WO2023228758A1 - Construction machine and assistance system for construction machine - Google Patents

Construction machine and assistance system for construction machine Download PDF

Info

Publication number
WO2023228758A1
WO2023228758A1 PCT/JP2023/017688 JP2023017688W WO2023228758A1 WO 2023228758 A1 WO2023228758 A1 WO 2023228758A1 JP 2023017688 W JP2023017688 W JP 2023017688W WO 2023228758 A1 WO2023228758 A1 WO 2023228758A1
Authority
WO
WIPO (PCT)
Prior art keywords
operator
image data
construction machine
state
cabin
Prior art date
Application number
PCT/JP2023/017688
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 因藤
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2023228758A1 publication Critical patent/WO2023228758A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices

Definitions

  • the present invention relates to construction machines and support systems for construction machines.
  • a camera is placed at a position where it can take images of the operator seated in the driver's seat and the control lever operated by the operator, and a camera is placed at a position where it is possible to take images of the travel control lever and the travel control pedal.
  • Construction machinery is known. Furthermore, it is known that in this construction machine, images taken by these cameras are used to prevent malfunctions that are not intended by the operator.
  • the operator seated in the driver's seat does not always face forward. For this reason, with conventional techniques, it is not possible to capture images of facial parts such as the eyes, nose, and mouth of the operator.
  • the objective is to capture images of the parts of the operator's face.
  • the disclosed construction machine includes a lower traveling body, an upper rotating body rotatably mounted on the lower traveling body, a cabin mounted on the upper rotating body, and a space recognition system disposed on a pillar in the cabin. It is a construction machine having a device.
  • the disclosed construction machine support system is a construction machine support system including a construction machine and a management device, wherein the construction machine includes a lower traveling body and an upper part rotatably mounted on the lower traveling body. a revolving body, a cabin mounted on the upper revolving body, a space recognition device disposed on a pillar in the cabin, and an output unit that outputs a plurality of image data captured by the space recognition device to the management device. and, the management device is a construction machine support system having a storage unit that stores the plurality of image data.
  • the purpose is to capture images of the parts of the operator's face.
  • FIG. 1 is a diagram showing an example of a system configuration of an excavator support system. It is a figure explaining arrangement of an imaging device inside a cabin.
  • FIG. 6 is a diagram showing a state in which the front window is in the middle of being opened.
  • FIG. 2 is a block diagram showing a configuration example of a drive system of an excavator.
  • FIG. 3 is a diagram illustrating an example of a state detection method by a state detection unit. It is a flowchart explaining the processing of the shovel of a first embodiment.
  • FIG. 3 is a first diagram showing an example of image data to be output.
  • FIG. 7 is a second diagram showing an example of output image data. It is a flowchart explaining operation of the excavator of a second embodiment.
  • FIG. 3 is a diagram illustrating a system configuration of a construction machine support system according to a third embodiment.
  • the X-axis, Y-axis, and Z-axis are axes that are orthogonal to each other. Specifically, the X-axis extends along the longitudinal axis of the shovel, the Y-axis extends along the left-right axis of the shovel, and the Z-axis extends along the pivot axis of the shovel. In this embodiment, the X-axis and Y-axis extend horizontally, and the Z-axis extends vertically.
  • FIG. 1 is a diagram showing an example of the system configuration of an excavator support system.
  • the shovel support system SYS of this embodiment includes a shovel 100 and a management device 200.
  • the shovel support system SYS will be simply expressed as the support system SYS.
  • the excavator 100 and the management device 200 are connected via a network or the like.
  • Excavator 100 is an example of a working machine.
  • a plurality of imaging devices are arranged in the cabin 10, which will be described later, at positions where the face image of the operator seated in the driver's seat is always captured. Further, in this embodiment, the operator's condition is detected based on image data captured by a plurality of imaging devices arranged in the cabin 10, and the detection result and the image data are stored in association with each other.
  • the excavator 100 of the present embodiment may transmit information including image data captured by a plurality of imaging devices and detection results to the management device 200, and have the management device 200 manage the information.
  • the management device 200 may display the detection results of the operator's condition and the image data. Details of the operator's status in this embodiment will be described later.
  • Image data in this embodiment includes moving image data and still image data.
  • the support system SYS includes the shovel 100 and the management device 200, but is not limited to this.
  • the support system SYS may include a support device that supports an operator who operates the shovel 100.
  • the support device may be a portable terminal device, such as a smartphone, a tablet terminal, a wearable terminal, or the like.
  • the management device 200 is realized by one information processing device, but the present invention is not limited to this.
  • the management device 200 may be realized by a plurality of information processing devices.
  • the functions realized by the management device 200 may be realized by a plurality of information processing devices.
  • a plurality of imaging devices are arranged in the cabin 10, but the present invention is not limited to this.
  • the imaging device only needs to be placed at a position where the facial image of the operator seated in the driver's seat is always captured.
  • FIG. 1 shows a side view of excavator 100.
  • the excavator 100 is an example of a construction machine, and includes a lower traveling body 1, a swing mechanism 2, and an upper rotating body 3.
  • an upper rotating body 3 is rotatably mounted on the lower traveling body 1 via a rotating mechanism 2.
  • a boom 4 is attached to the upper revolving body 3.
  • An arm 5 is attached to the tip of the boom 4, and a bucket 6 as an end attachment is attached to the tip of the arm 5.
  • the boom 4, arm 5, and bucket 6 constitute a digging attachment as an example of an attachment.
  • the boom 4 is driven by a boom cylinder 7, the arm 5 is driven by an arm cylinder 8, and the bucket 6 is driven by a bucket cylinder 9.
  • a boom angle sensor S1 is attached to the boom 4, an arm angle sensor S2 is attached to the arm 5, and a bucket angle sensor S3 is attached to the bucket 6.
  • the boom angle sensor S1 is configured to detect the rotation angle of the boom 4.
  • the boom angle sensor S1 is an acceleration sensor, and can detect the rotation angle of the boom 4 with respect to the upper rotating structure 3 (hereinafter referred to as "boom angle").
  • boost angle the rotation angle of the boom 4 with respect to the upper rotating structure 3
  • the boom angle becomes the minimum angle when the boom 4 is lowered the most, and increases as the boom 4 is raised.
  • the arm angle sensor S2 is configured to detect the rotation angle of the arm 5.
  • the arm angle sensor S2 is an acceleration sensor, and can detect the rotation angle of the arm 5 with respect to the boom 4 (hereinafter referred to as "arm angle").
  • arm angle becomes the minimum angle when the arm 5 is most closed, and increases as the arm 5 is opened.
  • the bucket angle sensor S3 is configured to detect the rotation angle of the bucket 6.
  • the bucket angle sensor S3 is an acceleration sensor, and can detect the rotation angle of the bucket 6 with respect to the arm 5 (hereinafter referred to as "bucket angle").
  • the bucket angle becomes the minimum angle when the bucket 6 is most closed, and increases as the bucket 6 is opened.
  • the boom angle sensor S1, arm angle sensor S2, and bucket angle sensor S3 are each a potentiometer using a variable resistor, a stroke sensor that detects the stroke amount of the corresponding hydraulic cylinder, and a rotation angle around the connecting pin. It may be a rotary encoder, a gyro sensor, or a combination of an acceleration sensor and a gyro sensor.
  • a boom rod pressure sensor S7R and a boom bottom pressure sensor S7B are attached to the boom cylinder 7.
  • An arm rod pressure sensor S8R and an arm bottom pressure sensor S8B are attached to the arm cylinder 8.
  • a bucket rod pressure sensor S9R and a bucket bottom pressure sensor S9B are attached to the bucket cylinder 9.
  • Boom rod pressure sensor S7R, boom bottom pressure sensor S7B, arm rod pressure sensor S8R, arm bottom pressure sensor S8B, bucket rod pressure sensor S9R, and bucket bottom pressure sensor S9B are also collectively referred to as "cylinder pressure sensors.”
  • the boom rod pressure sensor S7R detects the pressure in the rod side oil chamber of the boom cylinder 7 (hereinafter referred to as “boom rod pressure”), and the boom bottom pressure sensor S7B detects the pressure in the bottom side oil chamber of the boom cylinder 7 (hereinafter referred to as “boom rod pressure”). , “boom bottom pressure”).
  • the arm rod pressure sensor S8R detects the pressure in the rod side oil chamber of the arm cylinder 8 (hereinafter referred to as “arm rod pressure”), and the arm bottom pressure sensor S8B detects the pressure in the bottom side oil chamber of the arm cylinder 8 (hereinafter referred to as “arm rod pressure”). , “arm bottom pressure”) is detected.
  • the bucket rod pressure sensor S9R detects the pressure in the rod side oil chamber of the bucket cylinder 9 (hereinafter referred to as “bucket rod pressure”), and the bucket bottom pressure sensor S9B detects the pressure in the bottom side oil chamber of the bucket cylinder 9 (hereinafter referred to as “bucket rod pressure”). , “bucket bottom pressure”).
  • the upper revolving body 3 is provided with a cabin 10 which is a driver's room, and is equipped with a power source such as an engine 11. Furthermore, a sensor for detecting the amount of CO 2 emissions may be provided near the exhaust mechanism of the engine 11.
  • the upper revolving body 3 includes a controller 30, a display device 40, an input device 42, an audio output device 43, a storage device 47, a positioning device P1, a body tilt sensor S4, a turning angular velocity sensor S5, an imaging device S6, and a communication device T1. is installed.
  • the upper revolving structure 3 may be equipped with a power storage unit that supplies electric power, a motor generator that generates electricity using the rotational driving force of the engine 11, and the like.
  • the power storage unit is, for example, a capacitor, a lithium ion battery, or the like.
  • a motor generator may function as an electric motor to drive a mechanical load, or may function as a generator to supply power to an electrical load.
  • the controller 30 functions as a main control unit that controls the drive of the shovel 100.
  • the controller 30 is composed of a computer including a CPU, RAM, ROM, and the like.
  • Various functions of the controller 30 are realized, for example, by the CPU executing programs stored in the ROM.
  • the various functions may include, for example, at least one of a machine guidance function that guides the manual operation of the shovel 100 by the operator, and a machine control function that automatically supports the manual operation of the shovel 100 by the operator. good.
  • the display device 40 is configured to display various information.
  • the display device 40 may be connected to the controller 30 via a communication network such as CAN, or may be connected to the controller 30 via a dedicated line.
  • the input device 42 is configured to allow an operator to input various information to the controller 30.
  • the input device 42 includes at least one of a touch panel, a knob switch, a membrane switch, etc. installed in the cabin 10.
  • the audio output device 43 is configured to output audio.
  • the audio output device 43 may be, for example, an in-vehicle speaker connected to the controller 30, or may be an alarm device such as a buzzer.
  • the audio output device 43 is configured to output various information as audio in response to audio output commands from the controller 30.
  • the storage device 47 is configured to store various information.
  • the storage device 47 is, for example, a nonvolatile storage medium such as a semiconductor memory.
  • the storage device 47 may store information output by various devices while the shovel 100 is in operation, or may store information acquired via the various devices before the shovel 100 starts operating.
  • the storage device 47 may store information including image data captured by a plurality of imaging devices (cameras) arranged in the cabin 10 and the detection result of the operator's state by the controller 30. .
  • the storage device 47 may store data regarding the target construction surface acquired via the communication device T1 or the like, for example.
  • the target construction surface may be set by the operator of the excavator 100, or may be set by a construction manager or the like.
  • the positioning device P1 is configured to measure the position of the upper revolving structure 3.
  • the positioning device P1 may be configured to be able to measure the orientation of the upper rotating body 3.
  • the positioning device P1 is, for example, a GNSS compass, detects the position and orientation of the upper rotating body 3, and outputs the detected value to the controller 30. Therefore, the positioning device P1 can also function as a direction detection device that detects the direction of the upper rotating body 3.
  • the orientation detection device may be an orientation sensor attached to the upper revolving body 3.
  • the body tilt sensor S4 is configured to detect the tilt of the upper revolving body 3.
  • the body inclination sensor S4 is an acceleration sensor that detects the longitudinal inclination angle around the longitudinal axis and the lateral inclination angle around the left-right axis of the upper revolving superstructure 3 with respect to the virtual horizontal plane.
  • the longitudinal axis and the lateral axis of the upper revolving body 3 are perpendicular to each other at, for example, the center point of the shovel, which is one point on the swing axis of the shovel 100.
  • the turning angular velocity sensor S5 is configured to detect the turning angular velocity of the upper rotating structure 3.
  • the turning angular velocity sensor S5 may be configured to detect or calculate the turning angle of the upper rotating body 3.
  • the turning angular velocity sensor S5 is a gyro sensor.
  • the turning angular velocity sensor S5 may be a resolver, a rotary encoder, or the like.
  • the imaging device S6 is an example of a space recognition device, and is configured to acquire images around the excavator 100.
  • the imaging device S6 includes a front camera S6F that images the space in front of the shovel 100, a left camera S6L that images the space to the left of the shovel 100, and a right camera S6R that images the space to the right of the shovel 100. , and a rear camera S6B that images the space behind the shovel 100.
  • the imaging device S6 of this embodiment may include a plurality of imaging devices provided within the cabin 10. Details of the arrangement of the plurality of imaging devices provided in the cabin 10 will be described later.
  • the imaging device S6 is, for example, a monocular camera having an imaging device such as a CCD or CMOS, and outputs the captured image to the display device 40.
  • the imaging device S6 may be a stereo camera, a distance image camera, or the like.
  • the imaging device S6 may be replaced with another spatial recognition device such as a three-dimensional distance image sensor, an ultrasonic sensor, a millimeter wave radar, a LIDAR or an infrared sensor, or a combination of another spatial recognition device and a camera. May be replaced.
  • the front camera S6F is attached to the ceiling of the cabin 10, that is, inside the cabin 10, for example. However, the front camera S6F may be attached to the outside of the cabin 10, such as the roof of the cabin 10 or the side surface of the boom 4.
  • the left camera S6L is attached to the left end of the upper surface of the revolving upper structure 3
  • the right camera S6R is attached to the right end of the upper surface of the upper revolving structure 3
  • the rear camera S6B is attached to the rear end of the upper surface of the revolving upper structure 3. .
  • the communication device T1 controls communication with external equipment outside the excavator 100.
  • the communication device T1 controls communication with an external device via a satellite communication network, a mobile phone communication network, an Internet network, or the like.
  • the external device may be, for example, the management device 200 such as a server installed in an external facility, or may be a support device such as a smartphone carried by a worker around the excavator 100.
  • the excavator 100 may transmit image data captured by the imaging device S6 to an external device such as the management device 200 via the communication device T1.
  • an external device such as the management device 200
  • the communication device T1 a worker, a manager, or the like outside the excavator 100 can visually check the status of the surroundings of the excavator 100 and the status of the operator through a display device such as a monitor connected to the management device 200 or the support device.
  • FIG. 2 is a diagram illustrating the arrangement of the imaging device inside the cabin.
  • FIG. 2 is a perspective view of the inside of the cabin 10, showing the state seen from the driver's seat inside the cabin 10.
  • a driver's seat 90 is installed inside the cabin 10.
  • a left console 90L is installed on the left side of the driver's seat 90
  • a right console 90R is installed on the right side of the driver's seat 90.
  • a left operating lever 26L is attached to the upper front end of the left console 90L
  • a right operating lever 26R is attached to a position corresponding to the left operating lever 26L on the right console 90R.
  • a main monitor 40M which is one of the display devices 40, is attached to the upper front end of the right console 90R.
  • a camera S6PL is attached to the left pillar 111L, and a camera S6PR is attached to the right pillar 111R.
  • the left pillar 111L and the right pillar 111R are part of the frame body 110 shown in FIG. 3.
  • Camera S6PL and camera S6PR are imaging devices and are examples of three-dimensional sensors.
  • the cameras S6PL and S6PR are mounted on the left and right pillars from the height H1 of the seat surface 90m of the driver's seat 90 to the upper end of the headrest 90c of the driver's seat 90, as shown in FIG. It can be installed at a position up to the height H2.
  • the "height" in this embodiment may be, for example, a vertical distance from the floor surface 10f of the cabin 10.
  • the camera S6PR attached to the right pillar 111R can capture an image including the parts of the operator's face.
  • the camera S6PL attached to the left pillar 111L can capture an image including the parts of the operator's face.
  • the cameras S6PL and S6PR of this embodiment are mounted so as not to obstruct the operator's view through the front window 62. Therefore, the cameras S6PL and S6PR of this embodiment are sized to fit within the widths of the left pillar 111L and right pillar 111R.
  • the cameras S6PL and S6PR are made of such sizes, it is possible to prevent the cameras S6PL and S6PR from interfering with the opening and closing of the window front section 60.
  • the cameras S6PL, S6PR and the opening/closing operation of the front window 62 can be made non-interfering.
  • one imaging device is attached to each of the left and right pillars, but the number of pillars that are attached to the left pillar 111L and the right pillar 111R is not limited to this. In this embodiment, for example, a plurality of imaging devices may be attached to each of the left and right pillars.
  • the cameras S6PL and S6PR of this embodiment may be movable. Specifically, for example, rails having grooves are attached to each of the left pillar 111L and the right pillar 111R, and the cameras S6PL and S6PR are fitted into the rails attached to the left pillar 111L and the right pillar 111R. You can.
  • the operator can move the mounting positions of the cameras S6PL and S6PR by sliding the cameras S6PL and S6PR on the rail.
  • each of the left pillar 111L and the right pillar 111R may be provided with a plurality of attachment parts for attaching the cameras S6PL and S6PR.
  • the attachment part may be, for example, a USB hub including a plurality of USB (Universal Serial Bus) connectors.
  • the mounting positions of the cameras S6PL and S6PR can be moved by connecting the cameras S6PL and S6PR to any USB connectors that the USB hub has.
  • the cameras S6PL and S6PR of this embodiment may be provided with fixing members for fixing to the left pillar 111L and the right pillar 111R, respectively, on the back surface of the housing, for example.
  • the fixing member may be a magnet or the like, or a screw.
  • the mounting positions of the cameras S6PL and S6PR can be moved.
  • the cameras S6PL and S6PR are movable, so that the cameras can be positioned at positions suitable for capturing the operator's face image depending on the seat height when the operator is seated in the driver's seat 90. S6PL and S6PR can be moved.
  • a left monitor and a right monitor may be provided in the left pillar 111L and the right pillar 111R at positions that do not interfere with the cameras S6PL and S6PR.
  • the left monitor is preferably mounted at a height higher than the height of the main monitor 40M and lower than the height of the left rear mirror 10c.
  • "Height" is, for example, a vertical distance from the ground. Moreover, it is desirably mounted at approximately the same height as the left camera S6L.
  • the right monitor is preferably mounted at a height higher than the height of the main monitor 40M and lower than the height of the left rear mirror 10c. Moreover, it is desirably mounted at approximately the same height as the right camera S6R.
  • the back monitor 40B is attached to the upper part of the right pillar 111R so as to be arranged along the front ceiling frame 113.
  • the front ceiling frame 113 is a part of the frame body 110 shown in FIG.
  • the back monitor 40B may be attached to the top of the left pillar 111L so as to be disposed along the front ceiling frame 113.
  • the left monitor may be placed on the left side of the visual field of the excavator operator who is sitting in the driver's seat and looking straight ahead, as if it were a left rear mirror.
  • the right monitor may be placed on the right side of the visual field as if it were a right rear mirror.
  • the rear monitor 40B is arranged in the upper part of the field of view as if it were a rear mirror. Therefore, the excavator operator can intuitively recognize that the image displayed on the left monitor is a mirror image of the left rear of the excavator. Similarly, the user can intuitively recognize that the image displayed on the right monitor is a mirror image of the right rear part of the shovel, and that the image displayed on the back monitor 40B is a mirror image of the rear part of the shovel.
  • the images displayed on the left monitor, right monitor, and back monitor 40B correspond to images captured by the left camera S6L, right camera S6R, and rear camera S6B, respectively. That is, the left monitor, right monitor, and back monitor 40B each independently display images in different directions. Further, the display on the left monitor, right monitor, and back monitor 40B starts simultaneously with the activation of the main monitor 40M when the operator turns on the key. However, it may be started at the same time as the engine 11 is started.
  • the left monitor, right monitor, and back monitor 40B are installed so as not to obstruct the operator's view through the front window 62. Therefore, in this embodiment, the left monitor and right monitor have sizes that fit within the widths of the left pillar 111L and right pillar 111R, and the back monitor 40B is attached to the upper right corner of the front window 62. However, the left monitor and the right monitor may have a width wider than the width of the left pillar 111L and the right pillar 111R, and the back monitor 40B may have a size that fits within the width of the front ceiling frame 113. Further, the left monitor, right monitor, and back monitor 40B are installed at positions that do not interfere with opening and closing of the front window 62.
  • the screen size and resolution of each of the left monitor, right monitor, and back monitor 40B are preferably such that an image of a person within a predetermined distance (for example, 12 m) from the excavator is larger than a predetermined size (for example, 7 mm x 7 mm) on the screen. selected for display.
  • a monitor with a screen size of 7 inches (7 inches) or more is used as the left monitor and right monitor, and preferably a monitor with a screen size of 7 inches (7 inches) or 8 inches (8 inches) is used. .
  • left monitor and right monitor are mounted at the same height with respect to the reference horizontal plane.
  • the reference horizontal plane is, for example, the ground on which the shovel is located. In this embodiment, they are attached so as to be symmetrical with respect to the center line of the driver's cab shown by the dashed line in FIG.
  • left monitor, right monitor, and back monitor 40B may be configured so that the mounting angles can be adjusted according to the body shape, working posture, etc. of the operator sitting in the driver's seat 90.
  • a driver's seat 90 is provided in the center of the cabin 10, and a left operating lever 26L and a right operating lever 26R are provided on both sides of the driver's seat 90. Therefore, the operator can move the bucket 6 to a desired position and perform excavation work by operating the left operating lever 26L with his left hand and operating the right operating lever 26R with his right hand while sitting in the driver's seat 90. can.
  • An image display section 41M of a main monitor 40M and a switch panel 42M are installed on the right front side of the driver's seat 90.
  • the excavator operator can grasp the operating state of the excavator by looking at the image display section 41M.
  • the image display section 41M displays an overhead image.
  • the bird's-eye view image is an example of a composite image generated based on images captured by the rear camera S6B and the left and right side cameras. Specifically, the bird's-eye view image is a viewpoint-converted image that shows the surroundings of the excavator as viewed from a virtual viewpoint directly above.
  • a left monitor is attached to the left pillar 111L, and a right monitor is attached to the right pillar 111R.
  • the left and right monitors may be mounted in positions such that the operator has a peripheral vision of the left and right monitors when the operator has a central vision of the bucket 6 through the front window 62 of the cabin 10. Therefore, while performing excavation work while keeping the bucket 6 in the central field of vision, the operator can use his peripheral vision to see the left rear and right rear of the excavator displayed on the left and right monitors without moving his line of sight. be able to.
  • a selection dial 52 and an operating device 53 are installed on the left console 90L. If the operator wishes to change the range displayed by the left monitor that displays the left rear image of the excavator, the operator operates the selection dial 52 to select the left camera S6L. Then, by operating the operating device 53 and changing the direction of the left camera S6L, the range displayed on the left monitor can be changed. The same applies when changing the range reflected by the left rear mirror 10c.
  • FIG. 3 is a diagram showing a state in which the front window is in the middle of being opened, with FIG. 3(A) showing a front view and FIG. 3(C) showing a left side view.
  • the cabin 10 includes an operating device 26 as a driving control section, a driver's seat 90, a display device 40, a gate lock lever 45, cameras S6PL, S6PR, and the like. Although not shown in the drawings, the cabin 10 is equipped with a controller 30 shown in FIG. 1 and the like.
  • the operating device 26 includes a left operating lever 26L, a right operating lever 26R, a travel lever 26B, a pedal 26C, and the like.
  • a gate lock lever 45 and a gate lock valve 19 are provided below the left side of the driver's seat 90.
  • the gate lock lever 45 When the gate lock lever 45 is pulled up to prevent the operator from exiting the cabin 10, the gate lock valve 19 is switched to the communicating state (open state), thereby communicating the pilot line and making the various operating devices operable. .
  • the gate lock lever 45 is pushed down to allow the operator to exit the cabin 10, the gate lock valve 19 is switched to a non-communicating state (closed state), thereby cutting off the pilot line and disabling various operating devices. It becomes inoperable.
  • the driver's seat 90 has an armrest 90a, a backrest 90b, and a headrest 90c.
  • the height from the floor surface 10f of the cabin 10 to the seat surface 90m of the driver's seat 90 is H1
  • the height from the floor surface 10f of the cabin 10 to the upper end of the headrest 90c is H2.
  • the cameras S6PL and S6PR of this embodiment are arranged at positions where the height from the floor surface 10f of the cabin 10 is between H1 and H2 in the left pillar 111L and the right pillar 111R, respectively.
  • the cameras S6PL and S6PR of this embodiment are arranged so that the heights from the floor surface 10f of the cabin 10 are within the height range H3.
  • the cabin 10 has a frame body 110.
  • the frame body 110 is formed by combining a vertical frame, a horizontal frame, and a connecting frame.
  • the vertical frame has a pair of left and right pillars 111 (111L, 111R) located on the front side (travel direction side, Z1 side) and a pair of left and right vertical frames (pillars) 112 located on the rear side (Z2 side).
  • the horizontal frame includes a front ceiling frame 113 horizontally suspended between a left pillar 111L and a right pillar 111R on the front side, and a rear ceiling frame 114 on the rear side horizontally suspended between left and right pillars 112 on the rear side.
  • the pair of left and right pillars 111 on the front side and the pair of left and right pillars 112 on the rear side are connected by a pair of left and right connecting frames 115, respectively.
  • an imaging device may be attached to each of the left and right pillars 112 on the rear side.
  • at least four imaging devices will be provided within the cabin 10.
  • the cabin 10 has a window front portion 60 disposed in a front frame formed by a frame body 110. Further, the cabin 10 has side windows 65 arranged in the left and right frames formed by the frame body 110, respectively. Furthermore, the cabin 10 has a head window arranged in the upper frame formed by the frame body 110.
  • the window front section 60 has a lower front window 61, a front window 62, and an upper front window 63.
  • the front window 62 has a sliding mechanism that can slide the front window 62.
  • the front window 62 and the lower front window 61 are separated so that the front window 62 can be stored inside the cabin 10 when the front window 62 is slid.
  • the slide mechanism of this embodiment includes a pair of left and right slide rails 111a provided on the inner surfaces of the left and right pairs of pillars 111, and a pair of left and right slide rails 115a provided on the inner surfaces of the left and right connecting frames 115, respectively. have.
  • the front window 62 is arranged between the left and right slide rails 111a and between the left and right slide rails 115a.
  • the slide rail 111a and the slide rail 115a are formed so that the rail grooves are continuous, and a sliding part (not shown) provided at the end of the front window 62, etc. is configured to be movable from the slide rail 111a to the slide rail 115a. may be considered.
  • the sliding part may be a roller or the like.
  • the front window 62 is arranged between the lower front window 61 and the upper front window 63 when closed.
  • the front window 62 When the front window 62 is opened, it separates from the lower front window 61 and the upper front window 63 and slides in the opening direction (Y1 side).
  • the front window 62 When the front window 62 is closed, it slides in the closing direction (Y2 side) and is disposed between the lower front window 61 and the upper front window 63.
  • the front window 62 is provided with handles 62a at an upper left position and an upper right position, respectively.
  • the handle portion 62a may be provided only on either the left or right side. The operator grasps the handle portion 62a and slides the front window 62 in the opening direction or closing direction.
  • the handle portion 62a may have a locking mechanism that fixes the front window 62 between the lower front window 61 and the upper front window 63.
  • a sealing member (not shown) may be interposed between the upper front window 63 and the front window 62.
  • the sealing member may be provided at the lower edge of the upper front window 63 and the upper edge of the front window 62.
  • the seal member provided at the lower edge of the upper front window 63 may have an eaves portion on the front side (Z1 side). The eaves prevent rainwater from entering between the two seal members.
  • the two seal members may be configured to be able to be separated from each other.
  • the lower front window 61 is directly fixed to the frame body 110 or the like.
  • a sealing member may be interposed between the lower front window 61 and the front window 62.
  • the front window 62 When the front window 62 is closed, it is arranged flush with the upper front window 63 with the sealing member interposed therebetween, and constitutes a window front portion 60 of the cabin 10.
  • the front window 62 moves rearward (Z2 side) and separates from the upper front window 63.
  • the front window 62 also separates from the lower front window 61.
  • the opening operation refers to an unlocking operation for releasing the fixation of the front window 62 and an operation for sliding the front window 62 upward.
  • the front window 62 slides in the opening direction (Y1 direction) as shown in FIG. 3(A).
  • the cameras S6PL and S6PR have a size that fits within the width of the left pillar 111L and the right pillar 111R, the front window 62 and the cameras S6PL and S6PR do not touch. In other words, the cameras S6PL and S6PR do not interfere with the opening/closing operation of the front window 62.
  • the front window 62 As the front window 62 is slid, it is placed in a position parallel to the top surface of the cabin 10. At this time, the front part of the cabin 10 where the front window 62 was placed is in an open state.
  • FIG. 4 is a block diagram showing a configuration example of a drive system of an excavator.
  • the mechanical power system, high-pressure hydraulic line, pilot line, and electric control system are shown by double lines, thick solid lines, broken lines, and dotted lines, respectively.
  • the drive system of the excavator 100 mainly includes an engine 11, a regulator 13, a main pump 14, a pilot pump 15, a control valve 17, an operating device 26, a discharge pressure sensor 28, an operating pressure sensor 29, a controller 30, a proportional valve 31, and an operating system. It includes a mode selection dial 32 and the like.
  • the engine 11 is a driving source for the excavator.
  • the engine 11 is, for example, a diesel engine that operates to maintain a predetermined rotation speed.
  • the output shaft of the engine 11 is connected to the input shafts of the main pump 14 and the pilot pump 15.
  • the main pump 14 supplies hydraulic oil to the control valve 17 via a high-pressure hydraulic line.
  • the main pump 14 is a swash plate type variable displacement hydraulic pump.
  • the regulator 13 controls the discharge amount of the main pump 14.
  • the regulator 13 controls the discharge amount of the main pump 14 by adjusting the tilt angle of the swash plate of the main pump 14 in accordance with a control command from the controller 30 .
  • the pilot pump 15 supplies hydraulic oil to various hydraulic control devices including the operating device 26 and the proportional valve 31 via the pilot line.
  • the pilot pump 15 is a fixed displacement hydraulic pump.
  • the control valve 17 is a hydraulic control device that controls the hydraulic system in the excavator.
  • Control valve 17 includes control valves 171 to 176 and bleed valve 177.
  • the control valve 17 can selectively supply the hydraulic fluid discharged by the main pump 14 to one or more hydraulic actuators through the control valves 171 to 176.
  • the control valves 171 to 176 control the flow rate of hydraulic oil flowing from the main pump 14 to the hydraulic actuator and the flow rate of hydraulic oil flowing from the hydraulic actuator to the hydraulic oil tank.
  • the hydraulic actuator includes a boom cylinder 7, an arm cylinder 8, a bucket cylinder 9, a left travel hydraulic motor 1A, a right travel hydraulic motor 1B, and a swing hydraulic motor 2A.
  • the bleed valve 177 controls the flow rate of the hydraulic oil discharged by the main pump 14, which flows into the hydraulic oil tank without passing through the hydraulic actuator (hereinafter referred to as "bleed flow rate").
  • the bleed valve 177 may be installed outside the control valve 17.
  • the operating device 26 is a device used by an operator to operate the hydraulic actuator.
  • the operating device 26 supplies the hydraulic fluid discharged by the pilot pump 15 to the pilot port of the control valve corresponding to each of the hydraulic actuators via the pilot line.
  • the pressure of the hydraulic oil (pilot pressure) supplied to each of the pilot ports is a pressure that corresponds to the direction and amount of operation of the lever or pedal (not shown) of the operating device 26 corresponding to each of the hydraulic actuators. .
  • the discharge pressure sensor 28 detects the discharge pressure of the main pump 14. In this embodiment, the discharge pressure sensor 28 outputs the detected value to the controller 30.
  • the operating pressure sensor 29 detects the content of the operator's operation using the operating device 26.
  • the operating pressure sensor 29 detects the operating direction and operating amount of the lever or pedal of the operating device 26 corresponding to each of the hydraulic actuators in the form of pressure (operating pressure), and sends the detected value to the controller 30. Output against.
  • the operation content of the operating device 26 may be detected using a sensor other than the operating pressure sensor.
  • the controller 30 is a control unit that controls the entire shovel 100. Details of the functions of the controller 30 of this embodiment will be described later.
  • the proportional valve 31 operates according to a control command output by the controller 30.
  • the proportional valve 31 is an electromagnetic valve that adjusts the secondary pressure introduced from the pilot pump 15 into the pilot port of the bleed valve 177 in the control valve 17 in accordance with the current command output by the controller 30.
  • the proportional valve 31 operates, for example, so that the larger the current command, the larger the secondary pressure introduced into the pilot port of the bleed valve 177.
  • the work mode selection dial 32 is a dial for the operator to select a work mode, and allows switching between a plurality of different work modes. Further, the work mode selection dial 32 constantly sends data to the controller 30 indicating the setting state of the engine speed and the setting state of acceleration/deceleration characteristics according to the work mode.
  • the work mode selection dial 32 allows the work mode to be switched in multiple stages including SP mode, H mode, A mode, and IDLE mode. In other words, the work mode selection dial 32 of this embodiment can switch the setting conditions of the excavator 100.
  • FIG. 4 shows a state in which the SP mode is selected with the work mode selection dial 32.
  • the SP mode is a work mode selected when it is desired to prioritize the amount of work, and utilizes the highest engine speed and the highest acceleration/deceleration characteristics.
  • the H mode is a work mode selected when it is desired to achieve both work volume and fuel efficiency, and uses the second highest engine speed and the second highest acceleration/deceleration characteristics.
  • Mode A is a work mode selected when you want to moderate the acceleration and deceleration characteristics of the hydraulic actuator that corresponds to lever operation, improve accurate operability and safety, and operate the excavator with low noise. It uses the third highest engine speed and the third highest acceleration/deceleration characteristics.
  • the IDLE mode is a work mode selected when it is desired to put the engine 11 in a low idling state, and uses the lowest engine speed and the lowest acceleration/deceleration characteristics.
  • the controller 30 when the operation of each actuator is stopped while the engine is driving in each work mode (high idling state), the controller 30 causes the engine 11 to maintain the rotation speed set for each work mode.
  • the controller 30 may switch the engine speed to a low idling state when the high idling state continues for a predetermined period of time.
  • the idling state includes a high idling state and a low idling state.
  • the names of each stage of the work mode are SP mode, H mode, A mode, and IDLE mode, but the names of each stage are not limited to these.
  • the names of SP mode, H mode, and A mode may be POWER mode, STD mode, ECO mode, and IDLE mode (low idling state).
  • the work mode is not limited to this embodiment, and may be set in five or more stages.
  • the engine 11 is controlled to have a constant rotation speed at the engine speed of the work mode set by the work mode selection dial 32. Further, the opening of the bleed valve 177 is controlled based on the bleed valve opening characteristic of the work mode set by the work mode selection dial 32.
  • each of the above-mentioned work modes may be expressed as a setting condition of the shovel 100, and information indicating the setting condition may be expressed as setting condition information.
  • Setting condition information is information in which specified items are associated with item values.
  • the designated item is, for example, an item indicating the state of the engine rotation speed corresponding to each work mode, or an item indicating the state of the acceleration/deceleration characteristic. Therefore, the setting condition information of this embodiment includes items and item values indicating the state of engine rotation speed corresponding to each work mode, and items and item values indicating the state of acceleration/deceleration characteristics.
  • the ECO mode is set as one of the modes selected by the work mode selection dial 32, but an ECO mode switch may be provided separately from the work mode selection dial 32.
  • the engine speed is adjusted according to each mode selected using the work mode selection dial 32, and when the ECO mode switch is turned on, the acceleration/deceleration corresponding to each mode of the work mode selection dial 32 is adjusted. The characteristics may be changed gradually.
  • the work mode may be changed by voice input.
  • the excavator is provided with a voice input device for inputting the voice emitted by the operator to the controller 30.
  • the controller 30 is provided with a voice identification unit that identifies the voice input by the voice input device.
  • the work mode is selected by the mode selection section such as the work mode selection dial 32, the ECO mode switch, and the voice recognition section.
  • the controller 30 of this embodiment includes an image data acquisition section 301, a state detection section 302, and an output section 303.
  • the image data acquisition unit 301 acquires image data captured by the imaging device S6. More specifically, the image data acquisition unit 301 acquires image data (video data) captured by the camera S6PL and the camera S6PR. Note that, if cameras are also arranged on the left and right pillars 112 on the rear side, the image data acquisition unit 301 also acquires image data captured by these cameras.
  • the condition detection unit 302 detects the condition of the operator based on the image data acquired by the image data acquisition unit 301. At this time, in this embodiment, image data suitable for state detection is selected from among the image data captured by each of the camera S6PL and the camera S6PR, depending on the state of the operator to be detected. The state detection unit 302 then detects the state of the operator based on the selected image data. Details of the processing by the state detection unit 302 will be described later.
  • the controller 30 stores in the storage device 47 information that associates the image data acquired by the image data acquisition unit 301 with the detection results by the state detection unit 302.
  • information in which image data (video data) acquired by the image data acquisition unit 301 is associated with a detection result by the status detection unit 302 may be expressed as status history information.
  • the output unit 303 outputs the state history information stored in the storage device 47 to the communication device T1. In other words, the output unit 303 outputs the state history information to the management device 200 via the communication device T1.
  • the controller 30 of the present embodiment may stop capturing image data by the camera S6PL and the camera S6PR, for example, when the operator is not seated in the driver's seat 90 for a certain period of time.
  • the state in which no operator is seated in the driver's seat 90 is a state in which an image of the operator is not included in the image represented by the image data acquired by the image data acquisition unit 301.
  • the certain period of time may be, for example, about one hour.
  • controller 30 of the present embodiment may turn off the engine 11, which is the drive source, when the operator is not seated in the driver's seat 90 for a certain period of time or more.
  • the state of the operator in this embodiment includes the operator's posture when sitting in the driver's seat 90, whether or not he or she is wearing equipment (helmet, seat belt, etc.), facial expressions, gestures, and the like.
  • the operator's state includes, for example, a state in which the operator is seated with his legs crossed, a state in which he is not wearing a helmet, and the like.
  • the crossed-legged posture may induce erroneous operation, and is an inappropriate posture for operating the excavator 100.
  • the state in which the operator is not wearing a helmet is a state in which equipment for increasing the safety of the operator during work is not installed, which is an undesirable state.
  • the operator's state includes, for example, a state in which the operator is yawning, a state in which the eyes are closed, a state in which the operator is continuously blinking, and the like.
  • the yawning state is presumed to be a state in which the operator's concentration on work is decreasing.
  • the state in which the operator's eyes are closed for a certain period of time or more is presumed to be a state in which the operator feels sleepy.
  • the operator is blinking continuously, it is presumed that the operator is feeling fatigued.
  • the state of the operator includes, for example, a state in which the operator is performing an action unrelated to work.
  • a state in which the operator is performing an action unrelated to work is presumed to be, for example, a state in which the operator is not engaged in the operator's work.
  • the state detection unit 302 detects the plurality of states described above as the operator's states.
  • the condition detection unit 302 can detect the operator's posture, presence or absence of equipment, drowsiness, decreased concentration, degree of fatigue, work attitude, etc.
  • the operator's state detected by the state detection unit 302 may be defined in advance.
  • the state detection unit 302 of this embodiment selects image data corresponding to the state to be detected from the image data captured by each of the cameras S6PL and S6PR, The state is detected using the selected image data.
  • the state detection unit 302 selects image data (video data) including a face image from the image data captured by each of the cameras S6PL and S6PR. Then, the state detection unit 302 detects whether the operator is feeling sleepy, whether his concentration has decreased, the degree of fatigue, etc. from the selected image data, and obtains state history information including the detection results. is stored in the storage device 47.
  • the state detection unit 302 selects image data (video data) that includes the entire body of the operator from the image data captured by each of the cameras S6PL and S6PR. The state detection unit 302 then detects, from the selected image data, whether the operator's posture is appropriate, whether the operator is wearing equipment appropriately, and whether or not he or she is engaged in work. State history information including the results is stored in the storage device 47.
  • the status history information of this embodiment is transmitted to the management device 200 by the output unit 303 and managed by the management device 200.
  • this state history information may include, for example, identification information that identifies the operator and a machine number that identifies the excavator 100.
  • the manager when an administrator wants to understand a state in which a certain operator's concentration has decreased during work, the manager specifies identification information for identifying the operator and the state to the management device 200. All you have to do is enter the information "decreased concentration". When the management device 200 receives this input, it is sufficient to cause the management device 200 to display image data associated with the detection result “decreased concentration” in the state history information including the identification information of the operator.
  • the state detection unit 302 of this embodiment may be, for example, a learned model generated by learning using machine learning or the like.
  • FIG. 5 is a diagram illustrating an example of a state detection method by the state detection section.
  • the state detection unit 302 of the present embodiment may be a trained model that is configured mainly of a neural network (DNN).
  • the controller 30 may have a trained model that implements the state detection section 302.
  • the neural network DNN is a so-called deep neural network that has one or more intermediate layers (hidden layers) between the input layer and the output layer.
  • a weighting parameter representing the strength of connection with a lower layer is defined for each of a plurality of neurons constituting each intermediate layer. Then, the neurons in each layer output the sum of the input values from multiple neurons in the upper layer multiplied by the weighting parameters specified for each neuron in the upper layer to the neurons in the lower layer through the threshold function. In this manner, a neural network DNN is configured.
  • Machine learning is performed on the neural network DNN to optimize the weighting parameters described above.
  • the neural network DNN receives the image data acquired by the image data acquisition unit 301 as the input signal x, and outputs the probability that the operator's state is a predefined state as the output signal y. I can do it.
  • the output signal y1 output from the neural network DNN indicates that the predicted probability that the operator's state is in an inappropriate posture when the input signal x is input is 10%. Further, the output signal y2 indicates that there is a 50% probability that the operator's state when the input signal x is input is a state in which concentration has decreased.
  • the state detection unit 302 of this embodiment detects, in the output signal y, a set of a plurality of states included in the output signal y and a probability that the operator's state is each of the plurality of states. It may be obtained as a result and stored as part of the state history information.
  • the state detection unit 302 may set the state with the highest probability among all the states included in the output signal y as the state (detection result) of the operator when the input signal x is input.
  • the state detection unit 302 may select "a state of decreased concentration" as the operator's state at this timing from among the plurality of states, and may select this as the detection result.
  • the neural network DNN is, for example, a convolutional neural network (CNN).
  • CNN is a neural network that applies existing image processing techniques (convolution processing and pooling processing).
  • FIG. 6 is a flowchart illustrating the processing of the shovel according to the first embodiment.
  • the controller 30 of the excavator 100 of this embodiment uses the image data acquisition unit 301 to acquire image data from the camera S6PL and the camera S6PR (step S601).
  • the state detection unit 302 selects image data to be used for detection according to the type of state from among the plurality of acquired image data, and detects the state of the operator using the selected image data. (Step S602).
  • the controller 30 uses the output unit 303 to store state history information including the detection result and the image data used for detecting the state in the storage device 47 (step S603).
  • the excavator 100 of the present embodiment selects image data suitable for detecting the operator's condition from a plurality of image data (video data) taken by a plurality of imaging devices arranged in the cabin 10. , detecting the operator's condition using the selected image data.
  • image data suitable for detecting the purpose is selected from a plurality of image data captured in the cabin 10. Automatically selected.
  • the condition of the targeted operator is detected using the selected image data.
  • the operator's condition can be detected in accordance with the requests of the operator, the construction manager, etc. who manage the excavator 100, etc.
  • FIG. 7A is a first diagram showing an example of image data to be output
  • FIG. 7B is a second diagram showing an example of image data to be output.
  • An image 71 shown in FIG. 7A is an example of an image output as a result of detecting an inappropriate posture of the operator.
  • image 71 it can be seen that the operator is holding the lever. However, the operator operates the lever with his or her legs crossed, and it can be seen that this posture is inappropriate for operation.
  • An image 72 shown in FIG. 7B shows a state in which the operator is not engaged in work, that is, the operator is not holding a lever and is not wearing equipment (helmet).
  • this is an example of a screen that is output as a result of detecting that the operator is in an inappropriate posture while the excavator 100 is in an operable state (engine 11 is ON and gate lock valve 19 is open).
  • the operator is not wearing a helmet, has his legs crossed, and is not operating the excavator 100.
  • various detection information output from various sensors attached to the excavator 100 it is possible to check whether the operator's condition is appropriate depending on the condition of the excavator 100 (such as whether it is in an operable condition). .
  • the administrator can understand the behavior of the operator when the condition is detected.
  • the second embodiment will be described below with reference to the drawings.
  • the second embodiment is characterized in that a three-dimensional model of the operator at work is created from a plurality of image data acquired by a plurality of imaging devices attached to a pillar, and the condition of the operator is detected based on the three-dimensional model. , which is different from the first embodiment. Therefore, in the following description of the second embodiment, differences from the first embodiment will be explained.
  • FIG. 8 is a flowchart illustrating the operation of the shovel of the second embodiment.
  • the image data acquisition unit 301 of the controller 30 acquires image data (video data) captured by the camera S6PL and the camera S6PR (step S801).
  • the controller 30 of this embodiment uses the state detection unit 302 to create a three-dimensional model of the operator from the plurality of image data acquired by the image data acquisition unit 301, and determines the state of the operator based on the created three-dimensional model. is detected (step S802).
  • the three-dimensional model of the operator is a three-dimensional model represented by a group of points in a three-dimensional coordinate space.
  • the controller 30 uses the output unit 303 to store state history information including the detection result and the image data used for detecting the state in the storage device 47 (step S803).
  • a three-dimensional model of the operator is created from a plurality of image data acquired by the image data acquisition unit 301, it is necessary to select image data suitable for the condition of the operator to be detected. do not have.
  • a three-dimensional model created from a plurality of image data of the operator captured from different directions is used to detect the operator's condition, so the direction in which the operator is imaged by the camera does not affect the detection of the condition. .
  • the more cameras arranged on the pillars in the cabin 10 the more accurate the three-dimensional model can be created, and the more accurately the operator's condition can be detected.
  • the third embodiment differs from the first and second embodiments in that the state determination function of the shovel 100 is provided in the management device 200.
  • FIG. 9 is a diagram illustrating the system configuration of the construction machine support system of the third embodiment.
  • the management device 200 includes an image data acquisition section 301, a state detection section 302, and an output section 303A.
  • the management device 200 may be a general computer including an arithmetic processing unit and a storage device, and the functions of the image data acquisition unit 301, the state detection unit 302, and the output unit 303A are the functions of the storage device of the management device 200. This is achieved by the arithmetic processing unit reading and executing the state detection program stored in the computer.
  • the excavator 100 of this embodiment transmits image data captured by the camera S6PL and the camera S6PR to the management device 200.
  • the management device 200 uses a plurality of image data acquisition units 301 to acquire a plurality of image data transmitted from the excavator 100, uses a state detection unit 302 to detect the operator's condition using the plurality of image data, and compares the image data with the image data. Stores state history information including detection results.
  • the output unit 303A displays the state history information on a display device included in the management device 200, a display connected to the management device 200, or the like.
  • the output unit 303A outputs the operator's identification information and the machine number of the excavator 100.
  • the machine number of the excavator 100 and the corresponding state history information are read out.
  • the management device 200 may display the specified detection result and the image data associated with the specified detection result among the detection results included in the read state history information.
  • the output unit 303A reads out the state history information corresponding to the operator's identification information and the machine number of the excavator 100, and records the detected state. A list may also be displayed. Then, when a certain state is selected in the list of detected states, the output unit 303A may display image data associated with the selected state. Further, for example, when the operator's identification information is input, the output unit 303A may refer to state history information associated with this identification information and display the number of times an inappropriate state has been detected. .
  • the management device 200 since the management device 200 detects the states of a plurality of image data, the processing load on the controller 30 of the excavator 100 can be reduced.
  • the cabin 10, which is a driver's cab is the cabin 10 of the excavator 100, but the present invention is not limited to this.
  • This embodiment can also be applied to working machines other than the shovel 100.
  • work machines may include gantry cranes, crawler cranes, traveling cranes, overhead cranes, jib cranes, and the like.
  • a gantry crane has a pair of legs arranged in the left and right direction that can move forward and backward, a girder that spans between the legs, a main trolley that can traverse along the girder, and a driver that operates the crane.
  • the present embodiment may be applied to a driver's seat of a gantry crane.
  • an upper rotating body is rotatably mounted on a lower traveling body having a crawler belt, and a tower boom is attached to the upper rotating body so that it can be raised and lowered. Further, the upper revolving body is provided with a driver's seat.
  • a non-extendable tower jib is pivotally supported on the upper end of the tower boom so that it can be raised and lowered, and on the other part of the upper end of the tower boom, there is a tower jib between the tower jib and the pendant rope.
  • An interposed tower strut is pivotally supported and serves as an auxiliary member when raising and lowering the tower jib. This embodiment may be applied in the driver's seat of a crawler crane.
  • a traveling crane has, for example, a traveling section that travels on rails, a fixed section provided on the traveling section, a swing section that is swingably provided on the fixed section, and a driver's cab provided on the swing section. , and a jib provided on the rotating section.
  • the traveling crane also includes a lifting device for hanging a load, a wire rope for hoisting and lowering the lifting device, and a drum for winding up and sending out the wire rope.
  • a traveling crane device can transport a load by driving a traveling section to travel on a rail with the load suspended by a hanging device. This embodiment may be applied to a driver's seat of a mobile crane.
  • Overhead cranes are installed in buildings, and use lifting equipment to lift objects (hereinafter simply referred to as "objects") and move the lifting equipment in the horizontal direction to transport the objects.
  • the overhead crane has a girder provided so as to span between a pair of rails provided in a building, and the girder can run on the rails.
  • a trolley is provided on the girder so that it can traverse along the extending direction of the girder.
  • a hanging device is attached to the trolley. That is, as the girder travels, the hanging tool moves in the traveling direction, and as the trolley moves laterally, the hanging tool moves in the traversing direction. By moving the hanger in this manner, the object is transported.
  • the girder is provided with an operator's cab for operating the overhead crane. This embodiment may be applied in the driver's seat of an overhead crane.
  • a jib crane has a jib attached to the end of a revolving structure on which a backstay is erected so that it can be raised and lowered freely around the center shaft of the revolving body. is raised and lowered by raising and lowering the hoisting rope.
  • This embodiment may be applied in a driver's seat of a jib crane.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

This construction machine includes: a lower travelling body; an upper revolving body that is revolvingly mounted on the lower travelling body; a cabin that is mounted on the upper revolving body; and a spatial recognition device that is disposed on a pillar in the cabin.

Description

建設機械、建設機械の支援システムConstruction machinery and construction machinery support systems
 本発明は、建設機械、建設機械の支援システムに関する。 The present invention relates to construction machines and support systems for construction machines.
 従来では、運転席に着座するオペレータ及びオペレータの操作を受ける操作レバーの撮影が可能な位置に配置されたカメラと、走行操作レバー及び走行操作ペダルの撮像が可能な位置に配置されたカメラとを有する建設機械が知られている。また、この建設機械では、これらのカメラで撮影された画像を用いて、オペレータの意図しない誤動作を防止することが知られている。 Conventionally, a camera is placed at a position where it can take images of the operator seated in the driver's seat and the control lever operated by the operator, and a camera is placed at a position where it is possible to take images of the travel control lever and the travel control pedal. Construction machinery is known. Furthermore, it is known that in this construction machine, images taken by these cameras are used to prevent malfunctions that are not intended by the operator.
特開2020-111895号公報Japanese Patent Application Publication No. 2020-111895
 運転席に着座したオペレータは、常に前方を向いているとは限らない。このため、従来の技術では、オペレータの目、鼻、口等の顔のパーツの画像を捉えておくことができない。 The operator seated in the driver's seat does not always face forward. For this reason, with conventional techniques, it is not possible to capture images of facial parts such as the eyes, nose, and mouth of the operator.
 そこで、上記事情に鑑み、オペレータの顔のパーツの画像を捉えることを目的とする。 Therefore, in view of the above circumstances, the objective is to capture images of the parts of the operator's face.
 開示の建設機械は、下部走行体と、前記下部走行体に、旋回自在に搭載された上部旋回体と、前記上部旋回体に搭載されるキャビンと、前記キャビン内のピラーに配置された空間認識装置と、を有する建設機械である。 The disclosed construction machine includes a lower traveling body, an upper rotating body rotatably mounted on the lower traveling body, a cabin mounted on the upper rotating body, and a space recognition system disposed on a pillar in the cabin. It is a construction machine having a device.
 開示の建設機械の支援システムは、建設機械と、管理装置とを含む建設機械の支援システムであって、前記建設機械は、下部走行体と、前記下部走行体に、旋回自在に搭載された上部旋回体と、前記上部旋回体に搭載されたキャビンと、前記キャビン内のピラーに配置された空間認識装置と、前記空間認識装置によって撮像された複数の画像データを前記管理装置に出力する出力部と、を有し、前記管理装置は、前記複数の画像データを格納する記憶部を有する、建設機械の支援システムである。 The disclosed construction machine support system is a construction machine support system including a construction machine and a management device, wherein the construction machine includes a lower traveling body and an upper part rotatably mounted on the lower traveling body. a revolving body, a cabin mounted on the upper revolving body, a space recognition device disposed on a pillar in the cabin, and an output unit that outputs a plurality of image data captured by the space recognition device to the management device. and, the management device is a construction machine support system having a storage unit that stores the plurality of image data.
 オペレータの顔のパーツの画像を捉えることを目的とする。 The purpose is to capture images of the parts of the operator's face.
ショベルの支援システムのシステム構成の一例を示す図である。FIG. 1 is a diagram showing an example of a system configuration of an excavator support system. キャビンの内部における撮像装置の配置について説明する図である。It is a figure explaining arrangement of an imaging device inside a cabin. フロントウィンドウが開いている途中の状態を示す図である。FIG. 6 is a diagram showing a state in which the front window is in the middle of being opened. ショベルの駆動系の構成例を示すブロック図である。FIG. 2 is a block diagram showing a configuration example of a drive system of an excavator. 状態検出部による状態検出方法の一例について説明する図である。FIG. 3 is a diagram illustrating an example of a state detection method by a state detection unit. 第一の実施形態のショベルの処理を説明するフローチャートである。It is a flowchart explaining the processing of the shovel of a first embodiment. 出力される画像データの一例を示す第一の図である。FIG. 3 is a first diagram showing an example of image data to be output. 出力される画像データの一例を示す第二の図である。FIG. 7 is a second diagram showing an example of output image data. 第二の実施形態のショベルの動作を説明するフローチャートである。It is a flowchart explaining operation of the excavator of a second embodiment. 第三の実施形態の建設機械の支援システムのシステム構成について説明する図である。FIG. 3 is a diagram illustrating a system configuration of a construction machine support system according to a third embodiment.
 (第一の実施形態)
 以下に、図面を参照して実施形態について説明する。なお、添付図面において、X軸、Y軸、及びZ軸は互いに直交する軸である。具体的には、X軸は、ショベルの前後軸に沿って延び、Y軸は、ショベルの左右軸に沿って延び、Z軸は、ショベルの旋回軸に沿って延びる。本実施形態では、X軸及びY軸は水平方向に延び、Z軸は鉛直方向に延びる。
(First embodiment)
Embodiments will be described below with reference to the drawings. Note that in the accompanying drawings, the X-axis, Y-axis, and Z-axis are axes that are orthogonal to each other. Specifically, the X-axis extends along the longitudinal axis of the shovel, the Y-axis extends along the left-right axis of the shovel, and the Z-axis extends along the pivot axis of the shovel. In this embodiment, the X-axis and Y-axis extend horizontally, and the Z-axis extends vertically.
 図1は、ショベルの支援システムのシステム構成の一例を示す図である。本実施形態のショベルの支援システムSYSは、ショベル100と、管理装置200とを含む。以下の説明では、ショベルの支援システムSYSを、単に支援システムSYSと表現する。 FIG. 1 is a diagram showing an example of the system configuration of an excavator support system. The shovel support system SYS of this embodiment includes a shovel 100 and a management device 200. In the following description, the shovel support system SYS will be simply expressed as the support system SYS.
 本実施形態の支援システムSYSにおいて、ショベル100と、管理装置200とは、ネットワーク等を介して接続される。ショベル100は、作業機械の一例である。 In the support system SYS of this embodiment, the excavator 100 and the management device 200 are connected via a network or the like. Excavator 100 is an example of a working machine.
 本実施形態のショベル100では、後述するキャビン10内において、運転席に着座したオペレータの顔画像が常に撮像される位置に、複数の撮像装置を配置する。また、本実施形態では、キャビン10内に配置された複数の撮像装置により撮像された画像データに基づき、オペレータの状態を検出し、検出結果と画像データとを対応付けて保持する。 In the excavator 100 of this embodiment, a plurality of imaging devices are arranged in the cabin 10, which will be described later, at positions where the face image of the operator seated in the driver's seat is always captured. Further, in this embodiment, the operator's condition is detected based on image data captured by a plurality of imaging devices arranged in the cabin 10, and the detection result and the image data are stored in association with each other.
 さらに、本実施形態のショベル100は、複数の撮像装置により撮像された画像データと検出結果とを含む情報を、管理装置200に送信し、管理装置200において管理させてもよい。 Further, the excavator 100 of the present embodiment may transmit information including image data captured by a plurality of imaging devices and detection results to the management device 200, and have the management device 200 manage the information.
 また、本実施形態では、管理装置200において、オペレータの状態の検出結果と画像データとを表示させてもよい。本実施形態のオペレータの状態の詳細は後述する。 Furthermore, in the present embodiment, the management device 200 may display the detection results of the operator's condition and the image data. Details of the operator's status in this embodiment will be described later.
 本実施形態の画像データとは、動画データと、静止画像データとを含む。また、図1の例では、支援システムSYSは、ショベル100と管理装置200とを含むものとしたが、これに限定されない。支援システムSYSは、ショベル100を操作するオペレータを支援する支援装置が含まれてもよい。支援装置は、例えば、スマートフォン、タブレット端末、ウェアラブル端末等のように、可搬型の端末装置であってよい。 Image data in this embodiment includes moving image data and still image data. Further, in the example of FIG. 1, the support system SYS includes the shovel 100 and the management device 200, but is not limited to this. The support system SYS may include a support device that supports an operator who operates the shovel 100. The support device may be a portable terminal device, such as a smartphone, a tablet terminal, a wearable terminal, or the like.
 また、図1の例では、管理装置200は1台の情報処理装置により実現されるものとしたが、これに限定されない。管理装置200は、複数の情報処理装置により実現されてもよい。言い換えれば、管理装置200により実現される機能は、複数の情報処理装置により実現されてもよい。 Furthermore, in the example of FIG. 1, the management device 200 is realized by one information processing device, but the present invention is not limited to this. The management device 200 may be realized by a plurality of information processing devices. In other words, the functions realized by the management device 200 may be realized by a plurality of information processing devices.
 さらに、本実施形態では、キャビン10内において、撮像装置が複数配置されるものとしたが、これに限定されない。撮像装置は、運転席に着座したオペレータの顔画像が常に撮像される位置に配置されていればよい。 Furthermore, in this embodiment, a plurality of imaging devices are arranged in the cabin 10, but the present invention is not limited to this. The imaging device only needs to be placed at a position where the facial image of the operator seated in the driver's seat is always captured.
 以下に、本実施形態のショベル100について説明する。図1では、ショベル100の側面図を示す。 The excavator 100 of this embodiment will be described below. FIG. 1 shows a side view of excavator 100.
 ショベル100は、建設機械の一例であり、下部走行体1、旋回機構2、上部旋回体3を有する。ショベル100において、下部走行体1には旋回機構2を介して上部旋回体3が旋回可能に搭載されている。上部旋回体3にはブーム4が取り付けられている。ブーム4の先端にはアーム5が取り付けられ、アーム5の先端にはエンドアタッチメントとしてのバケット6が取り付けられている。 The excavator 100 is an example of a construction machine, and includes a lower traveling body 1, a swing mechanism 2, and an upper rotating body 3. In the excavator 100, an upper rotating body 3 is rotatably mounted on the lower traveling body 1 via a rotating mechanism 2. A boom 4 is attached to the upper revolving body 3. An arm 5 is attached to the tip of the boom 4, and a bucket 6 as an end attachment is attached to the tip of the arm 5.
 ブーム4、アーム5、バケット6は、アタッチメントの一例としての掘削アタッチメントを構成している。そして、ブーム4は、ブームシリンダ7により駆動され、アーム5は、アームシリンダ8により駆動され、バケット6は、バケットシリンダ9により駆動される。ブーム4にはブーム角度センサS1が取り付けられ、アーム5にはアーム角度センサS2が取り付けられ、バケット6にはバケット角度センサS3が取り付けられている。 The boom 4, arm 5, and bucket 6 constitute a digging attachment as an example of an attachment. The boom 4 is driven by a boom cylinder 7, the arm 5 is driven by an arm cylinder 8, and the bucket 6 is driven by a bucket cylinder 9. A boom angle sensor S1 is attached to the boom 4, an arm angle sensor S2 is attached to the arm 5, and a bucket angle sensor S3 is attached to the bucket 6.
 ブーム角度センサS1はブーム4の回動角度を検出するように構成されている。本実施形態では、ブーム角度センサS1は加速度センサであり、上部旋回体3に対するブーム4の回動角度(以下、「ブーム角度」とする。)を検出できる。ブーム角度は、例えば、ブーム4を最も下げたときに最小角度となり、ブーム4を上げるにつれて大きくなる。 The boom angle sensor S1 is configured to detect the rotation angle of the boom 4. In this embodiment, the boom angle sensor S1 is an acceleration sensor, and can detect the rotation angle of the boom 4 with respect to the upper rotating structure 3 (hereinafter referred to as "boom angle"). For example, the boom angle becomes the minimum angle when the boom 4 is lowered the most, and increases as the boom 4 is raised.
 アーム角度センサS2はアーム5の回動角度を検出するように構成されている。本実施形態では、アーム角度センサS2は加速度センサであり、ブーム4に対するアーム5の回動角度(以下、「アーム角度」とする。)を検出できる。アーム角度は、例えば、アーム5を最も閉じたときに最小角度となり、アーム5を開くにつれて大きくなる。 The arm angle sensor S2 is configured to detect the rotation angle of the arm 5. In this embodiment, the arm angle sensor S2 is an acceleration sensor, and can detect the rotation angle of the arm 5 with respect to the boom 4 (hereinafter referred to as "arm angle"). For example, the arm angle becomes the minimum angle when the arm 5 is most closed, and increases as the arm 5 is opened.
 バケット角度センサS3はバケット6の回動角度を検出するように構成されている。本実施形態では、バケット角度センサS3は加速度センサであり、アーム5に対するバケット6の回動角度(以下、「バケット角度」とする。)を検出できる。バケット角度は、例えば、バケット6を最も閉じたときに最小角度となり、バケット6を開くにつれて大きくなる。 The bucket angle sensor S3 is configured to detect the rotation angle of the bucket 6. In this embodiment, the bucket angle sensor S3 is an acceleration sensor, and can detect the rotation angle of the bucket 6 with respect to the arm 5 (hereinafter referred to as "bucket angle"). For example, the bucket angle becomes the minimum angle when the bucket 6 is most closed, and increases as the bucket 6 is opened.
 ブーム角度センサS1、アーム角度センサS2、及び、バケット角度センサS3はそれぞれ、可変抵抗器を利用したポテンショメータ、対応する油圧シリンダのストローク量を検出するストロークセンサ、連結ピン回りの回動角度を検出するロータリエンコーダ、ジャイロセンサ、又は、加速度センサとジャイロセンサの組み合わせ等であってもよい。 The boom angle sensor S1, arm angle sensor S2, and bucket angle sensor S3 are each a potentiometer using a variable resistor, a stroke sensor that detects the stroke amount of the corresponding hydraulic cylinder, and a rotation angle around the connecting pin. It may be a rotary encoder, a gyro sensor, or a combination of an acceleration sensor and a gyro sensor.
 ブームシリンダ7にはブームロッド圧センサS7R及びブームボトム圧センサS7Bが取り付けられている。アームシリンダ8にはアームロッド圧センサS8R及びアームボトム圧センサS8Bが取り付けられている。 A boom rod pressure sensor S7R and a boom bottom pressure sensor S7B are attached to the boom cylinder 7. An arm rod pressure sensor S8R and an arm bottom pressure sensor S8B are attached to the arm cylinder 8.
 バケットシリンダ9にはバケットロッド圧センサS9R及びバケットボトム圧センサS9Bが取り付けられている。ブームロッド圧センサS7R、ブームボトム圧センサS7B、アームロッド圧センサS8R、アームボトム圧センサS8B、バケットロッド圧センサS9R及びバケットボトム圧センサS9Bは、集合的に「シリンダ圧センサ」とも称される。 A bucket rod pressure sensor S9R and a bucket bottom pressure sensor S9B are attached to the bucket cylinder 9. Boom rod pressure sensor S7R, boom bottom pressure sensor S7B, arm rod pressure sensor S8R, arm bottom pressure sensor S8B, bucket rod pressure sensor S9R, and bucket bottom pressure sensor S9B are also collectively referred to as "cylinder pressure sensors."
 ブームロッド圧センサS7Rはブームシリンダ7のロッド側油室の圧力(以下、「ブームロッド圧」とする。)を検出し、ブームボトム圧センサS7Bはブームシリンダ7のボトム側油室の圧力(以下、「ブームボトム圧」とする。)を検出する。アームロッド圧センサS8Rはアームシリンダ8のロッド側油室の圧力(以下、「アームロッド圧」とする。)を検出し、アームボトム圧センサS8Bはアームシリンダ8のボトム側油室の圧力(以下、「アームボトム圧」とする。)を検出する。 The boom rod pressure sensor S7R detects the pressure in the rod side oil chamber of the boom cylinder 7 (hereinafter referred to as "boom rod pressure"), and the boom bottom pressure sensor S7B detects the pressure in the bottom side oil chamber of the boom cylinder 7 (hereinafter referred to as "boom rod pressure"). , "boom bottom pressure"). The arm rod pressure sensor S8R detects the pressure in the rod side oil chamber of the arm cylinder 8 (hereinafter referred to as "arm rod pressure"), and the arm bottom pressure sensor S8B detects the pressure in the bottom side oil chamber of the arm cylinder 8 (hereinafter referred to as "arm rod pressure"). , "arm bottom pressure") is detected.
 バケットロッド圧センサS9Rはバケットシリンダ9のロッド側油室の圧力(以下、「バケットロッド圧」とする。)を検出し、バケットボトム圧センサS9Bはバケットシリンダ9のボトム側油室の圧力(以下、「バケットボトム圧」とする。)を検出する。 The bucket rod pressure sensor S9R detects the pressure in the rod side oil chamber of the bucket cylinder 9 (hereinafter referred to as "bucket rod pressure"), and the bucket bottom pressure sensor S9B detects the pressure in the bottom side oil chamber of the bucket cylinder 9 (hereinafter referred to as "bucket rod pressure"). , "bucket bottom pressure").
 上部旋回体3には運転室であるキャビン10が設けられ且つエンジン11等の動力源が搭載されている。また、エンジン11の排出機構の近傍には、CO排出量を検出するためのセンサが設けられていてもよい。 The upper revolving body 3 is provided with a cabin 10 which is a driver's room, and is equipped with a power source such as an engine 11. Furthermore, a sensor for detecting the amount of CO 2 emissions may be provided near the exhaust mechanism of the engine 11.
 さらに、上部旋回体3には、コントローラ30、表示装置40、入力装置42、音声出力装置43、記憶装置47、測位装置P1、機体傾斜センサS4、旋回角速度センサS5、撮像装置S6及び通信装置T1が取り付けられている。 Further, the upper revolving body 3 includes a controller 30, a display device 40, an input device 42, an audio output device 43, a storage device 47, a positioning device P1, a body tilt sensor S4, a turning angular velocity sensor S5, an imaging device S6, and a communication device T1. is installed.
 上部旋回体3には、電力を供給する蓄電部、及び、エンジン11の回転駆動力を用いて発電する電動発電機等が搭載されていてもよい。蓄電部は、例えば、キャパシタ、又は、リチウムイオン電池等である。電動発電機は、電動機として機能して機械負荷を駆動してもよく、発電機として機能して電気負荷に電力を供給してもよい。 The upper revolving structure 3 may be equipped with a power storage unit that supplies electric power, a motor generator that generates electricity using the rotational driving force of the engine 11, and the like. The power storage unit is, for example, a capacitor, a lithium ion battery, or the like. A motor generator may function as an electric motor to drive a mechanical load, or may function as a generator to supply power to an electrical load.
 コントローラ30は、ショベル100の駆動制御を行う主制御部として機能する。本実施形態では、コントローラ30は、CPU、RAM及びROM等を含むコンピュータで構成されている。コントローラ30の各種機能は、例えば、ROMに格納されたプログラムをCPUが実行することで実現される。各種機能は、例えば、オペレータによるショベル100の手動操作をガイド(案内)するマシンガイダンス機能、及び、オペレータによるショベル100の手動操作を自動的に支援するマシンコントロール機能の少なくとも1つを含んでいてもよい。 The controller 30 functions as a main control unit that controls the drive of the shovel 100. In this embodiment, the controller 30 is composed of a computer including a CPU, RAM, ROM, and the like. Various functions of the controller 30 are realized, for example, by the CPU executing programs stored in the ROM. The various functions may include, for example, at least one of a machine guidance function that guides the manual operation of the shovel 100 by the operator, and a machine control function that automatically supports the manual operation of the shovel 100 by the operator. good.
 表示装置40は、各種情報を表示するように構成されている。表示装置40は、CAN等の通信ネットワークを介してコントローラ30に接続されていてもよく、専用線を介してコントローラ30に接続されていてもよい。 The display device 40 is configured to display various information. The display device 40 may be connected to the controller 30 via a communication network such as CAN, or may be connected to the controller 30 via a dedicated line.
 入力装置42は、オペレータが各種情報をコントローラ30に入力できるように構成されている。入力装置42は、キャビン10内に設置されたタッチパネル、ノブスイッチ及びメンブレンスイッチ等の少なくとも1つを含む。 The input device 42 is configured to allow an operator to input various information to the controller 30. The input device 42 includes at least one of a touch panel, a knob switch, a membrane switch, etc. installed in the cabin 10.
 音声出力装置43は、音声を出力するように構成されている。音声出力装置43は、例えば、コントローラ30に接続される車載スピーカであってもよく、ブザー等の警報器であってもよい。本実施形態では、音声出力装置43は、コントローラ30からの音声出力指令に応じて各種情報を音声出力するように構成されている。 The audio output device 43 is configured to output audio. The audio output device 43 may be, for example, an in-vehicle speaker connected to the controller 30, or may be an alarm device such as a buzzer. In this embodiment, the audio output device 43 is configured to output various information as audio in response to audio output commands from the controller 30.
 記憶装置47は、各種情報を記憶するように構成されている。記憶装置47は、例えば、半導体メモリ等の不揮発性記憶媒体である。記憶装置47は、ショベル100の動作中に各種機器が出力する情報を記憶してもよく、ショベル100の動作が開始される前に各種機器を介して取得する情報を格納してもよい。 The storage device 47 is configured to store various information. The storage device 47 is, for example, a nonvolatile storage medium such as a semiconductor memory. The storage device 47 may store information output by various devices while the shovel 100 is in operation, or may store information acquired via the various devices before the shovel 100 starts operating.
 具体的には、記憶装置47は、キャビン10内に配置された複数の撮像装置(カメラ)によって撮像された画像データと、コントローラ30によるオペレータの状態の検出結果とを含む情報が格納されてよい。 Specifically, the storage device 47 may store information including image data captured by a plurality of imaging devices (cameras) arranged in the cabin 10 and the detection result of the operator's state by the controller 30. .
 また、記憶装置47は、例えば、通信装置T1等を介して取得される目標施工面に関するデータを記憶していてもよい。目標施工面は、ショベル100のオペレータが設定したものであってもよく、施工管理者等が設定したものであってもよい。 Furthermore, the storage device 47 may store data regarding the target construction surface acquired via the communication device T1 or the like, for example. The target construction surface may be set by the operator of the excavator 100, or may be set by a construction manager or the like.
 測位装置P1は、上部旋回体3の位置を測定するように構成されている。測位装置P1は、上部旋回体3の向きを測定できるように構成されていてもよい。本実施形態では、測位装置P1は、例えばGNSSコンパスであり、上部旋回体3の位置及び向きを検出し、検出値をコントローラ30に対して出力する。そのため、測位装置P1は、上部旋回体3の向きを検出する向き検出装置としても機能し得る。向き検出装置は、上部旋回体3に取り付けられた方位センサであってもよい。 The positioning device P1 is configured to measure the position of the upper revolving structure 3. The positioning device P1 may be configured to be able to measure the orientation of the upper rotating body 3. In this embodiment, the positioning device P1 is, for example, a GNSS compass, detects the position and orientation of the upper rotating body 3, and outputs the detected value to the controller 30. Therefore, the positioning device P1 can also function as a direction detection device that detects the direction of the upper rotating body 3. The orientation detection device may be an orientation sensor attached to the upper revolving body 3.
 機体傾斜センサS4は上部旋回体3の傾斜を検出するように構成されている。本実施形態では、機体傾斜センサS4は仮想水平面に対する上部旋回体3の前後軸回りの前後傾斜角及び左右軸回りの左右傾斜角を検出する加速度センサである。上部旋回体3の前後軸及び左右軸は、例えば、ショベル100の旋回軸上の一点であるショベル中心点で互いに直交する。 The body tilt sensor S4 is configured to detect the tilt of the upper revolving body 3. In this embodiment, the body inclination sensor S4 is an acceleration sensor that detects the longitudinal inclination angle around the longitudinal axis and the lateral inclination angle around the left-right axis of the upper revolving superstructure 3 with respect to the virtual horizontal plane. The longitudinal axis and the lateral axis of the upper revolving body 3 are perpendicular to each other at, for example, the center point of the shovel, which is one point on the swing axis of the shovel 100.
 旋回角速度センサS5は、上部旋回体3の旋回角速度を検出するように構成されている。旋回角速度センサS5は、上部旋回体3の旋回角度を検出或いは算出するように構成されていてもよい。本実施形態では、旋回角速度センサS5は、ジャイロセンサである。旋回角速度センサS5は、レゾルバ、ロータリエンコーダ等であってもよい。 The turning angular velocity sensor S5 is configured to detect the turning angular velocity of the upper rotating structure 3. The turning angular velocity sensor S5 may be configured to detect or calculate the turning angle of the upper rotating body 3. In this embodiment, the turning angular velocity sensor S5 is a gyro sensor. The turning angular velocity sensor S5 may be a resolver, a rotary encoder, or the like.
 撮像装置S6は、空間認識装置の一例であり、ショベル100の周辺の画像を取得するように構成されている。本実施形態では、撮像装置S6は、ショベル100の前方の空間を撮像する前カメラS6F、ショベル100の左方の空間を撮像する左カメラS6L、ショベル100の右方の空間を撮像する右カメラS6R、及び、ショベル100の後方の空間を撮像する後カメラS6Bを含む。 The imaging device S6 is an example of a space recognition device, and is configured to acquire images around the excavator 100. In this embodiment, the imaging device S6 includes a front camera S6F that images the space in front of the shovel 100, a left camera S6L that images the space to the left of the shovel 100, and a right camera S6R that images the space to the right of the shovel 100. , and a rear camera S6B that images the space behind the shovel 100.
 また、本実施形態の撮像装置S6は、キャビン10内に設けられた複数の撮像装置を含んでよい。キャビン10内に設けられた複数の撮像装置の配置の詳細は後述する。 Furthermore, the imaging device S6 of this embodiment may include a plurality of imaging devices provided within the cabin 10. Details of the arrangement of the plurality of imaging devices provided in the cabin 10 will be described later.
 撮像装置S6は、例えば、CCD又はCMOS等の撮像素子を有する単眼カメラであり、撮像した画像を表示装置40に出力する。撮像装置S6は、ステレオカメラ、距離画像カメラ等であってもよい。また、撮像装置S6は、3次元距離画像センサ、超音波センサ、ミリ波レーダ、LIDAR又は赤外線センサ等の他の空間認識装置で置き換えられてもよく、他の空間認識装置とカメラとの組み合わせで置き換えられてもよい。 The imaging device S6 is, for example, a monocular camera having an imaging device such as a CCD or CMOS, and outputs the captured image to the display device 40. The imaging device S6 may be a stereo camera, a distance image camera, or the like. Furthermore, the imaging device S6 may be replaced with another spatial recognition device such as a three-dimensional distance image sensor, an ultrasonic sensor, a millimeter wave radar, a LIDAR or an infrared sensor, or a combination of another spatial recognition device and a camera. May be replaced.
 前カメラS6Fは、例えば、キャビン10の天井、すなわちキャビン10の内部に取り付けられている。但し、前カメラS6Fは、キャビン10の屋根、ブーム4の側面等、キャビン10の外部に取り付けられていてもよい。左カメラS6Lは、上部旋回体3の上面左端に取り付けられ、右カメラS6Rは、上部旋回体3の上面右端に取り付けられ、後カメラS6Bは、上部旋回体3の上面後端に取り付けられている。 The front camera S6F is attached to the ceiling of the cabin 10, that is, inside the cabin 10, for example. However, the front camera S6F may be attached to the outside of the cabin 10, such as the roof of the cabin 10 or the side surface of the boom 4. The left camera S6L is attached to the left end of the upper surface of the revolving upper structure 3, the right camera S6R is attached to the right end of the upper surface of the upper revolving structure 3, and the rear camera S6B is attached to the rear end of the upper surface of the revolving upper structure 3. .
 通信装置T1は、ショベル100の外部にある外部機器との通信を制御する。本実施形態では、通信装置T1は、衛星通信網、携帯電話通信網又はインターネット網等を介した外部機器との通信を制御する。外部機器は、例えば、外部施設に設置されたサーバ等の管理装置200であってもよく、ショベル100の周囲の作業者が携帯しているスマートフォン等の支援装置であってもよい。 The communication device T1 controls communication with external equipment outside the excavator 100. In this embodiment, the communication device T1 controls communication with an external device via a satellite communication network, a mobile phone communication network, an Internet network, or the like. The external device may be, for example, the management device 200 such as a server installed in an external facility, or may be a support device such as a smartphone carried by a worker around the excavator 100.
 ショベル100は、通信装置T1を介し、撮像装置S6が撮像した画像データ等を、管理装置200等の外部機器に送信してもよい。この構成により、ショベル100の外部にいる作業者又は管理者等は、管理装置200又は支援装置に接続されているモニタ等の表示装置を通じてショベル100の周辺の状態や、オペレータの状態を視認できる。 The excavator 100 may transmit image data captured by the imaging device S6 to an external device such as the management device 200 via the communication device T1. With this configuration, a worker, a manager, or the like outside the excavator 100 can visually check the status of the surroundings of the excavator 100 and the status of the operator through a display device such as a monitor connected to the management device 200 or the support device.
 次に、図2を参照して、本実施形態のキャビン10の内部における撮像装置S6の配置について説明する。図2は、キャビンの内部における撮像装置の配置について説明する図である。 Next, with reference to FIG. 2, the arrangement of the imaging device S6 inside the cabin 10 of this embodiment will be described. FIG. 2 is a diagram illustrating the arrangement of the imaging device inside the cabin.
 図2はキャビン10の内部の斜視図であり、キャビン10内の運転席から前方を見たときの様子を示す。 FIG. 2 is a perspective view of the inside of the cabin 10, showing the state seen from the driver's seat inside the cabin 10.
 図2に示すように、キャビン10内には運転席90が設置されている。そして、運転席90の左側には左コンソール90Lが設置され、運転席90の右側には右コンソール90Rが設置されている。左コンソール90Lの前端上部には左操作レバー26Lが取り付けられ、右コンソール90R上の左操作レバー26Lに対応する位置には右操作レバー26Rが取り付けられている。右コンソール90Rの前端上部には、表示装置40の一つであるメインモニタ40Mが取り付けられている。 As shown in FIG. 2, a driver's seat 90 is installed inside the cabin 10. A left console 90L is installed on the left side of the driver's seat 90, and a right console 90R is installed on the right side of the driver's seat 90. A left operating lever 26L is attached to the upper front end of the left console 90L, and a right operating lever 26R is attached to a position corresponding to the left operating lever 26L on the right console 90R. A main monitor 40M, which is one of the display devices 40, is attached to the upper front end of the right console 90R.
 キャビン10内において、左ピラー111LにはカメラS6PLが取り付けられ、右ピラー111RにはカメラS6PRが取り付けられている。左ピラー111L、右ピラー111Rは、図3に示すフレーム体110の一部である。カメラS6PL、カメラS6PRは、撮像装置であり、3次元センサの一例である。 Inside the cabin 10, a camera S6PL is attached to the left pillar 111L, and a camera S6PR is attached to the right pillar 111R. The left pillar 111L and the right pillar 111R are part of the frame body 110 shown in FIG. 3. Camera S6PL and camera S6PR are imaging devices and are examples of three-dimensional sensors.
 また、本実施形態では、カメラS6PL、S6PRは、後述する図3に示すように、左右のピラーにおいて、運転席90の座面90mの高さH1から、運転席90のヘッドレスト90cの上端部の高さH2までの間の位置に取り付けられる。なお、本実施形態の「高さ」は、例えば、キャビン10の床面10fからの鉛直距離であってもよい。 In addition, in the present embodiment, the cameras S6PL and S6PR are mounted on the left and right pillars from the height H1 of the seat surface 90m of the driver's seat 90 to the upper end of the headrest 90c of the driver's seat 90, as shown in FIG. It can be installed at a position up to the height H2. Note that the "height" in this embodiment may be, for example, a vertical distance from the floor surface 10f of the cabin 10.
 本実施形態では、このように、カメラS6PL、S6PRを配置することで、運転席90に座って正面を見るオペレータを、左側からも右側からも撮像することができる。 In this embodiment, by arranging the cameras S6PL and S6PR in this way, it is possible to image the operator who is sitting in the driver's seat 90 and looking forward from both the left side and the right side.
 具体的には、例えば、運転席90に着座したオペレータが、右側を向いている場合には、右ピラー111Rに取り付けられたカメラS6PRにより、オペレータの顔のパーツを含む画像を撮像することができる。また、運転席90に着座したオペレータが、左側を向いている場合には、左ピラー111Lに取り付けられたカメラS6PLにより、オペレータの顔のパーツを含む画像を撮像することができる。 Specifically, for example, when the operator seated in the driver's seat 90 is facing to the right, the camera S6PR attached to the right pillar 111R can capture an image including the parts of the operator's face. . Further, when the operator seated in the driver's seat 90 is facing to the left, the camera S6PL attached to the left pillar 111L can capture an image including the parts of the operator's face.
 また、本実施形態のカメラS6PL、S6PRは、フロントウィンドウ62を通したオペレータの視界を妨げないように取り付けられる。そのため、本実施形態のカメラS6PL、S6PRは、左ピラー111L、右ピラー111Rの幅に収まるサイズとした。 Furthermore, the cameras S6PL and S6PR of this embodiment are mounted so as not to obstruct the operator's view through the front window 62. Therefore, the cameras S6PL and S6PR of this embodiment are sized to fit within the widths of the left pillar 111L and right pillar 111R.
 本実施形態では、カメラS6PL、S6PRをこのようなサイズのものとすることで、カメラS6PL、S6PRが窓面前部60の開閉を妨げることを防止できる。言い換えれば、本実施形態では、カメラS6PL、S6PRと、フロントウィンドウ62の開閉動作とを非干渉とすることができる。 In this embodiment, by making the cameras S6PL and S6PR of such sizes, it is possible to prevent the cameras S6PL and S6PR from interfering with the opening and closing of the window front section 60. In other words, in this embodiment, the cameras S6PL, S6PR and the opening/closing operation of the front window 62 can be made non-interfering.
 なお、図2の例では、左右のピラーにそれぞれ1台の撮像装置が取り付けられたものとしたが、左ピラー111L、右ピラー111Rに取り付けられるピラーの数は、これに限定されない。本実施形態では、例えば、左右のピラーのそれぞれに、複数の撮像装置が取り付けられていてもよい。 Note that in the example of FIG. 2, one imaging device is attached to each of the left and right pillars, but the number of pillars that are attached to the left pillar 111L and the right pillar 111R is not limited to this. In this embodiment, for example, a plurality of imaging devices may be attached to each of the left and right pillars.
 また、本実施形態のカメラS6PL、S6PRは、可動式であってもよい。具体的には、例えば、左ピラー111L、右ピラー111Rのそれぞれに、溝部を有するレールが取り付けられており、カメラS6PL、S6PRは、左ピラー111L、右ピラー111Rに取り付けられたレールにはめ込まれていてもよい。 Furthermore, the cameras S6PL and S6PR of this embodiment may be movable. Specifically, for example, rails having grooves are attached to each of the left pillar 111L and the right pillar 111R, and the cameras S6PL and S6PR are fitted into the rails attached to the left pillar 111L and the right pillar 111R. You can.
 この場合、オペレータは、カメラS6PL、S6PRを、レール上でスライドさせることで、カメラS6PL、S6PRの取り付け位置を移動させることができる。 In this case, the operator can move the mounting positions of the cameras S6PL and S6PR by sliding the cameras S6PL and S6PR on the rail.
 また、本実施形態では、例えば、左ピラー111L、右ピラー111Rのそれぞれに、カメラS6PL、S6PRを取り付けるための取り付け部が複数設けられていてもよい。取り付け部は、具体的には、例えば、複数のUSB(Universal Serial Bus)コネクタを含むUSBハブ等であってよい。 Furthermore, in this embodiment, for example, each of the left pillar 111L and the right pillar 111R may be provided with a plurality of attachment parts for attaching the cameras S6PL and S6PR. Specifically, the attachment part may be, for example, a USB hub including a plurality of USB (Universal Serial Bus) connectors.
 この場合、カメラS6PL、S6PRを、USBハブが有する任意のUSBコネクタに接続することで、カメラS6PL、S6PRの取り付け位置を移動させることができる。 In this case, the mounting positions of the cameras S6PL and S6PR can be moved by connecting the cameras S6PL and S6PR to any USB connectors that the USB hub has.
 また、本実施形態のカメラS6PL、S6PRは、例えば、筐体の背面等に、左ピラー111L、右ピラー111Rのそれぞれへ固定するための固定部材が設けられていてもよい。固定部材は、例えば、左ピラー111L、右ピラー111Rが、鉄等の金属で形成されている場合には、マグネット等であってもよいし、ネジ等であってもよい。 Furthermore, the cameras S6PL and S6PR of this embodiment may be provided with fixing members for fixing to the left pillar 111L and the right pillar 111R, respectively, on the back surface of the housing, for example. For example, when the left pillar 111L and the right pillar 111R are made of metal such as iron, the fixing member may be a magnet or the like, or a screw.
 この場合、左ピラー111L、右ピラー111Rの任意の位置にカメラS6PL、S6PRを固定することで、カメラS6PL、S6PRの取り付け位置を移動させることができる。 In this case, by fixing the cameras S6PL and S6PR at arbitrary positions on the left pillar 111L and the right pillar 111R, the mounting positions of the cameras S6PL and S6PR can be moved.
 このように、本実施形態では、カメラS6PL、S6PRを可動式とすることで、オペレータが運転席90に着座したときの座高等に応じて、オペレータの顔画像の撮像に適した位置に、カメラS6PL、S6PRを移動させることができる。 In this way, in this embodiment, the cameras S6PL and S6PR are movable, so that the cameras can be positioned at positions suitable for capturing the operator's face image depending on the seat height when the operator is seated in the driver's seat 90. S6PL and S6PR can be moved.
 なお、本実施形態では、図示していないが、左ピラー111L、右ピラー111Rにおいて、カメラS6PL、S6PRと干渉しない位置に、左モニタ、右モニタが設けられてもよい。 Although not shown in the present embodiment, a left monitor and a right monitor may be provided in the left pillar 111L and the right pillar 111R at positions that do not interfere with the cameras S6PL and S6PR.
 この場合、左モニタは、望ましくは、メインモニタ40Mの高さより高く、左後方用ミラー10cの高さより低い高さに取り付けられる。「高さ」は、例えば、地面からの鉛直距離である。また、望ましくは、左カメラS6Lの高さと略同じ高さに取り付けられる。同様に、右モニタは、望ましくは、メインモニタ40Mの高さより高く、左後方用ミラー10cの高さより低い高さに取り付けられる。また、望ましくは、右カメラS6Rの高さと略同じ高さに取り付けられる。 In this case, the left monitor is preferably mounted at a height higher than the height of the main monitor 40M and lower than the height of the left rear mirror 10c. "Height" is, for example, a vertical distance from the ground. Moreover, it is desirably mounted at approximately the same height as the left camera S6L. Similarly, the right monitor is preferably mounted at a height higher than the height of the main monitor 40M and lower than the height of the left rear mirror 10c. Moreover, it is desirably mounted at approximately the same height as the right camera S6R.
 バックモニタ40Bは、前側天井フレーム113に沿って配置されるように、右ピラー111Rの上部に取り付けられている。前側天井フレーム113は、図3に示すフレーム体110の一部である。 The back monitor 40B is attached to the upper part of the right pillar 111R so as to be arranged along the front ceiling frame 113. The front ceiling frame 113 is a part of the frame body 110 shown in FIG.
 バックモニタ40Bは、前側天井フレーム113に沿って配置されるように、左ピラー111Lの上部に取り付けられていてもよい。 The back monitor 40B may be attached to the top of the left pillar 111L so as to be disposed along the front ceiling frame 113.
 このように、運転席に座って正面を見るショベルのオペレータの視野の左側部分にはあたかも左後方用ミラーであるかのように左モニタが配置されてもよい。また、視野の右側部分にはあたかも右後方用ミラーであるかのように右モニタが配置されてもよい。 In this way, the left monitor may be placed on the left side of the visual field of the excavator operator who is sitting in the driver's seat and looking straight ahead, as if it were a left rear mirror. Furthermore, the right monitor may be placed on the right side of the visual field as if it were a right rear mirror.
 また、本実施形態では、視野の上側部分にはあたかも後方用ミラーであるかのようにバックモニタ40Bが配置されている。そのため、ショベルのオペレータは、左モニタに映し出される画像がショベルの左後方の鏡像画像であることを直感的に認識できる。同様に、右モニタに映し出される画像がショベルの右後方の鏡像画像であり、バックモニタ40Bに映し出される画像がショベルの後方の鏡像画像であることを直感的に認識できる。 Furthermore, in this embodiment, the rear monitor 40B is arranged in the upper part of the field of view as if it were a rear mirror. Therefore, the excavator operator can intuitively recognize that the image displayed on the left monitor is a mirror image of the left rear of the excavator. Similarly, the user can intuitively recognize that the image displayed on the right monitor is a mirror image of the right rear part of the shovel, and that the image displayed on the back monitor 40B is a mirror image of the rear part of the shovel.
 左モニタ、右モニタ、バックモニタ40Bに表示される画像はそれぞれ、左カメラS6L、右カメラS6R、後カメラS6Bが撮像した画像に対応する。すなわち、左モニタ、右モニタ、バックモニタ40Bはそれぞれ独立して別々の方向を映し出す。また、左モニタ、右モニタ、バックモニタ40Bの表示は、オペレータがキーオンした際に、メインモニタ40Mの起動と同時に開始される。但し、エンジン11の起動と同時に開始されてもよい。 The images displayed on the left monitor, right monitor, and back monitor 40B correspond to images captured by the left camera S6L, right camera S6R, and rear camera S6B, respectively. That is, the left monitor, right monitor, and back monitor 40B each independently display images in different directions. Further, the display on the left monitor, right monitor, and back monitor 40B starts simultaneously with the activation of the main monitor 40M when the operator turns on the key. However, it may be started at the same time as the engine 11 is started.
 また、左モニタ、右モニタ、及びバックモニタ40Bはフロントウィンドウ62を通したオペレータの視界を妨げないように取り付けられる。そのため、本実施形態では、左モニタ、右モニタは左ピラー111L、右ピラー111Rの幅に収まるサイズを有し、バックモニタ40Bはフロントウィンドウ62の右上隅に取り付けられている。但し、左モニタ、右モニタは左ピラー111L、右ピラー111Rの幅より広い幅を有していてもよく、バックモニタ40Bは前側天井フレーム113の幅に収まるサイズを有していてもよい。また、左モニタ、右モニタ、及びバックモニタ40Bはフロントウィンドウ62の開閉を妨げない位置に取り付けられている。 Furthermore, the left monitor, right monitor, and back monitor 40B are installed so as not to obstruct the operator's view through the front window 62. Therefore, in this embodiment, the left monitor and right monitor have sizes that fit within the widths of the left pillar 111L and right pillar 111R, and the back monitor 40B is attached to the upper right corner of the front window 62. However, the left monitor and the right monitor may have a width wider than the width of the left pillar 111L and the right pillar 111R, and the back monitor 40B may have a size that fits within the width of the front ceiling frame 113. Further, the left monitor, right monitor, and back monitor 40B are installed at positions that do not interfere with opening and closing of the front window 62.
 左モニタ、右モニタ、及びバックモニタ40Bのそれぞれの画面サイズ及び解像度は、望ましくは、ショベルから所定距離(例えば12m)内にいる人の画像が画面上で所定サイズ(例えば7mm×7mm)より大きく表示されるように選択される。例えば、左モニタ、右モニタとして7型(7インチ)以上の画面サイズを有するモニタが採用され、望ましくは7型(7インチ)又は8型(8インチ)の画面サイズを有するモニタが採用される。 The screen size and resolution of each of the left monitor, right monitor, and back monitor 40B are preferably such that an image of a person within a predetermined distance (for example, 12 m) from the excavator is larger than a predetermined size (for example, 7 mm x 7 mm) on the screen. selected for display. For example, a monitor with a screen size of 7 inches (7 inches) or more is used as the left monitor and right monitor, and preferably a monitor with a screen size of 7 inches (7 inches) or 8 inches (8 inches) is used. .
 また、左モニタ及び右モニタは基準水平面に関して同じ高さに取り付けられる。基準水平面は例えばショベルが位置する地面である。本実施形態では、図2の一点鎖線で示す運転室中心線に対して左右対称となるように取り付けられている。 Additionally, the left monitor and right monitor are mounted at the same height with respect to the reference horizontal plane. The reference horizontal plane is, for example, the ground on which the shovel is located. In this embodiment, they are attached so as to be symmetrical with respect to the center line of the driver's cab shown by the dashed line in FIG.
 また、左モニタ、右モニタ、及びバックモニタ40Bは運転席90に座るオペレータの体型、作業姿勢等に応じて取付角度が調整できるように構成されてもよい。 Further, the left monitor, right monitor, and back monitor 40B may be configured so that the mounting angles can be adjusted according to the body shape, working posture, etc. of the operator sitting in the driver's seat 90.
 図2に示すように、キャビン10内の中央には運転席90が設けられ、その両脇には左操作レバー26L、右操作レバー26Rが設けられている。そのため、オペレータは、運転席90に座って、左手で左操作レバー26Lを操作し、右手で右操作レバー26Rを操作することで、バケット6を所望の位置に移動させて掘削作業を行うことができる。 As shown in FIG. 2, a driver's seat 90 is provided in the center of the cabin 10, and a left operating lever 26L and a right operating lever 26R are provided on both sides of the driver's seat 90. Therefore, the operator can move the bucket 6 to a desired position and perform excavation work by operating the left operating lever 26L with his left hand and operating the right operating lever 26R with his right hand while sitting in the driver's seat 90. can.
 運転席90の右前方にはメインモニタ40Mの画像表示部41M及びスイッチパネル42Mが設置されている。ショベルのオペレータは、画像表示部41Mを見てショベルの動作状態を把握できる。図2の例では、画像表示部41Mは俯瞰画像を表示している。俯瞰画像は、後カメラS6B、左右のサイドカメラのそれぞれが撮像した画像に基づいて生成される合成画像の一例である。具体的には、俯瞰画像は、ショベルの周囲を真上の仮想視点から見たときの様子を表す視点変換画像である。 An image display section 41M of a main monitor 40M and a switch panel 42M are installed on the right front side of the driver's seat 90. The excavator operator can grasp the operating state of the excavator by looking at the image display section 41M. In the example of FIG. 2, the image display section 41M displays an overhead image. The bird's-eye view image is an example of a composite image generated based on images captured by the rear camera S6B and the left and right side cameras. Specifically, the bird's-eye view image is a viewpoint-converted image that shows the surroundings of the excavator as viewed from a virtual viewpoint directly above.
 左ピラー111Lには左モニタが取り付けられ、右ピラー111Rには右モニタが取り付けられている。左モニタ及び右モニタは、オペレータがキャビン10のフロントウィンドウ62を通じてバケット6を中心視野で捉えているときに左モニタ及び右モニタを周辺視野で捉えることができるような位置に取り付けられてよい。そのため、オペレータは、バケット6を中心視野で捉えながら掘削作業を行っているときに、視線を動かさずに、左モニタ及び右モニタに映し出されるショベルの左後方及び右後方の様子を周辺視野で捉えることができる。 A left monitor is attached to the left pillar 111L, and a right monitor is attached to the right pillar 111R. The left and right monitors may be mounted in positions such that the operator has a peripheral vision of the left and right monitors when the operator has a central vision of the bucket 6 through the front window 62 of the cabin 10. Therefore, while performing excavation work while keeping the bucket 6 in the central field of vision, the operator can use his peripheral vision to see the left rear and right rear of the excavator displayed on the left and right monitors without moving his line of sight. be able to.
 左コンソール90Lの上には選択ダイヤル52及び操作装置53が設置されている。オペレータは、ショベルの左後方の画像を表示する左モニタが映し出す範囲を変えたい場合、選択ダイヤル52を操作して左カメラS6Lを選択する。そして、操作装置53を操作して左カメラS6Lの向きを変えることで左モニタが映し出す範囲を変えることができる。左後方用ミラー10cが映し出す範囲を変える場合も同様である。 A selection dial 52 and an operating device 53 are installed on the left console 90L. If the operator wishes to change the range displayed by the left monitor that displays the left rear image of the excavator, the operator operates the selection dial 52 to select the left camera S6L. Then, by operating the operating device 53 and changing the direction of the left camera S6L, the range displayed on the left monitor can be changed. The same applies when changing the range reflected by the left rear mirror 10c.
 次に、図3を参照して、フロントウィンドウ62の開閉について説明する。図3は、フロントウィンドウが開いている途中の状態を示す図であり、図3(A)は正面図、図3(C)は左側面図を示す。 Next, opening and closing of the front window 62 will be described with reference to FIG. 3. FIG. 3 is a diagram showing a state in which the front window is in the middle of being opened, with FIG. 3(A) showing a front view and FIG. 3(C) showing a left side view.
 キャビン10は、運転操縦部としての操作装置26、運転席90、表示装置40、ゲートロックレバー45、カメラS6PL、S6PRなどを有している。また図示することは省略したが、キャビン10には、図1に示すコントローラ30等が搭載されている。 The cabin 10 includes an operating device 26 as a driving control section, a driver's seat 90, a display device 40, a gate lock lever 45, cameras S6PL, S6PR, and the like. Although not shown in the drawings, the cabin 10 is equipped with a controller 30 shown in FIG. 1 and the like.
 操作装置26は、左操作レバー26L、右操作レバー26R、走行レバー26B、ペダル26Cなどを有している。運転席90の左側下方位置には、ゲートロックレバー45及びゲートロック弁19が設けられている。キャビン10からオペレータが退出できないようにゲートロックレバー45が引き上げられた場合にゲートロック弁19が連通状態(開状態)へ切り替えられることによりパイロットラインが連通され、各種操作装置は操作可能状態となる。一方、キャビン10からオペレータが退出できるようにゲートロックレバー45が押し下げられた場合には、ゲートロック弁19が非連通状態(閉状態)へ切り替えられることによりパイロットラインが遮断され、各種操作装置は操作不能状態となる。 The operating device 26 includes a left operating lever 26L, a right operating lever 26R, a travel lever 26B, a pedal 26C, and the like. A gate lock lever 45 and a gate lock valve 19 are provided below the left side of the driver's seat 90. When the gate lock lever 45 is pulled up to prevent the operator from exiting the cabin 10, the gate lock valve 19 is switched to the communicating state (open state), thereby communicating the pilot line and making the various operating devices operable. . On the other hand, when the gate lock lever 45 is pushed down to allow the operator to exit the cabin 10, the gate lock valve 19 is switched to a non-communicating state (closed state), thereby cutting off the pilot line and disabling various operating devices. It becomes inoperable.
 運転席90は、アームレスト90a、背もたれ90b、ヘッドレスト90cを有している。本実施形態において、キャビン10の床面10fから運転席90の座面90mまでの高さはH1であり、キャビン10の床面10fからヘッドレスト90cの上端部までの高さはH2である。 The driver's seat 90 has an armrest 90a, a backrest 90b, and a headrest 90c. In this embodiment, the height from the floor surface 10f of the cabin 10 to the seat surface 90m of the driver's seat 90 is H1, and the height from the floor surface 10f of the cabin 10 to the upper end of the headrest 90c is H2.
 ここで、本実施形態のカメラS6PL、S6PRは、左ピラー111L、右ピラー111Rのそれぞれにおいて、キャビン10の床面10fからの高さがH1からH2までの間となる位置に配置される。言い換えれば、本実施形態のカメラS6PL、S6PRのキャビン10の床面10fからの高さが、高さの範囲H3内となるように配置される。 Here, the cameras S6PL and S6PR of this embodiment are arranged at positions where the height from the floor surface 10f of the cabin 10 is between H1 and H2 in the left pillar 111L and the right pillar 111R, respectively. In other words, the cameras S6PL and S6PR of this embodiment are arranged so that the heights from the floor surface 10f of the cabin 10 are within the height range H3.
 本実施形態で、このようにカメラS6PL、S6PRを配置することで、座面90mに着座したオペレータの座高等に関わらず、オペレータの顔画像を撮像することができる。 In this embodiment, by arranging the cameras S6PL and S6PR in this way, it is possible to capture an image of the operator's face regardless of the sitting height of the operator who is seated on the seat surface of 90 m.
 キャビン10は、フレーム体110を有している。フレーム体110は、縦フレームと横フレームと繋ぎフレームとを組み合わせて形成されている。縦フレームは、前方側(進行方向側、Z1側)に位置する左右一対のピラー111(111L、111R)と、後方側(Z2側)に位置する左右一対の縦フレーム(ピラー)112を有している。横フレームは、前方側の左ピラー111L、右ピラー111R間に横架される前側天井フレーム113と、後方側の左右のピラー112間に横架される後方側の後側天井フレーム114を有している。前方側の左右一対のピラー111と後方側の左右一対のピラー112とは、それぞれ左右一対の繋ぎフレーム115で連結されている。 The cabin 10 has a frame body 110. The frame body 110 is formed by combining a vertical frame, a horizontal frame, and a connecting frame. The vertical frame has a pair of left and right pillars 111 (111L, 111R) located on the front side (travel direction side, Z1 side) and a pair of left and right vertical frames (pillars) 112 located on the rear side (Z2 side). ing. The horizontal frame includes a front ceiling frame 113 horizontally suspended between a left pillar 111L and a right pillar 111R on the front side, and a rear ceiling frame 114 on the rear side horizontally suspended between left and right pillars 112 on the rear side. ing. The pair of left and right pillars 111 on the front side and the pair of left and right pillars 112 on the rear side are connected by a pair of left and right connecting frames 115, respectively.
 本実施形態では、図2の例では、後方側の左右のピラー112それぞれに、撮像装置が取り付けられてよい。この場合、キャビン10内には、少なくとも4つの撮像装置が設けられることになる。 In this embodiment, in the example of FIG. 2, an imaging device may be attached to each of the left and right pillars 112 on the rear side. In this case, at least four imaging devices will be provided within the cabin 10.
 本実施形態では、後方の左右のピラー112のそれぞれに撮像装置を取り付けることで、オペレータが後方を向いた場合であっても、オペレータの顔画像を撮像することができる。 In this embodiment, by attaching an imaging device to each of the rear left and right pillars 112, it is possible to capture an image of the operator's face even when the operator faces backward.
 キャビン10は、フレーム体110により形成された前面枠に窓面前部60を配置している。またキャビン10は、フレーム体110により形成された左右枠にそれぞれサイドウィンドウ65を配置している。更にキャビン10は、フレーム体110により形成された上面枠にヘッドウィンドウを配置している。 The cabin 10 has a window front portion 60 disposed in a front frame formed by a frame body 110. Further, the cabin 10 has side windows 65 arranged in the left and right frames formed by the frame body 110, respectively. Furthermore, the cabin 10 has a head window arranged in the upper frame formed by the frame body 110.
 窓面前部60は、下部フロントウィンドウ61、フロントウィンドウ62、上部フロントウィンドウ63を有している。 The window front section 60 has a lower front window 61, a front window 62, and an upper front window 63.
 フロントウィンドウ62は、フロントウィンドウ62をスライド移動可能なスライド機構を有している。本実施形態では、フロントウィンドウ62をスライドさせた際に、キャビン10内部に収納できるように、フロントウィンドウ62と下部フロントウィンドウ61とが分離している。 The front window 62 has a sliding mechanism that can slide the front window 62. In this embodiment, the front window 62 and the lower front window 61 are separated so that the front window 62 can be stored inside the cabin 10 when the front window 62 is slid.
 本実施形態のスライド機構は、左右一対のピラー111の内側面にそれぞれ設けられた左右一対のスライドレール111aと、左右の繋ぎフレーム115の内側面にそれぞれ設けられた左右一対のスライドレール115aとを有している。フロントウィンドウ62は、左右のスライドレール111a間、及び左右のスライドレール115a間に配置される。スライドレール111aとスライドレール115aは、レール溝が連続するように形成され、フロントウィンドウ62の端部等に設けられた摺動部(不図示)がスライドレール111aからスライドレール115aに移動可能な構成とされてよい。摺動部はローラなどであってよい。 The slide mechanism of this embodiment includes a pair of left and right slide rails 111a provided on the inner surfaces of the left and right pairs of pillars 111, and a pair of left and right slide rails 115a provided on the inner surfaces of the left and right connecting frames 115, respectively. have. The front window 62 is arranged between the left and right slide rails 111a and between the left and right slide rails 115a. The slide rail 111a and the slide rail 115a are formed so that the rail grooves are continuous, and a sliding part (not shown) provided at the end of the front window 62, etc. is configured to be movable from the slide rail 111a to the slide rail 115a. may be considered. The sliding part may be a roller or the like.
 フロントウィンドウ62は、閉鎖時において下部フロントウィンドウ61と上部フロントウィンドウ63との間に配置される。フロントウィンドウ62は、開くとき下部フロントウィンドウ61と上部フロントウィンドウ63から離脱し、開方向(Y1側)へスライド移動する。フロントウィンドウ62は、閉めるとき閉方向(Y2側)へスライド移動して、下部フロントウィンドウ61と上部フロントウィンドウ63との間に配置される。 The front window 62 is arranged between the lower front window 61 and the upper front window 63 when closed. When the front window 62 is opened, it separates from the lower front window 61 and the upper front window 63 and slides in the opening direction (Y1 side). When the front window 62 is closed, it slides in the closing direction (Y2 side) and is disposed between the lower front window 61 and the upper front window 63.
 フロントウィンドウ62は、上部左側位置と上部右側位置とに取っ手部62aがそれぞれ設けられている。取っ手部62aは、左右の何れか一方にのみ設けられてよい。オペレータは、取っ手部62aを掴んでフロントウィンドウ62を開方向又は閉方向へスライドさせる。取っ手部62aは、フロントウィンドウ62を下部フロントウィンドウ61と上部フロントウィンドウ63との間に固定するロック機構を有してよい。 The front window 62 is provided with handles 62a at an upper left position and an upper right position, respectively. The handle portion 62a may be provided only on either the left or right side. The operator grasps the handle portion 62a and slides the front window 62 in the opening direction or closing direction. The handle portion 62a may have a locking mechanism that fixes the front window 62 between the lower front window 61 and the upper front window 63.
 上部フロントウィンドウ63とフロントウィンドウ62は、その間に、不図示のシール部材が介在されていてよい。シール部材は、上部フロントウィンドウ63の下縁部と、フロントウィンドウ62の上縁部とに設けられてよい。上部フロントウィンドウ63の下縁部に設けられシール部材は、前方側(Z1側)に庇部を有してもよい。庇部は、雨水などが2つのシール部材の間から進入することを防止する。2つのシール部材は、互いに離間することが可能な構成とされてよい。 A sealing member (not shown) may be interposed between the upper front window 63 and the front window 62. The sealing member may be provided at the lower edge of the upper front window 63 and the upper edge of the front window 62. The seal member provided at the lower edge of the upper front window 63 may have an eaves portion on the front side (Z1 side). The eaves prevent rainwater from entering between the two seal members. The two seal members may be configured to be able to be separated from each other.
 下部フロントウィンドウ61は、フレーム体110などに直接固定されている。下部フロントウィンドウ61とフロントウィンドウ62との間は、シール部材が介在されていてよい。 The lower front window 61 is directly fixed to the frame body 110 or the like. A sealing member may be interposed between the lower front window 61 and the front window 62.
 フロントウィンドウ62は、閉鎖時において上部フロントウィンドウ63とシール部材を挟んで面一に配置されて、キャビン10の窓面前部60を構成する。オペレータが取っ手部62aを開操作してフロントウィンドウ62を開く際には、フロントウィンドウ62は後方側(Z2側)へ移動して、上部フロントウィンドウ63から離脱する。このとき、フロントウィンドウ62は、下部フロントウィンドウ61からも離脱する。開操作は、フロントウィンドウ62の固定を解除するロック解除操作とフロントウィンドウ62を上方へスライド移動させる操作を指す。 When the front window 62 is closed, it is arranged flush with the upper front window 63 with the sealing member interposed therebetween, and constitutes a window front portion 60 of the cabin 10. When the operator opens the handle portion 62a to open the front window 62, the front window 62 moves rearward (Z2 side) and separates from the upper front window 63. At this time, the front window 62 also separates from the lower front window 61. The opening operation refers to an unlocking operation for releasing the fixation of the front window 62 and an operation for sliding the front window 62 upward.
 次に、オペレータがフロントウィンドウ62の取っ手部62aを掴んで開操作すると、フロントウィンドウ62は、図3(A)に示すように開方向(Y1方向)へスライド移動する。このとき、カメラS6PL、S6PRは、左ピラー111L、右ピラー111Rの幅に収まるサイズであるため、フロントウィンドウ62とカメラS6PL、S6PRとは触れ合わない。言い換えれば、カメラS6PL、S6PRは、フロントウィンドウ62の開閉動作に干渉しない。 Next, when the operator grasps the handle 62a of the front window 62 and operates to open it, the front window 62 slides in the opening direction (Y1 direction) as shown in FIG. 3(A). At this time, since the cameras S6PL and S6PR have a size that fits within the width of the left pillar 111L and the right pillar 111R, the front window 62 and the cameras S6PL and S6PR do not touch. In other words, the cameras S6PL and S6PR do not interfere with the opening/closing operation of the front window 62.
 フロントウィンドウ62は、スライド移動されていくと、キャビン10の上面と平行となる位置に配置される。このときキャビン10の正面は、フロントウィンドウ62の配置されていた部分が開放状態となる。 As the front window 62 is slid, it is placed in a position parallel to the top surface of the cabin 10. At this time, the front part of the cabin 10 where the front window 62 was placed is in an open state.
 次に、図4を参照してショベル100の駆動系の構成について説明する。図4は、ショベルの駆動系の構成例を示すブロック図である。図4中、機械的動力系、高圧油圧ライン、パイロットライン、及び電気制御系をそれぞれ二重線、太実線、破線、及び点線で示している。 Next, the configuration of the drive system of the excavator 100 will be described with reference to FIG. 4. FIG. 4 is a block diagram showing a configuration example of a drive system of an excavator. In FIG. 4, the mechanical power system, high-pressure hydraulic line, pilot line, and electric control system are shown by double lines, thick solid lines, broken lines, and dotted lines, respectively.
 ショベル100の駆動系は、主に、エンジン11、レギュレータ13、メインポンプ14、パイロットポンプ15、コントロールバルブ17、操作装置26、吐出圧センサ28、操作圧センサ29、コントローラ30、比例弁31、作業モード選択ダイヤル32等を含む。 The drive system of the excavator 100 mainly includes an engine 11, a regulator 13, a main pump 14, a pilot pump 15, a control valve 17, an operating device 26, a discharge pressure sensor 28, an operating pressure sensor 29, a controller 30, a proportional valve 31, and an operating system. It includes a mode selection dial 32 and the like.
 エンジン11は、ショベルの駆動源である。本実施形態では、エンジン11は、例えば所定の回転数を維持するように動作するディーゼルエンジンである。また、エンジン11の出力軸は、メインポンプ14及びパイロットポンプ15の入力軸に連結されている。 The engine 11 is a driving source for the excavator. In this embodiment, the engine 11 is, for example, a diesel engine that operates to maintain a predetermined rotation speed. Further, the output shaft of the engine 11 is connected to the input shafts of the main pump 14 and the pilot pump 15.
 メインポンプ14は、高圧油圧ラインを介して作動油をコントロールバルブ17に供給する。本実施形態では、メインポンプ14は、斜板式可変容量型油圧ポンプである。 The main pump 14 supplies hydraulic oil to the control valve 17 via a high-pressure hydraulic line. In this embodiment, the main pump 14 is a swash plate type variable displacement hydraulic pump.
 レギュレータ13は、メインポンプ14の吐出量を制御する。本実施形態では、レギュレータ13は、コントローラ30からの制御指令に応じてメインポンプ14の斜板傾転角を調節することによってメインポンプ14の吐出量を制御する。 The regulator 13 controls the discharge amount of the main pump 14. In this embodiment, the regulator 13 controls the discharge amount of the main pump 14 by adjusting the tilt angle of the swash plate of the main pump 14 in accordance with a control command from the controller 30 .
 パイロットポンプ15は、パイロットラインを介して操作装置26及び比例弁31を含む各種油圧制御機器に作動油を供給する。本実施形態では、パイロットポンプ15は、固定容量型油圧ポンプである。 The pilot pump 15 supplies hydraulic oil to various hydraulic control devices including the operating device 26 and the proportional valve 31 via the pilot line. In this embodiment, the pilot pump 15 is a fixed displacement hydraulic pump.
 コントロールバルブ17は、ショベルにおける油圧システムを制御する油圧制御装置である。コントロールバルブ17は、制御弁171~176、及びブリード弁177を含む。コントロールバルブ17は、制御弁171~176を通じ、メインポンプ14が吐出する作動油を1又は複数の油圧アクチュエータに選択的に供給できる。 The control valve 17 is a hydraulic control device that controls the hydraulic system in the excavator. Control valve 17 includes control valves 171 to 176 and bleed valve 177. The control valve 17 can selectively supply the hydraulic fluid discharged by the main pump 14 to one or more hydraulic actuators through the control valves 171 to 176.
 制御弁171~176は、メインポンプ14から油圧アクチュエータに流れる作動油の流量、及び油圧アクチュエータから作動油タンクに流れる作動油の流量を制御する。油圧アクチュエータは、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、左側走行用油圧モータ1A、右側走行用油圧モータ1B、及び旋回用油圧モータ2Aを含む。 The control valves 171 to 176 control the flow rate of hydraulic oil flowing from the main pump 14 to the hydraulic actuator and the flow rate of hydraulic oil flowing from the hydraulic actuator to the hydraulic oil tank. The hydraulic actuator includes a boom cylinder 7, an arm cylinder 8, a bucket cylinder 9, a left travel hydraulic motor 1A, a right travel hydraulic motor 1B, and a swing hydraulic motor 2A.
 ブリード弁177は、メインポンプ14が吐出する作動油のうち、油圧アクチュエータを経由せずに作動油タンクに流れる作動油の流量(以下、「ブリード流量」とする。)を制御する。ブリード弁177は、コントロールバルブ17の外部に設置されていてもよい。 The bleed valve 177 controls the flow rate of the hydraulic oil discharged by the main pump 14, which flows into the hydraulic oil tank without passing through the hydraulic actuator (hereinafter referred to as "bleed flow rate"). The bleed valve 177 may be installed outside the control valve 17.
 操作装置26は、オペレータが油圧アクチュエータの操作のために用いる装置である。本実施形態では、操作装置26は、パイロットラインを介して、パイロットポンプ15が吐出する作動油を油圧アクチュエータのそれぞれに対応する制御弁のパイロットポートに供給する。パイロットポートのそれぞれに供給される作動油の圧力(パイロット圧)は、油圧アクチュエータのそれぞれに対応する操作装置26のレバー又はペダル(図示せず。)の操作方向及び操作量に応じた圧力である。 The operating device 26 is a device used by an operator to operate the hydraulic actuator. In this embodiment, the operating device 26 supplies the hydraulic fluid discharged by the pilot pump 15 to the pilot port of the control valve corresponding to each of the hydraulic actuators via the pilot line. The pressure of the hydraulic oil (pilot pressure) supplied to each of the pilot ports is a pressure that corresponds to the direction and amount of operation of the lever or pedal (not shown) of the operating device 26 corresponding to each of the hydraulic actuators. .
 吐出圧センサ28は、メインポンプ14の吐出圧を検出する。本実施形態では、吐出圧センサ28は、検出した値をコントローラ30に対して出力する。 The discharge pressure sensor 28 detects the discharge pressure of the main pump 14. In this embodiment, the discharge pressure sensor 28 outputs the detected value to the controller 30.
 操作圧センサ29は、操作装置26を用いたオペレータの操作内容を検出する。本実施形態では、操作圧センサ29は、油圧アクチュエータのそれぞれに対応する操作装置26のレバー又はペダルの操作方向及び操作量を圧力(操作圧)の形で検出し、検出した値をコントローラ30に対して出力する。操作装置26の操作内容は、操作圧センサ以外の他のセンサを用いて検出されてもよい。 The operating pressure sensor 29 detects the content of the operator's operation using the operating device 26. In this embodiment, the operating pressure sensor 29 detects the operating direction and operating amount of the lever or pedal of the operating device 26 corresponding to each of the hydraulic actuators in the form of pressure (operating pressure), and sends the detected value to the controller 30. Output against. The operation content of the operating device 26 may be detected using a sensor other than the operating pressure sensor.
 コントローラ30は、ショベル100全体を制御する制御部である。本実施形態のコントローラ30の機能の詳細は後述する。 The controller 30 is a control unit that controls the entire shovel 100. Details of the functions of the controller 30 of this embodiment will be described later.
 比例弁31は、コントローラ30が出力する制御指令に応じて動作する。本実施形態では、比例弁31は、コントローラ30が出力する電流指令に応じてパイロットポンプ15からコントロールバルブ17内のブリード弁177のパイロットポートに導入される二次圧を調整する電磁弁である。比例弁31は、例えば、電流指令が大きいほど、ブリード弁177のパイロットポートに導入される二次圧が大きくなるように動作する。 The proportional valve 31 operates according to a control command output by the controller 30. In this embodiment, the proportional valve 31 is an electromagnetic valve that adjusts the secondary pressure introduced from the pilot pump 15 into the pilot port of the bleed valve 177 in the control valve 17 in accordance with the current command output by the controller 30. The proportional valve 31 operates, for example, so that the larger the current command, the larger the secondary pressure introduced into the pilot port of the bleed valve 177.
 作業モード選択ダイヤル32は、オペレータが作業モードを選択するためのダイヤルであり、複数の異なる作業モードを切り替えできるようにする。また、作業モード選択ダイヤル32からは、作業モードに応じたエンジン回転数の設定状態や加減速特性の設定状態を示すデータがコントローラ30に常時送信されている。 The work mode selection dial 32 is a dial for the operator to select a work mode, and allows switching between a plurality of different work modes. Further, the work mode selection dial 32 constantly sends data to the controller 30 indicating the setting state of the engine speed and the setting state of acceleration/deceleration characteristics according to the work mode.
 作業モード選択ダイヤル32は、SPモード、Hモード、Aモード、及びIDLEモードを含む複数段階で作業モードを切り替えできるようにする。つまり、本実施形態の作業モード選択ダイヤル32は、ショベル100の設定条件を切り替えることができる。 The work mode selection dial 32 allows the work mode to be switched in multiple stages including SP mode, H mode, A mode, and IDLE mode. In other words, the work mode selection dial 32 of this embodiment can switch the setting conditions of the excavator 100.
 なお、SPモードは第1のモードの一例であり、Hモードは第2のモードの一例である。また、図4は、作業モード選択ダイヤル32でSPモードが選択された状態を示す。 Note that the SP mode is an example of the first mode, and the H mode is an example of the second mode. Further, FIG. 4 shows a state in which the SP mode is selected with the work mode selection dial 32.
 SPモードは、作業量を優先したい場合に選択される作業モードであり、最も高いエンジン回転数を利用し、且つ最も高い加減速特性を利用する。Hモードは、作業量と燃費を両立させたい場合に選択される作業モードであり、二番目に高いエンジン回転数を利用し、且つ二番目に高い加減速特性を利用する。 The SP mode is a work mode selected when it is desired to prioritize the amount of work, and utilizes the highest engine speed and the highest acceleration/deceleration characteristics. The H mode is a work mode selected when it is desired to achieve both work volume and fuel efficiency, and uses the second highest engine speed and the second highest acceleration/deceleration characteristics.
 Aモードは、レバー操作に対応した油圧アクチュエータの加速特性や減速特性を緩やかにし、正確な操作性と安全性を向上させ、低騒音でショベルを稼働させたい場合に選択される作業モードであり、三番目に高いエンジン回転数を利用し、且つ三番目に高い加減速特性を利用する。IDLEモードは、エンジン11をローアイドリング状態にしたい場合に選択される作業モードであり、最も低いエンジン回転数を利用し、且つ最も低い加減速特性を利用する。 Mode A is a work mode selected when you want to moderate the acceleration and deceleration characteristics of the hydraulic actuator that corresponds to lever operation, improve accurate operability and safety, and operate the excavator with low noise. It uses the third highest engine speed and the third highest acceleration/deceleration characteristics. The IDLE mode is a work mode selected when it is desired to put the engine 11 in a low idling state, and uses the lowest engine speed and the lowest acceleration/deceleration characteristics.
 ここで、コントローラ30は、各作業モードにおいてエンジン駆動中に各アクチュエータの動作が停止している場合(ハイアイドリング状態)、エンジン11は作業モード毎に設定された回転数を維持させる。コントローラ30は、エンジン回転数をハイアイドリング状態が所定時間継続すると、ローアイドリング状態へ切り換えてもよい。アイドリング状態には、ハイアイドリング状態とローアイドリング状態が含まれる。 Here, when the operation of each actuator is stopped while the engine is driving in each work mode (high idling state), the controller 30 causes the engine 11 to maintain the rotation speed set for each work mode. The controller 30 may switch the engine speed to a low idling state when the high idling state continues for a predetermined period of time. The idling state includes a high idling state and a low idling state.
 なお、上述した説明では、作業モードの各段階の名称をSPモード、Hモード、Aモード、及びIDLEモードとしたが、各段階の名称はこれに限定されない。例えば、SPモード、Hモード、Aモードの名称のそれぞれは、POWERモード、STDモード、ECOモード、及びIDLEモード(ローアイドリング状態)とされてもよい。作業モードは本実施の形態に限定されず、5段階以上に設定できるようにしてもよい。 Note that in the above description, the names of each stage of the work mode are SP mode, H mode, A mode, and IDLE mode, but the names of each stage are not limited to these. For example, the names of SP mode, H mode, and A mode may be POWER mode, STD mode, ECO mode, and IDLE mode (low idling state). The work mode is not limited to this embodiment, and may be set in five or more stages.
 エンジン11は、作業モード選択ダイヤル32で設定された作業モードのエンジン回転数で一定に回転数制御される。また、ブリード弁177の開口は、作業モード選択ダイヤル32で設定された作業モードのブリード弁開口特性に基づいて開口制御される。 The engine 11 is controlled to have a constant rotation speed at the engine speed of the work mode set by the work mode selection dial 32. Further, the opening of the bleed valve 177 is controlled based on the bleed valve opening characteristic of the work mode set by the work mode selection dial 32.
 本実施形態では、上述した各作業モードをショベル100の設定条件と表現し、設定条件を示す情報を設定条件情報と表現する場合がある。設定条件情報とは、指定された項目と、項目の値とが対応付けられた情報である。指定された項目とは、例えば、各作業モードと対応したエンジン回転数の状態を示す項目や、加減速特性の状態を示す項目である。したがって、本実施形態の設定条件情報には、各作業モードと対応したエンジン回転数の状態を示す項目と項目の値、加減速特性の状態を示す項目と項目の値とを含む。 In this embodiment, each of the above-mentioned work modes may be expressed as a setting condition of the shovel 100, and information indicating the setting condition may be expressed as setting condition information. Setting condition information is information in which specified items are associated with item values. The designated item is, for example, an item indicating the state of the engine rotation speed corresponding to each work mode, or an item indicating the state of the acceleration/deceleration characteristic. Therefore, the setting condition information of this embodiment includes items and item values indicating the state of engine rotation speed corresponding to each work mode, and items and item values indicating the state of acceleration/deceleration characteristics.
 図4の構成図では作業モード選択ダイヤル32により選択されるモードの一つにECOモードを設定したが、作業モード選択ダイヤル32とは別にECOモードスイッチを設けてもよい。この場合、作業モード選択ダイヤル32を用いて選択された各モードに対応したエンジン回転数の調整を行い、ECOモードスイッチをONされた場合に、作業モード選択ダイヤル32の各モードに対応した加減速特性を緩やかに変更してもよい。 In the configuration diagram of FIG. 4, the ECO mode is set as one of the modes selected by the work mode selection dial 32, but an ECO mode switch may be provided separately from the work mode selection dial 32. In this case, the engine speed is adjusted according to each mode selected using the work mode selection dial 32, and when the ECO mode switch is turned on, the acceleration/deceleration corresponding to each mode of the work mode selection dial 32 is adjusted. The characteristics may be changed gradually.
 また、作業モードの変更を音声入力によって実現してもよい。その場合、ショベルにはオペレータが発した音声をコントローラ30に入力する音声入力装置が設けられる。また、コントローラ30には、音声入力装置により入力される音声を識別する音声識別部が設けられる。 Additionally, the work mode may be changed by voice input. In that case, the excavator is provided with a voice input device for inputting the voice emitted by the operator to the controller 30. Further, the controller 30 is provided with a voice identification unit that identifies the voice input by the voice input device.
 このように作業モードは、作業モード選択ダイヤル32、ECOモードスイッチ、音声識別部等のモード選択部によって選択される。 In this way, the work mode is selected by the mode selection section such as the work mode selection dial 32, the ECO mode switch, and the voice recognition section.
 次に、本実施形態のコントローラ30の機能について説明する。本実施形態のコントローラ30は、画像データ取得部301、状態検出部302、出力部303を含む。 Next, the functions of the controller 30 of this embodiment will be explained. The controller 30 of this embodiment includes an image data acquisition section 301, a state detection section 302, and an output section 303.
 画像データ取得部301は、撮像装置S6によって撮像された画像データを取得する。より具体的には、画像データ取得部301は、カメラS6PL、カメラS6PRにより撮像された画像データ(動画データ)を取得する。なお、画像データ取得部301は、後方側の左右のピラー112にもカメラが配置されている場合には、これらのカメラにより撮像された画像データも取得する。 The image data acquisition unit 301 acquires image data captured by the imaging device S6. More specifically, the image data acquisition unit 301 acquires image data (video data) captured by the camera S6PL and the camera S6PR. Note that, if cameras are also arranged on the left and right pillars 112 on the rear side, the image data acquisition unit 301 also acquires image data captured by these cameras.
 状態検出部302は、画像データ取得部301によって取得された画像データに基づき、オペレータの状態を検出する。このとき、本実施形態では、検出の対象となるオペレータの状態に応じて、カメラS6PL、カメラS6PRのそれぞれで撮像された画像データのうち、状態の検出に適した画像データを選択する。そして、状態検出部302は、選択された画像データに基づき、オペレータの状態を検出する。状態検出部302の処理の詳細は後述する。 The condition detection unit 302 detects the condition of the operator based on the image data acquired by the image data acquisition unit 301. At this time, in this embodiment, image data suitable for state detection is selected from among the image data captured by each of the camera S6PL and the camera S6PR, depending on the state of the operator to be detected. The state detection unit 302 then detects the state of the operator based on the selected image data. Details of the processing by the state detection unit 302 will be described later.
 また、コントローラ30は、画像データ取得部301によって取得した画像データと、状態検出部302による検出結果とを対応付けた情報を記憶装置47に格納する。以下の説明では、画像データ取得部301によって取得された画像データ(動画データ)と、状態検出部302による検出結果とを対応付けた情報を、状態履歴情報と表現する場合がある。 Furthermore, the controller 30 stores in the storage device 47 information that associates the image data acquired by the image data acquisition unit 301 with the detection results by the state detection unit 302. In the following description, information in which image data (video data) acquired by the image data acquisition unit 301 is associated with a detection result by the status detection unit 302 may be expressed as status history information.
 出力部303は、記憶装置47に格納された状態履歴情報を、通信装置T1に対して出力する。言い換えれば、出力部303は、通信装置T1を介して、状態履歴情報を管理装置200に出力する。 The output unit 303 outputs the state history information stored in the storage device 47 to the communication device T1. In other words, the output unit 303 outputs the state history information to the management device 200 via the communication device T1.
 なお、本実施形態のコントローラ30は、例えば、運転席90にオペレータが着座していない状態が一定時間続いた場合、カメラS6PL、カメラS6PRによる画像データの撮像を停止してもよい。運転席90にオペレータが着座していない状態とは、画像データ取得部301が取得した画像データが示す画像にオペレータの画像が含まれない状態である。一定時間とは、例えば、1時間程度であってよい。 Note that the controller 30 of the present embodiment may stop capturing image data by the camera S6PL and the camera S6PR, for example, when the operator is not seated in the driver's seat 90 for a certain period of time. The state in which no operator is seated in the driver's seat 90 is a state in which an image of the operator is not included in the image represented by the image data acquired by the image data acquisition unit 301. The certain period of time may be, for example, about one hour.
 また、本実施形態のコントローラ30は、運転席90にオペレータが着座していない状態が一定時間以上続いた場合には、駆動源であるエンジン11をオフさせてもよい。 Further, the controller 30 of the present embodiment may turn off the engine 11, which is the drive source, when the operator is not seated in the driver's seat 90 for a certain period of time or more.
 以下に、本実施形態におけるオペレータの状態と、状態検出部302の処理について説明する。 The operator's state and the processing of the state detection unit 302 in this embodiment will be explained below.
 本実施形態のオペレータの状態とは、オペレータが運転席90に着座しているときの姿勢、装備品(ヘルメット、シートベルト等)の装着の有無、表情、仕草等を含む。 The state of the operator in this embodiment includes the operator's posture when sitting in the driver's seat 90, whether or not he or she is wearing equipment (helmet, seat belt, etc.), facial expressions, gestures, and the like.
 具体的には、例えば、オペレータの状態とは、着座中に足を組んだ状態、ヘルメットを着用していない状態等を含む。足を組んだ姿勢は、誤操作を誘発する可能性があり、ショベル100の操作中の姿勢としては、不適切な姿勢である。また、ヘルメットを着用していない状態とは、作業中のオペレータの安全性を高めるための装備品が装着されていない状態であり、好ましくない状態である。 Specifically, the operator's state includes, for example, a state in which the operator is seated with his legs crossed, a state in which he is not wearing a helmet, and the like. The crossed-legged posture may induce erroneous operation, and is an inappropriate posture for operating the excavator 100. Furthermore, the state in which the operator is not wearing a helmet is a state in which equipment for increasing the safety of the operator during work is not installed, which is an undesirable state.
 また、オペレータの状態とは、例えば、あくびをしている状態や、目を閉じている状態、連続してまばたきをしている状態等を含む。あくびをしている状態は、オペレータの作業に対する集中力が低下している状態と推定される。また、一定時間以上目を閉じている状態とは、オペレータが眠気を感じている状態と推定される。また、連続してまばたきをしている状態は、オペレータが疲労を感じている状態と推定される。 Further, the operator's state includes, for example, a state in which the operator is yawning, a state in which the eyes are closed, a state in which the operator is continuously blinking, and the like. The yawning state is presumed to be a state in which the operator's concentration on work is decreasing. Furthermore, the state in which the operator's eyes are closed for a certain period of time or more is presumed to be a state in which the operator feels sleepy. Furthermore, if the operator is blinking continuously, it is presumed that the operator is feeling fatigued.
 さらに、オペレータの状態とは、例えば、オペレータが作業とは無関係の行動をしている状態等を含む。作業とは無関係の行動をしている状態は、例えば、オペレータ作業に従事していない状態と推定される。 Further, the state of the operator includes, for example, a state in which the operator is performing an action unrelated to work. A state in which the operator is performing an action unrelated to work is presumed to be, for example, a state in which the operator is not engaged in the operator's work.
 本実施形態では、状態検出部302は、オペレータの状態として、上述した複数の状態を検出する。言い換えれば、状態検出部302は、オペレータの状態として、姿勢、装備品の有無、眠気、集中力低下、疲労の度合い、就業態度等を検出することができる。なお、状態検出部302において検出されるオペレータの状態は、予め規定されていてもよい。 In this embodiment, the state detection unit 302 detects the plurality of states described above as the operator's states. In other words, the condition detection unit 302 can detect the operator's posture, presence or absence of equipment, drowsiness, decreased concentration, degree of fatigue, work attitude, etc. Note that the operator's state detected by the state detection unit 302 may be defined in advance.
 また、本実施形態の状態検出部302は、オペレータの複数の状態を検出する際に、カメラS6PL、カメラS6PRのそれぞれにより撮像された画像データから、検出する状態に応じた画像データを選択し、選択した画像データを用いて状態の検出を行う。 Furthermore, when detecting a plurality of states of the operator, the state detection unit 302 of this embodiment selects image data corresponding to the state to be detected from the image data captured by each of the cameras S6PL and S6PR, The state is detected using the selected image data.
 具体的には、例えば、オペレータの状態として、眠気、集中力低下、疲労の度合い等を検出する場合には、オペレータの表情が重要となる。このため、状態検出部302は、カメラS6PL、カメラS6PRのそれぞれにより撮像された画像データから、顔画像が含まれる画像データ(動画データ)を選択する。そして、状態検出部302は、選択された画像データから、オペレータが眠気を感じているか否か、集中力が低下しているか否か、疲労の度合等を検出し、検出結果を含む状態履歴情報を記憶装置47に格納する。 Specifically, for example, when detecting the operator's condition such as drowsiness, decreased concentration, degree of fatigue, etc., the operator's facial expression is important. Therefore, the state detection unit 302 selects image data (video data) including a face image from the image data captured by each of the cameras S6PL and S6PR. Then, the state detection unit 302 detects whether the operator is feeling sleepy, whether his concentration has decreased, the degree of fatigue, etc. from the selected image data, and obtains state history information including the detection results. is stored in the storage device 47.
 また、例えば、オペレータの状態として、姿勢、装備品の有無、就業態度等を検出する場合には、オペレータの全身の画像が重要となる。このため、状態検出部302は、カメラS6PL、カメラS6PRのそれぞれにより撮像された画像データから、オペレータの全身が含まれる画像データ(動画データ)を選択する。そして、状態検出部302は、選択した画像データから、オペレータの姿勢が適切であるか否か、装備品を適切に装着しているか否か、作業に従事しているか否かを検出し、検出結果を含む状態履歴情報を記憶装置47に格納する。 Further, for example, when detecting the operator's condition such as posture, presence of equipment, working attitude, etc., an image of the operator's whole body is important. Therefore, the state detection unit 302 selects image data (video data) that includes the entire body of the operator from the image data captured by each of the cameras S6PL and S6PR. The state detection unit 302 then detects, from the selected image data, whether the operator's posture is appropriate, whether the operator is wearing equipment appropriately, and whether or not he or she is engaged in work. State history information including the results is stored in the storage device 47.
 また、本実施形態の状態履歴情報は、出力部303により、管理装置200に送信され、管理装置200に管理で管理される。なお、この状態履歴情報には、例えば、オペレータを特定する識別情報や、ショベル100を特定する機体番号が含まれてもよい。 Additionally, the status history information of this embodiment is transmitted to the management device 200 by the output unit 303 and managed by the management device 200. Note that this state history information may include, for example, identification information that identifies the operator and a machine number that identifies the excavator 100.
 したがって、本実施形態では、例えば、管理者が、あるオペレータの作業中において集中力が低下した状態を把握しようとした場合、管理装置200に対して、オペレータを特定する識別情報と、状態を指定する情報「集中力の低下」とを入力すればよい。管理装置200は、この入力を受け付けると、オペレータの識別情報を含む状態履歴情報において、検出結果「集中力の低下」と対応付けられた画像データを管理装置200に表示させればよい。 Therefore, in this embodiment, for example, when an administrator wants to understand a state in which a certain operator's concentration has decreased during work, the manager specifies identification information for identifying the operator and the state to the management device 200. All you have to do is enter the information "decreased concentration". When the management device 200 receives this input, it is sufficient to cause the management device 200 to display image data associated with the detection result “decreased concentration” in the state history information including the identification information of the operator.
 本実施形態の状態検出部302は、例えば、機械学習等による学習によって生成された学習済みモデルであってもよい。 The state detection unit 302 of this embodiment may be, for example, a learned model generated by learning using machine learning or the like.
 以下に、図5を参照して、本実施形態の状態検出部302による状態検出方法について説明する。 Below, with reference to FIG. 5, a state detection method by the state detection unit 302 of this embodiment will be described.
 図5は、状態検出部による状態検出方法の一例について説明する図である。本実施形態の状態検出部302は、ニューラルネットワーク(Neural Network)DNNを中心に構成される学習済みモデルであってよい。言い換えれば、コントローラ30は、状態検出部302を実現する学習済みモデルを有していてよい。 FIG. 5 is a diagram illustrating an example of a state detection method by the state detection section. The state detection unit 302 of the present embodiment may be a trained model that is configured mainly of a neural network (DNN). In other words, the controller 30 may have a trained model that implements the state detection section 302.
 ニューラルネットワークDNNは、入力層及び出力層の間に一層以上の中間層(隠れ層)を有する、いわゆるディープニューラルネットワークである。ニューラルネットワークDNNでは、それぞれの中間層を構成する複数のニューロンごとに、下位層との間の接続強度を表す重みづけパラメータが規定されている。そして、各層のニューロンは、上位層の複数のニューロンからの入力値のそれぞれに上位層のニューロンごとに規定される重み付けパラメータを乗じた値の総和を、閾値関数を通じて、下位層のニューロンに出力する態様で、ニューラルネットワークDNNが構成される。 The neural network DNN is a so-called deep neural network that has one or more intermediate layers (hidden layers) between the input layer and the output layer. In the neural network DNN, a weighting parameter representing the strength of connection with a lower layer is defined for each of a plurality of neurons constituting each intermediate layer. Then, the neurons in each layer output the sum of the input values from multiple neurons in the upper layer multiplied by the weighting parameters specified for each neuron in the upper layer to the neurons in the lower layer through the threshold function. In this manner, a neural network DNN is configured.
 ニューラルネットワークDNNを対象とし、機械学習、具体的には、深層学習(ディープラーニング:Deep Learning)が行われ、上述の重み付けパラメータの最適化が図られる。これにより、ニューラルネットワークDNNは、入力信号xとして、画像データ取得部301により取得される画像データが入力され、出力信号yとして、オペレータの状態が、予め規定された状態である確率を出力することができる。 Machine learning, specifically deep learning, is performed on the neural network DNN to optimize the weighting parameters described above. As a result, the neural network DNN receives the image data acquired by the image data acquisition unit 301 as the input signal x, and outputs the probability that the operator's state is a predefined state as the output signal y. I can do it.
 本実施形態では、ニューラルネットワークDNNから出力される出力信号y1は、入力信号xが入力されたときのオペレータの状態が、不適切な姿勢である予測確率が10%であることを表している。また、出力信号y2は、入力信号xが入力されたときのオペレータの状態が、集中力が低下した状態である確率が50%であることを表している。 In this embodiment, the output signal y1 output from the neural network DNN indicates that the predicted probability that the operator's state is in an inappropriate posture when the input signal x is input is 10%. Further, the output signal y2 indicates that there is a 50% probability that the operator's state when the input signal x is input is a state in which concentration has decreased.
 本実施形態の状態検出部302は、例えば、出力信号yにおいて、出力信号yに含まれる複数の状態と、オペレータの状態が複数の状態のそれぞれである確率との組を、オペレータの状態の検出結果として取得し、状態履歴情報の一部として蓄積してもよい。 For example, the state detection unit 302 of this embodiment detects, in the output signal y, a set of a plurality of states included in the output signal y and a probability that the operator's state is each of the plurality of states. It may be obtained as a result and stored as part of the state history information.
 本実施形態では、このようにして状態履歴情報を蓄積することで、オペレータの作業が終了した後であっても、管理者等に、作業中のオペレータの状態の履歴の詳細を把握させることができる。 In this embodiment, by accumulating status history information in this way, the administrator etc. can grasp the details of the status history of the operator during work even after the operator has finished the work. can.
 また、状態検出部302は、出力信号yに含まれる全ての状態のうち、最も確率が高い状態を、入力信号xが入力されたときのオペレータの状態(検出結果)としてもよい。 Furthermore, the state detection unit 302 may set the state with the highest probability among all the states included in the output signal y as the state (detection result) of the operator when the input signal x is input.
 具体的には、例えば、出力信号yに含まれる複数の状態のうち、確率が最も大きい状態が、集中力が低下した状態であったとする。この場合、状態検出部302は、複数の状態の中から、このタイミングにおけるオペレータの状態として、「集中力が低下した状態」を選択し、検出結果としてもよい。 Specifically, for example, it is assumed that among the plurality of states included in the output signal y, the state with the highest probability is a state in which concentration has decreased. In this case, the state detection unit 302 may select "a state of decreased concentration" as the operator's state at this timing from among the plurality of states, and may select this as the detection result.
 ニューラルネットワークDNNは、例えば、畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)である。CNNは、既存の画像処理技術(畳み込み処理及びプーリング処理)を適用したニューラルネットワークである。 The neural network DNN is, for example, a convolutional neural network (CNN). CNN is a neural network that applies existing image processing techniques (convolution processing and pooling processing).
 次に、図6を参照して、本実施形態のショベル100の動作について説明する。図6は、第一の実施形態のショベルの処理を説明するフローチャートである。 Next, with reference to FIG. 6, the operation of the shovel 100 of this embodiment will be described. FIG. 6 is a flowchart illustrating the processing of the shovel according to the first embodiment.
 本実施形態のショベル100のコントローラ30は、画像データ取得部301により、カメラS6PL、カメラS6PRから画像データを取得する(ステップS601)。 The controller 30 of the excavator 100 of this embodiment uses the image data acquisition unit 301 to acquire image data from the camera S6PL and the camera S6PR (step S601).
 続いて、状態検出部302は、取得された複数の画像データのうち、状態の種類に応じて、検出に用いる画像データを選択し、選択された画像データを用いて、オペレータの状態を検出する(ステップS602)。 Next, the state detection unit 302 selects image data to be used for detection according to the type of state from among the plurality of acquired image data, and detects the state of the operator using the selected image data. (Step S602).
 続いて、コントローラ30は、出力部303により、検出結果と、状態の検出に用いた画像データとを含む状態履歴情報を記憶装置47に格納する(ステップS603)。 Subsequently, the controller 30 uses the output unit 303 to store state history information including the detection result and the image data used for detecting the state in the storage device 47 (step S603).
 本実施形態のショベル100では、このように、キャビン10内に配置された複数の撮像装置により撮影された複数の画像データ(動画データ)から、オペレータの状態の検出に適した画像データを選択し、選択された画像データを用いてオペレータの状態を検出する。 In this way, the excavator 100 of the present embodiment selects image data suitable for detecting the operator's condition from a plurality of image data (video data) taken by a plurality of imaging devices arranged in the cabin 10. , detecting the operator's condition using the selected image data.
 言い換えれば、本実施形態では、例えば、管理者等が検出したいオペレータの状態を「目的」とした場合に、キャビン10内で撮像された複数の画像データから、目的の検出に適した画像データが自動的に選択される。そして、本実施形態では、選択された画像データを用いて、目的とされたオペレータの状態が検出される。 In other words, in this embodiment, for example, when the operator's state that the administrator or the like wants to detect is set as the "purpose", image data suitable for detecting the purpose is selected from a plurality of image data captured in the cabin 10. Automatically selected. In this embodiment, the condition of the targeted operator is detected using the selected image data.
 このように、本実施形態では、オペレータやショベル100等の管理を行う施工管理者等の要望に応じて、オペレータの状態を検出することができる。 In this manner, in this embodiment, the operator's condition can be detected in accordance with the requests of the operator, the construction manager, etc. who manage the excavator 100, etc.
 以下に、図7A、図7Bを参照して、状態履歴情報として記憶装置47に格納される、オペレータの状態を撮影した画像データの一例について説明する。図7Aは、出力される画像データの一例を示す第一の図であり、図7Bは、出力される画像データの一例を示す第二の図である。図7Aに示す画像71は、オペレータが不適切な姿勢である状態を検出した結果として出力される画像の一例である。 An example of image data of an operator's condition stored in the storage device 47 as condition history information will be described below with reference to FIGS. 7A and 7B. FIG. 7A is a first diagram showing an example of image data to be output, and FIG. 7B is a second diagram showing an example of image data to be output. An image 71 shown in FIG. 7A is an example of an image output as a result of detecting an inappropriate posture of the operator.
 画像71では、オペレータがレバーを握っていることが分かる。しかしながら、オペレータは、足を組みながらレバー操作を行っており、この姿勢は、操作時の姿勢として不適切な姿勢であることがわかる。 In image 71, it can be seen that the operator is holding the lever. However, the operator operates the lever with his or her legs crossed, and it can be seen that this posture is inappropriate for operation.
 図7Bに示す画像72は、オペレータが作業に従事していない状態、つまり、オペレータはレバーを握っておらず、オペレータが装備品(ヘルメット)を装着していない状態を示している。この場合、ショベル100が操作可能な状態(エンジン11がON、かつ、ゲートロック弁19が開状態)において、オペレータが不適切な姿勢である状態を検出した結果として出力される画面の一例である。 An image 72 shown in FIG. 7B shows a state in which the operator is not engaged in work, that is, the operator is not holding a lever and is not wearing equipment (helmet). In this case, this is an example of a screen that is output as a result of detecting that the operator is in an inappropriate posture while the excavator 100 is in an operable state (engine 11 is ON and gate lock valve 19 is open). .
 画像72では、オペレータがヘルメットを装着しておらず、足を組んだ状態であり、さらに、ショベル100の操作を行っていないことがわかる。特に、ショベル100に取り付けられた各種センサから出力される各種検出情報と組み合わせることで、ショベル100の状態(操作可能状態かどうか等)に応じてオペレータの状態が適切かどうかを確認することができる。 In the image 72, it can be seen that the operator is not wearing a helmet, has his legs crossed, and is not operating the excavator 100. In particular, by combining various detection information output from various sensors attached to the excavator 100, it is possible to check whether the operator's condition is appropriate depending on the condition of the excavator 100 (such as whether it is in an operable condition). .
 本実施形態では、管理装置200において、このような画像を検出結果として表示させることで、状態が検出されたときのオペレータの様子を管理者に把握させることができる。 In this embodiment, by displaying such an image as a detection result in the management device 200, the administrator can understand the behavior of the operator when the condition is detected.
 (第二の実施形態)
 以下に、図面を参照して、第二の実施形態について説明する。第二の実施形態は、ピラーに取り付けられた複数の撮像装置によって取得した複数の画像データから、作業中のオペレータの3次元モデルを作成し、3次元モデルに基づきオペレータの状態を検出する点が、第一の実施形態と相違する。よって、以下の第二の実施形態の説明では、第一の実施形態との相違点について説明する。
(Second embodiment)
The second embodiment will be described below with reference to the drawings. The second embodiment is characterized in that a three-dimensional model of the operator at work is created from a plurality of image data acquired by a plurality of imaging devices attached to a pillar, and the condition of the operator is detected based on the three-dimensional model. , which is different from the first embodiment. Therefore, in the following description of the second embodiment, differences from the first embodiment will be explained.
 図8は、第二の実施形態のショベルの動作を説明するフローチャートである。本実施形態のショベル100は、コントローラ30の画像データ取得部301により、カメラS6PL、カメラS6PRにより撮像された画像データ(動画データ)を取得する(ステップS801)。 FIG. 8 is a flowchart illustrating the operation of the shovel of the second embodiment. In the excavator 100 of this embodiment, the image data acquisition unit 301 of the controller 30 acquires image data (video data) captured by the camera S6PL and the camera S6PR (step S801).
 続いて、本実施形態のコントローラ30は、状態検出部302により、画像データ取得部301が取得した複数の画像データから、オペレータの3次元モデルを作成し、作成した3次元モデルに基づきオペレータの状態を検出する(ステップS802)。オペレータの3次元モデルとは、3次元座標空間において点群で表される立体モデルである。 Next, the controller 30 of this embodiment uses the state detection unit 302 to create a three-dimensional model of the operator from the plurality of image data acquired by the image data acquisition unit 301, and determines the state of the operator based on the created three-dimensional model. is detected (step S802). The three-dimensional model of the operator is a three-dimensional model represented by a group of points in a three-dimensional coordinate space.
 続いて、コントローラ30は、出力部303により、検出結果と、状態の検出に用いた画像データとを含む状態履歴情報を記憶装置47に格納する(ステップS803)。 Next, the controller 30 uses the output unit 303 to store state history information including the detection result and the image data used for detecting the state in the storage device 47 (step S803).
 このように、本実施形態では、画像データ取得部301が取得した複数の画像データから、オペレータの3次元モデルを作成するため、複数の検出したいオペレータの状態に適した画像データを選択する必要がない。言い換えれば、本実施形態では、異なる方向からオペレータを撮像した複数の画像データから作成されて3次元モデルをオペレータの状態の検出に用いるため、カメラによるオペレータの撮像方向は、状態の検出に影響しない。 In this way, in this embodiment, since a three-dimensional model of the operator is created from a plurality of image data acquired by the image data acquisition unit 301, it is necessary to select image data suitable for the condition of the operator to be detected. do not have. In other words, in this embodiment, a three-dimensional model created from a plurality of image data of the operator captured from different directions is used to detect the operator's condition, so the direction in which the operator is imaged by the camera does not affect the detection of the condition. .
 本実施形態では、キャビン10内のピラーに配置されるカメラの数が多いほど、精度の高い3次元モデルを作成することができ、オペレータの状態の検出精度を高めることができる。 In this embodiment, the more cameras arranged on the pillars in the cabin 10, the more accurate the three-dimensional model can be created, and the more accurately the operator's condition can be detected.
 (第三の実施形態)
 以下に、第三の実施形態について説明する。第三の実施形態では、ショベル100の有する状態判定機能を管理装置200に設けた点が第一及び第二の実施形態と相違する。
(Third embodiment)
The third embodiment will be described below. The third embodiment differs from the first and second embodiments in that the state determination function of the shovel 100 is provided in the management device 200.
 図9は、第三の実施形態の建設機械の支援システムのシステム構成について説明する図である。 FIG. 9 is a diagram illustrating the system configuration of the construction machine support system of the third embodiment.
 本実施形態のショベルの支援システムSYSにおいて、管理装置200は、画像データ取得部301、状態検出部302、出力部303Aを有する。 In the excavator support system SYS of this embodiment, the management device 200 includes an image data acquisition section 301, a state detection section 302, and an output section 303A.
 なお、管理装置200は、演算処理装置と記憶装置とを含む一般的なコンピュータであってよく、画像データ取得部301、状態検出部302、出力部303Aの有する機能は、管理装置200の記憶装置に格納された状態検出プログラムを演算処理装置が読み出して実行することで、実現される。 Note that the management device 200 may be a general computer including an arithmetic processing unit and a storage device, and the functions of the image data acquisition unit 301, the state detection unit 302, and the output unit 303A are the functions of the storage device of the management device 200. This is achieved by the arithmetic processing unit reading and executing the state detection program stored in the computer.
 本実施形態のショベル100は、カメラS6PL、カメラS6PRにより撮像された画像データを管理装置200に送信する。 The excavator 100 of this embodiment transmits image data captured by the camera S6PL and the camera S6PR to the management device 200.
 管理装置200は、ショベル100から送信された複数の画像データを複数の画像データ取得部301により取得し、状態検出部302により、複数の画像データを用いてオペレータの状態を検出し、画像データと検出結果とを含む状態履歴情報を保管する。 The management device 200 uses a plurality of image data acquisition units 301 to acquire a plurality of image data transmitted from the excavator 100, uses a state detection unit 302 to detect the operator's condition using the plurality of image data, and compares the image data with the image data. Stores state history information including detection results.
 出力部303Aは、状態履歴情報を管理装置200の有する表示装置や、管理装置200と接続されたディスプレイ等に表示させる。 The output unit 303A displays the state history information on a display device included in the management device 200, a display connected to the management device 200, or the like.
 具体的には、出力部303Aは、例えば、管理装置200に、オペレータの識別情報とショベル100の機体番号と共に、管理者が検出したい状態を指定する情報が入力されると、オペレータの識別情報及びショベル100の機体番号と対応する状態履歴情報を読み出す。そして、管理装置200は、読み出した状態履歴情報に含まれる検出結果のうち、指定された検出結果と、指定された検出結果と対応付けられた画像データとを表示させてもよい。 Specifically, for example, when the operator's identification information and the machine number of the excavator 100 are inputted to the management device 200, as well as information specifying the state that the administrator wants to detect, the output unit 303A outputs the operator's identification information and the machine number of the excavator 100. The machine number of the excavator 100 and the corresponding state history information are read out. Then, the management device 200 may display the specified detection result and the image data associated with the specified detection result among the detection results included in the read state history information.
 また、出力部303Aは、オペレータの識別情報及びショベル100の機体番号のみが入力された場合には、オペレータの識別情報及びショベル100の機体番号と対応する状態履歴情報を読み出し、検出された状態の一覧を表示させてもよい。そして、出力部303Aは、検出された状態の一覧において、ある状態が選択されると、選択された状態と対応付けられた画像データを表示させてもよい。また、出力部303Aは、例えば、オペレータの識別情報が入力されると、この識別情報と対応付けられた状態履歴情報を参照し、不適切な状態が検出された回数等を表示させてもよい。 Furthermore, when only the operator's identification information and the machine number of the excavator 100 are input, the output unit 303A reads out the state history information corresponding to the operator's identification information and the machine number of the excavator 100, and records the detected state. A list may also be displayed. Then, when a certain state is selected in the list of detected states, the output unit 303A may display image data associated with the selected state. Further, for example, when the operator's identification information is input, the output unit 303A may refer to state history information associated with this identification information and display the number of times an inappropriate state has been detected. .
 本実施形態では、このように、オペレータの状態の検出結果を出力することで、管理者にオペレータの状態を把握させることができる。 In this embodiment, by outputting the detection result of the operator's condition in this way, the administrator can grasp the operator's condition.
 また、本実施形態では、複数の画像データの状態の検出を管理装置200で行うため、ショベル100のコントローラ30の処理負荷を軽減することができる。 Furthermore, in this embodiment, since the management device 200 detects the states of a plurality of image data, the processing load on the controller 30 of the excavator 100 can be reduced.
 なお、本実施形態は、運転室であるキャビン10を、ショベル100のキャビン10としたが、これに限定されない。本実施形態は、ショベル100以外の作業機械にも適用することができる。例えば、作業機械は、ガントリークレーン、クローラクレーン、走行式クレーン、天井クレーン、ジブクレーン等を含んでよい。 Note that in this embodiment, the cabin 10, which is a driver's cab, is the cabin 10 of the excavator 100, but the present invention is not limited to this. This embodiment can also be applied to working machines other than the shovel 100. For example, work machines may include gantry cranes, crawler cranes, traveling cranes, overhead cranes, jib cranes, and the like.
 ガントリークレーンは、左右方向に一対が配置され前後方向に走行可能な脚部と、脚部同士に架け渡されたガーダと、ガーダに沿って横行可能な主トロリと、クレーン操作を行うための運転室と、主トロリに連結され当該主トロリと運転室とを繋ぐ通路部と、を備えるものであり、本実施形態は、ガントリークレーンの運転席において適用されてもよい。 A gantry crane has a pair of legs arranged in the left and right direction that can move forward and backward, a girder that spans between the legs, a main trolley that can traverse along the girder, and a driver that operates the crane. The present embodiment may be applied to a driver's seat of a gantry crane.
 クローラクレーンは、クローラベルトを有する下部走行体上に上部旋回体が旋回可能に装着されており、上部旋回体には、タワーブームが起伏可能に取付けられている。また、上部旋回体には、運転席が設けられている。クローラクレーンにおいて、タワーブームの上端側には、伸縮しないタワージブがタワーブームに対して起伏可能に軸支されており、タワーブームの上端側の他の部分には、タワージブとペンダントロープとの間に介装され、タワージブを起伏する際の補助部材となるタワーストラットが軸支されている。本実施形態は、クローラクレーンの運転席において適用されてもよい。 In a crawler crane, an upper rotating body is rotatably mounted on a lower traveling body having a crawler belt, and a tower boom is attached to the upper rotating body so that it can be raised and lowered. Further, the upper revolving body is provided with a driver's seat. In a crawler crane, a non-extendable tower jib is pivotally supported on the upper end of the tower boom so that it can be raised and lowered, and on the other part of the upper end of the tower boom, there is a tower jib between the tower jib and the pendant rope. An interposed tower strut is pivotally supported and serves as an auxiliary member when raising and lowering the tower jib. This embodiment may be applied in the driver's seat of a crawler crane.
 走行式クレーンは、例えば、レール上を走行する走行部と、走行部上に設けられた固定部と、固定部上に旋回可能に設けられた旋回部と、旋回部に設けられた運転室と、旋回部に設けられたジブとを備える。また、走行式クレーンは、荷を吊るための吊り具と、吊り具の巻き上げ及び巻き下げを行うためのワイヤーロープと、ワイヤーロープの巻取り及び送出しを行うためのドラムと、を有する。走行式クレーン装置は、走行部の駆動により、吊り具によって荷を吊った状態でレール上を走行して、荷を搬送することができる。本実施形態は、走行式クレーンの運転席において適用されてもよい。 A traveling crane has, for example, a traveling section that travels on rails, a fixed section provided on the traveling section, a swing section that is swingably provided on the fixed section, and a driver's cab provided on the swing section. , and a jib provided on the rotating section. The traveling crane also includes a lifting device for hanging a load, a wire rope for hoisting and lowering the lifting device, and a drum for winding up and sending out the wire rope. A traveling crane device can transport a load by driving a traveling section to travel on a rail with the load suspended by a hanging device. This embodiment may be applied to a driver's seat of a mobile crane.
 天井クレーンは、建造物に設置されるものであり、吊り上げ対象物(以下、単に「対象物」とよぶ)を吊り具により吊り上げて、吊り具を水平方向に移動させることで、対象物の搬送を行う。天井クレーンは、建造物内に設けられた一対のレール間に架け渡すように設けられたガーダを有し、ガーダはレール上を走行可する。また、ガーダ上には、ガーダの延伸方向に沿って横行可能なトロリーが設けられる。トロリーには吊り具が取り付けられる。すなわち、ガーダが走行することで吊り具は走行方向へ移動し、トロリーが横行することで吊り具は横行方向へ移動する。このように吊り具が移動することで、対象物の搬送が行われる。なお、ガーダには、天井クレーンの運転を行うための運転室が設けられている。本実施形態は、天井クレーンの運転席において適用されてもよい。 Overhead cranes are installed in buildings, and use lifting equipment to lift objects (hereinafter simply referred to as "objects") and move the lifting equipment in the horizontal direction to transport the objects. I do. The overhead crane has a girder provided so as to span between a pair of rails provided in a building, and the girder can run on the rails. Furthermore, a trolley is provided on the girder so that it can traverse along the extending direction of the girder. A hanging device is attached to the trolley. That is, as the girder travels, the hanging tool moves in the traveling direction, and as the trolley moves laterally, the hanging tool moves in the traversing direction. By moving the hanger in this manner, the object is transported. Note that the girder is provided with an operator's cab for operating the overhead crane. This embodiment may be applied in the driver's seat of an overhead crane.
 ジブクレーンは、バックステーが立設される旋回体の端部にジブを起伏中心軸を中心として起伏自在に取り付け、該ジブを起伏ロープの巻込み繰出しにより起伏させると共に、前記ジブの先端から吊荷を巻上ロープの巻上げ下げにより昇降させる。本実施形態は、ジブクレーンの運転席において適用されてもよい。 A jib crane has a jib attached to the end of a revolving structure on which a backstay is erected so that it can be raised and lowered freely around the center shaft of the revolving body. is raised and lowered by raising and lowering the hoisting rope. This embodiment may be applied in a driver's seat of a jib crane.
 以上、本発明の好ましい実施形態について詳説したが、本発明は、上述した実施形態に制限されることはなく、本発明の範囲を逸脱することなしに上述した実施形態に種々の変形及び置換を加えることができる。 Although the preferred embodiments of the present invention have been described in detail above, the present invention is not limited to the embodiments described above, and various modifications and substitutions can be made to the embodiments described above without departing from the scope of the present invention. can be added.
 また、本国際出願は、2022年5月24日に出願された日本国特許出願2022-084645に基づく優先権を主張するものであり、日本国特許出願2022-084645の全内容を本国際出願に援用する。 In addition, this international application claims priority based on Japanese patent application 2022-084645 filed on May 24, 2022, and the entire content of Japanese patent application 2022-084645 is incorporated into this international application. I will use it.
 10 キャビン
 11 エンジン
 30 コントローラ
 100 ショベル
 110 フレーム体
 111、112 ピラー
 200 管理装置
 301 画像データ取得部
 302 状態検出部
 303 出力部
10 cabin 11 engine 30 controller 100 excavator 110 frame body 111, 112 pillar 200 management device 301 image data acquisition section 302 state detection section 303 output section

Claims (10)

  1.  下部走行体と、
     前記下部走行体に、旋回自在に搭載された上部旋回体と、
     前記上部旋回体に搭載されるキャビンと、
     前記キャビン内のピラーに配置された空間認識装置と、を有する建設機械。
    a lower running body;
    an upper rotating body rotatably mounted on the lower traveling body;
    a cabin mounted on the upper revolving body;
    A construction machine comprising: a space recognition device disposed on a pillar in the cabin.
  2.  前記空間認識装置は、
     前記キャビン内に設けられた運転席の座面の高さから、前記運転席の有するヘッドレストの上端部の高さまでの間に配置される、請求項1記載の建設機械。
    The spatial recognition device includes:
    The construction machine according to claim 1, wherein the construction machine is arranged between a height of a seat surface of a driver's seat provided in the cabin and a height of an upper end of a headrest included in the driver's seat.
  3.  前記空間認識装置は、
     前記キャビンに設けられたフロントウィンドウの開閉時において干渉しない位置に配置される、請求項1又は2記載の建設機械。
    The spatial recognition device includes:
    The construction machine according to claim 1 or 2, wherein the construction machine is arranged in a position that does not interfere with opening and closing of a front window provided in the cabin.
  4.  前記空間認識装置は、可動式である、請求項3記載の建設機械。 The construction machine according to claim 3, wherein the space recognition device is movable.
  5.  前記空間認識装置は複数配置され、
     前記ピラーは、複数の前記空間認識装置を取り付けるための取り付け部材を有し、
     複数の前記空間認識装置は、
     前記取り付け部材に対して着脱可能であって、前記ピラーと各空間認識装置とを固定するための固定部材を有する、請求項4記載の建設機械。
    A plurality of the spatial recognition devices are arranged,
    The pillar has a mounting member for mounting a plurality of the space recognition devices,
    The plurality of spatial recognition devices include:
    The construction machine according to claim 4, further comprising a fixing member that is attachable to and detachable from the attachment member and that fixes the pillar and each space recognition device.
  6.  前記固定部材は、マグネットである、請求項5記載の建設機械。 The construction machine according to claim 5, wherein the fixing member is a magnet.
  7.  複数の前記空間認識装置のそれぞれにより取得された複数の画像データを取得する画像データ取得部と、
     前記複数の画像データを用いて、前記キャビン内に設けられた運転席に着座したオペレータの状態を検出する状態検出部と、を有する、請求項1記載の建設機械。
    an image data acquisition unit that acquires a plurality of image data acquired by each of the plurality of space recognition devices;
    The construction machine according to claim 1, further comprising a state detection unit that uses the plurality of image data to detect the state of an operator seated in a driver's seat provided in the cabin.
  8.  前記状態検出部は、
     前記複数の画像データから、検出すべき前記オペレータの状態に応じた画像データを選択し、選択された画像データに基づき、前記オペレータの状態を検出する、請求項7記載の建設機械。
    The state detection section includes:
    The construction machine according to claim 7, wherein image data corresponding to the condition of the operator to be detected is selected from the plurality of image data, and the condition of the operator is detected based on the selected image data.
  9.  前記状態検出部によりオペレータの状態を検出したときの画像データを表示装置に表示させる出力部を有する、請求項7又は8記載の建設機械。 The construction machine according to claim 7 or 8, further comprising an output section for displaying image data on a display device when the state of the operator is detected by the state detection section.
  10.  建設機械と、管理装置とを含む建設機械の支援システムであって、
     前記建設機械は、
     下部走行体と、
     前記下部走行体に、旋回自在に搭載された上部旋回体と、
     前記上部旋回体に搭載されたキャビンと、
     前記キャビン内のピラーに配置された空間認識装置と、
     前記空間認識装置によって撮像された複数の画像データを前記管理装置に出力する出力部と、を有し、
     前記管理装置は、
     前記複数の画像データを格納する記憶部を有する、建設機械の支援システム。
    A construction machine support system including a construction machine and a management device,
    The construction machine is
    a lower running body;
    an upper rotating body rotatably mounted on the lower traveling body;
    a cabin mounted on the upper revolving body;
    a space recognition device disposed on a pillar in the cabin;
    an output unit that outputs a plurality of image data captured by the spatial recognition device to the management device;
    The management device includes:
    A support system for construction machinery, comprising a storage unit that stores the plurality of image data.
PCT/JP2023/017688 2022-05-24 2023-05-11 Construction machine and assistance system for construction machine WO2023228758A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022084645 2022-05-24
JP2022-084645 2022-05-24

Publications (1)

Publication Number Publication Date
WO2023228758A1 true WO2023228758A1 (en) 2023-11-30

Family

ID=88919133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017688 WO2023228758A1 (en) 2022-05-24 2023-05-11 Construction machine and assistance system for construction machine

Country Status (1)

Country Link
WO (1) WO2023228758A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072786A (en) * 2014-09-30 2016-05-09 株式会社日本総合研究所 Overhead image display system, terminal device, and program thereof
JP2018131890A (en) * 2017-02-16 2018-08-23 住友重機械工業株式会社 Shovel
JP2019205078A (en) * 2018-05-24 2019-11-28 株式会社ユピテル System and program
JP2020007759A (en) * 2018-07-06 2020-01-16 ヤンマー株式会社 Work vehicle
JP2020091777A (en) * 2018-12-07 2020-06-11 株式会社デンソー Information processing system
JP2020135337A (en) * 2019-02-19 2020-08-31 コベルコ建機株式会社 Work machine, awakening determination method in work machine, awakening determination program in work machine
JP2020162145A (en) * 2016-02-23 2020-10-01 株式会社フジタ Fitting structure of overhead image generation device for construction machine
JP2021086412A (en) * 2019-11-28 2021-06-03 日本電産モビリティ株式会社 Occupant monitoring device, and occupant monitoring system
JP2021527900A (en) * 2018-10-19 2021-10-14 上▲海▼商▲湯▼智能科技有限公司Shanghai Sensetime Intelligent Technology Co., Ltd. Driving condition detection method and device, driver monitoring system and vehicle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072786A (en) * 2014-09-30 2016-05-09 株式会社日本総合研究所 Overhead image display system, terminal device, and program thereof
JP2020162145A (en) * 2016-02-23 2020-10-01 株式会社フジタ Fitting structure of overhead image generation device for construction machine
JP2018131890A (en) * 2017-02-16 2018-08-23 住友重機械工業株式会社 Shovel
JP2019205078A (en) * 2018-05-24 2019-11-28 株式会社ユピテル System and program
JP2020007759A (en) * 2018-07-06 2020-01-16 ヤンマー株式会社 Work vehicle
JP2021527900A (en) * 2018-10-19 2021-10-14 上▲海▼商▲湯▼智能科技有限公司Shanghai Sensetime Intelligent Technology Co., Ltd. Driving condition detection method and device, driver monitoring system and vehicle
JP2020091777A (en) * 2018-12-07 2020-06-11 株式会社デンソー Information processing system
JP2020135337A (en) * 2019-02-19 2020-08-31 コベルコ建機株式会社 Work machine, awakening determination method in work machine, awakening determination program in work machine
JP2021086412A (en) * 2019-11-28 2021-06-03 日本電産モビリティ株式会社 Occupant monitoring device, and occupant monitoring system

Similar Documents

Publication Publication Date Title
JP7358349B2 (en) Excavators, information processing equipment
JP7407178B2 (en) excavator
US20210164194A1 (en) Shovel
JP7439053B2 (en) Excavators and shovel management devices
JP7367001B2 (en) Excavators and construction systems
WO2020196888A1 (en) Shovel and construction system
JP7341982B2 (en) excavator
US20220010522A1 (en) Shovel
JP7463354B2 (en) Excavator
US20210262196A1 (en) Excavator and control apparatus for excavator
CN112334621A (en) Excavator
JP7275108B2 (en) Excavator
JP7023714B2 (en) Excavator
CN113677855A (en) Shovel and control device for shovel
WO2023228758A1 (en) Construction machine and assistance system for construction machine
JP2013002101A (en) Visual field auxiliary device for work machine
WO2021241727A1 (en) Excavator
WO2021193450A1 (en) Construction machine, management system for construction machine, machine learning device, and management system for work site of construction machine
WO2020203245A1 (en) Shovel
WO2023190843A1 (en) Assistance device, work machine, and program
KR102671152B1 (en) shovel
WO2023171711A1 (en) Operation assistance device, work machine, remote operation assistance device, and program
WO2023190842A1 (en) Work machine
WO2023190116A1 (en) Excavator, excavator management system, and excavator assisting device
JP2022152970A (en) Shovel, and shovel management system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811633

Country of ref document: EP

Kind code of ref document: A1