second diameter fitting part 402, the area where the unevenness occurs is inner than the first diameter fitting part 401 and the second diameter fitting part 402. The tube 40 is prevented from protruding toward the side (outside) away from the optical axis Ax in the radial direction. As a result, when the inner tube 40 is removed from the lens barrel 30 when repairing the lighting device 10, problems such as uneven portions on the outer peripheral surface 404 coming into contact with the inner wall of the lens barrel 30 may occur. things are suppressed.
 第1径勘合部401と第2径勘合部402とは、内筒40がレンズバレル30内に収容されると、レンズバレル30の第2バレル32の内壁と接触する。すなわち、2箇所以上で内筒40とレンズバレル30とが接触することにより、内筒40がレンズバレル30内で光軸Axに対して傾斜することが抑制される。また、取付ねじ92の当接面である外周面404が、x軸に沿って第1径勘合部401と第2径勘合部402との間に位置することにより、固定時に取付ねじ92を介して加わる力によって、内筒40を光軸Axに対して傾斜させる力が作用することが抑制される。 The first diameter fitting part 401 and the second diameter fitting part 402 come into contact with the inner wall of the second barrel 32 of the lens barrel 30 when the inner tube 40 is accommodated in the lens barrel 30. That is, by contacting the inner cylinder 40 and the lens barrel 30 at two or more places, the inner cylinder 40 is prevented from being inclined with respect to the optical axis Ax within the lens barrel 30. Furthermore, since the outer circumferential surface 404, which is the contact surface of the mounting screw 92, is located between the first diameter fitting part 401 and the second diameter fitting part 402 along the x-axis, the mounting screw 92 can be Due to the force applied, the force that makes the inner tube 40 tilt with respect to the optical axis Ax is suppressed.
 <外周筒60>
 外周筒60は、x軸+側の端部壁面61を底部としてx軸-側に伸びる筒状の形状を有する。端部壁面61の中央部には開口610が形成される。この開口610を介して、詳細を後述する光源11から出射された照明光の一部が照明装置10の外部に出射される。端部壁面61のx軸-側には、例えば防水テープ等のシール部材601を介して、詳細を後述する回折部14が取り付けられる。尚、回折部14のyz平面に平行な面の面積は、開口610の面積よりも大きい。このシール部材601により、回折部14と開口610との取り付け部から浸水経路R1を通って進入する水が、外周筒60の内部に至ることが抑制される。
<Outer cylinder 60>
The outer circumferential tube 60 has a cylindrical shape that extends toward the − x-axis side with the end wall surface 61 on the x-axis + side as the bottom. An opening 610 is formed in the center of the end wall surface 61. A portion of the illumination light emitted from the light source 11, the details of which will be described later, is emitted to the outside of the illumination device 10 through this opening 610. A diffraction section 14, the details of which will be described later, is attached to the x-axis − side of the end wall surface 61 via a sealing member 601 such as a waterproof tape. Note that the area of the surface of the diffraction section 14 parallel to the yz plane is larger than the area of the aperture 610. This sealing member 601 prevents water entering from the attachment portion between the diffraction section 14 and the opening 610 through the water intrusion path R1 from reaching the inside of the outer circumferential cylinder 60.
 外周筒60の内径は、レンズバレル30の第2バレル32の外径よりも大きい。外周筒60には、x軸-側からレンズバレル30が挿入される。この結果、外周筒60には、レンズバレル30の第2バレル32と、第2バレル32に取り付けられた内筒40及び第3レンズ123とが収容される。 The inner diameter of the outer peripheral cylinder 60 is larger than the outer diameter of the second barrel 32 of the lens barrel 30. The lens barrel 30 is inserted into the outer cylinder 60 from the x-axis − side. As a result, the second barrel 32 of the lens barrel 30, the inner cylinder 40 attached to the second barrel 32, and the third lens 123 are accommodated in the outer cylinder 60.
 外周筒60のx軸-側の端部近傍には、ねじ穴602が形成される。ねじ穴602は、外周筒60に収容されたレンズバレル30の第2バレル32に形成されたねじ穴323とx軸方向にて重複する位置に形成される。このねじ穴602と第2バレル32に形成されたねじ穴323とに取付ねじ91が挿入されることにより、外周筒60はレンズバレル30にねじ止めにて連結される。 A screw hole 602 is formed near the end of the outer circumferential tube 60 on the x-axis − side. The screw hole 602 is formed at a position overlapping in the x-axis direction with the screw hole 323 formed in the second barrel 32 of the lens barrel 30 housed in the outer peripheral cylinder 60. By inserting the mounting screw 91 into this screw hole 602 and the screw hole 323 formed in the second barrel 32, the outer circumferential tube 60 is connected to the lens barrel 30 by screwing.
 上述したように、第2バレル32には、ねじ穴323の前方(x軸+側)にシール部材322が設けられている。このシール部材322により、ねじ穴323,602を介して浸水経路R2を通って進入する水と、外周筒60の後方側(x軸-側)の端部から浸水経路R3を通って進入する水とが、外周筒60の内部に至ることが抑制される。シール部材322は、第2バレル32の外周面に形成された凹部321に設けられることから、第2バレル32の外側からシール部材を設ける構成とする場合と比較して、照明装置10の径方向への大型化を抑制することができる。 As described above, the second barrel 32 is provided with the sealing member 322 in front of the screw hole 323 (on the x-axis + side). This sealing member 322 prevents water from entering through the water ingress route R2 through the screw holes 323 and 602, and water from entering through the water seepage route R3 from the rear side (x-axis − side) end of the outer cylinder 60. is suppressed from reaching the inside of the outer cylinder 60. Since the sealing member 322 is provided in the recess 321 formed on the outer circumferential surface of the second barrel 32, the sealing member 322 is provided in the radial direction of the lighting device 10, compared to the case where the sealing member is provided from the outside of the second barrel 32. It is possible to suppress the increase in size.
 <外筒50>
 図2に示されるように、外筒50は、x軸-側(後方)の端部壁面51を底部としてx軸+側に伸びる筒状の形状を有する。外筒50の内径はレンズバレル30の第1バレル31の外径よりも大きい。外筒50は、x軸+側(前方)の端部付近の内部にて、レンズバレル30の第1バレル31を収容する。また、外筒50には、第1バレル31の第3取付面313の後方の光源ホルダ111に取り付けられた制御基板17が収容される。
<Outer cylinder 50>
As shown in FIG. 2, the outer cylinder 50 has a cylindrical shape extending toward the + side of the x-axis with an end wall surface 51 on the x-axis negative side (backward) as the bottom. The inner diameter of the outer cylinder 50 is larger than the outer diameter of the first barrel 31 of the lens barrel 30. The outer cylinder 50 accommodates the first barrel 31 of the lens barrel 30 inside near the end on the + side (front) of the x-axis. Further, the control board 17 attached to the light source holder 111 behind the third attachment surface 313 of the first barrel 31 is housed in the outer cylinder 50 .
 外筒50は、レンズバレル30のx軸-側(後方)から、第1バレル31の外側に取り付けられる。外筒50のx軸+側の端部には、ねじ穴511が形成される。ねじ穴511は、第1バレル31に形成されたねじ穴316とx軸方向にて重複する位置に形成される。このねじ穴511と第1バレル31に形成されたねじ穴316とに取付ねじ90が挿入されることにより、外筒50はレンズバレル30にねじ止めにて連結される。 The outer cylinder 50 is attached to the outside of the first barrel 31 from the x-axis side (backward) of the lens barrel 30. A screw hole 511 is formed at the end of the outer cylinder 50 on the + side of the x-axis. The screw hole 511 is formed at a position overlapping the screw hole 316 formed in the first barrel 31 in the x-axis direction. By inserting the mounting screw 90 into the screw hole 511 and the screw hole 316 formed in the first barrel 31, the outer cylinder 50 is connected to the lens barrel 30 by screwing.
 上述したように、第1バレル31には、ねじ穴316の後方(x軸-側)にシール部材315が設けられている。このシール部材315により、ねじ穴316,511を介して浸水経路R4(図2参照)を通って進入する水と、外筒50の前方(x軸+側)の端部から浸水経路R5(図2参照)を通って進入する水とが、外筒50の内部に至ることが抑制される。シール部材315は、第1バレル31の外周面に形成された凹部310に設けられることから、第1バレル31の外側からシール部材を設ける構成とする場合と比較して、照明装置10の径方向への大型化を抑制することができる。 As described above, the first barrel 31 is provided with a sealing member 315 behind the screw hole 316 (on the −x-axis side). This sealing member 315 prevents water from entering through the water ingress route R4 (see FIG. 2) through the screw holes 316 and 511, and from water entering from the front (x-axis + side) end of the outer cylinder 50 through the water ingress route R5 (see FIG. 2)) is prevented from reaching the inside of the outer cylinder 50. Since the sealing member 315 is provided in the recess 310 formed on the outer circumferential surface of the first barrel 31, the sealing member 315 is provided in the radial direction of the lighting device 10, compared to the case where the sealing member is provided from the outside of the first barrel 31. It is possible to suppress the increase in size.
 端部壁面51には、照明装置10の外部装置と接続する際に用いられるコネクタ70が取り付けられる。端部壁面51の中心(光軸Ax)付近には、制御基板17とコネクタ70とを結ぶ配線等が通過する貫通孔501が形成される。尚、コネクタ70のyz平面に平行な面は、貫通孔501よりも大きく、コネクタ70は、例えばOリング等のシール部材502を介して端部壁面51に取り付けられる。このシール部材502により、コネクタ70と端部壁面51との取り付け部から浸水経路R6(図2参照)を通って進入する水が、外筒50の内部に至ることが抑制される。 A connector 70 used for connecting the lighting device 10 to an external device is attached to the end wall surface 51. A through hole 501 is formed near the center (optical axis Ax) of the end wall surface 51, through which the wiring connecting the control board 17 and the connector 70 passes. Note that the surface of the connector 70 parallel to the yz plane is larger than the through hole 501, and the connector 70 is attached to the end wall surface 51 via a sealing member 502 such as an O-ring. This sealing member 502 prevents water entering from the attachment portion of the connector 70 and the end wall surface 51 through the water intrusion path R6 (see FIG. 2) from reaching the inside of the outer cylinder 50.
 <光源11>
 光源11は、例えばレーザダイオード(半導体レーザ)であり、電力の供給を受けてレーザ光(コヒーレント光)である照明光をx軸+方向へ向けて出射する。光源11は、光源ホルダ111を介して、上述したレンズバレル30の第3取付面313のx軸-側から取り付けられる。光源ホルダ111は、レンズバレル30の第1バレル31の内径よりも小さな直径を有する円盤状の部材である。光源ホルダ111には、中央部(光軸Ax)の近傍に開口111aが形成される。この開口111aに光源11がx軸-側から挿入されることにより、光源11が光源ホルダ111に保持される。この光源ホルダ111が第3取付面313に取り付けられることにより、光源11は光軸Ax上に配置される。光源ホルダ111には、第3取付面313とねじ止めされるためのねじ穴と、制御基板17とねじ止めされるためのねじ穴とが形成されている。光源11は、制御基板17に搭載された後述する制御部170(図6参照)により制御されることにより、照明光の光量を変更する。尚、光源11が光源ホルダ111に取り付けられるものに限定されず、照明装置10が光源ホルダ111を備えず、光源11が第1バレル31の第3取付面313に取り付けられてもよい。
<Light source 11>
The light source 11 is, for example, a laser diode (semiconductor laser), and receives power and emits illumination light, which is laser light (coherent light), in the x-axis + direction. The light source 11 is attached via the light source holder 111 from the x-axis − side of the third attachment surface 313 of the lens barrel 30 described above. The light source holder 111 is a disc-shaped member having a smaller diameter than the inner diameter of the first barrel 31 of the lens barrel 30. An opening 111a is formed in the light source holder 111 near the center (optical axis Ax). By inserting the light source 11 into this opening 111a from the x-axis negative side, the light source 11 is held by the light source holder 111. By attaching this light source holder 111 to the third mounting surface 313, the light source 11 is arranged on the optical axis Ax. The light source holder 111 is formed with a screw hole for screwing to the third mounting surface 313 and a screw hole for screwing to the control board 17. The light source 11 changes the amount of illumination light by being controlled by a control unit 170 (see FIG. 6) mounted on the control board 17 and described later. Note that the light source 11 is not limited to being attached to the light source holder 111, and the lighting device 10 may not include the light source holder 111 and the light source 11 may be attached to the third attachment surface 313 of the first barrel 31.
 <光学系12>
 光学系12は、光源11に対してx軸+側に配置され、光源11から射出された照明光を平行光に整形するコリメータレンズである。光学系12は、上述したように第1レンズ121と第2レンズ122と第3レンズ123とを有する。第1レンズ121と第2レンズ122とはレンズバレル30の第1バレル31内に取り付けられる。第3レンズ123は、上述したように、内筒40に取り付けられて、内筒40を介してレンズバレル30の第2バレル32内に収容される。尚、光学系12は上記の3個のレンズを有するものに限定されず、2個以下でもよいし、4個以上であってもよい。
<Optical system 12>
The optical system 12 is a collimator lens that is arranged on the x-axis + side with respect to the light source 11 and shapes the illumination light emitted from the light source 11 into parallel light. The optical system 12 includes the first lens 121, the second lens 122, and the third lens 123, as described above. The first lens 121 and the second lens 122 are attached within the first barrel 31 of the lens barrel 30 . As described above, the third lens 123 is attached to the inner tube 40 and housed in the second barrel 32 of the lens barrel 30 via the inner tube 40. Note that the optical system 12 is not limited to having the three lenses described above, and may have two or less lenses, or four or more lenses.
 <分岐部13>
 分岐部13は、例えばビームスプリッタやハーフミラー等の光学部材であり、入射した照明光の進行方向をx軸+側とy軸+側とに分岐する。すなわち、分岐部13は、光源11から出射された照明光の一部を透過させ、他の一部(残部)をy軸+側へ反射させる。分岐部13は、詳細を後述する第1保持部18に保持され、レンズバレル30の第1バレル31内に収容される。分岐部13は、光学系12の光軸Ax上に配置される。尚、本実施の形態の照明装置10においては、分岐部13が光学系12に対してx軸-側に配置される場合を示しているが、分岐部13が光学系12に対してx軸+側に配置されてもよい。
<Branch portion 13>
The branching unit 13 is an optical member such as a beam splitter or a half mirror, and branches the traveling direction of the incident illumination light into an x-axis + side and a y-axis + side. That is, the branching section 13 transmits a part of the illumination light emitted from the light source 11 and reflects the other part (remaining part) toward the + side of the y-axis. The branch part 13 is held by a first holding part 18 whose details will be described later, and is housed in the first barrel 31 of the lens barrel 30. The branching section 13 is arranged on the optical axis Ax of the optical system 12. Note that in the illumination device 10 of this embodiment, a case is shown in which the branching section 13 is arranged on the x-axis negative side with respect to the optical system 12; It may be placed on the + side.
 <第1検出部15>
 図5Aは第1保持部18、第2保持部19、第1検出部15及び第2検出部16の外観斜視図であり、図5Bは図5AのB-B線での断面図である。
<First detection unit 15>
FIG. 5A is an external perspective view of the first holding part 18, second holding part 19, first detection part 15, and second detection part 16, and FIG. 5B is a cross-sectional view taken along line BB in FIG. 5A.
 第1検出部15は、基板151と、例えばフォトダイオード等の光電変換素子により構成される受光部152とを有する。第1検出部15は分岐部13に対してy軸+側に配置される。すなわち、第1検出部15は、レンズバレル30内にて、光軸Axに対してy軸+側に収容される。第1検出部15は、詳細を後述する第1保持部18に保持され、分岐部13とともにレンズバレル30の第1バレル31に形成された第1取付平面311にy軸+側から取り付けられる。第1検出部15は、配線153によって制御基板17と電気的に接続される。上述したように、配線153は、第3取付面313に形成された貫通孔314を通過する。 The first detection section 15 includes a substrate 151 and a light receiving section 152 configured by a photoelectric conversion element such as a photodiode. The first detection section 15 is arranged on the + side of the y-axis with respect to the branch section 13 . That is, the first detection unit 15 is housed within the lens barrel 30 on the y-axis + side with respect to the optical axis Ax. The first detection section 15 is held by a first holding section 18 whose details will be described later, and is attached to a first attachment plane 311 formed on the first barrel 31 of the lens barrel 30 together with the branch section 13 from the y-axis + side. The first detection unit 15 is electrically connected to the control board 17 by wiring 153. As described above, the wiring 153 passes through the through hole 314 formed in the third mounting surface 313.
 <第2検出部16>
 第2検出部16は、基板161と、例えばフォトダイオード等の光電変換素子により構成される受光部162とを有する。第2検出部16は分岐部13に対してy軸-側に配置される。すなわち、第2検出部16は、レンズバレル30内にて、光軸Axに対してy軸-側に収容される。これにより、第1検出部15と第2検出部16とは、光軸Axを挟んで互いに対向して、レンズバレル30内に収容される。第2検出部16は、詳細を後述する第2保持部19に保持され、レンズバレル30の第1バレルに31に形成された第2取付平面312にy軸-側から取り付けられる。第2検出部16は、配線163によって制御基板17と電気的に接続される。上述したように、配線163は、第3取付面313に形成された貫通孔314を通過する。
<Second detection unit 16>
The second detection section 16 includes a substrate 161 and a light receiving section 162 formed of a photoelectric conversion element such as a photodiode. The second detection section 16 is arranged on the negative side of the y-axis with respect to the branch section 13. That is, the second detection unit 16 is housed within the lens barrel 30 on the negative side of the y-axis with respect to the optical axis Ax. Thereby, the first detection section 15 and the second detection section 16 are housed in the lens barrel 30, facing each other with the optical axis Ax in between. The second detection unit 16 is held by a second holding unit 19, the details of which will be described later, and is attached to a second attachment plane 312 formed on the first barrel 31 of the lens barrel 30 from the y-axis − side. The second detection unit 16 is electrically connected to the control board 17 by wiring 163. As described above, the wiring 163 passes through the through hole 314 formed in the third mounting surface 313.
 <第1保持部18>
 第1保持部18は、上述したように分岐部13と第1検出部15とを保持する。第1保持部18は、第1検出部15を保持する第1取付部181と、分岐部13を保持する第2取付部182とを有する。
<First holding part 18>
The first holding section 18 holds the branch section 13 and the first detection section 15 as described above. The first holding section 18 includes a first mounting section 181 that holds the first detection section 15 and a second mounting section 182 that holds the branch section 13.
 <第1取付部181>
 第1取付部181は、zx平面に沿った板状の面部材183の縁に沿ってy軸+側に突出する突部184を有する部材である。面部材183の中央部近傍には開口185が形成されている。この第1取付部181の突部184の上端(y軸+側)に第1検出部15の基板151が配置される。受光部152は基板151のy軸-側の面に取り付けられている。このため、第1検出部15は、開口185を通過しy軸+側へ進行する光を受光する。
<First mounting part 181>
The first attachment portion 181 is a member having a protrusion 184 that protrudes toward the +y-axis side along the edge of a plate-shaped surface member 183 along the zx plane. An opening 185 is formed near the center of the surface member 183. The substrate 151 of the first detection section 15 is arranged at the upper end (y-axis + side) of the protrusion 184 of the first attachment section 181 . The light receiving section 152 is attached to the surface of the substrate 151 on the negative side of the y-axis. Therefore, the first detection unit 15 receives the light that passes through the aperture 185 and travels toward the + side of the y-axis.
 突部184のうち、x軸+側の突部184aは、x軸-側の突部184bよりもy軸+側に突出している。このため、突部184に取り付けられた基板151はzx平面に対して傾斜する。すなわち、第1検出部15の受光部152は、光軸Axと直交する方向(y軸方向)に対して傾斜を有する。このため、後述するようにして照明光のうち分岐部13で反射され、第1検出部15の受光部152に到達し、受光部152の受光面で反射された光が、受光部152への入射時と同一の光路を逆方向に進行することが抑制される。すなわち、受光部152の受光面にて反射された光が、再び分岐部13に入射し、反射されてx軸-側に進行し、光源11に入射することが抑制される。 Among the protrusions 184, the protrusion 184a on the x-axis + side protrudes more toward the y-axis + side than the protrusion 184b on the x-axis - side. Therefore, the substrate 151 attached to the protrusion 184 is inclined with respect to the zx plane. That is, the light receiving section 152 of the first detection section 15 has an inclination with respect to the direction (y-axis direction) orthogonal to the optical axis Ax. Therefore, as will be described later, the illumination light is reflected at the branching section 13 and reaches the light receiving section 152 of the first detection section 15, and the light reflected at the light receiving surface of the light receiving section 152 is transmitted to the light receiving section 152. It is suppressed that the light travels in the opposite direction along the same optical path as that at the time of incidence. That is, the light reflected by the light receiving surface of the light receiving section 152 enters the branching section 13 again, is reflected, travels toward the negative side of the x-axis, and is suppressed from entering the light source 11.
 尚、突部184は、x軸-側の突部184bがx軸+側の突部184aよりもy軸+側に突出していてもよい。すなわち、前後方向にて突部184の高さ(y軸+側への突出量)が異なっていればよい。あるいは、左右方向(z軸方向)にて突部184の高さ(y軸+側への突出量)が異なっていてもよい。 Incidentally, in the protrusion 184, the protrusion 184b on the x-axis negative side may protrude more toward the y-axis + side than the protrusion 184a on the x-axis plus side. That is, it is sufficient that the height of the protrusion 184 (the amount of protrusion toward the + side of the y-axis) is different in the front-rear direction. Alternatively, the height (amount of protrusion toward the +y-axis side) of the protrusion 184 may be different in the left-right direction (z-axis direction).
 <第2取付部182>
 第2取付部182は、第1取付部181のy軸-側に形成され、y軸+側に配置される底部190からy軸-側に伸びる角筒状の部材である。底部190には、開口190aが形成される。第2取付部182は、内部にy軸-側から分岐部13が収容されることにより、分岐部13を保持する。第2取付部182のうち、x軸-側の面186及びx軸+側の面187には、それぞれの中央部近傍に開口188及び開口189が形成される。第1保持部18がレンズバレル30に取り付けられると、開口188,189は、光軸Ax上に並ぶ。これにより、光源11から出射した照明光は、開口188を介して分岐部13に入射し、分岐部13を通過した光は開口189を介してx軸+側へ向けて進行する。また、照明光のうち開口188を介して分岐部13に入射し、分岐部13にて反射された光は、開口190aを介してy軸+側の第1取付部181へ向けて進行する。
<Second mounting part 182>
The second attachment part 182 is a rectangular cylindrical member that is formed on the negative side of the y-axis of the first attachment part 181 and extends toward the negative side of the y-axis from a bottom part 190 arranged on the positive side of the y-axis. An opening 190a is formed in the bottom portion 190. The second attachment part 182 holds the branch part 13 by accommodating the branch part 13 therein from the y-axis negative side. An opening 188 and an opening 189 are formed in the x-axis − side surface 186 and x-axis + side surface 187 near the center of the second mounting portion 182, respectively. When the first holding part 18 is attached to the lens barrel 30, the openings 188 and 189 are aligned on the optical axis Ax. Thereby, the illumination light emitted from the light source 11 enters the branching section 13 through the opening 188, and the light that has passed through the branching section 13 travels through the opening 189 toward the + side of the x-axis. Furthermore, the light of the illumination light that enters the branching part 13 through the opening 188 and is reflected at the branching part 13 travels toward the first attachment part 181 on the + side of the y-axis through the opening 190a.
 <第2保持部19>
 第2保持部19は、上述したように第2検出部16を保持する。第2保持部19は、zx平面に沿った板状の面部材191の縁に沿ってy軸-側に突出する突部192を有する部材である。部材192の中央部近傍には開口193が形成されている。この第2保持部19の突部192の下端(y軸-側)に基板161が配置される。受光部162は基板161のy軸+側の面に取り付けられている。このため、第2検出部16は開口193を通過し、y軸-側へ進行する光を受光する。
<Second holding part 19>
The second holding section 19 holds the second detection section 16 as described above. The second holding portion 19 is a member having a protrusion 192 that protrudes toward the negative side of the y-axis along the edge of a plate-shaped surface member 191 along the zx plane. An opening 193 is formed near the center of the member 192. The substrate 161 is arranged at the lower end (y-axis − side) of the protrusion 192 of the second holding part 19. The light receiving section 162 is attached to the surface of the substrate 161 on the y-axis + side. Therefore, the second detection unit 16 receives the light that passes through the aperture 193 and travels toward the negative side of the y-axis.
 突部192のうち、x軸+側の突部192aは、x軸-側の突部192bよりもy軸-側に突出している。このため、突部192に取り付けられた基板161はzx平面に対して傾斜する。すなわち、第2検出部16の受光部162は、光軸Axと直交する方向(y軸方向)に対して傾斜を有する。このため、後述するようにして回折部14を介してx軸+側から進行し、分岐部13で反射され、第2検出部16の受光部162に到達した光のうち、受光部162の受光面で反射された光が、受光部162への入射時と同一の光路を逆方向に進行することが抑制される。すなわち、受光部162の受光面にて反射された光が、再び分岐部13に入射し、反射されてx軸+側の回折部14に向けて進行することが抑制される。 Among the protrusions 192, the protrusion 192a on the x-axis + side protrudes more toward the y-axis minus side than the protrusion 192b on the x-axis minus side. Therefore, the substrate 161 attached to the protrusion 192 is inclined with respect to the zx plane. That is, the light receiving section 162 of the second detection section 16 has an inclination with respect to the direction (y-axis direction) orthogonal to the optical axis Ax. Therefore, as will be described later, among the light that travels from the x-axis + side via the diffraction section 14, is reflected at the branching section 13, and reaches the light receiving section 162 of the second detection section 16, the light is received by the light receiving section 162. The light reflected by the surface is suppressed from traveling in the opposite direction along the same optical path as when it is incident on the light receiving section 162. That is, the light reflected by the light receiving surface of the light receiving section 162 is prevented from entering the branching section 13 again, being reflected, and traveling toward the diffraction section 14 on the + side of the x-axis.
 尚、突部192は、x軸-側の突部192bがx軸+側の突部192aよりもy軸-側に突出していてもよい。すなわち、前後方向にて突部192の高さ(y軸-側への突出量)が異なっていればよい。あるいは、左右方向(z軸方向)にて突部192の高さ(y軸-側への突出量)が異なっていてもよい。 Note that in the protrusion 192, the protrusion 192b on the negative side of the x-axis may protrude more toward the - side on the y-axis than the protrusion 192a on the positive side of the x-axis. That is, it is sufficient that the height of the protrusion 192 (the amount of protrusion toward the negative side of the y-axis) is different in the front-rear direction. Alternatively, the height (the amount of protrusion toward the −y-axis side) of the protrusion 192 may be different in the left-right direction (z-axis direction).
 面部材191のy軸+側(上側)の面には、x軸-側の端部付近に、y軸+側へ突出する突部194が形成される。突部194は、面部材191上でz軸に沿って形成される。すなわち、端部194は、第2保持部19の面部材191のx軸-側(第2方向の他方側)の端部の一部である。第1保持部18及び第2保持部19がレンズバレル30に取り付けられると、図5Bに示されるように、突部194は、第1保持部18の第2取付部182のx軸-側の端部よりも後方(x軸-側)の光源11側に位置する。突部194の頂部(y軸+側の先端)は、第1保持部18の第2取付部182の下端(y軸-側の先端)よりも上方(y軸+側)に位置する。すなわち、第2保持部19のx軸-側(第2方向の他方側)の端部の一部である突部194と、第1保持部18の第2取付部182の第2方向の他方側の端部の一部とは、光軸Axに沿う方向に重複する。これにより、光源11から出射した照明光の一部が第1保持部18と第2保持部19との間を通過して、迷光となることが抑制される。 On the y-axis + side (upper side) surface of the surface member 191, a protrusion 194 protruding toward the y-axis + side is formed near the end on the x-axis − side. The protrusion 194 is formed on the surface member 191 along the z-axis. That is, the end portion 194 is a part of the end portion of the surface member 191 of the second holding portion 19 on the −x-axis side (the other side in the second direction). When the first holding part 18 and the second holding part 19 are attached to the lens barrel 30, as shown in FIG. It is located on the light source 11 side behind the end (x-axis − side). The top of the protrusion 194 (the tip on the y-axis + side) is located above (on the y-axis + side) the lower end (the tip on the y-axis − side) of the second attachment portion 182 of the first holding portion 18 . That is, the protrusion 194 that is a part of the end on the x-axis − side (the other side in the second direction) of the second holding part 19 and the other side in the second direction of the second attachment part 182 of the first holding part 18 A part of the side end portion overlaps in the direction along the optical axis Ax. This prevents part of the illumination light emitted from the light source 11 from passing between the first holding part 18 and the second holding part 19 and becoming stray light.
 尚、突部194の頂部は、第2取付部182に形成されたx軸-側の開口188の下端よりも下方(y軸-側)に位置するのがよい。これにより、光源11から出射した照明光が、突部194により妨げられることなく、開口188を通過して分岐部13に入射することができる。 Note that the top of the protrusion 194 is preferably located below (on the y-axis side) the lower end of the opening 188 on the x-axis side formed in the second attachment part 182. Thereby, the illumination light emitted from the light source 11 can pass through the opening 188 and enter the branch portion 13 without being obstructed by the protrusion 194 .
 <回折部14>
 回折部14は、上述した外周筒60内のx軸+側端部、すなわち分岐部13に対してx軸+側に配置され、照明光のうち分岐部13を透過した光によって照明される。回折部14は、例えばホログラム素子等の回折格子である。ホログラム素子として、公知のフーリエ変換型、フレネル型、計算機合成型、アナログ記録型、レリーフ型等の各種のホログラムを用いることができる。このホログラム素子に、上述した移動体の進行に関する情報が記録されている。分岐部13を透過した光のうち一部は回折部14を透過して、照明装置10の外部に出射する。これにより、回折部14に記録されている情報が照明装置10の外部(すなわち、移動体の進行方向前方)に投影される。
<Diffraction section 14>
The diffraction section 14 is disposed at the x-axis + side end of the above-mentioned outer cylinder 60, that is, on the x-axis + side with respect to the branching section 13, and is illuminated by the light that has passed through the branching section 13 among the illumination light. The diffraction section 14 is, for example, a diffraction grating such as a hologram element. As the hologram element, various known holograms such as Fourier transform type, Fresnel type, computer synthesis type, analog recording type, and relief type can be used. Information regarding the progress of the moving object described above is recorded on this hologram element. A portion of the light that has passed through the branching section 13 passes through the diffraction section 14 and is emitted to the outside of the illumination device 10 . As a result, the information recorded in the diffraction section 14 is projected outside the illumination device 10 (that is, in front of the moving body in the traveling direction).
 <動作>
 以下、上記の構成を有する照明装置10の動作について説明する。図6は、照明装置10の要部構成を示すブロック図である。上述したように、分岐部13は、光源11から出射された照明光Lの一部を透過させ、他の一部(残部)をy軸+側へ反射させる。照明光Lのうち分岐部13にて反射された光を第1照明光L1と呼び、分岐部13を透過した光を第2照明光L2と呼ぶ。以下の説明では、分岐部13は、照明光Lの50%を透過させ、残りの50%を反射させるものとする。
<Operation>
The operation of the lighting device 10 having the above configuration will be described below. FIG. 6 is a block diagram showing the configuration of main parts of the lighting device 10. As described above, the branching section 13 transmits a part of the illumination light L emitted from the light source 11 and reflects the other part (remaining part) toward the + side of the y-axis. Of the illumination light L, the light reflected at the branching part 13 is called a first illumination light L1, and the light transmitted through the branching part 13 is called a second illumination light L2. In the following description, it is assumed that the branching section 13 transmits 50% of the illumination light L and reflects the remaining 50%.
 分岐部13で反射された第1照明光L1は、分岐部13に対してy軸+側に配置された第1検出部15に入射する。第1検出部15では、受光部152によって入射した第1照明光L1が電気信号に変換され、第1検出信号として出力される。この電気信号(すなわち、第1検出信号)は第1検出部15に入射した光の光量に応じた値(信号強度)を有する。したがって、第1検出部15は第1照明光L1の光量を検出する。 The first illumination light L1 reflected by the branching part 13 enters the first detection part 15 arranged on the +y-axis side with respect to the branching part 13. In the first detection section 15, the first illumination light L1 that has entered the light receiving section 152 is converted into an electrical signal and output as a first detection signal. This electric signal (that is, the first detection signal) has a value (signal intensity) corresponding to the amount of light incident on the first detection section 15. Therefore, the first detection unit 15 detects the light amount of the first illumination light L1.
 分岐部13を透過した第2照明光L2は回折部14を照明する。第2照明光L2のうち、一部は回折部14を透過して照明装置10の外部に出射し、残部は回折部14にて反射される。上述したように、回折部14が第2照明光L2の一部で照明されることにより、回折部14に記録されている情報が照明装置10の外部(すなわち、移動体の進行方向前方)に投影される。第2照明光L2のうち回折部14で反射された光(反射光)は、x軸-側に進行し分岐部13に入射する。この反射光は、分岐部13にてy軸-側に反射されて第2検出部16に入射する。 The second illumination light L2 transmitted through the branching section 13 illuminates the diffraction section 14. A portion of the second illumination light L2 passes through the diffraction section 14 and exits to the outside of the illumination device 10, and the remaining portion is reflected by the diffraction section 14. As described above, by illuminating the diffraction unit 14 with a part of the second illumination light L2, the information recorded in the diffraction unit 14 is transferred to the outside of the illumination device 10 (that is, in front of the moving object). be projected. Of the second illumination light L2, the light reflected by the diffraction section 14 (reflected light) travels toward the negative side of the x-axis and enters the branching section 13. This reflected light is reflected toward the negative side of the y-axis at the branching section 13 and enters the second detection section 16 .
 また、第2検出部16には、第2照明光L2のうち回折部14にて反射された後に分岐部13で反射された光(すなわち、回折部14で反射された反射光)と、照明装置10の外部から回折部14を通過した後に分岐部13で反射された光(すなわち、外光)L3とが入射する。すなわち、第2検出部16は、回折部14を介して入射した光の光量を検出する。第2検出部16では、受光部162によって入射した光が電気信号に変換され、第2検出信号として出力される。この電気信号(すなわち、第2検出信号)は第2検出部16に入射した反射光と外光L3との光量に応じた値(信号強度)を有する。ただし、外光L3が回折部14を通過していない場合は、第2検出部16は反射光の光量、すなわち第2照明光L2の光量を検出する。この場合、第2検出信号は反射光の光量に応じた信号強度を有する。 In addition, the second detection unit 16 includes the light that was reflected at the diffraction unit 14 and then reflected at the branching unit 13 out of the second illumination light L2 (that is, the reflected light reflected at the diffraction unit 14), and the illumination light L2. Light (that is, external light) L3 that has passed through the diffraction section 14 and been reflected at the branching section 13 from outside the device 10 is incident. That is, the second detection section 16 detects the amount of light that has entered via the diffraction section 14 . In the second detection section 16, the light receiving section 162 converts the incident light into an electrical signal, and outputs it as a second detection signal. This electric signal (that is, the second detection signal) has a value (signal intensity) that corresponds to the amount of reflected light and external light L3 that entered the second detection section 16. However, when the external light L3 does not pass through the diffraction section 14, the second detection section 16 detects the amount of reflected light, that is, the amount of second illumination light L2. In this case, the second detection signal has a signal strength depending on the amount of reflected light.
 制御部170は、CPUやメモリ等によって構成され、上述した制御基板17上に搭載される。制御部170は、例えばフラッシュメモリ等の記憶媒体に予め記録されている制御プログラムを読み込んで実行することにより、照明装置10の各部を制御するプロセッサーである。制御部170は、第1検出部15によって検出された第1照明光L1の第1光量に基づいて、光源11が出射する照明光Lの光量を制御する光量制御処理を行う。制御部170は、第2検出部16によって検出された光の第2光量に基づいて、光源11による照明光Lの出射を停止する光源制御処理を行う。ただし、制御部170は、外光L3が入射している場合には、光源11による照明光Lの出射を継続する。 The control unit 170 is composed of a CPU, a memory, etc., and is mounted on the control board 17 described above. The control unit 170 is a processor that controls each part of the lighting device 10 by reading and executing a control program recorded in advance on a storage medium such as a flash memory. The control unit 170 performs a light amount control process to control the amount of illumination light L emitted by the light source 11 based on the first amount of the first illumination light L1 detected by the first detection unit 15. The control unit 170 performs light source control processing to stop the light source 11 from emitting the illumination light L based on the second amount of light detected by the second detection unit 16. However, when the external light L3 is incident, the control unit 170 causes the light source 11 to continue emitting the illumination light L.
 <光量制御処理>
 制御部170は、電源部20から光源11に規定の電力(電流)を供給させて、光源11から照明光Lを出射させる。制御部170は、第1検出部15が出力する第1検出信号に基づいて、第1照明光L1の光量である第1光量、すなわち光源11から出射された照明光Lの光量を検出する。上述したように、第1照明光L1は照明光Lのうち分岐部13にてy軸+側に反射した光である。また、上述したように分岐部13の反射率は50%と既知の値であることから、分岐部13で反射された第1照明光L1の第1光量と光源11から出射した照明光Lの光量とには比例関係が存在する。このことから、制御部170は、第1検出部15にて検出された第1照明光L1の第1光量を照明光Lの光量として扱う(検出する)ことができる。
<Light amount control processing>
The control unit 170 causes the power supply unit 20 to supply a specified power (current) to the light source 11, and causes the light source 11 to emit illumination light L. The control section 170 detects a first light amount that is the light amount of the first illumination light L1, that is, the light amount of the illumination light L emitted from the light source 11, based on the first detection signal output by the first detection section 15. As described above, the first illumination light L1 is the light of the illumination light L that is reflected toward the +y-axis side at the branching portion 13. Further, as described above, since the reflectance of the branching part 13 is a known value of 50%, the first light amount of the first illumination light L1 reflected by the branching part 13 and the illumination light L emitted from the light source 11 are There is a proportional relationship with the amount of light. From this, the control section 170 can treat (detect) the first light amount of the first illumination light L1 detected by the first detection section 15 as the light amount of the illumination light L.
 制御部170は、検出した照明光Lの第1光量と、予め設定されている下限規定値Th1及び上限規定値Th2と比較する。尚、下限規定値Th1は、照明光Lの光量の下限値に分岐部13の反射率である50%を乗じた値である。照明光Lの光量の下限値とは、照明装置10から出射される光によって外部に形成される投影パターンが視認可能となるために必要な光量の値である。下限規定値Th1の値は、シミュレーション等の結果に基づいて決定され、下限規定値Th1に対応する閾値電圧(電流)が予め制御部170に設定されている。制御部170のコンパレータは、この閾値電圧(電流)と、第1照明光L1の第1光量である第1検出信号の電圧(電流)とを比較し、比較結果に応じた信号を出力する。制御部170は、この信号に基づいて、比較結果に応じた処理を行う。 The control unit 170 compares the detected first light amount of the illumination light L with a preset lower limit value Th1 and an upper limit value Th2. Note that the lower limit specified value Th1 is a value obtained by multiplying the lower limit value of the amount of illumination light L by 50%, which is the reflectance of the branching portion 13. The lower limit value of the amount of light of the illumination light L is the value of the amount of light necessary for the projection pattern formed outside by the light emitted from the illumination device 10 to become visible. The value of the lower limit specified value Th1 is determined based on the results of simulations, etc., and a threshold voltage (current) corresponding to the lower limit specified value Th1 is set in the control unit 170 in advance. The comparator of the control unit 170 compares this threshold voltage (current) with the voltage (current) of the first detection signal, which is the first light amount of the first illumination light L1, and outputs a signal according to the comparison result. Based on this signal, the control unit 170 performs processing according to the comparison result.
 また、上限規定値Th2は、照明光Lの光量の上限値に分岐部13の反射率である50%を乗じた値である。照明光Lの光量の上限値は、照明装置10から出射される光が外部の人の目に入っても悪影響を及ぼさない光量の値である。上限規定値Th2の値は、シミュレーション等の結果に基づいて決定され、上限規定値Th2に対応する閾値電圧(電流)が予め制御部170に設定されている。制御部170のコンパレータは、この閾値電圧(電流)と、第1照明光L1の第1光量である第1検出信号の電圧(電流)とを比較し、比較結果に応じた信号を出力する。制御部170は、この信号に基づいて、比較結果に応じた処理を行う。 Further, the upper limit specified value Th2 is a value obtained by multiplying the upper limit value of the light amount of the illumination light L by 50%, which is the reflectance of the branching part 13. The upper limit value of the light amount of the illumination light L is a value of the light amount that does not have an adverse effect even if the light emitted from the illumination device 10 enters the eyes of an outside person. The value of the upper limit specified value Th2 is determined based on the results of simulations, etc., and a threshold voltage (current) corresponding to the upper limit specified value Th2 is set in the control unit 170 in advance. The comparator of the control unit 170 compares this threshold voltage (current) with the voltage (current) of the first detection signal, which is the first light amount of the first illumination light L1, and outputs a signal according to the comparison result. Based on this signal, the control unit 170 performs processing according to the comparison result.
 制御部170は、算出した照明光Lの光量の値と下限規定値Th1とを比較し、照明光Lの光量の値が下限規定値Th1よりも小さい場合には、光源11から出射される照明光Lの光量を増加させる。具体的には、制御部170は、電源部20から光源11に供給する電力(電流)を増加させる。この場合、制御部170は、予め決められている値だけ電力の供給量を増加させる。あるいは、制御部170は、算出した照明光Lの光量の値と下限規定値Th1との差に基づいて電力の供給量を増加させる。これにより、光源11から出射される照明光Lの光量が増え、照明装置10から出射される光によって外部に形成される投影パターンが視認可能となる。 The control unit 170 compares the calculated light amount value of the illumination light L with a lower limit specified value Th1, and if the value of the light amount of the illumination light L is smaller than the lower limit specified value Th1, the control unit 170 controls the illumination emitted from the light source 11. Increase the amount of light L. Specifically, the control unit 170 increases the power (current) supplied from the power supply unit 20 to the light source 11. In this case, the control unit 170 increases the amount of power supplied by a predetermined value. Alternatively, the control unit 170 increases the amount of power supplied based on the difference between the calculated value of the light amount of the illumination light L and the lower limit specified value Th1. As a result, the amount of illumination light L emitted from the light source 11 increases, and the projection pattern formed externally by the light emitted from the illumination device 10 becomes visible.
 制御部170は、算出した照明光Lの光量の値と上限規定値Th2とを比較し、照明光Lの光量の値が上限規定値Th2よりも大きい場合には、光源11から出射される照明光Lの光量を減少させる。具体的には、制御部170は、電源部20から光源11に供給する電力(電流)を減少させる。この場合、制御部170は、予め決められている値だけ電力の供給量を減少させる。あるいは、制御部170は、算出した照明光Lの光量の値と上限規定値Th2との差に基づいて電力の供給量を減少させる。これにより、照明装置10から出射される光が外部の人の目に入った場合であっても、悪影響を及ぼすことを抑制できる。 The control unit 170 compares the calculated light amount value of the illumination light L with the upper limit specified value Th2, and if the value of the light amount of the illumination light L is larger than the upper limit specified value Th2, the control unit 170 controls the illumination emitted from the light source 11. Decrease the amount of light L. Specifically, the control unit 170 reduces the power (current) supplied from the power supply unit 20 to the light source 11. In this case, the control unit 170 reduces the amount of power supplied by a predetermined value. Alternatively, the control unit 170 reduces the amount of power supplied based on the difference between the calculated amount of illumination light L and the upper limit value Th2. Thereby, even if the light emitted from the illumination device 10 enters the eyes of outsiders, it is possible to suppress any adverse effects.
 尚、制御部170が第1検出部15にて検出された第1照明光L1の第1光量を照明光Lの光量として扱うものに代えて、第1照明光L1の第1光量を2倍することにより光源11から出射された照明光Lの光量を検出(算出)してもよい。この場合、下限規定値Th1は上述した照明光Lの光量の下限値であり、上限規定値Th2は上述した照明光Lの光量の上限値である。 Note that instead of the control unit 170 handling the first light intensity of the first illumination light L1 detected by the first detection unit 15 as the light intensity of the illumination light L, the first light intensity of the first illumination light L1 is doubled. By doing so, the amount of illumination light L emitted from the light source 11 may be detected (calculated). In this case, the lower limit specified value Th1 is the lower limit value of the light amount of the illumination light L mentioned above, and the upper limit specified value Th2 is the upper limit value of the light amount of the illumination light L mentioned above.
 尚、上述した光量制御処理は、所定の時間間隔ごとに制御部170により実行される。 Note that the light amount control process described above is executed by the control unit 170 at predetermined time intervals.
 図7に示される光量制御処理のフローチャートを参照して、制御部170が行う処理を説明する。フローチャートに示す各処理は、制御部170が記憶媒体に記憶されたプログラムを読み出し、そのプログラムを実行することにより行われる。 The process performed by the control unit 170 will be described with reference to the flowchart of the light amount control process shown in FIG. Each process shown in the flowchart is performed by the control unit 170 reading a program stored in a storage medium and executing the program.
 ステップS10では、制御部170は、第1検出部15から出力された第1検出信号を用いて第1照明光L1の第1光量の値を検出する。その後、処理はステップS11へ進む。ステップS11では、制御部170は、第1照明光L1の第1光量の値が下限規定値Th1よりも小さいか否かを判定する。第1照明光L1の第1光量の値が下限規定値Th1よりも小さい場合には、制御部170により肯定判定が行われ、処理はステップS12へ進む。ステップS12では、制御部170は、電源部20から光源11へ供給する電力を増加させて、光源11が出射する照明光Lの光量を増加させる。その後、処理はステップS10へ戻る。 In step S10, the control unit 170 detects the value of the first light amount of the first illumination light L1 using the first detection signal output from the first detection unit 15. After that, the process advances to step S11. In step S11, the control unit 170 determines whether the value of the first light amount of the first illumination light L1 is smaller than the lower limit specified value Th1. If the value of the first light amount of the first illumination light L1 is smaller than the lower limit specified value Th1, an affirmative determination is made by the control unit 170, and the process proceeds to step S12. In step S12, the control unit 170 increases the power supplied from the power supply unit 20 to the light source 11 to increase the amount of illumination light L emitted by the light source 11. After that, the process returns to step S10.
 ステップS11にて第1照明光L1の第1光量の値が下限規定値Th1以上の場合には、制御部170により否定判定が行われ、処理はステップS13へ進む。ステップS13では、制御部170は、第1照明光L1の光量の値が上限規定値Th2よりも大きいか否かを判定する。第1照明光L1の第1光量の値が上限規定値Th2よりも大きい場合には、制御部170により肯定判定が行われ、処理はステップS14へ進む。ステップS14では、制御部170は、電源部20から光源11へ供給する電力を減少させて、光源11が出射する照明光Lの光量を減少させる。その後、処理はステップS10へ戻る。また、ステップS13において、第1照明光L1の第1光量の値が上限規定値Th2以下の場合には、制御部170により否定判定が行われ、処理はステップS10へ戻る。 If the value of the first light amount of the first illumination light L1 is equal to or greater than the lower limit specified value Th1 in step S11, a negative determination is made by the control unit 170, and the process proceeds to step S13. In step S13, the control unit 170 determines whether the value of the light amount of the first illumination light L1 is larger than the upper limit specified value Th2. If the value of the first light amount of the first illumination light L1 is larger than the upper limit specified value Th2, an affirmative determination is made by the control unit 170, and the process proceeds to step S14. In step S14, the control unit 170 reduces the power supplied from the power supply unit 20 to the light source 11 to reduce the amount of illumination light L emitted by the light source 11. After that, the process returns to step S10. Further, in step S13, if the value of the first light amount of the first illumination light L1 is equal to or less than the upper limit specified value Th2, a negative determination is made by the control unit 170, and the process returns to step S10.
 上述した光量制御処理が行われることにより、光源11から出射される照明光Lが光量不足または光量過剰となることが抑制される。 By performing the above-described light amount control process, it is suppressed that the illumination light L emitted from the light source 11 becomes insufficient or excessive in amount.
 <光源制御処理>
 制御部170は、第2検出部16が出力する第2検出信号に基づいて、回折部14を介して第2検出部16に到達した光(以下、到達光と呼ぶ)L4の光量である第2光量を検出する。ただし、上述したように、外光L3も回折部14を通過して第2検出部16に入射することがある。このため、制御部170は、第2検出信号に基づいて到達光L4に外光L3が含まれているか否かを判定し、到達光L4に外光L3が含まれている場合と到達光L4に外光L3が含まれていない場合とに応じて、光源11による照明光Lの出射に対して異なる制御を行う。
<Light source control processing>
The control unit 170 determines the amount of light L4 that has reached the second detection unit 16 via the diffraction unit 14 (hereinafter referred to as arriving light) based on the second detection signal output by the second detection unit 16. 2 Detects the amount of light. However, as described above, the external light L3 may also pass through the diffraction section 14 and enter the second detection section 16. Therefore, the control unit 170 determines whether or not the external light L3 is included in the arriving light L4 based on the second detection signal, and determines whether the arriving light L4 includes the external light L3 or not. The emission of the illumination light L by the light source 11 is controlled differently depending on whether the external light L3 is not included in the external light L3 or not.
 到達光L4に外光L3が含まれていない場合、上述したように、回折部14では、到達した第2照明光L2のうちの一部が反射し、この反射光が第2検出部16に入射する。回折部14の反射率は回折部14の材質等により決まる既知の値であることから、到達光L4に外光L3が含まれていない場合、回折部14で反射された反射光の光量(すなわち第2検出信号に基づく光量)と回折部14に到達した第2照明光L2の光量とには比例関係が存在する。このことから、到達光L4に外光L3が含まれていない場合は、制御部170は、第2検出部16にて検出された到達光L4の第2光量を第2照明光L2の光量として扱う(検出する)ことができる。以下、制御部170による処理を具体的に説明する。 When the arriving light L4 does not include the external light L3, as described above, the diffraction unit 14 reflects a part of the second illumination light L2 that has arrived, and this reflected light is transmitted to the second detection unit 16. incident. Since the reflectance of the diffraction section 14 is a known value determined by the material of the diffraction section 14, if the external light L3 is not included in the arriving light L4, the amount of reflected light reflected by the diffraction section 14 (i.e. There is a proportional relationship between the amount of light (based on the second detection signal) and the amount of second illumination light L2 that has reached the diffraction section 14. From this, when the external light L3 is not included in the arriving light L4, the control section 170 sets the second light amount of the arriving light L4 detected by the second detection section 16 as the light amount of the second illumination light L2. It can be handled (detected). The processing by the control unit 170 will be specifically explained below.
 制御部170は、検出した到達光L4の第2光量と予め設定されている上限規定値Th3及び下限規定値Th4とを比較する。上限規定値Th3は、例えば、第2照明光L2の光量の上限値に回折部14の反射率を乗じた値である。第2照明光L2の光量の上限値は、照明装置10から出射される光が外部の人の目に入っても悪影響を及ぼさない光量の値である。 The control unit 170 compares the second light amount of the detected arriving light L4 with a preset upper limit value Th3 and lower limit value Th4. The upper limit specified value Th3 is, for example, a value obtained by multiplying the upper limit value of the light amount of the second illumination light L2 by the reflectance of the diffraction section 14. The upper limit value of the amount of light of the second illumination light L2 is a value of the amount of light that does not have an adverse effect even if the light emitted from the lighting device 10 enters the eyes of an outsider.
 上限規定値Th3の値は、シミュレーション等の結果に基づいて決定され、この上限規定値Th3に対応する閾値電圧(電流)が予め制御部170に設定されている。制御部170のコンパレータは、この閾値電圧(電流)と、到達光L4の第2光量である第2検出部16が出力する第2検出信号の電圧(電流)とを比較し、比較結果に応じた信号を出力する。制御部170は、この信号に基づいて、比較結果に応じた処理を行う。 The value of the upper limit specified value Th3 is determined based on the results of simulations, etc., and a threshold voltage (current) corresponding to this upper limit specified value Th3 is set in the control unit 170 in advance. The comparator of the control unit 170 compares this threshold voltage (current) with the voltage (current) of the second detection signal output by the second detection unit 16, which is the second light amount of the arriving light L4, and adjusts the voltage according to the comparison result. Outputs the signal. Based on this signal, the control unit 170 performs processing according to the comparison result.
 また、下限規定値Th4は、例えば第2照明光L2の光量の下限値に回折部14の反射率を乗じた値である。第2照明光L2の光量の下限値とは、回折部14が破損していない場合に照明装置10から出射される光によって外部に形成される投影パターンが視認可能となるために必要な光量の値である。 Further, the lower limit specified value Th4 is, for example, a value obtained by multiplying the lower limit value of the light amount of the second illumination light L2 by the reflectance of the diffraction section 14. The lower limit value of the light intensity of the second illumination light L2 is the light intensity necessary for the projection pattern formed externally to be visible by the light emitted from the illumination device 10 when the diffraction part 14 is not damaged. It is a value.
 下限規定値Th4の値は、シミュレーション等の結果に基づいて決定され、この下限規定値Th4に対応する閾値電圧(電流)が予め制御部170に設定されている。制御部170は、例えばコンパレータを有し、コンパレータは、閾値電圧(電流)と、到達光L4の第2光量である第2検出部16が出力する第2検出信号の電圧(電流)とを比較し、比較結果に応じた信号を出力する。制御部170は、この信号に基づいて、比較結果に応じた処理を行う。 The value of the lower limit specified value Th4 is determined based on the results of simulations, etc., and a threshold voltage (current) corresponding to this lower limit specified value Th4 is set in the control unit 170 in advance. The control unit 170 includes, for example, a comparator, and the comparator compares the threshold voltage (current) with the voltage (current) of the second detection signal output by the second detection unit 16, which is the second light amount of the arriving light L4. and outputs a signal according to the comparison result. Based on this signal, the control unit 170 performs processing according to the comparison result.
 到達光L4の第2光量が下限規定値Th4以下の場合には、回折部14に穴が開く等の破損(異常)が生じ、回折部14の反射率が低下していることが考えられる。すなわち、回折部14で反射されず透過する第2照明光L2の光量が増加していることが考えられる。この場合、照明装置10の外部に出射される光の光量が多すぎるため、この光が外部の人の目に入ると悪影響を及ぼす虞がある。このため、制御部170は、検出された到達光L4の第2光量が下限規定値Th4以下の場合には、電源部20から光源11への電流供給を停止し、光源11からの照明光Lの出射を停止させる。 If the second light amount of the arriving light L4 is less than the lower limit specified value Th4, it is possible that damage (abnormality) such as a hole is formed in the diffraction part 14 and the reflectance of the diffraction part 14 is reduced. That is, it is conceivable that the amount of second illumination light L2 that is transmitted without being reflected by the diffraction section 14 is increasing. In this case, since the amount of light emitted to the outside of the illumination device 10 is too large, there is a possibility that this light may have an adverse effect if it enters the eyes of an outsider. Therefore, when the second light amount of the detected arriving light L4 is equal to or less than the lower limit specified value Th4, the control unit 170 stops the current supply from the power supply unit 20 to the light source 11, and controls the illumination light L from the light source 11. stop the emission of.
 到達光L4の第2光量が上限規定値Th3より大きくなるときは、次の2つの要因が考えられる。第1の要因として、回折部14に異常は生じていないが、例えば第1検出部15が故障した場合に回折部14を透過する第2照明光L2の光量が増加している。第2の要因として、第1検出部15にも回折部14にも異常は生じていないが、回折部14を介して照明装置10の外部から外光L3が入射しているため、第2検出部16に入射する到達光L4の第2光量が増加している。 When the second light amount of the arriving light L4 becomes larger than the upper limit specified value Th3, the following two factors can be considered. The first factor is that, although no abnormality has occurred in the diffraction section 14, for example, when the first detection section 15 fails, the amount of second illumination light L2 that passes through the diffraction section 14 increases. The second factor is that although there is no abnormality in either the first detection unit 15 or the diffraction unit 14, the external light L3 is incident from outside the illumination device 10 via the diffraction unit 14, so the second detection The second light amount of the arriving light L4 incident on the portion 16 is increasing.
 第1の要因の場合には、照明装置10の外部に出射される光の光量が多すぎるため、この光が外部の人の目に入ると悪影響を及ぼす虞がある。このため、制御部170は、検出された到達光L4の第2光量が上限規定値Th3より大きい場合には、電源部20から光源11への電流供給を停止し、光源11からの照明光Lの出射を停止させる。第2の要因の場合には、照明装置10の外部に出射される光の光量は適正であるため、制御部170は、光源11からの照明光Lの出射を継続する。 In the case of the first factor, the amount of light emitted to the outside of the lighting device 10 is too large, so if this light enters the eyes of people outside, there is a risk that it will have an adverse effect. Therefore, when the second light amount of the detected arriving light L4 is larger than the upper limit specified value Th3, the control unit 170 stops the current supply from the power supply unit 20 to the light source 11, and controls the illumination light L from the light source 11. stop the emission of. In the case of the second factor, the amount of light emitted to the outside of the lighting device 10 is appropriate, so the control unit 170 continues to emit the illumination light L from the light source 11.
 具体的には、制御部170は、到達光L4の第2光量が上限規定値Th3以上の場合に、第2光量が上限規定値Th3以上の状態が予め定められた時間(規定時間)以上継続しているか否かを判定する。この場合、制御部170は、到達光L4の第2光量が上限規定値Th3以上になったタイミングにて計時を開始する。到達光L4の第2光量が上限規定値Th3以上の状態が規定時間よりも長い時間継続している場合には、第1検出部15に故障が生じ、照明光Lの光量が増加していることにより、照明装置10の外部に出射される光の光量が多すぎる状態が継続していると考えられる。すなわち、上述した第1の要因で到達光L4の第2光量が増加していることから、制御部170は、到達光L4に外光L3が含まれていないと判定し、光源11からの照明光Lの出射を停止させる。 Specifically, when the second light amount of the arriving light L4 is equal to or higher than the upper limit specified value Th3, the control unit 170 causes the second light amount to continue to be equal to or higher than the upper limit specified value Th3 for a predetermined time (specified time) or more. Determine whether or not. In this case, the control unit 170 starts timing at the timing when the second light amount of the arriving light L4 becomes equal to or higher than the upper limit value Th3. If the state in which the second light amount of the arriving light L4 is equal to or higher than the upper limit specified value Th3 continues for a longer time than the specified time, a failure has occurred in the first detection unit 15 and the light amount of the illumination light L has increased. As a result, it is considered that the amount of light emitted to the outside of the lighting device 10 continues to be too large. That is, since the second light amount of the arriving light L4 has increased due to the above-mentioned first factor, the control unit 170 determines that the external light L3 is not included in the arriving light L4, and reduces the illumination from the light source 11. Emission of light L is stopped.
 到達光L4の第2光量が上限規定値Th3以上の状態が規定時間よりも短い場合には、外光L3が短期間にて回折部14を介して入射していると考えられる。すなわち、上述した第2の要因で到達光L4の第2光量が増加していることから、制御部170は、到達光L4に外光L3が含まれていると判定し、光源11からの照明光Lの出射を継続させる。 If the state in which the second light amount of the arriving light L4 is equal to or greater than the upper limit value Th3 is shorter than the specified time, it is considered that the external light L3 enters through the diffraction unit 14 for a short period of time. That is, since the second light amount of the arriving light L4 has increased due to the above-mentioned second factor, the control unit 170 determines that the external light L3 is included in the arriving light L4, and reduces the illumination from the light source 11. The light L continues to be emitted.
 尚、上述した規定時間は、シミュレーション等の結果に基づいて、照明装置10を搭載する移動体の移動に伴い、外光L3が短期間だけ照明装置10内に入射したものと見なせる程度の時間として設定される。 In addition, the above-mentioned specified time is based on the results of simulations, etc., and is a period of time that allows the external light L3 to be considered to have entered the lighting device 10 for a short period of time due to the movement of the moving object on which the lighting device 10 is mounted. Set.
 また、上述した光源制御処理は、所定の時間間隔ごとに制御部170により実行される。 Furthermore, the light source control process described above is executed by the control unit 170 at predetermined time intervals.
 図8に示される光量制御処理のフローチャートを参照して、制御部170が行う処理を説明する。フローチャートに示す各処理は、制御部170が記憶媒体に記憶されたプログラムを読み出し、そのプログラムを実行することにより行われる。 The process performed by the control unit 170 will be described with reference to the flowchart of the light amount control process shown in FIG. Each process shown in the flowchart is performed by the control unit 170 reading a program stored in a storage medium and executing the program.
 ステップS20では、制御部170は、電源部20から光源11に規定の電力(電流)を供給して、光源11から照明光Lを出射させる。その後、処理はステップS21へ進む。ステップS21では、制御部170は、第2検出部16から出力された第2検出信号を用いて到達光L4の第2光量の値を検出する。その後、処理はステップS22へ進む。 In step S20, the control unit 170 supplies specified power (current) from the power supply unit 20 to the light source 11, and causes the light source 11 to emit illumination light L. After that, the process advances to step S21. In step S21, the control unit 170 uses the second detection signal output from the second detection unit 16 to detect the value of the second light amount of the arriving light L4. After that, the process advances to step S22.
 ステップS22では、制御部170は、検出した到達光L4の第2光量の値と下限規定値Th4とを比較する。到達光L4の第2光量の値が下限規定値Th4よりも大きい場合には、制御部170により肯定判定が行われ、処理はステップS23へ進む。到達光L4の第2光量の値が下限規定値Th4以下の場合には、制御部170により否定判定が行われ、処理は後述するステップS25へ進む。 In step S22, the control unit 170 compares the value of the second light amount of the detected arriving light L4 and the lower limit specified value Th4. If the value of the second light amount of the arriving light L4 is larger than the lower limit specified value Th4, an affirmative determination is made by the control unit 170, and the process proceeds to step S23. If the value of the second light amount of the arriving light L4 is equal to or less than the lower limit specified value Th4, the control unit 170 makes a negative determination, and the process proceeds to step S25, which will be described later.
 ステップS23では、到達光L4の第2光量の値が上限規定値Th3より小さいか否かを判定する。到達光L4の第2光量の値が上限規定値Th3よりも小さい場合には、制御部170により肯定判定が行われ、処理はステップS21へ戻る。到達光L4の第2光量の値が上限規定値Th3以上の場合には、制御部170により否定判定が行われ、処理はステップS24へ進む。 In step S23, it is determined whether the value of the second light amount of the arriving light L4 is smaller than the upper limit specified value Th3. If the value of the second light amount of the arriving light L4 is smaller than the upper limit specified value Th3, an affirmative determination is made by the control unit 170, and the process returns to step S21. If the value of the second light amount of the arriving light L4 is equal to or greater than the upper limit specified value Th3, a negative determination is made by the control unit 170, and the process proceeds to step S24.
 ステップS24では、制御部170は、到達光L4の第2光量の値において、上限規定値Th3以上の状態が規定時間より短いか否かを判定する。規定時間より短い場合には、制御部170により肯定判定が行われ、処理はステップS21へ戻る。規定時間以上の場合には、制御部170により否定判定が行われ、処理はステップS25へ進む。ステップS25では、制御部170は、光源11への電力供給を停止し、光源11から照明光Lの出射を停止させて、処理を終了する。 In step S24, the control unit 170 determines whether the state in which the second light amount of the arriving light L4 is greater than or equal to the upper limit specified value Th3 is shorter than the specified time. If it is shorter than the specified time, the control unit 170 makes an affirmative determination, and the process returns to step S21. If the time is longer than the specified time, the control unit 170 makes a negative determination, and the process proceeds to step S25. In step S25, the control unit 170 stops supplying power to the light source 11, stops emitting the illumination light L from the light source 11, and ends the process.
 上述した実施形態によれば、以下の作用効果が得られる。 According to the embodiment described above, the following effects can be obtained.
 (1)照明装置10のレンズバレル30は、光学系12の光軸Axと交差する第1方向と交わる平面であり、第1検出部15及び第2検出部16を保持する保持部180(第1保持部18及び第2保持部19)が取り付けられる取付平面330(第1取付平面311及び第2取付平面312)を有する。レンズバレル30には、光軸Axに沿う第2方向に沿って光学系12と光源11とが取り付けられる。これにより、照明装置10が複数の検出部(第1検出部15及び第2検出部16)を備える場合であっても、レンズバレル30の外径が増大することを抑制して、照明装置10の小型化に寄与することができる。 (1) The lens barrel 30 of the illumination device 10 is a plane that intersects with the first direction that intersects the optical axis Ax of the optical system 12, and the holding section 180 (the first It has an attachment plane 330 (a first attachment plane 311 and a second attachment plane 312) to which the first attachment section 18 and the second attachment section 19 are attached. The optical system 12 and the light source 11 are attached to the lens barrel 30 along the second direction along the optical axis Ax. As a result, even if the lighting device 10 includes a plurality of detection units (the first detection unit 15 and the second detection unit 16), increasing the outer diameter of the lens barrel 30 is suppressed, and the lighting device 10 can contribute to downsizing.
 また、第1検出部15及び第2検出部16を保持する第1保持部18及び第2保持部19は、それぞれy軸+側及びy軸-側から第1取付平面311及び第2取付平面312に取り付けられる。これにより、照明装置10の製造時におけるレンズバレル30への第1検出部15及び第2検出部18の取り付けが容易となり、組み立て作業の効率が向上する。 Further, the first holding part 18 and the second holding part 19 that hold the first detecting part 15 and the second detecting part 16 are connected to the first mounting plane 311 and the second mounting plane from the y-axis + side and the y-axis - side, respectively. 312. This makes it easy to attach the first detection section 15 and the second detection section 18 to the lens barrel 30 during manufacturing of the illumination device 10, and improves the efficiency of assembly work.
 また、光源11から出力された照明光Lを平行光にする光学系12を、単一の部材であるレンズバレル30の内径を基準にして取り付け位置を決めることができるので、光学系12の取り付け精度を向上させることができる。 Furthermore, since the mounting position of the optical system 12 that converts the illumination light L outputted from the light source 11 into parallel light can be determined based on the inner diameter of the lens barrel 30, which is a single member, the mounting position of the optical system 12 can be determined based on the inner diameter of the lens barrel 30, which is a single member. Accuracy can be improved.
 (2)レンズバレル30には、第1検出部15及び第2検出部16に対して第2方向の一方側(x軸+側)に光学系12が取り付けられ、第2方向の他方側(x軸-側)に光源11が取り付けられる。これにより、レンズバレル30のx軸-側を通過する照明光Lの径がレンズバレル30のx軸+側を通過する第1照明光L1の径よりも小さいため、分岐部13の小型化が可能になる。 (2) The optical system 12 is attached to the lens barrel 30 on one side in the second direction (x-axis + side) with respect to the first detection section 15 and the second detection section 16, and on the other side in the second direction ( A light source 11 is attached to the x-axis side). As a result, the diameter of the illumination light L passing through the negative side of the x-axis of the lens barrel 30 is smaller than the diameter of the first illumination light L1 passing through the positive side of the x-axis of the lens barrel 30, so that the branching portion 13 can be made smaller. It becomes possible.
 (3)第1検出部15と第2検出部16とは、光軸Axを挟んで互いに対向して収容部180に収容される。これにより、第1検出部15と第2検出部16とのレンズバレル30への取り付け方向を分割することが可能となり、レンズバレル30の外径が大きくなることが抑制される。 (3) The first detection section 15 and the second detection section 16 are housed in the housing section 180 facing each other with the optical axis Ax in between. This makes it possible to separate the attachment directions of the first detection section 15 and the second detection section 16 to the lens barrel 30, thereby suppressing an increase in the outer diameter of the lens barrel 30.
 (4)第1取付平面311に取り付けられた第1保持部18の第2方向の他方側(x軸-側)の端部の一部と第2取付平面312に取り付けられた第2保持部19の第2方向の他方側(x軸-側)の端部の一部とは、光学系12の光軸Axに沿う方向に重複する。これにより、光源11から出射した照明光Lの一部が、第1保持部18と第2保持部19との間を通過して、迷光として光学系12に到達することが抑制される。 (4) A part of the end of the first holding part 18 on the other side in the second direction (x-axis − side) attached to the first mounting plane 311 and the second holding part attached to the second mounting plane 312 A part of the end portion of the optical system 19 on the other side (x-axis − side) in the second direction overlaps in the direction along the optical axis Ax of the optical system 12. This prevents part of the illumination light L emitted from the light source 11 from passing between the first holding part 18 and the second holding part 19 and reaching the optical system 12 as stray light.
 (5)第1検出部15が有する受光部152の受光面と第2検出部16が有する受光部162の受光面とは、光学系12の光軸Axと直交する方向(y軸方向)に対して傾斜を有してレンズバレル30に収容される。これにより、受光部152,162の受光面で反射された光が、入射時と同一の光路を逆方向に進行して迷光となることが抑制される。 (5) The light receiving surface of the light receiving section 152 of the first detecting section 15 and the light receiving surface of the light receiving section 162 of the second detecting section 16 are arranged in a direction perpendicular to the optical axis Ax of the optical system 12 (y-axis direction). It is housed in the lens barrel 30 with an inclination relative to the lens barrel 30 . This prevents the light reflected by the light-receiving surfaces of the light-receiving sections 152 and 162 from traveling in the opposite direction along the same optical path as that at the time of incidence and becoming stray light.
 (6)制御基板17は、光源11に対して第2方向の他方側(x軸-側)に設けられる。レンズバレル30のx軸-側の端面である第3取付面313には、制御基板17と第1検出部15及び第2検出部16とを接続する配線153,163を通過させる貫通孔314が設けられる。これにより、レンズバレル30と外筒50とを取り付ける際に、配線153,163がレンズバレル30と外筒50との間に挟み込まれることが抑制される。 (6) The control board 17 is provided on the other side (x-axis − side) of the light source 11 in the second direction. The third mounting surface 313, which is the end surface on the −x-axis side of the lens barrel 30, has a through hole 314 through which the wirings 153, 163 connecting the control board 17 and the first detection section 15 and second detection section 16 pass. provided. This prevents the wiring 153, 163 from being caught between the lens barrel 30 and the outer tube 50 when the lens barrel 30 and the outer tube 50 are attached.
 <第1変形例>
 第1変形例の照明装置10が有する第2検出部16の受光部162は、複数の撮像画素(光電変換素子)が行方向と列方向とに2次元状に配列されたイメージセンサ(撮像素子)によって構成されてもよい。第2検出部16は、回折部14を介して入射した到達光L4の第2光量と、第2検出部16の受光部162の受光面上において到達光L4が分布する分布領域とを検出する。第1変形例の制御部170は、検出された第2光量と到達光L4の分布領域とに基づいて、光源制御処理を行う。
<First modification example>
The light receiving unit 162 of the second detection unit 16 included in the illumination device 10 of the first modification is an image sensor (imaging device) in which a plurality of imaging pixels (photoelectric conversion elements) are two-dimensionally arranged in the row direction and the column direction. ). The second detection unit 16 detects a second light amount of the arriving light L4 that has entered through the diffraction unit 14 and a distribution area in which the arriving light L4 is distributed on the light receiving surface of the light receiving unit 162 of the second detection unit 16. . The control unit 170 of the first modification performs light source control processing based on the detected second light amount and the distribution area of the arriving light L4.
 この場合、制御部170は、回折部14に異常が生じておらず、第1検出部15に故障等が生じておらず、かつ到達光L4に外光L3が含まれていない状態のときの、到達光L4の分布領域を基準領域として用いる。すなわち、基準領域とは、到達光L4が回折部14で反射された第2照明光L2の反射光である状態のときに、到達光L4が第2検出部16の受光部162の受光面上で分布する領域である。例えば、基準領域は、第2照明光L2の光量が上述した上限値の時に、第2照明光L2が第2検出部16の受光部162の受光面上で分布する分布領域とすることができる。基準領域は、第2検出部16を構成する撮像画素の位置(座標)によって表現されたデータであり、予め制御部170に設定されている。 In this case, the control unit 170 controls the control unit 170 when there is no abnormality in the diffraction unit 14, no failure or the like in the first detection unit 15, and when the external light L3 is not included in the arriving light L4. , the distribution area of the arriving light L4 is used as a reference area. In other words, the reference area is a region where the arriving light L4 is on the light receiving surface of the light receiving section 162 of the second detecting section 16 when the arriving light L4 is the reflected light of the second illumination light L2 reflected by the diffraction section 14. This is the area where the distribution is. For example, the reference area can be a distribution area where the second illumination light L2 is distributed on the light receiving surface of the light receiving unit 162 of the second detection unit 16 when the light amount of the second illumination light L2 is at the above-mentioned upper limit value. . The reference area is data expressed by the position (coordinates) of the imaging pixel forming the second detection unit 16, and is set in the control unit 170 in advance.
 制御部170は、第2検出部16により検出された到達光L4の分布領域を基準領域と比較して、到達光L4に外光L3が含まれるか否かを判定する。具体的には、制御部170は、第2検出信号に基づく受光部162の受光面上にて到達光L4が分布する位置(撮像画素の座標)と基準領域の撮像画素の位置(座標)との差分の値を算出する。そして、制御部170は、算出した差分の値が予め設定された基準値を超えるか否かを判定する。この基準値は、到達光L4の分布領域の形状が基準領域の形状に対して相似形状であると見なせる形状を規定する値である。基準領域が上記のように第2照明光L2の光量が上限値のときの分布領域として設定されている場合、基準値は、例えば、第2照明光L2の光量が上記の下限値の時の分布領域の形状と、基準領域の形状と、の差分の値として設定されてよい。 The control unit 170 compares the distribution area of the arriving light L4 detected by the second detection unit 16 with the reference area, and determines whether the external light L3 is included in the arriving light L4. Specifically, the control unit 170 determines the position (coordinates of the imaging pixel) where the arriving light L4 is distributed on the light receiving surface of the light receiving unit 162 based on the second detection signal and the position (coordinates) of the imaging pixel in the reference area. Calculate the value of the difference. Then, the control unit 170 determines whether the calculated difference value exceeds a preset reference value. This reference value is a value that defines a shape in which the shape of the distribution region of the arriving light L4 can be considered to be similar to the shape of the reference region. If the reference area is set as the distribution area when the light intensity of the second illumination light L2 is at the upper limit value as described above, the reference value is, for example, the distribution area when the light intensity of the second illumination light L2 is at the lower limit value. It may be set as the value of the difference between the shape of the distribution region and the shape of the reference region.
 到達光L4の分布領域の形状と基準領域の形状との差分の値が上記の基準値を超える場合、すなわち、到達光L4の分布領域の形状が基準領域の形状に対して相似形状ではない場合には、制御部170は、到達光L4に外光L3が含まれていると判定する。換言すると、制御部170は、到達光L4の分布領域の形状が基準領域の形状に対して基準値を超え、かつ異なる場合、到達光L4に外光L3が含まれていると判定する。 When the value of the difference between the shape of the distribution region of the arriving light L4 and the shape of the reference region exceeds the above reference value, that is, when the shape of the distribution region of the arriving light L4 is not similar to the shape of the reference region. , the control unit 170 determines that the external light L3 is included in the arriving light L4. In other words, if the shape of the distribution area of the arriving light L4 exceeds the reference value and is different from the shape of the reference area, the control unit 170 determines that the external light L3 is included in the arriving light L4.
 差分の値が基準値を超える場合、すなわち到達光L4に外光L3が含まれている場合、制御部170は、第2検出信号に基づいた到達光L4の分布領域から、外光L3が分布する領域を除外する。この場合、制御部170は、第2検出信号に含まれる各撮像画素からの信号のうち、基準領域の外部の座標に相当する撮像画素からの信号を除外することにより補正信号を生成する。このため、補正信号は、到達光L4の分布領域のうち基準領域と重複する領域における光量を表すこととなる。換言すると、制御部170は、到達光L4の分布領域のうち基準領域と重複する領域における光量を抽出する。 When the value of the difference exceeds the reference value, that is, when the arriving light L4 includes the external light L3, the control unit 170 determines whether the external light L3 is distributed from the distribution area of the arriving light L4 based on the second detection signal. Exclude areas that you want to use. In this case, the control unit 170 generates the correction signal by excluding signals from the imaging pixels corresponding to coordinates outside the reference area from among the signals from each imaging pixel included in the second detection signal. Therefore, the correction signal represents the amount of light in the region overlapping the reference region among the distribution regions of the arriving light L4. In other words, the control unit 170 extracts the amount of light in a region overlapping with the reference region out of the distribution region of the arriving light L4.
 制御部170は、実施形態の場合と同様にして、補正信号に基づいた到達光L4の第2光量の値と下限規定値Th4及び上限規定値Th3とを比較する。以後、実施の形態の場合と同様に、制御部170は、比較の結果に基づいて光源11に照明光Lの停止又は継続を行わせる。 Similarly to the embodiment, the control unit 170 compares the value of the second light amount of the arriving light L4 based on the correction signal with the lower limit specified value Th4 and the upper limit specified value Th3. Thereafter, as in the embodiment, the control unit 170 causes the light source 11 to stop or continue emitting the illumination light L based on the comparison result.
 到達光L4の分布領域の形状と基準領域の形状との差分の値が基準値以下の場合、すなわち、到達光L4の分布領域の形状と基準領域の形状とが基準値を超えて異なっていない場合には、到達光L4の分布領域の形状は基準領域の形状に対して相似形状である。このため、制御部170は、差分の値が基準値以下の場合には、到達光L4に外光L3が含まれていないと判定する。そして、制御部17は、実施形態の場合と同様に、第2検出信号に基づく到達光L4の第2光量の値と下限規定値Th4及び上限規定値Th3とを比較し、比較の結果に基づいて光源11に照明光Lの停止又は継続を行わせる。 If the value of the difference between the shape of the distribution region of the arriving light L4 and the shape of the reference region is less than the reference value, that is, the shape of the distribution region of the arriving light L4 and the shape of the reference region do not differ by more than the reference value. In this case, the shape of the distribution region of the arriving light L4 is similar to the shape of the reference region. Therefore, if the value of the difference is less than or equal to the reference value, the control unit 170 determines that the external light L3 is not included in the arriving light L4. Then, as in the case of the embodiment, the control unit 17 compares the value of the second light amount of the arriving light L4 based on the second detection signal with the lower limit specified value Th4 and the upper limit specified value Th3, and based on the comparison result. to cause the light source 11 to stop or continue supplying the illumination light L.
 図9は、第1変形例における光源制御処理を示すフローチャートである。フローチャートに示す各処理は、制御部170が記憶媒体に記憶されたプログラムを読み出し、そのプログラムを実行することにより行われる。 FIG. 9 is a flowchart showing light source control processing in the first modification. Each process shown in the flowchart is performed by the control unit 170 reading a program stored in a storage medium and executing the program.
 ステップS30では、制御部170は光源11に照明光Lを出射させる。その後、処理はステップS31へ進む。ステップS31では、制御部170は、第2検出部16から出力された第2検出信号を用いて、到達光L4の分布領域と第2光量とを検出する。その後、処理は、ステップS32へ進む。 In step S30, the control unit 170 causes the light source 11 to emit the illumination light L. After that, the process advances to step S31. In step S31, the control unit 170 uses the second detection signal output from the second detection unit 16 to detect the distribution area and second light amount of the arriving light L4. After that, the process advances to step S32.
 ステップS32では、制御部170は、検出した到達光L4の分布領域の形状と基準領域の形状とは基準値を超えて異なるか否かを判定する。到達光L4の分布領域の形状(撮像画素の座標)と基準領域の形状(座標)との差分の値が基準値以下の場合には、制御部170により否定判定が行われ、処理は後述するステップS34へ進む。到達光L4の分布領域の形状(撮像画素の座標)と基準領域の形状(座標)との差分の値が基準値を超える場合には、制御部170により肯定判定が行われ、処理はステップS33へ進む。 In step S32, the control unit 170 determines whether the shape of the detected distribution region of the arriving light L4 and the shape of the reference region differ by more than a reference value. If the value of the difference between the shape (coordinates of the imaging pixel) of the distribution area of the arriving light L4 and the shape (coordinates) of the reference area is less than or equal to the reference value, a negative determination is made by the control unit 170, and the process will be described later. The process advances to step S34. If the value of the difference between the shape of the distribution area of the arriving light L4 (coordinates of the imaging pixel) and the shape (coordinates) of the reference area exceeds the reference value, an affirmative determination is made by the control unit 170, and the process proceeds to step S33. Proceed to.
 ステップS33では、制御部170は、第2検出信号に基づいた到達光L4の分布領域から、外光L3が分布する領域を除外して、補正信号を生成する。その後、処理はステップS34へ進む。ステップS34では、制御部170は、到達光L4の第2光量の値と下限規定値Th4及び上限規定値Th3とを比較する。尚、ステップS32からステップS34に進んだ場合には、制御部170は、第2検出信号を用いて第2光量の値と下限規定値Th4及び上限規定値Th3とを比較する。ステップS33からステップS34に進んだ場合には、制御部170は、ステップS33で生成した補正信号を用いて第2光量の値と下限規定値Th4及び上限規定値Th3とを比較する。到達光L4の第2光量の値が下限規定値Th4よりも大きく、かつ、上限規定値Th3よりも小さい場合には、制御部170により肯定判定が行われ、処理はステップS31へ戻る。到達光L4の第2光量の値が下限規定値Th4以下、または、上限規定値Th3以上の場合には、制御部170により否定判定が行われ、処理はステップS35へ進む。ステップS35では、制御部170は、光源11への電力供給を停止し、光源11から照明光Lの出射を停止させて、処理を終了する。 In step S33, the control unit 170 generates a correction signal by excluding the region where the external light L3 is distributed from the distribution region of the arriving light L4 based on the second detection signal. After that, the process advances to step S34. In step S34, the control unit 170 compares the value of the second light amount of the arriving light L4 with the lower limit specified value Th4 and the upper limit specified value Th3. Note that when the process proceeds from step S32 to step S34, the control unit 170 uses the second detection signal to compare the value of the second light amount with the lower limit specified value Th4 and the upper limit specified value Th3. When the process proceeds from step S33 to step S34, the control unit 170 uses the correction signal generated in step S33 to compare the value of the second light amount with the lower limit specified value Th4 and the upper limit specified value Th3. If the value of the second light amount of the arriving light L4 is larger than the lower limit specified value Th4 and smaller than the upper limit specified value Th3, an affirmative determination is made by the control unit 170, and the process returns to step S31. If the value of the second light amount of the arriving light L4 is less than or equal to the lower limit specified value Th4 or greater than or equal to the upper limit specified value Th3, a negative determination is made by the control unit 170, and the process proceeds to step S35. In step S35, the control unit 170 stops supplying power to the light source 11, stops emitting the illumination light L from the light source 11, and ends the process.
 <第2変形例>
 光源制御処理において、第2検出部16によって検出された第2光量が下限規定値Th4以下または上限規定値Th3以上の場合に、光源11から照明光Lの出射を停止させるものに限定されない。例えば、制御部170は、光源11から出射される照明光Lの光量を低下させてもよい。この場合、制御部170は、光源11へ供給する電力を減少させて照明光Lの光量を低下させることができる。このときの照明光Lの光量は、第2検出部16によって検出された第2光量と、上限規定値Th3又は下限規定値Th4との間の差に応じて低下されてもよいし、予め決められている所定の割合ごとに低下されてもよい。
<Second modification example>
The light source control process is not limited to stopping the emission of the illumination light L from the light source 11 when the second light amount detected by the second detection unit 16 is less than or equal to the lower limit specified value Th4 or greater than or equal to the upper limit specified value Th3. For example, the control unit 170 may reduce the amount of illumination light L emitted from the light source 11. In this case, the control unit 170 can reduce the amount of illumination light L by reducing the power supplied to the light source 11. The light intensity of the illumination light L at this time may be reduced according to the difference between the second light intensity detected by the second detection section 16 and the upper limit specified value Th3 or the lower limit specified value Th4, or may be determined in advance. may be decreased by a predetermined percentage.
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。例えば、制御部170が光源制御処理のみを行ってもよい。この場合、制御部170は、第2検出部16から出力された第2検出信号を用いて到達光L4に外光L3が含まれるか否かを判定し、この判定結果と、第2検出部16に到達した到達光L4の第2光量とを用いて、光源11から出射される照明光Lを制御してもよい。換言すると、制御部170は、到達光L4に外光L3が含まれるか否かの判定結果と、到達光L4の第2光量と、第1照明光L1の第1光量とのうち、少なくとも判定結果と到達光L4の第2光量とに基づいて、光源11が出射する照明光Lを制御してよい。 Although various embodiments and modifications have been described above, the present invention is not limited to these. Other embodiments that are considered within the technical spirit of the present invention are also included within the scope of the present invention. For example, the control unit 170 may perform only the light source control process. In this case, the control unit 170 uses the second detection signal output from the second detection unit 16 to determine whether or not the external light L3 is included in the arriving light L4, and uses this determination result and the second detection signal The illumination light L emitted from the light source 11 may be controlled using the second light amount of the arriving light L4 that has reached the light source 16. In other words, the control unit 170 determines at least the determination result of whether or not the external light L3 is included in the arriving light L4, the second light amount of the arriving light L4, and the first light amount of the first illumination light L1. The illumination light L emitted by the light source 11 may be controlled based on the result and the second light amount of the arriving light L4.
 尚、本技術は以下のような構成をとることが可能である。 Note that the present technology can have the following configuration.
 (1)照明装置は、照明光を出射する光源と、光学系と、前記光源から出射した前記照明光を分岐する分岐部と、前記分岐部を介して到達した光の光量を検出する複数の検出部と、複数の前記検出部をそれぞれ保持する保持部と、前記分岐部と、複数の前記検出部と、前記保持部とを収容する収容部と、を備える。前記収容部は、前記光学系の光軸と交差する第1方向と交わる平面であり、複数の前記検出部を保持する前記保持部が前記第1方向から取り付けられる取付平面を有する。前記収容部には、前記光軸に沿う第2方向に沿って前記光学系と前記光源とが取り付けられる。 (1) An illumination device includes a light source that emits illumination light, an optical system, a branching section that branches the illumination light emitted from the light source, and a plurality of light sources that detect the amount of light that has arrived via the branching section. It includes a detection section, a holding section that holds each of the plurality of detection sections, the branch section, a housing section that accommodates the plurality of detection sections and the holding section. The housing section is a plane that intersects with a first direction that intersects the optical axis of the optical system, and has a mounting plane on which the holding section that holds the plurality of detection sections is attached from the first direction. The optical system and the light source are attached to the housing part along a second direction along the optical axis.
 (2)前記収容部には、前記検出部に対して前記第2方向の一方側に前記光学系が取り付けられ、前記第2方向の他方側に前記光源が取り付けられる、(1)に記載の照明装置。 (2) The optical system is attached to the housing section on one side in the second direction with respect to the detection section, and the light source is attached on the other side in the second direction with respect to the detection section. lighting equipment.
 (3)複数の前記検出部は、第1検出部と第2検出部とを含み、前記第1検出部と前記第2検出部とは、前記光軸を挟んで互いに対向して前記収容部に収容される、(1)または(2)に記載の照明装置。 (3) The plurality of detecting sections include a first detecting section and a second detecting section, and the first detecting section and the second detecting section are opposed to each other with the optical axis in between and are arranged in the housing section. The lighting device according to (1) or (2), which is housed in a.
 (4)前記保持部は、前記第1検出部を保持する第1保持部と、前記第2検出部を保持する第2保持部とを含み、前記取付平面は、前記第1保持部が取り付けられる第1取付平面と、前記第2保持部が取り付けられる第2取付平面とを含み、前記第1取付平面に取り付けられた前記第1保持部の前記第2方向の他方側の端部の一部と前記第2取付平面に取り付けられた前記第2保持部の前記第2方向の他方側の端部の一部とは、前記光軸に沿う方向に重複する、(3)に記載の照明装置。 (4) The holding section includes a first holding section that holds the first detection section and a second holding section that holds the second detection section, and the mounting plane is such that the first holding section is attached to the mounting plane. and a second mounting plane to which the second holding part is attached, and one end of the first holding part on the other side in the second direction is attached to the first mounting plane. The illumination according to (3), wherein the part and a part of the other end in the second direction of the second holding part attached to the second mounting plane overlap in the direction along the optical axis. Device.
 (5)前記第1検出部の受光面と前記第2検出部の受光面とは、前記光学系の光軸と直交する方向に対して傾斜を有して前記収容部に収容される、(3)または(4)に記載の照明装置。 (5) The light-receiving surface of the first detection section and the light-reception surface of the second detection section are accommodated in the accommodation section with an inclination with respect to a direction perpendicular to the optical axis of the optical system. 3) or the lighting device according to (4).
 (6)前記光源に対して前記第2方向の他方側に設けられる制御基板と、前記制御基板と前記検出部とを接続する配線と、を備え、前記収容部の前記第2方向の他方側の端面には、前記配線を通過させる貫通孔が設けられる、(1)から(5)までの何れかに記載の照明装置。 (6) A control board provided on the other side in the second direction with respect to the light source, and wiring connecting the control board and the detection section, the other side of the accommodating section in the second direction. The lighting device according to any one of (1) to (5), wherein an end face of the lighting device is provided with a through hole through which the wiring passes.
10 照明装置、11 光源、12 光学系、13 分岐部、14 回折部、15 第1検出部、16 第2検出部、17 制御基板、18 第1保持部、19 第2保持部、30 レンズバレル、31 第1バレル、32 第2バレル、40 内筒、50 外筒、60 外周筒、121 第1レンズ、122 第2レンズ、123 第3レンズ、152 受光部、153 配線、162 受光部、163 配線、170 制御部、180 保持部、181 第1取付部、182 第2取付部、194 突部、310 凹部、311 第1取付平面、312 第2取付平面、312 取付平面、313 第3取付面、314 貫通孔、315 シール部材、320 勘合部、321 凹部、322 シール部材、323 穴、324 穴、330 取付平面、401 第1径勘合部、402 第2径勘合部 10 illumination device, 11 light source, 12 optical system, 13 branching section, 14 diffraction section, 15 first detection section, 16 second detection section, 17 control board, 18 first holding section, 19 second holding section, 30 lens barrel , 31 First barrel, 32 Second barrel, 40 Inner cylinder, 50 Outer cylinder, 60 Outer cylinder, 121 First lens, 122 Second lens, 123 Third lens, 152 Light receiving part, 153 Wiring, 162 Light receiving part, 163 Wiring, 170 control section, 180 holding section, 181 first mounting section, 182 second mounting section, 194 protrusion, 310 recess, 311 first mounting plane, 312 second mounting plane, 312 mounting plane, 313 third mounting surface , 314 through hole, 315 seal member, 320 fitting portion, 321 recess, 322 seal member, 323 hole, 324 hole, 330 mounting plane, 401 first diameter fitting portion, 402 second diameter fitting portion

Claims (6)

  1.  照明光を出射する光源と、
     光学系と、
     前記光源から出射した前記照明光を分岐する分岐部と、
     前記分岐部を介して到達した光の光量を検出する複数の検出部と、
     複数の前記検出部をそれぞれ保持する保持部と、
     前記分岐部と、複数の前記検出部と、前記保持部とを収容する収容部と、を備え、
     前記収容部は、前記光学系の光軸と交差する第1方向と交わる平面であり、複数の前記検出部を保持する前記保持部が前記第1方向から取り付けられる取付平面を有し、
     前記収容部には、前記光軸に沿う第2方向に沿って前記光学系と前記光源とが取り付けられる、照明装置。
    a light source that emits illumination light;
    optical system and
    a branching part that branches the illumination light emitted from the light source;
    a plurality of detection units that detect the amount of light that has arrived via the branching unit;
    a holding section that holds each of the plurality of detection sections;
    an accommodating section that accommodates the branch section, the plurality of detection sections, and the holding section;
    The housing part is a plane that intersects with a first direction that intersects the optical axis of the optical system, and has a mounting plane on which the holding part that holds the plurality of detection parts is attached from the first direction,
    The lighting device, wherein the optical system and the light source are attached to the housing part along a second direction along the optical axis.
  2.  請求項1に記載の照明装置において、
     前記収容部には、前記検出部に対して前記第2方向の一方側に前記光学系が取り付けられ、前記検出部に対して前記第2方向の他方側に前記光源が取り付けられる、照明装置。
    The lighting device according to claim 1,
    An illumination device, wherein the optical system is attached to the housing section on one side in the second direction with respect to the detection section, and the light source is attached on the other side in the second direction with respect to the detection section.
  3.  請求項1に記載の照明装置において、
     複数の前記検出部は、第1検出部と第2検出部とを含み、
     前記第1検出部と前記第2検出部とは、前記光軸を挟んで互いに対向して前記収容部に収容される、照明装置。
    The lighting device according to claim 1,
    The plurality of detection units include a first detection unit and a second detection unit,
    The first detection section and the second detection section are accommodated in the accommodation section so as to face each other with the optical axis in between.
  4.  請求項3に記載の照明装置において、
     前記保持部は、前記第1検出部を保持する第1保持部と、前記第2検出部を保持する第2保持部とを含み、
     前記取付平面は、前記第1保持部が取り付けられる第1取付平面と、前記第2保持部が取り付けられる第2取付平面とを含み、
     前記第1取付平面に取り付けられた前記第1保持部の前記第2方向の他方側の端部の一部と前記第2取付平面に取り付けられた前記第2保持部の前記第2方向の他方側の端部の一部とは、前記光軸に沿う方向に重複する、照明装置。
    The lighting device according to claim 3,
    The holding section includes a first holding section that holds the first detection section and a second holding section that holds the second detection section,
    The mounting plane includes a first mounting plane to which the first holding part is attached, and a second mounting plane to which the second holding part is attached,
    A part of the other end in the second direction of the first holding part attached to the first mounting plane and the other end in the second direction of the second holding part attached to the second mounting plane. A part of the side end portion of the illumination device overlaps in the direction along the optical axis.
  5.  請求項3に記載の照明装置において、
     前記第1検出部の受光面と前記第2検出部の受光面とは、前記光学系の光軸と直交する方向に対して傾斜を有して前記収容部に収容される、照明装置。
    The lighting device according to claim 3,
    The light receiving surface of the first detecting section and the light receiving surface of the second detecting section are housed in the housing section so as to be inclined with respect to a direction perpendicular to the optical axis of the optical system.
  6.  請求項1から5までの何れか一項に記載の照明装置において、
     前記光源に対して前記第2方向の他方側に設けられる制御基板と、
     前記制御基板と前記検出部とを接続する配線と、を備え、
     前記収容部の前記第2方向の他方側の端面には、前記配線を通過させる貫通孔が設けられる、照明装置。
    The lighting device according to any one of claims 1 to 5,
    a control board provided on the other side of the second direction with respect to the light source;
    Wiring connecting the control board and the detection section,
    A lighting device, wherein a through hole through which the wiring passes is provided on the other end surface of the accommodating portion in the second direction.
PCT/JP2023/019004 2022-05-24 2023-05-22 Illumination device WO2023228913A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-084260 2022-05-24
JP2022084260 2022-05-24

Publications (1)

Publication Number Publication Date
WO2023228913A1 true WO2023228913A1 (en) 2023-11-30

Family

ID=88919293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019004 WO2023228913A1 (en) 2022-05-24 2023-05-22 Illumination device

Country Status (1)

Country Link
WO (1) WO2023228913A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011527518A (en) * 2008-07-07 2011-10-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Eye-safe laser-based illumination
JP2014180886A (en) * 2013-03-18 2014-09-29 Stanley Electric Co Ltd Vehicular headlamp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011527518A (en) * 2008-07-07 2011-10-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Eye-safe laser-based illumination
JP2014180886A (en) * 2013-03-18 2014-09-29 Stanley Electric Co Ltd Vehicular headlamp

Similar Documents

Publication Publication Date Title
US9291449B2 (en) Detection of configuration changes among optical elements of illumination system
US9606237B2 (en) Spatially coded structured light generator
EP3165874B1 (en) Method and device for triangulation-based distance measurement
US7995836B2 (en) Optoelectronic multiplane sensor and method for monitoring objects
EP0634892B1 (en) Light source device for an image processor
WO1997047943A1 (en) Wheel alignment measuring instrument and wheel alignment measuring
US20160223320A1 (en) Apparatus and method for determining the target position deviation of two bodies
EP2217967A1 (en) Proximity detection for control of an imaging device
KR20230126704A (en) LiDAR system using transmit optical power monitor
CN108344378A (en) The laser projection module and its detection method of damage, depth camera and electronic device
JP6679472B2 (en) Object detection device
GB2570996A (en) Adaptive illumination system for 3D-time of light sensor
WO2023228913A1 (en) Illumination device
US7590345B2 (en) Optoelectronic protection device
US7864304B2 (en) Beam irradiation device, laser radar system, and detecting device
WO2023181600A1 (en) Illumination device and illumination method
US10310281B1 (en) Optical projector with off-axis diffractive element
CN110275215A (en) Photoelectric sensor
US8970852B2 (en) Laser projector for chassis alignment
WO2023153146A1 (en) Illumination device and illumination method
CN109445231B (en) Depth camera and depth camera protection method
JP6663156B2 (en) Object detection device
JP2015148569A (en) Optical probe, fitting cover and shape measurement apparatus
JPS62254566A (en) Laser beam controller
KR102524380B1 (en) Light source module for real-time monitoring light source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811785

Country of ref document: EP

Kind code of ref document: A1