WO2023228857A1 - Articulated robot, control method for articulated robot, robot system, and method for manufacturing article - Google Patents

Articulated robot, control method for articulated robot, robot system, and method for manufacturing article Download PDF

Info

Publication number
WO2023228857A1
WO2023228857A1 PCT/JP2023/018592 JP2023018592W WO2023228857A1 WO 2023228857 A1 WO2023228857 A1 WO 2023228857A1 JP 2023018592 W JP2023018592 W JP 2023018592W WO 2023228857 A1 WO2023228857 A1 WO 2023228857A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
axis
motor
robot
drive mechanism
Prior art date
Application number
PCT/JP2023/018592
Other languages
French (fr)
Japanese (ja)
Inventor
亮 田中
真一 稲田
皓太 藤井
宏幸 小島
知秀 繁田
秀行 中西
Original Assignee
ローレルバンクマシン株式会社
ローレル機械株式会社
ローレル精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022085994A external-priority patent/JP2023173621A/en
Priority claimed from JP2022085993A external-priority patent/JP2023173620A/en
Priority claimed from JP2022085995A external-priority patent/JP2023173622A/en
Application filed by ローレルバンクマシン株式会社, ローレル機械株式会社, ローレル精機株式会社 filed Critical ローレルバンクマシン株式会社
Publication of WO2023228857A1 publication Critical patent/WO2023228857A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/02Arms extensible
    • B25J18/04Arms extensible rotatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms

Definitions

  • Articulated robots are known as robots that perform actions similar to humans (see, for example, Patent Document 1).
  • articulated robots are sometimes required to perform movements that exceed those of humans.
  • the robot is made larger in order to widen the area that the tip of the robot can reach, there is a risk that it will not be possible to secure enough space to install the robot. For this reason, it is desired to widen the area that the tip of the robot can reach while suppressing the increase in the size of the robot.
  • An articulated robot includes a base, a tip, a first link, and a second link, and includes a plurality of links connecting the base and the tip, and the first link.
  • a first drive mechanism that connects the second link to the second link, wherein the second link is connected to the first link by using an axis that makes an angle larger than a predetermined angle with the direction in which the first link extends as a first rotation axis.
  • a first drive mechanism that rotates with respect to the link, and a connection between the second link and a link other than the first link and the second link among the plurality of links, or the second link and the tip.
  • An articulated robot includes a base, a tip, a first link, and a second link, and includes a plurality of links connecting the base and the tip, and the first link.
  • a first drive mechanism that connects the second link to the second link, wherein the second link is connected to the first link by using an axis that makes an angle larger than a predetermined angle with the direction in which the first link extends as a first rotation axis.
  • a first drive mechanism that rotates with respect to the link, and a connection between the second link and a link other than the first link and the second link among the plurality of links, or the second link and the tip.
  • the present invention it is possible to widen the area that the tip of the robot can reach while suppressing the increase in size of the robot.
  • FIG. 1 is an explanatory diagram for explaining an overview of a robot system according to a first embodiment.
  • FIG. 2 is an explanatory diagram for explaining an example of a link including a joint mechanism and an expansion/contraction mechanism.
  • FIG. 2 is an explanatory diagram for explaining an example of a link including a telescoping mechanism.
  • FIG. 2 is an explanatory diagram for explaining the advantages of the robot shown in FIG. 1.
  • FIG. 2 is a diagram showing an example of the hardware configuration of the robot controller shown in FIG. 1.
  • FIG. It is an explanatory view for explaining an outline of a robot system concerning a 2nd embodiment.
  • 7 is an explanatory diagram for explaining an example of the link shown in FIG. 6.
  • FIG. 7 is an explanatory diagram for explaining another example of the link shown in FIG. 6.
  • FIG. 2 is an explanatory diagram for explaining an example of a link including a joint mechanism and an expansion/contraction mechanism. It is an explanatory view for explaining an example of the link concerning modification B1. It is an explanatory view for explaining another example of the link concerning modification B1. It is an explanatory view for explaining an outline of a robot system concerning a 4th embodiment.
  • FIG. 2 is an explanatory diagram for explaining an example of a joint mechanism including a telescoping mechanism.
  • 15 is an explanatory diagram for explaining the advantages of the robot shown in FIG. 14.
  • FIG. 1 is an explanatory diagram for explaining an overview of a robot system 1 according to the first embodiment.
  • the body part BDP is an example of a "base”. Further, the link LK1 is an example of a “first link”, and the link LK2 is an example of a “second link”. Therefore, links LK1 and LK2 correspond to "a plurality of links”.
  • Link LK3 is an example of a "tip part.”
  • the joint mechanism AR1 is an example of a "fourth drive mechanism,” and the joint mechanism AR2 is an example of a "fifth drive mechanism.”
  • the joint mechanism AR3 is an example of a "first drive mechanism”
  • the joint mechanism AR5 is an example of a "second drive mechanism.”
  • the direction De1 corresponds to the longitudinal direction of each of the supporting portion LK11, the movable portion LK12, and the movable portion LK13. Moreover, in this embodiment, it is assumed that the direction De11 in which the support portion LK11 extends is the direction De1 in which the link LK1 extends.
  • the joint mechanism AR5 connects the link LK2 and the link LK3, and rotates the link LK3 with respect to the link LK2 using an axis Ax5 perpendicular to the direction De2 in which the link LK2 extends as a rotation axis.
  • the rotation direction Dr5 in FIG. 1 indicates the rotation direction of the link LK3 when rotating around the axis Ax5.
  • Axis Ax5 is an example of a "second rotation axis.”
  • the direction De2 in which the link LK2 extends corresponds to a specific direction
  • the direction De3 in which the link LK3 extends corresponds to a specific direction.
  • the axis Ax5 corresponds to an axis whose angle with the direction De2 in which the link LK2 extends is larger than a predetermined angle
  • the axis Ax6 corresponds to an axis whose angle with the direction De3 in which the link LK3 extends is a predetermined angle. It corresponds to the following axes.
  • the link LK1 can be expanded and contracted by the expansion and contraction mechanism TE1 provided between the joint mechanism AR2 that rotates the link LK1 and the joint mechanism AR3 that rotates the link LK2.
  • the link LK2 is extended and contracted and the movable portion LK23 is rotated by the extension mechanism TE2 and the joint mechanism AR4 provided between the joint mechanism AR3 and the joint mechanism AR5 that rotates the link LK3.
  • the telescopic mechanisms TE1 and TE2 can widen the reachable area of the robot 10's tip (for example, the end face LK3sf of the link LK3), and the end effector 20 attached to the robot 10 can reach. The area can be expanded.
  • the moving direction of the nut TE21 is switched between the direction Dm2p and the direction Dm2m.
  • the motor MOt2 rotates in the first rotational direction
  • the nut TE21 moves in the direction Dm2p
  • the motor MOt2 rotates in the second rotational direction in the opposite direction to the first rotational direction.
  • the nut TE21 moves in the direction Dm2m.
  • the robot 10 can be controlled with high precision.
  • the link LK2 is configured such that the center of gravity of the movable portion LK23 is located on the axis Ax4 when the movable portion LK23 rotates. In this case, the inertia that occurs when the movable portion LK23 rotates about the axis Ax4 can be reduced, and the deflection, eccentricity, etc. of the entire link LK2 can be further suppressed.
  • link LK2 is not limited to the example shown in FIG. 2.
  • link LK2 contracts, at least a portion of movable portion LK22 may be stored in movable portion LK23.
  • a part of the movable part LK22 may be stored in the support part LK21, and another part of the movable part LK22 may be stored in the movable part LK23.
  • a part of the movable portion LK22 may not be stored inside the support portion LK21 but may be exposed from the support portion LK21.
  • the movable portion LK22 may be configured integrally with the movable portion LK23.
  • the link LK1 includes the support portion LK11, the movable portions LK12 and LK13, the telescoping mechanism TE1, and the motor MOt1.
  • Support portion LK11 is hollow.
  • a telescoping mechanism TE1 is provided inside the support portion LK11.
  • the moving direction of the nut TE11 By switching the rotational direction of the motor MOt1, the moving direction of the nut TE11, that is, the moving direction of the movable portion LK12, is switched between the direction Dm1p and the direction Dm1m.
  • the motor MOt1 rotates in the first rotational direction
  • the nut TE11 moves in the direction Dm1p
  • the motor MOt1 rotates in the second rotational direction in the opposite direction to the first rotational direction.
  • the nut TE11 moves in the direction Dm1m.
  • the support portion LK11 and the movable portion LK12 are integrally constructed, and a telescoping mechanism for moving the movable portion LK13 relative to the integrally constructed support portion LK11 and movable portion LK12 is attached to the link LK1 as a telescoping mechanism TE1. may be provided.
  • FIG. 4 is an explanatory diagram for explaining the advantages of the robot 10 shown in FIG. 1.
  • a robot 10Z vertical 6-axis multi-joint robot
  • the advantages of the robot 10 will be explained using an example of work on articles GD placed on a shelf RK.
  • a robot 10Z which is compared to the robot 10, will be explained.
  • the robot 10Z of the comparative example is the same as the robot 10 except that it has links LK1z and LK2z instead of links LK1 and LK2.
  • Links LK1z and LK2z are fixed at predetermined lengths and do not expand or contract.
  • the length of link LK1z is approximately the same length as link LK1 when link LK1 is contracted to the maximum
  • the length of link LK2z is the length when link LK2 is expanded to the maximum.
  • the length is approximately the same as the length of link LK2 in the case of Note that the length of the link LK1z may be approximately the same length as the length of the link LK1 when the link LK1 is expanded to the maximum extent.
  • the robot 10Z in which one or both of the links LK1z and LK2z are simply made longer without making the links LK1z and LK2z extensible, the robot 10Z itself becomes larger. Therefore, when the robot 10Z is used, the space in which the robot 10Z is installed or the space in which the robot 10Z moves needs to be larger than when the robot 10 is used. Therefore, in a configuration in which the links LK1z and LK2z cannot be extended or contracted (for example, robot 10Z), it is difficult to widen the area that the tip of the robot can reach if space for installing a large robot cannot be secured.
  • the link LK2 expands and contracts, so the area that the tip of the robot 10 (for example, the link LK3) can reach while suppressing the overall size of the robot 10 is suppressed. can be made wider.
  • the robot 10 can be installed even in a narrow place where space for installing the robot 10Z cannot be secured.
  • the robot 10 can work on objects placed close to the robot 10 and work on objects placed far from the robot 10 by expanding and contracting the link LK2. Both tasks can be done efficiently.
  • the robot 10 can linearly move the link LK3 and the end effector 20, as shown by the broken arrow in FIG. 4, by expanding and contracting the link LK2. Therefore, in the present embodiment, even in a narrow space where there are obstacles such as the frame FRM of the shelf RK, the robot 10 can easily work on the article GD placed at the back of the shelf RK by extending and contracting the link LK2. can be done. Furthermore, in this embodiment, for example, the link LK3 and the end effector 20 can be linearly moved by driving the extension mechanism TE2 without simultaneously driving the joint mechanisms AR2 and AR3. Therefore, in the present embodiment, it is possible to suppress the control of the plurality of joint mechanisms AR from becoming complicated, and it is possible to improve the accuracy when moving the link LK3 and the end effector 20 linearly.
  • the link LK1 expands and contracts, so while suppressing the overall size of the robot 10, the area that the tip of the robot 10 can reach is configured so that the link LK1 does not expand or contract. It can be made wider.
  • the robot 10 can work on the article GD placed at a high position that cannot be reached when the link LK1 does not extend or contract.
  • the robot 10 moves the joint mechanism AR3 to a high position using the telescoping mechanism TE1, thereby easily working on the article GD placed at a high position on the shelf RK and at the back of the shelf RK. It can be carried out.
  • FIG. 5 is a diagram showing an example of the hardware configuration of the robot controller 30 shown in FIG. 1.
  • the memory 33 includes, for example, a volatile memory such as a RAM (Random Access Memory) that functions as a work area of the processing device 32, and an EEPROM (Electrically Erasable Programmable Read-On Memory) that stores various information such as a control program PGr. ly Memory) etc. This includes one or both of non-volatile memory.
  • the memory 33 may be removably attached to the robot controller 30.
  • the memory 33 may be a storage medium such as a memory card that is detachable from the robot controller 30.
  • the memory 33 may be, for example, a storage device (for example, online storage) that is communicably connected to the robot controller 30 via a network or the like.
  • the processing device 32 is a processor that controls the entire robot controller 30, and includes, for example, one or more CPUs (Central Processing Units).
  • the processing device 32 controls the operation of the robot 10 by, for example, executing a control program PGr stored in the memory 33 and operating according to the control program PGr.
  • the control program PGr may be transmitted from another device via a network or the like.
  • the processing device 32 when the processing device 32 is configured to include a plurality of CPUs, some or all of the functions of the processing device 32 may be performed by the plurality of CPUs working together according to a program such as the control program PGr. It may be realized by In addition to one or more CPUs, or in place of a part or all of one or more CPUs, the processing device 32 may include a GPU (Graphics Processing Unit), a DSP (Digital Signal Processor), or an FPGA ( It may be configured to include hardware such as Field, Programmable, Gate, Array. In this case, part or all of the functions of the processing device 32 may be realized by hardware such as a DSP.
  • a DSP Digital Signal Processor
  • the communication device 34 is hardware for communicating with an external device existing outside the robot controller 30.
  • the communication device 34 has a function of communicating with an external device by short-range wireless communication.
  • the communication device 34 may further have a function of communicating with an external device via a mobile communication network or a network.
  • the operating device 35 is an input device (eg, keyboard, mouse, switch, button, sensor, etc.) that accepts input from the outside.
  • the operating device 35 receives an operation from a worker and outputs operation information corresponding to the operation to the processing device 32.
  • a touch panel that detects contact with the display surface of the display device 36 may be employed as the operating device 35.
  • the display device 36 is an output device such as a display that performs output to the outside.
  • the display device 36 displays images under the control of the processing device 32, for example.
  • the operating device 35 and the display device 36 may have an integrated configuration (for example, a touch panel).
  • the driver circuit 37 is hardware that outputs signals for driving the robot 10 to the robot 10 under the control of the processing device 32.
  • the driver circuit 37 outputs signals for driving the motors MOa1, MOa2, MOa2, MOa4, MOa5, MOa6, MOt1, MOt2, etc. to the robot 10 under the control of the processing device 32.
  • the motors MOa1, MOa2, MOa2, MOa4, MOa5, and MOa6 are motors that drive the joint mechanisms AR1, AR2, AR3, AR4, AR5, and AR6, respectively.
  • the motors MOt1 and MOt2 are motors that drive the telescoping mechanisms TE1 and TE2, respectively.
  • the robot controller 30 controls the operation of the robot 10 by controlling the motors MOa1, MOa2, MOa2, MOa4, MOa5, MOa6, MOt1, and MOt2.
  • the robot 10 includes a body part BDP, a link LK3, a plurality of links LK1 and LK2 that connect the body part BDP and the link LK3, a joint mechanism AR3, and a joint mechanism AR5.
  • the joint mechanism AR3 connects the link LK1 and the link LK2, and rotates the link LK2 with respect to the link LK1 using an axis Ax3, which is larger than a predetermined angle with the direction De1 in which the link LK1 extends, as a first rotation axis.
  • the joint mechanism AR5 connects the link LK2 and the link LK3, and rotates the link LK3 with respect to the link LK2 using an axis Ax5, which is larger than a predetermined angle at an angle with the direction De2 in which the link LK2 extends, as a second rotation axis.
  • the link LK2 includes a support portion LK21 connected to the link LK1, a movable portion LK23 connected to the link LK3, a movable portion LK22 that connects the support portion LK21 and the movable portion LK23, a joint mechanism AR4, and a telescopic mechanism TE2. and has.
  • the support portion LK21 is hollow.
  • the link LK2 is retracted, at least a portion of the movable part LK22 is stored inside the support part LK21.
  • the motor MOa4 since the motor MOa4 is attached to the movable part LK22, even if the movable part LK23 rotates about the axis Ax4, the motor MOa4 itself does not rotate (revolution) around the axis Ax4. Therefore, in this embodiment, it is possible to suppress the occurrence of disturbances caused by the revolution of the motor MOa4 itself.
  • the link LK1 is expanded and contracted by the expansion and contraction mechanism TE1. Therefore, in this embodiment, the area that the tip of the robot 10 can reach can be made wider than in the case where the link LK1 does not extend or contract, while suppressing the overall size of the robot 10. As a result, in this embodiment, for example, the robot 10 can work on the article GD placed at a high position that cannot be reached when the link LK1 does not extend or contract. In addition, in the present embodiment, the robot 10 moves the joint mechanism AR3 to a high position using the telescoping mechanism TE1, thereby easily working on the article GD placed at a high position on the shelf RK and at the back of the shelf RK. It can be carried out.
  • the support portion LK11 is hollow.
  • the link LK1 is retracted, at least a portion of the movable part LK12 is stored inside the support part LK11.
  • the link LK1 includes a support portion LK11 connected to the body portion BDP, a movable portion LK13 connected to the link LK2, and a movable portion LK12 connecting the support portion LK11 and the movable portion LK13. It includes an expansion and contraction mechanism TE1.
  • the expansion mechanism TE1 expands and contracts the link LK1 by moving the movable portion LK12 with respect to the support portion LK11 along the direction De11 in which the support portion LK11 extends.
  • the reachable area of the tip for example, link LK3
  • the robot controller 30 also includes a motor MOa1 that drives the joint mechanism AR1, a motor MOa2 that drives the joint mechanism AR2, a motor MOa3 that drives the joint mechanism AR3, a motor MOa4 that drives the joint mechanism AR4, a motor MOa4 that drives the joint mechanism AR4, and a motor MOa4 that drives the joint mechanism AR4.
  • the operation of the robot 10 is controlled by controlling the motor MOa5 that drives the AR5, the motor MOa6 that drives the joint mechanism AR6, the motor MOt1 that drives the telescoping mechanism TE1, and the motor MOt2 that drives the telescoping mechanism TE2. In this manner, in this embodiment, the robot controller 30 can easily control the operation of the robot 10.
  • the robot system 1 includes a robot 10, an end effector 20 attached to the link LK3, and a robot controller 30 that controls the operations of the robot 10 and the end effector 20.
  • the robot 10 is used in the robot system 1 in which the area reachable by the tip portion (for example, the link LK3) is widened while suppressing the overall size from increasing. Therefore, in this embodiment, even in a narrow space, the robot system 1 can efficiently perform both operations on objects placed near the robot 10 and operations on objects placed far from the robot 10. It can be carried out.
  • the robot system 1 may be used in an article manufacturing method that includes assembling or removing parts. In this case, the work of assembling parts or removing parts can be performed efficiently.
  • the robot 10A is similar to the robot 10 shown in FIG. 1 except that it has a link LK2a instead of the link LK2 shown in FIG.
  • Link LK2a is another example of a "second link.” Below, link LK2a will be mainly explained.
  • the supporting part LK21a is another example of the "first part”
  • the movable part LK22a is another example of the "third part”
  • the movable part LK23a is another example of the "second part”.
  • the joint mechanism AR4a is another example of the "third drive mechanism”.
  • the link LK2a is configured such that the axis Axte2 along which the movable portion LK22a moves is the same or approximately the same axis as the axis Ax4 when the movable portion LK22a rotates. .
  • the joint mechanism AR4a is attached to, for example, one of the two ends of the support portion LK21a that is closer to the movable portion LK23a.
  • the joint mechanism AR4a includes a stay AR41a, a transmission shaft AR42a to which rotation of the motor MOa4 is transmitted, and a rotating gear AR47a attached to the transmission shaft AR42a.
  • the stay AR41a is attached to the end closer to the movable part LK23a of the two ends of the support part LK21a so as to protrude from the movable part LK22a.
  • a motor MOa4 is attached to a portion of the stay AR41a that protrudes from the movable portion LK22a. That is, the motor MOa4 is attached to the support portion LK21a, which does not move even if the movable portion LK22a moves, via the stay AR41a.
  • the stay AR41a is provided with a transmission shaft AR42a and a rotating gear AR47a.
  • the rotating gear AR47a is attached to the transmission shaft AR42a such that the transmission shaft AR42a is located at the center of the rotating gear AR47a when viewed in plan from the direction De2.
  • a plurality of grooves are provided on the outer periphery of the movable portion LK22a for operating the movable portion LK22a as a gear that meshes with the rotating gear AR47a.
  • Each of the plurality of grooves provided on the outer periphery of the movable portion LK22a extends in the longitudinal direction (direction De2) of the movable portion LK22a.
  • the movable portion LK22a moves relative to the support portion LK21a and the relative position of the rotating gear AR47a with respect to the movable portion LK22a changes, the movable portion LK22a meshes with the rotating gear AR47a. That is, when the link LK2a expands and contracts along the direction De21, the rotary gear AR47a can maintain a state of meshing with the movable part LK22a, no matter where the movable part LK22a stops.
  • the motor MOa4 since the motor MOa4 is attached to the support part LK21a via the stay AR41a, even if the movable parts LK22a and LK23a rotate, it does not rotate about the axis Ax4. Therefore, in this embodiment as well, even if the movable parts LK22a and LK23a rotate about the axis Ax4, the motor MOa4 itself does not rotate (revolution) around the axis Ax4, and therefore disturbances occur due to the rotation (revolution). can be restrained from doing so.
  • the nut TE21 fixed to the movable part LK22a rotates together with the movable part LK22a.
  • the ball screw TE22 rotates together with the nut TE21 so that the nut TE21 does not move along the ball screw TE22 as the nut TE21 rotates.
  • the ball screw TE22 is attached to the motor MOt2 so as to idle with respect to the motor MOt2 together with the nut TE21 when the movable portion LK22a is rotated by the joint mechanism AR4a. Thereby, even when the movable part LK22a is rotated by the joint mechanism AR4a, it does not move along the axis Axte2.
  • the transmission shaft AR42a is attached to the motor MOa4 so as not to idle relative to the motor MOa4 when the ball screw TE22 rotates with the rotation of the motor MOt2.
  • the movable part LK22a in a state of meshing with the rotating gear AR47a does not rotate about the axis Ax4 even when the ball screw TE22 rotates. Therefore, when the ball screw TE22 rotates, the nut TE21 fixed to the movable part LK22a does not rotate about the axis Axte2 as the axis of rotation, but rather changes the relative position of the nut TE21 with respect to the ball screw TE22.
  • the movable parts LK22a and LK23a move along the axis Axte2 (ie, direction De21) as the nut TE21 moves.
  • the joint mechanism AR4a is attached to the end closer to the movable part LK23a of the two ends of the support part LK21a, and is able to move the movable part LK22a with respect to the support part LK21a regardless of the expansion/contraction state of the link LK2a. It is possible to rotate.
  • link LK2a including the joint mechanism AR4a and the telescoping mechanism TE2 will be described.
  • FIG. 8 is an explanatory diagram for explaining another example of link LK2a shown in FIG. 6. Elements similar to those described in FIGS. 1 to 7 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the upper part of FIG. 8 shows the link LK2a in a contracted state, and the lower part in FIG. 8 shows the link LK2a in an extended state.
  • the link LK2a shown in FIG. 8 is similar to the link LK2a shown in FIG. 7, except that the length of the movable portion LK23a along the direction De21 is shorter than the length of the movable portion LK23a shown in FIG. 7 along the direction De21. It is.
  • the length of the movable portion LK23a along the direction De21 may be shorter than the diameter of the movable portion LK23a, or may be the same as the diameter of the movable portion LK23a.
  • the length (longitudinal length) of the movable portion LK23a along the direction De2 is made long to some extent (for example, longer than the diameter of the movable portion LK23a). This increases the weight of the movable portion LK23a. Thereby, also in this embodiment, the natural vibration frequency of the movable portion LK23a can be made small.
  • the movable portions LK22a and LK23a are integrally configured.
  • the natural vibration frequency of can be reduced.
  • the joint mechanism AR4a is connected to the tip of the robot 10A (for example, the end of the link LK3).
  • the weight of the portion up to the end surface LK3sf) can be reduced.
  • the length of the support portion LK21a and the movable portion LK22a along the direction De21 is lengthened.
  • the expansion/contraction range of the link LK2a can be increased.
  • the expansion/contraction range of the link LK2a is, for example, the difference between the length of the link LK2a along the direction De2 when the link LK2a is contracted to the maximum and the length of the link LK2a along the direction De2 when the link LK2a is expanded to the maximum.
  • the range corresponds to
  • the joint mechanism AR4a rotates the movable part LK22a with respect to the support part LK21a using the axis Ax4, which has an angle equal to or less than a predetermined angle with the direction De21 in which the support part LK21a extends, as a third rotation axis, thereby rotating the movable part LK23a. is rotated relative to the support portion LK21a.
  • the expansion/contraction mechanism TE2 expands/contracts the link LK2a by moving the movable portion LK22a with respect to the support portion LK21a along the extending direction (direction De21) of the support portion LK21a. Also in this embodiment, the same effects as in the first embodiment described above can be obtained.
  • the movable part LK22b is hollow.
  • a motor MOa4 is attached inside the movable part LK22b. Therefore, in this modification, the transmission shaft AR42, pulley AR43, pulley AR44, and timing belt AR45 shown in FIG. 2 can be omitted, and the configuration of the joint mechanism AR4b can be simplified.
  • the joint mechanism AR4b includes a motor fixed portion AR41b provided at an end closer to the movable portion LK23 of the two ends of the movable portion LK22b (that is, near the boundary between the movable portion LK22b and the movable portion LK23); It has a transmission shaft AR46 and a gear AR47.
  • the transmission shaft AR46 is attached to the motor MOa4 so that the rotation of the motor MOa4 is transmitted. Further, the transmission shaft AR46 is connected to the movable portion LK23 via a gear AR47. Thereby, for example, when the motor MOa4 rotates, the rotation of the motor MOa4 is transmitted to the movable part LK23 via the transmission shaft AR46 and the gear AR47. As a result, the movable portion LK23 rotates about the axis Ax4. Note that since the motor MOa4 is attached to the movable part LK22, even if the movable part LK23 rotates about the axis Ax4, it does not rotate about the axis Ax4. Therefore, in this modification as well, even when the movable portion LK23 rotates about the axis Ax4, it is possible to suppress the disturbance caused by the rotation of the motor MOa4 itself.
  • the link LK2b can be configured such that the center of gravity of the entire link LK2b is located on the axis Ax4 when the movable portion LK23 rotates. In this case, for example, it is possible to suppress the deflection of the link LK2b when the link LK2b is expanded or contracted by the expansion mechanism TE2.
  • the length of the ball screw TE22 along the direction De21 is determined so that the ball screw TE22 does not interfere with the motor MOa4 even when the link LK2b is contracted to the maximum. For example, if the length of the movable portion LK22b along the direction De21 is the same as the length of the movable portion LK22 along the direction De21 shown in FIG. It is shorter than the length along direction De21 of TE22.
  • link LK2b is not limited to the example shown in FIG. 9.
  • the movable portion LK22b may be configured to cover the outer periphery of the support portion LK21 by devising the structure of the motor MOt2, the nut TE21, and the ball screw TE22.
  • link LK2b contracts, at least a portion of support portion LK21 may be stored in movable portion LK22b.
  • the movable portion LK12 covers the outer periphery of the support portion LK11, and when the link LK1 contracts, at least a portion of the support portion LK11 becomes the movable portion. It may be configured to be stored in LK12.
  • a 6-axis 2-extensible articulated robot in which two extension mechanisms TE1 and TE2 are added to a vertical 6-axis articulated robot is illustrated as the robot 10 or 10A, but the present invention does not apply to such an aspect. It is not limited to.
  • the robot 10 or 10A may be a 6-axis, 1-extension, multi-joint robot obtained by adding one extension/contraction mechanism TE2 to a vertical 6-axis, multi-joint robot.
  • the robot 10 or 10A may have a configuration in which two telescopic mechanisms TE1 and TE2 are added to an articulated robot with seven or more axes, or one telescopic mechanism TE2 is added to an articulated robot with seven or more axes. It may be an additional configuration.
  • the robot 10 or 10A may have one or more links connecting the body part BDP and the link LK1. That is, the robot 10 or 10A may have three or more links (three or more links excluding link LK3) that connect the body part BDP and link LK3.
  • FIG. 10 is an explanatory diagram for explaining an overview of the robot system 1 according to the third embodiment.
  • the robot system 1 includes, for example, a robot 10B, an end effector 20 that is detachably attached to the robot 10B, and a robot controller 30 that controls the operations of the robot 10B and the end effector 20.
  • the robot 10B is an example of an "articulated robot.”
  • the robot 10B is similar to the robot 10 shown in FIG. 1, except that it has a link LK2c instead of the link LK2 shown in FIG.
  • Link LK2c is an example of a "second link.” Therefore, links LK1 and LK2c correspond to "a plurality of links”. Below, link LK2c will be mainly explained. In addition, below, link LK2c may be called link LK2.
  • the link LK2c is configured to be expandable and contractible, for example, along the direction De2 in which the link LK2c extends.
  • the link LK2c includes a support portion LK21c connected to the link LK1, movable portions LK22c and LK23c, a telescoping mechanism TE2c, and a joint mechanism AR4c.
  • Movable portion LK22c connects support portion LK21c and movable portion LK23c.
  • Movable part LK23c is connected to link LK3.
  • a case is assumed in which each of the support portion LK21c, the movable portion LK22c, and the movable portion LK23c extends along the direction De2.
  • the direction De2 corresponds to the longitudinal direction of each of the supporting portion LK21c, the movable portion LK22c, and the movable portion LK23c. Furthermore, in this embodiment, it is assumed that the direction De22 in which the movable portion LK22c extends is the direction De2 in which the link LK2c extends.
  • the telescopic mechanism TE2c connects the movable part LK22c and the movable part LK23c, and moves the movable part LK23c with respect to the movable part LK22c along the direction De22 in which the movable part LK22c extends.
  • the link LK2c expands and contracts along the direction De22 (namely, the direction De2).
  • Direction Dm2 in FIG. 10 indicates the expansion/contraction direction (direction along direction De2) of link LK2c.
  • the joint mechanism AR4c rotates the movable portion LK22c with respect to the support portion LK21c using an axis Ax4 parallel to the direction De21 in which the support portion LK21c extends as a rotation axis.
  • the rotation direction Dr4 in FIG. 10 indicates the rotation direction of the movable portion LK22c when rotating around the axis Ax4.
  • the movable part LK23c is connected to the movable part LK22c so as to rotate together with the movable part LK22c.
  • FIG. 11 is an explanatory diagram for explaining an example of the link LK2c including the joint mechanism AR4c and the telescopic mechanism TE2c.
  • the upper part of FIG. 11 shows the link LK2c in a contracted state, and the lower part of FIG. 11 shows the link LK2c in an expanded state.
  • the link LK2c drives the support portion LK21c, the movable portions LK22c and LK23c, the telescopic mechanism TE2c, the joint mechanism AR4c, the motor MOa4 that drives the joint mechanism AR4c, and the telescopic mechanism TE2c.
  • Movable portion LK22c is hollow.
  • a telescopic mechanism TE2c is provided inside the movable portion LK22c.
  • the motor MOt2 is attached inside the movable portion LK22c, and the motor MOa4 is attached inside the supporting portion LK21c.
  • Motor MOa4 is an example of a "first motor”
  • motor MOt2 is an example of a "second motor.”
  • the telescopic mechanism TE2c includes, for example, a nut TE21 fixed to one of the two ends of the movable part LK23c that is closer to the support part LK21c, and a ball screw extending along the direction De22 and inserted into the nut TE21. TE22.
  • the ball screw TE22 is attached to the motor MOt2, for example, so that the center axis of the ball screw TE22 coincides with the center axis of the movable portion LK22c.
  • the ball screw TE22 rotates about the axis Axte2 as the motor MOt2 rotates.
  • the axis Axte2 is, for example, the central axis of the ball screw TE22.
  • the nut TE21 moves along the axis Axte2 as the ball screw TE22 rotates. Since the nut TE21 is fixed to the movable portion LK23c, the movable portion LK23c moves along the axis Axte2 (ie, the direction De22) as the nut TE21 moves. In this way, the ball screw TE22 movably supports the movable portion LK23c.
  • the movable portion LK23c is configured to be able to store the ball screw TE22.
  • the central axis of the movable portion LK23c is the same axis as the central axis of the ball screw TE22, that is, the axis Axte2.
  • the movable portion LK23c is connected to the movable portion LK22c so as not to rotate about the axis Axte2 even when the ball screw TE22 rotates.
  • the nut TE21 fixed to the movable portion LK23c moves along the axis Axte2 as the ball screw TE22 rotates, as described above.
  • link LK2c extends in direction Dm2p.
  • the link LK2c extends at most by approximately the same length as the length of the movable portion LK23c.
  • the motor MOt2 is connected to the support portion of the two ends of the movable portion LK22c so that the movable portion LK23c does not move in the direction Dm2 even when the telescopic mechanism TE2c performs a telescopic operation to move the movable portion LK23c in the direction Dm2p or Dm2m. It is attached to the end near LK21c. That is, the motor MOt2 is attached to one of the two ends of the movable portion LK22c that is closer to the support portion LK21c so that the movable portion LK23c does not move in the direction Dm2 even if the movable portion LK23c moves in the direction Dm2p or Dm2m. .
  • the joint mechanism AR4c is attached to, for example, one of the two ends of the support portion LK21c that is closer to the movable portion LK22c (that is, near the boundary between the support portion LK21c and the movable portion LK22c).
  • the joint mechanism AR4c includes a motor fixed portion AR48, a transmission shaft AR46, and a gear AR47.
  • a motor MOa4 disposed inside the support portion LK21c is fixed to a motor fixed portion AR48 provided at the end closer to the movable portion LK22c of the two ends of the support portion LK21c. In this way, since the motor MOa4 is fixed to the support portion LK21c, it does not move in the direction Dm2 even when the expansion and contraction mechanism TE2c performs an expansion and contraction operation.
  • the motor MOa4 is attached to the support part LK21c, even if the joint mechanism AR4c performs a rotation operation of rotating the movable part LK22c with the axis Ax4 as the rotation axis, it cannot rotate with the axis Ax4 as the rotation axis. There isn't. Therefore, in the present embodiment, even when the movable portion LK22c rotates about the axis Ax4, it is possible to suppress the disturbance caused by the rotation of the motor MOa4 itself.
  • the influence of disturbances such as external vibrations on eccentricity and speed control in the rotational movement is greater than in the turning movement by the joint mechanisms AR2, AR3, or AR5.
  • the relative positions of the motor MOa4 and the joint mechanism AR4c with respect to the movable portion LK22c do not change. Therefore, in this embodiment, it is possible to suppress the occurrence of disturbances that affect the rotational movement of the joint mechanism AR4c, and it is possible to accurately control the rotational movement of the joint mechanism AR4c. That is, in this embodiment, the robot 10B can be controlled with high precision.
  • the rotation axis of the movable portion LK22c is parallel to the central axis of the movable portion LK23c.
  • the axis Axte2 (the central axis of each of the ball screw TE22, the movable part LK22c, and the movable part LK23c) when the movable part LK23c moves is the same axis as the axis Ax4 when the movable part LK22c rotates, or They are configured to have almost the same axis.
  • the robot 10B can be controlled with high precision.
  • the link LK2c is configured such that the center of gravity of the movable parts LK22c and LK23c is located on the axis Ax4 when the movable part LK22c rotates. In this case, the inertia that occurs when the movable parts LK22c and LK23c rotate about the axis Ax4 can be reduced, and the deflection and eccentricity of the entire link LK2c can be further suppressed.
  • the expansion and contraction of the link LK2c is realized by moving the movable part LK23c along the axis Axte2 with respect to the movable part LK22c, and the rotation of the link LK2c is achieved by moving the movable part LK22c around the axis Ax4 as the rotation axis. This is achieved by rotating as .
  • the objects to be controlled when extending, contracting and rotating the link LK2c are separated into the movable portion LK22c and the movable portion LK23c, so that the control of the motors MOt2 and MOa4 for moving the link LK2c is difficult. Complications can be suppressed.
  • the length (longitudinal length) of the movable parts LK22c and LK23c along the direction De2 is made long to a certain extent (for example, longer than the diameter of the movable part LK22c), so that the movable parts LK22c and LK23c is increasing the weight.
  • the natural vibration frequency of the movable parts LK22c and LK23c can be reduced.
  • vibrations generated during work by the end effector 20 attached to the link LK3 can be absorbed, and vibrations of the link LK3 and the end effector 20 can be suppressed.
  • the natural vibration frequencies of the movable parts LK22c and LK23c are small, vibrations in the portion of the robot 10B from the joint mechanism AR5 to the base part BSP are suppressed from propagating to the link LK3 and the end effector 20. can do.
  • the operational accuracy of the link LK3 and the end effector 20 while the links LK1 and LK2c are being extended, contracted or extended may be important. In this case, it is important to increase the length of the movable parts LK22c and LK23c along the direction De2 and the weight of the movable parts LK22c and LK23c to some extent.
  • link LK2c is not limited to the example shown in FIG. 11.
  • a part of the movable portion LK23c may not be stored inside the movable portion LK22c, but may be exposed from the movable portion LK22c.
  • the movable portion LK23c may be configured to cover the outer periphery of the movable portion LK22c by devising the structure of the motor MOt2, the nut TE21, and the ball screw TE22.
  • the motor MOa4 may be arranged outside the support portion LK21c.
  • the robot 10B includes a body part BDP, a link LK3, a plurality of links LK1 and LK2c that connect the body part BDP and the link LK3, a joint mechanism AR3, and a joint mechanism AR5.
  • the joint mechanism AR3 connects the link LK1 and the link LK2c, and rotates the link LK2c with respect to the link LK1 using an axis Ax3, which makes an angle larger than a predetermined angle with the direction De1 in which the link LK1 extends, as a first rotation axis.
  • the joint mechanism AR5 connects the link LK2c and the link LK3, and rotates the link LK3 with respect to the link LK2c using an axis Ax5, which makes an angle larger than a predetermined angle with the direction De2 in which the link LK2c extends, as a second rotation axis.
  • the link LK2c includes a supporting portion LK21c connected to the link LK1, a movable portion LK23c connected to the link LK3, a movable portion LK22c connecting the supporting portion LK21c and the movable portion LK23c, a joint mechanism AR4c, and a telescopic mechanism TE2c. and has.
  • the joint mechanism AR4c rotates the movable portion LK22c with respect to the support portion LK21c using an axis Ax4, which forms an angle equal to or less than a predetermined angle with the direction De21 in which the support portion LK21c extends, as a third rotation axis.
  • the expansion/contraction mechanism TE2c expands/contracts the link LK2c by moving the movable part LK23c with respect to the movable part LK22c along the extending direction (direction De22) of the movable part LK22c.
  • the rotation of the movable portion LK22c of the link LK2c is performed by the joint mechanism AR4c, and the expansion and contraction of the link LK2c is performed by the expansion and contraction mechanism TE2c. Therefore, in this embodiment, it is possible to suppress the rotation of the movable portion LK22c of the link LK2c and the control of the expansion and contraction of the link LK2c from becoming complicated.
  • the robot 10B further includes a motor MOa4 that drives the joint mechanism AR4c, and a motor MOt2 that drives the telescoping mechanism TE2c.
  • the motor MOa4 is configured not to move in the expansion/contraction direction (direction Dm2) of the link LK2c even when the link LK2c expands or contracts, and in the rotational direction Dr4 of the movable portion LK22c even when the movable portion LK22c rotates with respect to the support portion LK21c. It is attached to one of the two ends of the support part LK21c, which is closer to the movable part LK22c, so as not to move.
  • the third rotation axis (axis Ax4) of the movable portion LK22c when the movable portion LK22c is rotated by the joint mechanism AR4c is parallel to the central axis of the movable portion LK23c.
  • the link LK1 is expanded and contracted by the expansion and contraction mechanism TE1. Therefore, in this embodiment, the area that the tip of the robot 10B can reach can be made wider than in the case where the link LK1 does not extend or contract, while suppressing the overall size of the robot 10B. As a result, in this embodiment, for example, the robot 10B can work on the article GD placed at a high position that cannot be reached when the link LK1 does not extend or contract. In addition, in the present embodiment, the robot 10B moves the joint mechanism AR3 to a high position using the telescoping mechanism TE1, thereby easily working on the article GD placed at a high position on the shelf RK and at the back of the shelf RK. It can be carried out.
  • the support portion LK11 is hollow.
  • the link LK1 is retracted, at least a portion of the movable part LK12 is stored inside the support part LK11.
  • the robot 10B further includes a joint mechanism AR1 and a joint mechanism AR2.
  • the joint mechanism AR1 rotates at least a portion of the body part BDP about an axis Ax1, which has a predetermined angle or less at an angle with a direction Dv1 perpendicular to the bottom surface BDPbt of the body part BDP, as a fourth rotation axis.
  • the joint mechanism AR2 connects the body part BDP and the link LK1, and connects the link LK1 to the body part with an axis Ax2 that is larger than a predetermined angle at an angle with the direction Dv1 perpendicular to the bottom surface BDPbt of the body part BDP as a fifth rotation axis. Rotate against BDP.
  • the link LK3 is configured to rotate at least a portion of the link LK3 by using an axis Ax6 as a sixth rotation axis, which makes an angle with the second rotation axis (axis Ax5) of the link LK that is larger than a predetermined angle when the link LK3 is rotated by the joint mechanism AR5.
  • the link LK1 includes a support portion LK11 connected to the body portion BDP, a movable portion LK13 connected to the link LK2c, and a movable portion LK12 connecting the support portion LK11 and the movable portion LK13. It includes an expansion and contraction mechanism TE1.
  • the expansion mechanism TE1 expands and contracts the link LK1 by moving the movable portion LK12 with respect to the support portion LK11 along the direction De11 in which the support portion LK11 extends.
  • the reachable area of the tip for example, link LK3
  • the robot controller 30 also includes a motor MOa1 that drives the joint mechanism AR1, a motor MOa2 that drives the joint mechanism AR2, a motor MOa3 that drives the joint mechanism AR3, a motor MOa4 that drives the joint mechanism AR4c, a motor MOa4 that drives the joint mechanism AR4c, a motor MOa2 that drives the joint mechanism AR2, a motor MOa3 that drives the joint mechanism AR3,
  • the operation of the robot 10B is controlled by controlling the motor MOa5 that drives the AR5, the motor MOa6 that drives the joint mechanism AR6, the motor MOt1 that drives the telescoping mechanism TE1, and the motor MOt2 that drives the telescoping mechanism TE2c. In this way, in this embodiment, the robot controller 30 can easily control the operation of the robot 10B.
  • the robot system 1 includes a robot 10B, an end effector 20 attached to the link LK3, and a robot controller 30 that controls the operations of the robot 10B and the end effector 20.
  • the robot 10B is used in the robot system 1, with the robot 10B having a wider area reachable by the tip (for example, the link LK3) while suppressing the overall size from increasing. Therefore, in this embodiment, even in a narrow space, the robot system 1 can efficiently perform both operations on objects placed near the robot 10B and operations on objects placed far from the robot 10B. It can be carried out.
  • the robot system 1 may be used in an article manufacturing method that includes assembling or removing parts. In this case, the work of assembling parts or removing parts can be performed efficiently.
  • FIG. 12 is an explanatory diagram for explaining an example of link LK2 according to modification B1. Elements similar to those described in FIGS. 10 and 11 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the robot 10B has a link LK2d instead of the link LK2c shown in FIG.
  • the upper part of FIG. 12 shows the link LK2d in a contracted state, and the lower part of FIG. 12 shows the link LK2d in an extended state.
  • Link LK2d is another example of a "second link.”
  • link LK2d may be called link LK2.
  • the link LK2d is the same as the link LK2c shown in FIG. 11, except that it has a support portion LK21d and a joint mechanism AR4d instead of the support portion LK21c and joint mechanism AR4c shown in FIG.
  • the support part LK21d is another example of the "first part”
  • the joint mechanism AR4d is another example of the "seventh drive mechanism”.
  • FIG. 12 the support portion LK21d and the joint mechanism AR4d will be mainly explained.
  • the link LK2d includes a support portion LK21d, movable portions LK22c and LK23c, a telescoping mechanism TE2c, a joint mechanism AR4d, a motor MOa4, and a motor MOt2.
  • the joint mechanism AR4d is attached to, for example, one of the two ends of the support portion LK21d that is closer to the movable portion LK22c (that is, near the boundary between the support portion LK21d and the movable portion LK22c).
  • the joint mechanism AR4d includes a stay AR41, a transmission shaft AR42 to which the rotation of the motor MOa4 is transmitted, pulleys AR43 and AR44, a timing belt AR45, a transmission shaft AR46 to which the rotation of the pulley AR44 is transmitted, and a gear AR47. and has.
  • the stay AR41 is attached to the end closer to the movable part LK22c of the two ends of the support part LK21d so as to protrude from the support part LK21d.
  • a motor MOa4 is attached to a portion of the stay AR41 that protrudes from the support portion LK21d. That is, the motor MOa4 is attached via the stay AR41 to the support portion LK21d that does not move even if the movable portion LK23c moves.
  • pulleys AR43 and AR44 are provided in parallel on the stay AR41.
  • pulley AR43 is attached to transmission shaft AR42.
  • the pulley AR44 is arranged so that the entire pulley AR44 overlaps the movable portion LK22c when viewed in plan from the direction De2.
  • Timing belt AR45 connects pulley AR43 and pulley AR44 so that rotation of pulley AR43 is transmitted to pulley AR44.
  • a transmission shaft AR46 is attached to the pulley AR44.
  • the central axis of the transmission shaft AR46 corresponds to the axis Ax4.
  • the transmission shaft AR46 is connected to the movable portion LK22c via a gear AR47.
  • the rotation of the motor MOa4 is transmitted to the movable part LK22c via the transmission shaft AR42, pulley AR43, timing belt AR45, pulley AR44, transmission shaft AR46, and gear AR47.
  • the movable portion LK22c rotates about the axis Ax4.
  • the stay AR41 is rotatably attached to the support portion LK21d with respect to the movable portion LK22c. Therefore, even if the movable portion LK22c rotates about the axis Ax4, the motor MOa4 and stay AR41 do not rotate about the axis Ax4. Therefore, even in the example shown in FIG.
  • FIG. 13 is an explanatory diagram for explaining another example of link LK2 according to modification B1. Elements similar to those described in FIGS. 10 to 12 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the robot 10B has a link LK2e instead of the link LK2c shown in FIG.
  • the upper part of FIG. 13 shows the link LK2e in a contracted state, and the lower part in FIG. 13 shows the link LK2e in an extended state.
  • Link LK2e is another example of a "second link.”
  • link LK2e may be called link LK2.
  • the link LK2e is similar to the link LK2c shown in FIG. 11, except that it has a supporting portion LK21e, a movable portion LK22e, and a joint mechanism AR4e instead of the supporting portion LK21c, movable portion LK22c, and joint mechanism AR4c shown in FIG. be.
  • the support part LK21e is another example of the "first part”
  • the movable part LK22e is another example of the "third part”
  • the joint mechanism AR4e is another example of the "seventh drive mechanism”.
  • FIG. 13 the supporting portion LK21e, the movable portion LK22e, and the joint mechanism AR4e will be mainly described.
  • the link LK2e includes a support portion LK21e, movable portions LK22e and LK23c, a telescoping mechanism TE2c, a joint mechanism AR4e, a motor MOa4, and a motor MOt2.
  • Movable portion LK22e is hollow.
  • a telescopic mechanism TE2c is provided inside the movable portion LK22e.
  • the telescoping mechanism TE2c is similar to the telescoping mechanism TE2c shown in FIG. 11.
  • the joint mechanism AR4e is attached to, for example, one of the two ends of the support portion LK21e that is closer to the movable portion LK22e (that is, near the boundary between the support portion LK21e and the movable portion LK22e).
  • the joint mechanism AR4e includes a stay AR41e, a transmission shaft AR42e to which rotation of the motor MOa4 is transmitted, and a gear AR47e attached to the transmission shaft AR42e.
  • the movable portion LK23c is connected to the movable portion LK22e so as to rotate together with the movable portion LK22e, the movable portion LK23c rotates integrally with the movable portion LK22e.
  • the motor MOa4 is attached to the support portion LK21e via the stay AR41e, even if the movable portions LK22e and LK23c rotate, the motor MOa4 does not rotate about the axis Ax4 as the rotation axis. Therefore, in the example shown in FIG. 13 as well, even when the movable portion LK22e rotates about the axis Ax4, it is possible to suppress the disturbance caused by the rotation of the motor MOa4 itself.
  • the link LK2e is configured such that the axis Axte2 along which the movable portion LK23c moves is the same or approximately the same axis as the axis Ax4 when the movable portion LK22e rotates. ing.
  • the gear AR47e that transmits the rotation of the motor MOa4 to the movable part LK22e is provided outside the movable part LK22e, so the length of the ball screw TE22 along the direction De22 is the link LK2c shown in FIG. It can be longer than . Therefore, in the link LK2e shown in FIG. 13, the expansion/contraction range of the link LK2e can be made larger than that of the link LK2c shown in FIG. 11.
  • the expansion/contraction range of the link LK2e is the length of the link LK2e along the direction De2 when the link LK2e is contracted to the maximum, and the length of the link LK2e along the direction De2 when the link LK2e is expanded to the maximum. This is the range corresponding to the difference between
  • the configuration of the link LK2 according to this modification is not limited to the example shown in FIGS. 12 and 13.
  • the motor MOt2 may be arranged outside the movable part LK22e and inside the support part LK21e.
  • the ball screw TE22 is attached to the motor MOt2 so that the center axis of the ball screw TE22 coincides with the center axis of the movable portion LK22e.
  • the motor MOt2 can be placed outside the movable part LK22e and the support part LK21e. good.
  • the ball screw TE22 is attached to the motor so that it idles with respect to the motor MOt2 together with the nut TE21 when the movable portion LK22e is rotated by the joint mechanism AR4e. Attached to MOt2. Thereby, the movable portion LK23c does not move along the axis Axte2 even when the movable portions LK22e and LK23c are rotated by the joint mechanism AR4e.
  • the length of the ball screw TE22 along the direction De22 can be increased, so that the expansion/contraction range of the link LK2e can be increased. Furthermore, in a configuration in which the motor MOt2 is arranged outside the movable portion LK22e, when the link LK2e contracts, a part of the movable part LK23c is stored in the support part LK21e, and another part of the movable part LK23c is moved to the movable part LK22e. may be stored in That is, in a configuration in which the motor MOt2 is disposed outside the movable portion LK22e, the length of the movable portion LK23c may be longer than the length of the movable portion LK22e.
  • the robot 10B according to this modification is the same as the robot 10B shown in FIG. 10, except that it has a link LK2d or LK2e instead of the link LK2c shown in FIG.
  • the robot 10B may have a configuration in which two telescopic mechanisms TE1 and TE2c are added to an articulated robot with seven or more axes, or one telescopic mechanism TE2c is added to an articulated robot with seven or more axes. It may be a configuration.
  • the robot 10B may have one or more links connecting the body part BDP and the link LK1. That is, the robot 10B may have three or more links (three or more links excluding link LK3) that connect the body part BDP and link LK3. Note that the three or more links that the robot 10B has include links LK1 and LK2. Three or more links excluding link LK3 correspond to "multiple links".
  • the articulated robot includes a base, a tip, a first link, and a second link, and includes a plurality of links connecting the base and the tip, and connecting the first link and the second link.
  • a first drive mechanism that rotates the second link relative to the first link using an axis that makes an angle larger than a predetermined angle with the direction in which the first link extends as a first rotation axis.
  • a drive mechanism a second drive that connects the second link and links other than the first link and the second link among the plurality of links, or connects the second link and the tip portion; a second drive mechanism that rotates the tip with respect to the second link using an axis that makes an angle with the direction in which the second link extends larger than the predetermined angle as a second rotation axis; , wherein the second link is connected to a first portion connected to the first link and a link other than the first link and the second link among the plurality of links or to the tip portion.
  • the third rotation axis is an axis where the angle between the second part, the third part connecting the first part and the second part, and the direction in which the first part extends is equal to or less than the predetermined angle.
  • a seventh drive mechanism that rotates the third portion relative to the first portion; and a seventh drive mechanism that moves the second portion relative to the third portion along the extending direction of the third portion. It is characterized by including a third expansion and contraction mechanism that expands and contracts the second link.
  • the third portion is hollow, and when the second link contracts, at least a portion of the second portion is stored inside the third portion. It may also be characterized by
  • Appendix 1-3 The articulated robot according to Appendix 1-1 or Appendix 1-2, further comprising a first motor that drives the seventh drive mechanism and a second motor that drives the third telescoping mechanism,
  • the motor is configured to move the third end of the two ends of the first portion so that it does not move relative to the second link in the direction of expansion and contraction of the second link even when the second link expands and contracts.
  • the second motor is attached to an end close to the third link so that it does not move relative to the second link in the direction of expansion and contraction of the second link even when the second link expands and contracts. It may be characterized in that it is attached to one of the two ends of the part that is closer to the first part.
  • a third rotation axis of the third portion when the third portion is rotated by the seventh drive mechanism is parallel to a central axis of the second portion. This may be a feature.
  • the first link includes a fourth portion, a fifth portion connected to the second link, and the fourth portion and the fifth portion.
  • a second extension mechanism that extends and contracts the first link by moving the sixth part with respect to the fourth part along the direction in which the fourth part extends; It may be characterized by including.
  • the fourth portion is hollow, and when the first link contracts, at least a portion of the sixth portion is stored inside the fourth portion. It may also be characterized by
  • a fourth drive for rotating at least a portion of the base about an axis having an angle less than or equal to the predetermined angle with a direction perpendicular to the bottom surface of the base; a fifth drive mechanism that connects the base and the first link, the fifth rotation axis being an axis that is larger than the predetermined angle with a direction perpendicular to the bottom surface of the base; a fifth drive mechanism that rotates the first link relative to the base; the distal end is connected to the second link, and the distal end is rotated by the second drive mechanism; a sixth drive mechanism that rotates at least a portion of the distal end with respect to the second link using an axis that makes an angle larger than the predetermined angle with the second rotation axis as a sixth rotation axis;
  • the links may be the first link and the second link.
  • the first link includes a fourth portion connected to the base, a fifth portion connected to the second link, and the fourth portion and the fifth portion.
  • a second extension mechanism that extends and contracts the first link by moving the sixth part with respect to the fourth part along the direction in which the fourth part extends; It may be characterized by including.
  • Appendix 1-11 The article manufacturing method is characterized by assembling or removing parts using the robot system described in Appendix 1-10.
  • FIG. 14 is an explanatory diagram for explaining an overview of the robot system 1 according to the fourth embodiment.
  • the link LK1a is an example of a "first link”
  • the link LK2f is an example of a "second link.” Therefore, links LK1a and LK2f correspond to "a plurality of links”.
  • the joint mechanism AR3t is an example of a "first drive mechanism” and a "drive mechanism”
  • the joint mechanism AR4f which will be described later, is an example of an "eighth drive mechanism.”
  • the movable portion LK13a is an example of a “fifth portion”. Below, the joint mechanism AR3t will be mainly explained.
  • the link LK2f includes, for example, a support portion LK21f connected to the link LK1a, a movable portion LK22f connected to the link LK3, and a joint mechanism AR4f.
  • a case is assumed in which each of the support portion LK21f and the movable portion LK22f extends along the direction De2. That is, the direction De2 corresponds to the longitudinal direction of each of the support portion LK21f and the movable portion LK22f.
  • the direction De21 in which the support portion LK21f extends is the direction De2 in which the link LK2f extends.
  • FIG. 15 is an explanatory diagram for explaining an example of the joint mechanism AR3t including the telescopic mechanism TE3.
  • the upper part of FIG. 15 shows the joint mechanism AR3t in a contracted state, and the lower part of FIG. 15 shows the joint mechanism AR3t in an extended state.
  • the direction Dm3 indicating the relative moving direction of the link LK2f with respect to the link LK1a is distinguished by adding "p" or "m" to the end of the symbol. It shows.
  • the direction Dm3m indicates the direction in which the joint mechanism AR3t contracts
  • the direction Dm3p is the opposite direction to the direction Dm3m and indicates the direction in which the joint mechanism AR3t extends. Note that from FIG. 15 onward, directions Dm3m and Dm3p may be referred to as direction Dm3 without particular distinction.
  • the joint mechanism AR3t includes a swing mechanism RE1, a telescoping mechanism TE3, a motor MOa3 that drives the swing mechanism RE1, and a motor MOt3 that drives the telescoping mechanism TE3.
  • the telescopic mechanism TE3 connects, for example, a nut TE31, a ball screw TE32 extending along the direction Dm3, a movable portion LK13a of the link LK1a and a supporting portion LK21f of the link LK2f. and a connecting portion TE33.
  • the connecting portion TE33 is hollow.
  • a nut TE31 and a motor MOa3 are attached inside the connecting portion TE33.
  • the motor MOt3 is attached to the outside of the movable portion LK13a such that the movable portion LK13a is located between the motor MOt3 and the support portion LK21f in the direction Dm3.
  • the movable part LK13a is configured to be able to store a part of the connecting part TE33, as shown in the upper part of FIG.
  • the nut TE31 is fixed to one of the two ends of the connecting portion TE33, which is farthest from the link LK2f.
  • the ball screw TE32 is attached to the motor MOt3, for example, so that the center axis of the ball screw TE32 coincides with the center axis of the connecting portion TE33, and is inserted through the nut TE31.
  • the ball screw TE32 rotates about the axis Axte3 as the motor MOt3 rotates.
  • the axis Axte3 is, for example, the central axis of the ball screw TE32, that is, the central axis of the connecting portion TE33.
  • the nut TE31 moves along the axis Axte3 as the ball screw TE32 rotates. Since the nut TE31 is fixed to the connecting portion TE33, the connecting portion TE33 moves along the axis Axte3 (ie, the direction Dm3) as the nut TE31 moves. In this way, the ball screw TE32 movably supports the connecting portion TE33.
  • the connecting portion TE33 is configured to be able to store the ball screw TE32. Further, the connecting portion TE33 is connected to the movable portion LK13a and the supporting portion LK21f so as not to rotate about the axis Axte3 even when the ball screw TE32 rotates. As a result, the nut TE31 fixed to the connecting portion TE33 moves along the axis Axte3 as the ball screw TE32 rotates, as described above.
  • the moving direction of the nut TE31 By switching the rotational direction of the motor MOt3, the moving direction of the nut TE31, that is, the moving direction of the connecting portion TE33, is switched between the direction Dm3p and the direction Dm3m.
  • the motor MOt3 rotates in the first rotational direction
  • the nut TE31 moves in the direction Dm3p
  • the motor MOt3 rotates in the second rotational direction in the opposite direction to the first rotational direction.
  • the nut TE31 moves in the direction Dm3m.
  • the joint mechanism AR3t extends in the direction Dm3p.
  • the joint mechanism AR3t extends at most by approximately the same length as the length of the movable portion LK13a in the direction Dm3.
  • the supporting portion LK21f of the link LK2f is attached to the connecting portion TE33 so that its relative position in the direction Dm3 to the connecting portion TE33 does not change and is rotatable relative to the connecting portion TE33 with the axis Ax3 as the rotation axis. It is being Therefore, by extending the joint mechanism AR3t in the direction Dm3p, the link LK2f moves in the direction Dm3p so as to move away from the link LK1a.
  • the robot controller 30 rotates the motor MOt3 in the second rotation direction in a state where a part of the connecting portion TE33 is exposed from the movable portion LK13a, as the nut TE31 moves, the connecting portion TE33 It is gradually stored inside the movable part LK13a.
  • the joint mechanism AR3t contracts in the direction Dm3m.
  • the link LK2f moves in the direction Dm3m so as to approach the link LK1a.
  • the connecting portion TE33 (for example, the portion surrounded by the broken line in FIG. 15) is stored inside the link LK1a when the distance between the link LK1a and the link LK2f in the direction Dm3 is minimized. . Then, at least a portion of the connecting portion TE33 (for example, the portion surrounded by the broken line in FIG. 15) is exposed from the link LK1a when the distance between the link LK1a and the link LK2f in the direction Dm3 becomes the maximum.
  • the motor MOa3 that drives the turning mechanism RE1 is attached inside the connecting portion TE33, and is fixed to one of the two ends of the connecting portion TE33, which is closer to the support portion LK21f. Therefore, when the expansion and contraction mechanism TE3 performs an expansion and contraction operation, the motor MOa3 moves in the direction Dm3p or Dm3m together with the connecting portion TE33.
  • the turning mechanism RE1 is attached, for example, to the end closer to the connecting portion TE33 of the two ends of the support portion LK21f of the link LK2f.
  • the turning mechanism RE1 includes a transmission shaft RE11 and a connecting portion RE12.
  • the connecting portion RE12 is, for example, configured integrally with the supporting portion LK21f.
  • the support portion LK21f and the connecting portion RE12 may be integrally formed by one member, or may be integrally formed by mutually different members.
  • the transmission shaft RE11 is attached to the motor MOa3 so that the rotation of the motor MOa3 is transmitted. Further, the transmission shaft RE11 is connected to the support portion LK21f via a connecting portion RE12. Thereby, for example, when the motor MOa3 rotates, the rotation of the motor MOa3 is transmitted to the support portion LK21f via the transmission shaft RE11 and the connecting portion RE12. As a result, the support portion LK21f rotates about the axis Ax3.
  • the joint mechanism AR3t (more specifically, the turning mechanism RE1) rotates the link LK2f with respect to the link LK1a by rotating the link LK2f with respect to the link LK1a and the connecting portion TE33.
  • the support portion LK21f is rotatable with respect to the connection portion TE33 to which the motor MOa3 is attached. Therefore, the motor MOa3 does not rotate about the axis Ax3 as the rotation axis even when the joint mechanism AR3t performs a rotation operation of rotating the support portion LK21f about the axis Ax3. Therefore, in the present embodiment, even when the support portion LK21f rotates about the axis Ax3, it is possible to suppress the disturbance caused by the rotation of the motor MOa3 itself.
  • the motor MOa3 moves between the two connecting portions TE33 so as to move along the direction Dm3 together with the connecting portion TE33 when the expanding/contracting mechanism TE3 performs an expanding/contracting operation. It is fixed to one of the ends near the support portion LK21f. For example, if the distance along the axis Ax3 between the output position of the motor MOa3 and the support part LK21f that rotates according to the rotation of the motor MOa3 is long, or if the distance along the axis Ax3 between the output position of the motor MOa3 and the support part LK21f is short The disturbance associated with rotation is larger than that of .
  • the movement of the link LK2f with respect to the link LK1a is realized by the connection portion TE33 moving with respect to the link LK1a along the axis Axte3
  • the rotation of the link LK2f is realized by the support portion LK21f moving along the axis Axte3 with respect to the link LK1a. This is achieved by rotating as a rotation axis.
  • the control of the motors MOt3 and MOa3 for moving the link LK2f is controlled. It is possible to suppress complexity.
  • the configuration of the joint mechanism AR3t is not limited to the example shown in FIG. 15.
  • a part of the connecting portion TE33 may be exposed from the movable portion LK13a without being stored inside the movable portion LK13a.
  • the expansion/contraction mechanism TE3 is not limited to the configuration shown in FIG. 15 as long as the joint mechanism AR3t can be expanded/contracted.
  • link LK1a will be explained in FIG. 3 by replacing the link LK1 and the movable portion LK13 shown in FIG. 3 with the link LK1a and the movable portion LK13a, respectively.
  • FIG. 16 is an explanatory diagram for explaining the advantages of the robot 10C shown in FIG. 14.
  • the +Y direction and the -Y direction may be referred to as the Y direction without any particular distinction
  • the +X direction and the -X direction may be referred to as the X direction without any particular distinction
  • the +Z direction and the -Z direction may be referred to as the Z direction without any particular distinction.
  • FIG. 16 the advantages of the robot 10C will be explained using an example of a task of moving an article GD placed on pallet PL1 of pallets PL1 and PL2 placed on the workbench WB along the X direction to pallet PL2. .
  • a vertical six-axis articulated robot (hereinafter also referred to as a vertical six-axis articulated robot as a comparison example) that is compared with the robot 10C will be described.
  • the vertical six-axis multi-joint robot in contrast is a robot in which the telescoping mechanisms TE1 and TE3 are omitted from the robot 10C.
  • the vertical 6-axis articulated robot is provided with the telescoping mechanism TE3, so while retaining the advantages of the vertical 6-axis articulated robot (ability to perform complex tasks, miniaturization, etc.), simple It is possible to prevent the control of the robot 10C from becoming complicated when performing work.
  • the robot controller 30 drives the telescopic mechanism TE3 among the plurality of motors. It is sufficient to control only the motor MOt3. Therefore, in this embodiment, the robot 10C can be controlled accurately and at high speed. Specifically, the robot 10C grips the article GD placed on the pallet PL1 in a state where the direction Dm3 along the axis Ax3 (the direction Dm3 in which the joint mechanism AR3t expands and contracts) is parallel to the X direction. Then, the robot 10C extends the joint mechanism AR3t in the direction Dm3p using the extension mechanism TE3.
  • the portion of the robot 10C from the link LK2f to the end effector 20 moves horizontally in the direction Dm3p (ie, the X direction).
  • the article GD gripped by the end effector 20 moves from the pallet PL1 to the pallet PL2 while maintaining the attitude of the article GD.
  • the robot 10C can accurately and rapidly move the article GD horizontally in the X direction while maintaining the posture of the article GD using the telescoping mechanism TE3.
  • the axis Ax is driven less than the vertical six-axis articulated robot of the comparative example. Accordingly, the article GD can be moved while maintaining the attitude of the article GD.
  • control of the joint mechanism AR can be prevented from becoming complicated.
  • the end effector 20 moves in the XY plane because the rotational movement by the plurality of joint mechanisms AR is not performed. It only moves up, not in the Z direction. Therefore, in this embodiment, in order to control the operation of the end effector 20, when performing reverse trajectory calculation etc. in which the rotation amount of each rotation operation of the plurality of joint mechanisms AR is calculated from the position of the end effector 20, It is only necessary to calculate the amount of movement in the direction. Therefore, in this embodiment, it is possible to reduce the calculation load when performing reverse trajectory calculations for horizontally moving the end effector 20 in the X direction, and to perform the calculations at high speed.
  • the joint mechanism AR3t by expanding and contracting the joint mechanism AR3t, it is possible to work even in the area corresponding to the singular point of the robot 10C before the joint mechanism AR3t is expanded and contracted. Furthermore, in this embodiment, by extending the joint mechanism AR3t, it is possible to widen the area that the tip of the robot 10C can reach, while avoiding the singularity of the robot 10C. For example, when the robot 10C is operated in cooperation with a person, it is assumed that there are many restrictions on the space in which the robot 10C is installed. In this case, restrictions on the operating range due to singular points or the like are required to be as small as possible.
  • the area that the tip of the robot 10C can reach can be widened while avoiding the singularity of the robot 10C, so even if there are many restrictions on the space in which the robot 10C is installed, the robot 10C can be safely installed. can be operated.
  • the robot 10C moves the portion from the link LK2f of the robot 10C to the end effector 20 in the direction Dm3 using the telescoping mechanism TE3. (that is, in the X direction).
  • the robot 10C is installed even in a place where an obstacle BL exists in the -Z direction relative to the joint mechanism AR3t, and the robot 10C can perform simple tasks such as moving the article GD in the X direction. 10C can be performed.
  • the link LK1a expands and contracts in the longitudinal direction (direction Dm1) by the expansion mechanism TE1, so the tip of the robot 10C (for example, the link LK3) can reach the link LK1a, compared to a configuration in which the link LK1a does not expand and contract.
  • the area can be expanded. Note that if the link LK1a is simply made longer without being made extendable, the robot itself becomes larger. In this embodiment, since the link LK1a expands and contracts, it is possible to suppress the entire robot 10C from increasing in size.
  • the singularity of the robot 10C cannot be avoided by the telescoping action by the telescoping mechanism TE1 (the telescoping action that extends and contracts the link LK1a in the longitudinal direction).
  • a telescoping mechanism is provided to extend and retract the link LK2f in the longitudinal direction, by extending and contracting the link LK2f in the longitudinal direction, it is possible to widen the area that the tip of the robot 10C can reach.
  • the singularity of robot 10C cannot be avoided.
  • the singularity of the robot 10C can be avoided by expanding and contracting the joint mechanism AR3t in the direction Dm3 along the axis Ax3.
  • the robot 10C includes a body part BDP, a link LK3, a plurality of links LK1a and LK2f that connect the body part BDP and link LK3, and a joint mechanism AR3t.
  • the joint mechanism AR3t connects the link LK1a and the link LK2f, and rotates the link LK2f with respect to the link LK1a using an axis Ax3, which forms an angle larger than a predetermined angle with the direction De1 in which the link LK1a extends, as a rotation axis.
  • the joint mechanism AR3t includes a telescoping mechanism TE3 that moves the link LK2f relative to the link LK1a along the axis Ax3 (rotation axis).
  • the joint mechanism AR3t expands and contracts along the axis Ax3 by the expansion and contraction mechanism TE3. Therefore, in this embodiment, the portion from the link LK2f of the robot 10C to the tip (for example, the link LK3) of the robot 10C can be easily moved in the direction Dm3 along the axis Ax3.
  • the operation of horizontally moving the article GD in the X direction while maintaining the posture of the article GD gripped by the end effector 20 attached to the link LK3 of the robot 10C is This allows for accurate and high-speed execution.
  • the telescoping mechanism TE3 includes a connecting portion TE33 that connects the link LK1a and the link LK2f. At least a portion of the connecting portion TE33 is stored inside the link LK1a when the distance between the link LK1a and the link LK2f in the direction Dm3 along the axis Ax3 (rotation axis) is the minimum. Further, at least a portion of the connecting portion TE33 is exposed from the links LK1a and LK2f when the distance between the links LK1a and LK2f in the direction Dm3 is maximum. Thereby, in this embodiment, the joint mechanism AR3t can be expanded and contracted while suppressing the overall size of the robot 10C.
  • the joint mechanism AR3t rotates the link LK2f with respect to the link LK1a by rotating the link LK2f with respect to the link LK1a and the connecting portion TE33.
  • the motor MOa3 is configured such that the distance along the axis Ax3 between the output position of the motor MOa3 for rotating the link LK2f (motor MOa3 that drives the joint mechanism AR3t) and the link LK2f is shortened. can be placed.
  • the link LK1a includes a support portion LK11, a movable portion LK13a connected to the link LK2f, a movable portion LK12 that connects the support portion LK11 and the movable portion LK13a, and a telescopic mechanism TE1.
  • the expansion/contraction mechanism TE1 expands/contracts the link LK1a by moving the movable portion LK12 with respect to the support portion LK11 along the direction De11 in which the support portion LK11 extends.
  • the link LK1a is expanded and contracted by the expansion and contraction mechanism TE1. Therefore, in this embodiment, the area that the tip of the robot 10C can reach can be made wider than in the case where the link LK1a does not extend or contract, while suppressing the overall size of the robot 10C. As a result, in this embodiment, for example, the robot 10C can work on the article GD placed at a high position that cannot be reached when the link LK1a does not extend or contract. In addition, in the present embodiment, the robot 10C moves the joint mechanism AR3t to a high position using the telescoping mechanism TE1, thereby performing work on the article GD located at a high position on the workbench WB and at the back of the workbench WB. It can be done easily.
  • the support portion LK11 is hollow.
  • the link LK1a contracts, at least a portion of the movable part LK12 is stored inside the support part LK11.
  • expansion and contraction of the link LK1a can be realized with a simple configuration.
  • the robot 10C further includes joint mechanisms AR1, AR2, AR4f, AR5, and AR5.
  • the link LK2f includes a support portion LK21f and a movable portion LK22f.
  • the joint mechanism AR1 rotates at least a portion of the body part BDP about an axis Ax1, which has a predetermined angle or less at an angle with a direction Dv1 perpendicular to the bottom surface BDPbt of the body part BDP, as a fourth rotation axis.
  • the joint mechanism AR2 connects the body part BDP and the link LK1a, and connects the link LK1a to the body part by using an axis Ax2, which has a larger angle than a predetermined angle with the direction Dv1 perpendicular to the bottom surface BDPbt of the body part BDP, as a fifth rotation axis.
  • the joint mechanism AR4f rotates the movable portion LK22f with respect to the support portion LK21f using an axis Ax4, which forms an angle equal to or less than a predetermined angle with the direction De21 in which the support portion LK21f extends, as a third rotation axis.
  • the joint mechanism AR5 connects the movable part LK22f and the link LK3, and rotates the link LK3 with respect to the link LK2f using an axis Ax5, which makes an angle larger than a predetermined angle with the direction De2 in which the link LK2 extends, as a second rotation axis.
  • the joint mechanism AR6 rotates at least a portion of the link LK3 with respect to the link LK2f using an axis Ax6, which forms an angle larger than a predetermined angle with the second rotation axis (axis Ax5), as a sixth rotation axis.
  • the invention according to this embodiment may be applied to a vertical six-axis articulated robot.
  • the link LK1a includes a support portion LK11 connected to the body portion BDP, a movable portion LK13a connected to the link LK2f, and a movable portion LK12 connecting the support portion LK11 and the movable portion LK13a. It includes an expansion and contraction mechanism TE1.
  • the expansion/contraction mechanism TE1 expands/contracts the link LK1a by moving the movable portion LK12 with respect to the support portion LK11 along the direction De11 in which the support portion LK11 extends.
  • the robot 10C by adding the telescopic mechanism TE1 to the vertical six-axis multi-joint robot, it is possible to easily configure the robot 10C in which the reachable area of the tip (for example, the link LK3) is widened. can.
  • the robot controller 30 also includes a motor MOa1 that drives the joint mechanism AR1, a motor MOa2 that drives the joint mechanism AR2, a motor MOa3 that drives the joint mechanism AR3t, a motor MOa4 that drives the joint mechanism AR4f, and a motor MOa4 that drives the joint mechanism AR4f.
  • the operation of the robot 10C is controlled by controlling the motor MOa5 that drives the AR5, the motor MOa6 that drives the joint mechanism AR6, the motor MOt1 that drives the telescoping mechanism TE1, and the motor MOt3 that drives the telescoping mechanism TE3. In this way, in this embodiment, the robot controller 30 can easily control the operation of the robot 10C.
  • the robot system 1 includes a robot 10C, an end effector 20 attached to the link LK3, and a robot controller 30 that controls the operations of the robot 10C and the end effector 20.
  • the control of the robot 10C is simple when performing simple movements, and the tip part (for example, link LK3) can be reached while suppressing the overall size from increasing.
  • a robot 10C with a wider area is used in the robot system 1. Therefore, in this embodiment, complex work and simple work can be performed efficiently even in a narrow space.
  • the robot system 1 may be used in an article manufacturing method that includes assembling or removing parts. In this case, the work of assembling parts or removing parts can be performed efficiently.
  • FIG. 17 is an explanatory diagram for explaining an example of the joint mechanism AR3t according to modification C1. Elements similar to those described in FIGS. 14 to 16 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the robot 10C has a joint mechanism AR3ta instead of the joint mechanism AR3t shown in FIG.
  • the upper part of FIG. 17 shows the joint mechanism AR3ta in a contracted state
  • the lower part of FIG. 17 shows the joint mechanism AR3ta in an extended state.
  • the joint mechanism AR3ta is another example of the "first drive mechanism" and the "drive mechanism”
  • the telescoping mechanism TE3a is another example of the "fourth telescoping mechanism”. Note that hereinafter, the joint mechanism AR3ta and the like may be referred to without adding the alphabet "a" at the end of the reference numeral (for example, joint mechanism AR3t).
  • the connecting portion TE33a is connected to the movable portion LK13b so as to be movable along the axis Axte3 (ie, the direction Dm3), and is connected to the supporting portion LK21g so as to rotate together with the supporting portion LK21g.
  • the motor MOa3 that drives the turning mechanism RE1a is arranged inside the movable part LK13b and outside the connecting part TE33a, and is fixed to the movable part LK13b. That is, the motor MOa3 is attached to the movable part LK13b which does not move even if the connecting part TE33a moves.
  • the gear RE13 rotates as the transmission shaft RE11 to which the rotation of the motor MOa3 is transmitted rotates
  • the connecting portion TE33a that meshes with the gear RE13 rotates. do.
  • the rotation of the motor MOa3 is transmitted to the connection portion TE33a via the transmission shaft RE11 and the gear RE13.
  • the connecting portion TE33a rotates about the axis Ax3.
  • the central axis of the connection portion TE33a corresponds to the axis Ax3.
  • the joint mechanism AR3ta rotates the link LK2f with respect to the link LK1a by rotating the link LK2f and the connecting portion TE33a integrally with respect to the link LK1a. Also in this modification, the same effects as in the fourth embodiment described above can be obtained.
  • At least a portion of the connecting portion TE33 may be stored inside at least one of the links LK1a and LK2f when the distance between the links LK1a and LK2f in the direction Dm3 along the axis Ax3 (rotation axis) is the minimum. good.
  • FIG. 18 is an explanatory diagram for explaining an example of the joint mechanism AR3t according to modification C2. Elements similar to those described in FIGS. 14 to 17 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the upper part of FIG. 18 shows the joint mechanism AR3ta in a contracted state, and the lower part of FIG. 18 shows the joint mechanism AR3ta in an extended state.
  • the joint mechanism AR3ta shown in FIG. 18 is different from the figure except that the motor MOt3 is attached to the support part LK21g and the connection part TE33a is movably connected to the support part LK21g along the axis Axte3.
  • the connecting portion TE33a is attached to the supporting portion LK21g so as to be movable along the axis Axte3 (that is, the direction Dm3) with respect to the supporting portion LK21g, and to rotate together with the supporting portion LK21g.
  • the nut TE31 is fixed to one of the two ends of the connecting portion TE33a, which is closer to the supporting portion LK21g.
  • the relative position of the nut TE31 with respect to the ball screw TE32 changes.
  • the relative position of the nut TE31 in the direction Dm3 with respect to the support portion LK21g changes. Since the nut TE31 is fixed to the connecting portion TE33a, when the relative position of the nut TE31 in the direction Dm3 to the supporting portion LK21g changes, the relative position of the link LK2f to the connecting portion TE33a changes.
  • the connecting portion TE33a is attached to the movable portion LK13b so that the relative position of the link LK1a in the direction Dm3 with respect to the movable portion LK13b does not change and is rotatable with respect to the movable portion LK13b with the axis Ax3 as the rotation axis. It is being Therefore, by extending the joint mechanism AR3ta in the direction Dm3p, the link LK2f moves in the direction Dm3p so as to move away from the link LK1a.
  • the robot controller 30 rotates the motor MOt3 in the second rotation direction in a state where a part of the connecting portion TE33a is exposed from the supporting portion LK21g, as the nut TE31 moves, the connecting portion TE33a It is gradually stored inside the support portion LK21g.
  • the joint mechanism AR3ta contracts in the direction Dm3m.
  • the link LK2f moves in the direction Dm3m so as to approach the link LK1a.
  • the connecting portion TE33a (for example, the portion surrounded by the broken line in FIG. 18) is stored inside the link LK2f when the distance between the link LK1a and the link LK2f in the direction Dm3 is minimized. . Then, at least a portion of the connecting portion TE33a (for example, the portion surrounded by the broken line in FIG. 18) is exposed from the link LK2f when the distance between the link LK1a and the link LK2f in the direction Dm3 becomes the maximum.
  • FIG. 19 is an explanatory diagram for explaining another example of the joint mechanism AR3t according to modification C2. Elements similar to those described in FIGS. 14 to 18 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the robot 10C has a joint mechanism AR3tb instead of the joint mechanism AR3t shown in FIG.
  • the upper part of FIG. 19 shows the joint mechanism AR3tb in a contracted state
  • the lower part of FIG. 18 shows the joint mechanism AR3tb in an extended state.
  • the joint mechanism AR3tb is another example of the "first drive mechanism" and the "drive mechanism”
  • the telescoping mechanism TE3b is another example of the "fourth telescoping mechanism”. Note that hereinafter, the joint mechanism AR3tb and the like may be referred to without adding the alphabet "b" at the end of the reference numeral (for example, joint mechanism AR3t).
  • the joint mechanism AR3tb is shown in FIG. 18, except that the motor MOa3 is attached to the movable part LK13b such that the central axis of the transmission shaft RE11 coincides with the central axis of the ball screw TE32 (i.e., axis Axte3).
  • the motor MOa3 that drives the turning mechanism RE1b is arranged outside the connecting portion TE33b so that the central axis of the transmission shaft RE11 attached to the motor MOa3 is the axis Ax3 when viewed in plan from the direction along the axis Ax3, It is fixed inside the movable part LK13b. Therefore, in the joint mechanism AR3tb as well, the motor MOa3 does not move even if the connecting portion TE33b moves, similar to the joint mechanism AR3ta shown in FIG. 17 and the like.
  • the connecting portion TE33b is connected to the supporting portion LK21g and the movable portion LK13b, similar to the connecting portion TE33a shown in FIG. 18.
  • the connecting portion TE33b is connected to the supporting portion LK21g in such a way that it is movable relative to the supporting portion LK21g along the axis Axte3 (ie, the direction Dm3) and rotates together with the supporting portion LK21g.
  • the connecting portion TE33b is connected to the movable portion LK13b so that the relative position of the link LK1a with respect to the movable portion LK13b in the direction Dm3 does not change and is rotatable with respect to the movable portion LK13b with the axis Ax3 as the rotation axis. be done.
  • the turning mechanism RE1b includes a transmission shaft RE11 to which the rotation of the motor MOa3 is transmitted, and a gear RE13b attached to the transmission shaft RE11.
  • the transmission shaft RE11 is attached to the motor MOa3.
  • the gear RE13b is disposed inside the connecting portion TE33b, and is attached to one of the two ends of the connecting portion TE33b, which is closer to the movable portion LK13b. Therefore, in the joint mechanism AR3tb, the transmission shaft RE11 is connected to the connecting portion TE33b via the gear RE13b.
  • connection portion TE33b rotates about the axis Ax3.
  • the link LK2f rotates together with the connection portion TE33b as the connection portion TE33b rotates.
  • the telescopic mechanism TE3 (TE3a or TE3b) includes the connecting portion TE33 (TE33a or TE33b) that connects the link LK1a and the link LK2f. At least a portion of the connecting portion TE33 is stored inside the link LK2f when the distance between the link LK1a and the link LK2f in the direction Dm3 along the axis Ax3 (rotation axis) is the minimum. Further, at least a portion of the connecting portion TE33 is exposed from the links LK1a and LK2f when the distance between the links LK1a and LK2f in the direction Dm3 is maximum. Also in this modified example, the same effects as in the fourth embodiment and modified example described above can be obtained.
  • the telescoping mechanism mainly includes, for example, the link LK1a in FIG. 15 is replaced with the body part BDP, the link LK2f in FIG. 15 is replaced with the link LK1a, and the axis Ax3 in FIG. This will be explained with reference to FIG. 15 by reading it as Ax2.
  • the joint mechanism AR5 includes a telescoping mechanism
  • the telescoping mechanism mainly includes, for example, link LK1a in FIG. 15 replaced with link LK2f, link LK2f in FIG. 15 replaced with link LK3, and axis Ax3 in FIG. This will be explained with reference to FIG. 15 by reading the axis Ax5.
  • the joint mechanism AR2 includes a telescoping mechanism
  • all the members from the link LK1a to the link LK3 move due to the telescoping mechanism. and volume increases. Therefore, in an embodiment in which the joint mechanism AR2 includes a telescoping mechanism, compared to the fourth embodiment and the modified example described above, there are problems regarding accuracy and speed-up of control of the telescoping operation, etc. by the telescoping mechanism, and the installation of the robot 10C. There is a growing concern that issues such as space issues will arise.
  • the joint mechanism AR5 includes a telescoping mechanism
  • the structure around the distal end of the robot 10C becomes complicated due to the telescoping mechanism.
  • the joint mechanism AR5 includes a telescoping mechanism
  • the weight around the tip of the robot 10C increases compared to the fourth embodiment and the modified example described above.
  • the joint mechanism AR5 includes a telescoping mechanism
  • the rotation axis (axis Ax5) of the joint mechanism AR5 deviates from a plane parallel to the bottom surface BDPbt of the robot 10C (for example, the XY plane in FIG. 16) due to the rotation of the joint mechanism AR4f.
  • the joint mechanism AR5 includes a telescoping mechanism
  • the calculation load when performing reverse orbit calculation etc. will increase.
  • the fourth embodiment and the modification described above a mode in which the joint mechanism AR3t includes the expansion and contraction mechanism TE3
  • the robot 10C may have a configuration in which two telescoping mechanisms TE1 and TE3 are added to an articulated robot with seven or more axes, or a configuration in which one telescoping mechanism TE3 is added to an articulated robot with seven or more axes. It may be a configuration.
  • the robot 10C may have one or more links connecting the body part BDP and the link LK1a. That is, the robot 10C may have three or more links (three or more links excluding link LK3) that connect the body part BDP and link LK3. Note that the three or more links that the robot 10C has include links LK1a and LK2f. Three or more links excluding link LK3 correspond to "multiple links".
  • the telescoping mechanism TE1 may be provided on the link LK2f.
  • the robot 10C may include a telescoping mechanism TE1 that extends and contracts the link LK1a, a telescoping mechanism that extends and contracts the link LK2f in the longitudinal direction (direction De2), and a telescoping mechanism TE3 that extends and contracts the joint mechanism AR3t. .
  • the robot 10C includes the motor MOt3 and the motor MOa3, but the present invention is not limited to such an embodiment.
  • the motor MOt3 and the motor MOa3 may be provided in the robot 10C as one common motor, and the connection between the common motor, the ball screw TE32, and the transmission shaft RE11 may be switched using a clutch or the like.
  • the same effects as the fourth embodiment and the modification example described above can be obtained also in this modification example.
  • the articulated robot includes a base, a tip, a first link, and a second link, and includes a plurality of links connecting the base and the tip, and connecting the first link and the second link.
  • a drive mechanism that rotates the second link with respect to the first link using an axis that makes an angle with the direction in which the first link extends is larger than a predetermined angle as a rotation axis.
  • the drive mechanism includes a fourth telescoping mechanism that moves the second link relative to the first link along the rotation axis.
  • the fourth telescoping mechanism includes a connecting portion connecting the first link and the second link, and at least a portion of the connecting portion is connected to the rotation axis.
  • the first link in the first direction is stored inside at least one of the first link and the second link.
  • the second link may be exposed from the first link and the second link.
  • Appendix 2-4 In the articulated robot according to Appendix 2-2, the drive mechanism rotates the second link and the connecting portion integrally with respect to the first link, thereby causing the second link to connect to the first link.
  • the feature may be that the image is rotated relative to the object.
  • the first link includes a fourth portion, a fifth portion connected to the second link, and the fourth portion. and a sixth part that connects the fifth part, and the first link is expanded and contracted by moving the sixth part with respect to the fourth part along the direction in which the fourth part extends.
  • a second expansion/contraction mechanism may be included.
  • the fourth portion is hollow, and when the first link contracts, at least a portion of the sixth portion is stored inside the fourth portion. It may also be characterized by
  • the articulated robot has an axis whose angle between a base, a first link, a second link including a support portion and a movable portion, a tip, and a direction perpendicular to the bottom of the base is a predetermined angle or less.
  • a fourth drive mechanism that rotates at least a portion of the base, and a fifth drive mechanism that connects the base and the first link, each serving as a fourth rotation axis; a fifth drive mechanism that rotates the first link relative to the base using an axis larger than the predetermined angle as a fifth rotation axis; and a first drive mechanism that connects the first link and the support portion.
  • a first drive mechanism that rotates the second link relative to the first link using an axis that makes an angle larger than the predetermined angle with the direction in which the first link extends as a first rotation axis; an eighth drive mechanism that rotates the movable portion with respect to the support portion using an axis that makes an angle with the direction in which the support portion extends as a third rotation axis that is equal to or less than the predetermined angle; and an eighth drive mechanism that rotates the movable portion with respect to the support portion; a second drive mechanism that connects the tip part to the second link, with an axis that makes an angle larger than the predetermined angle with the direction in which the second link extends as a second rotation axis; a second drive mechanism that rotates at least a portion of the distal end relative to the second link, using a sixth rotation axis that is an axis that is larger than the predetermined angle with the second rotation axis; 6 drive mechanism, and the first drive mechanism includes a fourth telescoping mechanism that moves the second link
  • the articulated robot has an axis whose angle between a base, a first link, a second link including a support portion and a movable portion, a tip, and a direction perpendicular to the bottom of the base is a predetermined angle or less.
  • a fourth drive mechanism that rotates at least a portion of the base, and a fifth drive mechanism that connects the base and the first link, each serving as a fourth rotation axis; a fifth drive mechanism that rotates the first link relative to the base using an axis larger than the predetermined angle as a fifth rotation axis; and a first drive mechanism that connects the first link and the support portion.
  • a first drive mechanism that rotates the second link relative to the first link using an axis that makes an angle larger than the predetermined angle with the direction in which the first link extends as a first rotation axis
  • an eighth drive mechanism that rotates the movable portion with respect to the support portion using an axis that makes an angle with the direction in which the support portion extends as a third rotation axis that is equal to or less than the predetermined angle
  • an eighth drive mechanism that rotates the movable portion with respect to the support portion
  • a second drive mechanism that connects the tip part to the second link, with an axis that makes an angle larger than the predetermined angle with the direction in which the second link extends as a second rotation axis
  • a second drive mechanism that rotates at least a portion of the distal end relative to the second link, using a sixth rotation axis that is an axis that is larger than the predetermined angle with the second rotation axis
  • 6 drive mechanism, and the fifth drive mechanism includes a fourth telescoping mechanism that
  • the articulated robot has an axis whose angle between a base, a first link, a second link including a support portion and a movable portion, a tip, and a direction perpendicular to the bottom of the base is a predetermined angle or less.
  • a fourth drive mechanism that rotates at least a portion of the base, and a fifth drive mechanism that connects the base and the first link, each serving as a fourth rotation axis; a fifth drive mechanism that rotates the first link relative to the base using an axis larger than the predetermined angle as a fifth rotation axis; and a first drive mechanism that connects the first link and the support portion.
  • a first drive mechanism that rotates the second link relative to the first link using an axis that makes an angle larger than the predetermined angle with the direction in which the first link extends as a first rotation axis
  • an eighth drive mechanism that rotates the movable portion with respect to the support portion using an axis that makes an angle with the direction in which the support portion extends as a third rotation axis that is equal to or less than the predetermined angle
  • an eighth drive mechanism that rotates the movable portion with respect to the support portion
  • a second drive mechanism that connects the tip part to the second link, with an axis that makes an angle larger than the predetermined angle with the direction in which the second link extends as a second rotation axis
  • a second drive mechanism that rotates at least a portion of the distal end relative to the second link, using a sixth rotation axis that is an axis that is larger than the predetermined angle with the second rotation axis
  • 6 drive mechanism, and the second drive mechanism includes a fourth telescoping mechanism that
  • the first link includes a fourth portion connected to the base and a fifth portion connected to the second link. and a sixth part connecting the fourth part and the fifth part, and moving the sixth part with respect to the fourth part along the direction in which the fourth part extends,
  • a second expansion and contraction mechanism that expands and contracts the first link may be included.
  • Appendix 2-11 The method for controlling an articulated robot according to Appendix 2-10, wherein the control device that controls the operation of the articulated robot includes a motor that drives the fourth drive mechanism, a motor that drives the fifth drive mechanism, A motor that drives the first drive mechanism, a motor that drives the eighth drive mechanism, a motor that drives the second drive mechanism, a motor that drives the sixth drive mechanism, a motor that drives the fourth telescoping mechanism,
  • the robot is characterized in that the motion of the multi-joint robot is controlled by controlling a motor that drives the second telescoping mechanism.
  • the robot system includes the articulated robot described in Appendix 2-10, an end effector attached to the distal end, and a control device that controls operations of the articulated robot and the end effector, and the control device A motor that drives the fourth drive mechanism, a motor that drives the fifth drive mechanism, a motor that drives the first drive mechanism, a motor that drives the eighth drive mechanism, and a motor that drives the second drive mechanism.
  • controlling the operation of the articulated robot by controlling a motor, a motor that drives the sixth drive mechanism, a motor that drives the fourth telescoping mechanism, and a motor that drives the second telescoping mechanism; It is characterized by
  • Appendix 2-13 The article manufacturing method is characterized by assembling or removing parts using the robot system described in Appendix 2-12.
  • the robot system 1 including the robots 10, 10A, 10B, or 10C described in the embodiments and modifications described above may be used in an article manufacturing method that includes assembling or removing parts.
  • FIG. 20 is an explanatory diagram for explaining an example of turning.
  • the extending direction Dei in FIG. 20 indicates the direction in which the link LKi extends
  • the extending direction Dej indicates the direction in which the link LKj extends.
  • the joint mechanism ARi in FIG. 20 connects the link LKi and the link LKj, and rotates the link LKj with respect to the link LKi using the axis Axi as a rotation axis.
  • the angle ⁇ between the extending direction Dei and the axis Axi can be understood as the angle of the axis Axi with respect to the extending direction Dei (for example, 4 angles for two straight lines that intersect with each other, or 4 angles for two parallel lines) (0° and 180° in a straight line), the angle is 0° or more and 90° or less.
  • the angle ⁇ between the extending direction Dei of the link LKi and the axis Axi is 0°, which is less than or equal to a predetermined angle (45°). Therefore, in the second pattern, the rotation of the link LKj about the axis Axi is rotation other than turning. Further, in the second pattern, the extending direction Dej of the link LKj is parallel to the extending direction Dei of the link LKi and the axis Axi. That is, the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi is 0°.
  • the angle ⁇ between the extending direction Dei of the link LKi and the axis Axi is 0°, which is less than or equal to a predetermined angle (45°). Therefore, in the third pattern, the rotation of the link LKj about the axis Axi is rotation other than turning. Further, in the third pattern, the extending direction Dej of the link LKj is perpendicular to the extending direction Dei of the link LKi and the axis Axi. That is, the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi is 90°.
  • the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi is maintained at 10 degrees and is always constant. .
  • the angle ⁇ between the extending direction Dei of the link LKi and the axis Axi is 10°, which is less than or equal to a predetermined angle (45°). Therefore, in the sixth pattern, the rotation of the link LKj about the axis Axi is rotation other than turning. Furthermore, in the sixth pattern, the extending direction Dej of the link LKj is perpendicular to the axis Axi. In the sixth pattern, when the link LKj rotates about the axis Axi, the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi changes.
  • the angle ⁇ between the extending direction Dei of the link LKi and the axis Axi is 70°, which is larger than the predetermined angle (45°). Therefore, in the seventh pattern, the rotation of the link LKj with the axis Axi as the rotation axis is a turn. Further, in the seventh pattern, the extending direction Dej of the link LKj is parallel to the axis Axi, and the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi is 70°.
  • the rotation corresponds to turning. Therefore, in the second definition, if the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi is always constant even when rotated, the rotation corresponds to a rotation other than turning.
  • the first pattern, fifth pattern, and sixth pattern shown in FIG. 20 correspond to turning
  • the second pattern, third pattern, fourth pattern, and seventh pattern correspond to turning. Corresponds to rotation.
  • the rotation corresponds to turning. Therefore, in the third definition, if the angle between the extending direction Dej of the rotating link LKj and the rotation axis (axis Axi) of the link LKj is larger than a predetermined angle, the rotation corresponds to turning. Therefore, in the third definition, if the angle between the extending direction Dej of the link LKj and the rotation axis (axis Axi) of the link LKj is less than or equal to a predetermined angle, the rotation corresponds to a rotation other than turning.
  • the first pattern, third pattern, fifth pattern, and sixth pattern shown in FIG. 20 correspond to turning
  • the second pattern, fourth pattern, and seventh pattern correspond to turning. Corresponds to rotation.
  • the same type of rotation means that both of the two rotations are turning, or both of the two rotations are rotations other than turning, and the different types of rotation are rotations where one of the two rotations is turning and the other is rotation other than turning.
  • the rotation that is the starting point of the relative relationship may be determined based on, for example, any one of the above-mentioned first definition, second definition, and third definition.
  • the first pattern shown in FIG. 20 corresponds to turning in any of the first, second, and third definitions
  • the second pattern corresponds to turning in any of the first, second, and third definitions. This also applies to rotations other than turning. Therefore, it is preferable that the first pattern or the second pattern be the rotation that becomes the starting point of the relative relationship.
  • a definition that is a combination of two or more of the above-mentioned first definition, second definition, and third definition may be used.
  • the rotation that corresponds to turning in all of the two or more definitions that are combined may be regarded as turning, or the rotation that corresponds to turning in at least one of the two or more definitions that are combined may be regarded as turning.
  • SYMBOLS 1 Robot system, 10, 10A, 10B, 10C, 10Z... Robot, 20... End effector, 30... Robot controller, 32... Processing device, 33... Memory, 34... Communication device, 35... Operating device, 36... Display device , 37... Driver circuit, AR, AR1, AR2, AR3, AR3t, AR3ta, AR4, AR4a, AR4b, AR4c, AR4d, AR4e, AR4f, AR5, AR6, ARi... Joint mechanism, AR41, AR41a, AR41e...
  • AR41b ...Motor fixed part, AR42, AR42a, AR42e...Transmission shaft, AR43, AR44...Pulley, AR45...Timing belt, AR46...Transmission shaft, AR47, AR47e...Gear, AR47a...Rotating gear, Ax1, Ax2, Ax3, Ax4, Ax5 , Ax6, Axi, Axte1, Axte2, Axte3...axis, BDP...body part, BDPbt...bottom surface, BSP...base part, GD...article, LK, LK1, LK1a, LK1z, LK2, LK2a, LK2b, LK2c, LK2f, LK2z , LK3, LKi, LKj...link, LK11...supporting part, LK12, LK13, LK13a, LK13b...movable part, LK21, LK21a, LK21c, LK21d, LK21e,

Abstract

An articulated robot according to the present invention comprises: a first link and a second link that connect a base portion and a leading end portion; a first driving mechanism that connects the first link and the second link and that rotates the second link by using, as a first rotation axis, an axis that forms an angle with an extension direction of the first link, the angle thereof being larger than a prescribed angle; and a second driving mechanism that connects the second link and the leading end portion and that rotates the leading end portion by using, as a second rotation axis, an axis that forms an angle with the extension direction of the second link, the angle thereof being larger than the prescribed angle. The second link comprises: a first portion; a second portion; a third portion; a third driving mechanism that rotates the second portion by using, as a third rotation axis, an axis that forms an angle with the extension direction of the first portion, the angle thereof being equal to or less than the prescribed angle; and a first expansion/contraction mechanism that causes the third portion to move along the extension direction of the first portion, thereby expanding and contracting the second link.

Description

多関節ロボット、多関節ロボットの制御方法、ロボットシステム、及び、物品の製造方法Articulated robot, control method for an articulated robot, robot system, and article manufacturing method
 本発明は、多関節ロボット、多関節ロボットの制御方法、ロボットシステム、及び、物品の製造方法に関する。 The present invention relates to an articulated robot, a method for controlling an articulated robot, a robot system, and a method for manufacturing articles.
 人と同様の動作を行うロボットとして、多関節ロボットが知られている(例えば、特許文献1参照)。 Articulated robots are known as robots that perform actions similar to humans (see, for example, Patent Document 1).
特開昭62-74594号公報Japanese Unexamined Patent Publication No. 62-74594
 ところで、多関節ロボットには、人の動作を超えた動きが要求される場合がある。この場合、ロボットの先端部が到達可能な領域を広くすることが望まれる。但し、ロボットの先端部が到達可能な領域を広くするために、ロボットを大型化した場合、ロボットを設置するスペースを確保できないおそれがある。このため、ロボットの大型化を抑制しつつ、ロボットの先端部が到達可能な領域を広くすることが望まれている。 By the way, articulated robots are sometimes required to perform movements that exceed those of humans. In this case, it is desirable to widen the area that the tip of the robot can reach. However, if the robot is made larger in order to widen the area that the tip of the robot can reach, there is a risk that it will not be possible to secure enough space to install the robot. For this reason, it is desired to widen the area that the tip of the robot can reach while suppressing the increase in the size of the robot.
 本発明の好適な態様に係る多関節ロボットは、基部と、先端部と、第1リンク及び第2リンクを含み、前記基部と前記先端部とを接続する複数のリンクと、前記第1リンクと前記第2リンクとを接続する第1駆動機構であって、前記第1リンクが延在する方向とのなす角度が所定の角度より大きい軸を第1回転軸として前記第2リンクを前記第1リンクに対して回転させる第1駆動機構と、前記第2リンクと、前記複数のリンクのうちの前記第1リンク及び前記第2リンク以外のリンクとを接続、又は、前記第2リンクと前記先端部とを接続する第2駆動機構であって、前記第2リンクが延在する方向とのなす角度が前記所定の角度より大きい軸を第2回転軸として前記先端部を前記第2リンクに対して回転させる第2駆動機構と、を備え、前記第2リンクは、前記第1リンクに接続される第1部分と、前記複数のリンクのうちの前記第1リンク及び前記第2リンク以外のリンク又は前記先端部に接続される第2部分と、前記第1部分と前記第2部分とを接続する第3部分と、前記第1部分が延在する方向とのなす角度が前記所定の角度以下の軸を第3回転軸として、前記第2部分を前記第1部分に対して回転させる第3駆動機構と、前記第1部分に対して前記第3部分を前記第1部分の延在方向に沿って移動させることにより、前記第2リンクを伸縮させる第1伸縮機構と、を含む。 An articulated robot according to a preferred aspect of the present invention includes a base, a tip, a first link, and a second link, and includes a plurality of links connecting the base and the tip, and the first link. A first drive mechanism that connects the second link to the second link, wherein the second link is connected to the first link by using an axis that makes an angle larger than a predetermined angle with the direction in which the first link extends as a first rotation axis. A first drive mechanism that rotates with respect to the link, and a connection between the second link and a link other than the first link and the second link among the plurality of links, or the second link and the tip. a second drive mechanism that connects the tip part to the second link, with an axis that makes an angle larger than the predetermined angle with the direction in which the second link extends as a second rotation axis; a second drive mechanism, the second link includes a first portion connected to the first link, and a link other than the first link and the second link among the plurality of links. or the angle formed by the second part connected to the tip, the third part connecting the first part and the second part, and the direction in which the first part extends is less than or equal to the predetermined angle. a third drive mechanism that rotates the second portion relative to the first portion using an axis of the third rotation axis as a third rotation axis; and a third drive mechanism that rotates the third portion relative to the first portion in an extending direction of the first portion. and a first expansion and contraction mechanism that expands and contracts the second link by moving the second link along the link.
 本発明の好適な態様に係る多関節ロボットの制御方法は、上述の多関節ロボットにおいて、前記基部の底面に垂直な方向とのなす角度が前記所定の角度以下の軸を第4回転軸として、前記基部の少なくとも一部分を回転させる第4駆動機構と、前記基部と前記第1リンクとを接続する第5駆動機構であって、前記基部の底面に垂直な方向とのなす角度が前記所定の角度より大きい軸を第5回転軸として前記第1リンクを前記基部に対して回転させる第5駆動機構と、をさらに備え、前記先端部は、前記第2リンクに接続され、前記第2駆動機構により前記先端部が回転する場合の前記先端部の前記第2回転軸とのなす角度が前記所定の角度より大きい軸を第6回転軸として、前記先端部の少なくとも一部分を前記第2リンクに対して回転させる第6駆動機構を、含み、前記複数のリンクは、前記第1リンク及び前記第2リンクであり、前記第1リンクは、前記基部に接続される第4部分と、前記第2リンクに接続される第5部分と、前記第4部分と前記第5部分とを接続する第6部分と、前記第4部分に対して前記第6部分を前記第4部分が延在する方向に沿って移動させることにより、前記第1リンクを伸縮させる第2伸縮機構と、を含む多関節ロボットの制御方法であって、前記多関節ロボットの動作を制御する制御装置は、前記第1駆動機構を駆動するモータ、前記第2駆動機構を駆動するモータ、前記第3駆動機構を駆動するモータ、前記第4駆動機構を駆動するモータ、前記第5駆動機構を駆動するモータ、前記第6駆動機構を駆動するモータ、前記第1伸縮機構を駆動するモータ、及び、前記第2伸縮機構を駆動するモータを制御することにより、前記多関節ロボットの動作を制御する。 A method for controlling an articulated robot according to a preferred aspect of the present invention includes, in the above-mentioned articulated robot, an axis whose angle with a direction perpendicular to the bottom surface of the base is equal to or less than the predetermined angle as a fourth rotation axis; a fourth drive mechanism that rotates at least a portion of the base; and a fifth drive mechanism that connects the base and the first link, the angle formed with a direction perpendicular to the bottom surface of the base being the predetermined angle. further comprising a fifth drive mechanism that rotates the first link relative to the base using a larger axis as a fifth rotation axis, the distal end being connected to the second link, and being driven by the second drive mechanism. When the tip rotates, an angle between the tip and the second rotation axis is set as a sixth rotation axis, and at least a portion of the tip is rotated with respect to the second link. a sixth drive mechanism for rotating the plurality of links, the plurality of links being the first link and the second link, the first link having a fourth portion connected to the base and the second link; a fifth portion to be connected; a sixth portion connecting the fourth portion and the fifth portion; and a sixth portion connecting the fourth portion to the fourth portion along the direction in which the fourth portion extends. A control method for an articulated robot includes: a second extension/contraction mechanism that extends and contracts the first link by moving the robot; a motor that drives the second drive mechanism, a motor that drives the third drive mechanism, a motor that drives the fourth drive mechanism, a motor that drives the fifth drive mechanism, and a motor that drives the sixth drive mechanism. The motion of the multi-joint robot is controlled by controlling a motor that drives the first telescoping mechanism, a motor that drives the second telescoping mechanism, and a motor that drives the second telescoping mechanism.
 本発明の好適な態様に係るロボットシステムは、上述の多関節ロボットにおいて、前記基部の底面に垂直な方向とのなす角度が前記所定の角度以下の軸を第4回転軸として、前記基部の少なくとも一部分を回転させる第4駆動機構と、前記基部と前記第1リンクとを接続する第5駆動機構であって、前記基部の底面に垂直な方向とのなす角度が前記所定の角度より大きい軸を第5回転軸として前記第1リンクを前記基部に対して回転させる第5駆動機構と、をさらに備え、前記先端部は、前記第2リンクに接続され、前記第2駆動機構により前記先端部が回転する場合の前記先端部の前記第2回転軸とのなす角度が前記所定の角度より大きい軸を第6回転軸として、前記先端部の少なくとも一部分を前記第2リンクに対して回転させる第6駆動機構を、含み、前記複数のリンクは、前記第1リンク及び前記第2リンクであり、前記第1リンクは、前記基部に接続される第4部分と、前記第2リンクに接続される第5部分と、前記第4部分と前記第5部分とを接続する第6部分と、前記第4部分に対して前記第6部分を前記第4部分が延在する方向に沿って移動させることにより、前記第1リンクを伸縮させる第2伸縮機構と、を含む多関節ロボットと、前記先端部に取り付けられたエンドエフェクタと、前記多関節ロボット及び前記エンドエフェクタの動作を制御する制御装置と、を備え、前記制御装置は、前記第1駆動機構を駆動するモータ、前記第2駆動機構を駆動するモータ、前記第3駆動機構を駆動するモータ、前記第4駆動機構を駆動するモータ、前記第5駆動機構を駆動するモータ、前記第6駆動機構を駆動するモータ、前記第1伸縮機構を駆動するモータ、及び、前記第2伸縮機構を駆動するモータを制御することにより、前記多関節ロボットの動作を制御する。 In the robot system according to a preferred aspect of the present invention, in the above-mentioned multi-jointed robot, an axis having an angle less than or equal to the predetermined angle with a direction perpendicular to the bottom surface of the base is set as a fourth rotation axis, and at least one of the base a fourth drive mechanism that rotates a portion of the shaft; and a fifth drive mechanism that connects the base and the first link; The tip further includes a fifth drive mechanism that rotates the first link relative to the base as a fifth rotation axis, and the tip is connected to the second link, and the tip is rotated by the second drive mechanism. A sixth rotation axis in which at least a portion of the tip part is rotated with respect to the second link, with an axis that makes an angle between the tip part and the second rotation axis when rotating is larger than the predetermined angle as a sixth rotation axis. a driving mechanism, the plurality of links are the first link and the second link, and the first link has a fourth portion connected to the base and a fourth portion connected to the second link. a fifth part, a sixth part connecting the fourth part and the fifth part, and moving the sixth part with respect to the fourth part along the direction in which the fourth part extends. , a second telescopic mechanism that extends and contracts the first link, an end effector attached to the distal end portion, and a control device that controls operations of the multi-joint robot and the end effector. The control device includes a motor that drives the first drive mechanism, a motor that drives the second drive mechanism, a motor that drives the third drive mechanism, a motor that drives the fourth drive mechanism, and a motor that drives the fifth drive mechanism. The articulated robot operates by controlling a motor that drives a drive mechanism, a motor that drives the sixth drive mechanism, a motor that drives the first telescoping mechanism, and a motor that drives the second telescoping mechanism. control.
 本発明の好適な態様に係る物品の製造方法は、上述のロボットシステムにより、部品を組み付ける、又は、部品を取り除く。 A method for manufacturing an article according to a preferred embodiment of the present invention involves assembling or removing parts using the above-mentioned robot system.
 本発明の好適な態様に係る多関節ロボットは、基部と、先端部と、第1リンク及び第2リンクを含み、前記基部と前記先端部とを接続する複数のリンクと、前記第1リンクと前記第2リンクとを接続する第1駆動機構であって、前記第1リンクが延在する方向とのなす角度が所定の角度より大きい軸を第1回転軸として前記第2リンクを前記第1リンクに対して回転させる第1駆動機構と、前記第2リンクと、前記複数のリンクのうちの前記第1リンク及び前記第2リンク以外のリンクとを接続、又は、前記第2リンクと前記先端部とを接続する第2駆動機構であって、前記第2リンクが延在する方向とのなす角度が前記所定の角度より大きい軸を第2回転軸として前記先端部を前記第2リンクに対して回転させる第2駆動機構と、を備え、前記第2リンクは、前記第1リンクに接続される第1部分と、前記複数のリンクのうちの前記第1リンク及び前記第2リンク以外のリンク又は前記先端部に接続される第2部分と、前記第1部分と前記第2部分とを接続する第3部分と、前記第1部分が延在する方向とのなす角度が前記所定の角度以下の軸を第3回転軸として前記第3部分を前記第1部分に対して回転させることにより、前記第2部分を前記第1部分に対して回転させる第3駆動機構と、前記第1部分に対して前記第3部分を前記第1部分の延在方向に沿って移動させることにより、前記第2リンクを伸縮させる第1伸縮機構と、を含む。 An articulated robot according to a preferred aspect of the present invention includes a base, a tip, a first link, and a second link, and includes a plurality of links connecting the base and the tip, and the first link. A first drive mechanism that connects the second link to the second link, wherein the second link is connected to the first link by using an axis that makes an angle larger than a predetermined angle with the direction in which the first link extends as a first rotation axis. A first drive mechanism that rotates with respect to the link, and a connection between the second link and a link other than the first link and the second link among the plurality of links, or the second link and the tip. a second drive mechanism that connects the tip part to the second link, with an axis that makes an angle larger than the predetermined angle with the direction in which the second link extends as a second rotation axis; a second drive mechanism, the second link includes a first portion connected to the first link, and a link other than the first link and the second link among the plurality of links. or the angle formed by the second part connected to the tip, the third part connecting the first part and the second part, and the direction in which the first part extends is less than or equal to the predetermined angle. a third drive mechanism that rotates the second part relative to the first part by rotating the third part relative to the first part using an axis of the third part as a third rotation axis; A first expansion/contraction mechanism that expands/contracts the second link by moving the third portion along the extending direction of the first portion.
 本発明の好適な態様に係る多関節ロボットは、基部と、先端部と、第1リンク及び第2リンクを含み、前記基部と前記先端部とを接続する複数のリンクと、前記第1リンクと前記第2リンクとを接続する第1駆動機構であって、前記第1リンクが延在する方向とのなす角度が所定の角度より大きい軸を第1回転軸として前記第2リンクを前記第1リンクに対して回転させる第1駆動機構と、前記第2リンクと、前記複数のリンクのうちの前記第1リンク及び前記第2リンク以外のリンクとを接続、又は、前記第2リンクと前記先端部とを接続する第2駆動機構であって、前記第2リンクが延在する方向とのなす角度が前記所定の角度より大きい軸を第2回転軸として前記先端部を前記第2リンクに対して回転させる第2駆動機構と、を備え、前記第2リンクは、前記第1リンクに接続される第1部分と、前記複数のリンクのうちの前記第1リンク及び前記第2リンク以外のリンク又は前記先端部に接続される第2部分と、前記第1部分と前記第2部分とを接続する第3部分と、前記第1部分が延在する方向とのなす角度が前記所定の角度以下の軸を第3回転軸として、前記第3部分を前記第1部分に対して回転させる第7駆動機構と、前記第3部分に対して前記第2部分を前記第3部分の延在方向に沿って移動させることにより、前記第2リンクを伸縮させる第3伸縮機構と、を含む。 An articulated robot according to a preferred aspect of the present invention includes a base, a tip, a first link, and a second link, and includes a plurality of links connecting the base and the tip, and the first link. A first drive mechanism that connects the second link to the second link, wherein the second link is connected to the first link by using an axis that makes an angle larger than a predetermined angle with the direction in which the first link extends as a first rotation axis. A first drive mechanism that rotates with respect to the link, and a connection between the second link and a link other than the first link and the second link among the plurality of links, or the second link and the tip. a second drive mechanism that connects the tip part to the second link, with an axis that makes an angle larger than the predetermined angle with the direction in which the second link extends as a second rotation axis; a second drive mechanism, the second link includes a first portion connected to the first link, and a link other than the first link and the second link among the plurality of links. or the angle formed by the second part connected to the tip, the third part connecting the first part and the second part, and the direction in which the first part extends is less than or equal to the predetermined angle. a seventh drive mechanism that rotates the third portion relative to the first portion using an axis of the third portion as a third rotation axis; and a third expansion/contraction mechanism that expands/contracts the second link by moving it along the link.
 本発明の好適な態様に係る多関節ロボットは、基部と、先端部と、第1リンク及び第2リンクを含み、前記基部と前記先端部とを接続する複数のリンクと、前記第1リンクと前記第2リンクとを接続する駆動機構であって、前記第1リンクが延在する方向とのなす角度が所定の角度より大きい軸を回転軸として前記第2リンクを前記第1リンクに対して回転させる駆動機構と、を備え、前記駆動機構は、前記回転軸に沿って、前記第2リンクを前記第1リンクに対して相対的に移動させる第4伸縮機構を含む。 An articulated robot according to a preferred aspect of the present invention includes a base, a tip, a first link, and a second link, and includes a plurality of links connecting the base and the tip, and the first link. A drive mechanism that connects the second link to the first link, the second link being connected to the first link using an axis that makes an angle larger than a predetermined angle with the direction in which the first link extends as a rotation axis. and a drive mechanism for rotating the link, the drive mechanism including a fourth telescoping mechanism for moving the second link relative to the first link along the rotation axis.
 本発明によれば、ロボットの大型化を抑制しつつ、ロボットの先端部が到達可能な領域を広くすることができる。 According to the present invention, it is possible to widen the area that the tip of the robot can reach while suppressing the increase in size of the robot.
第1実施形態に係るロボットシステムの概要を説明するための説明図である。FIG. 1 is an explanatory diagram for explaining an overview of a robot system according to a first embodiment. 関節機構及び伸縮機構を含むリンクの一例を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining an example of a link including a joint mechanism and an expansion/contraction mechanism. 伸縮機構を含むリンクの一例を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining an example of a link including a telescoping mechanism. 図1に示したロボットの利点を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining the advantages of the robot shown in FIG. 1. FIG. 図1に示したロボットコントローラのハードウェア構成の一例を示す図である。2 is a diagram showing an example of the hardware configuration of the robot controller shown in FIG. 1. FIG. 第2実施形態に係るロボットシステムの概要を説明するための説明図である。It is an explanatory view for explaining an outline of a robot system concerning a 2nd embodiment. 図6に示したリンクの一例を説明するための説明図である。7 is an explanatory diagram for explaining an example of the link shown in FIG. 6. FIG. 図6に示したリンクの別の例を説明するための説明図である。7 is an explanatory diagram for explaining another example of the link shown in FIG. 6. FIG. 変形例A1に係るリンクの一例を説明するための説明図である。It is an explanatory view for explaining an example of the link concerning modification A1. 第3実施形態に係るロボットシステムの概要を説明するための説明図である。It is an explanatory view for explaining an outline of a robot system concerning a 3rd embodiment. 関節機構及び伸縮機構を含むリンクの一例を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining an example of a link including a joint mechanism and an expansion/contraction mechanism. 変形例B1に係るリンクの一例を説明するための説明図である。It is an explanatory view for explaining an example of the link concerning modification B1. 変形例B1に係るリンクの別の例を説明するための説明図である。It is an explanatory view for explaining another example of the link concerning modification B1. 第4実施形態に係るロボットシステムの概要を説明するための説明図である。It is an explanatory view for explaining an outline of a robot system concerning a 4th embodiment. 伸縮機構を含む関節機構の一例を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining an example of a joint mechanism including a telescoping mechanism. 図14に示したロボットの利点を説明するための説明図である。15 is an explanatory diagram for explaining the advantages of the robot shown in FIG. 14. FIG. 変形例C1に係る関節機構の一例を説明するための説明図である。It is an explanatory view for explaining an example of the joint mechanism concerning modification C1. 変形例C2に係る関節機構の一例を説明するための説明図である。It is an explanatory view for explaining an example of the joint mechanism concerning modification C2. 変形例C2に係る関節機構の別の例を説明するための説明図である。It is an explanatory view for explaining another example of the joint mechanism concerning modification C2. 旋回の一例を説明するための説明図である。It is an explanatory view for explaining an example of turning.
 以下、本発明を実施するための形態について図面を参照して説明する。なお、各図において、各部の寸法及び縮尺は、実際のものと適宜に異ならせてある。また、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの形態に限られるものではない。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In each figure, the dimensions and scale of each part are appropriately different from the actual ones. Furthermore, since the embodiments described below are preferred specific examples of the present invention, various technically preferable limitations are attached thereto. Unless there is a statement to that effect, it is not limited to these forms.
[A-1.第1実施形態]
 先ず、図1を参照しながら、実施形態に係るロボットシステム1の概要の一例について説明する。
[A-1. First embodiment]
First, an example of an outline of a robot system 1 according to an embodiment will be described with reference to FIG. 1.
 図1は、第1実施形態に係るロボットシステム1の概要を説明するための説明図である。 FIG. 1 is an explanatory diagram for explaining an overview of a robot system 1 according to the first embodiment.
 ロボットシステム1は、例えば、ロボット10と、ロボット10に着脱可能に取り付けられるエンドエフェクタ20と、ロボット10及びエンドエフェクタ20の動作を制御するロボットコントローラ30とを有する。ロボット10は、「多関節ロボット」の一例であり、ロボットコントローラ30は、「制御装置」の一例である。 The robot system 1 includes, for example, a robot 10, an end effector 20 that is detachably attached to the robot 10, and a robot controller 30 that controls the operations of the robot 10 and the end effector 20. The robot 10 is an example of an "articulated robot," and the robot controller 30 is an example of a "control device."
 ロボット10及びロボットコントローラ30は、例えば、有線を用いた接続により、互いに通信可能に接続されている。なお、ロボット10とロボットコントローラ30との接続は、無線を用いた接続であってもよいし、有線及び無線の両方を用いた接続であってもよい。また、ロボットコントローラ30は、ロボット10に取り付けられたエンドエフェクタ20と通信可能である。ロボットコントローラ30としては、他の装置と通信可能な任意の情報処理装置を採用することができる。なお、ロボットコントローラ30の構成は、後述する図5において説明される。 The robot 10 and the robot controller 30 are communicably connected to each other, for example, by a wired connection. Note that the connection between the robot 10 and the robot controller 30 may be a wireless connection, or may be a wired and wireless connection. Further, the robot controller 30 is capable of communicating with an end effector 20 attached to the robot 10. As the robot controller 30, any information processing device that can communicate with other devices can be employed. Note that the configuration of the robot controller 30 will be explained in FIG. 5, which will be described later.
 ロボット10は、例えば、農場、工場及び倉庫等での作業に用いられる多関節ロボットである。具体的には、ロボット10は、垂直6軸多関節ロボットに2つの伸縮機構TE1及びTE2を追加した6軸2伸多関節ロボットである。例えば、ロボット10は、関節機構AR1、AR2、AR3、AR4、AR5及びAR6と、伸縮機構TE1及びTE2とを有する。なお、ロボット10は、複数の関節機構AR(AR1、AR2、AR3、AR4、AR5及びAR6)及び複数の伸縮機構TE(TE1及びTE2)の他に、土台部BSP、ボディ部BDP、リンクLK1、リンクLK2及びリンクLK3を有する。なお、伸縮機構TE1は、リンクLK1に設けられ、伸縮機構TE2及び関節機構AR4は、リンクLK2に設けられる。また、ロボット10は、複数の関節機構ARと複数の伸縮機構TEとを駆動する複数のモータをさらに有する。図1では、図を見やすくするために、複数のモータのうちの関節機構AR4を駆動するモータMOa4以外のモータの記載を省略している。 The robot 10 is, for example, an articulated robot used for work in farms, factories, warehouses, and the like. Specifically, the robot 10 is a 6-axis, 2-extension, multi-joint robot that is a vertical 6-axis, 6-axis, multi-joint robot to which two telescoping mechanisms TE1 and TE2 are added. For example, the robot 10 includes joint mechanisms AR1, AR2, AR3, AR4, AR5, and AR6, and extension and contraction mechanisms TE1 and TE2. In addition, the robot 10 includes a base part BSP, a body part BDP, a link LK1, in addition to a plurality of joint mechanisms AR (AR1, AR2, AR3, AR4, AR5, and AR6) and a plurality of extension and contraction mechanisms TE (TE1 and TE2). It has a link LK2 and a link LK3. Note that the telescoping mechanism TE1 is provided on the link LK1, and the telescoping mechanism TE2 and the joint mechanism AR4 are provided on the link LK2. Moreover, the robot 10 further includes a plurality of motors that drive the plurality of joint mechanisms AR and the plurality of extension and contraction mechanisms TE. In FIG. 1, in order to make the diagram easier to read, illustrations of motors other than the motor MOa4 that drives the joint mechanism AR4 among the plurality of motors are omitted.
 ボディ部BDPは、「基部」の一例である。また、リンクLK1は、「第1リンク」の一例であり、リンクLK2は、「第2リンク」の一例である。従って、リンクLK1及びLK2は、「複数のリンク」に該当する。リンクLK3は、「先端部」の一例である。関節機構AR1は、「第4駆動機構」の一例であり、関節機構AR2は、「第5駆動機構」の一例である。関節機構AR3は、「第1駆動機構」の一例であり、関節機構AR5は、「第2駆動機構」の一例である。 The body part BDP is an example of a "base". Further, the link LK1 is an example of a "first link", and the link LK2 is an example of a "second link". Therefore, links LK1 and LK2 correspond to "a plurality of links". Link LK3 is an example of a "tip part." The joint mechanism AR1 is an example of a "fourth drive mechanism," and the joint mechanism AR2 is an example of a "fifth drive mechanism." The joint mechanism AR3 is an example of a "first drive mechanism," and the joint mechanism AR5 is an example of a "second drive mechanism."
 土台部BSPは、床等の所定の場所に固定される。ボディ部BDPは、関節機構AR1を介して土台部BSPに接続される。関節機構AR1は、ボディ部BDPの底面BDPbtに垂直な軸Ax1を回転軸として、ボディ部BDPを回転させる。但し、「垂直」は、厳密な垂直だけではなく、実質的な垂直(例えば、誤差範囲内の垂直)も含む。同様に、後述する「平行」は、厳密な平行だけではなく、実質的な平行(例えば、誤差範囲内の平行)も含む。 The base part BSP is fixed to a predetermined location such as the floor. Body portion BDP is connected to base portion BSP via joint mechanism AR1. The joint mechanism AR1 rotates the body part BDP about an axis Ax1 perpendicular to the bottom surface BDPbt of the body part BDP as a rotation axis. However, "vertical" includes not only strictly vertical but also substantially vertical (for example, vertical within an error range). Similarly, "parallel" described below includes not only exact parallel but also substantial parallel (for example, parallel within an error range).
 このように、ボディ部BDPは、関節機構AR1により、軸Ax1を回転軸として回転可能に土台部BSPに接続される。図1の回転方向Dr1は、軸Ax1を回転軸として回転する場合のボディ部BDPの回転方向を示す。軸Ax1は、「第4回転軸」の一例である。 In this way, the body part BDP is rotatably connected to the base part BSP by the joint mechanism AR1 about the axis Ax1. The rotation direction Dr1 in FIG. 1 indicates the rotation direction of the body portion BDP when rotating around the axis Ax1. Axis Ax1 is an example of a "fourth rotation axis."
 関節機構AR2は、ボディ部BDPとリンクLK1とを接続し、ボディ部BDPの底面BDPbtに平行な軸Ax2を回転軸としてリンクLK1をボディ部BDPに対して回転させる。図1の回転方向Dr2は、軸Ax2を回転軸として回転する場合のボディ部BDPの回転方向を示す。軸Ax2は、「第5回転軸」の一例である。 The joint mechanism AR2 connects the body part BDP and the link LK1, and rotates the link LK1 with respect to the body part BDP using an axis Ax2 parallel to the bottom surface BDPbt of the body part BDP as a rotation axis. The rotation direction Dr2 in FIG. 1 indicates the rotation direction of the body portion BDP when rotating around the axis Ax2. Axis Ax2 is an example of a "fifth rotation axis."
 リンクLK1は、例えば、リンクLK1が延在する方向De1に沿って伸縮可能に構成される。例えば、リンクLK1は、ボディ部BDPに接続される支持部分LK11と、可動部分LK12及びLK13と、伸縮機構TE1とを含む。可動部分LK12は、支持部分LK11と可動部分LK13とを接続する。可動部分LK13は、リンクLK2に接続される。本実施形態では、支持部分LK11、可動部分LK12及び可動部分LK13の各々が方向De1に沿って延在する場合を想定する。すなわち、方向De1は、支持部分LK11、可動部分LK12及び可動部分LK13の各々の長手方向に該当する。また、本実施形態では、支持部分LK11が延在する方向De11が、リンクLK1が延在する方向De1である場合を想定する。 The link LK1 is configured to be expandable and contractible, for example, along the direction De1 in which the link LK1 extends. For example, the link LK1 includes a support portion LK11 connected to the body portion BDP, movable portions LK12 and LK13, and an expansion/contraction mechanism TE1. Movable portion LK12 connects support portion LK11 and movable portion LK13. Movable part LK13 is connected to link LK2. In this embodiment, a case is assumed in which each of the support portion LK11, the movable portion LK12, and the movable portion LK13 extends along the direction De1. That is, the direction De1 corresponds to the longitudinal direction of each of the supporting portion LK11, the movable portion LK12, and the movable portion LK13. Moreover, in this embodiment, it is assumed that the direction De11 in which the support portion LK11 extends is the direction De1 in which the link LK1 extends.
 伸縮機構TE1は、支持部分LK11と可動部分LK12とを接続し、可動部分LK12を支持部分LK11に対して、支持部分LK11が延在する方向De11に沿って移動させる。可動部分LK12が方向De11に沿って移動することにより、可動部分LK13が方向De11に沿って移動する。可動部分LK12及びLK13が方向De11に沿って移動することにより、リンクLK1は、方向De11(すなわち、方向De1)に沿って伸縮する。図1の方向Dm1は、リンクLK1の伸縮方向(方向De1に沿う方向)を示す。 The telescopic mechanism TE1 connects the support portion LK11 and the movable portion LK12, and moves the movable portion LK12 with respect to the support portion LK11 along the direction De11 in which the support portion LK11 extends. As the movable portion LK12 moves along the direction De11, the movable portion LK13 moves along the direction De11. As the movable parts LK12 and LK13 move along the direction De11, the link LK1 expands and contracts along the direction De11 (ie, the direction De1). Direction Dm1 in FIG. 1 indicates the expansion/contraction direction (direction along direction De1) of link LK1.
 なお、支持部分LK11は、「第4部分」の一例であり、可動部分LK12は、「第6部分」の一例である。また、可動部分LK13は、「第5部分」の一例であり、伸縮機構TE1は、「第2伸縮機構」の一例である。 Note that the supporting portion LK11 is an example of a “fourth portion” and the movable portion LK12 is an example of a “sixth portion”. Moreover, the movable part LK13 is an example of a "fifth part", and the telescoping mechanism TE1 is an example of a "second telescoping mechanism".
 関節機構AR3は、リンクLK1とリンクLK2とを接続し、リンクLK1が延在する方向De1に垂直な軸Ax3を回転軸としてリンクLK2をリンクLK1に対して回転させる。図1の回転方向Dr3は、軸Ax3を回転軸として回転する場合のリンクLK2の回転方向を示す。軸Ax3は、「第1回転軸」の一例である。 The joint mechanism AR3 connects the link LK1 and the link LK2, and rotates the link LK2 with respect to the link LK1 using an axis Ax3 perpendicular to the direction De1 in which the link LK1 extends as a rotation axis. The rotation direction Dr3 in FIG. 1 indicates the rotation direction of the link LK2 when rotating around the axis Ax3. Axis Ax3 is an example of a "first rotation axis."
 リンクLK2は、例えば、リンクLK2が延在する方向De2に沿って伸縮可能に構成される。例えば、リンクLK2は、リンクLK1に接続される支持部分LK21と、可動部分LK22及びLK23と、伸縮機構TE2と、関節機構AR4と、関節機構AR4を駆動するモータMOa4とを含む。可動部分LK22は、支持部分LK21と可動部分LK23とを接続する。可動部分LK23は、リンクLK3に接続される。本実施形態では、支持部分LK21、可動部分LK22及び可動部分LK23の各々が方向De2に沿って延在する場合を想定する。すなわち、方向De2は、支持部分LK21、可動部分LK22及び可動部分LK23の各々の長手方向に該当する。また、本実施形態では、支持部分LK21が延在する方向De21が、リンクLK2が延在する方向De2である場合を想定する。 The link LK2 is configured to be expandable and contractible, for example, along the direction De2 in which the link LK2 extends. For example, the link LK2 includes a support portion LK21 connected to the link LK1, movable portions LK22 and LK23, a telescoping mechanism TE2, a joint mechanism AR4, and a motor MOa4 that drives the joint mechanism AR4. Movable portion LK22 connects support portion LK21 and movable portion LK23. Movable part LK23 is connected to link LK3. In this embodiment, a case is assumed in which each of the support portion LK21, the movable portion LK22, and the movable portion LK23 extends along the direction De2. That is, the direction De2 corresponds to the longitudinal direction of each of the support portion LK21, the movable portion LK22, and the movable portion LK23. Moreover, in this embodiment, it is assumed that the direction De21 in which the support portion LK21 extends is the direction De2 in which the link LK2 extends.
 伸縮機構TE2は、支持部分LK21と可動部分LK22とを接続し、可動部分LK22を支持部分LK21に対して、支持部分LK21が延在する方向De21に沿って移動させる。可動部分LK22が方向De21に沿って移動することにより、可動部分LK23が方向De21に沿って移動する。可動部分LK22及びLK23が方向De21に沿って移動することにより、リンクLK2は、方向De21(すなわち、方向De2)に沿って伸縮する。図1の方向Dm2は、リンクLK2の伸縮方向(方向De2に沿う方向)を示す。 The telescopic mechanism TE2 connects the support portion LK21 and the movable portion LK22, and moves the movable portion LK22 with respect to the support portion LK21 along the direction De21 in which the support portion LK21 extends. As the movable portion LK22 moves along the direction De21, the movable portion LK23 moves along the direction De21. As the movable parts LK22 and LK23 move along the direction De21, the link LK2 expands and contracts along the direction De21 (ie, the direction De2). Direction Dm2 in FIG. 1 indicates the expansion/contraction direction (direction along direction De2) of link LK2.
 関節機構AR4は、支持部分LK21が延在する方向De21と平行な軸Ax4を回転軸として、可動部分LK23を支持部分LK21に対して回転させる。図1の回転方向Dr4は、軸Ax4を回転軸として回転する場合の可動部分LK23の回転方向を示す。軸Ax4は、「第3回転軸」の一例である。 The joint mechanism AR4 rotates the movable portion LK23 with respect to the support portion LK21 using an axis Ax4 parallel to the direction De21 in which the support portion LK21 extends as a rotation axis. The rotation direction Dr4 in FIG. 1 indicates the rotation direction of the movable portion LK23 when rotating around the axis Ax4. Axis Ax4 is an example of a "third rotation axis."
 支持部分LK21は、「第1部分」の一例であり、可動部分LK22は、「第3部分」の一例であり、可動部分LK23は、「第2部分」の一例である。また、関節機構AR4は、「第3駆動機構」の一例であり、伸縮機構TE2は、「第1伸縮機構」の一例である。 The supporting portion LK21 is an example of a “first portion,” the movable portion LK22 is an example of a “third portion,” and the movable portion LK23 is an example of a “second portion.” Further, the joint mechanism AR4 is an example of a "third drive mechanism," and the telescoping mechanism TE2 is an example of a "first telescoping mechanism."
 関節機構AR5は、リンクLK2とリンクLK3とを接続し、リンクLK2が延在する方向De2に垂直な軸Ax5を回転軸としてリンクLK3をリンクLK2に対して回転させる。図1の回転方向Dr5は、軸Ax5を回転軸として回転する場合のリンクLK3の回転方向を示す。軸Ax5は、「第2回転軸」の一例である。 The joint mechanism AR5 connects the link LK2 and the link LK3, and rotates the link LK3 with respect to the link LK2 using an axis Ax5 perpendicular to the direction De2 in which the link LK2 extends as a rotation axis. The rotation direction Dr5 in FIG. 1 indicates the rotation direction of the link LK3 when rotating around the axis Ax5. Axis Ax5 is an example of a "second rotation axis."
 リンクLK3には、例えば、物品を把持するエンドエフェクタ20が取り付けられる。例えば、リンクLK3の端面LK3sfには、エンドエフェクタ20が取り付けられる。また、リンクLK3は、軸Ax5に垂直な軸Ax6を回転軸として、リンクLK3の少なくとも一部分をリンクLK2に対して回転させる関節機構AR6を含む。例えば、関節機構AR6は、軸Ax6を回転軸として、リンクLK3の端面LK3sfをリンクLK2に対して回転させる。図1の回転方向Dr6は、軸Ax6を回転軸として回転する場合のリンクLK3の端面LK3sfの回転方向を示す。なお、関節機構AR6は、「第6駆動機構」の一例である。軸Ax6は、「第6回転軸」の一例である。 For example, an end effector 20 that grips an article is attached to the link LK3. For example, the end effector 20 is attached to the end surface LK3sf of the link LK3. Further, the link LK3 includes a joint mechanism AR6 that rotates at least a portion of the link LK3 relative to the link LK2 about an axis Ax6 perpendicular to the axis Ax5 as a rotation axis. For example, the joint mechanism AR6 rotates the end surface LK3sf of the link LK3 with respect to the link LK2 using the axis Ax6 as the rotation axis. The rotation direction Dr6 in FIG. 1 indicates the rotation direction of the end face LK3sf of the link LK3 when rotating around the axis Ax6. Note that the joint mechanism AR6 is an example of a "sixth drive mechanism." Axis Ax6 is an example of a "sixth rotation axis."
 また、エンドエフェクタ20により行われる作業は、物品の把持に限定されない。エンドエフェクタ20としては、ロボット10の作業目的に応じて適切な部品(例えば、ロボットハンド及びロボットフィンガー等)を適用することができる。すなわち、各種作業に適したエンドエフェクタ20がリンクLK3に取り付けられる。 Further, the work performed by the end effector 20 is not limited to gripping an article. As the end effector 20, appropriate parts (for example, a robot hand, a robot finger, etc.) can be used depending on the purpose of the robot 10. That is, an end effector 20 suitable for various tasks is attached to the link LK3.
 ここで、本実施形態では、特定の方向とのなす角度が所定の角度より大きい軸を回転軸とした回転を、特定の方向とのなす角度が所定の角度以下の軸を回転軸とした回転と区別して、「旋回」と称する場合がある。所定の角度は、例えば、45°であってもよい。なお、所定の角度は、45°に限定されない。 Here, in this embodiment, rotation about an axis whose angle with a specific direction is larger than a predetermined angle is rotation axis, and rotation about an axis whose angle with a specific direction is less than or equal to a predetermined angle as a rotation axis. It is sometimes referred to as a "swivel" to distinguish it from this. The predetermined angle may be, for example, 45°. Note that the predetermined angle is not limited to 45°.
 例えば、軸Ax1及びAx2の各々を回転軸とする回転では、ボディ部BDPの底面BDPbtに垂直な方向Dv1が特定の方向に該当する。この場合、軸Ax1は、ボディ部BDPの底面BDPbtに垂直な方向Dv1とのなす角度が所定の角度以下の軸に該当し、軸Ax2は、方向Dv1とのなす角度が所定の角度より大きい軸に該当する。従って、軸Ax2を回転軸とするリンクLK1の回転は、旋回に該当する。なお、本実施形態では、ボディ部BDPが底面BDPbtに垂直な方向Dv1に沿って延在しているため、ボディ部BDPが延在する方向Debを特定の方向としてもよい。 For example, in rotation using each of the axes Ax1 and Ax2 as rotation axes, the direction Dv1 perpendicular to the bottom surface BDPbt of the body portion BDP corresponds to the specific direction. In this case, the axis Ax1 corresponds to an axis whose angle with the direction Dv1 perpendicular to the bottom surface BDPbt of the body part BDP is less than or equal to a predetermined angle, and the axis Ax2 corresponds to an axis whose angle with the direction Dv1 is larger than the predetermined angle. Applies to. Therefore, the rotation of the link LK1 about the axis Ax2 corresponds to turning. In this embodiment, since the body portion BDP extends along the direction Dv1 perpendicular to the bottom surface BDPbt, the direction Deb in which the body portion BDP extends may be a specific direction.
 また、軸Ax3を回転軸とする回転では、リンクLK1が延在する方向De1が特定の方向に該当し、軸Ax4を回転軸とする回転では、支持部分LK21が延在する方向De21が特定の方向に該当する。この場合、軸Ax3は、リンクLK1が延在する方向De1とのなす角度が所定の角度より大きい軸に該当し、軸Ax4は、支持部分LK21が延在する方向De21とのなす角度が所定の角度以下の軸に該当する。従って、軸Ax3を回転軸とするリンクLK2の回転は、旋回に該当する。 Further, in the rotation about the axis Ax3 as the rotation axis, the direction De1 in which the link LK1 extends corresponds to a specific direction, and in the rotation about the axis Ax4 as the rotation axis, the direction De21 in which the support portion LK21 extends corresponds to a specific direction. Corresponds to the direction. In this case, the axis Ax3 corresponds to an axis whose angle with the direction De1 in which the link LK1 extends is larger than a predetermined angle, and the axis Ax4 corresponds to an axis whose angle with the direction De21 in which the support portion LK21 extends is larger than a predetermined angle. Applies to an axis that is less than or equal to an angle. Therefore, the rotation of the link LK2 about the axis Ax3 corresponds to turning.
 また、軸Ax5を回転軸とする回転では、リンクLK2が延在する方向De2が特定の方向に該当し、軸Ax6を回転軸とする回転では、リンクLK3が延在する方向De3が特定の方向に該当する。この場合、軸Ax5は、リンクLK2が延在する方向De2とのなす角度が所定の角度より大きい軸に該当し、軸Ax6は、リンクLK3が延在する方向De3とのなす角度が所定の角度以下の軸に該当する。従って、軸Ax5を回転軸とするリンクLK3の回転は、旋回に該当する。なお、本実施形態では、リンクLK3が延在する方向De3が、軸Ax5に垂直な方向である場合を想定する。このため、本実施形態では、方向De3とのなす角度が所定の角度以下の軸Ax6は、関節機構AR5によりリンクLK3が回転する場合のリンクLK3の軸Ax5(回転軸)とのなす角度が所定の角度より大きい軸に該当する。 In addition, in rotation with the axis Ax5 as the rotation axis, the direction De2 in which the link LK2 extends corresponds to a specific direction, and in rotation with the axis Ax6 as the rotation axis, the direction De3 in which the link LK3 extends corresponds to a specific direction. Applies to. In this case, the axis Ax5 corresponds to an axis whose angle with the direction De2 in which the link LK2 extends is larger than a predetermined angle, and the axis Ax6 corresponds to an axis whose angle with the direction De3 in which the link LK3 extends is a predetermined angle. It corresponds to the following axes. Therefore, the rotation of the link LK3 about the axis Ax5 corresponds to turning. In this embodiment, it is assumed that the direction De3 in which the link LK3 extends is perpendicular to the axis Ax5. Therefore, in the present embodiment, the axis Ax6 whose angle with the direction De3 is equal to or less than a predetermined angle is such that the angle formed with the axis Ax5 (rotation axis) of the link LK3 when the link LK3 is rotated by the joint mechanism AR5 is a predetermined angle. Corresponds to an axis whose angle is greater than .
 このように、本実施形態では、ロボット10の複数の部分(ボディ部BDP、リンクLK1、LK2及びLK3等)の各々が軸Ax1、Ax2、Ax3、Ax4、Ax5及びAx6の各々を回転軸として回転可能である。これにより、本実施形態では、ロボット10は、人と同様の動作を実行できる。 As described above, in this embodiment, each of the plurality of parts of the robot 10 (body part BDP, links LK1, LK2, LK3, etc.) rotates about each of the axes Ax1, Ax2, Ax3, Ax4, Ax5, and Ax6. It is possible. Thereby, in this embodiment, the robot 10 can perform actions similar to humans.
 例えば、関節機構AR2と関節機構AR3との間のリンクLK1が上腕に相当し、関節機構AR3と関節機構AR5との間のリンクLK2が前腕に相当する。そして、ロボット10は、関節機構AR1により、人の腰のねじりを模した動作を行うことができ、関節機構AR2により、肩の旋回を模した動作を行うことができる。また、ロボット10は、関節機構AR3により、肘の旋回を模した動作を行うことができ、関節機構AR4により、腕のねじりを模した動作を行うことができる。また、ロボット10は、関節機構AR5により、手首の旋回を模した動作を行うことができ、関節機構AR6により、指先のねじりを模した動作を行うことができる。 For example, the link LK1 between the joint mechanism AR2 and the joint mechanism AR3 corresponds to the upper arm, and the link LK2 between the joint mechanism AR3 and the joint mechanism AR5 corresponds to the forearm. The robot 10 can use the joint mechanism AR1 to perform a motion that simulates the twisting of a human's waist, and the joint mechanism AR2 can perform a motion that simulates the turning of the shoulder. Further, the robot 10 can perform a motion that simulates turning an elbow using the joint mechanism AR3, and can perform a motion that simulates twisting an arm using the joint mechanism AR4. Further, the robot 10 can perform an action simulating turning a wrist using the joint mechanism AR5, and can perform an action simulating twisting a fingertip using the joint mechanism AR6.
 さらに、本実施形態では、リンクLK1を旋回させる関節機構AR2とリンクLK2を旋回させる関節機構AR3との間に設けられた伸縮機構TE1により、リンクLK1を伸縮することができる。また、本実施形態では、関節機構AR3とリンクLK3を旋回させる関節機構AR5との間に設けられた伸縮機構TE2及び関節機構AR4により、リンクLK2を伸縮すること、及び、可動部分LK23を回転させることができる。本実施形態では、伸縮機構TE1及びTE2により、ロボット10の先端部(例えば、リンクLK3の端面LK3sf)が到達可能な領域を広くすることができ、ロボット10に取り付けられるエンドエフェクタ20が到達可能な領域を広くすることができる。 Furthermore, in this embodiment, the link LK1 can be expanded and contracted by the expansion and contraction mechanism TE1 provided between the joint mechanism AR2 that rotates the link LK1 and the joint mechanism AR3 that rotates the link LK2. In addition, in this embodiment, the link LK2 is extended and contracted and the movable portion LK23 is rotated by the extension mechanism TE2 and the joint mechanism AR4 provided between the joint mechanism AR3 and the joint mechanism AR5 that rotates the link LK3. be able to. In the present embodiment, the telescopic mechanisms TE1 and TE2 can widen the reachable area of the robot 10's tip (for example, the end face LK3sf of the link LK3), and the end effector 20 attached to the robot 10 can reach. The area can be expanded.
 なお、ロボットシステム1の構成は、図1に示す例に限定されない。例えば、ロボットコントローラ30は、ロボット10に内蔵されてもよい。また、図1では、ロボット10が床等の所定の場所に固定される場合を想定したが、ロボット10は、所定の場所に固定されずに、ロボット10自体が移動可能であってもよい。また、関節機構AR1は、ボディ部BDPに含まれてもよい。この場合、ボディ部BDPの全体が、軸Ax1を回転軸として回転してもよいし、ボディ部BDPの一部(例えば、関節機構AR2と接続される部分を部分)が、軸Ax1を回転軸として回転してもよい。あるいは、ボディ部BDPは土台部BSPに回転しないように固定され、関節機構AR2が、軸Ax1を回転軸として回転してもよい。また、リンクLK2と「先端部」であるリンクLK3は、必ずしも、「第2駆動機構」である関節機構AR5を介して接続されている必要はない。例えば、関節機構AR5とリンクLK3との間に、リンクLK1及びリンクLK2とは異なるリンクが配置されてもよい。 Note that the configuration of the robot system 1 is not limited to the example shown in FIG. 1. For example, the robot controller 30 may be built into the robot 10. Furthermore, although FIG. 1 assumes that the robot 10 is fixed to a predetermined location such as the floor, the robot 10 itself may be movable without being fixed to a predetermined location. Moreover, the joint mechanism AR1 may be included in the body part BDP. In this case, the entire body part BDP may rotate with the axis Ax1 as the rotation axis, or a part of the body part BDP (for example, a part connected to the joint mechanism AR2) may rotate with the axis Ax1 as the rotation axis. It may be rotated as Alternatively, the body part BDP may be fixed to the base part BSP so as not to rotate, and the joint mechanism AR2 may rotate about the axis Ax1. Further, the link LK2 and the link LK3, which is the "tip part", do not necessarily need to be connected via the joint mechanism AR5, which is the "second drive mechanism." For example, a link different from link LK1 and link LK2 may be arranged between joint mechanism AR5 and link LK3.
 次に、図2を参照しながら、関節機構AR4及び伸縮機構TE2を含むリンクLK2の一例について説明する。 Next, with reference to FIG. 2, an example of the link LK2 including the joint mechanism AR4 and the telescopic mechanism TE2 will be described.
 図2は、関節機構AR4及び伸縮機構TE2を含むリンクLK2の一例を説明するための説明図である。図2の上段は、収縮している状態のリンクLK2を示し、図2の下段は、伸長している状態のリンクLK2を示している。また、図2では、説明を分かり易くするために、リンクLK2の伸縮方向を示す方向Dm2を、符号の末尾に“p”又は“m”を付して、区別して図示している。方向Dm2mは、リンクLK2が収縮する方向を示し、方向Dm2pは、方向Dm2mの反対方向であり、リンクLK2が伸長する方向を示す。なお、図2以降において、方向Dm2m及びDm2pを、特に区別することなく、方向Dm2と称する場合がある。 FIG. 2 is an explanatory diagram for explaining an example of the link LK2 including the joint mechanism AR4 and the telescopic mechanism TE2. The upper part of FIG. 2 shows the link LK2 in a contracted state, and the lower part of FIG. 2 shows the link LK2 in an extended state. In addition, in FIG. 2, in order to make the explanation easier to understand, the direction Dm2 indicating the expansion/contraction direction of the link LK2 is shown to be distinguished by adding "p" or "m" to the end of the reference numeral. The direction Dm2m indicates the direction in which the link LK2 contracts, and the direction Dm2p is the opposite direction to the direction Dm2m and indicates the direction in which the link LK2 extends. Note that in FIG. 2 and subsequent figures, directions Dm2m and Dm2p may be referred to as direction Dm2 without particular distinction.
 リンクLK2は、図1において説明したように、支持部分LK21と、可動部分LK22及びLK23と、伸縮機構TE2と、関節機構AR4と、モータMOa4と、モータMOt2とを含む。支持部分LK21は、中空である。支持部分LK21の内部には、伸縮機構TE2が設けられる。 As explained in FIG. 1, the link LK2 includes the support portion LK21, the movable portions LK22 and LK23, the telescopic mechanism TE2, the joint mechanism AR4, the motor MOa4, and the motor MOt2. Support portion LK21 is hollow. A telescopic mechanism TE2 is provided inside the support portion LK21.
 伸縮機構TE2は、例えば、可動部分LK22の2つの端部のうちの可動部分LK23から遠い端部に固定されたナットTE21と、方向De21に沿って延在し、ナットTE21に挿通されるボールねじTE22とを含む。ボールねじTE22は、伸縮機構TE2を駆動するモータMOt2に取り付けられている。そして、ボールねじTE22は、モータMOt2の回転に伴い、軸Axte2を回転軸として回転する。軸Axte2は、例えば、ボールねじTE22の中心軸である。ナットTE21は、ボールねじTE22の回転に伴い、軸Axte2に沿って移動する。ナットTE21が可動部分LK22に固定されているため、可動部分LK22は、ナットTE21の移動に伴い、軸Axte2(すなわち、方向De21)に沿って移動する。このように、ボールねじTE22は、可動部分LK22を移動可能に支持する。 The telescopic mechanism TE2 includes, for example, a nut TE21 fixed to the end farthest from the movable part LK23 of the two ends of the movable part LK22, and a ball screw extending along the direction De21 and inserted into the nut TE21. TE22. The ball screw TE22 is attached to a motor MOt2 that drives the telescopic mechanism TE2. The ball screw TE22 rotates about the axis Axte2 as the motor MOt2 rotates. The axis Axte2 is, for example, the central axis of the ball screw TE22. The nut TE21 moves along the axis Axte2 as the ball screw TE22 rotates. Since the nut TE21 is fixed to the movable portion LK22, the movable portion LK22 moves along the axis Axte2 (ie, the direction De21) as the nut TE21 moves. In this way, the ball screw TE22 movably supports the movable portion LK22.
 なお、可動部分LK22は、ボールねじTE22を格納可能に構成される。また、例えば、可動部分LK22の中心軸は、ボールねじTE22の中心軸、すなわち、軸Axte2と同じ軸である。また、可動部分LK22は、ボールねじTE22が回転した場合でも、軸Axte2を回転軸として回転しないように、支持部分LK21に接続される。これにより、可動部分LK22に固定されたナットTE21が、上述したように、ボールねじTE22の回転に伴い、軸Axte2に沿って移動する。 Note that the movable part LK22 is configured to be able to store the ball screw TE22. Further, for example, the central axis of the movable portion LK22 is the same as the central axis of the ball screw TE22, that is, the axis Axte2. Further, the movable portion LK22 is connected to the support portion LK21 so as not to rotate about the axis Axte2 even when the ball screw TE22 rotates. As a result, the nut TE21 fixed to the movable portion LK22 moves along the axis Axte2 as the ball screw TE22 rotates, as described above.
 モータMOt2の回転方向を切り替えることにより、ナットTE21の移動方向、すなわち、可動部分LK22の移動方向が、方向Dm2pと方向Dm2mとの間で切り替わる。例えば、モータMOt2の回転が第1の回転方向の回転である場合、ナットTE21は、方向Dm2pに移動し、モータMOt2の回転が第1の回転方向の回転に対して逆回転となる第2の回転方向の回転である場合、ナットTE21は、方向Dm2mに移動する。 By switching the rotational direction of the motor MOt2, the moving direction of the nut TE21, that is, the moving direction of the movable portion LK22, is switched between the direction Dm2p and the direction Dm2m. For example, when the motor MOt2 rotates in the first rotational direction, the nut TE21 moves in the direction Dm2p, and the motor MOt2 rotates in the second rotational direction in the opposite direction to the first rotational direction. In the case of rotation in the rotational direction, the nut TE21 moves in the direction Dm2m.
 例えば、可動部分LK22が支持部分LK21の内部に格納された状態において、ロボットコントローラ30がモータMOt2を第1の回転方向に回転させた場合、ナットTE21の移動に伴い、可動部分LK22は、支持部分LK21から徐々に突出する。これにより、リンクLK2は、方向Dm2pに伸長する。図2に示す例では、リンクLK2は、最大で、可動部分LK22の長さとほぼ同じ長さだけ伸長する。また、可動部分LK22が支持部分LK21から突出している状態において、ロボットコントローラ30がモータMOt2を第2の回転方向に回転させた場合、ナットTE21の移動に伴い、可動部分LK22は、支持部分LK21の内部に徐々に格納される。これにより、リンクLK2は、方向Dm2mに収縮する。このように、リンクLK2が収縮した場合、可動部分LK22の少なくとも一部が支持部分LK21の内部に格納される。 For example, when the robot controller 30 rotates the motor MOt2 in the first rotation direction in a state where the movable part LK22 is stored inside the support part LK21, as the nut TE21 moves, the movable part LK22 moves into the support part LK21. It gradually protrudes from LK21. As a result, link LK2 extends in direction Dm2p. In the example shown in FIG. 2, the link LK2 extends at most by a length approximately equal to the length of the movable part LK22. Further, when the robot controller 30 rotates the motor MOt2 in the second rotation direction in a state where the movable part LK22 protrudes from the support part LK21, the movable part LK22 moves from the support part LK21 as the nut TE21 moves. It is gradually stored inside. As a result, link LK2 contracts in direction Dm2m. In this manner, when link LK2 contracts, at least a portion of movable portion LK22 is stored inside support portion LK21.
 関節機構AR4は、例えば、可動部分LK22の2つの端部のうちの可動部分LK23に近い端部(すなわち、可動部分LK22と可動部分LK23との境界付近)に取り付けられる。例えば、関節機構AR4は、ステーAR41と、モータMOa4の回転が伝達される伝達軸AR42と、プーリAR43及びAR44と、タイミングベルトAR45と、プーリAR44の回転が伝達される伝達軸AR46と、ギアAR47とを有する。 The joint mechanism AR4 is attached to, for example, one of the two ends of the movable portion LK22 that is closer to the movable portion LK23 (that is, near the boundary between the movable portion LK22 and the movable portion LK23). For example, the joint mechanism AR4 includes a stay AR41, a transmission shaft AR42 to which the rotation of the motor MOa4 is transmitted, pulleys AR43 and AR44, a timing belt AR45, a transmission shaft AR46 to which the rotation of the pulley AR44 is transmitted, and a gear AR47. and has.
 ステーAR41は、可動部分LK22の2つの端部のうちの可動部分LK23に近い端部に、可動部分LK22から張り出すように取り付けられている。ステーAR41のうち、可動部分LK22から張り出した部分には、モータMOa4が取り付けられる。すなわち、モータMOa4は、可動部分LK22が方向Dm2p又はDm2mに移動した場合に可動部分LK22と一緒に移動するように、可動部分LK22にステーAR41を介して取り付けられる。 The stay AR41 is attached to one of the two ends of the movable part LK22, which is closer to the movable part LK23, so as to protrude from the movable part LK22. A motor MOa4 is attached to a portion of the stay AR41 that protrudes from the movable portion LK22. That is, the motor MOa4 is attached to the movable part LK22 via the stay AR41 so that it moves together with the movable part LK22 when the movable part LK22 moves in the direction Dm2p or Dm2m.
 また、ステーAR41には、プーリAR43及びAR44が並列に設けられている。例えば、プーリAR43は、伝達軸AR42に取り付けられる。また、プーリAR44は、方向De2からの平面視において、全体が可動部分LK23と重なるように、配置される。タイミングベルトAR45は、プーリAR43の回転がプーリAR44に伝達されるように、プーリAR43とプーリAR44とを連結する。プーリAR44には、伝達軸AR46が取り付けられている。例えば、伝達軸AR46の中心軸は、軸Ax4に対応する。伝達軸AR46は、ギアAR47を介して可動部分LK23と連結している。 Furthermore, pulleys AR43 and AR44 are provided in parallel on the stay AR41. For example, pulley AR43 is attached to transmission shaft AR42. Further, the pulley AR44 is arranged so that the entire pulley AR44 overlaps the movable portion LK23 when viewed in plan from the direction De2. Timing belt AR45 connects pulley AR43 and pulley AR44 so that rotation of pulley AR43 is transmitted to pulley AR44. A transmission shaft AR46 is attached to the pulley AR44. For example, the central axis of the transmission shaft AR46 corresponds to the axis Ax4. The transmission shaft AR46 is connected to the movable part LK23 via a gear AR47.
 これにより、例えば、モータMOa4が回転した場合、伝達軸AR42、プーリAR43、タイミングベルトAR45、プーリAR44、伝達軸AR46、及び、ギアAR47を介して、可動部分LK23にモータMOa4の回転が伝達される。この結果、可動部分LK23は、軸Ax4を回転軸として回転する。なお、ステーAR41は、可動部分LK22に取り付けられており、可動部分LK23は可動部分LK22に対して回転可能に取り付けられている。このため、可動部分LK23が軸Ax4を回転軸として回転した場合でも、モータMOa4及びステーAR41が軸Ax4を回転軸として回転することはない。また、関節機構AR4及びモータMOa4は、可動部分LK22が方向Dm2p又はDm2mに移動した場合、可動部分LK22と一緒に移動する。 Thus, for example, when the motor MOa4 rotates, the rotation of the motor MOa4 is transmitted to the movable part LK23 via the transmission shaft AR42, pulley AR43, timing belt AR45, pulley AR44, transmission shaft AR46, and gear AR47. . As a result, the movable portion LK23 rotates about the axis Ax4. Note that the stay AR41 is attached to the movable portion LK22, and the movable portion LK23 is rotatably attached to the movable portion LK22. Therefore, even if the movable part LK23 rotates about the axis Ax4, the motor MOa4 and stay AR41 do not rotate about the axis Ax4. Further, the joint mechanism AR4 and the motor MOa4 move together with the movable portion LK22 when the movable portion LK22 moves in the direction Dm2p or Dm2m.
 ここで、例えば、関節機構AR4による回転動作では、関節機構AR2、AR3又はAR5による旋回動作に比べて、駆動源であるモータMOa4の出力位置と実際に回転する可動部分LK23との軸Ax4に沿う距離が、回転精度に与える影響が大きくなる。なお、軸Ax4に沿う距離は、可動部分LK23が回転する際の回転軸に沿う距離である。モータMOa4の出力位置と可動部分LK23との軸Ax4に沿う距離が長い場合、モータMOa4の出力位置と可動部分LK23との軸Ax4に沿う距離が短い場合に比べて、回転時のリンクLK2のたわみ等による軸Ax4(回転軸)に対する偏心が大きくなる。また、可動部分LK23が軸Axte2に沿って移動している最中、又は、リンクLK2が旋回している最中に、モータMOa4の出力位置と可動部分LK23との軸Ax4に沿う距離が変化した場合、軸Ax4に対する偏心等が大きくなる。 Here, for example, in the rotating motion by the joint mechanism AR4, compared to the turning motion by the joint mechanisms AR2, AR3, or AR5, the output position of the motor MOa4, which is the drive source, and the movable part LK23 that actually rotates along the axis Ax4. Distance has a greater influence on rotation accuracy. Note that the distance along the axis Ax4 is the distance along the rotation axis when the movable portion LK23 rotates. When the distance between the output position of the motor MOa4 and the movable part LK23 along the axis Ax4 is long, the deflection of the link LK2 during rotation is greater than when the distance between the output position of the motor MOa4 and the movable part LK23 along the axis Ax4 is short. etc., the eccentricity with respect to the axis Ax4 (rotation axis) increases. Furthermore, while the movable part LK23 is moving along the axis Axte2 or while the link LK2 is turning, the distance between the output position of the motor MOa4 and the movable part LK23 along the axis Ax4 changes. In this case, the eccentricity with respect to the axis Ax4 becomes large.
 本実施形態では、上述したように、関節機構AR4及びモータMOa4は、可動部分LK22が方向Dm2p又はDm2mに移動した場合、可動部分LK22と一緒に移動する。このため、本実施形態では、伸縮機構TE2により伸縮動作が行われた場合においても、可動部分LK23に対するモータMOa4の相対的な位置は、変化しない。この結果、本実施形態では、可動部分LK23が軸Axte2に沿って移動している最中、又は、リンクLK2が旋回している最中であっても、偏芯の大きさを小さくすることができ、軸Ax4を回転軸として可動部分LK23を安定して回転させることができる。なお、本実施形態では、モータMOa4はステーAR41を介して可動部分LK22に取り付けられているため、可動部分LK23が軸Ax4を回転軸として回転した場合でも、モータMOa4自体は軸Ax4の周りを回転(公転)しない。そのため、回転(公転)に伴う外乱が発生することはない。 In this embodiment, as described above, the joint mechanism AR4 and the motor MOa4 move together with the movable portion LK22 when the movable portion LK22 moves in the direction Dm2p or Dm2m. Therefore, in this embodiment, even when the telescoping mechanism TE2 performs a telescoping operation, the relative position of the motor MOa4 with respect to the movable portion LK23 does not change. As a result, in this embodiment, it is possible to reduce the eccentricity even while the movable part LK23 is moving along the axis Axte2 or while the link LK2 is rotating. Therefore, the movable portion LK23 can be stably rotated using the axis Ax4 as the rotation axis. In this embodiment, the motor MOa4 is attached to the movable part LK22 via the stay AR41, so even if the movable part LK23 rotates about the axis Ax4, the motor MOa4 itself rotates around the axis Ax4. (revolution) not. Therefore, no disturbance occurs due to rotation (revolution).
 また、本実施形態では、関節機構AR4により可動部分LK23が回転する場合の可動部分LK23の回転軸は、可動部分LK22の中心軸と平行である。例えば、リンクLK2は、可動部分LK22が移動する際の軸Axte2(ボールねじTE22の中心軸及び可動部分LK22の中心軸)が、可動部分LK23が回転する際の軸Ax4と同じ軸又はほぼ同じ軸になるように、構成されている。これにより、本実施形態では、可動部分LK23が軸Ax4を回転軸として回転している最中に、可動部分LK22を軸Axte2に沿って移動させた場合でも、リンクLK2全体のたわみ及び偏心等を抑制することができる。この結果、本実施形態では、ロボット10を精度よく制御することができる。また、本実施形態では、可動部分LK23の重心が、可動部分LK23が回転する際の軸Ax4上に位置するように、リンクLK2を構成することが好ましい。この場合、可動部分LK23が軸Ax4を回転軸として回転する際に生ずる慣性を小さくすることができ、リンクLK2全体のたわみ及び偏心等をさらに抑制することができる。 Furthermore, in the present embodiment, when the movable portion LK23 is rotated by the joint mechanism AR4, the rotation axis of the movable portion LK23 is parallel to the central axis of the movable portion LK22. For example, in the link LK2, the axis Axte2 (the central axis of the ball screw TE22 and the central axis of the movable part LK22) when the movable part LK22 moves is the same axis or almost the same axis as the axis Ax4 when the movable part LK23 rotates. It is configured so that As a result, in this embodiment, even if the movable part LK22 is moved along the axis Axte2 while the movable part LK23 is rotating about the axis Ax4, the deflection and eccentricity of the entire link LK2 can be prevented. Can be suppressed. As a result, in this embodiment, the robot 10 can be controlled with high precision. Further, in the present embodiment, it is preferable that the link LK2 is configured such that the center of gravity of the movable portion LK23 is located on the axis Ax4 when the movable portion LK23 rotates. In this case, the inertia that occurs when the movable portion LK23 rotates about the axis Ax4 can be reduced, and the deflection, eccentricity, etc. of the entire link LK2 can be further suppressed.
 また、本実施形態では、リンクLK2の伸縮は、支持部分LK21に対して可動部分LK22が軸Axte2に沿って移動することにより実現され、リンクLK2の回転は、可動部分LK23が軸Ax4を回転軸として回転することにより実現される。このように、本実施形態では、リンクLK2の伸縮及び回転を行う際の制御対象が可動部分LK22と可動部分LK23とに分離されているため、リンクLK2を動かすためのモータMOt2及びMOa4の制御が煩雑になることを抑制することができる。 Further, in this embodiment, the expansion and contraction of the link LK2 is realized by moving the movable part LK22 along the axis Axte2 with respect to the supporting part LK21, and the rotation of the link LK2 is realized by moving the movable part LK23 around the axis Ax4 as the rotation axis. This is achieved by rotating as . In this way, in the present embodiment, the objects to be controlled when extending, contracting and rotating the link LK2 are separated into the movable portion LK22 and the movable portion LK23, so that the control of the motors MOt2 and MOa4 for moving the link LK2 is controlled. Complications can be suppressed.
 また、本実施形態では、可動部分LK23の方向De2に沿う長さ(長手方向の長さ)をある程度長く(例えば、可動部分LK23の径よりも長く)することにより、可動部分LK23の重量を大きくしている。これにより、本実施形態では、可動部分LK23の固有振動周波数を小さくすることができる。この結果、本実施形態では、リンクLK3に取り付けられたエンドエフェクタ20による作業の最中に発生する振動を吸収することができ、リンクLK3及びエンドエフェクタ20の振動を抑制することができる。また、本実施形態では、可動部分LK23の固有振動周波数が小さいため、ロボット10のうちの関節機構AR5から土台部BSPまでの部分における振動がリンクLK3及びエンドエフェクタ20に伝搬することを抑制することができる。特に、リンクLK1及びLK2を伸縮中又は伸長した状態でのリンクLK3及びエンドエフェクタ20の動作精度が重要になるロボットシステム1では、可動部分LK23の方向De2に沿う長さ及び可動部分LK23の重量をある程度大きくすることが重要である。 Furthermore, in this embodiment, the weight of the movable portion LK23 is increased by increasing the length (longitudinal length) of the movable portion LK23 along the direction De2 to a certain extent (for example, longer than the diameter of the movable portion LK23). are doing. Thereby, in this embodiment, the natural vibration frequency of the movable portion LK23 can be reduced. As a result, in this embodiment, vibrations generated during work by the end effector 20 attached to the link LK3 can be absorbed, and vibrations of the link LK3 and the end effector 20 can be suppressed. Furthermore, in the present embodiment, since the natural vibration frequency of the movable portion LK23 is small, vibrations in the portion of the robot 10 from the joint mechanism AR5 to the base portion BSP are suppressed from propagating to the link LK3 and the end effector 20. I can do it. In particular, in the robot system 1 in which the operational accuracy of the link LK3 and the end effector 20 is important when the links LK1 and LK2 are being extended, contracted or extended, the length of the movable part LK23 in the direction De2 and the weight of the movable part LK23 are It is important to increase the size to some extent.
 なお、リンクLK2の構成は、図2に示す例に限定されない。例えば、リンクLK2が収縮した場合に、可動部分LK22の少なくとも一部は、可動部分LK23に格納されてもよい。あるいは、リンクLK2が収縮した場合、可動部分LK22の一部が支持部分LK21に格納され、可動部分LK22の他の一部が可動部分LK23に格納されてもよい。また、例えば、リンクLK2が最大限に収縮した場合に、可動部分LK22の一部が支持部分LK21の内部に格納されずに、支持部分LK21から露出していてもよい。また、可動部分LK22は、可動部分LK23と一体に構成されてもよい。また、支持部分LK21と可動部分LK22とが一体に構成され、一体に構成された支持部分LK21及び可動部分LK22に対して可動部分LK23を相対的に移動させる伸縮機構が伸縮機構TE2としてリンクLK2に設けられてもよい。 Note that the configuration of link LK2 is not limited to the example shown in FIG. 2. For example, when link LK2 contracts, at least a portion of movable portion LK22 may be stored in movable portion LK23. Alternatively, when the link LK2 contracts, a part of the movable part LK22 may be stored in the support part LK21, and another part of the movable part LK22 may be stored in the movable part LK23. Further, for example, when the link LK2 is contracted to the maximum extent, a part of the movable portion LK22 may not be stored inside the support portion LK21 but may be exposed from the support portion LK21. Furthermore, the movable portion LK22 may be configured integrally with the movable portion LK23. Further, the support portion LK21 and the movable portion LK22 are integrally constructed, and a telescoping mechanism for moving the movable portion LK23 relative to the integrally constructed support portion LK21 and movable portion LK22 is attached to the link LK2 as a telescoping mechanism TE2. may be provided.
 次に、図3を参照しながら、伸縮機構TE1を含むリンクLK1の一例について説明する。 Next, an example of the link LK1 including the telescoping mechanism TE1 will be described with reference to FIG. 3.
 図3は、伸縮機構TE1を含むリンクLK1の一例を説明するための説明図である。図3の上段は、収縮している状態のリンクLK1を示し、図3の下段は、伸長している状態のリンクLK1を示している。また、図3では、図2と同様に、説明を分かり易くするために、リンクLK1の伸縮方向を示す方向Dm1を、符号の末尾に“p”又は“m”を付して、区別して図示している。方向Dm1mは、リンクLK1が収縮する方向を示し、方向Dm1pは、方向Dm1mの反対方向であり、リンクLK1が伸長する方向を示す。 FIG. 3 is an explanatory diagram for explaining an example of the link LK1 including the telescoping mechanism TE1. The upper part of FIG. 3 shows the link LK1 in a contracted state, and the lower part in FIG. 3 shows the link LK1 in an expanded state. In addition, in FIG. 3, in order to make the explanation easier to understand, in FIG. It shows. The direction Dm1m indicates the direction in which the link LK1 contracts, and the direction Dm1p is the opposite direction to the direction Dm1m and indicates the direction in which the link LK1 extends.
 リンクLK1は、図1において説明したように、支持部分LK11と、可動部分LK12及びLK13と、伸縮機構TE1と、モータMOt1とを含む。支持部分LK11は、中空である。支持部分LK11の内部には、伸縮機構TE1が設けられる。 As explained in FIG. 1, the link LK1 includes the support portion LK11, the movable portions LK12 and LK13, the telescoping mechanism TE1, and the motor MOt1. Support portion LK11 is hollow. A telescoping mechanism TE1 is provided inside the support portion LK11.
 伸縮機構TE1は、例えば、可動部分LK12の2つの端部のうちの可動部分LK13から遠い端部に固定されたナットTE11と、方向De11に沿って延在し、ナットTE11に挿通されるボールねじTE12とを含む。ボールねじTE12は、伸縮機構TE1を駆動するモータMOt1に取り付けられている。そして、ボールねじTE12は、モータMOt1の回転に伴い、軸Axte1を回転軸として回転する。軸Axte1は、例えば、ボールねじTE12の中心軸である。 The telescopic mechanism TE1 includes, for example, a nut TE11 fixed to the end farthest from the movable part LK13 of the two ends of the movable part LK12, and a ball screw extending along the direction De11 and inserted into the nut TE11. TE12. The ball screw TE12 is attached to a motor MOt1 that drives the telescopic mechanism TE1. The ball screw TE12 rotates about the axis Axte1 as the motor MOt1 rotates. The axis Axte1 is, for example, the central axis of the ball screw TE12.
 ここで、可動部分LK12は、ボールねじTE12が回転した場合でも、軸Axte1を回転軸として回転しないように、支持部分LK11に接続される。これにより、可動部分LK12に固定されたナットTE11は、ボールねじTE12の回転に伴い、軸Axte1に沿って移動する。また、ナットTE11が可動部分LK12に固定されているため、可動部分LK12は、ナットTE11の移動に伴い、軸Axte1(すなわち、方向De11)に沿って移動する。このように、ボールねじTE12は、可動部分LK12を移動可能に支持する。なお、可動部分LK12は、ボールねじTE12を格納可能に構成される。 Here, the movable portion LK12 is connected to the support portion LK11 so as not to rotate about the axis Axte1 even when the ball screw TE12 rotates. Thereby, the nut TE11 fixed to the movable portion LK12 moves along the axis Axte1 as the ball screw TE12 rotates. Furthermore, since the nut TE11 is fixed to the movable portion LK12, the movable portion LK12 moves along the axis Axte1 (that is, the direction De11) as the nut TE11 moves. In this way, the ball screw TE12 movably supports the movable portion LK12. Note that the movable portion LK12 is configured to be able to store the ball screw TE12.
 モータMOt1の回転方向を切り替えることにより、ナットTE11の移動方向、すなわち、可動部分LK12の移動方向が、方向Dm1pと方向Dm1mとの間で切り替わる。例えば、モータMOt1の回転が第1の回転方向の回転である場合、ナットTE11は、方向Dm1pに移動し、モータMOt1の回転が第1の回転方向の回転に対して逆回転となる第2の回転方向の回転である場合、ナットTE11は、方向Dm1mに移動する。 By switching the rotational direction of the motor MOt1, the moving direction of the nut TE11, that is, the moving direction of the movable portion LK12, is switched between the direction Dm1p and the direction Dm1m. For example, when the motor MOt1 rotates in the first rotational direction, the nut TE11 moves in the direction Dm1p, and the motor MOt1 rotates in the second rotational direction in the opposite direction to the first rotational direction. In the case of rotation in the rotational direction, the nut TE11 moves in the direction Dm1m.
 例えば、可動部分LK12が支持部分LK11の内部に格納された状態において、ロボットコントローラ30がモータMOt1を第1の回転方向に回転させた場合、ナットTE11の移動に伴い、可動部分LK12は、支持部分LK11から徐々に突出する。これにより、リンクLK1は、方向Dm1pに伸長する。図3に示す例では、リンクLK1は、最大で、可動部分LK12の長さとほぼ同じ長さだけ伸長する。また、可動部分LK12が支持部分LK11から突出している状態において、ロボットコントローラ30がモータMOt1を第2の回転方向に回転させた場合、ナットTE11の移動に伴い、可動部分LK12は、支持部分LK11の内部に徐々に格納される。これにより、リンクLK1は、方向Dm1mに収縮する。このように、リンクLK1が収縮した場合、可動部分LK12の少なくとも一部が支持部分LK11の内部に格納される。 For example, when the robot controller 30 rotates the motor MOt1 in the first rotation direction in a state where the movable part LK12 is stored inside the support part LK11, as the nut TE11 moves, the movable part LK12 moves into the support part LK11. It gradually protrudes from LK11. As a result, link LK1 extends in direction Dm1p. In the example shown in FIG. 3, the link LK1 extends at most by a length approximately equal to the length of the movable portion LK12. Further, when the robot controller 30 rotates the motor MOt1 in the second rotation direction in a state where the movable part LK12 protrudes from the support part LK11, as the nut TE11 moves, the movable part LK12 protrudes from the support part LK11. It is gradually stored inside. As a result, the link LK1 contracts in the direction Dm1m. In this way, when link LK1 contracts, at least a portion of movable portion LK12 is stored inside support portion LK11.
 なお、リンクLK1の構成は、図3に示す例に限定されない。例えば、リンクLK1が収縮した場合に、可動部分LK12の少なくとも一部は、可動部分LK13に格納されてもよい。あるいは、リンクLK1が収縮した場合、可動部分LK12の一部が支持部分LK11に格納され、可動部分LK12の他の一部が可動部分LK13に格納されてもよい。また、例えば、リンクLK1が最大限に収縮した場合に、可動部分LK12の一部が支持部分LK11の内部に格納されずに、支持部分LK11から露出していてもよい。また、可動部分LK12は、可動部分LK13と一体に構成されてもよい。また、支持部分LK11と可動部分LK12とが一体に構成され、一体に構成された支持部分LK11及び可動部分LK12に対して可動部分LK13を相対的に移動させる伸縮機構が伸縮機構TE1としてリンクLK1に設けられてもよい。 Note that the configuration of link LK1 is not limited to the example shown in FIG. 3. For example, when link LK1 contracts, at least a portion of movable portion LK12 may be stored in movable portion LK13. Alternatively, when the link LK1 contracts, a part of the movable part LK12 may be stored in the support part LK11, and another part of the movable part LK12 may be stored in the movable part LK13. Further, for example, when the link LK1 is contracted to the maximum, a part of the movable portion LK12 may not be stored inside the support portion LK11 but may be exposed from the support portion LK11. Furthermore, the movable portion LK12 may be configured integrally with the movable portion LK13. Further, the support portion LK11 and the movable portion LK12 are integrally constructed, and a telescoping mechanism for moving the movable portion LK13 relative to the integrally constructed support portion LK11 and movable portion LK12 is attached to the link LK1 as a telescoping mechanism TE1. may be provided.
 また、例えば、可動部分LK12は、モータMOt1、ナットTE11及びボールねじTE12の構造を工夫することにより、支持部分LK11の外周を覆うように構成されてもよい。この構成では、リンクLK1が収縮した場合、支持部分LK11の少なくとも一部が、可動部分LK12に格納されてもよい。また、伸縮機構TE1は、リンクLK1を伸縮できれば、図3に示す構成に限定されない。 Furthermore, for example, the movable portion LK12 may be configured to cover the outer periphery of the support portion LK11 by devising the structure of the motor MOt1, the nut TE11, and the ball screw TE12. In this configuration, at least a portion of the support portion LK11 may be stored in the movable portion LK12 when the link LK1 is retracted. Further, the expansion/contraction mechanism TE1 is not limited to the configuration shown in FIG. 3 as long as the link LK1 can be expanded/contracted.
 次に、図4を参照しながら、ロボット10の利点について説明する。 Next, the advantages of the robot 10 will be explained with reference to FIG. 4.
 図4は、図1に示したロボット10の利点を説明するための説明図である。なお、図4では、ロボット10と対比される形態として、伸縮機構TE1及びTE2がロボット10から省かれたロボット10Z(垂直6軸多関節ロボット)が点線で示されている。図4では、棚RKに配置された物品GDに対する作業を例にして、ロボット10の利点を説明する。先ず、ロボット10と対比されるロボット10Zについて説明する。 FIG. 4 is an explanatory diagram for explaining the advantages of the robot 10 shown in FIG. 1. In FIG. 4, a robot 10Z (vertical 6-axis multi-joint robot) in which the telescoping mechanisms TE1 and TE2 are omitted from the robot 10 is shown in dotted lines as a form to be contrasted with the robot 10. In FIG. 4, the advantages of the robot 10 will be explained using an example of work on articles GD placed on a shelf RK. First, a robot 10Z, which is compared to the robot 10, will be explained.
 対比例のロボット10Zは、リンクLK1及びLK2の代わりにリンクLK1z及びLK2zを有することを除いて、ロボット10と同様である。リンクLK1z及びLK2zは、所定の長さで固定され、伸縮しない。図4に示す例では、リンクLK1zの長さは、リンクLK1を最大限に収縮した場合のリンクLK1の長さとほぼ同じ長さであり、リンクLK2zの長さは、リンクLK2を最大限に伸長した場合のリンクLK2の長さとほぼ同じ長さである。なお、リンクLK1zの長さは、リンクLK1を最大限に伸長した場合のリンクLK1の長さとほぼ同じ長さであってもよい。 The robot 10Z of the comparative example is the same as the robot 10 except that it has links LK1z and LK2z instead of links LK1 and LK2. Links LK1z and LK2z are fixed at predetermined lengths and do not expand or contract. In the example shown in FIG. 4, the length of link LK1z is approximately the same length as link LK1 when link LK1 is contracted to the maximum, and the length of link LK2z is the length when link LK2 is expanded to the maximum. The length is approximately the same as the length of link LK2 in the case of Note that the length of the link LK1z may be approximately the same length as the length of the link LK1 when the link LK1 is expanded to the maximum extent.
 リンクLK1z及びLK2zを伸縮可能とせずに、リンクLK1z及びLK2zの一方又は両方を単純に長くしたロボット10Zでは、ロボット10Z自体が大型化する。このため、ロボット10Zが用いられる場合、ロボット10Zを設置するスペース、又は、ロボット10Zが移動するスペースを、ロボット10が用いられる場合に比べて、大きくする必要がある。従って、リンクLK1z及びLK2zを伸縮できない形態(例えば、ロボット10Z)では、大型のロボットを設置するスペースを確保できない場合、ロボットの先端部が到達可能な領域を広くすることが困難である。 In the robot 10Z in which one or both of the links LK1z and LK2z are simply made longer without making the links LK1z and LK2z extensible, the robot 10Z itself becomes larger. Therefore, when the robot 10Z is used, the space in which the robot 10Z is installed or the space in which the robot 10Z moves needs to be larger than when the robot 10 is used. Therefore, in a configuration in which the links LK1z and LK2z cannot be extended or contracted (for example, robot 10Z), it is difficult to widen the area that the tip of the robot can reach if space for installing a large robot cannot be secured.
 また、ロボット10Zでは、例えば、棚RKの奥に配置された物品GDを棚RKの奥から前方に取り出す場合、リンクLK1z及びLK2zを旋回させて、リンクLK3及びエンドエフェクタ20を直線的に動かす必要がある。このため、ロボット10Zでは、リンクLK3の可動スペース以外に、リンクLK1z及びLK2zの可動スペースが必要となる。従って、ロボット10Zでは、物品GDの周辺(特に前上方)に他の物品GDや棚RKの枠FRM等がある場合、他の物品GDや棚RKの枠FRM等が障害物となりロボット10Zの動作と干渉するため、ロボット10Zによる所望の作業ができないおそれがある。 Further, in the robot 10Z, for example, when taking out an article GD placed at the back of the shelf RK from the back to the front, it is necessary to rotate the links LK1z and LK2z and move the link LK3 and the end effector 20 linearly. There is. Therefore, the robot 10Z requires movable spaces for the links LK1z and LK2z in addition to the movable space for the link LK3. Therefore, in the robot 10Z, if there are other articles GD, the frame FRM of the shelf RK, etc. around the article GD (especially in the upper front), the other articles GD, the frame FRM of the shelf RK, etc. become obstacles and the movement of the robot 10Z is hindered. Therefore, there is a possibility that the robot 10Z may not be able to perform the desired work.
 これに対し、本実施形態では、上述したように、リンクLK2が伸縮するため、ロボット10の全体が大きくなることを抑制しつつ、ロボット10の先端部(例えば、リンクLK3)が到達可能な領域を広くすることができる。これにより、本実施形態では、ロボット10Zを設置するためのスペースを確保できない狭い場所にも、ロボット10を設置することができる。この結果、本実施形態では、ロボット10は、狭い場所においても、リンクLK2を伸縮することにより、ロボット10に近い場所に配置された物品に対する作業、及び、ロボット10から遠い場所に配置された物品に対する作業の両方を効率よく行うことができる。 On the other hand, in the present embodiment, as described above, the link LK2 expands and contracts, so the area that the tip of the robot 10 (for example, the link LK3) can reach while suppressing the overall size of the robot 10 is suppressed. can be made wider. Thereby, in this embodiment, the robot 10 can be installed even in a narrow place where space for installing the robot 10Z cannot be secured. As a result, in the present embodiment, even in a narrow space, the robot 10 can work on objects placed close to the robot 10 and work on objects placed far from the robot 10 by expanding and contracting the link LK2. Both tasks can be done efficiently.
 また、本実施形態では、ロボット10は、リンクLK2を伸縮することにより、図4の破線の矢印で示すように、リンクLK3及びエンドエフェクタ20を直線的に動かすことができる。このため、本実施形態では、ロボット10は、棚RKの枠FRM等の障害物がある狭い空間においても、リンクLK2を伸縮することにより、棚RKの奥に配置された物品GDに対する作業を容易に行うことができる。また、本実施形態では、例えば、関節機構AR2及びAR3を同時に駆動しなくても、伸縮機構TE2を駆動することにより、リンクLK3及びエンドエフェクタ20を直線的に動かすことができる。このため、本実施形態では、複数の関節機構ARの制御が煩雑になることを抑制することができ、リンクLK3及びエンドエフェクタ20を直線的に動かす場合の精度を向上させることができる。 Furthermore, in this embodiment, the robot 10 can linearly move the link LK3 and the end effector 20, as shown by the broken arrow in FIG. 4, by expanding and contracting the link LK2. Therefore, in the present embodiment, even in a narrow space where there are obstacles such as the frame FRM of the shelf RK, the robot 10 can easily work on the article GD placed at the back of the shelf RK by extending and contracting the link LK2. can be done. Furthermore, in this embodiment, for example, the link LK3 and the end effector 20 can be linearly moved by driving the extension mechanism TE2 without simultaneously driving the joint mechanisms AR2 and AR3. Therefore, in the present embodiment, it is possible to suppress the control of the plurality of joint mechanisms AR from becoming complicated, and it is possible to improve the accuracy when moving the link LK3 and the end effector 20 linearly.
 さらに、本実施形態では、上述したように、リンクLK1が伸縮するため、ロボット10の全体が大きくなることを抑制しつつ、ロボット10の先端部が到達可能な領域をリンクLK1が伸縮しない形態に比べて広くすることができる。これにより、本実施形態では、ロボット10は、リンクLK1が伸縮しない形態では届かない高い位置に配置された物品GDに対して作業することが可能となる。また、本実施形態では、ロボット10は、伸縮機構TE1により関節機構AR3を高い位置に移動させることにより、棚RKの高い位置で、かつ棚RKの奥に配置された物品GDに対する作業を容易に行うことができる。 Furthermore, in this embodiment, as described above, the link LK1 expands and contracts, so while suppressing the overall size of the robot 10, the area that the tip of the robot 10 can reach is configured so that the link LK1 does not expand or contract. It can be made wider. As a result, in this embodiment, the robot 10 can work on the article GD placed at a high position that cannot be reached when the link LK1 does not extend or contract. In addition, in the present embodiment, the robot 10 moves the joint mechanism AR3 to a high position using the telescoping mechanism TE1, thereby easily working on the article GD placed at a high position on the shelf RK and at the back of the shelf RK. It can be carried out.
 次に、図5を参照しながら、ロボットコントローラ30のハードウェア構成について説明する。 Next, the hardware configuration of the robot controller 30 will be described with reference to FIG. 5.
 図5は、図1に示したロボットコントローラ30のハードウェア構成の一例を示す図である。 FIG. 5 is a diagram showing an example of the hardware configuration of the robot controller 30 shown in FIG. 1.
 ロボットコントローラ30は、ロボットコントローラ30の各部を制御する処理装置32と、各種情報を記憶するメモリ33と、通信装置34と、作業者等による操作を受け付ける操作装置35と、表示装置36と、ドライバ回路37とを有する。 The robot controller 30 includes a processing device 32 that controls each part of the robot controller 30, a memory 33 that stores various information, a communication device 34, an operating device 35 that accepts operations by an operator, a display device 36, and a driver. It has a circuit 37.
 メモリ33は、例えば、処理装置32の作業領域として機能するRAM(Random Access Memory)等の揮発性メモリと、制御プログラムPGr等の各種情報を記憶するEEPROM(Electrically Erasable Programmable Read-Only Memory)等の不揮発性メモリとの、一方又は両方を含む。なお、メモリ33は、ロボットコントローラ30に着脱可能であってもよい。具体的には、メモリ33は、ロボットコントローラ30に着脱されるメモリカード等の記憶媒体であってもよい。また、メモリ33は、例えば、ロボットコントローラ30とネットワーク等を介して通信可能に接続された記憶装置(例えば、オンラインストレージ)であってもよい。 The memory 33 includes, for example, a volatile memory such as a RAM (Random Access Memory) that functions as a work area of the processing device 32, and an EEPROM (Electrically Erasable Programmable Read-On Memory) that stores various information such as a control program PGr. ly Memory) etc. This includes one or both of non-volatile memory. Note that the memory 33 may be removably attached to the robot controller 30. Specifically, the memory 33 may be a storage medium such as a memory card that is detachable from the robot controller 30. Furthermore, the memory 33 may be, for example, a storage device (for example, online storage) that is communicably connected to the robot controller 30 via a network or the like.
 図5に示すメモリ33は、制御プログラムPGrを記憶している。本実施形態では、制御プログラムPGrは、例えば、ロボットコントローラ30がロボット10の動作を制御するためのアプリケーションプログラムを含む。但し、制御プログラムPGrは、例えば、処理装置32がロボットコントローラ30の各部を制御するためのオペレーティングロボットシステムプログラムを含んでもよい。 The memory 33 shown in FIG. 5 stores a control program PGr. In this embodiment, the control program PGr includes, for example, an application program for the robot controller 30 to control the operation of the robot 10. However, the control program PGr may include, for example, an operating robot system program for the processing device 32 to control each part of the robot controller 30.
 処理装置32は、ロボットコントローラ30の全体を制御するプロセッサであり、例えば、1又は複数のCPU(Central Processing Unit)を含んで構成される。処理装置32は、例えば、メモリ33に記憶された制御プログラムPGrを実行し、制御プログラムPGrに従って動作することで、ロボット10の動作を制御する。なお、制御プログラムPGrは、ネットワーク等を介して他の装置から送信されてもよい。 The processing device 32 is a processor that controls the entire robot controller 30, and includes, for example, one or more CPUs (Central Processing Units). The processing device 32 controls the operation of the robot 10 by, for example, executing a control program PGr stored in the memory 33 and operating according to the control program PGr. Note that the control program PGr may be transmitted from another device via a network or the like.
 また、例えば、処理装置32が複数のCPUを含んで構成される場合、処理装置32の機能の一部又は全部は、これら複数のCPUが制御プログラムPGr等のプログラムに従って協働して動作することで実現されてもよい。また、処理装置32は、1又は複数のCPUに加え、又は、1又は複数のCPUのうち一部又は全部に代えて、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)、又は、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されるものであってもよい。この場合、処理装置32の機能の一部又は全部は、DSP等のハードウェアにより実現されてもよい。 Further, for example, when the processing device 32 is configured to include a plurality of CPUs, some or all of the functions of the processing device 32 may be performed by the plurality of CPUs working together according to a program such as the control program PGr. It may be realized by In addition to one or more CPUs, or in place of a part or all of one or more CPUs, the processing device 32 may include a GPU (Graphics Processing Unit), a DSP (Digital Signal Processor), or an FPGA ( It may be configured to include hardware such as Field, Programmable, Gate, Array. In this case, part or all of the functions of the processing device 32 may be realized by hardware such as a DSP.
 通信装置34は、ロボットコントローラ30の外部に存在する外部装置と通信を行うためのハードウェアである。例えば、通信装置34は、近距離無線通信によって外部装置と通信する機能を有する。なお、通信装置34は、移動体通信網又はネットワークを介して外部装置と通信する機能をさらに有してもよい。 The communication device 34 is hardware for communicating with an external device existing outside the robot controller 30. For example, the communication device 34 has a function of communicating with an external device by short-range wireless communication. Note that the communication device 34 may further have a function of communicating with an external device via a mobile communication network or a network.
 操作装置35は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、スイッチ、ボタン及びセンサ等)である。例えば、操作装置35は、作業者の操作を受け付け、操作に応じた操作情報を処理装置32に出力する。なお、例えば、表示装置36の表示面に対する接触を検出するタッチパネルが、操作装置35として採用されてもよい。 The operating device 35 is an input device (eg, keyboard, mouse, switch, button, sensor, etc.) that accepts input from the outside. For example, the operating device 35 receives an operation from a worker and outputs operation information corresponding to the operation to the processing device 32. Note that, for example, a touch panel that detects contact with the display surface of the display device 36 may be employed as the operating device 35.
 表示装置36は、外部への出力を実施するディスプレイ等の出力デバイスである。表示装置36は、例えば、処理装置32による制御のもとで、画像を表示する。なお、操作装置35及び表示装置36は、一体となった構成(例えば、タッチパネル)であってもよい。 The display device 36 is an output device such as a display that performs output to the outside. The display device 36 displays images under the control of the processing device 32, for example. Note that the operating device 35 and the display device 36 may have an integrated configuration (for example, a touch panel).
 ドライバ回路37は、処理装置32による制御のもとで、ロボット10を駆動するための信号をロボット10に出力するハードウェアである。例えば、ドライバ回路37は、処理装置32による制御のもとで、モータMOa1、MOa2、MOa2、MOa4、MOa5、MOa6、MOt1及びMOt2等を駆動する信号をロボット10に出力する。なお、モータMOa1、MOa2、MOa2、MOa4、MOa5及びMOa6は、関節機構AR1、AR2、AR3、AR4、AR5及びAR6をそれぞれ駆動するモータである。また、モータMOt1及びMOt2は、伸縮機構TE1及びTE2をそれぞれ駆動するモータである。 The driver circuit 37 is hardware that outputs signals for driving the robot 10 to the robot 10 under the control of the processing device 32. For example, the driver circuit 37 outputs signals for driving the motors MOa1, MOa2, MOa2, MOa4, MOa5, MOa6, MOt1, MOt2, etc. to the robot 10 under the control of the processing device 32. Note that the motors MOa1, MOa2, MOa2, MOa4, MOa5, and MOa6 are motors that drive the joint mechanisms AR1, AR2, AR3, AR4, AR5, and AR6, respectively. Furthermore, the motors MOt1 and MOt2 are motors that drive the telescoping mechanisms TE1 and TE2, respectively.
 このように、ロボットコントローラ30は、モータMOa1、MOa2、MOa2、MOa4、MOa5、MOa6、MOt1及びMOt2を制御することにより、ロボット10の動作を制御する。 In this way, the robot controller 30 controls the operation of the robot 10 by controlling the motors MOa1, MOa2, MOa2, MOa4, MOa5, MOa6, MOt1, and MOt2.
 以上、本実施形態では、ロボット10は、ボディ部BDPと、リンクLK3と、ボディ部BDPとリンクLK3とを接続する複数のリンクLK1及びLK2と、関節機構AR3と、関節機構AR5とを有する。関節機構AR3は、リンクLK1とリンクLK2とを接続し、リンクLK1が延在する方向De1とのなす角度が所定の角度より大きい軸Ax3を第1回転軸としてリンクLK2をリンクLK1に対して回転させる。関節機構AR5は、リンクLK2とリンクLK3とを接続し、リンクLK2が延在する方向De2とのなす角度が所定の角度より大きい軸Ax5を第2回転軸としてリンクLK3をリンクLK2に対して回転させる。リンクLK2は、リンクLK1に接続される支持部分LK21と、リンクLK3に接続される可動部分LK23と、支持部分LK21と可動部分LK23とを接続する可動部分LK22と、関節機構AR4と、伸縮機構TE2とを有する。関節機構AR4は、支持部分LK21が延在する方向De21とのなす角度が所定の角度以下の軸Ax4を第3回転軸として、可動部分LK23を支持部分LK21に対して回転させる。伸縮機構TE2は、支持部分LK21に対して可動部分LK22を支持部分LK21の延在方向(方向De21)に沿って移動させることにより、リンクLK2を伸縮させる。 As described above, in this embodiment, the robot 10 includes a body part BDP, a link LK3, a plurality of links LK1 and LK2 that connect the body part BDP and the link LK3, a joint mechanism AR3, and a joint mechanism AR5. The joint mechanism AR3 connects the link LK1 and the link LK2, and rotates the link LK2 with respect to the link LK1 using an axis Ax3, which is larger than a predetermined angle with the direction De1 in which the link LK1 extends, as a first rotation axis. let The joint mechanism AR5 connects the link LK2 and the link LK3, and rotates the link LK3 with respect to the link LK2 using an axis Ax5, which is larger than a predetermined angle at an angle with the direction De2 in which the link LK2 extends, as a second rotation axis. let The link LK2 includes a support portion LK21 connected to the link LK1, a movable portion LK23 connected to the link LK3, a movable portion LK22 that connects the support portion LK21 and the movable portion LK23, a joint mechanism AR4, and a telescopic mechanism TE2. and has. The joint mechanism AR4 rotates the movable portion LK23 with respect to the support portion LK21 using an axis Ax4, which forms an angle equal to or less than a predetermined angle with the direction De21 in which the support portion LK21 extends, as a third rotation axis. The expansion/contraction mechanism TE2 expands/contracts the link LK2 by moving the movable part LK22 with respect to the support part LK21 along the extending direction (direction De21) of the support part LK21.
 このように、本実施形態では、伸縮機構TE2により、リンクLK2が伸縮する。このため、本実施形態では、ロボット10の全体が大きくなることを抑制しつつ、ロボット10の先端部(例えば、リンクLK3)が到達可能な領域を広くすることができる。これにより、本実施形態では、大型のロボットを設置するためのスペースを確保できない狭い場所にも、ロボット10を設置することができる。すなわち、本実施形態では、狭い場所で用いられるロボット10においても、ロボット10の先端部(例えば、リンクLK3)が到達可能な領域を広くすることができる。 In this way, in this embodiment, the link LK2 is expanded and contracted by the expansion and contraction mechanism TE2. Therefore, in this embodiment, it is possible to widen the area that the tip of the robot 10 (for example, the link LK3) can reach while suppressing the overall size of the robot 10. Thereby, in this embodiment, the robot 10 can be installed even in a narrow place where space for installing a large robot cannot be secured. That is, in this embodiment, even in the robot 10 used in a narrow place, the area that the tip of the robot 10 (for example, the link LK3) can reach can be widened.
 また、本実施形態では、リンクLK2の可動部分LK23の回転が関節機構AR4により行われ、リンクLK2の伸縮が伸縮機構TE2により行われる。このため、本実施形態では、リンクLK2の可動部分LK23の回転及びリンクLK2の伸縮の制御が煩雑になることを抑制することができる。 Furthermore, in this embodiment, the rotation of the movable portion LK23 of the link LK2 is performed by the joint mechanism AR4, and the expansion and contraction of the link LK2 is performed by the expansion and contraction mechanism TE2. Therefore, in this embodiment, it is possible to suppress the rotation of the movable portion LK23 of the link LK2 and the control of the expansion and contraction of the link LK2 from becoming complicated.
 また、本実施形態では、支持部分LK21は、中空である。リンクLK2が収縮した場合、可動部分LK22の少なくとも一部が、支持部分LK21の内部に格納される。これにより、本実施形態では、リンクLK2の伸縮を簡易な構成で実現することができる。 Furthermore, in this embodiment, the support portion LK21 is hollow. When the link LK2 is retracted, at least a portion of the movable part LK22 is stored inside the support part LK21. Thereby, in this embodiment, expansion and contraction of the link LK2 can be realized with a simple configuration.
 また、本実施形態では、ロボット10は、関節機構AR4を駆動するモータMOa4をさらに含む。モータMOa4は、可動部分LK22が支持部分LK21の延在方向(方向De21)に沿って移動した場合、可動部分LK22と一緒に移動するように、可動部分LK22に取り付けられる。 Furthermore, in this embodiment, the robot 10 further includes a motor MOa4 that drives the joint mechanism AR4. Motor MOa4 is attached to movable portion LK22 so that it moves together with movable portion LK22 when movable portion LK22 moves along the extending direction (direction De21) of support portion LK21.
 これにより、本実施形態では、モータMOa4とモータMOa4の回転に応じて回転する可動部分LK23との相対的な位置関係は、リンクLK2が伸縮した場合においても、一定の位置関係に維持される。この結果、本実施形態では、可動部分LK23が方向De21に沿って移動している最中、又は、リンクLK2が旋回している最中であっても、軸Ax4を回転軸として可動部分LK23を安定して回転させることができる。また、本実施形態では、モータMOa4が可動部分LK22に取り付けられるため、可動部分LK23が軸Ax4を回転軸として回転した場合でも、モータMOa4自体は軸Ax4の周りを回転(公転)しない。このため、本実施形態では、モータMOa4自体の公転に伴う外乱の発生を抑制することができる。 Thereby, in this embodiment, the relative positional relationship between the motor MOa4 and the movable part LK23 that rotates in accordance with the rotation of the motor MOa4 is maintained at a constant positional relationship even when the link LK2 expands and contracts. As a result, in this embodiment, even when the movable portion LK23 is moving along the direction De21 or while the link LK2 is rotating, the movable portion LK23 is rotated about the axis Ax4. It can be rotated stably. Furthermore, in this embodiment, since the motor MOa4 is attached to the movable part LK22, even if the movable part LK23 rotates about the axis Ax4, the motor MOa4 itself does not rotate (revolution) around the axis Ax4. Therefore, in this embodiment, it is possible to suppress the occurrence of disturbances caused by the revolution of the motor MOa4 itself.
 また、本実施形態では、関節機構AR4により可動部分LK23が回転する場合の可動部分LK23の第3回転軸(軸Ax4)は、可動部分LK22の中心軸と平行である。これにより、本実施形態では、可動部分LK23が軸Ax4を回転軸として回転している最中に、可動部分LK22を方向De21に沿って移動させた場合でも、リンクLK2全体のたわみ及び偏心等を抑制することができる。この結果、本実施形態では、ロボット10を精度よく制御することができる。 Furthermore, in this embodiment, the third rotation axis (axis Ax4) of the movable part LK23 when the movable part LK23 is rotated by the joint mechanism AR4 is parallel to the central axis of the movable part LK22. As a result, in this embodiment, even if the movable part LK22 is moved along the direction De21 while the movable part LK23 is rotating about the axis Ax4, the deflection and eccentricity of the entire link LK2 can be prevented. Can be suppressed. As a result, in this embodiment, the robot 10 can be controlled with high precision.
 また、本実施形態では、リンクLK1は、支持部分LK11と、リンクLK2に接続される可動部分LK13と、支持部分LK11と可動部分LK13とを接続する可動部分LK12と、伸縮機構TE1とを含む。伸縮機構TE1は、支持部分LK11に対して可動部分LK12を支持部分LK11が延在する方向De11に沿って移動させることにより、リンクLK1を伸縮させる。 Furthermore, in this embodiment, the link LK1 includes a support portion LK11, a movable portion LK13 connected to the link LK2, a movable portion LK12 that connects the support portion LK11 and the movable portion LK13, and an expansion/contraction mechanism TE1. The expansion mechanism TE1 expands and contracts the link LK1 by moving the movable portion LK12 with respect to the support portion LK11 along the direction De11 in which the support portion LK11 extends.
 このように、本実施形態では、伸縮機構TE1により、リンクLK1が伸縮する。このため、本実施形態では、ロボット10の全体が大きくなることを抑制しつつ、ロボット10の先端部が到達可能な領域をリンクLK1が伸縮しない形態に比べて広くすることができる。これにより、本実施形態では、例えば、ロボット10は、リンクLK1が伸縮しない形態では届かない高い位置に配置された物品GDに対して作業する事が可能となる。また、本実施形態では、ロボット10は、伸縮機構TE1により関節機構AR3を高い位置に移動させることにより、棚RKの高い位置で、かつ棚RKの奥に配置された物品GDに対する作業を容易に行うことができる。 In this manner, in this embodiment, the link LK1 is expanded and contracted by the expansion and contraction mechanism TE1. Therefore, in this embodiment, the area that the tip of the robot 10 can reach can be made wider than in the case where the link LK1 does not extend or contract, while suppressing the overall size of the robot 10. As a result, in this embodiment, for example, the robot 10 can work on the article GD placed at a high position that cannot be reached when the link LK1 does not extend or contract. In addition, in the present embodiment, the robot 10 moves the joint mechanism AR3 to a high position using the telescoping mechanism TE1, thereby easily working on the article GD placed at a high position on the shelf RK and at the back of the shelf RK. It can be carried out.
 また、本実施形態では、支持部分LK11は、中空である。リンクLK1が収縮した場合、可動部分LK12の少なくとも一部が、支持部分LK11の内部に格納される。これにより、本実施形態では、リンクLK1の伸縮を簡易な構成で実現することができる。 Furthermore, in this embodiment, the support portion LK11 is hollow. When the link LK1 is retracted, at least a portion of the movable part LK12 is stored inside the support part LK11. Thereby, in this embodiment, expansion and contraction of the link LK1 can be realized with a simple configuration.
 また、本実施形態では、ロボット10は、関節機構AR1と関節機構AR2とをさらに有する。関節機構AR1は、ボディ部BDPの底面BDPbtに垂直な方向Dv1とのなす角度が所定の角度以下の軸Ax1を第4回転軸として、ボディ部BDPの少なくとも一部分を回転させる。関節機構AR2は、ボディ部BDPとリンクLK1とを接続し、ボディ部BDPの底面BDPbtに垂直な方向Dv1とのなす角度が所定の角度より大きい軸Ax2を第5回転軸としてリンクLK1をボディ部BDPに対して回転させる。リンクLK3は、関節機構AR5によりリンクLK3が回転する場合のリンクLKの第2回転軸(軸Ax5)とのなす角度が所定の角度より大きい軸Ax6を第6回転軸として、リンクLK3の少なくとも一部分をリンクLK2に対して回転させる関節機構AR6を含む。このように、本実施形態に係る発明は、垂直6軸多関節ロボットに適用されてもよい。 Furthermore, in this embodiment, the robot 10 further includes a joint mechanism AR1 and a joint mechanism AR2. The joint mechanism AR1 rotates at least a portion of the body part BDP about an axis Ax1, which has a predetermined angle or less at an angle with a direction Dv1 perpendicular to the bottom surface BDPbt of the body part BDP, as a fourth rotation axis. The joint mechanism AR2 connects the body part BDP and the link LK1, and connects the link LK1 to the body part with an axis Ax2 that is larger than a predetermined angle at an angle with the direction Dv1 perpendicular to the bottom surface BDPbt of the body part BDP as a fifth rotation axis. Rotate against BDP. The link LK3 is configured to rotate at least a portion of the link LK3 by using an axis Ax6 as a sixth rotation axis, which makes an angle with the second rotation axis (axis Ax5) of the link LK that is larger than a predetermined angle when the link LK3 is rotated by the joint mechanism AR5. includes a joint mechanism AR6 that rotates the link LK2 relative to the link LK2. In this way, the invention according to this embodiment may be applied to a vertical six-axis articulated robot.
 また、本実施形態では、リンクLK1は、ボディ部BDPに接続される支持部分LK11と、リンクLK2に接続される可動部分LK13と、支持部分LK11と可動部分LK13とを接続する可動部分LK12と、伸縮機構TE1とを含む。伸縮機構TE1は、支持部分LK11に対して可動部分LK12を支持部分LK11が延在する方向De11に沿って移動させることにより、リンクLK1を伸縮させる。このように、本実施形態では、垂直6軸多関節ロボットに2つの伸縮機構を追加することにより、先端部(例えば、リンクLK3)が到達可能な領域を広くしたロボット10を簡易に構成することができる。 In the present embodiment, the link LK1 includes a support portion LK11 connected to the body portion BDP, a movable portion LK13 connected to the link LK2, and a movable portion LK12 connecting the support portion LK11 and the movable portion LK13. It includes an expansion and contraction mechanism TE1. The expansion mechanism TE1 expands and contracts the link LK1 by moving the movable portion LK12 with respect to the support portion LK11 along the direction De11 in which the support portion LK11 extends. As described above, in this embodiment, by adding two expansion and contraction mechanisms to a vertical six-axis multi-joint robot, it is possible to easily configure a robot 10 in which the reachable area of the tip (for example, link LK3) is widened. I can do it.
 また、本実施形態では、ロボットコントローラ30は、関節機構AR1を駆動するモータMOa1、関節機構AR2を駆動するモータMOa2、関節機構AR3を駆動するモータMOa3、関節機構AR4を駆動するモータMOa4、関節機構AR5を駆動するモータMOa5、関節機構AR6を駆動するモータMOa6、伸縮機構TE1を駆動するモータMOt1、及び、伸縮機構TE2を駆動するモータMOt2を制御することにより、ロボット10の動作を制御する。このように、本実施形態では、ロボットコントローラ30により、ロボット10の動作を容易に制御することができる。 In the present embodiment, the robot controller 30 also includes a motor MOa1 that drives the joint mechanism AR1, a motor MOa2 that drives the joint mechanism AR2, a motor MOa3 that drives the joint mechanism AR3, a motor MOa4 that drives the joint mechanism AR4, a motor MOa4 that drives the joint mechanism AR4, and a motor MOa4 that drives the joint mechanism AR4. The operation of the robot 10 is controlled by controlling the motor MOa5 that drives the AR5, the motor MOa6 that drives the joint mechanism AR6, the motor MOt1 that drives the telescoping mechanism TE1, and the motor MOt2 that drives the telescoping mechanism TE2. In this manner, in this embodiment, the robot controller 30 can easily control the operation of the robot 10.
 また、本実施形態では、ロボットシステム1は、ロボット10と、リンクLK3に取り付けられたエンドエフェクタ20と、ロボット10及びエンドエフェクタ20の動作を制御するロボットコントローラ30とを有する。このように、本実施形態では、全体の大きさが大きくなることを抑制しつつ、先端部(例えば、リンクLK3)が到達可能な領域を広くしたロボット10がロボットシステム1に用いられる。このため、本実施形態では、狭い場所においても、ロボットシステム1は、ロボット10に近い場所に配置された物品に対する作業、及び、ロボット10から遠い場所に配置された物品に対する作業の両方を効率よく行うことができる。例えば、部品を組み付ける、又は、部品を取り除くことを含む物品の製造方法にロボットシステム1が用いられてもよい。この場合、部品を組み付ける、又は、部品を取り除く作業を効率よく実行することができる。 Furthermore, in this embodiment, the robot system 1 includes a robot 10, an end effector 20 attached to the link LK3, and a robot controller 30 that controls the operations of the robot 10 and the end effector 20. As described above, in this embodiment, the robot 10 is used in the robot system 1 in which the area reachable by the tip portion (for example, the link LK3) is widened while suppressing the overall size from increasing. Therefore, in this embodiment, even in a narrow space, the robot system 1 can efficiently perform both operations on objects placed near the robot 10 and operations on objects placed far from the robot 10. It can be carried out. For example, the robot system 1 may be used in an article manufacturing method that includes assembling or removing parts. In this case, the work of assembling parts or removing parts can be performed efficiently.
[A-2.第2実施形態]
 次に、図6を参照しながら、第2実施形態に係るロボットシステム1の概要の一例について説明する。
[A-2. Second embodiment]
Next, an example of the outline of the robot system 1 according to the second embodiment will be described with reference to FIG. 6.
 図6は、第2実施形態に係るロボットシステム1の概要を説明するための説明図である。図1から図5において説明した要素と同様の要素については、同様の符号を付し、詳細な説明を省略する。 FIG. 6 is an explanatory diagram for explaining an overview of the robot system 1 according to the second embodiment. Elements similar to those described in FIGS. 1 to 5 are denoted by the same reference numerals, and detailed description thereof will be omitted.
 図6に示すロボットシステム1は、図1に示したロボット10の代わりにロボット10Aを有することを除いて、図1に示したロボットシステム1と同様である。例えば、図6に示すロボットシステム1は、ロボット10Aと、ロボット10Aに着脱可能に取り付けられるエンドエフェクタ20と、ロボット10A及びエンドエフェクタ20の動作を制御するロボットコントローラ30とを有する。ロボット10Aは、「多関節ロボット」の他の例である。 The robot system 1 shown in FIG. 6 is the same as the robot system 1 shown in FIG. 1 except that it has a robot 10A instead of the robot 10 shown in FIG. For example, the robot system 1 shown in FIG. 6 includes a robot 10A, an end effector 20 that is detachably attached to the robot 10A, and a robot controller 30 that controls the operations of the robot 10A and the end effector 20. The robot 10A is another example of an "articulated robot."
 ロボット10Aは、図1に示したリンクLK2の代わりにリンクLK2aを有することを除いて、図1に示したロボット10と同様である。リンクLK2aは、「第2リンク」の他の例である。以下では、リンクLK2aを中心に説明する。 The robot 10A is similar to the robot 10 shown in FIG. 1 except that it has a link LK2a instead of the link LK2 shown in FIG. Link LK2a is another example of a "second link." Below, link LK2a will be mainly explained.
 リンクLK2aは、リンクLK2と同様に、リンクLK2aが延在する方向De2に沿って伸縮可能に構成される。但し、リンクLK2aは、軸Ax4を回転軸として可動部分LK22a及びLK23aの両方が回転するように構成されている点が、リンクLK2と相違する。 Similar to link LK2, link LK2a is configured to be expandable and contractible along direction De2 in which link LK2a extends. However, link LK2a differs from link LK2 in that both movable parts LK22a and LK23a are configured to rotate about axis Ax4.
 例えば、リンクLK2aは、リンクLK1に接続される支持部分LK21aと、可動部分LK22a及びLK23aと、伸縮機構TE2と、関節機構AR4aと、関節機構AR4aを駆動するモータMOa4とを含む。可動部分LK22aは、支持部分LK21aと可動部分LK23aとを接続する。可動部分LK23aは、リンクLK3に接続される。本実施形態においても、第1実施形態と同様に、支持部分LK21a、可動部分LK22a及び可動部分LK23aの各々が方向De2に沿って延在し、支持部分LK21が延在する方向De21が、リンクLK2が延在する方向De2である場合を想定する。従って、本実施形態においても、方向De2は、支持部分LK21a、可動部分LK22a及び可動部分LK23aの各々の長手方向に該当する。 For example, the link LK2a includes a support portion LK21a connected to the link LK1, movable portions LK22a and LK23a, a telescoping mechanism TE2, a joint mechanism AR4a, and a motor MOa4 that drives the joint mechanism AR4a. Movable portion LK22a connects support portion LK21a and movable portion LK23a. Movable part LK23a is connected to link LK3. Also in this embodiment, similarly to the first embodiment, each of the support portion LK21a, the movable portion LK22a, and the movable portion LK23a extends along the direction De2, and the direction De21 in which the support portion LK21 extends is the link LK2. Assume that the extending direction is De2. Therefore, also in this embodiment, the direction De2 corresponds to the longitudinal direction of each of the support portion LK21a, the movable portion LK22a, and the movable portion LK23a.
 伸縮機構TE2は、図1に示した伸縮機構TE2と同様に、支持部分LK21aと可動部分LK22aとを接続し、可動部分LK22aを支持部分LK21aに対して、支持部分LK21aが延在する方向De21に沿って移動させる。可動部分LK22aが方向De21に沿って移動することにより、可動部分LK23aが方向De21に沿って移動する。可動部分LK22a及びLK23aが方向De21に沿って移動することにより、リンクLK2aは、方向De21(すなわち、方向De2)に沿って伸縮する。 Similar to the telescopic mechanism TE2 shown in FIG. 1, the telescopic mechanism TE2 connects the supporting part LK21a and the movable part LK22a, and moves the movable part LK22a in the direction De21 in which the supporting part LK21a extends with respect to the supporting part LK21a. move along. As the movable portion LK22a moves along the direction De21, the movable portion LK23a moves along the direction De21. As the movable parts LK22a and LK23a move along the direction De21, the link LK2a expands and contracts along the direction De21 (that is, the direction De2).
 関節機構AR4aは、支持部分LK21aが延在する方向De21と平行な軸Ax4を回転軸として、可動部分LK22aを支持部分LK21に対して回転させることにより、可動部分LK23aを支持部分LK21に対して回転させる。例えば、可動部分LK23aは、可動部分LK22aと一緒に移動及び回転するように、可動部分LK22aと連結されている。図6の回転方向Dr4は、軸Ax4を回転軸として回転する場合の可動部分LK22a及びLK23aの回転方向を示す。なお、詳細は、図7において後述されるが、リンクLK2では、関節機構AR4aは、支持部分LK21aに取り付けられる。 The joint mechanism AR4a rotates the movable part LK22a with respect to the support part LK21 about an axis Ax4 parallel to the direction De21 in which the support part LK21a extends, and thereby rotates the movable part LK23a with respect to the support part LK21. let For example, movable portion LK23a is coupled to movable portion LK22a so as to move and rotate together with movable portion LK22a. The rotation direction Dr4 in FIG. 6 indicates the rotation direction of the movable parts LK22a and LK23a when rotating around the axis Ax4. Although the details will be described later in FIG. 7, in the link LK2, the joint mechanism AR4a is attached to the support portion LK21a.
 支持部分LK21aは、「第1部分」の他の例であり、可動部分LK22aは、「第3部分」の他の例であり、可動部分LK23aは、「第2部分」の他の例である。また、関節機構AR4aは、「第3駆動機構」の他の例である。 The supporting part LK21a is another example of the "first part", the movable part LK22a is another example of the "third part", and the movable part LK23a is another example of the "second part". . Further, the joint mechanism AR4a is another example of the "third drive mechanism".
 次に、図7を参照しながら、関節機構AR4a及び伸縮機構TE2を含むリンクLK2aの一例について説明する。 Next, with reference to FIG. 7, an example of the link LK2a including the joint mechanism AR4a and the telescoping mechanism TE2 will be described.
 図7は、図6に示したリンクLK2aの一例を説明するための説明図である。図1から図6において説明した要素と同様の要素については、同様の符号を付し、詳細な説明を省略する。図7の上段は、収縮している状態のリンクLK2aを示し、図7の下段は、伸長している状態のリンクLK2aを示している。 FIG. 7 is an explanatory diagram for explaining an example of the link LK2a shown in FIG. 6. Elements similar to those described in FIGS. 1 to 6 are denoted by the same reference numerals, and detailed description thereof will be omitted. The upper part of FIG. 7 shows the link LK2a in a contracted state, and the lower part in FIG. 7 shows the link LK2a in an extended state.
 リンクLK2aは、図6において説明したように、支持部分LK21aと、可動部分LK22a及びLK23aと、伸縮機構TE2と、関節機構AR4aと、モータMOa4と、モータMOt2とを含む。支持部分LK21aは、中空である。支持部分LK21aの内部には、伸縮機構TE2が設けられる。伸縮機構TE2は、図2に示した伸縮機構TE2と同様である。 As explained in FIG. 6, the link LK2a includes a support portion LK21a, movable portions LK22a and LK23a, an expansion/contraction mechanism TE2, a joint mechanism AR4a, a motor MOa4, and a motor MOt2. Support portion LK21a is hollow. A telescopic mechanism TE2 is provided inside the support portion LK21a. The telescoping mechanism TE2 is similar to the telescoping mechanism TE2 shown in FIG.
 例えば、可動部分LK22aが支持部分LK21aの内部に格納された状態において、ロボットコントローラ30がモータMOt2を第1の回転方向に回転させた場合、ナットTE21の移動に伴い、可動部分LK22aは、支持部分LK21aから徐々に突出する。これにより、リンクLK2aは、方向Dm2pに伸長する。また、可動部分LK22aが支持部分LK21aから突出している状態において、ロボットコントローラ30がモータMOt2を第2の回転方向に回転させた場合、ナットTE21の移動に伴い、可動部分LK22aは、支持部分LK21aの内部に徐々に格納される。これにより、リンクLK2aは、方向Dm2mに収縮する。このように、リンクLK2aが収縮した場合、可動部分LK22aの少なくとも一部が支持部分LK21aの内部に格納される。 For example, when the robot controller 30 rotates the motor MOt2 in the first rotational direction in a state where the movable part LK22a is stored inside the support part LK21a, as the nut TE21 moves, the movable part LK22a moves into the support part LK21a. Gradually protrudes from LK21a. As a result, link LK2a extends in direction Dm2p. Further, when the robot controller 30 rotates the motor MOt2 in the second rotation direction in a state in which the movable portion LK22a protrudes from the support portion LK21a, the movable portion LK22a moves from the support portion LK21a as the nut TE21 moves. It is gradually stored inside. As a result, link LK2a contracts in direction Dm2m. In this manner, when link LK2a contracts, at least a portion of movable portion LK22a is stored inside support portion LK21a.
 本実施形態においても、例えば、リンクLK2aは、可動部分LK22aが移動する際の軸Axte2が、可動部分LK22aが回転する際の軸Ax4と同じ軸又はほぼ同じ軸になるように、構成されている。 Also in this embodiment, for example, the link LK2a is configured such that the axis Axte2 along which the movable portion LK22a moves is the same or approximately the same axis as the axis Ax4 when the movable portion LK22a rotates. .
 関節機構AR4aは、例えば、支持部分LK21aの2つの端部のうちの可動部分LK23aに近い端部に取り付けられる。例えば、関節機構AR4aは、ステーAR41aと、モータMOa4の回転が伝達される伝達軸AR42aと、伝達軸AR42aに取り付けられた回転ギアAR47aとを有する。 The joint mechanism AR4a is attached to, for example, one of the two ends of the support portion LK21a that is closer to the movable portion LK23a. For example, the joint mechanism AR4a includes a stay AR41a, a transmission shaft AR42a to which rotation of the motor MOa4 is transmitted, and a rotating gear AR47a attached to the transmission shaft AR42a.
 ステーAR41aは、支持部分LK21aの2つの端部のうちの可動部分LK23aに近い端部に、可動部分LK22aから張り出すように取り付けられている。ステーAR41aのうち、可動部分LK22aから張り出した部分には、モータMOa4が取り付けられる。すなわち、モータMOa4は、可動部分LK22aが移動しても移動しない支持部分LK21aに、ステーAR41aを介して取り付けられる。 The stay AR41a is attached to the end closer to the movable part LK23a of the two ends of the support part LK21a so as to protrude from the movable part LK22a. A motor MOa4 is attached to a portion of the stay AR41a that protrudes from the movable portion LK22a. That is, the motor MOa4 is attached to the support portion LK21a, which does not move even if the movable portion LK22a moves, via the stay AR41a.
 また、ステーAR41aには、伝達軸AR42a及び回転ギアAR47aが設けられている。例えば、回転ギアAR47aは、方向De2からの平面視において、回転ギアAR47aの中心に伝達軸AR42aが位置するように、伝達軸AR42aに取り付けられる。また、可動部分LK22aの外周には、可動部分LK22aを回転ギアAR47aと噛み合う歯車として動作させるための複数の溝が設けられている。可動部分LK22aの外周に設けられた複数の溝の各々は、可動部分LK22aの長手方向(方向De2)に延在している。これにより、例えば、可動部分LK22aが支持部分LK21aに対して移動し、可動部分LK22aに対する回転ギアAR47aの相対的な位置が変化した場合においても、可動部分LK22aは、回転ギアAR47aと噛み合う。すなわち、リンクLK2aが方向De21に沿って伸縮する場合に、可動部分LK22aがどの位置で停止しても、回転ギアAR47aは、可動部分LK22aと噛み合った状態を維持することができる。 Furthermore, the stay AR41a is provided with a transmission shaft AR42a and a rotating gear AR47a. For example, the rotating gear AR47a is attached to the transmission shaft AR42a such that the transmission shaft AR42a is located at the center of the rotating gear AR47a when viewed in plan from the direction De2. Furthermore, a plurality of grooves are provided on the outer periphery of the movable portion LK22a for operating the movable portion LK22a as a gear that meshes with the rotating gear AR47a. Each of the plurality of grooves provided on the outer periphery of the movable portion LK22a extends in the longitudinal direction (direction De2) of the movable portion LK22a. As a result, even if, for example, the movable portion LK22a moves relative to the support portion LK21a and the relative position of the rotating gear AR47a with respect to the movable portion LK22a changes, the movable portion LK22a meshes with the rotating gear AR47a. That is, when the link LK2a expands and contracts along the direction De21, the rotary gear AR47a can maintain a state of meshing with the movable part LK22a, no matter where the movable part LK22a stops.
 これにより、例えば、モータMOa4が回転した場合、モータMOa4の回転が伝達される伝達軸AR42aの回転に伴い回転ギアAR47aが回転し、回転ギアAR47aの回転に伴い、回転ギアAR47aと噛み合う可動部分LK22aが回転する。このように、モータMOa4が回転した場合、伝達軸AR42a及び回転ギアAR47aを介して、可動部分LK22aにモータMOa4の回転が伝達される。この結果、可動部分LK22aは、軸Ax4を回転軸として回転する。また、可動部分LK23aは、可動部分LK22aと連結されているため、可動部分LK22aと一体的に回転する。なお、可動部分LK22aと可動部分LK23aとは一体的に構成されていてもよい。 As a result, for example, when the motor MOa4 rotates, the rotating gear AR47a rotates with the rotation of the transmission shaft AR42a to which the rotation of the motor MOa4 is transmitted, and as the rotating gear AR47a rotates, the movable part LK22a meshes with the rotating gear AR47a. rotates. In this way, when the motor MOa4 rotates, the rotation of the motor MOa4 is transmitted to the movable part LK22a via the transmission shaft AR42a and the rotating gear AR47a. As a result, the movable portion LK22a rotates about the axis Ax4. Moreover, since the movable part LK23a is connected to the movable part LK22a, it rotates integrally with the movable part LK22a. Note that the movable portion LK22a and the movable portion LK23a may be integrally configured.
 また、モータMOa4は、ステーAR41aを介して支持部分LK21aに取り付けられているため、可動部分LK22a及びLK23aが回転した場合でも、軸Ax4を回転軸として回転することはない。従って、本実施形態においても、可動部分LK22a及びLK23aが軸Ax4を回転軸として回転した場合でも、モータMOa4自体は軸Ax4の周りを回転(公転)しないため、回転(公転)に伴う外乱が発生することを抑制することができる。 Moreover, since the motor MOa4 is attached to the support part LK21a via the stay AR41a, even if the movable parts LK22a and LK23a rotate, it does not rotate about the axis Ax4. Therefore, in this embodiment as well, even if the movable parts LK22a and LK23a rotate about the axis Ax4, the motor MOa4 itself does not rotate (revolution) around the axis Ax4, and therefore disturbances occur due to the rotation (revolution). can be restrained from doing so.
 また、関節機構AR4aにより可動部分LK22aが回転した場合、可動部分LK22aに固定されたナットTE21が、可動部分LK22aと一緒に回転する。この場合、ナットTE21の回転に伴いナットTE21がボールねじTE22に沿って移動しないように、ボールねじTE22が、ナットTE21と一緒に回転する。例えば、ボールねじTE22は、関節機構AR4aにより可動部分LK22aが回転した場合にナットTE21と一緒にモータMOt2に対して空転するように、モータMOt2に取り付けられる。これにより、可動部分LK22aは、関節機構AR4aにより回転した場合でも、軸Axte2に沿って移動することはない。 Further, when the movable part LK22a is rotated by the joint mechanism AR4a, the nut TE21 fixed to the movable part LK22a rotates together with the movable part LK22a. In this case, the ball screw TE22 rotates together with the nut TE21 so that the nut TE21 does not move along the ball screw TE22 as the nut TE21 rotates. For example, the ball screw TE22 is attached to the motor MOt2 so as to idle with respect to the motor MOt2 together with the nut TE21 when the movable portion LK22a is rotated by the joint mechanism AR4a. Thereby, even when the movable part LK22a is rotated by the joint mechanism AR4a, it does not move along the axis Axte2.
 なお、伝達軸AR42aは、モータMOt2の回転に伴いボールねじTE22が回転した場合にモータMOa4に対して空転しないように、モータMOa4に取り付けられる。これにより、回転ギアAR47aと噛み合った状態の可動部分LK22aは、ボールねじTE22が回転した場合でも、軸Ax4を回転軸として回転することはない。従って、可動部分LK22aに固定されたナットTE21は、ボールねじTE22が回転した場合、軸Axte2を回転軸として回転せずに、ボールねじTE22に対するナットTE21の相対的な位置が変化するように、軸Axte2に沿って移動する。可動部分LK22a及びLK23aは、ナットTE21の移動に伴い、軸Axte2(すなわち、方向De21)に沿って移動する。 Note that the transmission shaft AR42a is attached to the motor MOa4 so as not to idle relative to the motor MOa4 when the ball screw TE22 rotates with the rotation of the motor MOt2. Thereby, the movable part LK22a in a state of meshing with the rotating gear AR47a does not rotate about the axis Ax4 even when the ball screw TE22 rotates. Therefore, when the ball screw TE22 rotates, the nut TE21 fixed to the movable part LK22a does not rotate about the axis Axte2 as the axis of rotation, but rather changes the relative position of the nut TE21 with respect to the ball screw TE22. Move along Axte2. The movable parts LK22a and LK23a move along the axis Axte2 (ie, direction De21) as the nut TE21 moves.
 このように、関節機構AR4aは、支持部分LK21aの2つの端部のうちの可動部分LK23aに近い端部に取り付けられ、リンクLK2aの伸縮状態にかかわらず、支持部分LK21aに対して可動部分LK22aを回転させることが可能である。 In this way, the joint mechanism AR4a is attached to the end closer to the movable part LK23a of the two ends of the support part LK21a, and is able to move the movable part LK22a with respect to the support part LK21a regardless of the expansion/contraction state of the link LK2a. It is possible to rotate.
 次に、図8を参照しながら、関節機構AR4a及び伸縮機構TE2を含むリンクLK2aの別の例について説明する。 Next, with reference to FIG. 8, another example of the link LK2a including the joint mechanism AR4a and the telescoping mechanism TE2 will be described.
 図8は、図6に示したリンクLK2aの別の例を説明するための説明図である。図1から図7において説明した要素と同様の要素については、同様の符号を付し、詳細な説明を省略する。図8の上段は、収縮している状態のリンクLK2aを示し、図8の下段は、伸長している状態のリンクLK2aを示している。 FIG. 8 is an explanatory diagram for explaining another example of link LK2a shown in FIG. 6. Elements similar to those described in FIGS. 1 to 7 are designated by the same reference numerals, and detailed description thereof will be omitted. The upper part of FIG. 8 shows the link LK2a in a contracted state, and the lower part in FIG. 8 shows the link LK2a in an extended state.
 図8に示すリンクLK2aは、可動部分LK23aの方向De21に沿う長さが図7に示した可動部分LK23aの方向De21に沿う長さよりも短いことを除いて、図7に示したリンクLK2aと同様である。例えば、可動部分LK23aの方向De21に沿う長さは、可動部分LK23aの径よりも短くてもよいし、可動部分LK23aの径と同じであってもよい。 The link LK2a shown in FIG. 8 is similar to the link LK2a shown in FIG. 7, except that the length of the movable portion LK23a along the direction De21 is shorter than the length of the movable portion LK23a shown in FIG. 7 along the direction De21. It is. For example, the length of the movable portion LK23a along the direction De21 may be shorter than the diameter of the movable portion LK23a, or may be the same as the diameter of the movable portion LK23a.
 なお、図8に示す例では、支持部分LK21aの方向De21に沿う長さは、図7に示した支持部分LK21aの方向De21に沿う長さよりも長く、可動部分LK22aの方向De21に沿う長さは、図7に示した可動部分LK22aの方向De21に沿う長さよりも長い。但し、支持部分LK21aの方向De21に沿う長さは、図7に示した支持部分LK21aの方向De21に沿う長さと同じで、可動部分LK22aの方向De21に沿う長さは、図7に示した可動部分LK22aの方向De21に沿う長さと同じであってもよい。あるいは、支持部分LK21aの方向De21に沿う長さは、図7に示した支持部分LK21aの方向De21に沿う長さよりも短く、可動部分LK22aの方向De21に沿う長さは、図7に示した可動部分LK22aの方向De21に沿う長さよりも短くてもよい。 In the example shown in FIG. 8, the length of the supporting portion LK21a along the direction De21 is longer than the length of the supporting portion LK21a shown in FIG. 7 along the direction De21, and the length of the movable portion LK22a along the direction De21 is , is longer than the length of the movable portion LK22a shown in FIG. 7 along the direction De21. However, the length of the supporting portion LK21a along the direction De21 is the same as the length of the supporting portion LK21a shown in FIG. 7 along the direction De21, and the length of the movable portion LK22a along the direction De21 is It may be the same as the length of the portion LK22a along the direction De21. Alternatively, the length of the supporting portion LK21a along the direction De21 is shorter than the length of the supporting portion LK21a along the direction De21 shown in FIG. It may be shorter than the length of the portion LK22a along the direction De21.
 本実施形態においても、上述したように、軸Axte2と軸Ax4とが同じ軸又はほぼ同じ軸になるように、リンクLK2aが構成されている。このため、本実施形態では、軸Ax4を回転軸として可動部分LK22a及びLK23aを回転させた場合、又は、可動部分LK22a及びLK23aを軸Axte2に沿って移動させた場合でも、リンクLK2a全体のたわみ及び偏心等を抑制することができる。 Also in this embodiment, as described above, the link LK2a is configured such that the axis Axte2 and the axis Ax4 are the same axis or substantially the same axis. Therefore, in the present embodiment, even when the movable parts LK22a and LK23a are rotated about the axis Ax4, or when the movable parts LK22a and LK23a are moved along the axis Axte2, the entire link LK2a is deflected and Eccentricity etc. can be suppressed.
 また、本実施形態においても、図7に示したように、可動部分LK23aの方向De2に沿う長さ(長手方向の長さ)をある程度長く(例えば、可動部分LK23aの径よりも長く)することにより、可動部分LK23aの重量を大きくしている。これにより、本実施形態においても、可動部分LK23aの固有振動周波数を小さくすることができる。 Also, in this embodiment, as shown in FIG. 7, the length (longitudinal length) of the movable portion LK23a along the direction De2 is made long to some extent (for example, longer than the diameter of the movable portion LK23a). This increases the weight of the movable portion LK23a. Thereby, also in this embodiment, the natural vibration frequency of the movable portion LK23a can be made small.
 また、本実施形態では、図8に示したように、可動部分LK23aの方向De21に沿う長さを短くした場合においても、可動部分LK22a及びLK23aを一体に構成することにより、可動部分LK22a及びLK23aの固有振動周波数を小さくすることができる。 Further, in this embodiment, as shown in FIG. 8, even when the length of the movable portion LK23a in the direction De21 is shortened, the movable portions LK22a and LK23a are integrally configured. The natural vibration frequency of can be reduced.
 このように、本実施形態においても、可動部分LK23aの固有振動周波数を小さくすることができるため、リンクLK3に取り付けられたエンドエフェクタ20による作業の最中に発生する振動を吸収することができる。本実施形態においても、リンクLK3及びエンドエフェクタ20の振動を抑制することができるため、リンクLK1及びLK2aを伸縮中又は伸長した状態でのリンクLK3及びエンドエフェクタ20を精度よく動作させることができる。 In this way, also in this embodiment, the natural vibration frequency of the movable part LK23a can be made small, so it is possible to absorb vibrations generated during work by the end effector 20 attached to the link LK3. Also in this embodiment, since the vibrations of the link LK3 and the end effector 20 can be suppressed, the link LK3 and the end effector 20 can be operated with high precision while the links LK1 and LK2a are being extended/contracted or in an extended state.
 また、本実施形態においても、可動部分LK23の固有振動周波数が小さいため、ロボット10のうちの関節機構AR5から土台部BSPまでの部分における振動がリンクLK3及びエンドエフェクタ20に伝搬することを抑制することができる。 Also in this embodiment, since the natural vibration frequency of the movable portion LK23 is small, vibrations in the portion of the robot 10 from the joint mechanism AR5 to the base portion BSP are suppressed from propagating to the link LK3 and the end effector 20. be able to.
 また、本実施形態では、モータMOa4が支持部分LK21aの2つの端部のうちの可動部分LK23aに近い端部に固定されているため、関節機構AR4aからロボット10Aの先端部(例えば、リンクLK3の端面LK3sf)までの部分の重量を軽量化することができる。 Furthermore, in this embodiment, since the motor MOa4 is fixed to one of the two ends of the support part LK21a, which is closer to the movable part LK23a, the joint mechanism AR4a is connected to the tip of the robot 10A (for example, the end of the link LK3). The weight of the portion up to the end surface LK3sf) can be reduced.
 また、本実施形態では、図8に示したように、可動部分LK23aの方向De21に沿う長さを短くした代わりに、支持部分LK21a及び可動部分LK22aの方向De21に沿う長さを長くすることにより、リンクLK2aの伸縮範囲を大きくすることができる。リンクLK2aの伸縮範囲は、例えば、リンクLK2aを最大限に収縮した場合のリンクLK2aの方向De2に沿う長さと、リンクLK2aを最大限に伸長した場合のリンクLK2aの方向De2に沿う長さとの差に対応する範囲である。 Furthermore, in this embodiment, as shown in FIG. 8, instead of shortening the length of the movable portion LK23a along the direction De21, the length of the support portion LK21a and the movable portion LK22a along the direction De21 is lengthened. , the expansion/contraction range of the link LK2a can be increased. The expansion/contraction range of the link LK2a is, for example, the difference between the length of the link LK2a along the direction De2 when the link LK2a is contracted to the maximum and the length of the link LK2a along the direction De2 when the link LK2a is expanded to the maximum. The range corresponds to
 以上、本実施形態では、ロボット10Aは、ボディ部BDPと、リンクLK3と、ボディ部BDPとリンクLK3とを接続する複数のリンクLK1及びLK2aと、関節機構AR3と、関節機構AR5とを有する。関節機構AR3は、リンクLK1とリンクLK2aとを接続し、リンクLK1が延在する方向De1とのなす角度が所定の角度より大きい軸Ax3を第1回転軸としてリンクLK2aをリンクLK1に対して回転させる。関節機構AR5は、リンクLK2aとリンクLK3とを接続し、リンクLK2aが延在する方向De2とのなす角度が所定の角度より大きい軸Ax5を第2回転軸としてリンクLK3をリンクLK2aに対して回転させる。リンクLK2aは、リンクLK1に接続される支持部分LK21aと、リンクLK3に接続される可動部分LK23aと、支持部分LK21aと可動部分LK23aとを接続する可動部分LK22aと、関節機構AR4aと、伸縮機構TE2とを有する。関節機構AR4aは、支持部分LK21aが延在する方向De21とのなす角度が所定の角度以下の軸Ax4を第3回転軸として可動部分LK22aを支持部分LK21aに対して回転させることにより、可動部分LK23aを支持部分LK21aに対して回転させる。伸縮機構TE2は、支持部分LK21aに対して可動部分LK22aを支持部分LK21aの延在方向(方向De21)に沿って移動させることにより、リンクLK2aを伸縮させる。本実施形態においても、上述した第1実施形態と同様の効果を得ることができる。 As described above, in this embodiment, the robot 10A includes a body part BDP, a link LK3, a plurality of links LK1 and LK2a that connect the body part BDP and the link LK3, a joint mechanism AR3, and a joint mechanism AR5. The joint mechanism AR3 connects the link LK1 and the link LK2a, and rotates the link LK2a with respect to the link LK1 using an axis Ax3, which makes an angle larger than a predetermined angle with the direction De1 in which the link LK1 extends, as a first rotation axis. let The joint mechanism AR5 connects the link LK2a and the link LK3, and rotates the link LK3 with respect to the link LK2a using an axis Ax5, which makes an angle larger than a predetermined angle with the direction De2 in which the link LK2a extends, as a second rotation axis. let The link LK2a includes a support portion LK21a connected to the link LK1, a movable portion LK23a connected to the link LK3, a movable portion LK22a connecting the support portion LK21a and the movable portion LK23a, a joint mechanism AR4a, and an extendable mechanism TE2. and has. The joint mechanism AR4a rotates the movable part LK22a with respect to the support part LK21a using the axis Ax4, which has an angle equal to or less than a predetermined angle with the direction De21 in which the support part LK21a extends, as a third rotation axis, thereby rotating the movable part LK23a. is rotated relative to the support portion LK21a. The expansion/contraction mechanism TE2 expands/contracts the link LK2a by moving the movable portion LK22a with respect to the support portion LK21a along the extending direction (direction De21) of the support portion LK21a. Also in this embodiment, the same effects as in the first embodiment described above can be obtained.
 また、本実施形態では、ロボット10Aは、関節機構AR4aに取り付けられ、関節機構AR4aを駆動するモータMOa4をさらに含む。関節機構AR4aは、支持部分LK21aの2つの端部のうちの可動部分LK23aに近い端部に取り付けられ、リンクLK2aの伸縮状態にかかわらず、支持部分LK21aに対して可動部分LK22aを回転させることが可能である。このように、本実施形態では、関節機構AR4a及びモータMOa4が支持部分LK21aに取り付けられているため、リンクLK2aの伸縮状態にかかわらず、軸Ax4を回転軸として可動部分LK22aを安定して回転させることができる。 Furthermore, in this embodiment, the robot 10A further includes a motor MOa4 that is attached to the joint mechanism AR4a and drives the joint mechanism AR4a. The joint mechanism AR4a is attached to one of the two ends of the support portion LK21a that is closer to the movable portion LK23a, and is capable of rotating the movable portion LK22a with respect to the support portion LK21a regardless of the expansion/contraction state of the link LK2a. It is possible. In this way, in this embodiment, since the joint mechanism AR4a and the motor MOa4 are attached to the support part LK21a, the movable part LK22a can be stably rotated about the axis Ax4, regardless of the expansion/contraction state of the link LK2a. be able to.
[A-3.第1実施形態及び第2実施形態の変形例]
 本発明は、以上に例示した実施形態に限定されない。具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様を併合してもよい。
[A-3. Modifications of the first embodiment and the second embodiment]
The present invention is not limited to the embodiments illustrated above. Specific modes of modification are illustrated below. Two or more aspects arbitrarily selected from the examples below may be combined.
[変形例A1]
 上述した第1実施形態では、モータMOa4が可動部分LK22の外側に設けられる場合を例示したが、本発明はこのような態様に限定されるものではない。例えば、モータMOa4は、可動部分LK22の内部に設けられてもよい。
[Modification A1]
In the first embodiment described above, the case where the motor MOa4 is provided outside the movable portion LK22 is illustrated, but the present invention is not limited to such an embodiment. For example, motor MOa4 may be provided inside movable portion LK22.
 図9は、変形例A1に係るリンクLK2bの一例を説明するための説明図である。図1から図8において説明した要素と同様の要素については、同様の符号を付し、詳細な説明を省略する。本変形例に係るロボット10は、図1に示したリンクLK2の代わりにリンクLK2bを有することを除いて、図1に示したロボット10と同様である。図9の上段は、収縮している状態のリンクLK2bを示し、図7の下段は、伸長している状態のリンクLK2bを示している。リンクLK2bは、「第2リンク」の他の例である。 FIG. 9 is an explanatory diagram for explaining an example of link LK2b according to modification A1. Elements similar to those described in FIGS. 1 to 8 are denoted by the same reference numerals, and detailed description thereof will be omitted. The robot 10 according to this modification is the same as the robot 10 shown in FIG. 1 except that it has a link LK2b instead of the link LK2 shown in FIG. The upper part of FIG. 9 shows the link LK2b in a contracted state, and the lower part in FIG. 7 shows the link LK2b in an extended state. Link LK2b is another example of a "second link."
 リンクLK2bは、図2に示した可動部分LK22及び関節機構AR4代わりに可動部分LK22b及び関節機構AR4bを有することを除いて、図2に示したリンクLK2と同様である。可動部分LK22bは、「第3部分」の他の例であり、関節機構AR4bは、「第3駆動機構」の他の例である。図9では、可動部分LK22b及び関節機構AR4bを中心に説明する。 The link LK2b is similar to the link LK2 shown in FIG. 2, except that it has a movable part LK22b and a joint mechanism AR4b instead of the movable part LK22 and joint mechanism AR4 shown in FIG. The movable part LK22b is another example of the "third part", and the joint mechanism AR4b is another example of the "third drive mechanism". In FIG. 9, the movable portion LK22b and the joint mechanism AR4b will be mainly explained.
 例えば、可動部分LK22bは、中空である。可動部分LK22bの内部には、モータMOa4が取り付けられている。このため、本変形例では、図2に示した伝達軸AR42、プーリAR43、プーリAR44及びタイミングベルトAR45を省くことができ、関節機構AR4bの構成を簡易にすることができる。例えば、関節機構AR4bは、可動部分LK22bの2つの端部のうちの可動部分LK23に近い端部(すなわち、可動部分LK22bと可動部分LK23との境界付近)に設けられたモータ固定部分AR41bと、伝達軸AR46と、ギアAR47とを有する。 For example, the movable part LK22b is hollow. A motor MOa4 is attached inside the movable part LK22b. Therefore, in this modification, the transmission shaft AR42, pulley AR43, pulley AR44, and timing belt AR45 shown in FIG. 2 can be omitted, and the configuration of the joint mechanism AR4b can be simplified. For example, the joint mechanism AR4b includes a motor fixed portion AR41b provided at an end closer to the movable portion LK23 of the two ends of the movable portion LK22b (that is, near the boundary between the movable portion LK22b and the movable portion LK23); It has a transmission shaft AR46 and a gear AR47.
 モータ固定部分AR41bには、可動部分LK22bの内部に配置されたモータMOa4が固定される。すなわち、モータMOa4は、可動部分LK22bが方向Dm2p又はDm2mに移動した場合に可動部分LK22bと一緒に移動するように、可動部分LK22bの内部に取り付けられる。 A motor MOa4 arranged inside the movable part LK22b is fixed to the motor fixed part AR41b. That is, the motor MOa4 is mounted inside the movable part LK22b so that it moves together with the movable part LK22b when the movable part LK22b moves in the direction Dm2p or Dm2m.
 伝達軸AR46は、モータMOa4の回転が伝達されるように、モータMOa4に取り付けられる。さらに、伝達軸AR46は、ギアAR47を介して可動部分LK23と連結している。これにより、例えば、モータMOa4が回転した場合、伝達軸AR46及びギアAR47を介して、可動部分LK23にモータMOa4の回転が伝達される。この結果、可動部分LK23は、軸Ax4を回転軸として回転する。なお、モータMOa4は、可動部分LK22に取り付けられているため、可動部分LK23が軸Ax4を回転軸として回転した場合でも、軸Ax4を回転軸として回転することはない。従って、本変形例においても、可動部分LK23が軸Ax4を回転軸として回転した場合でも、モータMOa4自体の回転に伴う外乱が発生することを抑制することができる。 The transmission shaft AR46 is attached to the motor MOa4 so that the rotation of the motor MOa4 is transmitted. Further, the transmission shaft AR46 is connected to the movable portion LK23 via a gear AR47. Thereby, for example, when the motor MOa4 rotates, the rotation of the motor MOa4 is transmitted to the movable part LK23 via the transmission shaft AR46 and the gear AR47. As a result, the movable portion LK23 rotates about the axis Ax4. Note that since the motor MOa4 is attached to the movable part LK22, even if the movable part LK23 rotates about the axis Ax4, it does not rotate about the axis Ax4. Therefore, in this modification as well, even when the movable portion LK23 rotates about the axis Ax4, it is possible to suppress the disturbance caused by the rotation of the motor MOa4 itself.
 また、本変形例では、リンクLK2b全体の重心が、可動部分LK23が回転する際の軸Ax4上に位置するように、リンクLK2bを構成することができる。この場合、例えば、伸縮機構TE2によるリンクLK2bの伸縮時のリンクLK2bのたわみを抑制することができる。 Furthermore, in this modification, the link LK2b can be configured such that the center of gravity of the entire link LK2b is located on the axis Ax4 when the movable portion LK23 rotates. In this case, for example, it is possible to suppress the deflection of the link LK2b when the link LK2b is expanded or contracted by the expansion mechanism TE2.
 また、本変形例では、リンクLK2bが最大限に収縮した場合でも、ボールねじTE22がモータMOa4と干渉しないように、ボールねじTE22の方向De21に沿う長さが決められる。例えば、可動部分LK22bの方向De21に沿う長さが図2に示した可動部分LK22の方向De21に沿う長さと同じ場合、ボールねじTE22の方向De21に沿う長さは、図2に示したボールねじTE22の方向De21に沿う長さよりも短い。 Furthermore, in this modification, the length of the ball screw TE22 along the direction De21 is determined so that the ball screw TE22 does not interfere with the motor MOa4 even when the link LK2b is contracted to the maximum. For example, if the length of the movable portion LK22b along the direction De21 is the same as the length of the movable portion LK22 along the direction De21 shown in FIG. It is shorter than the length along direction De21 of TE22.
 なお、リンクLK2bの構成は、図9に示す例に限定されない。例えば、可動部分LK22bは、モータMOt2、ナットTE21及びボールねじTE22の構造を工夫することにより、支持部分LK21の外周を覆うように構成されてもよい。この構成では、リンクLK2bが収縮した場合、支持部分LK21の少なくとも一部が、可動部分LK22bに格納されてもよい。また、図3に示したリンクLK1も、リンクLK2bの上述の構成と同様に、可動部分LK12が支持部分LK11の外周を覆い、リンクLK1が収縮した場合に支持部分LK11の少なくとも一部が可動部分LK12に格納されるように、構成されてもよい。 Note that the configuration of link LK2b is not limited to the example shown in FIG. 9. For example, the movable portion LK22b may be configured to cover the outer periphery of the support portion LK21 by devising the structure of the motor MOt2, the nut TE21, and the ball screw TE22. In this configuration, when link LK2b contracts, at least a portion of support portion LK21 may be stored in movable portion LK22b. Further, in the link LK1 shown in FIG. 3, similarly to the above-described structure of the link LK2b, the movable portion LK12 covers the outer periphery of the support portion LK11, and when the link LK1 contracts, at least a portion of the support portion LK11 becomes the movable portion. It may be configured to be stored in LK12.
 また、モータMOa4は、可動部分LK23の内部に配置されてもよい。この場合、モータMOa4の駆動により可動部分LK23を回転させるために、モータMOa4の回転を可動部分LK23に伝達する部分の構成が複雑になるおそれがあるが、ボールねじTE22の方向De21に沿う長さを図9に示す構成よりも長くすることができる。従って、モータMOa4を可動部分LK23の内部に配置した構成では、リンクLK2bの伸縮範囲を図9に示す構成よりも大きくすることができる。 Furthermore, the motor MOa4 may be arranged inside the movable part LK23. In this case, since the movable part LK23 is rotated by the drive of the motor MOa4, the structure of the part that transmits the rotation of the motor MOa4 to the movable part LK23 may become complicated, but the length along the direction De21 of the ball screw TE22 can be made longer than the configuration shown in FIG. Therefore, in the configuration in which the motor MOa4 is disposed inside the movable portion LK23, the expansion/contraction range of the link LK2b can be made larger than in the configuration shown in FIG. 9.
 以上、本変形例においても、上述した第1実施形態と同様の効果を得ることができる。 As described above, the same effects as in the first embodiment described above can be obtained in this modification as well.
[変形例A2]
 上述した実施形態及び変形例では、垂直6軸多関節ロボットに2つの伸縮機構TE1及びTE2を追加した6軸2伸多関節ロボットをロボット10又は10Aとして例示したが、本発明はこのような態様に限定されるものではない。例えば、ロボット10又は10Aは、垂直6軸多関節ロボットに1つの伸縮機構TE2を追加した6軸1伸多関節ロボットであってもよい。
[Modification A2]
In the above-described embodiments and modifications, a 6-axis 2-extensible articulated robot in which two extension mechanisms TE1 and TE2 are added to a vertical 6-axis articulated robot is illustrated as the robot 10 or 10A, but the present invention does not apply to such an aspect. It is not limited to. For example, the robot 10 or 10A may be a 6-axis, 1-extension, multi-joint robot obtained by adding one extension/contraction mechanism TE2 to a vertical 6-axis, multi-joint robot.
 また、例えば、ロボット10又は10Aは、7軸以上の多関節ロボットに2つの伸縮機構TE1及びTE2を追加した構成であってもよいし、7軸以上の多関節ロボットに1つの伸縮機構TE2を追加した構成であってもよい。具体的には、ロボット10又は10Aは、ボディ部BDPとリンクLK1とを接続する1以上のリンクを有してもよい。すなわち、ロボット10又は10Aは、ボディ部BDPとリンクLK3とを接続する3以上のリンク(リンクLK3を除いた3以上のリンク)を有してもよい。なお、ロボット10が有する3以上のリンクには、リンクLK1及びLK2(又はLK2b)が含まれ、ロボット10Aが有する3以上のリンクには、リンクLK1及びLK2aが含まれる。リンクLK3を除いた3以上のリンクは、「複数のリンク」に該当する。 Furthermore, for example, the robot 10 or 10A may have a configuration in which two telescopic mechanisms TE1 and TE2 are added to an articulated robot with seven or more axes, or one telescopic mechanism TE2 is added to an articulated robot with seven or more axes. It may be an additional configuration. Specifically, the robot 10 or 10A may have one or more links connecting the body part BDP and the link LK1. That is, the robot 10 or 10A may have three or more links (three or more links excluding link LK3) that connect the body part BDP and link LK3. Note that the three or more links that the robot 10 has include links LK1 and LK2 (or LK2b), and the three or more links that the robot 10A has include links LK1 and LK2a. Three or more links excluding link LK3 correspond to "multiple links".
 以上、本変形例においても、上述した実施形態及び変形例と同様の効果を得ることができる。 As described above, in this modification as well, the same effects as in the embodiment and modification described above can be obtained.
[B-1.第3実施形態]
 図10を参照しながら、第3実施形態に係るロボットシステム1の概要の一例について説明する。
[B-1. Third embodiment]
An example of the outline of the robot system 1 according to the third embodiment will be described with reference to FIG. 10.
 図10は、第3実施形態に係るロボットシステム1の概要を説明するための説明図である。 FIG. 10 is an explanatory diagram for explaining an overview of the robot system 1 according to the third embodiment.
 ロボットシステム1は、例えば、ロボット10Bと、ロボット10Bに着脱可能に取り付けられるエンドエフェクタ20と、ロボット10B及びエンドエフェクタ20の動作を制御するロボットコントローラ30とを有する。ロボット10Bは、「多関節ロボット」の一例である。 The robot system 1 includes, for example, a robot 10B, an end effector 20 that is detachably attached to the robot 10B, and a robot controller 30 that controls the operations of the robot 10B and the end effector 20. The robot 10B is an example of an "articulated robot."
 ロボット10Bは、図1に示したリンクLK2の代わりにリンクLK2cを有することを除いて、図1に示したロボット10と同様である。リンクLK2cは、「第2リンク」の一例である。従って、リンクLK1及びLK2cは、「複数のリンク」に該当する。以下では、リンクLK2cを中心に説明する。なお、以下では、リンクLK2cをリンクLK2と称する場合がある。 The robot 10B is similar to the robot 10 shown in FIG. 1, except that it has a link LK2c instead of the link LK2 shown in FIG. Link LK2c is an example of a "second link." Therefore, links LK1 and LK2c correspond to "a plurality of links". Below, link LK2c will be mainly explained. In addition, below, link LK2c may be called link LK2.
 リンクLK2cは、例えば、リンクLK2cが延在する方向De2に沿って伸縮可能に構成される。例えば、リンクLK2cは、リンクLK1に接続される支持部分LK21cと、可動部分LK22c及びLK23cと、伸縮機構TE2cと、関節機構AR4cとを含む。可動部分LK22cは、支持部分LK21cと可動部分LK23cとを接続する。可動部分LK23cは、リンクLK3に接続される。本実施形態では、支持部分LK21c、可動部分LK22c及び可動部分LK23cの各々が方向De2に沿って延在する場合を想定する。すなわち、方向De2は、支持部分LK21c、可動部分LK22c及び可動部分LK23cの各々の長手方向に該当する。また、本実施形態では、可動部分LK22cが延在する方向De22が、リンクLK2cが延在する方向De2である場合を想定する。 The link LK2c is configured to be expandable and contractible, for example, along the direction De2 in which the link LK2c extends. For example, the link LK2c includes a support portion LK21c connected to the link LK1, movable portions LK22c and LK23c, a telescoping mechanism TE2c, and a joint mechanism AR4c. Movable portion LK22c connects support portion LK21c and movable portion LK23c. Movable part LK23c is connected to link LK3. In this embodiment, a case is assumed in which each of the support portion LK21c, the movable portion LK22c, and the movable portion LK23c extends along the direction De2. That is, the direction De2 corresponds to the longitudinal direction of each of the supporting portion LK21c, the movable portion LK22c, and the movable portion LK23c. Furthermore, in this embodiment, it is assumed that the direction De22 in which the movable portion LK22c extends is the direction De2 in which the link LK2c extends.
 伸縮機構TE2cは、可動部分LK22cと可動部分LK23cとを接続し、可動部分LK23cを可動部分LK22cに対して、可動部分LK22cが延在する方向De22に沿って移動させる。可動部分LK23cが方向De22に沿って移動することにより、リンクLK2cは、方向De22(すなわち、方向De2)に沿って伸縮する。図10の方向Dm2は、リンクLK2cの伸縮方向(方向De2に沿う方向)を示す。 The telescopic mechanism TE2c connects the movable part LK22c and the movable part LK23c, and moves the movable part LK23c with respect to the movable part LK22c along the direction De22 in which the movable part LK22c extends. As the movable portion LK23c moves along the direction De22, the link LK2c expands and contracts along the direction De22 (namely, the direction De2). Direction Dm2 in FIG. 10 indicates the expansion/contraction direction (direction along direction De2) of link LK2c.
 関節機構AR4cは、支持部分LK21cが延在する方向De21と平行な軸Ax4を回転軸として、可動部分LK22cを支持部分LK21cに対して回転させる。図10の回転方向Dr4は、軸Ax4を回転軸として回転する場合の可動部分LK22cの回転方向を示す。なお、本実施形態では、可動部分LK23cは、可動部分LK22cと一緒に回転するように、可動部分LK22cに接続されている。従って、本実施形態では、関節機構AR4cは、軸Ax4を回転軸として可動部分LK22cを支持部分LK21cに対して回転させることにより、軸Ax4を回転軸として可動部分LK23cを支持部分LK21cに対して回転させる。 The joint mechanism AR4c rotates the movable portion LK22c with respect to the support portion LK21c using an axis Ax4 parallel to the direction De21 in which the support portion LK21c extends as a rotation axis. The rotation direction Dr4 in FIG. 10 indicates the rotation direction of the movable portion LK22c when rotating around the axis Ax4. In addition, in this embodiment, the movable part LK23c is connected to the movable part LK22c so as to rotate together with the movable part LK22c. Therefore, in the present embodiment, the joint mechanism AR4c rotates the movable portion LK22c relative to the support portion LK21c using the axis Ax4 as the rotation axis, and rotates the movable portion LK23c relative to the support portion LK21c using the axis Ax4 as the rotation axis. let
 支持部分LK21cは、「第1部分」の一例であり、可動部分LK22cは、「第3部分」の一例であり、可動部分LK23cは、「第2部分」の一例である。また、関節機構AR4cは、「第7駆動機構」の一例であり、伸縮機構TE2cは、「第3伸縮機構」の一例である。 The supporting portion LK21c is an example of a “first portion,” the movable portion LK22c is an example of a “third portion,” and the movable portion LK23c is an example of a “second portion.” Further, the joint mechanism AR4c is an example of a "seventh drive mechanism," and the telescoping mechanism TE2c is an example of a "third telescoping mechanism."
 このように、本実施形態では、関節機構AR3とリンクLK3を旋回させる関節機構AR5との間に設けられた伸縮機構TE2c及び関節機構AR4cにより、リンクLK2cを伸縮すること、及び、可動部分LK23cを回転させることができる。本実施形態では、伸縮機構TE1及びTE2cにより、ロボット10Bの先端部(例えば、リンクLK3の端面LK3sf)が到達可能な領域を広くすることができ、ロボット10Bに取り付けられるエンドエフェクタ20が到達可能な領域を広くすることができる。 In this way, in this embodiment, the link LK2c is extended and contracted by the extension mechanism TE2c and the joint mechanism AR4c provided between the joint mechanism AR3 and the joint mechanism AR5 that rotates the link LK3, and the movable part LK23c is It can be rotated. In the present embodiment, the expansion and contraction mechanisms TE1 and TE2c can widen the reachable area of the tip of the robot 10B (for example, the end face LK3sf of the link LK3), and the reachable area of the end effector 20 attached to the robot 10B. The area can be expanded.
 次に、図11を参照しながら、関節機構AR4c及び伸縮機構TE2cを含むリンクLK2cの一例について説明する。 Next, with reference to FIG. 11, an example of the link LK2c including the joint mechanism AR4c and the expansion/contraction mechanism TE2c will be described.
 図11は、関節機構AR4c及び伸縮機構TE2cを含むリンクLK2cの一例を説明するための説明図である。図11の上段は、収縮している状態のリンクLK2cを示し、図11の下段は、伸長している状態のリンクLK2cを示している。 FIG. 11 is an explanatory diagram for explaining an example of the link LK2c including the joint mechanism AR4c and the telescopic mechanism TE2c. The upper part of FIG. 11 shows the link LK2c in a contracted state, and the lower part of FIG. 11 shows the link LK2c in an expanded state.
 リンクLK2cは、図10において説明したように、支持部分LK21cと、可動部分LK22c及びLK23cと、伸縮機構TE2cと、関節機構AR4cと、関節機構AR4cを駆動するモータMOa4と、伸縮機構TE2cを駆動するモータMOt2とを含む。可動部分LK22cは、中空である。可動部分LK22cの内部には、伸縮機構TE2cが設けられる。また、モータMOt2は、可動部分LK22cの内部に取り付けられ、モータMOa4は、支持部分LK21cの内部に取り付けられている。モータMOa4は、「第1モータ」の一例であり、モータMOt2は、「第2モータ」の一例である。 As explained in FIG. 10, the link LK2c drives the support portion LK21c, the movable portions LK22c and LK23c, the telescopic mechanism TE2c, the joint mechanism AR4c, the motor MOa4 that drives the joint mechanism AR4c, and the telescopic mechanism TE2c. motor MOt2. Movable portion LK22c is hollow. A telescopic mechanism TE2c is provided inside the movable portion LK22c. Further, the motor MOt2 is attached inside the movable portion LK22c, and the motor MOa4 is attached inside the supporting portion LK21c. Motor MOa4 is an example of a "first motor," and motor MOt2 is an example of a "second motor."
 伸縮機構TE2cは、例えば、可動部分LK23cの2つの端部のうちの支持部分LK21cから近い端部に固定されたナットTE21と、方向De22に沿って延在し、ナットTE21に挿通されるボールねじTE22とを含む。ボールねじTE22は、例えば、ボールねじTE22の中心軸が可動部分LK22cの中心軸と一致するように、モータMOt2に取り付けられている。そして、ボールねじTE22は、モータMOt2の回転に伴い、軸Axte2を回転軸として回転する。軸Axte2は、例えば、ボールねじTE22の中心軸である。ナットTE21は、ボールねじTE22の回転に伴い、軸Axte2に沿って移動する。ナットTE21が可動部分LK23cに固定されているため、可動部分LK23cは、ナットTE21の移動に伴い、軸Axte2(すなわち、方向De22)に沿って移動する。このように、ボールねじTE22は、可動部分LK23cを移動可能に支持する。 The telescopic mechanism TE2c includes, for example, a nut TE21 fixed to one of the two ends of the movable part LK23c that is closer to the support part LK21c, and a ball screw extending along the direction De22 and inserted into the nut TE21. TE22. The ball screw TE22 is attached to the motor MOt2, for example, so that the center axis of the ball screw TE22 coincides with the center axis of the movable portion LK22c. The ball screw TE22 rotates about the axis Axte2 as the motor MOt2 rotates. The axis Axte2 is, for example, the central axis of the ball screw TE22. The nut TE21 moves along the axis Axte2 as the ball screw TE22 rotates. Since the nut TE21 is fixed to the movable portion LK23c, the movable portion LK23c moves along the axis Axte2 (ie, the direction De22) as the nut TE21 moves. In this way, the ball screw TE22 movably supports the movable portion LK23c.
 なお、可動部分LK23cは、ボールねじTE22を格納可能に構成される。また、例えば、可動部分LK23cの中心軸は、ボールねじTE22の中心軸、すなわち、軸Axte2と同じ軸である。また、可動部分LK23cは、ボールねじTE22が回転した場合でも、軸Axte2を回転軸として回転しないように、可動部分LK22cに接続される。これにより、可動部分LK23cに固定されたナットTE21が、上述したように、ボールねじTE22の回転に伴い、軸Axte2に沿って移動する。 Note that the movable portion LK23c is configured to be able to store the ball screw TE22. Further, for example, the central axis of the movable portion LK23c is the same axis as the central axis of the ball screw TE22, that is, the axis Axte2. Furthermore, the movable portion LK23c is connected to the movable portion LK22c so as not to rotate about the axis Axte2 even when the ball screw TE22 rotates. As a result, the nut TE21 fixed to the movable portion LK23c moves along the axis Axte2 as the ball screw TE22 rotates, as described above.
 モータMOt2の回転方向を切り替えることにより、ナットTE21の移動方向、すなわち、可動部分LK23cの移動方向が、方向Dm2pと方向Dm2mとの間で切り替わる。例えば、モータMOt2の回転が第1の回転方向の回転である場合、ナットTE21は、方向Dm2pに移動し、モータMOt2の回転が第1の回転方向の回転に対して逆回転となる第2の回転方向の回転である場合、ナットTE21は、方向Dm2mに移動する。 By switching the rotational direction of the motor MOt2, the moving direction of the nut TE21, that is, the moving direction of the movable portion LK23c, is switched between the direction Dm2p and the direction Dm2m. For example, when the motor MOt2 rotates in the first rotational direction, the nut TE21 moves in the direction Dm2p, and the motor MOt2 rotates in the second rotational direction in the opposite direction to the first rotational direction. In the case of rotation in the rotational direction, the nut TE21 moves in the direction Dm2m.
 例えば、可動部分LK23cが可動部分LK22cの内部に格納された状態において、ロボットコントローラ30がモータMOt2を第1の回転方向に回転させた場合、ナットTE21の移動に伴い、可動部分LK23cは、可動部分LK22cから徐々に突出する。これにより、リンクLK2cは、方向Dm2pに伸長する。図11に示す例では、リンクLK2cは、最大で、可動部分LK23cの長さとほぼ同じ長さだけ伸長する。また、可動部分LK23cが可動部分LK22cから突出している状態において、ロボットコントローラ30がモータMOt2を第2の回転方向に回転させた場合、ナットTE21の移動に伴い、可動部分LK23cは、可動部分LK22cの内部に徐々に格納される。これにより、リンクLK2cは、方向Dm2mに収縮する。このように、リンクLK2cが収縮した場合、可動部分LK23cの少なくとも一部が可動部分LK22cの内部に格納される。 For example, when the robot controller 30 rotates the motor MOt2 in the first rotation direction in a state where the movable part LK23c is stored inside the movable part LK22c, as the nut TE21 moves, the movable part LK23c Gradually protrudes from LK22c. As a result, link LK2c extends in direction Dm2p. In the example shown in FIG. 11, the link LK2c extends at most by approximately the same length as the length of the movable portion LK23c. Further, when the robot controller 30 rotates the motor MOt2 in the second rotation direction in a state where the movable part LK23c protrudes from the movable part LK22c, as the nut TE21 moves, the movable part LK23c It is gradually stored inside. As a result, link LK2c contracts in direction Dm2m. In this manner, when link LK2c contracts, at least a portion of movable portion LK23c is stored inside movable portion LK22c.
 なお、モータMOt2は、可動部分LK23cを方向Dm2p又はDm2mに移動させる伸縮動作が伸縮機構TE2cにより行われた場合でも方向Dm2に移動しないように、可動部分LK22cの2つの端部のうちの支持部分LK21cに近い端部に取り付けられている。すなわち、モータMOt2は、可動部分LK23cが方向Dm2p又はDm2mに移動した場合でも方向Dm2に移動しないように、可動部分LK22cの2つの端部のうちの支持部分LK21cに近い端部に取り付けられている。 Note that the motor MOt2 is connected to the support portion of the two ends of the movable portion LK22c so that the movable portion LK23c does not move in the direction Dm2 even when the telescopic mechanism TE2c performs a telescopic operation to move the movable portion LK23c in the direction Dm2p or Dm2m. It is attached to the end near LK21c. That is, the motor MOt2 is attached to one of the two ends of the movable portion LK22c that is closer to the support portion LK21c so that the movable portion LK23c does not move in the direction Dm2 even if the movable portion LK23c moves in the direction Dm2p or Dm2m. .
 関節機構AR4cは、例えば、支持部分LK21cの2つの端部のうちの可動部分LK22cに近い端部(すなわち、支持部分LK21cと可動部分LK22cとの境界付近)に取り付けられる。例えば、関節機構AR4cは、モータ固定部分AR48、伝達軸AR46及びギアAR47を有する。 The joint mechanism AR4c is attached to, for example, one of the two ends of the support portion LK21c that is closer to the movable portion LK22c (that is, near the boundary between the support portion LK21c and the movable portion LK22c). For example, the joint mechanism AR4c includes a motor fixed portion AR48, a transmission shaft AR46, and a gear AR47.
 支持部分LK21cの2つの端部のうちの可動部分LK22cに近い端部に設けられたモータ固定部分AR48には、支持部分LK21cの内部に配置されたモータMOa4が固定される。このように、モータMOa4は、支持部分LK21cに固定されているため、伸縮機構TE2cによる伸縮動作が行われた場合でも方向Dm2に移動しない。 A motor MOa4 disposed inside the support portion LK21c is fixed to a motor fixed portion AR48 provided at the end closer to the movable portion LK22c of the two ends of the support portion LK21c. In this way, since the motor MOa4 is fixed to the support portion LK21c, it does not move in the direction Dm2 even when the expansion and contraction mechanism TE2c performs an expansion and contraction operation.
 伝達軸AR46は、モータMOa4の回転が伝達されるように、モータMOa4に取り付けられる。さらに、伝達軸AR46は、ギアAR47を介して可動部分LK22cと連結している。これにより、例えば、モータMOa4が回転した場合、伝達軸AR46及びギアAR47を介して、可動部分LK22cにモータMOa4の回転が伝達される。この結果、可動部分LK22cは、軸Ax4を回転軸として回転する。なお、モータMOa4は、支持部分LK21cに取り付けられているため、軸Ax4を回転軸として可動部分LK22cを回転させる回転動作が関節機構AR4cにより行われた場合でも、軸Ax4を回転軸として回転することはない。従って、本実施形態では、可動部分LK22cが軸Ax4を回転軸として回転した場合でも、モータMOa4自体の回転に伴う外乱が発生することを抑制することができる。 The transmission shaft AR46 is attached to the motor MOa4 so that the rotation of the motor MOa4 is transmitted. Further, the transmission shaft AR46 is connected to the movable portion LK22c via a gear AR47. Thereby, for example, when the motor MOa4 rotates, the rotation of the motor MOa4 is transmitted to the movable part LK22c via the transmission shaft AR46 and the gear AR47. As a result, the movable portion LK22c rotates about the axis Ax4. In addition, since the motor MOa4 is attached to the support part LK21c, even if the joint mechanism AR4c performs a rotation operation of rotating the movable part LK22c with the axis Ax4 as the rotation axis, it cannot rotate with the axis Ax4 as the rotation axis. There isn't. Therefore, in the present embodiment, even when the movable portion LK22c rotates about the axis Ax4, it is possible to suppress the disturbance caused by the rotation of the motor MOa4 itself.
 ここで、例えば、関節機構AR4cによる回転動作では、関節機構AR2、AR3又はAR5による旋回動作に比べて、外部からの振動等の外乱が回転動作における偏心及び速度制御に与える影響が、大きくなる。なお、本実施形態では、関節機構AR4cによる回転動作、又は、伸縮機構TE2cによる伸縮動作が行われた場合でも、可動部分LK22cに対するモータMOa4及び関節機構AR4cの相対的な位置は変化しない。このため、本実施形態では、関節機構AR4cによる回転動作に影響を与える外乱の発生を抑制することができ、関節機構AR4cによる回転動作を精度よく制御することができる。すなわち、本実施形態では、ロボット10Bを精度よく制御することができる。 Here, for example, in the rotational movement by the joint mechanism AR4c, the influence of disturbances such as external vibrations on eccentricity and speed control in the rotational movement is greater than in the turning movement by the joint mechanisms AR2, AR3, or AR5. In this embodiment, even if the rotational movement by the joint mechanism AR4c or the telescopic movement by the telescopic mechanism TE2c is performed, the relative positions of the motor MOa4 and the joint mechanism AR4c with respect to the movable portion LK22c do not change. Therefore, in this embodiment, it is possible to suppress the occurrence of disturbances that affect the rotational movement of the joint mechanism AR4c, and it is possible to accurately control the rotational movement of the joint mechanism AR4c. That is, in this embodiment, the robot 10B can be controlled with high precision.
 また、本実施形態では、関節機構AR4cにより可動部分LK22cが回転する場合の可動部分LK22cの回転軸は、可動部分LK23cの中心軸と平行である。例えば、リンクLK2cは、可動部分LK23cが移動する際の軸Axte2(ボールねじTE22、可動部分LK22c及び可動部分LK23cの各々の中心軸)が、可動部分LK22cが回転する際の軸Ax4と同じ軸又はほぼ同じ軸になるように、構成されている。これにより、本実施形態では、可動部分LK22cが軸Ax4を回転軸として回転している最中に、可動部分LK23cを軸Axte2に沿って移動させた場合でも、リンクLK2c全体のたわみ及び偏心等を抑制することができる。この結果、本実施形態では、ロボット10Bを精度よく制御することができる。また、本実施形態では、可動部分LK22c及びLK23cの重心が、可動部分LK22cが回転する際の軸Ax4上に位置するように、リンクLK2cを構成することが好ましい。この場合、可動部分LK22c及びLK23cが軸Ax4を回転軸として回転する際に生ずる慣性を小さくすることができ、リンクLK2c全体のたわみ及び偏心等をさらに抑制することができる。 Furthermore, in this embodiment, when the movable portion LK22c is rotated by the joint mechanism AR4c, the rotation axis of the movable portion LK22c is parallel to the central axis of the movable portion LK23c. For example, in the link LK2c, the axis Axte2 (the central axis of each of the ball screw TE22, the movable part LK22c, and the movable part LK23c) when the movable part LK23c moves is the same axis as the axis Ax4 when the movable part LK22c rotates, or They are configured to have almost the same axis. As a result, in this embodiment, even if the movable part LK23c is moved along the axis Axte2 while the movable part LK22c is rotating about the axis Ax4, the deflection and eccentricity of the entire link LK2c can be prevented. Can be suppressed. As a result, in this embodiment, the robot 10B can be controlled with high precision. Further, in the present embodiment, it is preferable that the link LK2c is configured such that the center of gravity of the movable parts LK22c and LK23c is located on the axis Ax4 when the movable part LK22c rotates. In this case, the inertia that occurs when the movable parts LK22c and LK23c rotate about the axis Ax4 can be reduced, and the deflection and eccentricity of the entire link LK2c can be further suppressed.
 また、本実施形態では、リンクLK2cの伸縮は、可動部分LK22cに対して可動部分LK23cが軸Axte2に沿って移動することにより実現され、リンクLK2cの回転は、可動部分LK22cが軸Ax4を回転軸として回転することにより実現される。このように、本実施形態では、リンクLK2cの伸縮及び回転を行う際の制御対象が可動部分LK22cと可動部分LK23cとに分離されているため、リンクLK2cを動かすためのモータMOt2及びMOa4の制御が煩雑になることを抑制することができる。 Further, in this embodiment, the expansion and contraction of the link LK2c is realized by moving the movable part LK23c along the axis Axte2 with respect to the movable part LK22c, and the rotation of the link LK2c is achieved by moving the movable part LK22c around the axis Ax4 as the rotation axis. This is achieved by rotating as . In this way, in this embodiment, the objects to be controlled when extending, contracting and rotating the link LK2c are separated into the movable portion LK22c and the movable portion LK23c, so that the control of the motors MOt2 and MOa4 for moving the link LK2c is difficult. Complications can be suppressed.
 また、本実施形態では、可動部分LK22c及びLK23cの方向De2に沿う長さ(長手方向の長さ)をある程度長く(例えば、可動部分LK22cの径よりも長く)することにより、可動部分LK22c及びLK23cの重量を大きくしている。これにより、本実施形態では、可動部分LK22c及びLK23cの固有振動周波数を小さくすることができる。この結果、本実施形態では、リンクLK3に取り付けられたエンドエフェクタ20による作業の最中に発生する振動を吸収することができ、リンクLK3及びエンドエフェクタ20の振動を抑制することができる。また、本実施形態では、可動部分LK22c及びLK23cの固有振動周波数が小さいため、ロボット10Bのうちの関節機構AR5から土台部BSPまでの部分における振動がリンクLK3及びエンドエフェクタ20に伝搬することを抑制することができる。例えば、ロボットシステム1では、リンクLK1及びLK2cを伸縮中又は伸長した状態でのリンクLK3及びエンドエフェクタ20の動作精度が重要になる場合がある。この場合、可動部分LK22c及びLK23cの方向De2に沿う長さ、及び、可動部分LK22c及びLK23cの重量をある程度大きくすることが重要である。 Furthermore, in the present embodiment, the length (longitudinal length) of the movable parts LK22c and LK23c along the direction De2 is made long to a certain extent (for example, longer than the diameter of the movable part LK22c), so that the movable parts LK22c and LK23c is increasing the weight. Thereby, in this embodiment, the natural vibration frequency of the movable parts LK22c and LK23c can be reduced. As a result, in this embodiment, vibrations generated during work by the end effector 20 attached to the link LK3 can be absorbed, and vibrations of the link LK3 and the end effector 20 can be suppressed. Furthermore, in this embodiment, since the natural vibration frequencies of the movable parts LK22c and LK23c are small, vibrations in the portion of the robot 10B from the joint mechanism AR5 to the base part BSP are suppressed from propagating to the link LK3 and the end effector 20. can do. For example, in the robot system 1, the operational accuracy of the link LK3 and the end effector 20 while the links LK1 and LK2c are being extended, contracted or extended may be important. In this case, it is important to increase the length of the movable parts LK22c and LK23c along the direction De2 and the weight of the movable parts LK22c and LK23c to some extent.
 なお、リンクLK2cの構成は、図11に示す例に限定されない。例えば、リンクLK2cが最大限に収縮した場合に、可動部分LK23cの一部が可動部分LK22cの内部に格納されずに、可動部分LK22cから露出していてもよい。また、例えば、可動部分LK23cは、モータMOt2、ナットTE21及びボールねじTE22の構造を工夫することにより、可動部分LK22cの外周を覆うように構成されてもよい。この構成では、リンクLK2cが収縮した場合、可動部分LK22cの少なくとも一部が、可動部分LK23cに格納されてもよい。また、モータMOa4は、支持部分LK21cの外部に配置されてもよい。 Note that the configuration of link LK2c is not limited to the example shown in FIG. 11. For example, when the link LK2c is contracted to the maximum, a part of the movable portion LK23c may not be stored inside the movable portion LK22c, but may be exposed from the movable portion LK22c. Further, for example, the movable portion LK23c may be configured to cover the outer periphery of the movable portion LK22c by devising the structure of the motor MOt2, the nut TE21, and the ball screw TE22. In this configuration, when link LK2c contracts, at least a portion of movable portion LK22c may be stored in movable portion LK23c. Further, the motor MOa4 may be arranged outside the support portion LK21c.
 ここで、ロボット10Bにおいても、リンクLK1及びLK2cが伸縮可能であるため、図4において説明した効果が得られる。 Here, also in the robot 10B, since the links LK1 and LK2c are extendable and retractable, the effect described in FIG. 4 can be obtained.
 また、本実施形態に係るロボットコントローラ30のハードウェア構成は、図5の説明におけるロボット10、関節機構AR4及び伸縮機構TE2を、ロボット10B、関節機構AR4c及び伸縮機構TE2cにそれぞれ読み替えることにより説明される。 Further, the hardware configuration of the robot controller 30 according to the present embodiment will be explained by replacing the robot 10, joint mechanism AR4, and telescoping mechanism TE2 in the description of FIG. 5 with the robot 10B, joint mechanism AR4c, and telescoping mechanism TE2c. Ru.
 以上、本実施形態では、ロボット10Bは、ボディ部BDPと、リンクLK3と、ボディ部BDPとリンクLK3とを接続する複数のリンクLK1及びLK2cと、関節機構AR3と、関節機構AR5とを有する。関節機構AR3は、リンクLK1とリンクLK2cとを接続し、リンクLK1が延在する方向De1とのなす角度が所定の角度より大きい軸Ax3を第1回転軸としてリンクLK2cをリンクLK1に対して回転させる。関節機構AR5は、リンクLK2cとリンクLK3とを接続し、リンクLK2cが延在する方向De2とのなす角度が所定の角度より大きい軸Ax5を第2回転軸としてリンクLK3をリンクLK2cに対して回転させる。リンクLK2cは、リンクLK1に接続される支持部分LK21cと、リンクLK3に接続される可動部分LK23cと、支持部分LK21cと可動部分LK23cとを接続する可動部分LK22cと、関節機構AR4cと、伸縮機構TE2cとを有する。関節機構AR4cは、支持部分LK21cが延在する方向De21とのなす角度が所定の角度以下の軸Ax4を第3回転軸として、可動部分LK22cを支持部分LK21cに対して回転させる。伸縮機構TE2cは、可動部分LK22cに対して可動部分LK23cを可動部分LK22cの延在方向(方向De22)に沿って移動させることにより、リンクLK2cを伸縮させる。 As described above, in this embodiment, the robot 10B includes a body part BDP, a link LK3, a plurality of links LK1 and LK2c that connect the body part BDP and the link LK3, a joint mechanism AR3, and a joint mechanism AR5. The joint mechanism AR3 connects the link LK1 and the link LK2c, and rotates the link LK2c with respect to the link LK1 using an axis Ax3, which makes an angle larger than a predetermined angle with the direction De1 in which the link LK1 extends, as a first rotation axis. let The joint mechanism AR5 connects the link LK2c and the link LK3, and rotates the link LK3 with respect to the link LK2c using an axis Ax5, which makes an angle larger than a predetermined angle with the direction De2 in which the link LK2c extends, as a second rotation axis. let The link LK2c includes a supporting portion LK21c connected to the link LK1, a movable portion LK23c connected to the link LK3, a movable portion LK22c connecting the supporting portion LK21c and the movable portion LK23c, a joint mechanism AR4c, and a telescopic mechanism TE2c. and has. The joint mechanism AR4c rotates the movable portion LK22c with respect to the support portion LK21c using an axis Ax4, which forms an angle equal to or less than a predetermined angle with the direction De21 in which the support portion LK21c extends, as a third rotation axis. The expansion/contraction mechanism TE2c expands/contracts the link LK2c by moving the movable part LK23c with respect to the movable part LK22c along the extending direction (direction De22) of the movable part LK22c.
 このように、本実施形態では、伸縮機構TE2cにより、リンクLK2cが伸縮する。このため、本実施形態では、ロボット10Bの全体が大きくなることを抑制しつつ、ロボット10Bの先端部(例えば、リンクLK3)が到達可能な領域を広くすることができる。これにより、本実施形態では、大型のロボットを設置するためのスペースを確保できない狭い場所にも、ロボット10Bを設置することができる。すなわち、本実施形態では、狭い場所で用いられるロボット10Bにおいても、ロボット10Bの先端部(例えば、リンクLK3)が到達可能な領域を広くすることができる。 In this way, in this embodiment, the link LK2c is expanded and contracted by the expansion and contraction mechanism TE2c. Therefore, in this embodiment, it is possible to widen the area that the tip of the robot 10B (for example, the link LK3) can reach while suppressing the overall size of the robot 10B. Thereby, in this embodiment, the robot 10B can be installed even in a narrow place where space for installing a large robot cannot be secured. That is, in this embodiment, even in the robot 10B used in a narrow place, the area that the tip (for example, the link LK3) of the robot 10B can reach can be widened.
 また、本実施形態では、リンクLK2cの可動部分LK22cの回転が関節機構AR4cにより行われ、リンクLK2cの伸縮が伸縮機構TE2cにより行われる。このため、本実施形態では、リンクLK2cの可動部分LK22cの回転及びリンクLK2cの伸縮の制御が煩雑になることを抑制することができる。 Furthermore, in this embodiment, the rotation of the movable portion LK22c of the link LK2c is performed by the joint mechanism AR4c, and the expansion and contraction of the link LK2c is performed by the expansion and contraction mechanism TE2c. Therefore, in this embodiment, it is possible to suppress the rotation of the movable portion LK22c of the link LK2c and the control of the expansion and contraction of the link LK2c from becoming complicated.
 また、本実施形態では、可動部分LK22cは、中空である。リンクLK2cが収縮した場合、可動部分LK23cの少なくとも一部が、可動部分LK22cの内部に格納される。これにより、本実施形態では、リンクLK2cの伸縮を簡易な構成で実現することができる。 Furthermore, in this embodiment, the movable portion LK22c is hollow. When link LK2c contracts, at least a portion of movable portion LK23c is stored inside movable portion LK22c. Thereby, in this embodiment, expansion and contraction of the link LK2c can be realized with a simple configuration.
 また、本実施形態では、ロボット10Bは、関節機構AR4cを駆動するモータMOa4と、伸縮機構TE2cを駆動するモータMOt2とをさらに含む。モータMOa4は、リンクLK2cが伸縮した場合でもリンクLK2cの伸縮方向(方向Dm2)に移動しないように、かつ、可動部分LK22cが支持部分LK21cに対して回転した場合でも可動部分LK22cの回転方向Dr4に移動しないように、支持部分LK21cの2つの端部のうちの可動部分LK22cに近い端部に取り付けられる。モータMOt2は、リンクLK2cが伸縮した場合でもリンクLK2cの伸縮方向(方向Dm2)に移動しないように、可動部分LK22cの2つの端部のうちの支持部分LK21cに近い端部に取り付けられる。 Furthermore, in this embodiment, the robot 10B further includes a motor MOa4 that drives the joint mechanism AR4c, and a motor MOt2 that drives the telescoping mechanism TE2c. The motor MOa4 is configured not to move in the expansion/contraction direction (direction Dm2) of the link LK2c even when the link LK2c expands or contracts, and in the rotational direction Dr4 of the movable portion LK22c even when the movable portion LK22c rotates with respect to the support portion LK21c. It is attached to one of the two ends of the support part LK21c, which is closer to the movable part LK22c, so as not to move. Motor MOt2 is attached to one of the two ends of movable portion LK22c that is closer to support portion LK21c so that it does not move in the expansion and contraction direction (direction Dm2) of link LK2c even when link LK2c expands and contracts.
 これにより、本実施形態では、関節機構AR4cによる回転動作、又は、伸縮機構TE2cによる伸縮動作が行われた場合でも、可動部分LK22cに対するモータMOa4の相対的な位置は変化しない。このため、本実施形態では、関節機構AR4cによる回転動作に影響を与える外乱の発生を抑制することができ、関節機構AR4cによる回転動作を精度よく制御することができる。すなわち、本実施形態では、ロボット10Bを精度よく制御することができる。また、本実施形態では、モータMOt2が可動部分LK22cに取り付けられるため、可動部分LK23cが方向De22に沿って移動した場合でも、モータMOt2は方向De22に沿って移動しない。このため、本実施形態では、伸縮機構TE2cにより伸縮動作が行われた場合においても、モータMOa4に対するモータMOt2の相対的な位置は、変化しない。この結果、本実施形態では、可動部分LK23cが軸Axte2に沿って移動している最中であっても、軸Ax4を回転軸として可動部分LK22cを安定して回転させることができる。 As a result, in the present embodiment, even if the rotational movement by the joint mechanism AR4c or the telescopic movement by the telescopic mechanism TE2c is performed, the relative position of the motor MOa4 with respect to the movable part LK22c does not change. Therefore, in this embodiment, it is possible to suppress the occurrence of disturbances that affect the rotational movement of the joint mechanism AR4c, and it is possible to accurately control the rotational movement of the joint mechanism AR4c. That is, in this embodiment, the robot 10B can be controlled with high precision. Furthermore, in this embodiment, since the motor MOt2 is attached to the movable portion LK22c, even if the movable portion LK23c moves along the direction De22, the motor MOt2 does not move along the direction De22. Therefore, in the present embodiment, even when the telescoping mechanism TE2c performs a telescoping operation, the relative position of the motor MOt2 with respect to the motor MOa4 does not change. As a result, in this embodiment, even while the movable portion LK23c is moving along the axis Axte2, the movable portion LK22c can be stably rotated about the axis Ax4 as the rotation axis.
 また、本実施形態では、関節機構AR4cにより可動部分LK22cが回転する場合の可動部分LK22cの第3回転軸(軸Ax4)は、可動部分LK23cの中心軸と平行である。これにより、本実施形態では、可動部分LK22cが軸Ax4を回転軸として回転している最中に、可動部分LK23cを方向De22に沿って移動させた場合でも、リンクLK2c全体のたわみ及び偏心等を抑制することができる。この結果、本実施形態では、ロボット10Bを精度よく制御することができる。 Furthermore, in the present embodiment, the third rotation axis (axis Ax4) of the movable portion LK22c when the movable portion LK22c is rotated by the joint mechanism AR4c is parallel to the central axis of the movable portion LK23c. As a result, in this embodiment, even if the movable part LK23c is moved along the direction De22 while the movable part LK22c is rotating about the axis Ax4, the deflection and eccentricity of the entire link LK2c can be prevented. Can be suppressed. As a result, in this embodiment, the robot 10B can be controlled with high precision.
 また、本実施形態では、リンクLK1は、支持部分LK11と、リンクLK2cに接続される可動部分LK13と、支持部分LK11と可動部分LK13とを接続する可動部分LK12と、伸縮機構TE1とを含む。伸縮機構TE1は、支持部分LK11に対して可動部分LK12を支持部分LK11が延在する方向De11に沿って移動させることにより、リンクLK1を伸縮させる。 Furthermore, in the present embodiment, the link LK1 includes a support portion LK11, a movable portion LK13 connected to the link LK2c, a movable portion LK12 that connects the support portion LK11 and the movable portion LK13, and a telescoping mechanism TE1. The expansion mechanism TE1 expands and contracts the link LK1 by moving the movable portion LK12 with respect to the support portion LK11 along the direction De11 in which the support portion LK11 extends.
 このように、本実施形態では、伸縮機構TE1により、リンクLK1が伸縮する。このため、本実施形態では、ロボット10Bの全体が大きくなることを抑制しつつ、ロボット10Bの先端部が到達可能な領域をリンクLK1が伸縮しない形態に比べて広くすることができる。これにより、本実施形態では、例えば、ロボット10Bは、リンクLK1が伸縮しない形態では届かない高い位置に配置された物品GDに対して作業する事が可能となる。また、本実施形態では、ロボット10Bは、伸縮機構TE1により関節機構AR3を高い位置に移動させることにより、棚RKの高い位置で、かつ棚RKの奥に配置された物品GDに対する作業を容易に行うことができる。 In this manner, in this embodiment, the link LK1 is expanded and contracted by the expansion and contraction mechanism TE1. Therefore, in this embodiment, the area that the tip of the robot 10B can reach can be made wider than in the case where the link LK1 does not extend or contract, while suppressing the overall size of the robot 10B. As a result, in this embodiment, for example, the robot 10B can work on the article GD placed at a high position that cannot be reached when the link LK1 does not extend or contract. In addition, in the present embodiment, the robot 10B moves the joint mechanism AR3 to a high position using the telescoping mechanism TE1, thereby easily working on the article GD placed at a high position on the shelf RK and at the back of the shelf RK. It can be carried out.
 また、本実施形態では、支持部分LK11は、中空である。リンクLK1が収縮した場合、可動部分LK12の少なくとも一部が、支持部分LK11の内部に格納される。これにより、本実施形態では、リンクLK1の伸縮を簡易な構成で実現することができる。 Furthermore, in this embodiment, the support portion LK11 is hollow. When the link LK1 is retracted, at least a portion of the movable part LK12 is stored inside the support part LK11. Thereby, in this embodiment, expansion and contraction of the link LK1 can be realized with a simple configuration.
 また、本実施形態では、ロボット10Bは、関節機構AR1と関節機構AR2とをさらに有する。関節機構AR1は、ボディ部BDPの底面BDPbtに垂直な方向Dv1とのなす角度が所定の角度以下の軸Ax1を第4回転軸として、ボディ部BDPの少なくとも一部分を回転させる。関節機構AR2は、ボディ部BDPとリンクLK1とを接続し、ボディ部BDPの底面BDPbtに垂直な方向Dv1とのなす角度が所定の角度より大きい軸Ax2を第5回転軸としてリンクLK1をボディ部BDPに対して回転させる。リンクLK3は、関節機構AR5によりリンクLK3が回転する場合のリンクLKの第2回転軸(軸Ax5)とのなす角度が所定の角度より大きい軸Ax6を第6回転軸として、リンクLK3の少なくとも一部分をリンクLK2cに対して回転させる関節機構AR6を含む。このように、本実施形態に係る発明は、垂直6軸多関節ロボットに適用されてもよい。 Furthermore, in this embodiment, the robot 10B further includes a joint mechanism AR1 and a joint mechanism AR2. The joint mechanism AR1 rotates at least a portion of the body part BDP about an axis Ax1, which has a predetermined angle or less at an angle with a direction Dv1 perpendicular to the bottom surface BDPbt of the body part BDP, as a fourth rotation axis. The joint mechanism AR2 connects the body part BDP and the link LK1, and connects the link LK1 to the body part with an axis Ax2 that is larger than a predetermined angle at an angle with the direction Dv1 perpendicular to the bottom surface BDPbt of the body part BDP as a fifth rotation axis. Rotate against BDP. The link LK3 is configured to rotate at least a portion of the link LK3 by using an axis Ax6 as a sixth rotation axis, which makes an angle with the second rotation axis (axis Ax5) of the link LK that is larger than a predetermined angle when the link LK3 is rotated by the joint mechanism AR5. includes a joint mechanism AR6 that rotates the link LK2c relative to the link LK2c. In this way, the invention according to this embodiment may be applied to a vertical six-axis articulated robot.
 また、本実施形態では、リンクLK1は、ボディ部BDPに接続される支持部分LK11と、リンクLK2cに接続される可動部分LK13と、支持部分LK11と可動部分LK13とを接続する可動部分LK12と、伸縮機構TE1とを含む。伸縮機構TE1は、支持部分LK11に対して可動部分LK12を支持部分LK11が延在する方向De11に沿って移動させることにより、リンクLK1を伸縮させる。このように、本実施形態では、垂直6軸多関節ロボットに2つの伸縮機構を追加することにより、先端部(例えば、リンクLK3)が到達可能な領域を広くしたロボット10Bを簡易に構成することができる。 In the present embodiment, the link LK1 includes a support portion LK11 connected to the body portion BDP, a movable portion LK13 connected to the link LK2c, and a movable portion LK12 connecting the support portion LK11 and the movable portion LK13. It includes an expansion and contraction mechanism TE1. The expansion mechanism TE1 expands and contracts the link LK1 by moving the movable portion LK12 with respect to the support portion LK11 along the direction De11 in which the support portion LK11 extends. As described above, in this embodiment, by adding two expansion and contraction mechanisms to the vertical six-axis articulated robot, it is possible to easily configure the robot 10B in which the reachable area of the tip (for example, link LK3) is widened. I can do it.
 また、本実施形態では、ロボットコントローラ30は、関節機構AR1を駆動するモータMOa1、関節機構AR2を駆動するモータMOa2、関節機構AR3を駆動するモータMOa3、関節機構AR4cを駆動するモータMOa4、関節機構AR5を駆動するモータMOa5、関節機構AR6を駆動するモータMOa6、伸縮機構TE1を駆動するモータMOt1、及び、伸縮機構TE2cを駆動するモータMOt2を制御することにより、ロボット10Bの動作を制御する。このように、本実施形態では、ロボットコントローラ30により、ロボット10Bの動作を容易に制御することができる。 In the present embodiment, the robot controller 30 also includes a motor MOa1 that drives the joint mechanism AR1, a motor MOa2 that drives the joint mechanism AR2, a motor MOa3 that drives the joint mechanism AR3, a motor MOa4 that drives the joint mechanism AR4c, a motor MOa4 that drives the joint mechanism AR4c, a motor MOa2 that drives the joint mechanism AR2, a motor MOa3 that drives the joint mechanism AR3, The operation of the robot 10B is controlled by controlling the motor MOa5 that drives the AR5, the motor MOa6 that drives the joint mechanism AR6, the motor MOt1 that drives the telescoping mechanism TE1, and the motor MOt2 that drives the telescoping mechanism TE2c. In this way, in this embodiment, the robot controller 30 can easily control the operation of the robot 10B.
 また、本実施形態では、ロボットシステム1は、ロボット10Bと、リンクLK3に取り付けられたエンドエフェクタ20と、ロボット10B及びエンドエフェクタ20の動作を制御するロボットコントローラ30とを有する。このように、本実施形態では、全体の大きさが大きくなることを抑制しつつ、先端部(例えば、リンクLK3)が到達可能な領域を広くしたロボット10Bがロボットシステム1に用いられる。このため、本実施形態では、狭い場所においても、ロボットシステム1は、ロボット10Bに近い場所に配置された物品に対する作業、及び、ロボット10Bから遠い場所に配置された物品に対する作業の両方を効率よく行うことができる。例えば、部品を組み付ける、又は、部品を取り除くことを含む物品の製造方法にロボットシステム1が用いられてもよい。この場合、部品を組み付ける、又は、部品を取り除く作業を効率よく実行することができる。 Furthermore, in this embodiment, the robot system 1 includes a robot 10B, an end effector 20 attached to the link LK3, and a robot controller 30 that controls the operations of the robot 10B and the end effector 20. In this manner, in this embodiment, the robot 10B is used in the robot system 1, with the robot 10B having a wider area reachable by the tip (for example, the link LK3) while suppressing the overall size from increasing. Therefore, in this embodiment, even in a narrow space, the robot system 1 can efficiently perform both operations on objects placed near the robot 10B and operations on objects placed far from the robot 10B. It can be carried out. For example, the robot system 1 may be used in an article manufacturing method that includes assembling or removing parts. In this case, the work of assembling parts or removing parts can be performed efficiently.
[B-2.第3実施形態の変形例]
 本発明は、以上に例示した実施形態に限定されない。具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様を併合してもよい。
[B-2. Modification of third embodiment]
The present invention is not limited to the embodiments illustrated above. Specific modes of modification are illustrated below. Two or more aspects arbitrarily selected from the examples below may be combined.
[変形例B1]
 上述した第3実施形態では、モータMOa4が支持部分LK21cの内部に設けられる場合を例示したが、本発明はこのような態様に限定されるものではない。例えば、モータMOa4は、支持部分LK21cの外部に設けられてもよい。
[Modification B1]
In the third embodiment described above, the case where the motor MOa4 is provided inside the support portion LK21c is illustrated, but the present invention is not limited to such an embodiment. For example, motor MOa4 may be provided outside of support portion LK21c.
 図12は、変形例B1に係るリンクLK2の一例を説明するための説明図である。図10及び図11において説明した要素と同様の要素については、同様の符号を付し、詳細な説明を省略する。例えば、図12に示す態様では、ロボット10Bは、図10に示したリンクLK2cの代わりにリンクLK2dを有する。図12の上段は、収縮している状態のリンクLK2dを示し、図12の下段は、伸長している状態のリンクLK2dを示している。リンクLK2dは、「第2リンク」の他の例である。なお、以下では、リンクLK2dをリンクLK2と称する場合がある。 FIG. 12 is an explanatory diagram for explaining an example of link LK2 according to modification B1. Elements similar to those described in FIGS. 10 and 11 are designated by the same reference numerals, and detailed description thereof will be omitted. For example, in the embodiment shown in FIG. 12, the robot 10B has a link LK2d instead of the link LK2c shown in FIG. The upper part of FIG. 12 shows the link LK2d in a contracted state, and the lower part of FIG. 12 shows the link LK2d in an extended state. Link LK2d is another example of a "second link." In addition, below, link LK2d may be called link LK2.
 リンクLK2dは、図11に示した支持部分LK21c及び関節機構AR4c代わりに支持部分LK21d及び関節機構AR4dを有することを除いて、図11に示したリンクLK2cと同様である。支持部分LK21dは、「第1部分」の他の例であり、関節機構AR4dは、「第7駆動機構」の他の例である。図12では、支持部分LK21d及び関節機構AR4dを中心に説明する。 The link LK2d is the same as the link LK2c shown in FIG. 11, except that it has a support portion LK21d and a joint mechanism AR4d instead of the support portion LK21c and joint mechanism AR4c shown in FIG. The support part LK21d is another example of the "first part", and the joint mechanism AR4d is another example of the "seventh drive mechanism". In FIG. 12, the support portion LK21d and the joint mechanism AR4d will be mainly explained.
 リンクLK2dは、支持部分LK21dと、可動部分LK22c及びLK23cと、伸縮機構TE2cと、関節機構AR4dと、モータMOa4と、モータMOt2とを含む。 The link LK2d includes a support portion LK21d, movable portions LK22c and LK23c, a telescoping mechanism TE2c, a joint mechanism AR4d, a motor MOa4, and a motor MOt2.
 関節機構AR4dは、例えば、支持部分LK21dの2つの端部のうちの可動部分LK22cに近い端部(すなわち、支持部分LK21dと可動部分LK22cとの境界付近)に取り付けられる。例えば、関節機構AR4dは、ステーAR41と、モータMOa4の回転が伝達される伝達軸AR42と、プーリAR43及びAR44と、タイミングベルトAR45と、プーリAR44の回転が伝達される伝達軸AR46と、ギアAR47とを有する。 The joint mechanism AR4d is attached to, for example, one of the two ends of the support portion LK21d that is closer to the movable portion LK22c (that is, near the boundary between the support portion LK21d and the movable portion LK22c). For example, the joint mechanism AR4d includes a stay AR41, a transmission shaft AR42 to which the rotation of the motor MOa4 is transmitted, pulleys AR43 and AR44, a timing belt AR45, a transmission shaft AR46 to which the rotation of the pulley AR44 is transmitted, and a gear AR47. and has.
 ステーAR41は、支持部分LK21dの2つの端部のうちの可動部分LK22cに近い端部に、支持部分LK21dから張り出すように取り付けられている。ステーAR41のうち、支持部分LK21dから張り出した部分には、モータMOa4が取り付けられる。すなわち、モータMOa4は、可動部分LK23cが移動しても移動しない支持部分LK21dに、ステーAR41を介して取り付けられる。 The stay AR41 is attached to the end closer to the movable part LK22c of the two ends of the support part LK21d so as to protrude from the support part LK21d. A motor MOa4 is attached to a portion of the stay AR41 that protrudes from the support portion LK21d. That is, the motor MOa4 is attached via the stay AR41 to the support portion LK21d that does not move even if the movable portion LK23c moves.
 また、ステーAR41には、プーリAR43及びAR44が並列に設けられている。例えば、プーリAR43は、伝達軸AR42に取り付けられる。また、プーリAR44は、方向De2からの平面視において、全体が可動部分LK22cと重なるように、配置される。タイミングベルトAR45は、プーリAR43の回転がプーリAR44に伝達されるように、プーリAR43とプーリAR44とを連結する。プーリAR44には、伝達軸AR46が取り付けられている。例えば、伝達軸AR46の中心軸は、軸Ax4に対応する。伝達軸AR46は、ギアAR47を介して可動部分LK22cと連結している。 Furthermore, pulleys AR43 and AR44 are provided in parallel on the stay AR41. For example, pulley AR43 is attached to transmission shaft AR42. Further, the pulley AR44 is arranged so that the entire pulley AR44 overlaps the movable portion LK22c when viewed in plan from the direction De2. Timing belt AR45 connects pulley AR43 and pulley AR44 so that rotation of pulley AR43 is transmitted to pulley AR44. A transmission shaft AR46 is attached to the pulley AR44. For example, the central axis of the transmission shaft AR46 corresponds to the axis Ax4. The transmission shaft AR46 is connected to the movable portion LK22c via a gear AR47.
 これにより、例えば、モータMOa4が回転した場合、伝達軸AR42、プーリAR43、タイミングベルトAR45、プーリAR44、伝達軸AR46、及び、ギアAR47を介して、可動部分LK22cにモータMOa4の回転が伝達される。この結果、可動部分LK22cは、軸Ax4を回転軸として回転する。なお、ステーAR41は、可動部分LK22cに対して回転可能に、支持部分LK21dに取り付けられている。このため、可動部分LK22cが軸Ax4を回転軸として回転した場合でも、モータMOa4及びステーAR41が軸Ax4を回転軸として回転することはない。従って、図12に示す例においても、可動部分LK22cが軸Ax4を回転軸として回転した場合でも、モータMOa4自体は軸Ax4の周りを回転(公転)しないため、回転(公転)に伴う外乱が発生することを抑制することができる。 Thus, for example, when the motor MOa4 rotates, the rotation of the motor MOa4 is transmitted to the movable part LK22c via the transmission shaft AR42, pulley AR43, timing belt AR45, pulley AR44, transmission shaft AR46, and gear AR47. . As a result, the movable portion LK22c rotates about the axis Ax4. Note that the stay AR41 is rotatably attached to the support portion LK21d with respect to the movable portion LK22c. Therefore, even if the movable portion LK22c rotates about the axis Ax4, the motor MOa4 and stay AR41 do not rotate about the axis Ax4. Therefore, even in the example shown in FIG. 12, even if the movable part LK22c rotates about the axis Ax4, the motor MOa4 itself does not rotate (revolution) around the axis Ax4, so disturbances occur due to the rotation (revolution). can be restrained from doing so.
 図12に示す例においても、リンクLK2dは、可動部分LK23cが移動する際の軸Axte2が、可動部分LK22cが回転する際の軸Ax4と同じ軸又はほぼ同じ軸になるように、構成されている。 Also in the example shown in FIG. 12, the link LK2d is configured such that the axis Axte2 along which the movable portion LK23c moves is the same or approximately the same axis as the axis Ax4 when the movable portion LK22c rotates. .
 次に、図13を参照しながら、変形例B1に係るリンクLK2の別の例について説明する。 Next, another example of link LK2 according to modification B1 will be described with reference to FIG. 13.
 図13は、変形例B1に係るリンクLK2の別の例を説明するための説明図である。図10から図12において説明した要素と同様の要素については、同様の符号を付し、詳細な説明を省略する。例えば、図13に示す態様では、ロボット10Bは、図10に示したリンクLK2cの代わりにリンクLK2eを有する。図13の上段は、収縮している状態のリンクLK2eを示し、図13の下段は、伸長している状態のリンクLK2eを示している。リンクLK2eは、「第2リンク」の他の例である。なお、以下では、リンクLK2eをリンクLK2と称する場合がある。 FIG. 13 is an explanatory diagram for explaining another example of link LK2 according to modification B1. Elements similar to those described in FIGS. 10 to 12 are denoted by the same reference numerals, and detailed description thereof will be omitted. For example, in the embodiment shown in FIG. 13, the robot 10B has a link LK2e instead of the link LK2c shown in FIG. The upper part of FIG. 13 shows the link LK2e in a contracted state, and the lower part in FIG. 13 shows the link LK2e in an extended state. Link LK2e is another example of a "second link." In addition, below, link LK2e may be called link LK2.
 リンクLK2eは、図11に示した支持部分LK21c、可動部分LK22c及び関節機構AR4c代わりに支持部分LK21e、可動部分LK22e及び関節機構AR4eを有することを除いて、図11に示したリンクLK2cと同様である。支持部分LK21eは、「第1部分」の他の例であり、可動部分LK22eは、「第3部分」の他の例であり、関節機構AR4eは、「第7駆動機構」の他の例である。図13では、支持部分LK21e、可動部分LK22e及び関節機構AR4eを中心に説明する。 The link LK2e is similar to the link LK2c shown in FIG. 11, except that it has a supporting portion LK21e, a movable portion LK22e, and a joint mechanism AR4e instead of the supporting portion LK21c, movable portion LK22c, and joint mechanism AR4c shown in FIG. be. The support part LK21e is another example of the "first part", the movable part LK22e is another example of the "third part", and the joint mechanism AR4e is another example of the "seventh drive mechanism". be. In FIG. 13, the supporting portion LK21e, the movable portion LK22e, and the joint mechanism AR4e will be mainly described.
 リンクLK2eは、支持部分LK21eと、可動部分LK22e及びLK23cと、伸縮機構TE2cと、関節機構AR4eと、モータMOa4と、モータMOt2とを含む。可動部分LK22eは、中空である。可動部分LK22eの内部には、伸縮機構TE2cが設けられる。伸縮機構TE2cは、図11に示した伸縮機構TE2cと同様である。 The link LK2e includes a support portion LK21e, movable portions LK22e and LK23c, a telescoping mechanism TE2c, a joint mechanism AR4e, a motor MOa4, and a motor MOt2. Movable portion LK22e is hollow. A telescopic mechanism TE2c is provided inside the movable portion LK22e. The telescoping mechanism TE2c is similar to the telescoping mechanism TE2c shown in FIG. 11.
 関節機構AR4eは、例えば、支持部分LK21eの2つの端部のうちの可動部分LK22eに近い端部(すなわち、支持部分LK21eと可動部分LK22eとの境界付近)に取り付けられる。例えば、関節機構AR4eは、ステーAR41eと、モータMOa4の回転が伝達される伝達軸AR42eと、伝達軸AR42eに取り付けられたギアAR47eとを有する。 The joint mechanism AR4e is attached to, for example, one of the two ends of the support portion LK21e that is closer to the movable portion LK22e (that is, near the boundary between the support portion LK21e and the movable portion LK22e). For example, the joint mechanism AR4e includes a stay AR41e, a transmission shaft AR42e to which rotation of the motor MOa4 is transmitted, and a gear AR47e attached to the transmission shaft AR42e.
 ステーAR41eは、支持部分LK21eの2つの端部のうちの可動部分LK22eに近い端部に、可動部分LK22eから張り出すように取り付けられている。ステーAR41eのうち、可動部分LK22eから張り出した部分には、モータMOa4が取り付けられる。すなわち、モータMOa4は、可動部分LK23cが移動しても移動しない支持部分LK21eに、ステーAR41eを介して取り付けられる。 The stay AR41e is attached to the end closer to the movable part LK22e of the two ends of the support part LK21e so as to protrude from the movable part LK22e. A motor MOa4 is attached to a portion of the stay AR41e that protrudes from the movable portion LK22e. That is, the motor MOa4 is attached via the stay AR41e to the support portion LK21e that does not move even if the movable portion LK23c moves.
 また、ステーAR41eには、伝達軸AR42e及びギアAR47eが設けられている。例えば、ギアAR47eは、方向De2からの平面視において、ギアAR47eの中心に伝達軸AR42eが位置するように、伝達軸AR42eに取り付けられる。また、可動部分LK22eの外周には、可動部分LK22eをギアAR47eと噛み合う歯車として動作させるための複数の溝が設けられている。 Furthermore, the stay AR41e is provided with a transmission shaft AR42e and a gear AR47e. For example, the gear AR47e is attached to the transmission shaft AR42e such that the transmission shaft AR42e is located at the center of the gear AR47e when viewed in plan from the direction De2. Furthermore, a plurality of grooves are provided on the outer periphery of the movable portion LK22e to operate the movable portion LK22e as a gear that meshes with the gear AR47e.
 これにより、例えば、モータMOa4が回転した場合、モータMOa4の回転が伝達される伝達軸AR42eの回転に伴い、ギアAR47eが回転し、ギアAR47eの回転に伴い、ギアAR47eと噛み合う可動部分LK22eが回転する。このように、モータMOa4が回転した場合、伝達軸AR42e及びギアAR47eを介して、可動部分LK22eにモータMOa4の回転が伝達される。この結果、可動部分LK22eは、軸Ax4を回転軸として回転する。また、可動部分LK23cは、可動部分LK22eと一緒に回転するように可動部分LK22eと連結されているため、可動部分LK22eと一体的に回転する。 As a result, for example, when the motor MOa4 rotates, the gear AR47e rotates with the rotation of the transmission shaft AR42e to which the rotation of the motor MOa4 is transmitted, and the movable part LK22e that meshes with the gear AR47e rotates with the rotation of the gear AR47e. do. In this way, when the motor MOa4 rotates, the rotation of the motor MOa4 is transmitted to the movable part LK22e via the transmission shaft AR42e and the gear AR47e. As a result, the movable portion LK22e rotates about the axis Ax4. Furthermore, since the movable portion LK23c is connected to the movable portion LK22e so as to rotate together with the movable portion LK22e, the movable portion LK23c rotates integrally with the movable portion LK22e.
 また、モータMOa4は、ステーAR41eを介して支持部分LK21eに取り付けられているため、可動部分LK22e及びLK23cが回転した場合でも、軸Ax4を回転軸として回転することはない。従って、図13に示す例においても、可動部分LK22eが軸Ax4を回転軸として回転した場合でも、モータMOa4自体の回転に伴う外乱が発生することを抑制することができる。 Further, since the motor MOa4 is attached to the support portion LK21e via the stay AR41e, even if the movable portions LK22e and LK23c rotate, the motor MOa4 does not rotate about the axis Ax4 as the rotation axis. Therefore, in the example shown in FIG. 13 as well, even when the movable portion LK22e rotates about the axis Ax4, it is possible to suppress the disturbance caused by the rotation of the motor MOa4 itself.
 なお、図13に示す例においても、リンクLK2eは、可動部分LK23cが移動する際の軸Axte2が、可動部分LK22eが回転する際の軸Ax4と同じ軸又はほぼ同じ軸になるように、構成されている。 In the example shown in FIG. 13 as well, the link LK2e is configured such that the axis Axte2 along which the movable portion LK23c moves is the same or approximately the same axis as the axis Ax4 when the movable portion LK22e rotates. ing.
 図13に示すリンクLK2eでは、モータMOa4の回転を可動部分LK22eに伝達するギアAR47eが可動部分LK22eの外部に設けられるため、ボールねじTE22の方向De22に沿う長さを図11に示したリンクLK2cよりも長くすることができる。従って、図13に示すリンクLK2eでは、リンクLK2eの伸縮範囲を図11に示したリンクLK2cよりも大きくすることができる。なお、例えば、リンクLK2eの伸縮範囲は、リンクLK2eを最大限に収縮した場合のリンクLK2eの方向De2に沿う長さと、リンクLK2eを最大限に伸長した場合のリンクLK2eの方向De2に沿う長さとの差に対応する範囲である。 In the link LK2e shown in FIG. 13, the gear AR47e that transmits the rotation of the motor MOa4 to the movable part LK22e is provided outside the movable part LK22e, so the length of the ball screw TE22 along the direction De22 is the link LK2c shown in FIG. It can be longer than . Therefore, in the link LK2e shown in FIG. 13, the expansion/contraction range of the link LK2e can be made larger than that of the link LK2c shown in FIG. 11. For example, the expansion/contraction range of the link LK2e is the length of the link LK2e along the direction De2 when the link LK2e is contracted to the maximum, and the length of the link LK2e along the direction De2 when the link LK2e is expanded to the maximum. This is the range corresponding to the difference between
 なお、本変形例に係るリンクLK2の構成は、図12及び図13に示す例に限定されない。例えば、図13に示す例において、モータMOt2は、可動部分LK22eの外側で支持部分LK21eの内部に配置されてもよい。この場合においても、ボールねじTE22は、ボールねじTE22の中心軸が可動部分LK22eの中心軸と一致するように、モータMOt2に取り付けられる。また、ボールねじTE22の中心軸が可動部分LK22eの中心軸と一致するようにボールねじTE22をモータMOt2に取り付けることができれば、モータMOt2は、可動部分LK22e及び支持部分LK21eの外側に配置されてもよい。 Note that the configuration of the link LK2 according to this modification is not limited to the example shown in FIGS. 12 and 13. For example, in the example shown in FIG. 13, the motor MOt2 may be arranged outside the movable part LK22e and inside the support part LK21e. Also in this case, the ball screw TE22 is attached to the motor MOt2 so that the center axis of the ball screw TE22 coincides with the center axis of the movable portion LK22e. Furthermore, if the ball screw TE22 can be attached to the motor MOt2 so that the center axis of the ball screw TE22 coincides with the center axis of the movable part LK22e, the motor MOt2 can be placed outside the movable part LK22e and the support part LK21e. good.
 モータMOt2が可動部分LK22eの外側に配置される構成では、例えば、ボールねじTE22は、関節機構AR4eにより可動部分LK22eが回転した場合にナットTE21と一緒にモータMOt2に対して空転するように、モータMOt2に取り付けられる。これにより、可動部分LK23cは、関節機構AR4eにより可動部分LK22e及びLK23cが回転した場合でも、軸Axte2に沿って移動することはない。また、モータMOt2が可動部分LK22eの外側に配置される構成では、ボールねじTE22の方向De22に沿う長さを長くすることができるため、リンクLK2eの伸縮範囲を大きくすることができる。また、モータMOt2が可動部分LK22eの外側に配置される構成では、リンクLK2eが収縮した場合、可動部分LK23cの一部が支持部分LK21eに格納され、可動部分LK23cの他の一部が可動部分LK22eに格納されてもよい。すなわち、モータMOt2が可動部分LK22eの外側に配置される構成では、可動部分LK23cの長さが可動部分LK22eの長さよりも長くてもよい。 In a configuration in which the motor MOt2 is disposed outside the movable portion LK22e, for example, the ball screw TE22 is attached to the motor so that it idles with respect to the motor MOt2 together with the nut TE21 when the movable portion LK22e is rotated by the joint mechanism AR4e. Attached to MOt2. Thereby, the movable portion LK23c does not move along the axis Axte2 even when the movable portions LK22e and LK23c are rotated by the joint mechanism AR4e. Furthermore, in the configuration in which the motor MOt2 is disposed outside the movable portion LK22e, the length of the ball screw TE22 along the direction De22 can be increased, so that the expansion/contraction range of the link LK2e can be increased. Furthermore, in a configuration in which the motor MOt2 is arranged outside the movable portion LK22e, when the link LK2e contracts, a part of the movable part LK23c is stored in the support part LK21e, and another part of the movable part LK23c is moved to the movable part LK22e. may be stored in That is, in a configuration in which the motor MOt2 is disposed outside the movable portion LK22e, the length of the movable portion LK23c may be longer than the length of the movable portion LK22e.
 以上、本変形例においても、上述した第3実施形態と同様の効果を得ることができる。なお、本変形例に係るロボット10Bは、図10に示したリンクLK2cの代わりにリンクLK2d又はLK2eを有することを除いて、図10に示したロボット10Bと同様である。 As described above, the same effects as the third embodiment described above can be obtained in this modification as well. Note that the robot 10B according to this modification is the same as the robot 10B shown in FIG. 10, except that it has a link LK2d or LK2e instead of the link LK2c shown in FIG.
[変形例B2]
 上述した第3実施形態及び変形例では、垂直6軸多関節ロボットに2つの伸縮機構TE1及びTE2cを追加した6軸2伸多関節ロボットをロボット10Bとして例示したが、本発明はこのような態様に限定されるものではない。例えば、ロボット10Bは、垂直6軸多関節ロボットに1つの伸縮機構TE2cを追加した6軸1伸多関節ロボットであってもよい。
[Modification B2]
In the third embodiment and modification described above, a 6-axis 2-extensible articulated robot in which two extension mechanisms TE1 and TE2c were added to a vertical 6-axis articulated robot was exemplified as the robot 10B, but the present invention does not apply to such an aspect. It is not limited to. For example, the robot 10B may be a 6-axis, 1-extension, multi-joint robot obtained by adding one extension/contraction mechanism TE2c to a vertical 6-axis, multi-joint robot.
 また、例えば、ロボット10Bは、7軸以上の多関節ロボットに2つの伸縮機構TE1及びTE2cを追加した構成であってもよいし、7軸以上の多関節ロボットに1つの伸縮機構TE2cを追加した構成であってもよい。具体的には、ロボット10Bは、ボディ部BDPとリンクLK1とを接続する1以上のリンクを有してもよい。すなわち、ロボット10Bは、ボディ部BDPとリンクLK3とを接続する3以上のリンク(リンクLK3を除いた3以上のリンク)を有してもよい。なお、ロボット10Bが有する3以上のリンクには、リンクLK1及びLK2が含まれる。リンクLK3を除いた3以上のリンクは、「複数のリンク」に該当する。 Further, for example, the robot 10B may have a configuration in which two telescopic mechanisms TE1 and TE2c are added to an articulated robot with seven or more axes, or one telescopic mechanism TE2c is added to an articulated robot with seven or more axes. It may be a configuration. Specifically, the robot 10B may have one or more links connecting the body part BDP and the link LK1. That is, the robot 10B may have three or more links (three or more links excluding link LK3) that connect the body part BDP and link LK3. Note that the three or more links that the robot 10B has include links LK1 and LK2. Three or more links excluding link LK3 correspond to "multiple links".
 以上、本変形例においても、上述した第3実施形態及び変形例と同様の効果を得ることができる。 As described above, in this modification as well, the same effects as in the third embodiment and modification described above can be obtained.
[B-3.第3実施形態に係る付記]
 上述した第3実施形態、及び、第3実施形態の変形例の記載から、以下に記載する態様が把握される。
[B-3. Additional notes regarding third embodiment]
From the description of the third embodiment and the modification of the third embodiment described above, the aspects described below can be understood.
[付記1-1]
 多関節ロボットは、基部と、先端部と、第1リンク及び第2リンクを含み、前記基部と前記先端部とを接続する複数のリンクと、前記第1リンクと前記第2リンクとを接続する第1駆動機構であって、前記第1リンクが延在する方向とのなす角度が所定の角度より大きい軸を第1回転軸として前記第2リンクを前記第1リンクに対して回転させる第1駆動機構と、前記第2リンクと、前記複数のリンクのうちの前記第1リンク及び前記第2リンク以外のリンクとを接続、又は、前記第2リンクと前記先端部とを接続する第2駆動機構であって、前記第2リンクが延在する方向とのなす角度が前記所定の角度より大きい軸を第2回転軸として前記先端部を前記第2リンクに対して回転させる第2駆動機構と、を備え、前記第2リンクは、前記第1リンクに接続される第1部分と、前記複数のリンクのうちの前記第1リンク及び前記第2リンク以外のリンク又は前記先端部に接続される第2部分と、前記第1部分と前記第2部分とを接続する第3部分と、前記第1部分が延在する方向とのなす角度が前記所定の角度以下の軸を第3回転軸として、前記第3部分を前記第1部分に対して回転させる第7駆動機構と、前記第3部分に対して前記第2部分を前記第3部分の延在方向に沿って移動させることにより、前記第2リンクを伸縮させる第3伸縮機構と、を含む、ことを特徴とする。
[Appendix 1-1]
The articulated robot includes a base, a tip, a first link, and a second link, and includes a plurality of links connecting the base and the tip, and connecting the first link and the second link. A first drive mechanism that rotates the second link relative to the first link using an axis that makes an angle larger than a predetermined angle with the direction in which the first link extends as a first rotation axis. a drive mechanism, a second drive that connects the second link and links other than the first link and the second link among the plurality of links, or connects the second link and the tip portion; a second drive mechanism that rotates the tip with respect to the second link using an axis that makes an angle with the direction in which the second link extends larger than the predetermined angle as a second rotation axis; , wherein the second link is connected to a first portion connected to the first link and a link other than the first link and the second link among the plurality of links or to the tip portion. The third rotation axis is an axis where the angle between the second part, the third part connecting the first part and the second part, and the direction in which the first part extends is equal to or less than the predetermined angle. , a seventh drive mechanism that rotates the third portion relative to the first portion; and a seventh drive mechanism that moves the second portion relative to the third portion along the extending direction of the third portion. It is characterized by including a third expansion and contraction mechanism that expands and contracts the second link.
[付記1-2]
 付記1-1に記載の多関節ロボットにおいて、前記第3部分は、中空であり、前記第2リンクが収縮した場合、前記第2部分の少なくとも一部が、前記第3部分の内部に格納される、ことを特徴としてもよい。
[Appendix 1-2]
In the articulated robot according to Appendix 1-1, the third portion is hollow, and when the second link contracts, at least a portion of the second portion is stored inside the third portion. It may also be characterized by
[付記1-3]
 付記1-1又は付記1-2に記載の多関節ロボットにおいて、前記第7駆動機構を駆動する第1モータと、前記第3伸縮機構を駆動する第2モータと、をさらに含み、前記第1モータは、前記第2リンクが伸縮した場合でも前記第2リンクに対して前記第2リンクの伸縮方向に相対的に移動しないように、前記第1部分の2つの端部のうちの前記第3部分に近い端部に取り付けられ、前記第2モータは、前記第2リンクが伸縮した場合でも前記第2リンクに対して前記第2リンクの伸縮方向に相対的に移動しないように、前記第3部分の2つの端部のうちの前記第1部分に近い端部に取り付けられる、ことを特徴としてもよい。
[Appendix 1-3]
The articulated robot according to Appendix 1-1 or Appendix 1-2, further comprising a first motor that drives the seventh drive mechanism and a second motor that drives the third telescoping mechanism, The motor is configured to move the third end of the two ends of the first portion so that it does not move relative to the second link in the direction of expansion and contraction of the second link even when the second link expands and contracts. The second motor is attached to an end close to the third link so that it does not move relative to the second link in the direction of expansion and contraction of the second link even when the second link expands and contracts. It may be characterized in that it is attached to one of the two ends of the part that is closer to the first part.
[付記1-4]
 付記1-3に記載の多関節ロボットにおいて、前記第7駆動機構により前記第3部分が回転する場合の前記第3部分の第3回転軸は、前記第2部分の中心軸と平行である、ことを特徴としてもよい。
[Appendix 1-4]
In the articulated robot according to Appendix 1-3, a third rotation axis of the third portion when the third portion is rotated by the seventh drive mechanism is parallel to a central axis of the second portion. This may be a feature.
[付記1-5]
 付記1-1又は付記1-2に記載の多関節ロボットにおいて、前記第1リンクは、第4部分と、前記第2リンクに接続される第5部分と、前記第4部分と前記第5部分とを接続する第6部分と、前記第4部分に対して前記第6部分を前記第4部分が延在する方向に沿って移動させることにより、前記第1リンクを伸縮させる第2伸縮機構と、を含む、ことを特徴としてもよい。
[Appendix 1-5]
In the articulated robot according to Appendix 1-1 or Appendix 1-2, the first link includes a fourth portion, a fifth portion connected to the second link, and the fourth portion and the fifth portion. a second extension mechanism that extends and contracts the first link by moving the sixth part with respect to the fourth part along the direction in which the fourth part extends; It may be characterized by including.
[付記1-6]
 付記1-5に記載の多関節ロボットにおいて、前記第4部分は、中空であり、前記第1リンクが収縮した場合、前記第6部分の少なくとも一部が、前記第4部分の内部に格納される、ことを特徴としてもよい。
[Appendix 1-6]
In the articulated robot according to appendix 1-5, the fourth portion is hollow, and when the first link contracts, at least a portion of the sixth portion is stored inside the fourth portion. It may also be characterized by
[付記1-7]
 付記1-1に記載の多関節ロボットにおいて、前記基部の底面に垂直な方向とのなす角度が前記所定の角度以下の軸を第4回転軸として、前記基部の少なくとも一部分を回転させる第4駆動機構と、前記基部と前記第1リンクとを接続する第5駆動機構であって、前記基部の底面に垂直な方向とのなす角度が前記所定の角度より大きい軸を第5回転軸として前記第1リンクを前記基部に対して回転させる第5駆動機構と、をさらに備え、前記先端部は、前記第2リンクに接続され、前記第2駆動機構により前記先端部が回転する場合の前記先端部の第2回転軸とのなす角度が前記所定の角度より大きい軸を第6回転軸として、前記先端部の少なくとも一部分を前記第2リンクに対して回転させる第6駆動機構を、含み、前記複数のリンクは、前記第1リンク及び前記第2リンクである、ことを特徴としてもよい。
[Appendix 1-7]
In the articulated robot according to Supplementary Note 1-1, a fourth drive for rotating at least a portion of the base about an axis having an angle less than or equal to the predetermined angle with a direction perpendicular to the bottom surface of the base; a fifth drive mechanism that connects the base and the first link, the fifth rotation axis being an axis that is larger than the predetermined angle with a direction perpendicular to the bottom surface of the base; a fifth drive mechanism that rotates the first link relative to the base; the distal end is connected to the second link, and the distal end is rotated by the second drive mechanism; a sixth drive mechanism that rotates at least a portion of the distal end with respect to the second link using an axis that makes an angle larger than the predetermined angle with the second rotation axis as a sixth rotation axis; The links may be the first link and the second link.
[付記1-8]
 付記1-7に記載の多関節ロボットにおいて、前記第1リンクは、前記基部に接続される第4部分と、前記第2リンクに接続される第5部分と、前記第4部分と前記第5部分とを接続する第6部分と、前記第4部分に対して前記第6部分を前記第4部分が延在する方向に沿って移動させることにより、前記第1リンクを伸縮させる第2伸縮機構と、を含む、ことを特徴としてもよい。
[Appendix 1-8]
In the articulated robot according to appendix 1-7, the first link includes a fourth portion connected to the base, a fifth portion connected to the second link, and the fourth portion and the fifth portion. a second extension mechanism that extends and contracts the first link by moving the sixth part with respect to the fourth part along the direction in which the fourth part extends; It may be characterized by including.
[付記1-9]
 付記1-8に記載の多関節ロボットの制御方法であって、前記多関節ロボットの動作を制御する制御装置は、前記第1駆動機構を駆動するモータ、前記第2駆動機構を駆動するモータ、前記第7駆動機構を駆動するモータ、前記第4駆動機構を駆動するモータ、前記第5駆動機構を駆動するモータ、前記第6駆動機構を駆動するモータ、前記第3伸縮機構を駆動するモータ、及び、前記第2伸縮機構を駆動するモータを制御することにより、前記多関節ロボットの動作を制御する、ことを特徴とする。
[Appendix 1-9]
The method for controlling an articulated robot according to appendix 1-8, wherein the control device that controls the operation of the articulated robot includes a motor that drives the first drive mechanism, a motor that drives the second drive mechanism, A motor that drives the seventh drive mechanism, a motor that drives the fourth drive mechanism, a motor that drives the fifth drive mechanism, a motor that drives the sixth drive mechanism, a motor that drives the third telescoping mechanism, The robot is characterized in that the motion of the multi-joint robot is controlled by controlling a motor that drives the second telescoping mechanism.
[付記1-10]
 ロボットシステムは、付記1-8に記載の多関節ロボットと、前記先端部に取り付けられたエンドエフェクタと、前記多関節ロボット及び前記エンドエフェクタの動作を制御する制御装置と、を備え、前記制御装置は、前記第1駆動機構を駆動するモータ、前記第2駆動機構を駆動するモータ、前記第7駆動機構を駆動するモータ、前記第4駆動機構を駆動するモータ、前記第5駆動機構を駆動するモータ、前記第6駆動機構を駆動するモータ、前記第3伸縮機構を駆動するモータ、及び、前記第2伸縮機構を駆動するモータを制御することにより、前記多関節ロボットの動作を制御する、ことを特徴とする。
[Appendix 1-10]
The robot system includes the articulated robot described in Appendix 1-8, an end effector attached to the distal end, and a control device that controls operations of the articulated robot and the end effector, and the control device A motor that drives the first drive mechanism, a motor that drives the second drive mechanism, a motor that drives the seventh drive mechanism, a motor that drives the fourth drive mechanism, and a motor that drives the fifth drive mechanism. controlling the operation of the articulated robot by controlling a motor, a motor that drives the sixth drive mechanism, a motor that drives the third telescoping mechanism, and a motor that drives the second telescoping mechanism; It is characterized by
[付記1-11]
 物品の製造方法は、付記1-10に記載のロボットシステムにより、部品を組み付ける、又は、部品を取り除く、ことを特徴とする。
[Appendix 1-11]
The article manufacturing method is characterized by assembling or removing parts using the robot system described in Appendix 1-10.
[C-1.第4実施形態]
 図14を参照しながら、第4実施形態に係るロボットシステム1の概要の一例について説明する。
[C-1. Fourth embodiment]
An example of the outline of the robot system 1 according to the fourth embodiment will be described with reference to FIG. 14.
 図14は、第4実施形態に係るロボットシステム1の概要を説明するための説明図である。 FIG. 14 is an explanatory diagram for explaining an overview of the robot system 1 according to the fourth embodiment.
 ロボットシステム1は、例えば、ロボット10Cと、ロボット10Cに着脱可能に取り付けられるエンドエフェクタ20と、ロボット10C及びエンドエフェクタ20の動作を制御するロボットコントローラ30とを有する。ロボット10Cは、「多関節ロボット」の一例である。 The robot system 1 includes, for example, a robot 10C, an end effector 20 that is detachably attached to the robot 10C, and a robot controller 30 that controls the operations of the robot 10C and the end effector 20. The robot 10C is an example of an "articulated robot."
 ロボット10Cは、図1に示したリンクLK1、リンクLK2及び関節機構AR3の代わりにリンクLK1a、リンクLK2f及び関節機構AR3tを有することを除いて、図1に示したロボット10と同様である。リンクLK1aは、図1に示した可動部分LK13の代わりに可動部分LK13aを有することを除いて、図1に示したリンクLK1と同様である。また、可動部分LK13aは、図1に示した関節機構AR3の代わりに関節機構AR3tが設けられることを除いて、図1に示した可動部分LK13と同様である。 The robot 10C is the same as the robot 10 shown in FIG. 1, except that it has a link LK1a, a link LK2f, and a joint mechanism AR3t instead of the link LK1, link LK2, and joint mechanism AR3 shown in FIG. Link LK1a is similar to link LK1 shown in FIG. 1, except that it has a movable part LK13a instead of movable part LK13 shown in FIG. Furthermore, the movable portion LK13a is the same as the movable portion LK13 shown in FIG. 1, except that a joint mechanism AR3t is provided instead of the joint mechanism AR3 shown in FIG.
 リンクLK1aは、「第1リンク」の一例であり、リンクLK2fは、「第2リンク」の一例である。従って、リンクLK1a及びLK2fは、「複数のリンク」に該当する。関節機構AR3tは、「第1駆動機構」及び「駆動機構」の一例であり、後述する関節機構AR4fは、「第8駆動機構」の一例である。また、可動部分LK13aは、「第5部分」の一例である。以下では、関節機構AR3tを中心に説明する。 The link LK1a is an example of a "first link," and the link LK2f is an example of a "second link." Therefore, links LK1a and LK2f correspond to "a plurality of links". The joint mechanism AR3t is an example of a "first drive mechanism" and a "drive mechanism," and the joint mechanism AR4f, which will be described later, is an example of an "eighth drive mechanism." Further, the movable portion LK13a is an example of a “fifth portion”. Below, the joint mechanism AR3t will be mainly explained.
 関節機構AR3tは、リンクLK1aとリンクLK2fとを接続し、リンクLK1aが延在する方向De1に垂直な軸Ax3を回転軸としてリンクLK2fをリンクLK1aに対して回転させる。例えば、関節機構AR3tは、後述する図15に示すように、軸Ax3を回転軸としてリンクLK2fをリンクLK1aに対して回転させる旋回機構RE1を含む。図14の回転方向Dr3は、軸Ax3を回転軸として回転する場合のリンクLK2fの回転方向を示す。なお、軸Ax3は、「第1回転軸」及び「回転軸」の一例である。 The joint mechanism AR3t connects the link LK1a and the link LK2f, and rotates the link LK2f with respect to the link LK1a using an axis Ax3 perpendicular to the direction De1 in which the link LK1a extends as a rotation axis. For example, the joint mechanism AR3t includes a turning mechanism RE1 that rotates the link LK2f with respect to the link LK1a using an axis Ax3 as a rotation axis, as shown in FIG. 15 described later. The rotation direction Dr3 in FIG. 14 indicates the rotation direction of the link LK2f when rotating around the axis Ax3. Note that the axis Ax3 is an example of a "first rotation axis" and a "rotation axis."
 また、関節機構AR3tは、伸縮機構TE3を含む。伸縮機構TE3は、軸Ax3に沿って、リンクLK2fをリンクLK1aに対して相対的に移動させる。図14の方向Dm3は、軸Ax3に沿う方向であり、リンクLK2fのリンクLK1aに対する相対的な移動方向を示す。方向Dm3は、「第1方向」の一例である。また、伸縮機構TE3は、「第4伸縮機構」の一例である。なお、関節機構AR3t(旋回機構RE1及び伸縮機構TE3)の詳細は、後述する図15において説明される。 Additionally, the joint mechanism AR3t includes an expansion and contraction mechanism TE3. The telescoping mechanism TE3 moves the link LK2f relative to the link LK1a along the axis Ax3. A direction Dm3 in FIG. 14 is a direction along the axis Ax3, and indicates a direction in which the link LK2f moves relative to the link LK1a. Direction Dm3 is an example of a "first direction." Further, the telescopic mechanism TE3 is an example of a "fourth telescopic mechanism." Note that details of the joint mechanism AR3t (swivel mechanism RE1 and telescopic mechanism TE3) will be explained in FIG. 15, which will be described later.
 リンクLK2fは、例えば、リンクLK1aに接続される支持部分LK21fと、リンクLK3に接続される可動部分LK22fと、関節機構AR4fとを含む。本実施形態では、支持部分LK21f及び可動部分LK22fの各々が方向De2に沿って延在する場合を想定する。すなわち、方向De2は、支持部分LK21f及び可動部分LK22fの各々の長手方向に該当する。また、本実施形態では、支持部分LK21fが延在する方向De21が、リンクLK2fが延在する方向De2である場合を想定する。 The link LK2f includes, for example, a support portion LK21f connected to the link LK1a, a movable portion LK22f connected to the link LK3, and a joint mechanism AR4f. In this embodiment, a case is assumed in which each of the support portion LK21f and the movable portion LK22f extends along the direction De2. That is, the direction De2 corresponds to the longitudinal direction of each of the support portion LK21f and the movable portion LK22f. Moreover, in this embodiment, it is assumed that the direction De21 in which the support portion LK21f extends is the direction De2 in which the link LK2f extends.
 関節機構AR4fは、支持部分LK21fが延在する方向De21と平行な軸Ax4を回転軸として、可動部分LK22fを支持部分LK21fに対して回転させる。図14の回転方向Dr4は、軸Ax4を回転軸として回転する場合の可動部分LK22fの回転方向を示す。なお、支持部分LK21fは、「支持部分」の一例であり、可動部分LK22fは、「可動部分」の一例である。 The joint mechanism AR4f rotates the movable portion LK22f with respect to the support portion LK21f using an axis Ax4 parallel to the direction De21 in which the support portion LK21f extends as a rotation axis. The rotation direction Dr4 in FIG. 14 indicates the rotation direction of the movable portion LK22f when rotating around the axis Ax4. Note that the supporting portion LK21f is an example of a “supporting portion” and the movable portion LK22f is an example of a “movable portion”.
 このように、本実施形態では、関節機構AR3tに設けられた伸縮機構TE3により、軸Ax3に沿って、リンクLK2fをリンクLK1aに対して相対的に移動させることができる。本実施形態では、伸縮機構TE1及びTE3により、ロボット10Cの先端部(例えば、リンクLK3の端面LK3sf)が到達可能な領域を広くすることができ、ロボット10Cに取り付けられるエンドエフェクタ20が到達可能な領域を広くすることができる。また、本実施形態では、伸縮機構TE3により、ロボット10Cの先端部を軸Ax3に沿う方向Dm3に容易に移動させることができる。 In this manner, in this embodiment, the link LK2f can be moved relative to the link LK1a along the axis Ax3 by the expansion and contraction mechanism TE3 provided in the joint mechanism AR3t. In the present embodiment, the telescopic mechanisms TE1 and TE3 can widen the reachable area of the robot 10C's tip (for example, the end face LK3sf of the link LK3), and the end effector 20 attached to the robot 10C can reach. The area can be expanded. Furthermore, in this embodiment, the telescopic mechanism TE3 allows the tip of the robot 10C to be easily moved in the direction Dm3 along the axis Ax3.
 次に、図15を参照しながら、伸縮機構TE3を含む関節機構AR3tの一例について説明する。 Next, an example of the joint mechanism AR3t including the telescopic mechanism TE3 will be described with reference to FIG. 15.
 図15は、伸縮機構TE3を含む関節機構AR3tの一例を説明するための説明図である。図15の上段は、収縮している状態の関節機構AR3tを示し、図15の下段は、伸長している状態の関節機構AR3tを示している。また、図15では、説明を分かり易くするために、リンクLK2fのリンクLK1aに対する相対的な移動方向を示す方向Dm3を、符号の末尾に“p”又は“m”を付して、区別して図示している。方向Dm3mは、関節機構AR3tが収縮する方向を示し、方向Dm3pは、方向Dm3mの反対方向であり、関節機構AR3tが伸長する方向を示す。なお、図15以降において、方向Dm3m及びDm3pを、特に区別することなく、方向Dm3と称する場合がある。 FIG. 15 is an explanatory diagram for explaining an example of the joint mechanism AR3t including the telescopic mechanism TE3. The upper part of FIG. 15 shows the joint mechanism AR3t in a contracted state, and the lower part of FIG. 15 shows the joint mechanism AR3t in an extended state. In addition, in FIG. 15, in order to make the explanation easier to understand, the direction Dm3 indicating the relative moving direction of the link LK2f with respect to the link LK1a is distinguished by adding "p" or "m" to the end of the symbol. It shows. The direction Dm3m indicates the direction in which the joint mechanism AR3t contracts, and the direction Dm3p is the opposite direction to the direction Dm3m and indicates the direction in which the joint mechanism AR3t extends. Note that from FIG. 15 onward, directions Dm3m and Dm3p may be referred to as direction Dm3 without particular distinction.
 関節機構AR3tは、図14において説明したように、旋回機構RE1と、伸縮機構TE3と、旋回機構RE1を駆動するモータMOa3と、伸縮機構TE3を駆動するモータMOt3とを含む。 As explained in FIG. 14, the joint mechanism AR3t includes a swing mechanism RE1, a telescoping mechanism TE3, a motor MOa3 that drives the swing mechanism RE1, and a motor MOt3 that drives the telescoping mechanism TE3.
 伸縮機構TE3は、例えば、ナットTE31と、方向Dm3に沿って延在するボールねじTE32と、方向Dm3に沿って延在し、リンクLK1aの可動部分LK13aとリンクLK2fの支持部分LK21fとを接続する接続部分TE33とを含む。接続部分TE33は、中空である。本実施形態では、接続部分TE33の内部には、ナットTE31及びモータMOa3が取り付けられている。また、モータMOt3は、方向Dm3において可動部分LK13aがモータMOt3と支持部分LK21fとの間に位置するように、可動部分LK13aの外側に取り付けられている。また、可動部分LK13aは、図15の上段に示すように、接続部分TE33の一部を格納可能に構成される。 The telescopic mechanism TE3 connects, for example, a nut TE31, a ball screw TE32 extending along the direction Dm3, a movable portion LK13a of the link LK1a and a supporting portion LK21f of the link LK2f. and a connecting portion TE33. The connecting portion TE33 is hollow. In this embodiment, a nut TE31 and a motor MOa3 are attached inside the connecting portion TE33. Further, the motor MOt3 is attached to the outside of the movable portion LK13a such that the movable portion LK13a is located between the motor MOt3 and the support portion LK21f in the direction Dm3. Moreover, the movable part LK13a is configured to be able to store a part of the connecting part TE33, as shown in the upper part of FIG.
 ナットTE31は、例えば、接続部分TE33の2つの端部のうちのリンクLK2fから遠い端部に固定されている。また、ボールねじTE32は、例えば、ボールねじTE32の中心軸が接続部分TE33の中心軸と一致するようにモータMOt3に取り付けられ、ナットTE31に挿通される。そして、ボールねじTE32は、モータMOt3の回転に伴い、軸Axte3を回転軸として回転する。軸Axte3は、例えば、ボールねじTE32の中心軸、すなわち、接続部分TE33の中心軸である。 For example, the nut TE31 is fixed to one of the two ends of the connecting portion TE33, which is farthest from the link LK2f. Further, the ball screw TE32 is attached to the motor MOt3, for example, so that the center axis of the ball screw TE32 coincides with the center axis of the connecting portion TE33, and is inserted through the nut TE31. The ball screw TE32 rotates about the axis Axte3 as the motor MOt3 rotates. The axis Axte3 is, for example, the central axis of the ball screw TE32, that is, the central axis of the connecting portion TE33.
 ナットTE31は、ボールねじTE32の回転に伴い、軸Axte3に沿って移動する。ナットTE31が接続部分TE33に固定されているため、接続部分TE33は、ナットTE31の移動に伴い、軸Axte3(すなわち、方向Dm3)に沿って移動する。このように、ボールねじTE32は、接続部分TE33を移動可能に支持する。 The nut TE31 moves along the axis Axte3 as the ball screw TE32 rotates. Since the nut TE31 is fixed to the connecting portion TE33, the connecting portion TE33 moves along the axis Axte3 (ie, the direction Dm3) as the nut TE31 moves. In this way, the ball screw TE32 movably supports the connecting portion TE33.
 なお、接続部分TE33は、ボールねじTE32を格納可能に構成される。また、接続部分TE33は、ボールねじTE32が回転した場合でも、軸Axte3を回転軸として回転しないように、可動部分LK13a及び支持部分LK21fに接続される。これにより、接続部分TE33に固定されたナットTE31が、上述したように、ボールねじTE32の回転に伴い、軸Axte3に沿って移動する。 Note that the connecting portion TE33 is configured to be able to store the ball screw TE32. Further, the connecting portion TE33 is connected to the movable portion LK13a and the supporting portion LK21f so as not to rotate about the axis Axte3 even when the ball screw TE32 rotates. As a result, the nut TE31 fixed to the connecting portion TE33 moves along the axis Axte3 as the ball screw TE32 rotates, as described above.
 モータMOt3の回転方向を切り替えることにより、ナットTE31の移動方向、すなわち、接続部分TE33の移動方向が、方向Dm3pと方向Dm3mとの間で切り替わる。例えば、モータMOt3の回転が第1の回転方向の回転である場合、ナットTE31は、方向Dm3pに移動し、モータMOt3の回転が第1の回転方向の回転に対して逆回転となる第2の回転方向の回転である場合、ナットTE31は、方向Dm3mに移動する。 By switching the rotational direction of the motor MOt3, the moving direction of the nut TE31, that is, the moving direction of the connecting portion TE33, is switched between the direction Dm3p and the direction Dm3m. For example, when the motor MOt3 rotates in the first rotational direction, the nut TE31 moves in the direction Dm3p, and the motor MOt3 rotates in the second rotational direction in the opposite direction to the first rotational direction. In the case of rotation in the rotational direction, the nut TE31 moves in the direction Dm3m.
 例えば、接続部分TE33の一部が可動部分LK13aの内部に格納された状態において、ロボットコントローラ30がモータMOt3を第1の回転方向に回転させた場合、ナットTE31の移動に伴い、接続部分TE33は、可動部分LK13aから徐々に露出する。これにより、関節機構AR3tは、方向Dm3pに伸長する。図15に示す例では、関節機構AR3tは、最大で、方向Dm3における可動部分LK13aの長さとほぼ同じ長さだけ伸長する。 For example, when the robot controller 30 rotates the motor MOt3 in the first rotation direction in a state where a part of the connecting portion TE33 is stored inside the movable portion LK13a, the connecting portion TE33 moves as the nut TE31 moves. , are gradually exposed from the movable portion LK13a. Thereby, the joint mechanism AR3t extends in the direction Dm3p. In the example shown in FIG. 15, the joint mechanism AR3t extends at most by approximately the same length as the length of the movable portion LK13a in the direction Dm3.
 なお、リンクLK2fの支持部分LK21fは、接続部分TE33に対する方向Dm3の相対的な位置が変化しないように、かつ、軸Ax3を回転軸として接続部分TE33に対して回転可能に、接続部分TE33に取り付けられている。従って、関節機構AR3tが方向Dm3pに伸長することにより、リンクLK2fは、リンクLK1aから遠ざかるように、方向Dm3pに移動する。 Note that the supporting portion LK21f of the link LK2f is attached to the connecting portion TE33 so that its relative position in the direction Dm3 to the connecting portion TE33 does not change and is rotatable relative to the connecting portion TE33 with the axis Ax3 as the rotation axis. It is being Therefore, by extending the joint mechanism AR3t in the direction Dm3p, the link LK2f moves in the direction Dm3p so as to move away from the link LK1a.
 また、接続部分TE33の一部が可動部分LK13aから露出している状態において、ロボットコントローラ30がモータMOt3を第2の回転方向に回転させた場合、ナットTE31の移動に伴い、接続部分TE33は、可動部分LK13aの内部に徐々に格納される。これにより、関節機構AR3tは、方向Dm3mに収縮する。関節機構AR3tが方向Dm3mに収縮することにより、リンクLK2fがリンクLK1aに近づくように、方向Dm3mに移動する。 Further, when the robot controller 30 rotates the motor MOt3 in the second rotation direction in a state where a part of the connecting portion TE33 is exposed from the movable portion LK13a, as the nut TE31 moves, the connecting portion TE33 It is gradually stored inside the movable part LK13a. As a result, the joint mechanism AR3t contracts in the direction Dm3m. By contracting the joint mechanism AR3t in the direction Dm3m, the link LK2f moves in the direction Dm3m so as to approach the link LK1a.
 このように、接続部分TE33の少なくとも一部(例えば、図15の破線で囲んだ部分)は、方向Dm3におけるリンクLK1aとリンクLK2fとの距離が最小になる場合、リンクLK1aの内部に格納される。そして、接続部分TE33の少なくとも一部(例えば、図15の破線で囲んだ部分)は、方向Dm3におけるリンクLK1aとリンクLK2fとの距離が最大になる場合、リンクLK1aから露出する。 In this way, at least a portion of the connecting portion TE33 (for example, the portion surrounded by the broken line in FIG. 15) is stored inside the link LK1a when the distance between the link LK1a and the link LK2f in the direction Dm3 is minimized. . Then, at least a portion of the connecting portion TE33 (for example, the portion surrounded by the broken line in FIG. 15) is exposed from the link LK1a when the distance between the link LK1a and the link LK2f in the direction Dm3 becomes the maximum.
 なお、モータMOt3は、リンクLK1aの可動部分LK13aに取り付けられているため、接続部分TE33を方向Dm3p又はDm3mに移動させる伸縮動作が伸縮機構TE3により行われた場合でも方向Dm3に移動しない。 Note that since the motor MOt3 is attached to the movable part LK13a of the link LK1a, it does not move in the direction Dm3 even if the telescoping mechanism TE3 performs a telescoping operation to move the connecting part TE33 in the direction Dm3p or Dm3m.
 旋回機構RE1を駆動するモータMOa3は、接続部分TE33の内部に取り付けられ、接続部分TE33の2つの端部のうちの支持部分LK21fに近い端部に固定される。従って、モータMOa3は、伸縮機構TE3により伸縮動作が行われた場合、接続部分TE33と一緒に方向Dm3p又はDm3mに移動する。 The motor MOa3 that drives the turning mechanism RE1 is attached inside the connecting portion TE33, and is fixed to one of the two ends of the connecting portion TE33, which is closer to the support portion LK21f. Therefore, when the expansion and contraction mechanism TE3 performs an expansion and contraction operation, the motor MOa3 moves in the direction Dm3p or Dm3m together with the connecting portion TE33.
 旋回機構RE1は、例えば、リンクLK2fの支持部分LK21fの2つの端部のうちの接続部分TE33に近い端部に取り付けられる。例えば、旋回機構RE1は、伝達軸RE11及び連結部RE12を有する。連結部RE12は、例えば、支持部分LK21fと一体に構成される。なお、支持部分LK21f及び連結部RE12は、1つの部材により一体に構成されてもよいし、互いに異なる部材により一体に構成されてもよい。 The turning mechanism RE1 is attached, for example, to the end closer to the connecting portion TE33 of the two ends of the support portion LK21f of the link LK2f. For example, the turning mechanism RE1 includes a transmission shaft RE11 and a connecting portion RE12. The connecting portion RE12 is, for example, configured integrally with the supporting portion LK21f. Note that the support portion LK21f and the connecting portion RE12 may be integrally formed by one member, or may be integrally formed by mutually different members.
 伝達軸RE11は、モータMOa3の回転が伝達されるように、モータMOa3に取り付けられる。さらに、伝達軸RE11は、連結部RE12を介して支持部分LK21fと連結している。これにより、例えば、モータMOa3が回転した場合、伝達軸RE11及び連結部RE12を介して、支持部分LK21fにモータMOa3の回転が伝達される。この結果、支持部分LK21fは、軸Ax3を回転軸として回転する。 The transmission shaft RE11 is attached to the motor MOa3 so that the rotation of the motor MOa3 is transmitted. Further, the transmission shaft RE11 is connected to the support portion LK21f via a connecting portion RE12. Thereby, for example, when the motor MOa3 rotates, the rotation of the motor MOa3 is transmitted to the support portion LK21f via the transmission shaft RE11 and the connecting portion RE12. As a result, the support portion LK21f rotates about the axis Ax3.
 このように、本実施形態では、関節機構AR3t(より詳細には、旋回機構RE1)は、リンクLK2fをリンクLK1a及び接続部分TE33に対して回転させることにより、リンクLK2fをリンクLK1aに対して回転させる。 As described above, in the present embodiment, the joint mechanism AR3t (more specifically, the turning mechanism RE1) rotates the link LK2f with respect to the link LK1a by rotating the link LK2f with respect to the link LK1a and the connecting portion TE33. let
 なお、本実施形態では、上述したように、支持部分LK21fは、モータMOa3が取り付けられた接続部分TE33に対して回転可能である。このため、モータMOa3は、軸Ax3を回転軸として支持部分LK21fを回転させる回転動作が関節機構AR3tにより行われた場合でも、軸Ax3を回転軸として回転することはない。従って、本実施形態では、支持部分LK21fが軸Ax3を回転軸として回転した場合でも、モータMOa3自体の回転に伴う外乱が発生することを抑制することができる。 Note that in this embodiment, as described above, the support portion LK21f is rotatable with respect to the connection portion TE33 to which the motor MOa3 is attached. Therefore, the motor MOa3 does not rotate about the axis Ax3 as the rotation axis even when the joint mechanism AR3t performs a rotation operation of rotating the support portion LK21f about the axis Ax3. Therefore, in the present embodiment, even when the support portion LK21f rotates about the axis Ax3, it is possible to suppress the disturbance caused by the rotation of the motor MOa3 itself.
 また、本実施形態では、上述したように、モータMOa3は、伸縮機構TE3により伸縮動作が行われた場合に接続部分TE33と一緒に方向Dm3に沿って移動するように、接続部分TE33の2つの端部のうちの支持部分LK21fに近い端部に固定される。例えば、モータMOa3の出力位置とモータMOa3の回転に応じて回転する支持部分LK21fとの軸Ax3に沿う距離が長い場合、モータMOa3の出力位置と支持部分LK21fとの軸Ax3に沿う距離が短い場合に比べて、回転に伴う外乱が大きくなる。本実施形態では、接続部分TE33の2つの端部のうちの支持部分LK21fに近い端部にモータMOa3が固定されるため、回転に伴う外乱の発生を抑制することができ、関節機構AR3tによる回転動作及び伸縮動作を精度よく制御することができる。 Furthermore, in the present embodiment, as described above, the motor MOa3 moves between the two connecting portions TE33 so as to move along the direction Dm3 together with the connecting portion TE33 when the expanding/contracting mechanism TE3 performs an expanding/contracting operation. It is fixed to one of the ends near the support portion LK21f. For example, if the distance along the axis Ax3 between the output position of the motor MOa3 and the support part LK21f that rotates according to the rotation of the motor MOa3 is long, or if the distance along the axis Ax3 between the output position of the motor MOa3 and the support part LK21f is short The disturbance associated with rotation is larger than that of . In this embodiment, since the motor MOa3 is fixed to the end closer to the support part LK21f of the two ends of the connection part TE33, it is possible to suppress the occurrence of disturbances due to rotation, and the rotation by the joint mechanism AR3t. Movement and expansion/contraction movement can be controlled with high precision.
 また、本実施形態では、リンクLK1aに対するリンクLK2fの移動は、リンクLK1aに対して接続部分TE33が軸Axte3に沿って移動することにより実現され、リンクLK2fの回転は、支持部分LK21fが軸Ax3を回転軸として回転することにより実現される。このように、本実施形態では、リンクLK2fの移動及び回転を行う際の制御対象が接続部分TE33と支持部分LK21fとに分離されているため、リンクLK2fを動かすためのモータMOt3及びMOa3の制御が複雑になることを抑制することができる。 Furthermore, in the present embodiment, the movement of the link LK2f with respect to the link LK1a is realized by the connection portion TE33 moving with respect to the link LK1a along the axis Axte3, and the rotation of the link LK2f is realized by the support portion LK21f moving along the axis Axte3 with respect to the link LK1a. This is achieved by rotating as a rotation axis. As described above, in this embodiment, since the objects to be controlled when moving and rotating the link LK2f are separated into the connecting portion TE33 and the supporting portion LK21f, the control of the motors MOt3 and MOa3 for moving the link LK2f is controlled. It is possible to suppress complexity.
 なお、関節機構AR3tの構成は、図15に示す例に限定されない。例えば、関節機構AR3tが最大限に収縮した場合に、接続部分TE33の一部が可動部分LK13aの内部に格納されずに、可動部分LK13aから露出していてもよい。また、伸縮機構TE3は、関節機構AR3tを伸縮できれば、図15に示す構成に限定されない。 Note that the configuration of the joint mechanism AR3t is not limited to the example shown in FIG. 15. For example, when the joint mechanism AR3t is contracted to the maximum, a part of the connecting portion TE33 may be exposed from the movable portion LK13a without being stored inside the movable portion LK13a. Moreover, the expansion/contraction mechanism TE3 is not limited to the configuration shown in FIG. 15 as long as the joint mechanism AR3t can be expanded/contracted.
 また、リンクLK1aは、図3に示したリンクLK1及び可動部分LK13をリンクLK1a及び可動部分LK13aにそれぞれ読み替えることにより、図3で説明される。 Further, the link LK1a will be explained in FIG. 3 by replacing the link LK1 and the movable portion LK13 shown in FIG. 3 with the link LK1a and the movable portion LK13a, respectively.
 次に、図16を参照しながら、ロボット10Cの利点について説明する。 Next, the advantages of the robot 10C will be explained with reference to FIG. 16.
 図16は、図14に示したロボット10Cの利点を説明するための説明図である。 FIG. 16 is an explanatory diagram for explaining the advantages of the robot 10C shown in FIG. 14.
 なお、図16では、説明の便宜上、互いに直交するX軸、Y軸及びZ軸を有する3軸の直交座標系を導入する。以下では、X軸の矢印の指す方向は+X方向と称され、+X方向の反対方向は-X方向と称される。Y軸の矢印の指す方向は+Y方向と称され、+Y方向の反対方向は-Y方向と称される。また、Z軸の矢印の指す方向は+Z方向と称され、+Z方向の反対方向は-Z方向と称される。以下では、+Y方向及び-Y方向を特に区別することなく、Y方向と称し、+X方向及び-X方向を、特に区別することなく、X方向と称する場合がある。また、+Z方向及び-Z方向を、特に区別することなく、Z方向と称する場合がある。 Note that in FIG. 16, for convenience of explanation, a three-axis orthogonal coordinate system having an X axis, a Y axis, and a Z axis that are orthogonal to each other is introduced. Hereinafter, the direction pointed by the X-axis arrow will be referred to as the +X direction, and the direction opposite to the +X direction will be referred to as the -X direction. The direction pointed by the Y-axis arrow is called the +Y direction, and the opposite direction to the +Y direction is called the -Y direction. Further, the direction pointed by the Z-axis arrow is called the +Z direction, and the opposite direction to the +Z direction is called the -Z direction. Hereinafter, the +Y direction and the -Y direction may be referred to as the Y direction without any particular distinction, and the +X direction and the -X direction may be referred to as the X direction without any particular distinction. Further, the +Z direction and the -Z direction may be referred to as the Z direction without any particular distinction.
 図16では、作業台WBにX方向に沿って配置されたパレットPL1及びPL2のうちのパレットPL1に配置された物品GDをパレットPL2に移動する作業を例にして、ロボット10Cの利点を説明する。先ず、ロボット10Cと対比される垂直6軸多関節ロボット(以下、対比例の垂直6軸多関節ロボットとも称する)について説明する。対比例の垂直6軸多関節ロボットは、ロボット10Cから伸縮機構TE1及びTE3が省かれたロボットである。 In FIG. 16, the advantages of the robot 10C will be explained using an example of a task of moving an article GD placed on pallet PL1 of pallets PL1 and PL2 placed on the workbench WB along the X direction to pallet PL2. . First, a vertical six-axis articulated robot (hereinafter also referred to as a vertical six-axis articulated robot as a comparison example) that is compared with the robot 10C will be described. The vertical six-axis multi-joint robot in contrast is a robot in which the telescoping mechanisms TE1 and TE3 are omitted from the robot 10C.
 対比例の垂直6軸多関節ロボットでは、パレットPL1に配置されている物品GDを、物品GDの姿勢を維持した状態でX方向に水平移動させ、パレットPL2に再配置する作業を行う場合、6軸の全てを駆動させる必要がある。同様に、軸Ax2及びAx3に垂直な面(図16では、Y-Z平面)に平行な方向以外の方向に物品GDを移動させる場合においても、対比例の垂直6軸多関節ロボットでは、6軸の全てを駆動させる必要がある。但し、対比例の垂直6軸多関節ロボットにおいても、物品GDをZ方向から把持している場合等では、例外的に、4軸又は5軸の駆動により、物品GDの姿勢を維持した状態で物品GDをX方向等に移動可能な場合もある。 In a comparative vertical 6-axis articulated robot, when performing a task of horizontally moving an article GD placed on pallet PL1 in the X direction while maintaining the posture of the article GD and re-arranging it on pallet PL2, 6 All axes must be driven. Similarly, even when moving the article GD in a direction other than parallel to the plane perpendicular to the axes Ax2 and Ax3 (YZ plane in FIG. 16), the vertical six-axis articulated robot of the comparative example All axes must be driven. However, even with the vertical 6-axis articulated robot in the comparison example, when gripping the article GD from the Z direction, there are exceptional cases in which the posture of the article GD is maintained by driving the 4 or 5 axes. In some cases, the article GD can be moved in the X direction or the like.
 垂直6軸多関節ロボットに所定の作業を行わせる際に駆動させる軸の数が多い場合、駆動させる軸の数が少ない場合に比べて、複数の関節機構ARの制御が複雑になる。また、垂直6軸多関節ロボットに所定の作業を行わせる際に駆動させる軸の数が多い場合、駆動させる軸の数が少ない場合に比べて、ロボットを制御できなくなる姿勢である特異点に近づくリスクが増加するため、ロボットの動作(例えば、動作範囲)が制約される。また、特異点に近づくリスクが高い場合、特異点に近づくリスクが低い場合に比べて、ロボットに動作を教示するティーチングの作業負荷が増加する。特に、X-Y平面に対する軸Ax4及びAx6の傾きが小さい状態で物品GDを把持した場合、X-Y平面に対する軸Ax4及びAx6の傾きが大きい状態で物品GDを把持した場合に比べて、特異点による動作の制約が大きくなる。 If a large number of axes are driven when a vertical 6-axis articulated robot performs a predetermined task, control of the multiple joint mechanisms AR becomes more complex than when the number of axes to be driven is small. Also, when a vertical 6-axis articulated robot performs a given task, when the number of axes driven is large, the robot approaches a singularity point, which is a posture in which it becomes uncontrollable, compared to when the number of axes driven is small. The robot's motion (eg, range of motion) is constrained due to the increased risk. Furthermore, when the risk of approaching a singular point is high, the workload of teaching the robot to operate increases compared to when the risk of approaching a singular point is low. In particular, when the article GD is gripped with a small inclination of the axes Ax4 and Ax6 with respect to the X-Y plane, there is a peculiar The restrictions on movement due to points become greater.
 このように、対比例の垂直6軸多関節ロボットでは、物品GDの姿勢を維持した状態で物品GDをX方向に水平移動させる単純な作業を行う場合でも、6軸の全てを駆動させる必要があるため、複数の関節機構ARの制御が複雑になる。 In this way, with the vertical six-axis articulated robot in the comparison example, even when performing a simple task of horizontally moving the article GD in the X direction while maintaining the posture of the article, it is necessary to drive all six axes. Therefore, control of the plurality of joint mechanisms AR becomes complicated.
 なお、直交座標型ロボットでは、X方向、Y方向及びZ方向の各々の方向への移動は、X方向、Y方向及びZ方向に対応して設けられた3つのモータのうちの1つを駆動することにより、実現される。このため、直交座標型ロボットでは、対比例の垂直6軸多関節ロボットに比べて、物品GDの姿勢を維持した状態で物品GDをX方向に水平移動させる単純な動作の制御を簡易にすることができる。但し、直交座標型ロボットでは、垂直6軸多関節ロボットに比べて、ロボットの設置面積が大きくなる傾向がある。また、直交座標型ロボットでは、垂直6軸多関節ロボットに比べて、複雑な作業を行うことが困難である。 Note that in a Cartesian coordinate robot, movement in each of the X, Y, and Z directions is achieved by driving one of the three motors provided corresponding to the X, Y, and Z directions. This is achieved by doing this. For this reason, in the Cartesian coordinate robot, compared to the vertical 6-axis articulated robot in the comparison example, it is easier to control a simple movement of horizontally moving the article GD in the X direction while maintaining the posture of the article GD. I can do it. However, orthogonal coordinate robots tend to require a larger footprint than vertical six-axis articulated robots. Furthermore, it is difficult for Cartesian coordinate robots to perform complex tasks compared to vertical six-axis articulated robots.
 本実施形態では、垂直6軸多関節ロボットに伸縮機構TE3が設けられているため、垂直6軸多関節ロボットの利点(複雑な作業を実行可能、及び、小型化等)を残しつつ、単純な作業を行う場合のロボット10Cの制御が複雑になることを抑制することができる。 In this embodiment, the vertical 6-axis articulated robot is provided with the telescoping mechanism TE3, so while retaining the advantages of the vertical 6-axis articulated robot (ability to perform complex tasks, miniaturization, etc.), simple It is possible to prevent the control of the robot 10C from becoming complicated when performing work.
 例えば、本実施形態では、物品GDの姿勢を維持した状態で物品GDをX方向に水平移動させる動作をロボット10Cに行わせる場合、ロボットコントローラ30は、複数のモータのうち、伸縮機構TE3を駆動するモータMOt3のみを制御すればよい。このため、本実施形態では、ロボット10Cを精度よく高速に制御することができる。具体的には、ロボット10Cは、軸Ax3に沿う方向Dm3(関節機構AR3tが伸縮する方向Dm3)がX方向と平行となる状態で、パレットPL1に配置されている物品GDを把持する。そして、ロボット10Cは、伸縮機構TE3により、関節機構AR3tを方向Dm3pに伸長する。この結果、図16の破線で示すように、ロボット10CのリンクLK2fからエンドエフェクタ20までの部分が方向Dm3p(すなわち、X方向)に水平移動する。これにより、エンドエフェクタ20に把持された物品GDは、物品GDの姿勢を維持した状態でパレットPL1からパレットPL2まで移動する。 For example, in the present embodiment, when causing the robot 10C to horizontally move the article GD in the X direction while maintaining the posture of the article GD, the robot controller 30 drives the telescopic mechanism TE3 among the plurality of motors. It is sufficient to control only the motor MOt3. Therefore, in this embodiment, the robot 10C can be controlled accurately and at high speed. Specifically, the robot 10C grips the article GD placed on the pallet PL1 in a state where the direction Dm3 along the axis Ax3 (the direction Dm3 in which the joint mechanism AR3t expands and contracts) is parallel to the X direction. Then, the robot 10C extends the joint mechanism AR3t in the direction Dm3p using the extension mechanism TE3. As a result, as shown by the broken line in FIG. 16, the portion of the robot 10C from the link LK2f to the end effector 20 moves horizontally in the direction Dm3p (ie, the X direction). Thereby, the article GD gripped by the end effector 20 moves from the pallet PL1 to the pallet PL2 while maintaining the attitude of the article GD.
 このように、ロボット10Cは、伸縮機構TE3により、物品GDの姿勢を維持した状態で物品GDをX方向に水平移動させる動作を精度よく高速に実行することができる。また、本実施形態では、軸Ax2及びAx3に垂直な面に平行な方向以外の方向に物品GDを移動させる場合においても、対比例の垂直6軸多関節ロボットに比べて、少ない軸Axの駆動により、物品GDの姿勢を維持した状態で物品GDを移動させることができる。この結果、本実施形態では、関節機構ARの制御が複雑になることを抑制することができる。 In this way, the robot 10C can accurately and rapidly move the article GD horizontally in the X direction while maintaining the posture of the article GD using the telescoping mechanism TE3. In addition, in this embodiment, even when moving the article GD in a direction other than the direction parallel to the plane perpendicular to the axes Ax2 and Ax3, the axis Ax is driven less than the vertical six-axis articulated robot of the comparative example. Accordingly, the article GD can be moved while maintaining the attitude of the article GD. As a result, in this embodiment, control of the joint mechanism AR can be prevented from becoming complicated.
 また、伸縮機構TE3により、ロボット10CのリンクLK2fからエンドエフェクタ20までの部分が方向Dm3に移動する場合、複数の関節機構ARによる回転動作が行われないため、エンドエフェクタ20は、X-Y平面上でのみ移動し、Z方向に移動しない。従って、本実施形態では、エンドエフェクタ20の動作を制御するために、複数の関節機構ARの各々の回転動作の回転量等をエンドエフェクタ20の位置から計算する逆軌道計算等を行う場合、X方向の移動量を算出するだけでよい。このため、本実施形態では、エンドエフェクタ20をX方向に水平移動させるための逆軌道計算等を行う場合の演算の負荷を低減することができ、演算を高速に実行することができる。 Furthermore, when the telescopic mechanism TE3 moves the portion of the robot 10C from the link LK2f to the end effector 20 in the direction Dm3, the end effector 20 moves in the XY plane because the rotational movement by the plurality of joint mechanisms AR is not performed. It only moves up, not in the Z direction. Therefore, in this embodiment, in order to control the operation of the end effector 20, when performing reverse trajectory calculation etc. in which the rotation amount of each rotation operation of the plurality of joint mechanisms AR is calculated from the position of the end effector 20, It is only necessary to calculate the amount of movement in the direction. Therefore, in this embodiment, it is possible to reduce the calculation load when performing reverse trajectory calculations for horizontally moving the end effector 20 in the X direction, and to perform the calculations at high speed.
 また、本実施形態では、関節機構AR3tを伸縮させることにより、関節機構AR3tを伸縮させる前ではロボット10Cの特異点に対応する領域でも作業をすることができる。また、本実施形態では、関節機構AR3tを伸長させることにより、ロボット10Cの特異点を回避しつつ、ロボット10Cの先端部が到達可能な領域を広くすることができる。例えば、ロボット10Cを人と協働して動作させる場合、ロボット10Cを設置するスペースの制約が多いことが想定される。この場合、特異点等による動作範囲の制約は、極力少ないことが求められる。本実施形態では、ロボット10Cの特異点を回避しつつ、ロボット10Cの先端部が到達可能な領域を広くすることができるため、ロボット10Cを設置するスペースの制約が多い場合でも、ロボット10Cを安全に動作させることができる。 Furthermore, in this embodiment, by expanding and contracting the joint mechanism AR3t, it is possible to work even in the area corresponding to the singular point of the robot 10C before the joint mechanism AR3t is expanded and contracted. Furthermore, in this embodiment, by extending the joint mechanism AR3t, it is possible to widen the area that the tip of the robot 10C can reach, while avoiding the singularity of the robot 10C. For example, when the robot 10C is operated in cooperation with a person, it is assumed that there are many restrictions on the space in which the robot 10C is installed. In this case, restrictions on the operating range due to singular points or the like are required to be as small as possible. In this embodiment, the area that the tip of the robot 10C can reach can be widened while avoiding the singularity of the robot 10C, so even if there are many restrictions on the space in which the robot 10C is installed, the robot 10C can be safely installed. can be operated.
 また、本実施形態では、関節機構AR3tよりも、-Z方向に障害物BLが存在する場合でも、ロボット10Cは、伸縮機構TE3により、ロボット10CのリンクLK2fからエンドエフェクタ20までの部分を方向Dm3(すなわち、X方向)に移動させることができる。このように、本実施形態では、関節機構AR3tよりも-Z方向に障害物BLが存在するような場所でも、ロボット10Cを設置し、物品GDのX方向への移動等の単純な作業をロボット10Cに行わせることができる。 Furthermore, in the present embodiment, even if there is an obstacle BL in the -Z direction relative to the joint mechanism AR3t, the robot 10C moves the portion from the link LK2f of the robot 10C to the end effector 20 in the direction Dm3 using the telescoping mechanism TE3. (that is, in the X direction). In this way, in this embodiment, the robot 10C is installed even in a place where an obstacle BL exists in the -Z direction relative to the joint mechanism AR3t, and the robot 10C can perform simple tasks such as moving the article GD in the X direction. 10C can be performed.
 さらに、本実施形態では、伸縮機構TE1により、リンクLK1aが長手方向(方向Dm1)に伸縮するため、リンクLK1aが伸縮しない形態に比べて、ロボット10Cの先端部(例えば、リンクLK3)が到達可能な領域を広くすることができる。なお、リンクLK1aを伸縮可能とせずに、リンクLK1aを単純に長くした態様では、ロボット自体が大型化する。本実施形態では、リンクLK1aが伸縮するため、ロボット10Cの全体が大きくなることを抑制することができる。すなわち、本実施形態では、ロボット10Cの全体が大きくなることを抑制しつつ、ロボット10Cの先端部が到達可能な領域をリンクLK1aが伸縮しない形態に比べて広くすることができる。これにより、本実施形態では、ロボット10Cは、リンクLK1aが伸縮しない形態では届かない高い位置に配置された物品GDに対して作業することが可能となる。例えば、本実施形態では、ロボット10Cは、伸縮機構TE1により関節機構AR3tを高い位置に移動させることにより、作業台WBの高い位置で、かつ作業台WBの奥に配置された物品GDに対する作業を容易に行うことができる。 Furthermore, in this embodiment, the link LK1a expands and contracts in the longitudinal direction (direction Dm1) by the expansion mechanism TE1, so the tip of the robot 10C (for example, the link LK3) can reach the link LK1a, compared to a configuration in which the link LK1a does not expand and contract. The area can be expanded. Note that if the link LK1a is simply made longer without being made extendable, the robot itself becomes larger. In this embodiment, since the link LK1a expands and contracts, it is possible to suppress the entire robot 10C from increasing in size. That is, in this embodiment, while suppressing the overall size of the robot 10C, the area reachable by the tip of the robot 10C can be made wider than in the case where the link LK1a does not extend or contract. As a result, in this embodiment, the robot 10C can work on the article GD placed at a high position that cannot be reached when the link LK1a does not extend or contract. For example, in the present embodiment, the robot 10C moves the joint mechanism AR3t to a higher position using the telescoping mechanism TE1, thereby performing work on the article GD located at a higher position on the workbench WB and at the back of the workbench WB. It can be done easily.
 なお、伸縮機構TE1による伸縮動作(リンクLK1aを長手方向に伸縮する伸縮動作)では、ロボット10Cの特異点を回避することはできない。同様に、リンクLK2fを長手方向に伸縮する伸縮機構が設けられた態様においても、リンクLK2fを長手方向に伸縮することにより、ロボット10Cの先端部が到達可能な領域を広くすることはできるが、ロボット10Cの特異点を回避することはできない。本実施形態では、上述したように、関節機構AR3tを軸Ax3に沿う方向Dm3に伸縮させることにより、ロボット10Cの特異点を回避することができる。 Note that the singularity of the robot 10C cannot be avoided by the telescoping action by the telescoping mechanism TE1 (the telescoping action that extends and contracts the link LK1a in the longitudinal direction). Similarly, in an embodiment in which a telescoping mechanism is provided to extend and retract the link LK2f in the longitudinal direction, by extending and contracting the link LK2f in the longitudinal direction, it is possible to widen the area that the tip of the robot 10C can reach. The singularity of robot 10C cannot be avoided. In this embodiment, as described above, the singularity of the robot 10C can be avoided by expanding and contracting the joint mechanism AR3t in the direction Dm3 along the axis Ax3.
 ここで、本実施形態に係るロボットコントローラ30のハードウェア構成は、図5に示したモータMOt2をモータMOt3に読み替えることにより、図5で説明される。なお、この場合、さらに、図5の説明におけるロボット10、関節機構AR3、関節機構AR4及び伸縮機構TE2が、ロボット10C、関節機構AR3t、関節機構AR4f及び伸縮機構TE3にそれぞれ読み替えられる。 Here, the hardware configuration of the robot controller 30 according to the present embodiment will be explained with reference to FIG. 5 by replacing the motor MOt2 shown in FIG. 5 with the motor MOt3. In this case, the robot 10, joint mechanism AR3, joint mechanism AR4, and telescoping mechanism TE2 in the description of FIG. 5 can be read as robot 10C, joint mechanism AR3t, joint mechanism AR4f, and telescoping mechanism TE3, respectively.
 以上、本実施形態では、ロボット10Cは、ボディ部BDPと、リンクLK3と、ボディ部BDPとリンクLK3とを接続する複数のリンクLK1a及びLK2fと、関節機構AR3tとを有する。関節機構AR3tは、リンクLK1aとリンクLK2fとを接続し、リンクLK1aが延在する方向De1とのなす角度が所定の角度より大きい軸Ax3を回転軸としてリンクLK2fをリンクLK1aに対して回転させる。また、関節機構AR3tは、軸Ax3(回転軸)に沿って、リンクLK2fをリンクLK1aに対して相対的に移動させる伸縮機構TE3を含む。 As described above, in this embodiment, the robot 10C includes a body part BDP, a link LK3, a plurality of links LK1a and LK2f that connect the body part BDP and link LK3, and a joint mechanism AR3t. The joint mechanism AR3t connects the link LK1a and the link LK2f, and rotates the link LK2f with respect to the link LK1a using an axis Ax3, which forms an angle larger than a predetermined angle with the direction De1 in which the link LK1a extends, as a rotation axis. Further, the joint mechanism AR3t includes a telescoping mechanism TE3 that moves the link LK2f relative to the link LK1a along the axis Ax3 (rotation axis).
 このように、本実施形態では、伸縮機構TE3により、関節機構AR3tが軸Ax3に沿って伸縮する。このため、本実施形態では、ロボット10CのリンクLK2fからロボット10Cの先端部(例えば、リンクLK3)までの部分を軸Ax3に沿う方向Dm3に簡易に移動させることができる。これにより、本実施形態では、例えば、ロボット10CのリンクLK3に取り付けられたエンドエフェクタ20に把持された物品GDの姿勢を維持した状態で物品GDをX方向に水平移動させる動作を、伸縮機構TE3により、精度よく高速に実行することができる。このように、本実施形態では、ロボット10Cが単純な動作を行う場合の関節機構ARの制御が複雑になることを抑制することができる。すなわち、本実施形態では、単純な動作を行う場合のロボット10Cの制御を簡易にすることできる。 In this way, in this embodiment, the joint mechanism AR3t expands and contracts along the axis Ax3 by the expansion and contraction mechanism TE3. Therefore, in this embodiment, the portion from the link LK2f of the robot 10C to the tip (for example, the link LK3) of the robot 10C can be easily moved in the direction Dm3 along the axis Ax3. As a result, in this embodiment, for example, the operation of horizontally moving the article GD in the X direction while maintaining the posture of the article GD gripped by the end effector 20 attached to the link LK3 of the robot 10C is This allows for accurate and high-speed execution. In this way, in the present embodiment, it is possible to prevent the control of the joint mechanism AR from becoming complicated when the robot 10C performs a simple motion. That is, in this embodiment, the robot 10C can be easily controlled when performing simple movements.
 また、本実施形態では、伸縮機構TE3は、リンクLK1aとリンクLK2fとを接続する接続部分TE33を含む。接続部分TE33の少なくとも一部は、軸Ax3(回転軸)に沿う方向Dm3におけるリンクLK1aとリンクLK2fとの距離が最小になる場合、リンクLK1aの内部に格納される。また、接続部分TE33の少なくとも一部は、方向Dm3におけるリンクLK1aとリンクLK2fとの距離が最大になる場合、リンクLK1a及びLK2fから露出する。これにより、本実施形態では、ロボット10Cの全体が大きくなることを抑制しつつ、関節機構AR3tを伸縮させることができる。 Furthermore, in this embodiment, the telescoping mechanism TE3 includes a connecting portion TE33 that connects the link LK1a and the link LK2f. At least a portion of the connecting portion TE33 is stored inside the link LK1a when the distance between the link LK1a and the link LK2f in the direction Dm3 along the axis Ax3 (rotation axis) is the minimum. Further, at least a portion of the connecting portion TE33 is exposed from the links LK1a and LK2f when the distance between the links LK1a and LK2f in the direction Dm3 is maximum. Thereby, in this embodiment, the joint mechanism AR3t can be expanded and contracted while suppressing the overall size of the robot 10C.
 また、本実施形態では、関節機構AR3tは、リンクLK2fをリンクLK1a及び接続部分TE33に対して回転させることにより、リンクLK2fをリンクLK1aに対して回転させる。これにより、本実施形態では、例えば、リンクLK2fを回転させるためのモータMOa3(関節機構AR3tを駆動するモータMOa3)の出力位置とリンクLK2fとの軸Ax3に沿う距離が短くなるように、モータMOa3を配置することができる。この場合、モータMOa3の出力位置とリンクLK2fとの軸Ax3に沿う距離が長い場合に比べて、リンクLK2fの回転に伴う外乱の発生を抑制することができ、関節機構AR3tによる回転動作及び伸縮動作を精度よく制御することができる。 Furthermore, in the present embodiment, the joint mechanism AR3t rotates the link LK2f with respect to the link LK1a by rotating the link LK2f with respect to the link LK1a and the connecting portion TE33. As a result, in this embodiment, for example, the motor MOa3 is configured such that the distance along the axis Ax3 between the output position of the motor MOa3 for rotating the link LK2f (motor MOa3 that drives the joint mechanism AR3t) and the link LK2f is shortened. can be placed. In this case, compared to the case where the distance between the output position of the motor MOa3 and the link LK2f along the axis Ax3 is long, it is possible to suppress the occurrence of disturbance due to the rotation of the link LK2f, and the rotational movement and expansion/contraction movement by the joint mechanism AR3t. can be controlled with high precision.
 また、本実施形態では、リンクLK1aは、支持部分LK11と、リンクLK2fに接続される可動部分LK13aと、支持部分LK11と可動部分LK13aとを接続する可動部分LK12と、伸縮機構TE1とを含む。伸縮機構TE1は、支持部分LK11に対して可動部分LK12を支持部分LK11が延在する方向De11に沿って移動させることにより、リンクLK1aを伸縮させる。 Furthermore, in this embodiment, the link LK1a includes a support portion LK11, a movable portion LK13a connected to the link LK2f, a movable portion LK12 that connects the support portion LK11 and the movable portion LK13a, and a telescopic mechanism TE1. The expansion/contraction mechanism TE1 expands/contracts the link LK1a by moving the movable portion LK12 with respect to the support portion LK11 along the direction De11 in which the support portion LK11 extends.
 このように、本実施形態では、伸縮機構TE1により、リンクLK1aが伸縮する。このため、本実施形態では、ロボット10Cの全体が大きくなることを抑制しつつ、ロボット10Cの先端部が到達可能な領域をリンクLK1aが伸縮しない形態に比べて広くすることができる。これにより、本実施形態では、例えば、ロボット10Cは、リンクLK1aが伸縮しない形態では届かない高い位置に配置された物品GDに対して作業する事が可能となる。また、本実施形態では、ロボット10Cは、伸縮機構TE1により関節機構AR3tを高い位置に移動させることにより、作業台WBの高い位置で、かつ作業台WBの奥に配置された物品GDに対する作業を容易に行うことができる。 In this way, in this embodiment, the link LK1a is expanded and contracted by the expansion and contraction mechanism TE1. Therefore, in this embodiment, the area that the tip of the robot 10C can reach can be made wider than in the case where the link LK1a does not extend or contract, while suppressing the overall size of the robot 10C. As a result, in this embodiment, for example, the robot 10C can work on the article GD placed at a high position that cannot be reached when the link LK1a does not extend or contract. In addition, in the present embodiment, the robot 10C moves the joint mechanism AR3t to a high position using the telescoping mechanism TE1, thereby performing work on the article GD located at a high position on the workbench WB and at the back of the workbench WB. It can be done easily.
 また、本実施形態では、支持部分LK11は、中空である。リンクLK1aが収縮した場合、可動部分LK12の少なくとも一部が、支持部分LK11の内部に格納される。これにより、本実施形態では、リンクLK1aの伸縮を簡易な構成で実現することができる。 Furthermore, in this embodiment, the support portion LK11 is hollow. When the link LK1a contracts, at least a portion of the movable part LK12 is stored inside the support part LK11. Thereby, in this embodiment, expansion and contraction of the link LK1a can be realized with a simple configuration.
 また、本実施形態では、ロボット10Cは、関節機構AR1、AR2、AR4f、AR5及びAR5をさらに有する。また、リンクLK2fは、支持部分LK21f及び可動部分LK22fを含む。関節機構AR1は、ボディ部BDPの底面BDPbtに垂直な方向Dv1とのなす角度が所定の角度以下の軸Ax1を第4回転軸として、ボディ部BDPの少なくとも一部分を回転させる。関節機構AR2は、ボディ部BDPとリンクLK1aとを接続し、ボディ部BDPの底面BDPbtに垂直な方向Dv1とのなす角度が所定の角度より大きい軸Ax2を第5回転軸としてリンクLK1aをボディ部BDPに対して回転させる。関節機構AR4fは、支持部分LK21fが延在する方向De21とのなす角度が所定の角度以下の軸Ax4を第3回転軸として、可動部分LK22fを支持部分LK21fに対して回転させる。関節機構AR5は、可動部分LK22fとリンクLK3とを接続し、リンクLK2が延在する方向De2とのなす角度が所定の角度より大きい軸Ax5を第2回転軸としてリンクLK3をリンクLK2fに対して回転させる。関節機構AR6は、第2回転軸(軸Ax5)とのなす角度が所定の角度より大きい軸Ax6を第6回転軸として、リンクLK3の少なくとも一部分をリンクLK2fに対して回転させる。このように、本実施形態に係る発明は、垂直6軸多関節ロボットに適用されてもよい。 Furthermore, in this embodiment, the robot 10C further includes joint mechanisms AR1, AR2, AR4f, AR5, and AR5. Further, the link LK2f includes a support portion LK21f and a movable portion LK22f. The joint mechanism AR1 rotates at least a portion of the body part BDP about an axis Ax1, which has a predetermined angle or less at an angle with a direction Dv1 perpendicular to the bottom surface BDPbt of the body part BDP, as a fourth rotation axis. The joint mechanism AR2 connects the body part BDP and the link LK1a, and connects the link LK1a to the body part by using an axis Ax2, which has a larger angle than a predetermined angle with the direction Dv1 perpendicular to the bottom surface BDPbt of the body part BDP, as a fifth rotation axis. Rotate against BDP. The joint mechanism AR4f rotates the movable portion LK22f with respect to the support portion LK21f using an axis Ax4, which forms an angle equal to or less than a predetermined angle with the direction De21 in which the support portion LK21f extends, as a third rotation axis. The joint mechanism AR5 connects the movable part LK22f and the link LK3, and rotates the link LK3 with respect to the link LK2f using an axis Ax5, which makes an angle larger than a predetermined angle with the direction De2 in which the link LK2 extends, as a second rotation axis. Rotate. The joint mechanism AR6 rotates at least a portion of the link LK3 with respect to the link LK2f using an axis Ax6, which forms an angle larger than a predetermined angle with the second rotation axis (axis Ax5), as a sixth rotation axis. In this way, the invention according to this embodiment may be applied to a vertical six-axis articulated robot.
 また、本実施形態では、リンクLK1aは、ボディ部BDPに接続される支持部分LK11と、リンクLK2fに接続される可動部分LK13aと、支持部分LK11と可動部分LK13aとを接続する可動部分LK12と、伸縮機構TE1とを含む。伸縮機構TE1は、支持部分LK11に対して可動部分LK12を支持部分LK11が延在する方向De11に沿って移動させることにより、リンクLK1aを伸縮させる。このように、本実施形態では、垂直6軸多関節ロボットに伸縮機構TE1を追加することにより、先端部(例えば、リンクLK3)が到達可能な領域を広くしたロボット10Cを簡易に構成することができる。 In the present embodiment, the link LK1a includes a support portion LK11 connected to the body portion BDP, a movable portion LK13a connected to the link LK2f, and a movable portion LK12 connecting the support portion LK11 and the movable portion LK13a. It includes an expansion and contraction mechanism TE1. The expansion/contraction mechanism TE1 expands/contracts the link LK1a by moving the movable portion LK12 with respect to the support portion LK11 along the direction De11 in which the support portion LK11 extends. As described above, in this embodiment, by adding the telescopic mechanism TE1 to the vertical six-axis multi-joint robot, it is possible to easily configure the robot 10C in which the reachable area of the tip (for example, the link LK3) is widened. can.
 また、本実施形態では、ロボットコントローラ30は、関節機構AR1を駆動するモータMOa1、関節機構AR2を駆動するモータMOa2、関節機構AR3tを駆動するモータMOa3、関節機構AR4fを駆動するモータMOa4、関節機構AR5を駆動するモータMOa5、関節機構AR6を駆動するモータMOa6、伸縮機構TE1を駆動するモータMOt1、及び、伸縮機構TE3を駆動するモータMOt3を制御することにより、ロボット10Cの動作を制御する。このように、本実施形態では、ロボットコントローラ30により、ロボット10Cの動作を容易に制御することができる。 In the present embodiment, the robot controller 30 also includes a motor MOa1 that drives the joint mechanism AR1, a motor MOa2 that drives the joint mechanism AR2, a motor MOa3 that drives the joint mechanism AR3t, a motor MOa4 that drives the joint mechanism AR4f, and a motor MOa4 that drives the joint mechanism AR4f. The operation of the robot 10C is controlled by controlling the motor MOa5 that drives the AR5, the motor MOa6 that drives the joint mechanism AR6, the motor MOt1 that drives the telescoping mechanism TE1, and the motor MOt3 that drives the telescoping mechanism TE3. In this way, in this embodiment, the robot controller 30 can easily control the operation of the robot 10C.
 また、本実施形態では、ロボットシステム1は、ロボット10Cと、リンクLK3に取り付けられたエンドエフェクタ20と、ロボット10C及びエンドエフェクタ20の動作を制御するロボットコントローラ30とを有する。このように、本実施形態では、単純な動作を行う場合のロボット10Cの制御が簡易であり、全体の大きさが大きくなることを抑制しつつ、先端部(例えば、リンクLK3)が到達可能な領域を広くしたロボット10Cがロボットシステム1に用いられる。このため、本実施形態では、狭い場所においても、複雑な作業及び単純な作業を効率よく行うことができる。例えば、部品を組み付ける、又は、部品を取り除くことを含む物品の製造方法にロボットシステム1が用いられてもよい。この場合、部品を組み付ける、又は、部品を取り除く作業を効率よく実行することができる。 Furthermore, in this embodiment, the robot system 1 includes a robot 10C, an end effector 20 attached to the link LK3, and a robot controller 30 that controls the operations of the robot 10C and the end effector 20. In this way, in this embodiment, the control of the robot 10C is simple when performing simple movements, and the tip part (for example, link LK3) can be reached while suppressing the overall size from increasing. A robot 10C with a wider area is used in the robot system 1. Therefore, in this embodiment, complex work and simple work can be performed efficiently even in a narrow space. For example, the robot system 1 may be used in an article manufacturing method that includes assembling or removing parts. In this case, the work of assembling parts or removing parts can be performed efficiently.
[C-2.第4実施形態の変形例]
 本発明は、以上に例示した実施形態に限定されない。具体的な変形の態様を以下に例示する。以下の例示から任意に選択された2以上の態様を併合してもよい。
[C-2. Modification of fourth embodiment]
The present invention is not limited to the embodiments illustrated above. Specific modes of modification are illustrated below. Two or more aspects arbitrarily selected from the examples below may be combined.
[変形例C1]
 上述した第4実施形態では、モータMOa3が接続部分TE33の内部に設けられる場合を例示したが、本発明はこのような態様に限定されるものではない。例えば、モータMOa3は、接続部分TE33の外部に設けられてもよい。
[Modification C1]
In the fourth embodiment described above, a case is illustrated in which the motor MOa3 is provided inside the connecting portion TE33, but the present invention is not limited to such an embodiment. For example, the motor MOa3 may be provided outside the connection portion TE33.
 図17は、変形例C1に係る関節機構AR3tの一例を説明するための説明図である。図14から図16において説明した要素と同様の要素については、同様の符号を付し、詳細な説明を省略する。例えば、図17に示す態様では、ロボット10Cは、図14に示した関節機構AR3tの代わりに関節機構AR3taを有する。図17の上段は、収縮している状態の関節機構AR3taを示し、図17の下段は、伸長している状態の関節機構AR3taを示している。関節機構AR3taは、「第1駆動機構」及び「駆動機構」の他の例であり、伸縮機構TE3aは、「第4伸縮機構」の他の例である。なお、以下では、関節機構AR3ta等は、符号の末尾のアルファベット“a”を付さずに称される(例えば、関節機構AR3t)場合がある。 FIG. 17 is an explanatory diagram for explaining an example of the joint mechanism AR3t according to modification C1. Elements similar to those described in FIGS. 14 to 16 are denoted by the same reference numerals, and detailed description thereof will be omitted. For example, in the embodiment shown in FIG. 17, the robot 10C has a joint mechanism AR3ta instead of the joint mechanism AR3t shown in FIG. The upper part of FIG. 17 shows the joint mechanism AR3ta in a contracted state, and the lower part of FIG. 17 shows the joint mechanism AR3ta in an extended state. The joint mechanism AR3ta is another example of the "first drive mechanism" and the "drive mechanism", and the telescoping mechanism TE3a is another example of the "fourth telescoping mechanism". Note that hereinafter, the joint mechanism AR3ta and the like may be referred to without adding the alphabet "a" at the end of the reference numeral (for example, joint mechanism AR3t).
 関節機構AR3taは、モータMOa3が接続部分TE33aの外部に設けられ、支持部分LK21gが接続部分TE33aと一体的に回転することを除いて、図15に示した関節機構AR3tと同様である。例えば、関節機構AR3taは、図15に示した旋回機構RE1及び伸縮機構TE3の代わりに、旋回機構RE1a及び伸縮機構TE3aを有する。 The joint mechanism AR3ta is similar to the joint mechanism AR3t shown in FIG. 15, except that the motor MOa3 is provided outside the connecting portion TE33a, and the supporting portion LK21g rotates integrally with the connecting portion TE33a. For example, the joint mechanism AR3ta includes a rotating mechanism RE1a and a telescopic mechanism TE3a instead of the rotating mechanism RE1 and the telescopic mechanism TE3 shown in FIG.
 伸縮機構TE3aは、図15に示した接続部分TE33の代わりに接続部分TE33aを有することを除いて、図15に示した伸縮機構TE3と同様である。接続部分TE33aは、内部にモータMOa3が配置されないこと、及び、外周に複数の溝が設けられていることを除いて、図15に示した接続部分TE33と同様である。例えば、接続部分TE33aの外周には、接続部分TE33aを後述する旋回機構RE1aのギアRE13と噛み合う歯車として動作させるための複数の溝が設けられている。また、接続部分TE33aは、軸Axte3(すなわち、方向Dm3)に沿って移動可能に可動部分LK13bに接続され、支持部分LK21gと一緒に回転するように支持部分LK21gに接続される。 The telescoping mechanism TE3a is the same as the telescoping mechanism TE3 shown in FIG. 15, except that it has a connecting portion TE33a instead of the connecting portion TE33 shown in FIG. The connecting portion TE33a is similar to the connecting portion TE33 shown in FIG. 15, except that the motor MOa3 is not disposed inside and a plurality of grooves are provided on the outer periphery. For example, the outer periphery of the connecting portion TE33a is provided with a plurality of grooves for operating the connecting portion TE33a as a gear that meshes with a gear RE13 of a turning mechanism RE1a, which will be described later. Further, the connecting portion TE33a is connected to the movable portion LK13b so as to be movable along the axis Axte3 (ie, the direction Dm3), and is connected to the supporting portion LK21g so as to rotate together with the supporting portion LK21g.
 旋回機構RE1aを駆動するモータMOa3は、可動部分LK13bの内部で、接続部分TE33aの外部に配置され、可動部分LK13bに固定される。すなわち、モータMOa3は、接続部分TE33aが移動しても移動しない可動部分LK13bに取り付けられる。 The motor MOa3 that drives the turning mechanism RE1a is arranged inside the movable part LK13b and outside the connecting part TE33a, and is fixed to the movable part LK13b. That is, the motor MOa3 is attached to the movable part LK13b which does not move even if the connecting part TE33a moves.
 旋回機構RE1aは、図15に示した連結部RE12の代わりにギアRE13を有することを除いて、図15に示した旋回機構RE1と同様である。例えば、旋回機構RE1aは、モータMOa3の回転が伝達されるようにモータMOa3に取り付けられた伝達軸RE11と、伝達軸RE11と一緒に回転するように伝達軸RE11に取り付けられたギアRE13とを有する。例えば、ギアRE13は、方向Dm3からの平面視において、ギアRE13の中心に伝達軸RE11が位置するように、伝達軸RE11に取り付けられる。 The turning mechanism RE1a is the same as the turning mechanism RE1 shown in FIG. 15, except that it has a gear RE13 instead of the connecting part RE12 shown in FIG. For example, the turning mechanism RE1a includes a transmission shaft RE11 attached to the motor MOa3 so that the rotation of the motor MOa3 is transmitted, and a gear RE13 attached to the transmission shaft RE11 so as to rotate together with the transmission shaft RE11. . For example, the gear RE13 is attached to the transmission shaft RE11 so that the transmission shaft RE11 is located at the center of the gear RE13 when viewed in plan from the direction Dm3.
 また、上述した接続部分TE33aの外周に設けられた複数の溝の各々は、接続部分TE33aの長手方向(方向Dm3)に延在している。これにより、例えば、接続部分TE33aが可動部分LK13bに対して移動し、接続部分TE33aに対するギアRE13の相対的な位置が変化した場合においても、接続部分TE33aは、ギアRE13と噛み合う。すなわち、関節機構AR3taが方向Dm3に沿って伸縮する場合に、接続部分TE33aがどの位置で停止しても、ギアRE13は、接続部分TE33aと噛み合った状態を維持することができる。 Furthermore, each of the plurality of grooves provided on the outer periphery of the connection portion TE33a described above extends in the longitudinal direction (direction Dm3) of the connection portion TE33a. Thereby, for example, even if the connecting portion TE33a moves relative to the movable portion LK13b and the relative position of the gear RE13 with respect to the connecting portion TE33a changes, the connecting portion TE33a meshes with the gear RE13. That is, when the joint mechanism AR3ta expands and contracts along the direction Dm3, the gear RE13 can maintain a state of meshing with the connecting portion TE33a, no matter where the connecting portion TE33a stops.
 これにより、例えば、モータMOa3が回転した場合、モータMOa3の回転が伝達される伝達軸RE11の回転に伴い、ギアRE13が回転し、ギアRE13の回転に伴い、ギアRE13と噛み合う接続部分TE33aが回転する。このように、モータMOa3が回転した場合、伝達軸RE11及びギアRE13を介して、接続部分TE33aにモータMOa3の回転が伝達される。この結果、接続部分TE33aは、軸Ax3を回転軸として回転する。なお、本変形例では、接続部分TE33aの中心軸が軸Ax3に該当する。また、支持部分LK21gは、接続部分TE33aと一緒に回転するように接続部分TE33aと連結されているため、接続部分TE33aと一体的に回転する。本変形例では、接続部分TE33aと支持部分LK21gとは、常に一体的に駆動するため、一つの部材であってもよい。 As a result, for example, when the motor MOa3 rotates, the gear RE13 rotates as the transmission shaft RE11 to which the rotation of the motor MOa3 is transmitted rotates, and as the gear RE13 rotates, the connecting portion TE33a that meshes with the gear RE13 rotates. do. In this manner, when the motor MOa3 rotates, the rotation of the motor MOa3 is transmitted to the connection portion TE33a via the transmission shaft RE11 and the gear RE13. As a result, the connecting portion TE33a rotates about the axis Ax3. In addition, in this modification, the central axis of the connection portion TE33a corresponds to the axis Ax3. Moreover, since the supporting portion LK21g is connected to the connecting portion TE33a so as to rotate together with the connecting portion TE33a, it rotates integrally with the connecting portion TE33a. In this modification, the connecting portion TE33a and the supporting portion LK21g may be a single member because they are always driven integrally.
 なお、本変形例では、例えば、ボールねじTE32は、旋回機構RE1aにより接続部分TE33aが回転した場合にナットTE31と一緒にモータMOt3に対して空転するように、モータMOt3に取り付けられる。 Note that in this modification, for example, the ball screw TE32 is attached to the motor MOt3 so that it idles with respect to the motor MOt3 together with the nut TE31 when the connecting portion TE33a is rotated by the turning mechanism RE1a.
 また、本変形例では、モータMOa3は、可動部分LK13bに取り付けられているため、接続部分TE33a及び支持部分LK21gが回転した場合でも、軸Ax3を回転軸として回転することはない。従って、本変形例においても、支持部分LK21gが軸Ax3を回転軸として回転した場合でも、モータMOa3自体の回転に伴う外乱が発生することを抑制することができる。 Furthermore, in this modification, the motor MOa3 is attached to the movable part LK13b, so even if the connecting part TE33a and the supporting part LK21g rotate, it does not rotate about the axis Ax3. Therefore, in this modification as well, even when the support portion LK21g rotates about the axis Ax3, it is possible to suppress the disturbance caused by the rotation of the motor MOa3 itself.
 また、本変形例では、接続部分TE33aの2つの端部のうちの支持部分LK21gに近い端部が伸縮機構TE3aにより可動部分LK13bから遠ざかるように移動しても、モータMOa3は、可動部分LK13bに固定されているため、移動しない。これにより、本変形例では、伸縮機構TE3aにより移動する部材の重量をモータMOa3及びモータMOa3の連結機構の分だけ軽くすることができる。この結果、本変形例では、関節機構AR3taによる回転動作及び伸縮動作を精度よく制御することができる。 Furthermore, in this modification, even if the end of the two ends of the connection portion TE33a that is closer to the support portion LK21g is moved away from the movable portion LK13b by the telescoping mechanism TE3a, the motor MOa3 will not move toward the movable portion LK13b. It is fixed and does not move. Thereby, in this modification, the weight of the member moved by the telescoping mechanism TE3a can be reduced by the weight of the motor MOa3 and the coupling mechanism of the motor MOa3. As a result, in this modification, it is possible to accurately control the rotational movement and expansion/contraction movement of the joint mechanism AR3ta.
 以上、本変形例では、関節機構AR3taは、リンクLK2f及び接続部分TE33aをリンクLK1aに対して一体的に回転させることにより、リンクLK2fをリンクLK1aに対して回転させる。本変形例においても、上述した第4実施形態と同様の効果を得ることができる。 As described above, in this modification, the joint mechanism AR3ta rotates the link LK2f with respect to the link LK1a by rotating the link LK2f and the connecting portion TE33a integrally with respect to the link LK1a. Also in this modification, the same effects as in the fourth embodiment described above can be obtained.
[変形例C2]
 上述した第4実施形態及び変形例では、接続部分TE33の一部がリンクLK1aの内部に格納される場合を例示したが、本発明はこのような態様に限定されるものではない。例えば、接続部分TE33の少なくとも一部は、軸Ax3(回転軸)に沿う方向Dm3におけるリンクLK1aとリンクLK2fとの距離が最小になる場合、リンクLK2fの内部に格納されてもよい。すなわち、接続部分TE33の少なくとも一部は、軸Ax3(回転軸)に沿う方向Dm3におけるリンクLK1aとリンクLK2fとの距離が最小になる場合、リンクLK1a及びLK2fの少なくとも一方の内部に格納されてもよい。
[Modification C2]
In the fourth embodiment and the modified example described above, a case where a part of the connecting portion TE33 is stored inside the link LK1a is illustrated, but the present invention is not limited to such an embodiment. For example, at least a portion of the connecting portion TE33 may be stored inside the link LK2f when the distance between the link LK1a and the link LK2f in the direction Dm3 along the axis Ax3 (rotation axis) is minimized. That is, at least a portion of the connecting portion TE33 may be stored inside at least one of the links LK1a and LK2f when the distance between the links LK1a and LK2f in the direction Dm3 along the axis Ax3 (rotation axis) is the minimum. good.
 図18は、変形例C2に係る関節機構AR3tの一例を説明するための説明図である。図14から図17において説明した要素と同様の要素については、同様の符号を付し、詳細な説明を省略する。図18の上段は、収縮している状態の関節機構AR3taを示し、図18の下段は、伸長している状態の関節機構AR3taを示している。 FIG. 18 is an explanatory diagram for explaining an example of the joint mechanism AR3t according to modification C2. Elements similar to those described in FIGS. 14 to 17 are denoted by the same reference numerals, and detailed description thereof will be omitted. The upper part of FIG. 18 shows the joint mechanism AR3ta in a contracted state, and the lower part of FIG. 18 shows the joint mechanism AR3ta in an extended state.
 図18に示す関節機構AR3taは、モータMOt3が支持部分LK21gに取り付けられていること、及び、接続部分TE33aが軸Axte3に沿って移動可能に支持部分LK21gに接続されていることを除いて、図17に示した関節機構AR3taと同様である。例えば、本変形例では、接続部分TE33aは、支持部分LK21gに対して軸Axte3(すなわち、方向Dm3)に沿って移動可能で、かつ、支持部分LK21gと一緒に回転するように、支持部分LK21gに接続される。また、ナットTE31は、接続部分TE33aの2つの端部のうちの支持部分LK21gに近い端部に固定される。 The joint mechanism AR3ta shown in FIG. 18 is different from the figure except that the motor MOt3 is attached to the support part LK21g and the connection part TE33a is movably connected to the support part LK21g along the axis Axte3. This is similar to the joint mechanism AR3ta shown in FIG. For example, in this modification, the connecting portion TE33a is attached to the supporting portion LK21g so as to be movable along the axis Axte3 (that is, the direction Dm3) with respect to the supporting portion LK21g, and to rotate together with the supporting portion LK21g. Connected. Further, the nut TE31 is fixed to one of the two ends of the connecting portion TE33a, which is closer to the supporting portion LK21g.
 ボールねじTE32が回転した場合、ボールねじTE32に対するナットTE31の相対的な位置が変化する。ボールねじTE32に対するナットTE31の相対的な位置が変化することにより、ナットTE31の支持部分LK21gに対する方向Dm3の相対的な位置が変化する。ナットTE31が接続部分TE33aに固定されているため、ナットTE31の支持部分LK21gに対する方向Dm3の相対的な位置が変化した場合、リンクLK2fの接続部分TE33aに対する相対的な位置が変化する。 When the ball screw TE32 rotates, the relative position of the nut TE31 with respect to the ball screw TE32 changes. By changing the relative position of the nut TE31 with respect to the ball screw TE32, the relative position of the nut TE31 in the direction Dm3 with respect to the support portion LK21g changes. Since the nut TE31 is fixed to the connecting portion TE33a, when the relative position of the nut TE31 in the direction Dm3 to the supporting portion LK21g changes, the relative position of the link LK2f to the connecting portion TE33a changes.
 例えば、接続部分TE33aの一部が支持部分LK21gの内部に格納された状態において、ロボットコントローラ30がモータMOt3を第1の回転方向に回転させた場合、ボールねじTE32の回転に伴い、接続部分TE33aは、支持部分LK21gから徐々に露出する。これにより、関節機構AR3taは、方向Dm3pに伸長する。図18に示す例では、関節機構AR3taは、最大で、方向Dm3における支持部分LK21gの長さとほぼ同じ長さだけ伸長する。 For example, when the robot controller 30 rotates the motor MOt3 in the first rotation direction in a state where a part of the connecting portion TE33a is stored inside the supporting portion LK21g, the connecting portion TE33a rotates as the ball screw TE32 rotates. is gradually exposed from the support portion LK21g. Thereby, the joint mechanism AR3ta extends in the direction Dm3p. In the example shown in FIG. 18, the joint mechanism AR3ta extends at most by approximately the same length as the length of the support portion LK21g in the direction Dm3.
 なお、接続部分TE33aは、リンクLK1aの可動部分LK13bに対する方向Dm3の相対的な位置が変化しないように、かつ、軸Ax3を回転軸として可動部分LK13bに対して回転可能に、可動部分LK13bに取り付けられている。従って、関節機構AR3taが方向Dm3pに伸長することにより、リンクLK2fは、リンクLK1aから遠ざかるように、方向Dm3pに移動する。 The connecting portion TE33a is attached to the movable portion LK13b so that the relative position of the link LK1a in the direction Dm3 with respect to the movable portion LK13b does not change and is rotatable with respect to the movable portion LK13b with the axis Ax3 as the rotation axis. It is being Therefore, by extending the joint mechanism AR3ta in the direction Dm3p, the link LK2f moves in the direction Dm3p so as to move away from the link LK1a.
 また、接続部分TE33aの一部が支持部分LK21gから露出している状態において、ロボットコントローラ30がモータMOt3を第2の回転方向に回転させた場合、ナットTE31の移動に伴い、接続部分TE33aは、支持部分LK21gの内部に徐々に格納される。これにより、関節機構AR3taは、方向Dm3mに収縮する。関節機構AR3taが方向Dm3mに収縮することにより、リンクLK2fがリンクLK1aに近づくように、方向Dm3mに移動する。 Further, when the robot controller 30 rotates the motor MOt3 in the second rotation direction in a state where a part of the connecting portion TE33a is exposed from the supporting portion LK21g, as the nut TE31 moves, the connecting portion TE33a It is gradually stored inside the support portion LK21g. As a result, the joint mechanism AR3ta contracts in the direction Dm3m. By contracting the joint mechanism AR3ta in the direction Dm3m, the link LK2f moves in the direction Dm3m so as to approach the link LK1a.
 このように、接続部分TE33aの少なくとも一部(例えば、図18の破線で囲んだ部分)は、方向Dm3におけるリンクLK1aとリンクLK2fとの距離が最小になる場合、リンクLK2fの内部に格納される。そして、接続部分TE33aの少なくとも一部(例えば、図18の破線で囲んだ部分)は、方向Dm3におけるリンクLK1aとリンクLK2fとの距離が最大になる場合、リンクLK2fから露出する。 In this way, at least a portion of the connecting portion TE33a (for example, the portion surrounded by the broken line in FIG. 18) is stored inside the link LK2f when the distance between the link LK1a and the link LK2f in the direction Dm3 is minimized. . Then, at least a portion of the connecting portion TE33a (for example, the portion surrounded by the broken line in FIG. 18) is exposed from the link LK2f when the distance between the link LK1a and the link LK2f in the direction Dm3 becomes the maximum.
 次に、図19を参照しながら、変形例C2に係る関節機構AR3tの別の例について説明する。 Next, with reference to FIG. 19, another example of the joint mechanism AR3t according to modification C2 will be described.
 図19は、変形例C2に係る関節機構AR3tの別の例を説明するための説明図である。図14から図18において説明した要素と同様の要素については、同様の符号を付し、詳細な説明を省略する。例えば、図19に示す態様では、ロボット10Cは、図14に示した関節機構AR3tの代わりに関節機構AR3tbを有する。図19の上段は、収縮している状態の関節機構AR3tbを示し、図18の下段は、伸長している状態の関節機構AR3tbを示している。関節機構AR3tbは、「第1駆動機構」及び「駆動機構」の他の例であり、伸縮機構TE3bは、「第4伸縮機構」の他の例である。なお、以下では、関節機構AR3tb等は、符号の末尾のアルファベット“b”を付さずに称される(例えば、関節機構AR3t)場合がある。 FIG. 19 is an explanatory diagram for explaining another example of the joint mechanism AR3t according to modification C2. Elements similar to those described in FIGS. 14 to 18 are designated by the same reference numerals, and detailed description thereof will be omitted. For example, in the embodiment shown in FIG. 19, the robot 10C has a joint mechanism AR3tb instead of the joint mechanism AR3t shown in FIG. The upper part of FIG. 19 shows the joint mechanism AR3tb in a contracted state, and the lower part of FIG. 18 shows the joint mechanism AR3tb in an extended state. The joint mechanism AR3tb is another example of the "first drive mechanism" and the "drive mechanism", and the telescoping mechanism TE3b is another example of the "fourth telescoping mechanism". Note that hereinafter, the joint mechanism AR3tb and the like may be referred to without adding the alphabet "b" at the end of the reference numeral (for example, joint mechanism AR3t).
 関節機構AR3tbは、伝達軸RE11の中心軸がボールねじTE32の中心軸(すなわち、軸Axte3)と一致するように、モータMOa3が可動部分LK13bに取り付けられていることを除いて、図18に示した関節機構AR3taと同様である。例えば、旋回機構RE1bを駆動するモータMOa3は、軸Ax3に沿う方向からの平面視において、モータMOa3に取り付けられる伝達軸RE11の中心軸が軸Ax3となるように接続部分TE33bの外部に配置され、可動部分LK13bの内部に固定される。従って、関節機構AR3tbにおいても、図17等に示した関節機構AR3taと同様に、モータMOa3は、接続部分TE33bが移動しても移動しない。 The joint mechanism AR3tb is shown in FIG. 18, except that the motor MOa3 is attached to the movable part LK13b such that the central axis of the transmission shaft RE11 coincides with the central axis of the ball screw TE32 (i.e., axis Axte3). This is the same as the joint mechanism AR3ta. For example, the motor MOa3 that drives the turning mechanism RE1b is arranged outside the connecting portion TE33b so that the central axis of the transmission shaft RE11 attached to the motor MOa3 is the axis Ax3 when viewed in plan from the direction along the axis Ax3, It is fixed inside the movable part LK13b. Therefore, in the joint mechanism AR3tb as well, the motor MOa3 does not move even if the connecting portion TE33b moves, similar to the joint mechanism AR3ta shown in FIG. 17 and the like.
 また、関節機構AR3tbにおいても、接続部分TE33bは、図18に示した接続部分TE33aと同様に、支持部分LK21g及び可動部分LK13bに接続される。例えば、接続部分TE33bは、支持部分LK21gに対して軸Axte3(すなわち、方向Dm3)に沿って移動可能で、かつ、支持部分LK21gと一緒に回転するように、支持部分LK21gに接続される。また、接続部分TE33bは、リンクLK1aの可動部分LK13bに対する方向Dm3の相対的な位置が変化しないように、かつ、軸Ax3を回転軸として可動部分LK13bに対して回転可能に、可動部分LK13bに接続される。 Furthermore, in the joint mechanism AR3tb, the connecting portion TE33b is connected to the supporting portion LK21g and the movable portion LK13b, similar to the connecting portion TE33a shown in FIG. 18. For example, the connecting portion TE33b is connected to the supporting portion LK21g in such a way that it is movable relative to the supporting portion LK21g along the axis Axte3 (ie, the direction Dm3) and rotates together with the supporting portion LK21g. Further, the connecting portion TE33b is connected to the movable portion LK13b so that the relative position of the link LK1a with respect to the movable portion LK13b in the direction Dm3 does not change and is rotatable with respect to the movable portion LK13b with the axis Ax3 as the rotation axis. be done.
 旋回機構RE1bは、モータMOa3の回転が伝達される伝達軸RE11と、伝達軸RE11に取り付けられたギアRE13bとを有する。伝達軸RE11は、モータMOa3に取り付けられている。ギアRE13bは、接続部分TE33bの内部に配置され、接続部分TE33bの2つの端部のうちの可動部分LK13bに近い端部に取り付けられている。従って、関節機構AR3tbでは、伝達軸RE11は、ギアRE13bを介して接続部分TE33bと連結している。 The turning mechanism RE1b includes a transmission shaft RE11 to which the rotation of the motor MOa3 is transmitted, and a gear RE13b attached to the transmission shaft RE11. The transmission shaft RE11 is attached to the motor MOa3. The gear RE13b is disposed inside the connecting portion TE33b, and is attached to one of the two ends of the connecting portion TE33b, which is closer to the movable portion LK13b. Therefore, in the joint mechanism AR3tb, the transmission shaft RE11 is connected to the connecting portion TE33b via the gear RE13b.
 これにより、例えば、モータMOa3が回転した場合、伝達軸RE11及びギアRE13bを介して、接続部分TE33bにモータMOa3の回転が伝達される。この結果、接続部分TE33bは、軸Ax3を回転軸として回転する。そして、リンクLK2fは、接続部分TE33bの回転に伴い、接続部分TE33bと一緒に回転する。 Thereby, for example, when the motor MOa3 rotates, the rotation of the motor MOa3 is transmitted to the connection portion TE33b via the transmission shaft RE11 and the gear RE13b. As a result, the connecting portion TE33b rotates about the axis Ax3. The link LK2f rotates together with the connection portion TE33b as the connection portion TE33b rotates.
 以上、本変形例では、伸縮機構TE3(TE3a又はTE3b)は、リンクLK1aとリンクLK2fとを接続する接続部分TE33(TE33a又はTE33b)を含む。接続部分TE33の少なくとも一部は、軸Ax3(回転軸)に沿う方向Dm3におけるリンクLK1aとリンクLK2fとの距離が最小になる場合、リンクLK2fの内部に格納される。また、接続部分TE33の少なくとも一部は、方向Dm3におけるリンクLK1aとリンクLK2fとの距離が最大になる場合、リンクLK1a及びLK2fから露出する。本変形例においても、上述した第4実施形態及び変形例と同様の効果を得ることができる。 As described above, in this modification, the telescopic mechanism TE3 (TE3a or TE3b) includes the connecting portion TE33 (TE33a or TE33b) that connects the link LK1a and the link LK2f. At least a portion of the connecting portion TE33 is stored inside the link LK2f when the distance between the link LK1a and the link LK2f in the direction Dm3 along the axis Ax3 (rotation axis) is the minimum. Further, at least a portion of the connecting portion TE33 is exposed from the links LK1a and LK2f when the distance between the links LK1a and LK2f in the direction Dm3 is maximum. Also in this modified example, the same effects as in the fourth embodiment and modified example described above can be obtained.
[変形例C3]
 上述した第4実施形態及び変形例では、関節機構AR3tが伸縮機構TE3を含む場合を例示したが、本発明はこのような態様に限定されるものではない。例えば、伸縮機構TE3は、関節機構AR2に設けられてもよいし、関節機構AR5に設けられてもよい。すなわち、関節機構AR2が、第5回転軸(軸Ax2)に沿って、リンクLK1aをボディ部BDPに対して相対的に移動させる伸縮機構(第4伸縮機構の一例)を含んでもよい。あるいは、関節機構AR5が、第2回転軸(軸Ax5)に沿って、リンクLK3をリンクLK2fに対して相対的に移動させる伸縮機構(第4伸縮機構の一例)を含んでもよい。
[Modification C3]
In the fourth embodiment and the modified example described above, the case where the joint mechanism AR3t includes the expansion and contraction mechanism TE3 is illustrated, but the present invention is not limited to such an aspect. For example, the telescopic mechanism TE3 may be provided in the joint mechanism AR2 or may be provided in the joint mechanism AR5. That is, the joint mechanism AR2 may include a telescoping mechanism (an example of a fourth telescoping mechanism) that moves the link LK1a relative to the body portion BDP along the fifth rotation axis (axis Ax2). Alternatively, the joint mechanism AR5 may include a telescoping mechanism (an example of a fourth telescoping mechanism) that moves the link LK3 relative to the link LK2f along the second rotation axis (axis Ax5).
 関節機構AR2が伸縮機構を含む場合、当該伸縮機構は、例えば、主に、図15のリンクLK1aをボディ部BDPと読み替え、図15のリンクLK2fをリンクLK1aと読み替え、図15の軸Ax3を軸Ax2と読み替えることにより、図15で説明される。また、関節機構AR5が伸縮機構を含む場合、当該伸縮機構は、例えば、主に、図15のリンクLK1aをリンクLK2fと読み替え、図15のリンクLK2fをリンクLK3と読み替え、図15の軸Ax3を軸Ax5と読み替えることにより、図15で説明される。 When the joint mechanism AR2 includes a telescoping mechanism, the telescoping mechanism mainly includes, for example, the link LK1a in FIG. 15 is replaced with the body part BDP, the link LK2f in FIG. 15 is replaced with the link LK1a, and the axis Ax3 in FIG. This will be explained with reference to FIG. 15 by reading it as Ax2. In addition, when the joint mechanism AR5 includes a telescoping mechanism, the telescoping mechanism mainly includes, for example, link LK1a in FIG. 15 replaced with link LK2f, link LK2f in FIG. 15 replaced with link LK3, and axis Ax3 in FIG. This will be explained with reference to FIG. 15 by reading the axis Ax5.
 以上、本変形例においても、上述した第4実施形態及び変形例と同様の効果を得ることができる。但し、関節機構AR2が伸縮機構を含む態様では、当該伸縮機構により、リンクLK1aからリンクLK3までの部材が全て移動するため、上述した第4実施形態及び変形例に比べて、移動する部材の重量及び体積が増加する。このため、関節機構AR2が伸縮機構を含む態様では、上述した第4実施形態及び変形例に比べて、伸縮機構による伸縮動作等の制御の精度及び高速化に関しての課題、及び、ロボット10Cを設置するスペースの問題等が生じる懸念が大きくなる。換言すれば、上述した第4実施形態及び変形例(関節機構AR3tが伸縮機構TE3を含む態様)では、伸縮機構TE3による伸縮動作等の制御の精度及び高速化に関しての課題、及び、ロボット10Cを設置するスペースの問題等が生じる懸念が小さい。 As described above, the same effects as the fourth embodiment and the modification described above can be obtained in this modification as well. However, in the case where the joint mechanism AR2 includes a telescoping mechanism, all the members from the link LK1a to the link LK3 move due to the telescoping mechanism. and volume increases. Therefore, in an embodiment in which the joint mechanism AR2 includes a telescoping mechanism, compared to the fourth embodiment and the modified example described above, there are problems regarding accuracy and speed-up of control of the telescoping operation, etc. by the telescoping mechanism, and the installation of the robot 10C. There is a growing concern that issues such as space issues will arise. In other words, in the fourth embodiment and the modified example (a mode in which the joint mechanism AR3t includes the telescoping mechanism TE3), there are problems regarding accuracy and speed-up of the control of the telescoping operation, etc. by the telescoping mechanism TE3, and the problem of increasing the speed of the control of the telescoping mechanism TE3, and the robot 10C. There is little concern that problems such as installation space will arise.
 また、関節機構AR5が伸縮機構を含む態様では、伸縮機構によりロボット10Cの先端部周辺(例えば、リンクLK3周辺)の構造が複雑になる。また、関節機構AR5が伸縮機構を含む態様では、上述した第4実施形態及び変形例に比べて、ロボット10Cの先端部周辺(例えば、リンクLK3周辺)の重量が増加する。このため、関節機構AR5が伸縮機構を含む態様では、上述した第4実施形態及び変形例に比べて、伸縮機構による伸縮動作等の制御の精度及び高速化に関しての課題等が生じる懸念が大きくなる。また、関節機構AR5の回転軸(軸Ax5)は、関節機構AR4fの回転により、ロボット10Cの底面BDPbtに平行な面(例えば、図16のX-Y平面)上から逸脱する。このため、関節機構AR5が伸縮機構を含む態様では、逆軌道計算において、単純な水平方向(図16の例では、X方向)の移動量で演算できない場合がある。この場合、逆軌道計算等を行う場合の演算の負荷が大きくなる等の懸念が生じる。換言すれば、上述した第4実施形態及び変形例(関節機構AR3tが伸縮機構TE3を含む態様)では、上述の懸念を小さくすることができる。 Furthermore, in an embodiment in which the joint mechanism AR5 includes a telescoping mechanism, the structure around the distal end of the robot 10C (for example, around the link LK3) becomes complicated due to the telescoping mechanism. In addition, in an embodiment in which the joint mechanism AR5 includes a telescoping mechanism, the weight around the tip of the robot 10C (for example, around the link LK3) increases compared to the fourth embodiment and the modified example described above. For this reason, in an embodiment in which the joint mechanism AR5 includes a telescoping mechanism, there is a greater concern that problems will arise regarding accuracy and speed-up of control of the telescoping motion, etc. by the telescoping mechanism, compared to the fourth embodiment and the modified example described above. . Further, the rotation axis (axis Ax5) of the joint mechanism AR5 deviates from a plane parallel to the bottom surface BDPbt of the robot 10C (for example, the XY plane in FIG. 16) due to the rotation of the joint mechanism AR4f. For this reason, in a mode in which the joint mechanism AR5 includes a telescoping mechanism, it may not be possible to calculate a simple movement amount in the horizontal direction (in the example of FIG. 16, the X direction) in the reverse trajectory calculation. In this case, there is a concern that the calculation load when performing reverse orbit calculation etc. will increase. In other words, in the fourth embodiment and the modification described above (a mode in which the joint mechanism AR3t includes the expansion and contraction mechanism TE3), the above-mentioned concerns can be reduced.
[変形例C4]
 上述した第4実施形態及び変形例では、垂直6軸多関節ロボットに2つの伸縮機構TE1及びTE3を追加した6軸2伸多関節ロボットをロボット10Cとして例示したが、本発明はこのような態様に限定されるものではない。例えば、ロボット10Cは、垂直6軸多関節ロボットに1つの伸縮機構TE3を追加した6軸1伸多関節ロボットであってもよい。
[Modification C4]
In the fourth embodiment and modification described above, a 6-axis, 2-extensible, articulated robot in which two extension mechanisms TE1 and TE3 are added to a vertical 6-axis, articulated robot is illustrated as the robot 10C, but the present invention does not apply to such an aspect. It is not limited to. For example, the robot 10C may be a 6-axis, 1-extension, multi-joint robot obtained by adding one extension/contraction mechanism TE3 to a vertical 6-axis, multi-joint robot.
 また、例えば、ロボット10Cは、7軸以上の多関節ロボットに2つの伸縮機構TE1及びTE3を追加した構成であってもよいし、7軸以上の多関節ロボットに1つの伸縮機構TE3を追加した構成であってもよい。具体的には、ロボット10Cは、ボディ部BDPとリンクLK1aとを接続する1以上のリンクを有してもよい。すなわち、ロボット10Cは、ボディ部BDPとリンクLK3とを接続する3以上のリンク(リンクLK3を除いた3以上のリンク)を有してもよい。なお、ロボット10Cが有する3以上のリンクには、リンクLK1a及びLK2fが含まれる。リンクLK3を除いた3以上のリンクは、「複数のリンク」に該当する。 Further, for example, the robot 10C may have a configuration in which two telescoping mechanisms TE1 and TE3 are added to an articulated robot with seven or more axes, or a configuration in which one telescoping mechanism TE3 is added to an articulated robot with seven or more axes. It may be a configuration. Specifically, the robot 10C may have one or more links connecting the body part BDP and the link LK1a. That is, the robot 10C may have three or more links (three or more links excluding link LK3) that connect the body part BDP and link LK3. Note that the three or more links that the robot 10C has include links LK1a and LK2f. Three or more links excluding link LK3 correspond to "multiple links".
 また、例えば、伸縮機構TE1は、リンクLK2fに設けられてもよい。また、例えば、ロボット10Cは、リンクLK1aを伸縮する伸縮機構TE1と、リンクLK2fを長手方向(方向De2)に伸縮する伸縮機構と、関節機構AR3tを伸縮する伸縮機構TE3とを有してもよい。 Furthermore, for example, the telescoping mechanism TE1 may be provided on the link LK2f. Further, for example, the robot 10C may include a telescoping mechanism TE1 that extends and contracts the link LK1a, a telescoping mechanism that extends and contracts the link LK2f in the longitudinal direction (direction De2), and a telescoping mechanism TE3 that extends and contracts the joint mechanism AR3t. .
 以上、本変形例においても、上述した第4実施形態及び変形例と同様の効果を得ることができる。 As described above, the same effects as the fourth embodiment and the modification described above can be obtained in this modification as well.
[変形例C5]
 上述した第4実施形態及び変形例では、ロボット10CがモータMOt3とモータMOa3とを有する場合を例示したが、本発明はこのような態様に限定されるものではない。例えば、モータMOt3とモータMOa3とを1つの共通のモータとしてロボット10Cに設け、当該共通のモータとボールねじTE32及び伝達軸RE11との連結をクラッチ等で切り替えてもよい。以上、本変形例においても、上述した第4実施形態及び変形例と同様の効果を得ることができる。
[Modification C5]
In the fourth embodiment and the modification described above, the robot 10C includes the motor MOt3 and the motor MOa3, but the present invention is not limited to such an embodiment. For example, the motor MOt3 and the motor MOa3 may be provided in the robot 10C as one common motor, and the connection between the common motor, the ball screw TE32, and the transmission shaft RE11 may be switched using a clutch or the like. As mentioned above, the same effects as the fourth embodiment and the modification example described above can be obtained also in this modification example.
[C-3.第4実施形態に係る付記]
 上述した第4実施形態、及び、第4実施形態の変形例の記載から、以下に記載する態様が把握される。
[C-3. Additional notes regarding the fourth embodiment]
From the description of the fourth embodiment and the modification of the fourth embodiment described above, the aspects described below can be understood.
[付記2-1]
 多関節ロボットは、基部と、先端部と、第1リンク及び第2リンクを含み、前記基部と前記先端部とを接続する複数のリンクと、前記第1リンクと前記第2リンクとを接続する駆動機構であって、前記第1リンクが延在する方向とのなす角度が所定の角度より大きい軸を回転軸として前記第2リンクを前記第1リンクに対して回転させる駆動機構と、を備え、前記駆動機構は、前記回転軸に沿って、前記第2リンクを前記第1リンクに対して相対的に移動させる第4伸縮機構を含む、ことを特徴とする。
[Appendix 2-1]
The articulated robot includes a base, a tip, a first link, and a second link, and includes a plurality of links connecting the base and the tip, and connecting the first link and the second link. A drive mechanism that rotates the second link with respect to the first link using an axis that makes an angle with the direction in which the first link extends is larger than a predetermined angle as a rotation axis. , the drive mechanism includes a fourth telescoping mechanism that moves the second link relative to the first link along the rotation axis.
[付記2-2]
 付記2-1に記載の多関節ロボットにおいて、前記第4伸縮機構は、前記第1リンクと前記第2リンクとを接続する接続部分を含み、前記接続部分の少なくとも一部は、前記回転軸に沿う第1方向における前記第1リンクと前記第2リンクとの距離が最小になる場合、前記第1リンク及び前記第2リンクの少なくとも一方の内部に格納され、前記第1方向における前記第1リンクと前記第2リンクとの距離が最大になる場合、前記第1リンク及び前記第2リンクから露出する、ことを特徴としてもよい。
[Appendix 2-2]
In the articulated robot according to Appendix 2-1, the fourth telescoping mechanism includes a connecting portion connecting the first link and the second link, and at least a portion of the connecting portion is connected to the rotation axis. When the distance between the first link and the second link in the first direction is the minimum, the first link in the first direction is stored inside at least one of the first link and the second link. When the distance between the first link and the second link is maximum, the second link may be exposed from the first link and the second link.
[付記2-3]
 付記2-2に記載の多関節ロボットにおいて、前記駆動機構は、前記第2リンクを前記第1リンク及び前記接続部分に対して回転させることにより、前記第2リンクを前記第1リンクに対して回転させる、ことを特徴としてもよい。
[Appendix 2-3]
In the articulated robot according to Appendix 2-2, the drive mechanism rotates the second link with respect to the first link and the connecting portion, thereby rotating the second link with respect to the first link. It may also be characterized by rotating.
[付記2-4]
 付記2-2に記載の多関節ロボットにおいて、前記駆動機構は、前記第2リンク及び前記接続部分を前記第1リンクに対して一体的に回転させることにより、前記第2リンクを前記第1リンクに対して回転させる、ことを特徴としてもよい。
[Appendix 2-4]
In the articulated robot according to Appendix 2-2, the drive mechanism rotates the second link and the connecting portion integrally with respect to the first link, thereby causing the second link to connect to the first link. The feature may be that the image is rotated relative to the object.
[付記2-5]
 付記2-1から付記2-4のいずれか1項に記載の多関節ロボットにおいて、前記第1リンクは、第4部分と、前記第2リンクに接続される第5部分と、前記第4部分と前記第5部分とを接続する第6部分と、前記第4部分に対して前記第6部分を前記第4部分が延在する方向に沿って移動させることにより、前記第1リンクを伸縮させる第2伸縮機構と、を含む、ことを特徴としてもよい。
[Appendix 2-5]
In the articulated robot according to any one of Supplementary notes 2-1 to 2-4, the first link includes a fourth portion, a fifth portion connected to the second link, and the fourth portion. and a sixth part that connects the fifth part, and the first link is expanded and contracted by moving the sixth part with respect to the fourth part along the direction in which the fourth part extends. A second expansion/contraction mechanism may be included.
[付記2-6]
 付記2-5に記載の多関節ロボットにおいて、前記第4部分は、中空であり、前記第1リンクが収縮した場合、前記第6部分の少なくとも一部が、前記第4部分の内部に格納される、ことを特徴としてもよい。
[Appendix 2-6]
In the articulated robot according to appendix 2-5, the fourth portion is hollow, and when the first link contracts, at least a portion of the sixth portion is stored inside the fourth portion. It may also be characterized by
[付記2-7]
 多関節ロボットは、基部と、第1リンクと、支持部分及び可動部分を含む第2リンクと、先端部と、前記基部の底面に垂直な方向とのなす角度が所定の角度以下の軸を第4回転軸として、前記基部の少なくとも一部分を回転させる第4駆動機構と、前記基部と前記第1リンクとを接続する第5駆動機構であって、前記基部の底面に垂直な方向とのなす角度が前記所定の角度より大きい軸を第5回転軸として前記第1リンクを前記基部に対して回転させる第5駆動機構と、前記第1リンクと前記支持部分とを接続する第1駆動機構であって、前記第1リンクが延在する方向とのなす角度が前記所定の角度より大きい軸を第1回転軸として前記第2リンクを前記第1リンクに対して回転させる第1駆動機構と、前記支持部分が延在する方向とのなす角度が前記所定の角度以下の軸を第3回転軸として、前記可動部分を前記支持部分に対して回転させる第8駆動機構と、前記可動部分と前記先端部とを接続する第2駆動機構であって、前記第2リンクが延在する方向とのなす角度が前記所定の角度より大きい軸を第2回転軸として前記先端部を前記第2リンクに対して回転させる第2駆動機構と、前記第2回転軸とのなす角度が前記所定の角度より大きい軸を第6回転軸として、前記先端部の少なくとも一部分を前記第2リンクに対して回転させる第6駆動機構と、を備え、前記第1駆動機構は、前記第1回転軸に沿って、前記第2リンクを前記第1リンクに対して相対的に移動させる第4伸縮機構を含む、ことを特徴とする。
[Appendix 2-7]
The articulated robot has an axis whose angle between a base, a first link, a second link including a support portion and a movable portion, a tip, and a direction perpendicular to the bottom of the base is a predetermined angle or less. a fourth drive mechanism that rotates at least a portion of the base, and a fifth drive mechanism that connects the base and the first link, each serving as a fourth rotation axis; a fifth drive mechanism that rotates the first link relative to the base using an axis larger than the predetermined angle as a fifth rotation axis; and a first drive mechanism that connects the first link and the support portion. a first drive mechanism that rotates the second link relative to the first link using an axis that makes an angle larger than the predetermined angle with the direction in which the first link extends as a first rotation axis; an eighth drive mechanism that rotates the movable portion with respect to the support portion using an axis that makes an angle with the direction in which the support portion extends as a third rotation axis that is equal to or less than the predetermined angle; and an eighth drive mechanism that rotates the movable portion with respect to the support portion; a second drive mechanism that connects the tip part to the second link, with an axis that makes an angle larger than the predetermined angle with the direction in which the second link extends as a second rotation axis; a second drive mechanism that rotates at least a portion of the distal end relative to the second link, using a sixth rotation axis that is an axis that is larger than the predetermined angle with the second rotation axis; 6 drive mechanism, and the first drive mechanism includes a fourth telescoping mechanism that moves the second link relative to the first link along the first rotation axis. Features.
[付記2-8]
 多関節ロボットは、基部と、第1リンクと、支持部分及び可動部分を含む第2リンクと、先端部と、前記基部の底面に垂直な方向とのなす角度が所定の角度以下の軸を第4回転軸として、前記基部の少なくとも一部分を回転させる第4駆動機構と、前記基部と前記第1リンクとを接続する第5駆動機構であって、前記基部の底面に垂直な方向とのなす角度が前記所定の角度より大きい軸を第5回転軸として前記第1リンクを前記基部に対して回転させる第5駆動機構と、前記第1リンクと前記支持部分とを接続する第1駆動機構であって、前記第1リンクが延在する方向とのなす角度が前記所定の角度より大きい軸を第1回転軸として前記第2リンクを前記第1リンクに対して回転させる第1駆動機構と、前記支持部分が延在する方向とのなす角度が前記所定の角度以下の軸を第3回転軸として、前記可動部分を前記支持部分に対して回転させる第8駆動機構と、前記可動部分と前記先端部とを接続する第2駆動機構であって、前記第2リンクが延在する方向とのなす角度が前記所定の角度より大きい軸を第2回転軸として前記先端部を前記第2リンクに対して回転させる第2駆動機構と、前記第2回転軸とのなす角度が前記所定の角度より大きい軸を第6回転軸として、前記先端部の少なくとも一部分を前記第2リンクに対して回転させる第6駆動機構と、を備え、前記第5駆動機構は、前記第5回転軸に沿って、前記第1リンクを前記基部に対して相対的に移動させる第4伸縮機構を含む、ことを特徴としてもよい。
[Appendix 2-8]
The articulated robot has an axis whose angle between a base, a first link, a second link including a support portion and a movable portion, a tip, and a direction perpendicular to the bottom of the base is a predetermined angle or less. a fourth drive mechanism that rotates at least a portion of the base, and a fifth drive mechanism that connects the base and the first link, each serving as a fourth rotation axis; a fifth drive mechanism that rotates the first link relative to the base using an axis larger than the predetermined angle as a fifth rotation axis; and a first drive mechanism that connects the first link and the support portion. a first drive mechanism that rotates the second link relative to the first link using an axis that makes an angle larger than the predetermined angle with the direction in which the first link extends as a first rotation axis; an eighth drive mechanism that rotates the movable portion with respect to the support portion using an axis that makes an angle with the direction in which the support portion extends as a third rotation axis that is equal to or less than the predetermined angle; and an eighth drive mechanism that rotates the movable portion with respect to the support portion; a second drive mechanism that connects the tip part to the second link, with an axis that makes an angle larger than the predetermined angle with the direction in which the second link extends as a second rotation axis; a second drive mechanism that rotates at least a portion of the distal end relative to the second link, using a sixth rotation axis that is an axis that is larger than the predetermined angle with the second rotation axis; 6 drive mechanism, and the fifth drive mechanism includes a fourth telescoping mechanism that moves the first link relative to the base along the fifth rotation axis. Good too.
[付記2-9]
 多関節ロボットは、基部と、第1リンクと、支持部分及び可動部分を含む第2リンクと、先端部と、前記基部の底面に垂直な方向とのなす角度が所定の角度以下の軸を第4回転軸として、前記基部の少なくとも一部分を回転させる第4駆動機構と、前記基部と前記第1リンクとを接続する第5駆動機構であって、前記基部の底面に垂直な方向とのなす角度が前記所定の角度より大きい軸を第5回転軸として前記第1リンクを前記基部に対して回転させる第5駆動機構と、前記第1リンクと前記支持部分とを接続する第1駆動機構であって、前記第1リンクが延在する方向とのなす角度が前記所定の角度より大きい軸を第1回転軸として前記第2リンクを前記第1リンクに対して回転させる第1駆動機構と、前記支持部分が延在する方向とのなす角度が前記所定の角度以下の軸を第3回転軸として、前記可動部分を前記支持部分に対して回転させる第8駆動機構と、前記可動部分と前記先端部とを接続する第2駆動機構であって、前記第2リンクが延在する方向とのなす角度が前記所定の角度より大きい軸を第2回転軸として前記先端部を前記第2リンクに対して回転させる第2駆動機構と、前記第2回転軸とのなす角度が前記所定の角度より大きい軸を第6回転軸として、前記先端部の少なくとも一部分を前記第2リンクに対して回転させる第6駆動機構と、を備え、前記第2駆動機構は、前記第2回転軸に沿って、前記先端部を前記第2リンクに対して相対的に移動させる第4伸縮機構を含む、ことを特徴としてもよい。
[Appendix 2-9]
The articulated robot has an axis whose angle between a base, a first link, a second link including a support portion and a movable portion, a tip, and a direction perpendicular to the bottom of the base is a predetermined angle or less. a fourth drive mechanism that rotates at least a portion of the base, and a fifth drive mechanism that connects the base and the first link, each serving as a fourth rotation axis; a fifth drive mechanism that rotates the first link relative to the base using an axis larger than the predetermined angle as a fifth rotation axis; and a first drive mechanism that connects the first link and the support portion. a first drive mechanism that rotates the second link relative to the first link using an axis that makes an angle larger than the predetermined angle with the direction in which the first link extends as a first rotation axis; an eighth drive mechanism that rotates the movable portion with respect to the support portion using an axis that makes an angle with the direction in which the support portion extends as a third rotation axis that is equal to or less than the predetermined angle; and an eighth drive mechanism that rotates the movable portion with respect to the support portion; a second drive mechanism that connects the tip part to the second link, with an axis that makes an angle larger than the predetermined angle with the direction in which the second link extends as a second rotation axis; a second drive mechanism that rotates at least a portion of the distal end relative to the second link, using a sixth rotation axis that is an axis that is larger than the predetermined angle with the second rotation axis; 6 drive mechanism, and the second drive mechanism includes a fourth telescoping mechanism that moves the tip portion relatively to the second link along the second rotation axis. You can also use it as
[付記2-10]
 付記2-7から付記2-9のいずれか1項に記載の多関節ロボットにおいて、前記第1リンクは、前記基部に接続される第4部分と、前記第2リンクに接続される第5部分と、前記第4部分と前記第5部分とを接続する第6部分と、前記第4部分に対して前記第6部分を前記第4部分が延在する方向に沿って移動させることにより、前記第1リンクを伸縮させる第2伸縮機構と、を含む、ことを特徴としてもよい。
[Appendix 2-10]
In the articulated robot according to any one of Supplementary notes 2-7 to 2-9, the first link includes a fourth portion connected to the base and a fifth portion connected to the second link. and a sixth part connecting the fourth part and the fifth part, and moving the sixth part with respect to the fourth part along the direction in which the fourth part extends, A second expansion and contraction mechanism that expands and contracts the first link may be included.
[付記2-11]
 付記2-10に記載の多関節ロボットの制御方法であって、前記多関節ロボットの動作を制御する制御装置は、前記第4駆動機構を駆動するモータ、前記第5駆動機構を駆動するモータ、前記第1駆動機構を駆動するモータ、前記第8駆動機構を駆動するモータ、前記第2駆動機構を駆動するモータ、前記第6駆動機構を駆動するモータ、前記第4伸縮機構を駆動するモータ、及び、前記第2伸縮機構を駆動するモータを制御することにより、前記多関節ロボットの動作を制御する、ことを特徴とする。
[Appendix 2-11]
The method for controlling an articulated robot according to Appendix 2-10, wherein the control device that controls the operation of the articulated robot includes a motor that drives the fourth drive mechanism, a motor that drives the fifth drive mechanism, A motor that drives the first drive mechanism, a motor that drives the eighth drive mechanism, a motor that drives the second drive mechanism, a motor that drives the sixth drive mechanism, a motor that drives the fourth telescoping mechanism, The robot is characterized in that the motion of the multi-joint robot is controlled by controlling a motor that drives the second telescoping mechanism.
[付記2-12]
 ロボットシステムは、付記2-10に記載の多関節ロボットと、前記先端部に取り付けられたエンドエフェクタと、前記多関節ロボット及び前記エンドエフェクタの動作を制御する制御装置と、を備え、前記制御装置は、前記第4駆動機構を駆動するモータ、前記第5駆動機構を駆動するモータ、前記第1駆動機構を駆動するモータ、前記第8駆動機構を駆動するモータ、前記第2駆動機構を駆動するモータ、前記第6駆動機構を駆動するモータ、前記第4伸縮機構を駆動するモータ、及び、前記第2伸縮機構を駆動するモータを制御することにより、前記多関節ロボットの動作を制御する、ことを特徴とする。
[Appendix 2-12]
The robot system includes the articulated robot described in Appendix 2-10, an end effector attached to the distal end, and a control device that controls operations of the articulated robot and the end effector, and the control device A motor that drives the fourth drive mechanism, a motor that drives the fifth drive mechanism, a motor that drives the first drive mechanism, a motor that drives the eighth drive mechanism, and a motor that drives the second drive mechanism. controlling the operation of the articulated robot by controlling a motor, a motor that drives the sixth drive mechanism, a motor that drives the fourth telescoping mechanism, and a motor that drives the second telescoping mechanism; It is characterized by
[付記2-13]
 物品の製造方法は、付記2-12に記載のロボットシステムにより、部品を組み付ける、又は、部品を取り除く、ことを特徴とする。
[Appendix 2-13]
The article manufacturing method is characterized by assembling or removing parts using the robot system described in Appendix 2-12.
[D.応用例]
 上述した実施形態及び変形例において説明したロボット10、10A、10B又は10Cを含むロボットシステム1は、部品を組み付ける、又は、部品を取り除くことを含む物品の製造方法に用いられてもよい。
[D. Application example]
The robot system 1 including the robots 10, 10A, 10B, or 10C described in the embodiments and modifications described above may be used in an article manufacturing method that includes assembling or removing parts.
[E.その他]
 上述した第1実施形態において簡単に説明した「旋回」と他の回転との区別について、いくつかの例を挙げて説明する。
[E. others]
The distinction between "swivel" briefly explained in the first embodiment and other rotations will be explained using some examples.
 図20は、旋回の一例を説明するための説明図である。図20では、長手方向を把握可能な2つのリンクLKi及びLKjの接続を例にして、旋回と他の回転との区別について説明する。図20の延在方向Deiは、リンクLKiが延在する方向を示し、延在方向Dejは、リンクLKjが延在する方向を示す。また、図20の関節機構ARiは、リンクLKiとリンクLKjとを接続し、軸Axiを回転軸として、リンクLKjをリンクLKiに対して回転させる。 FIG. 20 is an explanatory diagram for explaining an example of turning. In FIG. 20, the distinction between turning and other rotations will be explained using as an example the connection of two links LKi and LKj whose longitudinal direction can be grasped. The extending direction Dei in FIG. 20 indicates the direction in which the link LKi extends, and the extending direction Dej indicates the direction in which the link LKj extends. Further, the joint mechanism ARi in FIG. 20 connects the link LKi and the link LKj, and rotates the link LKj with respect to the link LKi using the axis Axi as a rotation axis.
 図20に示す例では、リンクLKiの延在方向Dei(特定の方向)と軸Axiとのなす角度θが所定の角度より大きい場合、当該軸Axiを回転軸とした回転は、「旋回」に該当する。すなわち、リンクLKiの延在方向Deiと軸Axiとのなす角度θが所定の角度以下の場合、当該軸Axiを回転軸とした回転は、旋回以外の回転(旋回と区別される他の回転)に該当する。図20に示す「回転」は、旋回以外の回転を示す。また、所定の角度は特に限定されないが、図20では、所定の角度が45°である場合を想定する。延在方向Deiと軸Axiとのなす角度θは、延在方向Deiに対する軸Axiの角度として把握される複数の角度(例えば、互いに交差する2つの直線では4つの角度、又は、平行な2つの直線では0°及び180°)のうち、0°以上90°以下の角度である。 In the example shown in FIG. 20, if the angle θ between the extending direction Dei (specific direction) of the link LKi and the axis Axi is larger than a predetermined angle, the rotation with the axis Axi as the rotation axis becomes a "turning". Applicable. That is, when the angle θ between the extending direction Dei of the link LKi and the axis Axi is less than or equal to a predetermined angle, the rotation about the axis Axi is a rotation other than turning (a rotation different from turning). Applies to. "Rotation" shown in FIG. 20 indicates rotation other than turning. Furthermore, although the predetermined angle is not particularly limited, it is assumed in FIG. 20 that the predetermined angle is 45°. The angle θ between the extending direction Dei and the axis Axi can be understood as the angle of the axis Axi with respect to the extending direction Dei (for example, 4 angles for two straight lines that intersect with each other, or 4 angles for two parallel lines) (0° and 180° in a straight line), the angle is 0° or more and 90° or less.
 第1パターンでは、リンクLKiの延在方向Deiと軸Axiとのなす角度θは、90°であり、所定の角度(45°)よりも大きい。従って、第1パターンでは、軸Axiを回転軸としたリンクLKjの回転は、旋回である。また、第1パターンでは、リンクLKjの延在方向Dejは、軸Axiに垂直である。なお、第1パターンでは、リンクLKjが軸Axiを回転軸として回転(旋回)した場合、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、変化する。 In the first pattern, the angle θ between the extending direction Dei of the link LKi and the axis Axi is 90°, which is larger than the predetermined angle (45°). Therefore, in the first pattern, the rotation of the link LKj about the axis Axi is a turn. Further, in the first pattern, the extending direction Dej of the link LKj is perpendicular to the axis Axi. In the first pattern, when the link LKj rotates (swivels) about the axis Axi, the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi changes.
 第2パターンでは、リンクLKiの延在方向Deiと軸Axiとのなす角度θは、0°であり、所定の角度(45°)以下である。従って、第2パターンでは、軸Axiを回転軸としたリンクLKjの回転は、旋回以外の回転である。また、第2パターンでは、リンクLKjの延在方向Dejは、リンクLKiの延在方向Dei及び軸Axiに平行である。すなわち、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、0°である。なお、第2パターンでは、リンクLKjが軸Axiを回転軸として回転しても、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、0°に維持され、常に一定である。 In the second pattern, the angle θ between the extending direction Dei of the link LKi and the axis Axi is 0°, which is less than or equal to a predetermined angle (45°). Therefore, in the second pattern, the rotation of the link LKj about the axis Axi is rotation other than turning. Further, in the second pattern, the extending direction Dej of the link LKj is parallel to the extending direction Dei of the link LKi and the axis Axi. That is, the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi is 0°. In the second pattern, even if the link LKj rotates about the axis Axi, the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi is maintained at 0° and is always constant. .
 第3パターンでは、リンクLKiの延在方向Deiと軸Axiとのなす角度θは、0°であり、所定の角度(45°)以下である。従って、第3パターンでは、軸Axiを回転軸としたリンクLKjの回転は、旋回以外の回転である。また、第3パターンでは、リンクLKjの延在方向Dejは、リンクLKiの延在方向Dei及び軸Axiに垂直である。すなわち、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、90°である。なお、第3パターンでは、リンクLKjが軸Axiを回転軸として回転しても、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、90°に維持され、常に一定である。 In the third pattern, the angle θ between the extending direction Dei of the link LKi and the axis Axi is 0°, which is less than or equal to a predetermined angle (45°). Therefore, in the third pattern, the rotation of the link LKj about the axis Axi is rotation other than turning. Further, in the third pattern, the extending direction Dej of the link LKj is perpendicular to the extending direction Dei of the link LKi and the axis Axi. That is, the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi is 90°. Note that in the third pattern, even if the link LKj rotates about the axis Axi, the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi is maintained at 90° and is always constant. .
 第4パターンでは、リンクLKiの延在方向Deiと軸Axiとのなす角度θは、10°であり、所定の角度(45°)以下である。従って、第4パターンでは、軸Axiを回転軸としたリンクLKjの回転は、旋回以外の回転である。また、第4パターンでは、リンクLKjの延在方向Dejは、軸Axiに平行であり、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、10°である。なお、第4パターンでは、リンクLKjが軸Axiを回転軸として回転しても、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、10°に維持され、常に一定である。 In the fourth pattern, the angle θ between the extending direction Dei of the link LKi and the axis Axi is 10°, which is less than or equal to a predetermined angle (45°). Therefore, in the fourth pattern, the rotation of the link LKj about the axis Axi is rotation other than turning. Further, in the fourth pattern, the extending direction Dej of the link LKj is parallel to the axis Axi, and the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi is 10°. In addition, in the fourth pattern, even if the link LKj rotates about the axis Axi, the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi is maintained at 10 degrees and is always constant. .
 第5パターンでは、リンクLKiの延在方向Deiと軸Axiとのなす角度θは、70°であり、所定の角度(45°)よりも大きい。従って、第5パターンでは、軸Axiを回転軸としたリンクLKjの回転は、旋回である。また、第5パターンでは、リンクLKjの延在方向Dejは、軸Axiに垂直である。なお、第5パターンでは、リンクLKjが軸Axiを回転軸として回転(旋回)した場合、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、変化する。 In the fifth pattern, the angle θ between the extending direction Dei of the link LKi and the axis Axi is 70°, which is larger than the predetermined angle (45°). Therefore, in the fifth pattern, the rotation of the link LKj with the axis Axi as the rotation axis is a turn. Furthermore, in the fifth pattern, the extending direction Dej of the link LKj is perpendicular to the axis Axi. In the fifth pattern, when the link LKj rotates (turns) about the axis Axi, the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi changes.
 第6パターンでは、リンクLKiの延在方向Deiと軸Axiとのなす角度θは、10°であり、所定の角度(45°)以下である。従って、第6パターンでは、軸Axiを回転軸としたリンクLKjの回転は、旋回以外の回転である。また、第6パターンでは、リンクLKjの延在方向Dejは、軸Axiに垂直である。なお、第6パターンでは、リンクLKjが軸Axiを回転軸として回転した場合、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、変化する。 In the sixth pattern, the angle θ between the extending direction Dei of the link LKi and the axis Axi is 10°, which is less than or equal to a predetermined angle (45°). Therefore, in the sixth pattern, the rotation of the link LKj about the axis Axi is rotation other than turning. Furthermore, in the sixth pattern, the extending direction Dej of the link LKj is perpendicular to the axis Axi. In the sixth pattern, when the link LKj rotates about the axis Axi, the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi changes.
 第7パターンでは、リンクLKiの延在方向Deiと軸Axiとのなす角度θは、70°であり、所定の角度(45°)よりも大きい。従って、第7パターンでは、軸Axiを回転軸としたリンクLKjの回転は、旋回である。また、第7パターンでは、リンクLKjの延在方向Dejは、軸Axiに平行であり、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、70°である。なお、第7パターンでは、リンクLKjが軸Axiを回転軸として回転しても、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度は、70°に維持され、常に一定である。 In the seventh pattern, the angle θ between the extending direction Dei of the link LKi and the axis Axi is 70°, which is larger than the predetermined angle (45°). Therefore, in the seventh pattern, the rotation of the link LKj with the axis Axi as the rotation axis is a turn. Further, in the seventh pattern, the extending direction Dej of the link LKj is parallel to the axis Axi, and the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi is 70°. Note that in the seventh pattern, even if the link LKj rotates about the axis Axi, the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi is maintained at 70° and is always constant. .
 このように、上述した実施形態及び変形例では、リンクLKiに対するリンクLKjの回転のうち、リンクLKiの延在方向Deiとのなす角度が所定の角度より大きい軸Axiを回転軸とした回転が、旋回とも称される。但し、「旋回」の定義は、上述の例に限定されない。例えば、リンクLKiの延在方向Deiとのなす角度が所定の角度より大きい軸Axiを回転軸とした回転を旋回とする上述の定義を第1定義とした場合、第1定義の代わりに、下記の第2定義又は第3定義が採用されてもよい。 In this way, in the above-described embodiments and modifications, among the rotations of the link LKj with respect to the link LKi, the rotation about the axis Axi that is larger than the predetermined angle with the extending direction Dei of the link LKi is Also called turning. However, the definition of "turning" is not limited to the above example. For example, if the above-mentioned definition in which rotation is defined as rotation around axis Axi whose angle with the extending direction Dei of link LKi is larger than a predetermined angle is used as the first definition, then instead of the first definition, the following The second or third definition of may be adopted.
 第2定義では、リンクLKiに対するリンクLKjの回転により、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度が変化する場合、当該回転が旋回に該当する。従って、第2定義では、リンクLKiの延在方向Deiに対するリンクLKjの延在方向Dejの角度が、回転しても常に一定の場合、当該回転は、旋回以外の回転に該当する。例えば、第2定義では、図20に示した第1パターン、第5パターン及び第6パターンは、旋回に該当し、第2パターン、第3パターン、第4パターン及び第7パターンは、旋回以外の回転に該当する。 According to the second definition, when the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi changes due to the rotation of the link LKj with respect to the link LKi, the rotation corresponds to turning. Therefore, in the second definition, if the angle of the extending direction Dej of the link LKj with respect to the extending direction Dei of the link LKi is always constant even when rotated, the rotation corresponds to a rotation other than turning. For example, in the second definition, the first pattern, fifth pattern, and sixth pattern shown in FIG. 20 correspond to turning, and the second pattern, third pattern, fourth pattern, and seventh pattern correspond to turning. Corresponds to rotation.
 第3定義では、回転するリンクLKjの延在方向DejとリンクLKjの回転軸(軸Axi)とのなす角度が所定の角度より大きい場合、当該回転が旋回に該当する。従って、第3定義では、リンクLKjの延在方向DejとリンクLKjの回転軸(軸Axi)とのなす角度が所定の角度以下の場合、当該回転は、旋回以外の回転に該当する。例えば、第3定義では、図20に示した第1パターン、第3パターン、第5パターン及び第6パターンは、旋回に該当し、第2パターン、第4パターン及び第7パターンは、旋回以外の回転に該当する。 According to the third definition, if the angle between the extending direction Dej of the rotating link LKj and the rotation axis (axis Axi) of the link LKj is larger than a predetermined angle, the rotation corresponds to turning. Therefore, in the third definition, if the angle between the extending direction Dej of the link LKj and the rotation axis (axis Axi) of the link LKj is less than or equal to a predetermined angle, the rotation corresponds to a rotation other than turning. For example, in the third definition, the first pattern, third pattern, fifth pattern, and sixth pattern shown in FIG. 20 correspond to turning, and the second pattern, fourth pattern, and seventh pattern correspond to turning. Corresponds to rotation.
 また、上述の第1定義、第2定義及び第3定義とは別に、互いに隣接する2つの関節機構ARのそれぞれの回転軸の関係に着目して、2つの関節機構ARによる2つの回転の相対関係を定義してもよい。具体的には、2つの回転軸のなす角度が所定の角度以下である場合(典型的には、平行の場合)、2つの回転を同種の回転とし、2つの回転軸のなす角度が所定の角度よりも大きい場合(典型的には、直交する場合)、2つの回転を異種の回転としてもよい。なお、同種の回転とは、2つの回転とも旋回、又は、2つの回転とも旋回以外の回転であり、異種の回転とは、2つの回転の一方が旋回で他方が旋回以外の回転である。2つの回転の相対関係の定義が用いられる場合、相対関係の起点となる回転は、例えば、上述の第1定義、第2定義及び第3定義のいずれかに基づいて決められてもよい。図20に示した第1パターンは、第1定義、第2定義及び第3定義のいずれにおいても、旋回に該当し、第2パターンは、第1定義、第2定義及び第3定義のいずれにおいても、旋回以外の回転に該当する。従って、第1パターン又は第2パターンを、相対関係の起点となる回転とすることが好ましい。 In addition, apart from the above-mentioned first, second, and third definitions, focusing on the relationship between the respective rotation axes of two joint mechanisms AR that are adjacent to each other, the relative rotation of the two joint mechanisms AR You may also define relationships. Specifically, if the angle between the two rotation axes is less than or equal to a predetermined angle (typically, when they are parallel), the two rotations are considered to be the same type of rotation, and the angle between the two rotation axes is equal to or smaller than the predetermined angle. If the angle is greater than the angle (typically orthogonal), the two rotations may be dissimilar rotations. Incidentally, the same type of rotation means that both of the two rotations are turning, or both of the two rotations are rotations other than turning, and the different types of rotation are rotations where one of the two rotations is turning and the other is rotation other than turning. When a definition of a relative relationship between two rotations is used, the rotation that is the starting point of the relative relationship may be determined based on, for example, any one of the above-mentioned first definition, second definition, and third definition. The first pattern shown in FIG. 20 corresponds to turning in any of the first, second, and third definitions, and the second pattern corresponds to turning in any of the first, second, and third definitions. This also applies to rotations other than turning. Therefore, it is preferable that the first pattern or the second pattern be the rotation that becomes the starting point of the relative relationship.
 また、上述の第1定義、第2定義及び第3定義の2以上の定義を組み合わせた定義が用いられてもよい。この場合、例えば、組み合わせる2以上の定義の全てで旋回に該当する回転のみを旋回としてもよいし、組み合わせる2以上の定義の少なくとも1つで旋回に該当する回転を旋回としてもよい。 Furthermore, a definition that is a combination of two or more of the above-mentioned first definition, second definition, and third definition may be used. In this case, for example, only the rotation that corresponds to turning in all of the two or more definitions that are combined may be regarded as turning, or the rotation that corresponds to turning in at least one of the two or more definitions that are combined may be regarded as turning.
 1…ロボットシステム、10、10A、10B、10C、10Z…ロボット、20…エンドエフェクタ、30…ロボットコントローラ、32…処理装置、33…メモリ、34…通信装置、35…操作装置、36…表示装置、37…ドライバ回路、AR、AR1、AR2、AR3、AR3t、AR3ta、AR4、AR4a、AR4b、AR4c、AR4d、AR4e、AR4f、AR5、AR6、ARi…関節機構、AR41、AR41a、AR41e…ステー、AR41b…モータ固定部分、AR42、AR42a、AR42e…伝達軸、AR43、AR44…プーリ、AR45…タイミングベルト、AR46…伝達軸、AR47、AR47e…ギア、AR47a…回転ギア、Ax1、Ax2、Ax3、Ax4、Ax5、Ax6、Axi、Axte1、Axte2、Axte3…軸、BDP…ボディ部、BDPbt…底面、BSP…土台部、GD…物品、LK、LK1、LK1a、LK1z、LK2、LK2a、LK2b、LK2c、LK2f、LK2z、LK3、LKi、LKj…リンク、LK11…支持部分、LK12、LK13、LK13a、LK13b…可動部分、LK21、LK21a、LK21c、LK21d、LK21e、LK21f…支持部分、LK22、LK22a、LK22b、LK22c、LK22e、LK22f、LK23、LK23a、LK23c…可動部分、LK3sf…端面、MOa1、MOa2、MOa3、MOa4、MOa5、MOa6、MOt1、MOt2…モータ、RK…棚、TE、TE1、TE2、TE3、TE3a、TE3b…伸縮機構、TE11、TE21、TE31…ナット、TE12、TE22、TE32…ボールねじ、TE33、TE33a、TE33b…接続部分。 DESCRIPTION OF SYMBOLS 1... Robot system, 10, 10A, 10B, 10C, 10Z... Robot, 20... End effector, 30... Robot controller, 32... Processing device, 33... Memory, 34... Communication device, 35... Operating device, 36... Display device , 37... Driver circuit, AR, AR1, AR2, AR3, AR3t, AR3ta, AR4, AR4a, AR4b, AR4c, AR4d, AR4e, AR4f, AR5, AR6, ARi... Joint mechanism, AR41, AR41a, AR41e... Stay, AR41b ...Motor fixed part, AR42, AR42a, AR42e...Transmission shaft, AR43, AR44...Pulley, AR45...Timing belt, AR46...Transmission shaft, AR47, AR47e...Gear, AR47a...Rotating gear, Ax1, Ax2, Ax3, Ax4, Ax5 , Ax6, Axi, Axte1, Axte2, Axte3...axis, BDP...body part, BDPbt...bottom surface, BSP...base part, GD...article, LK, LK1, LK1a, LK1z, LK2, LK2a, LK2b, LK2c, LK2f, LK2z , LK3, LKi, LKj...link, LK11...supporting part, LK12, LK13, LK13a, LK13b...movable part, LK21, LK21a, LK21c, LK21d, LK21e, LK21f...supporting part, LK22, LK22a, LK22b, LK22c, LK22e, LK22f, LK23, LK23a, LK23c...Movable part, LK3sf...End face, MOa1, MOa2, MOa3, MOa4, MOa5, MOa6, MOt1, MOt2...Motor, RK...Shelf, TE, TE1, TE2, TE3, TE3a, TE3b...Expansion/contraction Mechanism, TE11, TE21, TE31...Nut, TE12, TE22, TE32...Ball screw, TE33, TE33a, TE33b...Connection part.

Claims (16)

  1.  基部と、
     先端部と、
     第1リンク及び第2リンクを含み、前記基部と前記先端部とを接続する複数のリンクと、
     前記第1リンクと前記第2リンクとを接続する第1駆動機構であって、前記第1リンクが延在する方向とのなす角度が所定の角度より大きい軸を第1回転軸として前記第2リンクを前記第1リンクに対して回転させる第1駆動機構と、
     前記第2リンクと、前記複数のリンクのうちの前記第1リンク及び前記第2リンク以外のリンクとを接続、又は、前記第2リンクと前記先端部とを接続する第2駆動機構であって、前記第2リンクが延在する方向とのなす角度が前記所定の角度より大きい軸を第2回転軸として前記先端部を前記第2リンクに対して回転させる第2駆動機構と、
     を備え、
     前記第2リンクは、
     前記第1リンクに接続される第1部分と、
     前記複数のリンクのうちの前記第1リンク及び前記第2リンク以外のリンク又は前記先端部に接続される第2部分と、
     前記第1部分と前記第2部分とを接続する第3部分と、
     前記第1部分が延在する方向とのなす角度が前記所定の角度以下の軸を第3回転軸として、前記第2部分を前記第1部分に対して回転させる第3駆動機構と、
     前記第1部分に対して前記第3部分を前記第1部分の延在方向に沿って移動させることにより、前記第2リンクを伸縮させる第1伸縮機構と、
     を含む、
     ことを特徴とする多関節ロボット。
    The base and
    The tip and
    a plurality of links including a first link and a second link and connecting the base and the tip;
    A first drive mechanism that connects the first link and the second link, wherein the second rotation axis is an axis that makes an angle larger than a predetermined angle with the direction in which the first link extends. a first drive mechanism that rotates a link relative to the first link;
    A second drive mechanism that connects the second link to a link other than the first link and the second link among the plurality of links, or connects the second link and the tip end. , a second drive mechanism that rotates the tip with respect to the second link using an axis that makes an angle larger than the predetermined angle with the direction in which the second link extends as a second rotation axis;
    Equipped with
    The second link is
    a first portion connected to the first link;
    a link other than the first link and the second link among the plurality of links or a second portion connected to the tip;
    a third portion connecting the first portion and the second portion;
    a third drive mechanism that rotates the second portion with respect to the first portion using an axis that makes an angle with the direction in which the first portion extends less than or equal to the predetermined angle as a third rotation axis;
    a first expansion and contraction mechanism that expands and contracts the second link by moving the third portion with respect to the first portion along the extending direction of the first portion;
    including,
    An articulated robot characterized by:
  2.  前記第1部分は、中空であり、
     前記第2リンクが収縮した場合、前記第3部分の少なくとも一部が、前記第1部分の内部に格納される、
     ことを特徴とする請求項1に記載の多関節ロボット。
    the first portion is hollow;
    When the second link is retracted, at least a portion of the third portion is stored within the first portion.
    The articulated robot according to claim 1, characterized in that:
  3.  前記第3駆動機構により前記第2部分が回転する場合の前記第2部分の前記第3回転軸は、前記第3部分の中心軸と実質的に平行である、
     ことを特徴とする請求項1又は2に記載の多関節ロボット。
    The third rotation axis of the second portion when the second portion is rotated by the third drive mechanism is substantially parallel to the central axis of the third portion.
    The articulated robot according to claim 1 or 2, characterized in that:
  4.  前記第3駆動機構は、前記第3部分に対して前記第2部分を回転させることにより、前記第1部分に対して前記第2部分を回転させる、
     ことを特徴とする請求項1又は2に記載の多関節ロボット。
    The third drive mechanism rotates the second part with respect to the first part by rotating the second part with respect to the third part.
    The articulated robot according to claim 1 or 2, characterized in that:
  5.  前記第3駆動機構に取り付けられ、前記第3駆動機構を駆動するモータを、
     さらに含み、
     前記第3駆動機構及び前記モータは、
     前記第3部分が前記第1部分の延在方向に沿って移動した場合、前記第3部分と一体的に移動するように、前記第3部分に取り付けられており、
     前記第3駆動機構は、前記モータの駆動により前記第3部分に対して前記第2部分を回転させる、
     ことを特徴とする請求項4に記載の多関節ロボット。
    a motor attached to the third drive mechanism and driving the third drive mechanism;
    In addition, it includes
    The third drive mechanism and the motor are
    attached to the third portion so as to move integrally with the third portion when the third portion moves along the extending direction of the first portion;
    The third drive mechanism rotates the second part with respect to the third part by driving the motor.
    The articulated robot according to claim 4, characterized in that:
  6.  前記第1リンクは、
     第4部分と、
     前記第2リンクに接続される第5部分と、
     前記第4部分と前記第5部分とを接続する第6部分と、
     前記第4部分に対して前記第6部分を前記第4部分が延在する方向に沿って移動させることにより、前記第1リンクを伸縮させる第2伸縮機構と、
     を含む、
     ことを特徴とする請求項1又は2に記載の多関節ロボット。
    The first link is
    The fourth part,
    a fifth portion connected to the second link;
    a sixth part connecting the fourth part and the fifth part;
    a second expansion and contraction mechanism that expands and contracts the first link by moving the sixth portion with respect to the fourth portion along the direction in which the fourth portion extends;
    including,
    The articulated robot according to claim 1 or 2, characterized in that:
  7.  前記第4部分は、中空であり、
     前記第1リンクが収縮した場合、前記第6部分の少なくとも一部が、前記第4部分の内部に格納される、
     ことを特徴とする請求項6に記載の多関節ロボット。
    the fourth portion is hollow;
    When the first link is retracted, at least a portion of the sixth portion is stored inside the fourth portion.
    The articulated robot according to claim 6, characterized in that:
  8.  前記基部の底面に垂直な方向とのなす角度が前記所定の角度以下の軸を第4回転軸として、前記基部の少なくとも一部分を回転させる第4駆動機構と、
     前記基部と前記第1リンクとを接続する第5駆動機構であって、前記基部の底面に垂直な方向とのなす角度が前記所定の角度より大きい軸を第5回転軸として前記第1リンクを前記基部に対して回転させる第5駆動機構と、
     をさらに備え、
     前記先端部は、
     前記第2リンクに接続されており、
     前記第2駆動機構により前記先端部が回転する場合の前記先端部の前記第2回転軸とのなす角度が前記所定の角度より大きい軸を第6回転軸として、前記先端部の少なくとも一部分を前記第2リンクに対して回転させる第6駆動機構を含み、
     前記複数のリンクは、
     前記第1リンク及び前記第2リンクである、
     ことを特徴とする請求項1に記載の多関節ロボット。
    a fourth drive mechanism that rotates at least a portion of the base using an axis that makes an angle less than or equal to the predetermined angle with a direction perpendicular to the bottom surface of the base as a fourth rotation axis;
    a fifth drive mechanism that connects the base and the first link, the first link having an axis that makes an angle larger than the predetermined angle with a direction perpendicular to the bottom surface of the base as a fifth rotation axis; a fifth drive mechanism that rotates with respect to the base;
    Furthermore,
    The tip portion is
    connected to the second link;
    When the tip part is rotated by the second drive mechanism, an angle between the tip part and the second rotation axis that is larger than the predetermined angle is set as a sixth rotation axis, and at least a portion of the tip part is rotated by the sixth rotation axis. a sixth drive mechanism for rotating relative to the second link;
    The plurality of links are
    The first link and the second link,
    The articulated robot according to claim 1, characterized in that:
  9.  前記第1リンクは、
     前記基部に接続される第4部分と、
     前記第2リンクに接続される第5部分と、
     前記第4部分と前記第5部分とを接続する第6部分と、
     前記第4部分に対して前記第6部分を前記第4部分が延在する方向に沿って移動させることにより、前記第1リンクを伸縮させる第2伸縮機構と、
     を含む、
     ことを特徴とする請求項8に記載の多関節ロボット。
    The first link is
    a fourth portion connected to the base;
    a fifth portion connected to the second link;
    a sixth part connecting the fourth part and the fifth part;
    a second expansion and contraction mechanism that expands and contracts the first link by moving the sixth portion with respect to the fourth portion along the direction in which the fourth portion extends;
    including,
    The articulated robot according to claim 8, characterized in that:
  10.  請求項9に記載の多関節ロボットの制御方法であって、
     前記多関節ロボットの動作を制御する制御装置は、
     前記第1駆動機構を駆動するモータ、前記第2駆動機構を駆動するモータ、前記第3駆動機構を駆動するモータ、前記第4駆動機構を駆動するモータ、前記第5駆動機構を駆動するモータ、前記第6駆動機構を駆動するモータ、前記第1伸縮機構を駆動するモータ、及び、前記第2伸縮機構を駆動するモータを制御することにより、前記多関節ロボットの動作を制御する、
     ことを特徴とする多関節ロボットの制御方法。
    A method for controlling an articulated robot according to claim 9,
    The control device that controls the operation of the articulated robot includes:
    A motor that drives the first drive mechanism, a motor that drives the second drive mechanism, a motor that drives the third drive mechanism, a motor that drives the fourth drive mechanism, a motor that drives the fifth drive mechanism, controlling the operation of the articulated robot by controlling a motor that drives the sixth drive mechanism, a motor that drives the first telescoping mechanism, and a motor that drives the second telescoping mechanism;
    A method for controlling an articulated robot characterized by the following.
  11.  請求項9に記載の多関節ロボットと、
     前記先端部に取り付けられたエンドエフェクタと、
     前記多関節ロボット及び前記エンドエフェクタの動作を制御する制御装置と、
     を備え、
     前記制御装置は、
     前記第1駆動機構を駆動するモータ、前記第2駆動機構を駆動するモータ、前記第3駆動機構を駆動するモータ、前記第4駆動機構を駆動するモータ、前記第5駆動機構を駆動するモータ、前記第6駆動機構を駆動するモータ、前記第1伸縮機構を駆動するモータ、及び、前記第2伸縮機構を駆動するモータを制御することにより、前記多関節ロボットの動作を制御する、
     ことを特徴とするロボットシステム。
    The articulated robot according to claim 9;
    an end effector attached to the tip;
    a control device that controls operations of the articulated robot and the end effector;
    Equipped with
    The control device includes:
    A motor that drives the first drive mechanism, a motor that drives the second drive mechanism, a motor that drives the third drive mechanism, a motor that drives the fourth drive mechanism, a motor that drives the fifth drive mechanism, controlling the operation of the articulated robot by controlling a motor that drives the sixth drive mechanism, a motor that drives the first telescoping mechanism, and a motor that drives the second telescoping mechanism;
    A robot system characterized by:
  12.  請求項11に記載のロボットシステムにより、部品を組み付ける、又は、部品を取り除く、
     ことを特徴とする物品の製造方法。
    Assembling parts or removing parts by the robot system according to claim 11,
    A method of manufacturing an article characterized by:
  13.  前記第3駆動機構は、前記第1部分に対して前記第3部分を回転させることにより、前記第1部分に対して前記第2部分を回転させる、
     ことを特徴とする請求項1又は2に記載の多関節ロボット。
    The third drive mechanism rotates the second part with respect to the first part by rotating the third part with respect to the first part.
    The articulated robot according to claim 1 or 2, characterized in that:
  14.  前記第3駆動機構に取り付けられ、前記第3駆動機構を駆動するモータを、
     さらに含み、
     前記第3駆動機構及び前記モータは、
     前記第3部分が前記第1部分の延在方向に沿って移動した場合、前記第3部分と一体的に移動することないように、前記第1部分に取り付けられており、
     前記第3駆動機構は、前記モータの駆動により前記第1部分に対して前記第3部分を回転させる、
     ことを特徴とする請求項13に記載の多関節ロボット。
    a motor attached to the third drive mechanism and driving the third drive mechanism;
    In addition, it includes
    The third drive mechanism and the motor are
    attached to the first portion so as not to move integrally with the third portion when the third portion moves along the extending direction of the first portion;
    The third drive mechanism rotates the third portion with respect to the first portion by driving the motor.
    The articulated robot according to claim 13.
  15.  基部と、
     先端部と、
     第1リンク及び第2リンクを含み、前記基部と前記先端部とを接続する複数のリンクと、
     前記第1リンクと前記第2リンクとを接続する第1駆動機構であって、前記第1リンクが延在する方向とのなす角度が所定の角度より大きい軸を第1回転軸として前記第2リンクを前記第1リンクに対して回転させる第1駆動機構と、
     前記第2リンクと前記複数のリンクのうちの前記第1リンク及び前記第2リンク以外のリンクとを接続、又は、前記第2リンクと前記先端部とを接続する第2駆動機構であって、前記第2リンクが延在する方向とのなす角度が前記所定の角度より大きい軸を第2回転軸として前記先端部を前記第2リンクに対して回転させる第2駆動機構と、
     を備え、
     前記第2リンクは、
     前記第1リンクに接続される第1部分と、
     前記複数のリンクのうちの前記第1リンク及び前記第2リンク以外のリンク又は前記先端部に接続される第2部分と、
     前記第1部分と前記第2部分とを接続する第3部分と、
     前記第1部分が延在する方向とのなす角度が前記所定の角度以下の軸を第3回転軸として、前記第3部分を前記第1部分に対して回転させる第7駆動機構と、
     前記第3部分に対して前記第2部分を前記第3部分の延在方向に沿って移動させることにより、前記第2リンクを伸縮させる第3伸縮機構と、
     を含む、
     ことを特徴とする多関節ロボット。
    The base and
    The tip and
    a plurality of links including a first link and a second link and connecting the base and the tip;
    A first drive mechanism that connects the first link and the second link, wherein the second rotation axis is an axis that makes an angle larger than a predetermined angle with the direction in which the first link extends. a first drive mechanism that rotates a link relative to the first link;
    A second drive mechanism that connects the second link to a link other than the first link and the second link among the plurality of links, or connects the second link and the tip end, a second drive mechanism that rotates the tip with respect to the second link using, as a second rotation axis, an axis that makes an angle with the direction in which the second link extends that is larger than the predetermined angle;
    Equipped with
    The second link is
    a first portion connected to the first link;
    a link other than the first link and the second link among the plurality of links or a second portion connected to the tip;
    a third portion connecting the first portion and the second portion;
    a seventh drive mechanism that rotates the third portion relative to the first portion using an axis that makes an angle with the direction in which the first portion extends less than or equal to the predetermined angle as a third rotation axis;
    a third expansion and contraction mechanism that expands and contracts the second link by moving the second portion with respect to the third portion along the extending direction of the third portion;
    including,
    An articulated robot characterized by:
  16.  基部と、
     先端部と、
     第1リンク及び第2リンクを含み、前記基部と前記先端部とを接続する複数のリンクと、
     前記第1リンクと前記第2リンクとを接続する駆動機構であって、前記第1リンクが延在する方向とのなす角度が所定の角度より大きい軸を回転軸として前記第2リンクを前記第1リンクに対して回転させる駆動機構と、
     を備え、
     前記駆動機構は、
     前記回転軸に沿って、前記第2リンクを前記第1リンクに対して相対的に移動させる第4伸縮機構を含む、
     ことを特徴とする多関節ロボット。
    The base and
    The tip and
    a plurality of links including a first link and a second link and connecting the base and the tip;
    The drive mechanism connects the first link and the second link, and the drive mechanism connects the second link to the second link using an axis that makes an angle larger than a predetermined angle with the direction in which the first link extends. a drive mechanism that rotates one link;
    Equipped with
    The drive mechanism is
    including a fourth telescoping mechanism that moves the second link relative to the first link along the rotation axis;
    An articulated robot characterized by:
PCT/JP2023/018592 2022-05-26 2023-05-18 Articulated robot, control method for articulated robot, robot system, and method for manufacturing article WO2023228857A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022-085994 2022-05-26
JP2022-085995 2022-05-26
JP2022085994A JP2023173621A (en) 2022-05-26 2022-05-26 Articulated robot, control method of articulated robot, robot system, and method of manufacturing goods
JP2022085993A JP2023173620A (en) 2022-05-26 2022-05-26 Articulated robot, control method of articulated robot, robot system, and method of manufacturing goods
JP2022-085993 2022-05-26
JP2022085995A JP2023173622A (en) 2022-05-26 2022-05-26 Articulated robot, control method of articulated robot, robot system, and method of manufacturing goods

Publications (1)

Publication Number Publication Date
WO2023228857A1 true WO2023228857A1 (en) 2023-11-30

Family

ID=88919249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018592 WO2023228857A1 (en) 2022-05-26 2023-05-18 Articulated robot, control method for articulated robot, robot system, and method for manufacturing article

Country Status (1)

Country Link
WO (1) WO2023228857A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136782A (en) * 1984-12-10 1986-06-24 株式会社東芝 Composite multi-joint type robot
JPH10333723A (en) * 1997-05-28 1998-12-18 Nec Corp Positioning device for multiple degree of freedom manipulator, method therefor and recording medium for storing program for executing the same
JP2017209781A (en) * 2016-05-16 2017-11-30 クリオン、インコーポレイテッド System and method for robotic manipulator system
WO2021148462A1 (en) * 2020-01-21 2021-07-29 Orbishaft Ab Portable shaft system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136782A (en) * 1984-12-10 1986-06-24 株式会社東芝 Composite multi-joint type robot
JPH10333723A (en) * 1997-05-28 1998-12-18 Nec Corp Positioning device for multiple degree of freedom manipulator, method therefor and recording medium for storing program for executing the same
JP2017209781A (en) * 2016-05-16 2017-11-30 クリオン、インコーポレイテッド System and method for robotic manipulator system
WO2021148462A1 (en) * 2020-01-21 2021-07-29 Orbishaft Ab Portable shaft system

Similar Documents

Publication Publication Date Title
CN107081760B (en) Six-degree-of-freedom mechanical arm based on translation parallel mechanism
US6047610A (en) Hybrid serial/parallel manipulator
US5673595A (en) Four degree-of-freedom manipulator
KR100507554B1 (en) Parallel haptic joystick system
US5847528A (en) Mechanism for control of position and orientation in three dimensions
JP5545337B2 (en) Robot arm and robot
JP2008506545A (en) Parallel robot having means for moving a movable element comprising two subassembly means
WO2013014720A1 (en) Parallel link robot
JP6582491B2 (en) robot
JP2018187749A (en) robot
JP2017087302A (en) Control device, robot and robot system
US20230311346A1 (en) Wire routing
WO2023228857A1 (en) Articulated robot, control method for articulated robot, robot system, and method for manufacturing article
Huang et al. A new closed-form kinematics of the generalized 3-DOF spherical parallel manipulator
JPH0811080A (en) Drive device having 3 degrees of freedom in space
JPH02198778A (en) Master slave manipulator system
JP2023173622A (en) Articulated robot, control method of articulated robot, robot system, and method of manufacturing goods
JP2023173621A (en) Articulated robot, control method of articulated robot, robot system, and method of manufacturing goods
JP2023173620A (en) Articulated robot, control method of articulated robot, robot system, and method of manufacturing goods
JP7352267B1 (en) Articulated robot, control method for an articulated robot, robot system, and article manufacturing method
JP2018001313A (en) Robot, robot control device, and robot system
WO2024048285A1 (en) Articulated robot, articulated robot control method, robot system, and article manufacturing method
JP5348298B2 (en) robot
CN115210132A (en) Non-planar linear actuator
JPH04315589A (en) Articulated manipulator having seven degrees of freedom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811730

Country of ref document: EP

Kind code of ref document: A1