WO2023153146A1 - Illumination device and illumination method - Google Patents

Illumination device and illumination method Download PDF

Info

Publication number
WO2023153146A1
WO2023153146A1 PCT/JP2023/001038 JP2023001038W WO2023153146A1 WO 2023153146 A1 WO2023153146 A1 WO 2023153146A1 JP 2023001038 W JP2023001038 W JP 2023001038W WO 2023153146 A1 WO2023153146 A1 WO 2023153146A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
amount
illumination light
illumination
light source
Prior art date
Application number
PCT/JP2023/001038
Other languages
French (fr)
Japanese (ja)
Inventor
優太 中村
Original Assignee
ニデックプレシジョン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニデックプレシジョン株式会社 filed Critical ニデックプレシジョン株式会社
Publication of WO2023153146A1 publication Critical patent/WO2023153146A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/11Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/20Responsive to malfunctions or to light source life; for protection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present invention relates to lighting devices and lighting methods.
  • the moving body of Patent Document 1 is equipped with an illumination device that irradiates a region to be illuminated with coherent light emitted from a light source via a diffractive optical element.
  • the direction in which the moving body moves is projected onto the illuminated area according to the pattern formed on the diffractive optical element. That is, the illumination device functions as a direction display device.
  • the coherent light emitted from the light source has a high intensity, it is attenuated to an intensity that does not adversely affect human eyes by passing through the diffractive optical element.
  • Patent Literature 1 If light whose intensity is not attenuated due to damage or the like is emitted and enters the human eye, there is a risk of damage to the human eye. requested.
  • two terminals are electrically connected to each other when the diffractive optical element is attached to the housing, and the detachment of the diffractive optical element is detected when the connection between the terminals is broken.
  • the apparatus of Patent Document 1 cannot detect damage other than detachment, such as opening a hole in a part of the diffractive optical element.
  • An illumination device includes a light source that emits illumination light, a branching portion that splits the illumination light emitted from the light source into first illumination light and second illumination light, and one of the first illumination light. a diffraction portion that diffracts a portion of the light and reflects the other portion; a first detection portion that detects the amount of light reflected by the diffraction portion in the first illumination light; a second detection unit that detects the amount of illumination light; and based on at least the amount of light detected by the first detection unit out of the amount of light detected by the first detection unit and the amount of light detected by the second detection unit. and a controller for controlling the light source.
  • An illumination method includes emitting illumination light from a light source, detecting the amount of reflected light reflected by a diffraction section in the first illumination light branched from the illumination light by a branching section, The light amount of the second illumination light branched from the illumination light is detected, and the light source is controlled based on at least the light amount of the reflected light among the light amount of the reflected light and the light amount of the second illumination light.
  • the present invention it is possible to determine whether or not the diffraction section is damaged based on the illumination light, and control the emission of the illumination light from the light source.
  • FIG. 1 is a block diagram showing the main configuration of the lighting device.
  • FIG. 2 is a flow chart explaining the operation of the lighting device.
  • FIG. 3 is a flow chart explaining the operation of the lighting device.
  • a lighting device is provided in a moving body, which is a movable device such as, for example, a railroad vehicle, automobile, truck, ship, airplane, helicopter, drone, and robot.
  • the illumination device emits illumination light in the traveling direction of the moving body, and projects information regarding the traveling of the moving body, for example, onto a road surface.
  • the lighting device projects, as information on progress, for example, arrows indicating the direction of travel, and characters such as "go straight", “turn right”, “decelerate”, and “accelerate”.
  • the illumination device is not limited to projecting the arrows and characters described above, and may project patterns, symbols, marks, illustrations, characters, pictograms, and the like. There is no limit to the number of lighting devices mounted on the moving object, and the number may be one or a plurality of two or more.
  • FIG. 1 is a block diagram showing the main configuration of the lighting device 10.
  • the illumination device 10 has a light source 11 , an optical system 12 , a branching section 13 , a diffraction section 14 , a first detection section 15 , a second detection section 16 and a control section 17 .
  • an orthogonal coordinate system consisting of an x-axis and a y-axis is used as shown in FIG.
  • the x-axis is set in the left-right direction of the paper surface of FIG. 1, and the y-axis is set in the vertical direction of the paper surface of FIG. 1, orthogonally crossing the x-axis.
  • the light source 11 is, for example, a laser diode (semiconductor laser), and receives power supply to emit illumination light L, which is laser light (coherent light), in the + direction of the x-axis.
  • the light source 11 changes the amount of illumination light L under the control of the control unit 17 . That is, as will be described later in detail, the amount (intensity) of the illumination light L emitted by the light source 11 is controlled by changing the power (current) supplied under the control of the control unit 17 .
  • the optical system 12 is a collimator lens that is arranged on the + side of the x-axis with respect to the light source 11 and that shapes the illumination light L emitted from the light source 11 into parallel light. Although one lens is shown as the optical system 12 in FIG. 1, the optical system 12 may be composed of two or more lenses.
  • the branching unit 13 is an optical member such as a beam splitter or a half mirror, and branches the traveling direction of the incident illumination light L into the x-axis + side and the y-axis + side. That is, the branching portion 13 transmits part of the illumination light L traveling from the optical system 12 and reflects the other part (remaining portion) toward the + side of the y-axis.
  • Light transmitted through the branching portion 13 of the illumination light L is referred to as first illumination light L1, and light reflected by the branching portion 13 is referred to as second illumination light L2.
  • first illumination light L1 Light transmitted through the branching portion 13 of the illumination light L
  • second illumination light L2 light reflected by the branching portion 13
  • the branching portion 13 transmits 50% of the illumination light L and reflects the remaining 50%.
  • the diffraction section 14 is arranged on the x-axis + side with respect to the branching section 13 and is illuminated by the first illumination light L1 that has passed through the branching section 13 .
  • the diffraction section 14 is, for example, a diffraction grating such as a hologram element.
  • a diffraction grating such as a hologram element.
  • the hologram element various known holograms such as Fourier transform type, Fresnel type, computer synthesis type, analog recording type, and relief type can be used.
  • Information about the movement of the moving body is recorded in this hologram element.
  • Part of the first illumination light L ⁇ b>1 that has passed through the branching portion 13 passes through the diffraction portion 14 and is emitted to the outside of the lighting device 10 .
  • the information recorded in the diffraction section 14 is projected outside the illumination device 10 (that is, forward in the traveling direction of the moving object).
  • the remaining portion of the first illumination light L1 that has passed through the branching portion 13 is reflected by the diffraction portion 14 .
  • This reflected light travels to the x-axis ⁇ side and enters the branch portion 13 .
  • This reflected light is reflected by the branching portion 13 toward the y-axis ⁇ side and enters the first detecting portion 15 .
  • the first detection unit 15 and the second detection unit 16 are photoelectric conversion elements such as photodiodes, for example.
  • the first detection portion 15 is arranged on the y-axis minus side with respect to the branch portion 13
  • the second detection portion 16 is arranged on the y-axis + side with respect to the branch portion 13 .
  • Light reflected by the branching portion 13 that is, reflected light reflected by the diffraction portion 14
  • the first detection unit 15 converts this reflected light into an electric signal and outputs it to the control unit 17 as a first detection signal.
  • This electrical signal (that is, the first detection signal) has a value (signal intensity) corresponding to the amount of reflected light incident on the first detection section 15 . Therefore, the first detector 15 detects the light intensity of the first illumination light L1.
  • the second illumination light L2 is incident on the second detector 16 .
  • the second detection unit 16 converts the incident second illumination light L2 into an electric signal and outputs the electric signal to the control unit 17 as a second detection signal.
  • This electrical signal (that is, the second detection signal) has a value (signal intensity) corresponding to the amount of light incident on the second detection section 16 . Therefore, the second detector 16 detects the amount of light of the second illumination light L2.
  • the control unit 17 is composed of a CPU, a memory, and the like.
  • the control unit 17 is a processor that controls each unit of the lighting device 10 by reading and executing a control program pre-recorded in a storage medium such as a flash memory.
  • the control unit 17 controls the illumination light L emitted from the light source 11 by executing an illumination method whose details will be described later.
  • the amount of light detected by the first detection unit 15 (reflected light reflected by the diffraction unit 14) and the amount of the second illumination light L2 detected by the second detection unit 16 are determined by the illumination method executed by the control unit 17.
  • the illumination light L emitted by the light source 11 is controlled based on the amount of light.
  • the control unit 17 performs light source control processing for stopping the emission of the illumination light L from the light source 11 based on the light amount of the first illumination light L1 detected by the first detection unit 15 .
  • the control unit 17 performs light amount control processing for controlling the light amount of the illumination light L emitted by the light source 11 based on the light amount of the second illumination light L2 detected by the second detection unit 16 .
  • the control unit 17 detects the light amount of the first illumination light L1 reaching the diffraction unit 14 based on the first detection signal output by the first detection unit 15 .
  • the diffraction section 14 reflects part of the first illumination light L ⁇ b>1 that has reached it, and this reflected light enters the first detection section 15 . Since the reflectance of the diffraction section 14 is a known value determined by the material of the diffraction section 14, etc., the light amount of the reflected light reflected by the diffraction section 14 and the light amount of the first illumination light L1 reaching the diffraction section 14 are has a proportional relationship. Therefore, the control unit 17 can handle (detect) the light amount of the reflected light detected by the first detection unit 15 as the light amount of the first illumination light L1.
  • the control unit 17 compares the detected light intensity of the first illumination light L1 with the preset first threshold Th1 and second threshold Th2.
  • the first threshold Th1 is, for example, a value obtained by multiplying the lower limit of the light amount of the first illumination light L1 by the reflectance of the diffraction section 14 .
  • the lower limit of the amount of light of the first illumination light L1 is the amount of light necessary for making the projection pattern formed outside by the light emitted from the illumination device 10 visible when the diffraction section 14 is not damaged. value.
  • the value of the first threshold Th1 is determined based on the results of simulation or the like, and the threshold voltage (current) corresponding to this first threshold Th1 is set in advance in the controller 17 .
  • the control unit 17 has, for example, a comparator, and the comparator compares the threshold voltage (current) with the voltage (current) of the first detection signal output by the first detection unit 15, which is the light amount of the first illumination light L1. and outputs a signal according to the comparison result. Based on this signal, the control unit 17 performs processing according to the comparison result.
  • the control unit 17 stops the current supply from the power supply unit 20 to the light source 11, and the illumination light L from the light source 11 is Stop the emission.
  • the second threshold Th2 is, for example, a value obtained by multiplying the upper limit of the light amount of the first illumination light L1 by the reflectance of the diffraction section 14 .
  • the upper limit value of the light amount of the first illumination light L1 is a light amount value that does not adversely affect the light emitted from the lighting device 10 even if it enters the eyes of an outsider.
  • the value of the second threshold Th2 is determined based on the result of simulation or the like, and the threshold voltage (current) corresponding to this second threshold Th2 is set in advance in the controller 17 .
  • the comparator of the control unit 17 compares this threshold voltage (current) with the voltage (current) of the first detection signal output by the first detection unit 15, which is the light intensity of the first illumination light L1, and outputs the voltage (current) according to the comparison result. output a signal. Based on this signal, the control unit 17 performs processing according to the comparison result. If the amount of light of the first illumination light L1 calculated by the control unit 17 is equal to or greater than the second threshold value Th2, there is no abnormality in the diffraction unit 14, but if the second detection unit 16 fails, for example, the diffraction unit 14 is It is conceivable that the amount of transmitted first illumination light L1 is increasing.
  • the control unit 17 stops the current supply from the power supply unit 20 to the light source 11, and the illumination light L from the light source 11 is Stop the emission.
  • the control unit 17 treats the amount of reflected light detected by the first detection unit 15 as the amount of light of the first illumination light L1, the reflectance of the diffraction unit 14 and the amount of light detected by the first detection unit 15
  • the light amount of the first illumination light L1 reaching the diffraction section 14 may be detected (calculated) based on the light amount of the reflected light.
  • the first threshold Th1 is the above-described lower limit of the light amount of the first illumination light L1
  • the second threshold Th2 is the above-described upper limit of the light amount of the first illumination light L1.
  • the light source control process described above is executed by the control unit 17 at predetermined time intervals.
  • control unit 17 The processing performed by the control unit 17 will be described with reference to the flowchart of the light amount control processing shown in FIG. Each process shown in the flowchart is performed by the control unit 17 reading a program stored in a storage medium and executing the program.
  • step S10 the control unit 17 supplies specified power (current) from the power supply unit 20 to the light source 11 to cause the light source 11 to emit the illumination light L. After that, the process proceeds to step S11.
  • step S ⁇ b>11 the control unit 17 uses the first detection signal output from the first detection unit 15 to detect the value of the light amount of the first illumination light L ⁇ b>1 . After that, the process proceeds to step S12.
  • step S12 the control unit 17 compares the detected light intensity value of the first illumination light L1 with the first threshold value Th1 and the second threshold value Th2. When the value of the light quantity of the first illumination light L1 is greater than the first threshold Th1 and smaller than the second threshold Th2, the controller 17 makes an affirmative determination, and the process returns to step S11. If the value of the amount of light of the first illumination light L1 is equal to or less than the first threshold Th1 or equal to or greater than the second threshold Th2, the controller 17 makes a negative determination, and the process proceeds to step S13. In step S13, the control unit 17 stops the power supply to the light source 11, stops the emission of the illumination light L from the light source 11, and ends the process.
  • the control unit 17 supplies specified power (current) from the power supply unit 20 to the light source 11 to cause the light source 11 to emit illumination light L.
  • the control unit 17 detects the light amount of the second illumination light L2, that is, the light amount of the illumination light L emitted from the light source 11, based on the second detection signal output by the second detection unit 16.
  • the second illumination light L2 is the light of the illumination light L that is reflected by the branching portion 13 toward the + side of the y-axis.
  • the reflectance of the branching portion 13 is 50%, which is a known value. A proportional relationship exists. Therefore, the control unit 17 can handle (detect) the light amount of the second illumination light L ⁇ b>2 detected by the second detection unit 16 as the light amount of the illumination light L.
  • the control unit 17 compares the detected light intensity of the illumination light L with the preset third threshold Th3 and fourth threshold Th4.
  • the third threshold Th3 is a value obtained by multiplying the lower limit value of the light amount of the illumination light L by 50%, which is the reflectance of the branch portion 13 .
  • the lower limit value of the light intensity of the illumination light L is the value of the light intensity necessary for the light emitted from the illumination device 10 to form an external projection pattern to be visible.
  • the value of the third threshold Th3 is determined based on the results of simulation or the like, and a threshold voltage (current) corresponding to the third threshold Th3 is set in the controller 17 in advance.
  • the comparator of the control unit 17 compares this threshold voltage (current) with the voltage (current) of the second detection signal output by the second detection unit 16, which is the amount of light of the second illumination light L2. output a signal. Based on this signal, the control unit 17 performs processing according to the comparison result.
  • the fourth threshold Th4 is a value obtained by multiplying the upper limit value of the light amount of the illumination light L by 50%, which is the reflectance of the branch portion 13 .
  • the upper limit value of the light amount of the illumination light L is a light amount value that does not adversely affect the light emitted from the lighting device 10 even if it enters the eyes of an outsider.
  • the value of the fourth threshold Th4 is determined based on the results of simulation or the like, and a threshold voltage (current) corresponding to the fourth threshold Th4 is set in the controller 17 in advance.
  • the comparator of the control unit 17 compares this threshold voltage (current) with the voltage (current) of the second detection signal output by the second detection unit 16, which is the amount of light of the second illumination light L2. output a signal. Based on this signal, the control unit 17 performs processing according to the comparison result.
  • the control unit 17 compares the calculated value of the light amount of the illumination light L with the third threshold Th3, and if the value of the light amount of the illumination light L is smaller than the third threshold Th3, the illumination emitted from the light source 11
  • the amount of light L is increased.
  • the control unit 17 increases the power (current) supplied from the power supply unit 20 to the light source 11 .
  • the controller 17 increases the power supply amount by a predetermined value.
  • the control unit 17 increases the power supply amount based on the difference between the calculated value of the light intensity of the illumination light L and the third threshold value Th3. As a result, the amount of illumination light L emitted from the light source 11 increases, and the projection pattern formed outside by the light emitted from the lighting device 10 becomes visible.
  • the control unit 17 compares the calculated value of the light amount of the illumination light L with a fourth threshold Th4, and if the value of the light amount of the illumination light L is larger than the fourth threshold Th4, the illumination emitted from the light source 11
  • the amount of light L is reduced.
  • the control unit 17 reduces the power (current) supplied from the power supply unit 20 to the light source 11 .
  • the controller 17 reduces the power supply amount by a predetermined value.
  • the control unit 17 reduces the power supply amount based on the difference between the calculated value of the light amount of the illumination light L and the fourth threshold value Th4. Accordingly, even if the light emitted from the lighting device 10 enters the eyes of an outsider, it is possible to suppress adverse effects.
  • the control unit 17 treats the light amount of the second illumination light L2 detected by the second detection unit 16 as the light amount of the illumination light L, the light amount of the second illumination light L2 is doubled so that the light source The amount of illumination light L emitted from 11 may be detected (calculated).
  • the third threshold Th3 is the lower limit of the amount of illumination light L described above
  • the fourth threshold Th4 is the upper limit of the amount of illumination light L described above.
  • control unit 17 The processing performed by the control unit 17 will be described with reference to the flowchart of the light amount control processing shown in FIG. Each process shown in the flowchart is performed by the control unit 17 reading a program stored in a storage medium and executing the program.
  • step S20 the control unit 17 detects the value of the light amount of the illumination light L using the second detection signal output from the second detection unit 16. After that, the process proceeds to step S21.
  • step S21 the controller 17 determines whether or not the calculated value of the light intensity of the illumination light L is smaller than the third threshold Th3. When the value of the light amount of the illumination light L is smaller than the third threshold Th3, the controller 17 makes an affirmative determination, and the process proceeds to step S22.
  • step S ⁇ b>22 the control unit 17 increases the power supplied from the power supply unit 20 to the light source 11 to increase the amount of illumination light L emitted by the light source 11 . After that, the process returns to step S20.
  • step S21 when the value of the light quantity of the illumination light L is equal to or greater than the third threshold Th3, the control unit 17 makes a negative determination, and the process proceeds to step S23.
  • step S23 the controller 17 determines whether or not the calculated value of the light intensity of the illumination light L is greater than the fourth threshold Th4. When the value of the light quantity of the illumination light L is larger than the fourth threshold value Th4, the controller 17 makes an affirmative determination, and the process proceeds to step S24.
  • step S ⁇ b>24 the control unit 17 reduces the power supplied from the power supply unit 20 to the light source 11 to reduce the amount of illumination light L emitted by the light source 11 . After that, the process returns to step S20. Further, in step S23, when the calculated value of the light amount of the illumination light L is equal to or smaller than the fourth threshold value Th4, the controller 17 makes a negative determination, and the process returns to step S20.
  • the illumination light L emitted from the light source 11 is prevented from becoming insufficient or excessive.
  • the illumination device 10 includes a light source 11 , a branching section 13 , a diffraction section 14 , a first detection section 15 , a second detection section 16 and a control section 17 .
  • the light source 11 emits the illumination light L
  • the splitter 13 splits the illumination light L into the first illumination light L1 and the second illumination light L2.
  • the diffraction section 14 diffracts a part of the first illumination light L1 and emits it to the outside, and reflects the rest.
  • the first detection unit 15 detects the amount of light reflected by the diffraction unit 14 in the first illumination light L1.
  • the second detector 16 detects the amount of light of the second illumination light L2.
  • the control unit 17 controls the illumination light L emitted by the light source 11 based on the amount of light detected by the first detection unit 15 and the amount of light detected by the second detection unit 16 .
  • damage such as a hole in a part of the diffraction section 14 can be detected by the first detection signal output by the first detection section 15 .
  • damage to the diffraction section 14 may cause Emission of illumination light L having an intensity (amount of light) that adversely affects human eyes is suppressed.
  • the amount of illumination light L emitted from the light source 11 is stabilized, and the safety of the illumination device 10 can be ensured.
  • the control unit 17 causes the light source 11 to stop emitting the illumination light L based on the amount of light detected by the first detection unit 15 .
  • the high-intensity illumination light L is emitted, and the danger of entering the human eye and having an adverse effect can be suppressed, and the safety of the illumination device 10 can be ensured.
  • the control unit 17 stops emission of the illumination light L when the amount of light detected by the first detection unit 15 is equal to or less than the first threshold value Th1.
  • the first threshold value Th1 When the light amount of the first illumination light L1 reflected by the diffraction section 14 is small, it is conceivable that the light amount of the first illumination light L1 emitted to the outside from the damaged portion of the diffraction section 14 is large. Therefore, when the amount of light detected by the first detection unit 15 is equal to or less than the first threshold value Th1, there is a high possibility that the diffraction unit 14 is damaged. Safety can be ensured.
  • the control unit 17 stops emission of the illumination light L when the amount of light detected by the first detection unit 15 is greater than or equal to a second threshold Th2 that is greater than the first threshold Th1.
  • the control unit 17 increases the light amount of the illumination light L emitted by the light source 11 when the light amount detected by the second detection unit 16 is smaller than the third threshold Th3. Accordingly, the light amount of the illumination light L actually emitted from the light source 11 is detected based on the light amount of the second illumination light L2, and the light amount of the illumination light L is adjusted to provide a stable light amount. can be emitted from
  • the control unit 17 reduces the light amount of the illumination light L emitted from the light source 11 when the amount of light detected by the second detection unit 16 is larger than the fourth threshold Th4, which is larger than the third threshold Th3. . Accordingly, the light amount of the illumination light L actually emitted from the light source 11 is detected based on the light amount of the second illumination light L2, and the light amount of the illumination light L is adjusted to provide a stable light amount. can be emitted from
  • the light source control process is not limited to stopping emission of the illumination light L from the light source 11 when the amount of light detected by the first detection unit 15 is equal to or less than the first threshold Th1 or equal to or greater than the second threshold Th2.
  • the controller 17 may reduce the amount of illumination light L emitted from the light source 11 .
  • the controller 17 can reduce the amount of illumination light L by reducing the power supplied to the light source 11 .
  • the amount of illumination light L at this time may be reduced according to the difference between the amount of light detected by the first detection unit 15 and the first threshold value Th1 or the second threshold value Th2, or may be determined in advance. may be reduced by a predetermined percentage.
  • the branching unit 13 is arranged after the optical system 12 (on the + side of the x-axis), and the branching unit 13 branches the illumination light L that has been shaped into parallel light by the optical system 12. not limited to When the branching section 13 is configured by a beam splitter, the optical system 12 is arranged after the branching section 13 (on the + side of the x-axis), and the optical system 12 receives the first illumination light L1 branched by the branching section 13. It may be shaped into parallel light.
  • the control unit 17 may perform only the light source control process.
  • the control unit 17 controls the light source 11 using only the first detection signal output from the first detection unit 15 (that is, the amount of light reflected by the diffraction unit 14 in the first illumination light L1).
  • Illumination light L emitted from may be controlled.
  • the control unit 17 uses at least the first detection signal to detect the light source 11.
  • the emitted illumination light L may be controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

An illumination device 10 according to one embodiment of the present invention comprises: a light source 11 for emitting illumination light L; a branch unit 13 for dividing the illumination light L emitted from the light source 11 into first illumination light L1 and second illumination light L2; a diffraction unit 14 for diffracting some of the first illumination light L1, emitting the diffracted light to the exterior, and reflecting the remaining light; a first detection unit 15 for detecting the quantity of light reflected by the diffraction unit 14 within the first illumination light L1; a second detection unit 16 for detecting the quantity of second illumination light; and a control unit 17 for controlling the light source 11 on the basis of at least the quantity of light detected by the first detection unit 15, among the quantity of light detected by the first detection unit 15 and the quantity of light detected by the second detection unit 16.

Description

照明装置及び照明方法Lighting device and lighting method
 本発明は、照明装置及び照明方法に関する。 The present invention relates to lighting devices and lighting methods.
 従来から、照明装置を搭載し、照明装置によって光を投射することにより各種の表示を行う自動車等の移動体が知られている。特許文献1の移動体は、光源から出射したコヒーレント光が回折光学素子を介して被照明領域を照射する照明装置を搭載している。この被照明領域には、回折光学素子に形成されたパターンに応じて移動体が移動する方向が投影される。すなわち、照明装置が方向表示装置として機能している。光源から出射するコヒーレント光は高強度であるが、回折光学素子を通過することにより人の目に入射しても悪影響を及ぼすことがない強度に減衰されている。 Conventionally, moving bodies such as automobiles that are equipped with lighting devices and perform various displays by projecting light from the lighting devices have been known. The moving body of Patent Document 1 is equipped with an illumination device that irradiates a region to be illuminated with coherent light emitted from a light source via a diffractive optical element. The direction in which the moving body moves is projected onto the illuminated area according to the pattern formed on the diffractive optical element. That is, the illumination device functions as a direction display device. Although the coherent light emitted from the light source has a high intensity, it is attenuated to an intensity that does not adversely affect human eyes by passing through the diffractive optical element.
特開2021-27014号公報JP 2021-27014 A
 破損等により強度が減衰されていない光が出射され、人の目に入射した場合、人の目に障害を及ぼす危険性があるため、安全性を確保するために装置の異常を検出することが要求される。特許文献1では、回折光学素子と筐体との間の装着状態を2つの端子間を電気的に接続し、この端子間の接続が途切れた場合に回折光学素子の脱落が検出される。しかしながら、回折光学素子の一部に穴が開く等の脱落とは異なる破損については特許文献1の装置では検出することができない、という問題がある。 If light whose intensity is not attenuated due to damage or the like is emitted and enters the human eye, there is a risk of damage to the human eye. requested. In Patent Literature 1, two terminals are electrically connected to each other when the diffractive optical element is attached to the housing, and the detachment of the diffractive optical element is detected when the connection between the terminals is broken. However, there is a problem that the apparatus of Patent Document 1 cannot detect damage other than detachment, such as opening a hole in a part of the diffractive optical element.
 一実施形態の照明装置は、照明光を射出する光源と、前記光源から出射された前記照明光を第1照明光と第2照明光とに分岐する分岐部と、前記第1照明光の一部を回折して外部へ出射し、他の一部を反射する回折部と、前記第1照明光のうち前記回折部で反射した反射光の光量を検出する第1検出部と、前記第2照明光の光量を検出する第2検出部と、前記第1検出部により検出された光量と前記第2検出部により検出された光量とのうち少なくとも前記第1検出部により検出された光量に基づいて、前記光源を制御する制御部と、を備える。 An illumination device according to one embodiment includes a light source that emits illumination light, a branching portion that splits the illumination light emitted from the light source into first illumination light and second illumination light, and one of the first illumination light. a diffraction portion that diffracts a portion of the light and reflects the other portion; a first detection portion that detects the amount of light reflected by the diffraction portion in the first illumination light; a second detection unit that detects the amount of illumination light; and based on at least the amount of light detected by the first detection unit out of the amount of light detected by the first detection unit and the amount of light detected by the second detection unit. and a controller for controlling the light source.
 一実施の形態の照明方法は、光源から照明光を出射させ、分岐部によって前記照明光から分岐した第1照明光のうち、回折部で反射した反射光の光量を検出し、前記分岐部により前記照明光から分岐した第2照明光の光量を検出し、前記反射光の光量と前記第2照明光の光量とのうち少なくとも前記反射光の光量に基づいて、前記光源を制御する。 An illumination method according to one embodiment includes emitting illumination light from a light source, detecting the amount of reflected light reflected by a diffraction section in the first illumination light branched from the illumination light by a branching section, The light amount of the second illumination light branched from the illumination light is detected, and the light source is controlled based on at least the light amount of the reflected light among the light amount of the reflected light and the light amount of the second illumination light.
 本発明によれば、照明光に基づいて回折部の破損の有無を判定し、光源からの照明光の出射を制御することができる。 According to the present invention, it is possible to determine whether or not the diffraction section is damaged based on the illumination light, and control the emission of the illumination light from the light source.
図1は、照明装置の要部構成を示すブロック図である。FIG. 1 is a block diagram showing the main configuration of the lighting device. 図2は、照明装置の動作を説明するフローチャートである。FIG. 2 is a flow chart explaining the operation of the lighting device. 図3は、照明装置の動作を説明するフローチャートである。FIG. 3 is a flow chart explaining the operation of the lighting device.
 以下、図面を参照しながら実施の形態の照明装置について詳細な説明を行う。 A detailed description of the lighting device according to the embodiment will be given below with reference to the drawings.
 <照明装置について>
 照明装置は、例えば鉄道車両、自動車、台車、船、飛行機、ヘリコプター、ドローン、ロボット等の移動可能な装置である移動体に設けられる。照明装置は、移動体の進行方向に向けて照明光を出射し、例えば移動体の進行に関する情報を路面上等に投影する。照明装置は、進行に関する情報として、例えば進行方向を示す矢印や、「直進」,「右折」,「減速」,「加速」等の文字が投影される。尚、照明装置が上記の矢印や文字を投影するものに限定されず、絵柄、記号、マーク、イラスト、キャラクター、ピクトグラム等を投影してもよい。尚、移動体に搭載される照明装置の個数には制限はなく、1個でもよいし、2個以上の複数個であってもよい。
<About the lighting device>
A lighting device is provided in a moving body, which is a movable device such as, for example, a railroad vehicle, automobile, truck, ship, airplane, helicopter, drone, and robot. The illumination device emits illumination light in the traveling direction of the moving body, and projects information regarding the traveling of the moving body, for example, onto a road surface. The lighting device projects, as information on progress, for example, arrows indicating the direction of travel, and characters such as "go straight", "turn right", "decelerate", and "accelerate". The illumination device is not limited to projecting the arrows and characters described above, and may project patterns, symbols, marks, illustrations, characters, pictograms, and the like. There is no limit to the number of lighting devices mounted on the moving object, and the number may be one or a plurality of two or more.
 図1は照明装置10の要部構成を示すブロック図である。照明装置10は、光源11と、光学系12と、分岐部13と、回折部14と、第1検出部15と、第2検出部16と、制御部17と、を有する。尚、説明の都合上、図1に示されるように、x軸及びy軸からなる直交座標系を用いる。x軸は図1の紙面左右方向に設定され、y軸は図1の紙面上下方向にx軸と直交して設定される。 FIG. 1 is a block diagram showing the main configuration of the lighting device 10. FIG. The illumination device 10 has a light source 11 , an optical system 12 , a branching section 13 , a diffraction section 14 , a first detection section 15 , a second detection section 16 and a control section 17 . For convenience of explanation, an orthogonal coordinate system consisting of an x-axis and a y-axis is used as shown in FIG. The x-axis is set in the left-right direction of the paper surface of FIG. 1, and the y-axis is set in the vertical direction of the paper surface of FIG. 1, orthogonally crossing the x-axis.
 光源11は、例えばレーザダイオード(半導体レーザ)であり、電力の供給を受けてレーザ光(コヒーレント光)である照明光Lをx軸+方向へ向けて出射する。光源11は、制御部17により制御されることにより、照明光Lの光量を変更する。すなわち、詳細を後述するように、制御部17に制御されて供給される電力(電流)が変更されることにより、光源11が出射する照明光Lの光量(強度)が制御される。 The light source 11 is, for example, a laser diode (semiconductor laser), and receives power supply to emit illumination light L, which is laser light (coherent light), in the + direction of the x-axis. The light source 11 changes the amount of illumination light L under the control of the control unit 17 . That is, as will be described later in detail, the amount (intensity) of the illumination light L emitted by the light source 11 is controlled by changing the power (current) supplied under the control of the control unit 17 .
 光学系12は、光源11に対してx軸+側に配置され、光源11から射出された照明光Lを平行光に整形するコリメータレンズである。尚、図1においては光学系12として1個のレンズが示されているが、光学系12は2個以上の複数のレンズにより構成されてもよい。 The optical system 12 is a collimator lens that is arranged on the + side of the x-axis with respect to the light source 11 and that shapes the illumination light L emitted from the light source 11 into parallel light. Although one lens is shown as the optical system 12 in FIG. 1, the optical system 12 may be composed of two or more lenses.
 分岐部13は、例えばビームスプリッタやハーフミラー等の光学部材であり、入射した照明光Lの進行方向をx軸+側とy軸+側とに分岐する。すなわち、分岐部13は、光学系12から進行してきた照明光Lの一部を透過させ、他の一部(残部)をy軸+側へ反射させる。照明光Lのうち分岐部13を透過した光を第1照明光L1と呼び、分岐部13にて反射された光を第2照明光L2と呼ぶ。以下の説明では、分岐部13は、照明光Lの50%を透過させ、残りの50%を反射させるものとする。 The branching unit 13 is an optical member such as a beam splitter or a half mirror, and branches the traveling direction of the incident illumination light L into the x-axis + side and the y-axis + side. That is, the branching portion 13 transmits part of the illumination light L traveling from the optical system 12 and reflects the other part (remaining portion) toward the + side of the y-axis. Light transmitted through the branching portion 13 of the illumination light L is referred to as first illumination light L1, and light reflected by the branching portion 13 is referred to as second illumination light L2. In the following description, it is assumed that the branching portion 13 transmits 50% of the illumination light L and reflects the remaining 50%.
 回折部14は、分岐部13に対してx軸+側に配置され、分岐部13を透過した第1照明光L1に照明される。回折部14は、例えばホログラム素子等の回折格子である。ホログラム素子として、公知のフーリエ変換型、フレネル型、計算機合成型、アナログ記録型、レリーフ型等の各種のホログラムを用いることができる。このホログラム素子に、上述した移動体の進行に関する情報が記録されている。分岐部13を透過した第1照明光L1のうち一部は回折部14を透過して、照明装置10の外部に出射する。これにより、回折部14に記録されている情報が照明装置10の外部(すなわち、移動体の進行方向前方)に投影される。 The diffraction section 14 is arranged on the x-axis + side with respect to the branching section 13 and is illuminated by the first illumination light L1 that has passed through the branching section 13 . The diffraction section 14 is, for example, a diffraction grating such as a hologram element. As the hologram element, various known holograms such as Fourier transform type, Fresnel type, computer synthesis type, analog recording type, and relief type can be used. Information about the movement of the moving body is recorded in this hologram element. Part of the first illumination light L<b>1 that has passed through the branching portion 13 passes through the diffraction portion 14 and is emitted to the outside of the lighting device 10 . As a result, the information recorded in the diffraction section 14 is projected outside the illumination device 10 (that is, forward in the traveling direction of the moving object).
 分岐部13を透過した第1照明光L1のうちの残部は回折部14にて反射される。この反射された光(反射光)はx軸-側に進行し分岐部13に入射する。この反射光は、分岐部13にてy軸-側に反射されて第1検出部15に入射する。 The remaining portion of the first illumination light L1 that has passed through the branching portion 13 is reflected by the diffraction portion 14 . This reflected light (reflected light) travels to the x-axis − side and enters the branch portion 13 . This reflected light is reflected by the branching portion 13 toward the y-axis − side and enters the first detecting portion 15 .
 第1検出部15及び第2検出部16は、例えばフォトダイオード等の光電変換素子である。第1検出部15は分岐部13に対してy軸-側に配置され、第2検出部16は分岐部13に対してy軸+側に配置される。第1検出部15には、第1照明光L1のうち回折部14にて反射された後、分岐部13で反射された光(すなわち、回折部14で反射された反射光)が入射する。第1検出部15は、この反射光を電気信号に変換し、第1検出信号として制御部17へ出力する。この電気信号(すなわち、第1検出信号)は第1検出部15に入射した反射光の光量に応じた値(信号強度)を有する。したがって、第1検出部15は第1照明光L1の光量を検出する。第2検出部16には、第2照明光L2が入射する。第2検出部16は、入射した第2照明光L2を電気信号に変換し、第2検出信号として制御部17へ出力する。この電気信号(すなわち、第2検出信号)は第2検出部16に入射した光の光量に応じた値(信号強度)を有する。したがって、第2検出部16は第2照明光L2の光量を検出する。 The first detection unit 15 and the second detection unit 16 are photoelectric conversion elements such as photodiodes, for example. The first detection portion 15 is arranged on the y-axis minus side with respect to the branch portion 13 , and the second detection portion 16 is arranged on the y-axis + side with respect to the branch portion 13 . Light reflected by the branching portion 13 (that is, reflected light reflected by the diffraction portion 14 ) after being reflected by the diffraction portion 14 in the first illumination light L<b>1 enters the first detection portion 15 . The first detection unit 15 converts this reflected light into an electric signal and outputs it to the control unit 17 as a first detection signal. This electrical signal (that is, the first detection signal) has a value (signal intensity) corresponding to the amount of reflected light incident on the first detection section 15 . Therefore, the first detector 15 detects the light intensity of the first illumination light L1. The second illumination light L2 is incident on the second detector 16 . The second detection unit 16 converts the incident second illumination light L2 into an electric signal and outputs the electric signal to the control unit 17 as a second detection signal. This electrical signal (that is, the second detection signal) has a value (signal intensity) corresponding to the amount of light incident on the second detection section 16 . Therefore, the second detector 16 detects the amount of light of the second illumination light L2.
 制御部17は、CPUやメモリ等によって構成される。制御部17は、例えばフラッシュメモリ等の記憶媒体に予め記録されている制御プログラムを読み込んで実行することにより、照明装置10の各部を制御するプロセッサーである。制御部17は、詳細を後述する照明方法を実行することによって光源11から出射される照明光Lを制御する。 The control unit 17 is composed of a CPU, a memory, and the like. The control unit 17 is a processor that controls each unit of the lighting device 10 by reading and executing a control program pre-recorded in a storage medium such as a flash memory. The control unit 17 controls the illumination light L emitted from the light source 11 by executing an illumination method whose details will be described later.
 <照明方法について>
 制御部17によって実行される照明方法により、第1検出部15によって検出された光(回折部14で反射された反射光)の光量と第2検出部16によって検出された第2照明光L2の光量とに基づいて、光源11が出射する照明光Lが制御される。具体的には、制御部17は、第1検出部15によって検出された第1照明光L1の光量に基づいて、光源11による照明光Lの出射を停止する光源制御処理を行う。制御部17は、第2検出部16によって検出された第2照明光L2の光量に基づいて、光源11が出射する照明光Lの光量を制御する光量制御処理を行う。
<About lighting method>
The amount of light detected by the first detection unit 15 (reflected light reflected by the diffraction unit 14) and the amount of the second illumination light L2 detected by the second detection unit 16 are determined by the illumination method executed by the control unit 17. The illumination light L emitted by the light source 11 is controlled based on the amount of light. Specifically, the control unit 17 performs light source control processing for stopping the emission of the illumination light L from the light source 11 based on the light amount of the first illumination light L1 detected by the first detection unit 15 . The control unit 17 performs light amount control processing for controlling the light amount of the illumination light L emitted by the light source 11 based on the light amount of the second illumination light L2 detected by the second detection unit 16 .
 <光源制御処理について>
 制御部17は、第1検出部15が出力する第1検出信号に基づいて、回折部14に到達した第1照明光L1の光量を検出する。上述したように、回折部14では、到達した第1照明光L1のうちの一部が反射し、この反射光が第1検出部15に入射する。回折部14の反射率は回折部14の材質等により決まる既知の値であることから、回折部14で反射された反射光の光量と回折部14に到達した第1照明光L1の光量とには比例関係が存在する。このことから、制御部17は、第1検出部15にて検出された反射光の光量を第1照明光L1の光量として扱う(検出する)ことができる。
<About light source control processing>
The control unit 17 detects the light amount of the first illumination light L1 reaching the diffraction unit 14 based on the first detection signal output by the first detection unit 15 . As described above, the diffraction section 14 reflects part of the first illumination light L<b>1 that has reached it, and this reflected light enters the first detection section 15 . Since the reflectance of the diffraction section 14 is a known value determined by the material of the diffraction section 14, etc., the light amount of the reflected light reflected by the diffraction section 14 and the light amount of the first illumination light L1 reaching the diffraction section 14 are has a proportional relationship. Therefore, the control unit 17 can handle (detect) the light amount of the reflected light detected by the first detection unit 15 as the light amount of the first illumination light L1.
 制御部17は、検出した第1照明光L1の光量と予め設定されている第1閾値Th1及び第2閾値Th2とを比較する。尚、第1閾値Th1は、例えば第1照明光L1の光量の下限値に回折部14の反射率を乗じた値である。第1照明光L1の光量の下限値とは、回折部14が破損していない場合に照明装置10から出射される光によって外部に形成される投影パターンが視認可能となるために必要な光量の値である。第1閾値Th1の値は、シミュレーション等の結果に基づいて決定され、この第1閾値Th1に対応する閾値電圧(電流)が予め制御部17に設定されている。制御部17は、例えばコンパレータを有し、コンパレータは、閾値電圧(電流)と、第1照明光L1の光量である第1検出部15が出力する第1検出信号の電圧(電流)とを比較し、比較結果に応じた信号を出力する。制御部17は、この信号に基づいて、比較結果に応じた処理を行う。 The control unit 17 compares the detected light intensity of the first illumination light L1 with the preset first threshold Th1 and second threshold Th2. Note that the first threshold Th1 is, for example, a value obtained by multiplying the lower limit of the light amount of the first illumination light L1 by the reflectance of the diffraction section 14 . The lower limit of the amount of light of the first illumination light L1 is the amount of light necessary for making the projection pattern formed outside by the light emitted from the illumination device 10 visible when the diffraction section 14 is not damaged. value. The value of the first threshold Th1 is determined based on the results of simulation or the like, and the threshold voltage (current) corresponding to this first threshold Th1 is set in advance in the controller 17 . The control unit 17 has, for example, a comparator, and the comparator compares the threshold voltage (current) with the voltage (current) of the first detection signal output by the first detection unit 15, which is the light amount of the first illumination light L1. and outputs a signal according to the comparison result. Based on this signal, the control unit 17 performs processing according to the comparison result.
 第1照明光L1の光量が第1閾値Th1以下の場合には、回折部14に穴が開く等の破損(異常)が生じ、回折部14の反射率が低下していることが考えられる。すなわち、回折部14で反射されず透過する第1照明光L1の光量が増加していることが考えられる。この場合、照明装置10の外部に出射される光の光量が多すぎるため、この光が外部の人の目に入ると悪影響を及ぼす虞がある。このため、制御部17は、算出した第1照明光L1の光量が第1閾値Th1以下の場合には、電源部20から光源11への電流供給を停止し、光源11からの照明光Lの出射を停止させる。 When the light amount of the first illumination light L1 is equal to or less than the first threshold value Th1, it is conceivable that damage (abnormality) such as opening of a hole occurs in the diffraction section 14 and the reflectance of the diffraction section 14 is reduced. That is, it is conceivable that the light amount of the first illumination light L1 that is transmitted without being reflected by the diffraction section 14 is increasing. In this case, since the amount of light emitted to the outside of the lighting device 10 is too large, there is a possibility that this light may have an adverse effect if it enters the eyes of an outsider. Therefore, when the calculated light amount of the first illumination light L1 is equal to or less than the first threshold value Th1, the control unit 17 stops the current supply from the power supply unit 20 to the light source 11, and the illumination light L from the light source 11 is Stop the emission.
 また、第2閾値Th2は、例えば、第1照明光L1の光量の上限値に回折部14の反射率を乗じた値である。第1照明光L1の光量の上限値は、照明装置10から出射される光が外部の人の目に入っても悪影響を及ぼさない光量の値である。第2閾値Th2の値は、シミュレーション等の結果に基づいて決定され、この第2閾値Th2に対応する閾値電圧(電流)が予め制御部17に設定されている。制御部17のコンパレータは、この閾値電圧(電流)と、第1照明光L1の光量である第1検出部15が出力する第1検出信号の電圧(電流)とを比較し、比較結果に応じた信号を出力する。制御部17は、この信号に基づいて、比較結果に応じた処理を行う。制御部17が算出した第1照明光L1の光量が第2閾値Th2以上の場合には、回折部14に異常は生じていないが、例えば第2検出部16が故障した場合に回折部14を透過する第1照明光L1の光量が増加していることが考えられる。すなわち、照明装置10の外部に出射される光の光量が多すぎるため、この光が外部の人の目に入ると悪影響を及ぼす虞がある。このため、制御部17は、算出した第1照明光L1の光量が第2閾値Th2以上の場合には、電源部20から光源11への電流供給を停止し、光源11からの照明光Lの出射を停止させる。 Also, the second threshold Th2 is, for example, a value obtained by multiplying the upper limit of the light amount of the first illumination light L1 by the reflectance of the diffraction section 14 . The upper limit value of the light amount of the first illumination light L1 is a light amount value that does not adversely affect the light emitted from the lighting device 10 even if it enters the eyes of an outsider. The value of the second threshold Th2 is determined based on the result of simulation or the like, and the threshold voltage (current) corresponding to this second threshold Th2 is set in advance in the controller 17 . The comparator of the control unit 17 compares this threshold voltage (current) with the voltage (current) of the first detection signal output by the first detection unit 15, which is the light intensity of the first illumination light L1, and outputs the voltage (current) according to the comparison result. output a signal. Based on this signal, the control unit 17 performs processing according to the comparison result. If the amount of light of the first illumination light L1 calculated by the control unit 17 is equal to or greater than the second threshold value Th2, there is no abnormality in the diffraction unit 14, but if the second detection unit 16 fails, for example, the diffraction unit 14 is It is conceivable that the amount of transmitted first illumination light L1 is increasing. That is, since the amount of light emitted to the outside of the lighting device 10 is too large, there is a risk that this light will have an adverse effect if it enters the eyes of an outsider. Therefore, when the calculated light amount of the first illumination light L1 is equal to or greater than the second threshold value Th2, the control unit 17 stops the current supply from the power supply unit 20 to the light source 11, and the illumination light L from the light source 11 is Stop the emission.
 尚、制御部17が第1検出部15により検出された反射光の光量を第1照明光L1の光量として扱うものに代えて、回折部14の反射率と第1検出部15で検出された反射光の光量とに基づいて、回折部14に到達した第1照明光L1の光量を検出(算出)してもよい。この場合、第1閾値Th1は上述した第1照明光L1の光量の下限値であり、第2閾値Th2は上述した第1照明光L1の光量の上限値である。 Instead of the control unit 17 treating the amount of reflected light detected by the first detection unit 15 as the amount of light of the first illumination light L1, the reflectance of the diffraction unit 14 and the amount of light detected by the first detection unit 15 The light amount of the first illumination light L1 reaching the diffraction section 14 may be detected (calculated) based on the light amount of the reflected light. In this case, the first threshold Th1 is the above-described lower limit of the light amount of the first illumination light L1, and the second threshold Th2 is the above-described upper limit of the light amount of the first illumination light L1.
 尚、上述した光源制御処理は、所定の時間間隔ごとに制御部17により実行される。 The light source control process described above is executed by the control unit 17 at predetermined time intervals.
 図2に示される光量制御処理のフローチャートを参照して、制御部17が行う処理を説明する。フローチャートに示す各処理は、制御部17が記憶媒体に記憶されたプログラムを読み出し、そのプログラムを実行することにより行われる。 The processing performed by the control unit 17 will be described with reference to the flowchart of the light amount control processing shown in FIG. Each process shown in the flowchart is performed by the control unit 17 reading a program stored in a storage medium and executing the program.
 ステップS10では、制御部17は、電源部20から光源11に規定の電力(電流)を供給して、光源11から照明光Lを出射させる。その後、処理はステップS11へ進む。ステップS11では、制御部17は、第1検出部15から出力された第1検出信号を用いて第1照明光L1の光量の値を検出する。その後、処理はステップS12へ進む。 In step S10, the control unit 17 supplies specified power (current) from the power supply unit 20 to the light source 11 to cause the light source 11 to emit the illumination light L. After that, the process proceeds to step S11. In step S<b>11 , the control unit 17 uses the first detection signal output from the first detection unit 15 to detect the value of the light amount of the first illumination light L<b>1 . After that, the process proceeds to step S12.
 ステップS12では、制御部17は、検出した第1照明光L1の光量の値と第1閾値Th1及び第2閾値Th2とを比較する。第1照明光L1の光量の値が第1閾値Th1よりも大きく、かつ、第2閾値Th2よりも小さい場合には、制御部17により肯定判定が行われ、処理はステップS11へ戻る。第1照明光L1の光量の値が第1閾値Th1以下、または、第2閾値Th2以上の場合には、制御部17により否定判定が行われ、処理はステップS13へ進む。ステップS13では、制御部17は、光源11への電力供給を停止し、光源11から照明光Lの出射を停止させて、処理を終了する。 In step S12, the control unit 17 compares the detected light intensity value of the first illumination light L1 with the first threshold value Th1 and the second threshold value Th2. When the value of the light quantity of the first illumination light L1 is greater than the first threshold Th1 and smaller than the second threshold Th2, the controller 17 makes an affirmative determination, and the process returns to step S11. If the value of the amount of light of the first illumination light L1 is equal to or less than the first threshold Th1 or equal to or greater than the second threshold Th2, the controller 17 makes a negative determination, and the process proceeds to step S13. In step S13, the control unit 17 stops the power supply to the light source 11, stops the emission of the illumination light L from the light source 11, and ends the process.
 <光量制御処理について>
 まず、制御部17は、電源部20から光源11に規定の電力(電流)を供給して、光源11から照明光Lを出射させる。そして、制御部17は、第2検出部16が出力する第2検出信号に基づいて、第2照明光L2の光量、すなわち光源11から出射された照明光Lの光量を検出する。上述したように、第2照明光L2は照明光Lのうち分岐部13にてy軸+側に反射した光である。上述したように分岐部13の反射率は50%と既知の値であることから、分岐部13で反射された第2照明光L2の光量と光源11から出射した照明光Lの光量とには比例関係が存在する。このことから、制御部17は、第2検出部16にて検出された第2照明光L2の光量を照明光Lの光量として扱う(検出する)ことができる。
<Regarding light intensity control processing>
First, the control unit 17 supplies specified power (current) from the power supply unit 20 to the light source 11 to cause the light source 11 to emit illumination light L. As shown in FIG. Then, the control unit 17 detects the light amount of the second illumination light L2, that is, the light amount of the illumination light L emitted from the light source 11, based on the second detection signal output by the second detection unit 16. FIG. As described above, the second illumination light L2 is the light of the illumination light L that is reflected by the branching portion 13 toward the + side of the y-axis. As described above, the reflectance of the branching portion 13 is 50%, which is a known value. A proportional relationship exists. Therefore, the control unit 17 can handle (detect) the light amount of the second illumination light L<b>2 detected by the second detection unit 16 as the light amount of the illumination light L.
 制御部17は、検出した照明光Lの光量と、予め設定されている第3閾値Th3及び第4閾値Th4と比較する。尚、第3閾値Th3は、照明光Lの光量の下限値に分岐部13の反射率である50%を乗じた値である。照明光Lの光量の下限値とは、照明装置10から出射される光によって外部に形成される投影パターンが視認可能となるために必要な光量の値である。第3閾値Th3の値は、シミュレーション等の結果に基づいて決定され、第3閾値Th3に対応する閾値電圧(電流)が予め制御部17に設定されている。制御部17のコンパレータは、この閾値電圧(電流)と、第2照明光L2の光量である第2検出部16が出力する第2検出信号の電圧(電流)とを比較し、比較結果に応じた信号を出力する。制御部17は、この信号に基づいて、比較結果に応じた処理を行う。また、第4閾値Th4は、照明光Lの光量の上限値に分岐部13の反射率である50%を乗じた値である。照明光Lの光量の上限値は、照明装置10から出射される光が外部の人の目に入っても悪影響を及ぼさない光量の値である。第4閾値Th4の値は、シミュレーション等の結果に基づいて決定され、第4閾値Th4に対応する閾値電圧(電流)が予め制御部17に設定されている。制御部17のコンパレータは、この閾値電圧(電流)と、第2照明光L2の光量である第2検出部16が出力する第2検出信号の電圧(電流)とを比較し、比較結果に応じた信号を出力する。制御部17は、この信号に基づいて、比較結果に応じた処理を行う。 The control unit 17 compares the detected light intensity of the illumination light L with the preset third threshold Th3 and fourth threshold Th4. Note that the third threshold Th3 is a value obtained by multiplying the lower limit value of the light amount of the illumination light L by 50%, which is the reflectance of the branch portion 13 . The lower limit value of the light intensity of the illumination light L is the value of the light intensity necessary for the light emitted from the illumination device 10 to form an external projection pattern to be visible. The value of the third threshold Th3 is determined based on the results of simulation or the like, and a threshold voltage (current) corresponding to the third threshold Th3 is set in the controller 17 in advance. The comparator of the control unit 17 compares this threshold voltage (current) with the voltage (current) of the second detection signal output by the second detection unit 16, which is the amount of light of the second illumination light L2. output a signal. Based on this signal, the control unit 17 performs processing according to the comparison result. Further, the fourth threshold Th4 is a value obtained by multiplying the upper limit value of the light amount of the illumination light L by 50%, which is the reflectance of the branch portion 13 . The upper limit value of the light amount of the illumination light L is a light amount value that does not adversely affect the light emitted from the lighting device 10 even if it enters the eyes of an outsider. The value of the fourth threshold Th4 is determined based on the results of simulation or the like, and a threshold voltage (current) corresponding to the fourth threshold Th4 is set in the controller 17 in advance. The comparator of the control unit 17 compares this threshold voltage (current) with the voltage (current) of the second detection signal output by the second detection unit 16, which is the amount of light of the second illumination light L2. output a signal. Based on this signal, the control unit 17 performs processing according to the comparison result.
 制御部17は、算出した照明光Lの光量の値と第3閾値Th3とを比較し、照明光Lの光量の値が第3閾値Th3よりも小さい場合には、光源11から出射される照明光Lの光量を増加させる。具体的には、制御部17は、電源部20から光源11に供給する電力(電流)を増加させる。この場合、制御部17は、予め決められている値だけ電力の供給量を増加させる。あるいは、制御部17は、算出した照明光Lの光量の値と第3閾値Th3との差に基づいて電力の供給量を増加させる。これにより、光源11から出射される照明光Lの光量が増え、照明装置10から出射される光によって外部に形成される投影パターンが視認可能となる。 The control unit 17 compares the calculated value of the light amount of the illumination light L with the third threshold Th3, and if the value of the light amount of the illumination light L is smaller than the third threshold Th3, the illumination emitted from the light source 11 The amount of light L is increased. Specifically, the control unit 17 increases the power (current) supplied from the power supply unit 20 to the light source 11 . In this case, the controller 17 increases the power supply amount by a predetermined value. Alternatively, the control unit 17 increases the power supply amount based on the difference between the calculated value of the light intensity of the illumination light L and the third threshold value Th3. As a result, the amount of illumination light L emitted from the light source 11 increases, and the projection pattern formed outside by the light emitted from the lighting device 10 becomes visible.
 制御部17は、算出した照明光Lの光量の値と第4閾値Th4とを比較し、照明光Lの光量の値が第4閾値Th4よりも大きい場合には、光源11から出射される照明光Lの光量を減少させる。具体的には、制御部17は、電源部20から光源11に供給する電力(電流)を減少させる。この場合、制御部17は、予め決められている値だけ電力の供給量を減少させる。あるいは、制御部17は、算出した照明光Lの光量の値と第4閾値Th4との差に基づいて電力の供給量を減少させる。これにより、照明装置10から出射される光が外部の人の目に入った場合であっても、悪影響を及ぼすことを抑制できる。 The control unit 17 compares the calculated value of the light amount of the illumination light L with a fourth threshold Th4, and if the value of the light amount of the illumination light L is larger than the fourth threshold Th4, the illumination emitted from the light source 11 The amount of light L is reduced. Specifically, the control unit 17 reduces the power (current) supplied from the power supply unit 20 to the light source 11 . In this case, the controller 17 reduces the power supply amount by a predetermined value. Alternatively, the control unit 17 reduces the power supply amount based on the difference between the calculated value of the light amount of the illumination light L and the fourth threshold value Th4. Accordingly, even if the light emitted from the lighting device 10 enters the eyes of an outsider, it is possible to suppress adverse effects.
 尚、制御部17が第2検出部16にて検出された第2照明光L2の光量を照明光Lの光量として扱うものに代えて、第2照明光L2の光量を2倍することにより光源11から出射された照明光Lの光量を検出(算出)してもよい。この場合、第3閾値Th3は上述した照明光Lの光量の下限値であり、第4閾値Th4は上述した照明光Lの光量の上限値である。 Instead of the control unit 17 treating the light amount of the second illumination light L2 detected by the second detection unit 16 as the light amount of the illumination light L, the light amount of the second illumination light L2 is doubled so that the light source The amount of illumination light L emitted from 11 may be detected (calculated). In this case, the third threshold Th3 is the lower limit of the amount of illumination light L described above, and the fourth threshold Th4 is the upper limit of the amount of illumination light L described above.
 尚、上述した光量制御処理は、所定の時間間隔ごとに制御部17により実行される。 It should be noted that the light amount control process described above is executed by the control unit 17 at predetermined time intervals.
 図3に示される光量制御処理のフローチャートを参照して、制御部17が行う処理を説明する。フローチャートに示す各処理は、制御部17が記憶媒体に記憶されたプログラムを読み出し、そのプログラムを実行することにより行われる。 The processing performed by the control unit 17 will be described with reference to the flowchart of the light amount control processing shown in FIG. Each process shown in the flowchart is performed by the control unit 17 reading a program stored in a storage medium and executing the program.
 ステップS20では、制御部17は、第2検出部16から出力された第2検出信号を用いて照明光Lの光量の値を検出する。その後、処理はステップS21へ進む。ステップS21では、制御部17は、算出した照明光Lの光量の値が第3閾値Th3よりも小さいか否かを判定する。照明光Lの光量の値が第3閾値Th3よりも小さい場合には、制御部17により肯定判定が行われ、処理はステップS22へ進む。ステップS22では、制御部17は、電源部20から光源11へ供給する電力を増加させて、光源11が出射する照明光Lの光量を増加させる。その後、処理はステップS20へ戻る。 In step S20, the control unit 17 detects the value of the light amount of the illumination light L using the second detection signal output from the second detection unit 16. After that, the process proceeds to step S21. In step S21, the controller 17 determines whether or not the calculated value of the light intensity of the illumination light L is smaller than the third threshold Th3. When the value of the light amount of the illumination light L is smaller than the third threshold Th3, the controller 17 makes an affirmative determination, and the process proceeds to step S22. In step S<b>22 , the control unit 17 increases the power supplied from the power supply unit 20 to the light source 11 to increase the amount of illumination light L emitted by the light source 11 . After that, the process returns to step S20.
 ステップS21にて照明光Lの光量の値が第3閾値Th3以上の場合には、制御部17により否定判定が行われ、処理はステップS23へ進む。ステップS23では、制御部17は、算出した照明光Lの光量の値が第4閾値Th4よりも大きいか否かを判定する。照明光Lの光量の値が第4閾値Th4よりも大きい場合には、制御部17により肯定判定が行われ、処理はステップS24へ進む。ステップS24では、制御部17は、電源部20から光源11へ供給する電力を減少させて、光源11が出射する照明光Lの光量を減少させる。その後、処理はステップS20へ戻る。また、ステップS23において、算出した照明光Lの光量の値が第4閾値Th4以下の場合には、制御部17により否定判定が行われ、処理はステップS20へ戻る。 In step S21, when the value of the light quantity of the illumination light L is equal to or greater than the third threshold Th3, the control unit 17 makes a negative determination, and the process proceeds to step S23. In step S23, the controller 17 determines whether or not the calculated value of the light intensity of the illumination light L is greater than the fourth threshold Th4. When the value of the light quantity of the illumination light L is larger than the fourth threshold value Th4, the controller 17 makes an affirmative determination, and the process proceeds to step S24. In step S<b>24 , the control unit 17 reduces the power supplied from the power supply unit 20 to the light source 11 to reduce the amount of illumination light L emitted by the light source 11 . After that, the process returns to step S20. Further, in step S23, when the calculated value of the light amount of the illumination light L is equal to or smaller than the fourth threshold value Th4, the controller 17 makes a negative determination, and the process returns to step S20.
 上述した光量制御処理が行われることにより、光源11から出射される照明光Lが光量不足または光量過剰となることが抑制される。 By performing the above-described light amount control process, the illumination light L emitted from the light source 11 is prevented from becoming insufficient or excessive.
 上述した実施の形態によれば、以下の作用効果が得られる。 According to the embodiment described above, the following effects are obtained.
 (1)照明装置10は、光源11と、分岐部13と、回折部14と、第1検出部15と、第2検出部16と、制御部17とを備える。光源11は照明光Lを射出し、分岐部13は照明光Lを第1照明光L1と第2照明光L2とに分岐する。回折部14は、第1照明光L1の一部を回折して外部へ出射し、残部を反射する。第1検出部15は、第1照明光L1のうち回折部14で反射した反射光の光量を検出する。第2検出部16は、第2照明光L2の光量を検出する。制御部17は、第1検出部15により検出された光量と第2検出部16により検出された光量とに基づいて、光源11が出射する照明光Lを制御する。これにより、回折部14の一部に穴が開く等の破損を第1検出部15が出力する第1検出信号により検出することができる。また、第1検出信号に基づいて光源11が出射する照明光Lが制御されることから、回折部14の破損(例えば、回折部14の一部に穴が開く等)が原因となって、人の目に入射すると悪影響を及ぼすような強度(光量)の照明光Lが出射されることが抑制される。この結果、光源11から出射される照明光Lの光量が安定し、照明装置10の安全性を確保することができる。 (1) The illumination device 10 includes a light source 11 , a branching section 13 , a diffraction section 14 , a first detection section 15 , a second detection section 16 and a control section 17 . The light source 11 emits the illumination light L, and the splitter 13 splits the illumination light L into the first illumination light L1 and the second illumination light L2. The diffraction section 14 diffracts a part of the first illumination light L1 and emits it to the outside, and reflects the rest. The first detection unit 15 detects the amount of light reflected by the diffraction unit 14 in the first illumination light L1. The second detector 16 detects the amount of light of the second illumination light L2. The control unit 17 controls the illumination light L emitted by the light source 11 based on the amount of light detected by the first detection unit 15 and the amount of light detected by the second detection unit 16 . As a result, damage such as a hole in a part of the diffraction section 14 can be detected by the first detection signal output by the first detection section 15 . In addition, since the illumination light L emitted from the light source 11 is controlled based on the first detection signal, damage to the diffraction section 14 (for example, a hole in a part of the diffraction section 14, etc.) may cause Emission of illumination light L having an intensity (amount of light) that adversely affects human eyes is suppressed. As a result, the amount of illumination light L emitted from the light source 11 is stabilized, and the safety of the illumination device 10 can be ensured.
 (2)制御部17は、第1検出部15により検出された光量に基づいて、光源11に照明光Lの出射を停止させる。これにより、高強度の照明光Lが出射され、人の目に入射して悪影響を及ぼす危険性を抑制し、照明装置10の安全性を確保できる。 (2) The control unit 17 causes the light source 11 to stop emitting the illumination light L based on the amount of light detected by the first detection unit 15 . As a result, the high-intensity illumination light L is emitted, and the danger of entering the human eye and having an adverse effect can be suppressed, and the safety of the illumination device 10 can be ensured.
 (3)制御部17は、第1検出部15により検出された光量が第1閾値Th1以下の場合には、照明光Lの出射を停止させる。回折部14で反射される第1照明光L1の光量が少ない場合には、回折部14の破損部分から外部に出射している第1照明光L1の光量が多いことが考えられる。したがって、第1検出部15が検出する光量が第1閾値Th1以下の場合には、回折部14が破損している可能性が高いため、照明光Lの出射を停止して、照明装置10の安全性を確保することができる。 (3) The control unit 17 stops emission of the illumination light L when the amount of light detected by the first detection unit 15 is equal to or less than the first threshold value Th1. When the light amount of the first illumination light L1 reflected by the diffraction section 14 is small, it is conceivable that the light amount of the first illumination light L1 emitted to the outside from the damaged portion of the diffraction section 14 is large. Therefore, when the amount of light detected by the first detection unit 15 is equal to or less than the first threshold value Th1, there is a high possibility that the diffraction unit 14 is damaged. Safety can be ensured.
 (4)制御部17は、第1検出部15により検出された光量が第1閾値Th1より大きい第2閾値Th2以上場合には、照明光Lの出射を停止させる。これにより、光源11から出射される照明光Lの光量が過度に多い場合には、人の目に入射して悪影響を及ぼす危険性を有する高強度の照明光Lの出射を停止し、照明装置10の安全性を確保できる。 (4) The control unit 17 stops emission of the illumination light L when the amount of light detected by the first detection unit 15 is greater than or equal to a second threshold Th2 that is greater than the first threshold Th1. As a result, when the amount of illumination light L emitted from the light source 11 is excessively large, the emission of the high-intensity illumination light L, which may enter the human eye and adversely affect the human eye, is stopped. 10 safety can be ensured.
 (5)制御部17は、第2検出部16により検出された光量が第3閾値Th3よりも小さい場合には、光源11が出射する照明光Lの光量を増加させる。これにより、光源11から実際に出射された照明光Lの光量を第2照明光L2の光量に基づいて検出し、照明光Lの光量を調整して、安定的な光量の光を照明装置10から出射させることができる。 (5) The control unit 17 increases the light amount of the illumination light L emitted by the light source 11 when the light amount detected by the second detection unit 16 is smaller than the third threshold Th3. Accordingly, the light amount of the illumination light L actually emitted from the light source 11 is detected based on the light amount of the second illumination light L2, and the light amount of the illumination light L is adjusted to provide a stable light amount. can be emitted from
 (6)制御部17は、第2検出部16により検出された光量が第3閾値Th3より大きい第4閾値Th4に比べて大きい場合には、光源11が出射する照明光Lの光量を減少させる。これにより、光源11から実際に出射された照明光Lの光量を第2照明光L2の光量に基づいて検出し、照明光Lの光量を調整して、安定的な光量の光を照明装置10から出射させることができる。 (6) The control unit 17 reduces the light amount of the illumination light L emitted from the light source 11 when the amount of light detected by the second detection unit 16 is larger than the fourth threshold Th4, which is larger than the third threshold Th3. . Accordingly, the light amount of the illumination light L actually emitted from the light source 11 is detected based on the light amount of the second illumination light L2, and the light amount of the illumination light L is adjusted to provide a stable light amount. can be emitted from
 上述した実施の形態を以下のように変形することができる。 The above-described embodiment can be modified as follows.
 <第1変形例>
 光源制御処理において、第1検出部15によって検出された光量が第1閾値Th1以下または第2閾値Th2以上の場合に、光源11から照明光Lの出射を停止させるものに限定されない。例えば、制御部17は、光源11から出射される照明光Lの光量を低下させてもよい。この場合、制御部17は、光源11へ供給する電力を減少させて照明光Lの光量を低下させることができる。このときの照明光Lの光量は、第1検出部15によって検出された光量と、第1閾値Th1又は第2閾値Th2との間の差に応じて低下されてもよいし、予め決められている所定の割合ごとに低下されてもよい。
<First modification>
The light source control process is not limited to stopping emission of the illumination light L from the light source 11 when the amount of light detected by the first detection unit 15 is equal to or less than the first threshold Th1 or equal to or greater than the second threshold Th2. For example, the controller 17 may reduce the amount of illumination light L emitted from the light source 11 . In this case, the controller 17 can reduce the amount of illumination light L by reducing the power supplied to the light source 11 . The amount of illumination light L at this time may be reduced according to the difference between the amount of light detected by the first detection unit 15 and the first threshold value Th1 or the second threshold value Th2, or may be determined in advance. may be reduced by a predetermined percentage.
 <第2変形例>
 図1のブロック図に示されるように、分岐部13が光学系12の後段(x軸+側)に配置され、分岐部13は光学系12によって平行光に整形された照明光Lを分岐するものに限定されない。分岐部13がビームスプリッタにより構成される場合には、光学系12が分岐部13の後段(x軸+側)に配置され、光学系12が分岐部13により分岐された第1照明光L1を平行光に整形してもよい。
<Second modification>
As shown in the block diagram of FIG. 1, the branching unit 13 is arranged after the optical system 12 (on the + side of the x-axis), and the branching unit 13 branches the illumination light L that has been shaped into parallel light by the optical system 12. not limited to When the branching section 13 is configured by a beam splitter, the optical system 12 is arranged after the branching section 13 (on the + side of the x-axis), and the optical system 12 receives the first illumination light L1 branched by the branching section 13. It may be shaped into parallel light.
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。例えば、制御部17が光源制御処理のみを行ってもよい。この場合、制御部17は、第1検出部15から出力された第1検出信号のみ(すなわち、第1照明光L1のうち回折部14で反射された反射光の光量)を用いて、光源11から出射される照明光Lを制御してもよい。換言すると、制御部17は、第1検出部15から出力された第1検出信号と第2検出部16から出力された第2検出信号とのうち、少なくとも第1検出信号を用いて光源11が出射する照明光Lを制御してよい。 Although various embodiments and modifications have been described above, the present invention is not limited to these contents. Other aspects conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. For example, the control unit 17 may perform only the light source control process. In this case, the control unit 17 controls the light source 11 using only the first detection signal output from the first detection unit 15 (that is, the amount of light reflected by the diffraction unit 14 in the first illumination light L1). Illumination light L emitted from may be controlled. In other words, of the first detection signal output from the first detection unit 15 and the second detection signal output from the second detection unit 16, the control unit 17 uses at least the first detection signal to detect the light source 11. The emitted illumination light L may be controlled.
10…照明装置、11…光源、12…光学系、13…分岐部、14…回折部、15…第1検出部、16…第2検出部、17…制御部、20…電源部 DESCRIPTION OF SYMBOLS 10... Illuminating device, 11... Light source, 12... Optical system, 13... Branch part, 14... Diffraction part, 15... First detection part, 16... Second detection part, 17... Control part, 20... Power supply part

Claims (7)

  1.  照明光を射出する光源と、
     前記光源から出射された前記照明光を第1照明光と第2照明光とに分岐する分岐部と、
     前記第1照明光の一部を回折して外部へ出射し、他の一部を反射する回折部と、
     前記第1照明光のうち前記回折部で反射した反射光の光量を検出する第1検出部と、
     前記第2照明光の光量を検出する第2検出部と、
     前記第1検出部により検出された光量と前記第2検出部により検出された光量とのうち少なくとも前記第1検出部により検出された光量に基づいて、前記光源を制御する制御部と、を備える照明装置。
    a light source that emits illumination light;
    a branching unit that branches the illumination light emitted from the light source into first illumination light and second illumination light;
    a diffraction unit that diffracts a part of the first illumination light and emits it to the outside and reflects the other part;
    a first detection unit that detects the amount of light reflected by the diffraction unit in the first illumination light;
    a second detection unit that detects the amount of light of the second illumination light;
    a control unit that controls the light source based on at least the amount of light detected by the first detection unit out of the amount of light detected by the first detection unit and the amount of light detected by the second detection unit. lighting device.
  2.  請求項1に記載の照明装置において、
     前記制御部は、前記第1検出部により検出された光量に基づいて、前記光源に前記照明光の出射を停止させる、照明装置。
    The lighting device according to claim 1,
    The lighting device, wherein the controller causes the light source to stop emitting the illumination light based on the amount of light detected by the first detector.
  3.  請求項2に記載の照明装置において、
     前記制御部は、前記第1検出部により検出された光量が第1閾値以下の場合には、前記光源に前記照明光の出射を停止させる、照明装置。
    The lighting device according to claim 2,
    The lighting device, wherein the controller causes the light source to stop emitting the illumination light when the amount of light detected by the first detector is equal to or less than a first threshold.
  4.  請求項3に記載の照明装置において、
     前記制御部は、前記第1検出部により検出された光量が前記第1閾値より大きい第2閾値以上の場合には、前記光源に前記照明光の出射を停止させる、照明装置。
    The lighting device according to claim 3,
    The lighting device, wherein the controller causes the light source to stop emitting the illumination light when the amount of light detected by the first detector is equal to or greater than a second threshold larger than the first threshold.
  5.  請求項1から4までの何れか一項に記載の照明装置において、
     前記制御部は、前記第2検出部により検出された光量が第3閾値よりも小さい場合には、前記光源が出射する前記照明光の光量を増加させる、照明装置。
    In the lighting device according to any one of claims 1 to 4,
    The lighting device, wherein the control unit increases the amount of the illumination light emitted by the light source when the amount of light detected by the second detection unit is smaller than a third threshold.
  6.  請求項5に記載の照明装置において、
     前記制御部は、前記第2検出部により検出された光量が前記第3閾値より大きい第4閾値に比べて大きい場合には、前記光源が出射する前記照明光の光量を減少させる、照明装置。
    In the lighting device according to claim 5,
    The lighting device, wherein the control unit reduces the amount of the illumination light emitted from the light source when the amount of light detected by the second detection unit is larger than a fourth threshold that is larger than the third threshold.
  7.  光源から照明光を出射させ、
     分岐部によって前記照明光から分岐した第1照明光のうち、回折部で反射した反射光の光量を検出し、
     前記分岐部により前記照明光から分岐した第2照明光の光量を検出し、
     前記反射光の光量と前記第2照明光の光量とのうち少なくとも前記反射光の光量に基づいて、前記光源を制御する、照明方法。
    emitting illumination light from the light source,
    Detecting the amount of reflected light reflected by the diffraction section, out of the first illumination light branched from the illumination light by the branching section,
    detecting the amount of second illumination light branched from the illumination light by the branching unit;
    The illumination method, wherein the light source is controlled based on at least the amount of the reflected light out of the amount of the reflected light and the amount of the second illumination light.
PCT/JP2023/001038 2022-02-08 2023-01-16 Illumination device and illumination method WO2023153146A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022018137 2022-02-08
JP2022-018137 2022-02-08

Publications (1)

Publication Number Publication Date
WO2023153146A1 true WO2023153146A1 (en) 2023-08-17

Family

ID=87564298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001038 WO2023153146A1 (en) 2022-02-08 2023-01-16 Illumination device and illumination method

Country Status (1)

Country Link
WO (1) WO2023153146A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127449A (en) * 2012-12-27 2014-07-07 Dainippon Printing Co Ltd Illumination device, projection device, scanner and exposure device
JP2014126836A (en) * 2012-12-27 2014-07-07 Dainippon Printing Co Ltd Illumination device, projection device, scanner, and exposure device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014127449A (en) * 2012-12-27 2014-07-07 Dainippon Printing Co Ltd Illumination device, projection device, scanner and exposure device
JP2014126836A (en) * 2012-12-27 2014-07-07 Dainippon Printing Co Ltd Illumination device, projection device, scanner, and exposure device

Similar Documents

Publication Publication Date Title
JP5681718B2 (en) Illumination device for generating a light pattern
JP5289501B2 (en) Object detection device and information acquisition device
US20180361912A1 (en) Scanning headlight, control method and program thereof
JP6226220B2 (en) Illumination device, projection device, scanner and exposure device
WO2010100270A1 (en) Method and apparatus for statistical illumination
JP6376348B2 (en) Vehicle driving support device
JP6376347B2 (en) Vehicle driving support device
JPWO2018092710A1 (en) Notification device, autonomous driving vehicle, notification method, program, non-transitory recording medium, and notification system
US11732860B2 (en) Illumination device
JP6579303B2 (en) Optical device and vehicle equipped with optical device
WO2021049845A3 (en) Overlay measurement device
WO2023153146A1 (en) Illumination device and illumination method
EP2693253A1 (en) Windshield display system
US20080185506A1 (en) Encoder
WO2016047686A1 (en) On-board lighting device
WO2024043025A1 (en) Illumination device and illumination method
WO2023181600A1 (en) Illumination device and illumination method
WO2023228914A1 (en) Illumination device and illumination method
JP2016109530A (en) Optical device and vehicle in which optical device is mounted
US10310281B1 (en) Optical projector with off-axis diffractive element
CN107345641B (en) Lighting module comprising a laser element
KR102142106B1 (en) Fast incident angle-scanning apparatus for incoherent optical diffraction tomography
CN110869666B (en) Lighting device
JP2016088396A (en) Optical device and vehicle equipped with the same
US20210088670A1 (en) Detection of damage to optical element of illumination system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023580129

Country of ref document: JP

Kind code of ref document: A