WO2023228597A1 - 位相差層付偏光板の製造方法 - Google Patents

位相差層付偏光板の製造方法 Download PDF

Info

Publication number
WO2023228597A1
WO2023228597A1 PCT/JP2023/014198 JP2023014198W WO2023228597A1 WO 2023228597 A1 WO2023228597 A1 WO 2023228597A1 JP 2023014198 W JP2023014198 W JP 2023014198W WO 2023228597 A1 WO2023228597 A1 WO 2023228597A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
retardation layer
phase difference
retardation
axis
Prior art date
Application number
PCT/JP2023/014198
Other languages
English (en)
French (fr)
Inventor
卓哉 田中
祥明 麻野井
章典 伊▲崎▼
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023228597A1 publication Critical patent/WO2023228597A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D3/00Cutting work characterised by the nature of the cut made; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/44Cutters therefor; Dies therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a method for manufacturing a polarizing plate with a retardation layer.
  • Image display devices represented by liquid crystal display devices and electroluminescent (EL) display devices are rapidly becoming popular.
  • polarizing plates with retardation layers that include a polarizing plate and a retardation film (retardation layer) are widely used to realize image display and/or improve the performance of the image display.
  • retardation layer a retardation film
  • new uses for image display devices have been developed in recent years.
  • An example of such an application is virtual reality (VR) goggles.
  • VR virtual reality
  • a polarizing plate with a retardation layer is applied to VR goggles, the size thereof becomes significantly smaller than that for conventional use.
  • misalignment of the absorption axis of the polarizer and/or the slow axis of the retardation layer which did not pose a problem in conventional applications, has become a substantial problem.
  • the present invention has been made to solve the above problems, and its main purpose is to provide a polarizing plate with a retardation layer in which the absorption axis direction of the polarizer and the slow axis direction of the retardation layer are extremely precisely controlled.
  • the object of the present invention is to provide an efficient manufacturing method.
  • a method for manufacturing a polarizing plate with a retardation layer includes a method for manufacturing a retardation film having a slow axis in the longitudinal direction, and a retardation film having a slow axis in the longitudinal direction.
  • a sheet retardation layer intermediate having a slow axis in the long side direction by punching it into a predetermined size while correcting the deviation in the direction;
  • a single leaf polarizing plate intermediate having an absorption axis in the 45° direction with respect to the long side direction by punching out the same size as the retardation layer intermediate; the retardation layer intermediate and the polarizing plate intermediate;
  • the method includes punching out a polarizing plate intermediate body to obtain a polarizing plate piece having a retardation layer of a predetermined size and having an absorption axis in the long side direction.
  • the manufacturing method obtains 3 to 16 retardation layer intermediates in the width direction from the original roll of the retardation film.
  • the retardation layer intermediate and the polarizing plate intermediate have a rectangular shape with a short side of 75 mm to 310 mm.
  • the polarizing plate piece with a retardation layer has a rectangular shape with a long side of 10 mm to 70 mm and a short side of 10 mm to 70 mm.
  • FIG. 1 (a) and (b) are schematic diagrams illustrating a process for obtaining a retardation layer intermediate in a method for manufacturing a polarizing plate with a retardation layer according to an embodiment of the present invention.
  • (a) to (c) are schematic diagrams illustrating a process for obtaining a polarizing plate intermediate in a method for manufacturing a polarizing plate with a retardation layer according to an embodiment of the present invention.
  • (a) to (c) are schematic diagrams illustrating a process for obtaining a polarizing plate piece with a retardation layer as a final product in a method for manufacturing a polarizing plate with a retardation layer according to an embodiment of the present invention.
  • a method for manufacturing a polarizing plate with a retardation layer includes a method for manufacturing a polarizing plate with a retardation layer, in which a raw roll of a retardation film having a slow axis in the longitudinal direction is is punched out to a predetermined size while correcting the deviation in the width direction of the slow axis from the longitudinal direction to obtain a sheet retardation layer intermediate having a slow axis in the long side direction (for convenience, the retardation layer intermediate (referred to as body manufacturing process); A raw roll of a polarizing plate having an absorption axis in the longitudinal direction is punched out to the same size as the retardation layer intermediate, and a sheet having an absorption axis in a 45° direction with respect to the longitudinal direction is punched out.
  • a leaf polarizing plate intermediate (for convenience, referred to as a polarizing plate intermediate production process); bonding the retardation layer intermediate and the polarizing plate intermediate so that their outer edges coincide, and absorbing the polarizing plate.
  • Obtaining a polarizing plate intermediate with a retardation layer in which the angle between the axis and the slow axis of the retardation layer is 45° (for convenience, referred to as a process for producing a polarizing plate intermediate with a retardation layer);
  • the step includes punching out a retardation layer-attached polarizing plate intermediate to obtain a retardation layer-attached polarizing plate piece of a predetermined size having an absorption axis in the long side direction (for convenience, referred to as the final step).
  • the expression "absorption axis of a polarizing plate” means the absorption axis of a polarizer included in the polarizing plate.
  • FIGS. 1(a) and 1(b) are schematic diagrams illustrating the retardation layer intermediate production process.
  • a raw roll of retardation film is prepared.
  • the retardation film is typically a stretched resin film, and has a slow axis in the longitudinal direction of the roll.
  • resins constituting the retardation film include polycarbonate resins, polyester carbonate resins, polyester resins, polyvinyl acetal resins, polyarylate resins, cyclic olefin resins, cellulose resins, polyvinyl alcohol resins, Examples include polyamide resins, polyimide resins, polyether resins, polystyrene resins, and acrylic resins.
  • the optical properties of the retardation film can be appropriately set depending on the purpose. Since the retardation film has a slow axis, it exhibits the relationship nx>ny. A retardation film typically exhibits a refractive index characteristic of nx>ny ⁇ nz. A retardation film can typically function as a ⁇ /4 plate.
  • the in-plane retardation Re (550) of the retardation film is preferably 100 nm to 200 nm, more preferably 110 nm to 180 nm, and even more preferably 130 nm to 150 nm.
  • Re( ⁇ ) is an in-plane retardation measured with light having a wavelength of ⁇ nm at 23°C. Therefore, “Re(550)” is an in-plane retardation measured with light having a wavelength of 550 nm at 23°C.
  • the retardation film may exhibit inverse wavelength dispersion characteristics in which the retardation value increases depending on the wavelength of the measurement light, or may exhibit positive wavelength dispersion characteristics in which the retardation value decreases in accordance with the wavelength of the measurement light.
  • the phase difference value may exhibit flat wavelength dispersion characteristics that hardly change depending on the wavelength of the measurement light.
  • the thickness of the retardation film can be set so that it can function most appropriately as a ⁇ /4 plate. In other words, the thickness can be set so as to obtain the desired in-plane retardation. Specifically, the thickness is preferably 70 ⁇ m or less, preferably 15 ⁇ m to 60 ⁇ m.
  • the retardation film typically has an axis misalignment in the width direction in the original roll 10. More specifically, the direction of the slow axis S of the retardation film is often shifted by a predetermined angle with respect to the longitudinal direction of the roll at the ends in the width direction of the roll. Typically, this axis misalignment does not substantially occur at the center, and increases as it approaches the ends in the width direction.
  • the axial offset at the widthwise ends can vary depending on the width of the roll. For example, in a roll having a width of about 1000 mm to 1500 mm, the axis misalignment at the end in the width direction may be, for example, 1° to 3°.
  • the present inventors found that when producing a very small polarizing plate with a retardation layer (for example, for VR goggles: size of about 20 mm x 30 mm), due to such axis misalignment, each final product
  • a retardation layer for example, for VR goggles: size of about 20 mm x 30 mm
  • the misalignment of the slow axis of the retardation film was more dominant in the problem than the misalignment of the absorption axis of the polarizer.
  • the inventors have discovered that the problem can be solved by adopting a manufacturing process that appropriately eliminates the misalignment of the slow axis of the retardation film, and have completed the present invention. That is, the embodiments of the present invention solve new problems that have not been recognized until now, and the effects are unexpectedly excellent.
  • the raw fabric roll 10 is punched to a predetermined size while correcting the deviation of the slow axis S in the width direction with respect to the longitudinal direction, and as shown in FIG. 1(b).
  • a single (typically rectangular) retardation layer intermediate 12 having a slow axis S in the long side direction is obtained. More details are as follows. First, the misalignment of the slow axis S in the original fabric roll 10 is detected. Any suitable means may be adopted as a method for detecting axis deviation. For example, axis misalignment can be detected by measuring the axis angle using "AxoScan" manufactured by Axometrics.
  • the direction of the punching blade is adjusted based on the detected information, and the punching blade whose direction has been adjusted punches out a predetermined portion of the raw roll.
  • the slow axis S exists in the long side direction (that is, the slow axis direction is precisely controlled), and It is possible to obtain the retardation layer intermediate 12 in which the variation in the slow axis direction of each intermediate is very small (substantially no variation).
  • FIG. 1(a) shows an example in which three retardation layer intermediates are punched out in the width direction from a raw roll
  • typically For example, 3 to 16 sheets, or 5 to 6 sheets of the retardation layer intermediate can be punched out in the direction.
  • the obtained retardation layer intermediate may have a rectangular shape with a short side of about 75 mm to 310 mm, or a rectangle with a long side of about 250 mm to 350 mm and a short side of about 150 mm to 250 mm, for example.
  • Punching of the retardation layer intermediate may be performed one by one while correcting axis misalignment; the direction of each of a predetermined number of punching blades is adjusted in one row in the width direction, and punching is performed for each row. You can.
  • a polarizing plate typically includes a polarizer and a protective film provided on at least one side of the polarizer. Any suitable polarizer may be employed as the polarizer.
  • the resin film forming the polarizer may be a single-layer resin film, or may be produced using a laminate of two or more layers. Specific examples of polarizers composed of single-layer resin films include highly hydrophilic polarizers such as polyvinyl alcohol (PVA) resin films, partially formalized PVA resin films, and partially saponified ethylene/vinyl acetate copolymer films.
  • PVA polyvinyl alcohol
  • polyene-based oriented films such as dehydrated PVA and dehydrochloric acid treated polyvinyl chloride. It will be done.
  • a polarizer obtained by dyeing a PVA resin film with iodine and uniaxially stretching is used because it has excellent optical properties.
  • the above-mentioned staining with iodine is performed, for example, by immersing the PVA-based resin film in an aqueous iodine solution.
  • the stretching ratio of the above-mentioned uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing process or may be performed while dyeing.
  • the PVA resin film may be dyed after being stretched.
  • the PVA resin film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment, etc.
  • swelling treatment for example, by immersing a PVA resin film in water and washing it with water before dyeing, it is possible to not only wash away dirt and anti-blocking agents on the surface of the PVA resin film, but also to swell the PVA resin film and dye it. It is possible to prevent unevenness.
  • polarizers obtained using a laminate include a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or a laminate of a resin base material and the resin Examples include polarizers obtained using a laminate with a PVA-based resin layer coated on a base material.
  • a polarizer obtained using a laminate of a resin base material and a PVA-based resin layer coated on the resin base material can be obtained by, for example, applying a PVA-based resin solution to the resin base material and drying it.
  • a PVA-based resin layer thereon to obtain a laminate of a resin base material and the PVA-based resin layer; stretching and dyeing the laminate to use the PVA-based resin layer as a polarizer; obtain.
  • stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching.
  • the stretching may further include stretching the laminate in air at a high temperature (for example, 95° C. or higher) before stretching in the boric acid aqueous solution, if necessary.
  • the obtained resin base material/polarizer laminate may be used as is (that is, the resin base material may be used as a protective layer for the polarizer), or the resin base material may be peeled from the resin base material/polarizer laminate.
  • any appropriate protective layer may be laminated on the peeled surface depending on the purpose. Details of the method for manufacturing such a polarizer are described in, for example, Japanese Patent Application Publication No. 2012-73580 and Japanese Patent No. 6470455. The descriptions of these patent documents are incorporated herein by reference.
  • the protective film is composed of any suitable film that can be used as a protective film for a polarizer.
  • materials that are the main components of the film include cellulose resins such as triacetylcellulose (TAC), polyesters, polyvinyl alcohols, polycarbonates, polyamides, polyimides, polyethersulfones, and polysulfones. , polystyrene, polynorbornene, polyolefin, cyclic olefin, (meth)acrylic, acetate, and other transparent resins. Further, thermosetting resins or ultraviolet curable resins such as (meth)acrylic, urethane, (meth)acrylic urethane, epoxy, and silicone resins may also be mentioned.
  • TAC triacetylcellulose
  • polyesters such as triacetylcellulose (TAC)
  • polyvinyl alcohols such as polyvinyl alcohols, polycarbonates, polyamides, polyimides, polyethersulfones, and polysul
  • polystyrene polymers examples include glassy polymers such as siloxane polymers.
  • the polymer film described in JP-A-2001-343529 (WO01/37007) can also be used.
  • Materials for this film include, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in its side chain, and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in its side chain.
  • a resin composition containing an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile/styrene copolymer can be used.
  • the polymer film may be, for example, an extrusion molded product of the resin composition.
  • TAC, (meth)acrylic resin, and cyclic olefin resin can be used.
  • the polarizing plate typically has substantially no axis deviation in the width direction in the original fabric roll 20. More specifically, due to the material, optical properties, manufacturing method, etc. of the polarizer, the direction of its absorption axis A is substantially parallel to the longitudinal direction of the original fabric roll over the entire width direction of the original fabric roll. Expressed in the direction. That is, the axis misalignment of the absorption axis of the polarizer in the width direction is substantially non-existent, or even if it exists, it is much smaller than the axis misalignment of the slow axis of the retardation film.
  • each punched intermediate By punching out a plurality of polarizing plate intermediates at once in this manner, excellent manufacturing efficiency can be achieved. Furthermore, if each intermediate is punched diagonally (in a direction at a predetermined angle with respect to the length direction of the raw roll), even if there is no axial misalignment in the raw roll, each punched intermediate will have an axial deviation. Although variations may occur, such problems can be avoided by punching out all at once. That is, it is possible to obtain the polarizing plate intermediate 22 in which the absorption axis direction is precisely controlled and the variation in the absorption axis direction for each intermediate is very small (substantially no variation).
  • the punching angle (angle with respect to the longitudinal direction of the original roll) can be appropriately set other than 45° depending on the purpose.
  • the angle corresponds to the angle between the absorption axis of the polarizer and the slow axis of the retardation layer in the polarizing plate with a retardation layer.
  • Diagonal punching as described above typically involves detecting the edge in the width direction of the roll, adjusting the direction of the punching blade based on the detected information, and punching with the adjusted punching blade. This can be done by
  • the size of the polarizing plate intermediate to be punched out is typically the same as the size of the retardation layer intermediate. Therefore, the obtained polarizing plate intermediate may have a rectangular shape with, for example, a short side of about 75 mm to 310 mm, or a rectangular shape of, for example, a long side of about 250 mm to 350 mm and a short side of about 150 mm to 250 mm.
  • the production of the polarizing plate intermediate with a retardation layer is simple and easy, and the absorption axis of the polarizer in the polarizing plate intermediate with a retardation layer and the retardation layer ( It is easy to control the angle with the slow axis of the retardation film).
  • Step for producing a polarizing plate intermediate with a retardation layer Next, as shown in FIG.
  • the polarizing plate intermediate 22 obtained in the above is bonded together to obtain a polarizing plate intermediate with a retardation layer.
  • the retardation layer intermediate and the polarizing plate intermediate are typically bonded together so that their respective outer edges coincide.
  • the axial directions of both the retardation layer intermediate and the polarizing plate intermediate are precisely controlled, and the variation in the axial direction for each intermediate is very small, so their outer edges coincide.
  • the angle between the absorption axis of the polarizer and the slow axis of the retardation layer in the polarizing plate intermediate with retardation layer can be well controlled without performing precise and/or delicate operations. can do.
  • the retardation layer-attached polarizing plate intermediate 30 obtained as described in section D above is punched out, and the retardation layer-attached polarizing plate intermediate 30 is punched out.
  • a plate piece (a polarizing plate with a retardation layer as a final product) 32 is obtained. Punching is typically performed in a 45° direction with respect to the long side direction of the polarizing plate intermediate with a retardation layer.
  • the polarizer has an absorption axis in the long side direction, and the angle between the absorption axis of the polarizer and the slow axis of the retardation layer is 45°.
  • a polarizing plate piece with a retardation layer (a polarizing plate with a retardation layer as a final product) can be obtained.
  • the angle between the absorption axis of the polarizer and the slow axis of the retardation layer is well controlled. Therefore, when producing the retardation layer-attached polarizing plate piece 32 from the retardation layer-attached polarizing plate intermediate 30, there is no need to punch it out while correcting the axis misalignment.
  • a lattice-shaped punching blade a plurality of polarizing plate pieces with retardation layers can be punched out at once, as shown in FIG.
  • Diagonal punching as described above is typically performed by detecting the edge of the polarizing plate intermediate with a retardation layer, adjusting the direction of the punching blade based on the detected information, and using the punching blade with the adjusted direction. This can be done by punching. Preferably, two edges, a long side and a short side, of the polarizing plate intermediate with a retardation layer are detected. With such a configuration, more precise punching can be performed.
  • a retardation layer-attached polarizing plate piece (a retardation layer-attached polarizing plate as a final product) 32 can be obtained.
  • the obtained polarizing plate piece with a retardation layer has, for example, a long side of about 10 mm to 70 mm and a short side of about 10 mm to 70 mm, or, for example, a long side of about 20 mm to 40 mm and a short side of about 10 mm to 30 mm, more specifically a long side of about 30 mm and a short side. It can be a rectangle of about 20 mm.
  • Such a polarizing plate piece with a retardation layer can be used, for example, as a circularly polarizing plate for VR goggles.
  • a polarizing plate with a retardation layer in which the absorption axis direction of the polarizer and the slow axis direction of the retardation layer are extremely precisely controlled is manufactured by adopting a manufacturing process completely different from conventional ones. It can be manufactured efficiently. In particular, the effect is remarkable in the production of very small polarizing plates with retardation layers.
  • the details are as follows.
  • the retardation film is typically punched out from the original roll of the retardation film in a diagonal direction (for example, 45° direction) with respect to the longitudinal direction of the original roll, and the polarizing plate is A polarizing plate is punched out from the original fabric roll in the longitudinal direction of the original fabric roll.
  • the yield will be high, and the problem of axis misalignment of the retardation layer (retardation film) will not become serious in a polarizing plate with a retardation layer of a conventional size.
  • the above manufacturing method allows for variations in characteristics for each final product. It may become impossibly large.
  • the retardation film is punched out from the original roll of the retardation film while correcting the axis deviation, and the retardation film is punched out from the original roll of the polarizing plate in a direction oblique to the longitudinal direction of the original roll. Even if a very small polarizing plate with a retardation layer is finally produced by punching out a polarizing plate in the 45° direction, the absorption axis direction of the polarizer and the slow axis direction of the retardation layer will be A polarizing plate with a retardation layer that is extremely precisely controlled can be obtained.
  • the waste portion of the original fabric roll is larger than in the conventional manufacturing method, the number of unacceptable final products is greatly reduced, so the overall yield may be higher.
  • the misalignment of the polarizing plate with a retardation layer cannot be detected without destroying the final product (for example, VR goggles), so it is useful as a quality guarantee for the final product. It is.
  • the manufacturing method according to the embodiment of the present invention is suitably used for producing a polarizing plate with a retardation layer, and is particularly suitably used for producing a very small polarizing plate with a retardation layer (for example, for VR goggles). obtain.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

偏光子の吸収軸方向および位相差層の遅相軸方向がきわめて精密に制御された位相差層付偏光板を効率的に製造し得る方法が提供される。本発明の実施形態による位相差層付偏光板の製造方法は、長尺方向に遅相軸を有する位相差フィルムの原反ロールを、原反ロールの幅方向における遅相軸の長尺方向に対するずれを補正しながら所定サイズに打ち抜き、長辺方向に遅相軸を有する枚葉の位相差層中間体を得ること;長尺方向に吸収軸を有する偏光板の原反ロールを、位相差層中間体と同一サイズに打ち抜き、長辺方向に対して45°方向に吸収軸を有する枚葉の偏光板中間体を得ること;位相差層中間体と偏光板中間体とを外縁が一致するようにして貼り合わせ、偏光板の吸収軸と位相差層の遅相軸とのなす角度が45°である位相差層付偏光板中間体を得ること;および、位相差層付偏光板中間体を打ち抜き、長辺方向に吸収軸を有する所定サイズの位相差層付偏光板片を得ること;を含む。

Description

位相差層付偏光板の製造方法
 本発明は、位相差層付偏光板の製造方法に関する。
 液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置においては、画像表示を実現し、および/または当該画像表示の性能を高めるために、偏光板と位相差フィルム(位相差層)とを含む位相差層付偏光板が広く使用されている。ところで、近年、画像表示装置の新たな用途が開発されている。そのような用途の一例としては、ヴァーチャルリアリティ(VR)ゴーグルが挙げられる。VRゴーグルに位相差層付偏光板を適用する場合、そのサイズが従来の用途に比べて顕著に小さくなる。その結果、従来の用途においては問題とならなかった偏光子の吸収軸および/または位相差層の遅相軸の軸ずれが、実質的な問題となってきている。
特開2013-182162号公報
 本発明は上記課題を解決するためになされたものであり、その主たる目的は、偏光子の吸収軸方向および位相差層の遅相軸方向がきわめて精密に制御された位相差層付偏光板を効率的に製造し得る方法を提供することにある。
 本発明の実施形態による位相差層付偏光板の製造方法は、長尺方向に遅相軸を有する位相差フィルムの原反ロールを、該原反ロールの幅方向における該遅相軸の長尺方向に対するずれを補正しながら所定サイズに打ち抜き、長辺方向に遅相軸を有する枚葉の位相差層中間体を得ること;長尺方向に吸収軸を有する偏光板の原反ロールを、該位相差層中間体と同一サイズに打ち抜き、長辺方向に対して45°方向に吸収軸を有する枚葉の偏光板中間体を得ること;該位相差層中間体と該偏光板中間体とを外縁が一致するようにして貼り合わせ、偏光板の吸収軸と位相差層の遅相軸とのなす角度が45°である位相差層付偏光板中間体を得ること;および、該位相差層付偏光板中間体を打ち抜き、長辺方向に吸収軸を有する所定サイズの位相差層付偏光板片を得ること;を含む。
 1つの実施形態においては、上記製造方法は、上記位相差フィルムの原反ロールから、幅方向に3枚~16枚の上記位相差層中間体を得る。
 1つの実施形態においては、上記位相差層中間体および上記偏光板中間体は、短辺75mm~310mmの矩形である。
 1つの実施形態においては、上記位相差層付偏光板片は、長辺10mm~70mmおよび短辺10mm~70mmの矩形である。
 本発明の実施形態によれば、偏光子の吸収軸方向および位相差層の遅相軸方向がきわめて精密に制御された位相差層付偏光板を効率的に製造し得る方法を実現することができる。
(a)および(b)は、本発明の実施形態による位相差層付偏光板の製造方法において位相差層中間体を得るプロセスを説明する概略図である。 (a)~(c)は、本発明の実施形態による位相差層付偏光板の製造方法において偏光板中間体を得るプロセスを説明する概略図である。 (a)~(c)は、本発明の実施形態による位相差層付偏光板の製造方法において最終製品である位相差層付偏光板片を得るプロセスを説明する概略図である。
 以下、図面を参照して本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。また、図面はすべて模式的に表されており、実際の状態を正確に描いたものではない。
A.位相差層付偏光板の製造方法の概略
 本発明の実施形態による位相差層付偏光板の製造方法は、長尺方向に遅相軸を有する位相差フィルムの原反ロールを、該原反ロールの幅方向における該遅相軸の長尺方向に対するずれを補正しながら所定サイズに打ち抜き、長辺方向に遅相軸を有する枚葉の位相差層中間体を得ること(便宜上、位相差層中間体作製工程と称する);長尺方向に吸収軸を有する偏光板の原反ロールを、該位相差層中間体と同一サイズに打ち抜き、長辺方向に対して45°方向に吸収軸を有する枚葉の偏光板中間体を得ること(便宜上、偏光板中間体作製工程と称する);該位相差層中間体と該偏光板中間体とを外縁が一致するようにして貼り合わせ、偏光板の吸収軸と位相差層の遅相軸とのなす角度が45°である位相差層付偏光板中間体を得ること(便宜上、位相差層付偏光板中間体作製工程と称する);および、該位相差層付偏光板中間体を打ち抜き、長辺方向に吸収軸を有する所定サイズの位相差層付偏光板片を得ること(便宜上、最終工程と称する);を含む。以下、各工程を具体的に説明する。なお、本明細書において「偏光板の吸収軸」との記載は、偏光板に含まれる偏光子の吸収軸を意味する。
B.位相差層中間体作製工程
 図1(a)および図1(b)は、位相差層中間体作製工程を説明する概略図である。まず、図1(a)に示すように、位相差フィルムの原反ロールを準備する。位相差フィルムは、代表的には、樹脂フィルムの延伸フィルムであり、ロールの長尺方向に遅相軸を有する。位相差フィルムを構成する樹脂の代表例としては、ポリカーボネート系樹脂、ポリエステルカーボネート系樹脂、ポリエステル系樹脂、ポリビニルアセタール系樹脂、ポリアリレート系樹脂、環状オレフィン系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリスチレン系樹脂、アクリル系樹脂が挙げられる。
 位相差フィルムの光学特性は、目的に応じて適切に設定され得る。位相差フィルムは遅相軸を有するので、nx>nyの関係を示す。位相差フィルムは、代表的にはnx>ny≧nzの屈折率特性を示す。位相差フィルムは、代表的にはλ/4板として機能し得る。位相差フィルムの面内位相差Re(550)は、好ましくは100nm~200nmであり、より好ましくは110nm~180nmであり、さらに好ましくは130nm~150nmである。位相差フィルムがλ/4板として機能することにより、位相差フィルムの遅相軸と偏光子の吸収軸とが代表的には45°の角度をなすようにして位相差フィルムと偏光子(偏光板)とを積層することにより、優れた反射防止機能を有する位相差層付偏光板(円偏光板)を得ることができる。ここで、「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。したがって、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
 位相差フィルムは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。
 位相差フィルムの厚みは、λ/4板として最も適切に機能し得るように設定され得る。言い換えれば、厚みは、上記所望の面内位相差が得られるように設定され得る。具体的には、厚みは、好ましくは70μm以下であり、好ましくは15μm~60μmである。
 図1(a)に示すように、位相差フィルムは、代表的には、原反ロール10において幅方向に軸ずれを有する。より詳細には、位相差フィルムの遅相軸Sの方向は、ロールの幅方向端部において、ロールの長尺方向に対して所定角度ずれることが多い。当該軸ずれは、代表的には、中央部では実質的に発現せず、幅方向端部に近づくほど大きくなる。幅方向端部における軸ずれは、ロールの幅に応じて変化し得る。例えば幅が1000mm~1500mm程度のロールにおいては、幅方向端部における軸ずれは、例えば1°~3°であり得る。大型(例えば、TV用)の位相差層付偏光板を作製する場合、このような軸ずれは実質的な問題とならない。位相差層付偏光板全体としての色ムラや視野角依存性を改善することにより、軸ずれの問題は表面化または深刻化しないからである。一方、本発明者らは、非常に小型(例えば、VRゴーグル用:20mm×30mm程度のサイズ)の位相差層付偏光板を作製する場合、このような軸ずれに起因して、最終製品ごとの特性のばらつきが許容不可能に大きくなることを新たに発見した。さらに、本発明者らは、当該課題を解決するために試行錯誤した結果、位相差フィルムの遅相軸の軸ずれが偏光子の吸収軸の軸ずれよりも当該課題に支配的であり、位相差フィルムの遅相軸の軸ずれが適切に解消されるような製造プロセスを採用することにより当該課題が解決され得ることを見出し、本発明を完成するに至った。すなわち、本発明の実施形態は、今まで認識されていなかった新たな課題を解決するものであり、その効果は予期せぬ優れた効果である。
 本発明の実施形態においては、図1(a)に示すように、原反ロール10の幅方向における遅相軸Sの長尺方向に対するずれを補正しながら所定サイズに打ち抜き、図1(b)に示すように、長辺方向に遅相軸Sを有する枚葉の(代表的には、矩形の)位相差層中間体12を得る。より詳細には、以下のとおりである。まず、原反ロール10における遅相軸Sの軸ずれを検出する。軸ずれの検出方法としては、任意の適切な手段が採用され得る。例えば、Axometrics社製の「AxoScan」による軸角度の測定によって軸ずれを検出し得る。軸ずれを検出すると、検出した情報に基づいて打ち抜き刃の方向を調整し、方向を調整した打ち抜き刃で原反ロールの所定箇所を打ち抜く。その結果、図1(b)に示すように、原反ロールの打ち抜き位置にかかわらず、長辺方向に遅相軸Sを有し(すなわち、遅相軸方向が精密に制御され)、かつ、それぞれの中間体ごとの遅相軸方向のばらつきが非常に小さい(実質的に、ばらつきがない)位相差層中間体12を得ることができる。位相差層中間体作製時に原反ロールにおける遅相軸の軸ずれを補正し、位相差層中間体においてそれぞれの中間体ごとの遅相軸方向のばらつきを実質的に解消することにより、後述の位相差層付偏光板中間体および位相差層付偏光板片(最終製品としての位相差層付偏光板)を作製する際の軸方向の制御がきわめて簡便かつ容易となる。
 図1(a)には原反ロールから幅方向に3枚の位相差層中間体を打ち抜く例が示されているが、本発明の実施形態においては、代表的には、原反ロールから幅方向に例えば3枚~16枚、また例えば5枚~6枚の位相差層中間体を打ち抜くことができる。このような構成であれば、製造効率に優れ、原反ロールの廃棄が少なく、かつ、原反ロールにおける軸ずれが適切に補正された位相差層中間体を得ることができる。この場合、得られる位相差層中間体は、例えば短辺75mm~310mm程度の矩形、また例えば長辺250mm~350mmおよび短辺150mm~250mm程度の矩形であり得る。
 位相差層中間体の打ち抜きは、軸ずれを補正しながら1枚ごとに行ってもよく;幅方向の1列で所定数の打ち抜き刃のそれぞれの方向を調整して、当該1列ごとに行ってもよい。
C.偏光板中間体作製工程
 別途、図2(a)に示すように、偏光板の原反ロール20を準備する。偏光板は、代表的には、偏光子と偏光子の少なくとも一方の側に設けられた保護フィルムとを有する。偏光子としては、任意の適切な偏光子が採用され得る。偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体を用いて作製されてもよい。単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系樹脂フィルム、部分ホルマール化PVA系樹脂フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系樹脂フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。上記ヨウ素による染色は、例えば、PVA系樹脂フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系樹脂フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系樹脂フィルムを水に浸漬して水洗することで、PVA系樹脂フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系樹脂フィルムを膨潤させて染色ムラなどを防止することができる。
 積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報、特許第6470455号に記載されている。これらの特許文献の記載は、本明細書に参考として援用される。
 保護フィルムは、偏光子の保護フィルムとして使用できる任意の適切なフィルムで構成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、環状オレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。好ましくは、TAC、(メタ)アクリル系樹脂、環状オレフィン系樹脂が用いられ得る。
 図2(a)に示すように、偏光板は、代表的には、原反ロール20において実質的に幅方向に軸ずれを有さない。より詳細には、偏光子は、材料、光学特性、製造方法等に起因して、その吸収軸Aの方向は原反ロールの幅方向全体にわたって原反ロールの長尺方向に実質的に平行な方向に発現する。すなわち、偏光子の吸収軸の幅方向の軸ずれは、実質的に存在しない、または、存在したとしても位相差フィルムの遅相軸の軸ずれに対して格段に小さい。したがって、偏光板の原反ロール20から偏光板中間体22を作製する際に、軸ずれを補正しながら打ち抜く必要がない。その結果、本発明の実施形態においては、例えば格子状の打ち抜き刃を用いることにより、図2(b)に示すように、複数の偏光板中間体を一括して打ち抜くことができる。図示例においては、原反ロールの長尺方向に対して45°方向に打ち抜くことにより、図2(c)に示すように、長辺方向に対して45°方向に吸収軸Aを有する枚葉の(代表的には、矩形の)偏光板中間体22を得ることができる。このように複数の偏光板中間体を一括して打ち抜くことにより、優れた製造効率を実現することができる。さらに、1枚ごとに斜め方向に(原反ロールの長尺方向に対して所定角度の方向に)打ち抜くと、原反ロールに軸ずれが存在しなくても打ち抜いた中間体ごとに軸方向のばらつきが出る場合があるところ、一括して打ち抜くことによりそのような問題を回避することができる。すなわち、吸収軸方向が精密に制御され、かつ、それぞれの中間体ごとの吸収軸方向のばらつきが非常に小さい(実質的に、ばらつきがない)偏光板中間体22を得ることができる。なお、打ち抜きの角度(原反ロールの長尺方向に対する角度)が45°以外にも目的に応じて適切に設定され得ることは当業者に自明である。当該角度は、位相差層付偏光板における偏光子の吸収軸と位相差層の遅相軸とのなす角度に相当する。
 上記のような斜め方向の打ち抜きは、代表的には、原反ロールの幅方向のエッジを検出し、検出した情報に基づいて打ち抜き刃の方向を調整し、方向を調整した打ち抜き刃で打ち抜くことにより行われ得る。
 打ち抜かれる偏光板中間体のサイズは、代表的には、位相差層中間体のサイズと同一である。したがって、得られる偏光板中間体は、例えば短辺75mm~310mm程度の矩形、また例えば長辺250mm~350mmおよび短辺150mm~250mm程度の矩形であり得る。このような構成であれば、後述するように、位相差層付偏光板中間体の作製が簡便容易であり、かつ、位相差層付偏光板中間体における偏光子の吸収軸と位相差層(位相差フィルム)の遅相軸との角度の制御が容易である。
D.位相差層付偏光板中間体作製工程
 次に、図3(a)に示すように、上記B項に記載のようにして得られた位相差層中間体12と、上記C項に記載のようにして得られた偏光板中間体22と、を貼り合わせて位相差層付偏光板中間体を得る。位相差層中間体と偏光板中間体とは、代表的には、それぞれの外縁が一致するようにして貼り合わせられる。位相差層中間体および偏光板中間体はいずれも、上記のとおり、軸方向が精密に制御され、かつ、それぞれの中間体ごとの軸方向のばらつきが非常に小さいので、それぞれの外縁が一致するようにして貼り合わせることにより、精密なおよび/またはデリケートな操作を行うことなく、位相差層付偏光板中間体における偏光子の吸収軸と位相差層の遅相軸との角度を良好に制御することができる。さらに、言うまでもなくこのような操作は簡便容易であるので、位相差層付偏光板中間体の作製自体が簡便容易である。このようにして、位相差層が長辺方向に遅相軸を有し、かつ、偏光子の吸収軸と位相差層の遅相軸とのなす角度が45°である位相差層付偏光板中間体を得ることができる。
E.最終工程
 次に、図3(b)および図3(c)に示すように、上記D項に記載のようにして得られた位相差層付偏光板中間体30を打ち抜き、位相差層付偏光板片(最終製品としての位相差層付偏光板)32を得る。打ち抜きは、代表的には、位相差層付偏光板中間体の長辺方向に対して45°方向に行われる。その結果、図3(c)に示すように、偏光子が長辺方向に吸収軸を有し、かつ、偏光子の吸収軸と位相差層の遅相軸とのなす角度が45°である位相差層付偏光板片(最終製品としての位相差層付偏光板)を得ることができる。上記のとおり、位相差層付偏光板中間体において、偏光子の吸収軸と位相差層の遅相軸との角度は良好に制御されている。したがって、位相差層付偏光板中間体30から位相差層付偏光板片32を作製する際に、軸ずれを補正しながら打ち抜く必要がない。その結果、本発明の実施形態においては、例えば格子状の打ち抜き刃を用いることにより、図3(b)に示すように、複数の位相差層付偏光板片を一括して打ち抜くことができる。このように複数の位相差層付偏光板片を一括して打ち抜くことにより、優れた製造効率を実現することができる。さらに、1枚ごとに斜め方向に(位相差層付偏光板中間体の長辺方向に対して所定角度の方向に)打ち抜くと、位相差層付偏光板中間体に軸ずれが存在しなくても打ち抜いた最終製品ごとに軸方向のばらつきが出る場合があるところ、一括して打ち抜くことによりそのような問題を回避することができる。すなわち、吸収軸方向および遅相軸方向が精密に制御され、かつ、それぞれの製品ごとのそれらのばらつきが非常に小さい(実質的に、ばらつきがない)位相差層付偏光板片32を得ることができる。
 上記のような斜め方向の打ち抜きは、代表的には、位相差層付偏光板中間体のエッジを検出し、検出した情報に基づいて打ち抜き刃の方向を調整し、方向を調整した打ち抜き刃で打ち抜くことにより行われ得る。好ましくは、位相差層付偏光板中間体の長辺および短辺の2つのエッジを検出する。このような構成であれば、より精密な打ち抜きを行うことができる。
 以上のようにして、位相差層付偏光板片(最終製品としての位相差層付偏光板)32が得られ得る。得られる位相差層付偏光板片は、例えば長辺10mm~70mmおよび短辺10mm~70mm程度、また例えば長辺20mm~40mmおよび短辺10mm~30mm程度、より詳細には長辺30mmおよび短辺20mm程度の矩形であり得る。このような位相差層付偏光板片は、例えばVRゴーグル用の円偏光板として用いられ得る。
 本発明の実施形態によれば、従来と全く異なる製造プロセスを採用することにより、偏光子の吸収軸方向および位相差層の遅相軸方向がきわめて精密に制御された位相差層付偏光板を効率的に製造することができる。特に、非常に小型の位相差層付偏光板の製造において、その効果が顕著である。具体的には以下のとおりである。従来の製造方法においては、代表的には、位相差フィルムの原反ロールから原反ロールの長尺方向に対して斜め方向(例えば、45°方向)に位相差フィルムが打ち抜かれ、偏光板の原反ロールから原反ロールの長尺方向に偏光板が打ち抜かれる。このようにすれば歩留まりが高くなり、かつ、従来のサイズの位相差層付偏光板においては位相差層(位相差フィルム)の軸ずれの問題は深刻化しないからである。一方、非常に小型(例えば、VRゴーグル用:20mm×30mm程度のサイズ)の位相差層付偏光板を作製する場合、上記のような製造方法であれば、最終製品ごとの特性のばらつきが許容不可能に大きくなる場合がある。本発明の実施形態によれば、位相差フィルムの原反ロールから軸ずれを補正しながら位相差フィルムを打ち抜き、かつ、偏光板の原反ロールから原反ロールの長尺方向に対して斜め方向(例えば、45°方向)に偏光板を打ち抜くことにより、最終的に非常に小型の位相差層付偏光板を作製したとしても、偏光子の吸収軸方向および位相差層の遅相軸方向がきわめて精密に制御された位相差層付偏光板を得ることができる。この場合、原反ロールの廃棄部分は従来の製造方法よりも多くなるが、許容不可能な最終製品の数が圧倒的に少なくなるので、全体としての歩留まりは高くなる場合がある。あるいは、全体としての歩留まりが小さくなってしまう場合であっても、位相差層付偏光板の軸ずれは最終製品(例えば、VRゴーグル)を破壊しないと検知できないので、最終製品の品質担保として有用である。
 本発明の実施形態による製造方法は、位相差層付偏光板の製造に好適に用いられ、特に、非常に小型(例えば、VRゴーグル用)の位相差層付偏光板の製造に好適に用いられ得る。
 10  位相差フィルムの原反ロール
 12  位相差層中間体
 20  偏光板の原反ロール
 22  偏光板中間体
 30  位相差層付偏光板中間体
 32  位相差層付偏光板片(最終製品としての位相差層付偏光板)
 

Claims (4)

  1.  長尺方向に遅相軸を有する位相差フィルムの原反ロールを、該原反ロールの幅方向における該遅相軸の長尺方向に対するずれを補正しながら所定サイズに打ち抜き、長辺方向に遅相軸を有する枚葉の位相差層中間体を得ること;
     長尺方向に吸収軸を有する偏光板の原反ロールを、該位相差層中間体と同一サイズに打ち抜き、長辺方向に対して45°方向に吸収軸を有する枚葉の偏光板中間体を得ること;
     該位相差層中間体と該偏光板中間体とを外縁が一致するようにして貼り合わせ、偏光板の吸収軸と位相差層の遅相軸とのなす角度が45°である位相差層付偏光板中間体を得ること;および、
     該位相差層付偏光板中間体を打ち抜き、長辺方向に吸収軸を有する所定サイズの位相差層付偏光板片を得ること;
     を含む、位相差層付偏光板の製造方法。
  2.  前記位相差フィルムの原反ロールから、幅方向に3枚~16枚の前記位相差層中間体を得る、請求項1に記載の製造方法。
  3.  前記位相差層中間体および前記偏光板中間体が、短辺75mm~310mmの矩形である、請求項1または2に記載の製造方法。
  4.  前記位相差層付偏光板片が、長辺10mm~70mmおよび短辺10mm~70mmの矩形である、請求項3に記載の製造方法。
     
     
PCT/JP2023/014198 2022-05-26 2023-04-06 位相差層付偏光板の製造方法 WO2023228597A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-086284 2022-05-26
JP2022086284A JP2023173792A (ja) 2022-05-26 2022-05-26 位相差層付偏光板の製造方法

Publications (1)

Publication Number Publication Date
WO2023228597A1 true WO2023228597A1 (ja) 2023-11-30

Family

ID=88919018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014198 WO2023228597A1 (ja) 2022-05-26 2023-04-06 位相差層付偏光板の製造方法

Country Status (3)

Country Link
JP (1) JP2023173792A (ja)
TW (1) TW202413035A (ja)
WO (1) WO2023228597A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050128394A1 (en) * 2003-12-16 2005-06-16 Lee Man H. Liquid crystal display using compensating film and manufacturing method thereof
JP2013161031A (ja) * 2012-02-08 2013-08-19 Sumitomo Chemical Co Ltd 光学フィルムチップの切り出し装置、光学フィルムチップの製造システム及び光学フィルムチップの切り出し方法
JP2018525680A (ja) * 2015-08-21 2018-09-06 スリーエム イノベイティブ プロパティズ カンパニー 光軸を有する光学フィルム、並びにそれを処理するシステム及び方法
US20200122417A1 (en) * 2018-10-22 2020-04-23 Facebook Technologies, Llc Optical element fabrication with optical scanner feedback
WO2020196306A1 (ja) * 2019-03-28 2020-10-01 東洋紡株式会社 反射防止用円偏光板およびそれを用いた画像表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050128394A1 (en) * 2003-12-16 2005-06-16 Lee Man H. Liquid crystal display using compensating film and manufacturing method thereof
JP2013161031A (ja) * 2012-02-08 2013-08-19 Sumitomo Chemical Co Ltd 光学フィルムチップの切り出し装置、光学フィルムチップの製造システム及び光学フィルムチップの切り出し方法
JP2018525680A (ja) * 2015-08-21 2018-09-06 スリーエム イノベイティブ プロパティズ カンパニー 光軸を有する光学フィルム、並びにそれを処理するシステム及び方法
US20200122417A1 (en) * 2018-10-22 2020-04-23 Facebook Technologies, Llc Optical element fabrication with optical scanner feedback
WO2020196306A1 (ja) * 2019-03-28 2020-10-01 東洋紡株式会社 反射防止用円偏光板およびそれを用いた画像表示装置

Also Published As

Publication number Publication date
TW202413035A (zh) 2024-04-01
JP2023173792A (ja) 2023-12-07

Similar Documents

Publication Publication Date Title
KR102329379B1 (ko) 액정 패널 및 액정 표시 장치
US20200292739A1 (en) Image display apparatus and circularly polarizing plate to be used in the image display apparatus
WO2022097631A1 (ja) 曲面加工された偏光板およびその製造方法
JP2010026112A (ja) 光学フィルム、偏光板、液晶パネル、液晶表示装置および光学フィルムの製造方法
JP4754510B2 (ja) 偏光子の製造方法
CN111796354B (zh) 光学层叠体
WO2023228597A1 (ja) 位相差層付偏光板の製造方法
TWI667518B (zh) Liquid crystal panel and liquid crystal display device
WO2023228622A1 (ja) 位相差層中間体の製造方法および位相差層付偏光板の製造方法
TWI842907B (zh) 附有相位差層及硬塗層之偏光板之製造方法
KR102180525B1 (ko) 액정표시장치
JP2010286619A (ja) 光学フィルム、偏光板、液晶パネル、液晶表示装置および光学フィルムの製造方法
KR20170063964A (ko) 적층 광학 필름의 제조 방법 및 액정 패널의 제조 방법
WO2022181188A1 (ja) 積層体および画像表示パネルの製造方法
KR102531079B1 (ko) 연신 필름의 제조 방법 및 광학 적층체의 제조 방법
WO2024171829A1 (ja) 表示システムの製造方法および光学フィルム群
CN116018257B (zh) 带相位差层的偏振片的制造方法
WO2022074872A1 (ja) 位相差層付偏光板の製造方法
JP2024057834A (ja) 光学積層体の製造方法
KR20240092588A (ko) 편광자 및 그의 제조 방법과, 해당 편광자를 포함하는 광학 적층체 및 화상 표시 장치
TW202419933A (zh) 光學積層體
JP2024057837A (ja) 情報コード付シートの製造方法およびフィルムチップの製造方法
JP2024057835A (ja) マーク付フィルムチップの製造方法
JP2024057838A (ja) 情報コード付シート
TW202313344A (zh) 附相位差層之偏光板及使用其之圖像顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811475

Country of ref document: EP

Kind code of ref document: A1