WO2023228540A1 - ロボットハンド - Google Patents

ロボットハンド Download PDF

Info

Publication number
WO2023228540A1
WO2023228540A1 PCT/JP2023/011673 JP2023011673W WO2023228540A1 WO 2023228540 A1 WO2023228540 A1 WO 2023228540A1 JP 2023011673 W JP2023011673 W JP 2023011673W WO 2023228540 A1 WO2023228540 A1 WO 2023228540A1
Authority
WO
WIPO (PCT)
Prior art keywords
finger
finger structure
robot hand
carpal bone
inclined surface
Prior art date
Application number
PCT/JP2023/011673
Other languages
English (en)
French (fr)
Inventor
一晶 田中
Original Assignee
国立大学法人京都工芸繊維大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都工芸繊維大学 filed Critical 国立大学法人京都工芸繊維大学
Publication of WO2023228540A1 publication Critical patent/WO2023228540A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/08Gripping heads and other end effectors having finger members

Definitions

  • the present invention relates to a robot hand, and particularly to a robot hand equipped with a plurality of finger structures.
  • robot hands Devices called manipulators, robot hands, etc. (hereinafter collectively referred to as robot hands) equipped with multiple multi-joint finger structures have been developed and are being used at manufacturing sites.
  • robot hands imitating human hands have been increasingly used in non-conventional fields such as artificial hands, and the inventor of the present invention has proposed their use as remote communication tools.
  • the inventor of the present invention has already invented a robot hand suitable for a remote communication tool, but through further research, he discovered that when a person shakes hands with a robot hand, the person can feel the softness of the hand. We found that this flexibility is achieved by deforming the palm in its width direction. We also found that for this widthwise deformation of the palm, it is important that the fingers, specifically the metacarpals, are close to each other.
  • Patent Documents 1 to 3 robot hands whose fingers can be opened and closed have also been proposed.
  • a joint is provided inside the metacarpal bone of a finger, and the finger can be opened and closed using power from a motor.
  • Patent Document 2 the end of the finger on the wrist side is swingably supported, and a linear member made of a shape memory alloy is deformed to enable the finger to open and close.
  • Patent Document 3 the MP joint can be rotated around two axes, and individual fluid pressure cylinders are connected to each of them, and the fluid pressure of each is controlled to control the flexion/extension motion and opening/closing motion of the MP joint. This makes it possible.
  • the present invention has been made in view of the above problems, and its purpose is to provide a robot hand that has a simple configuration and can express the softness of a natural hand.
  • a robot hand in which a first finger structure and a second finger structure are arranged in parallel positions.
  • the second finger structure is supported so as to be swingable in a direction toward or away from the first finger structure, and is provided between the first finger structure and the second finger structure.
  • An elastic body is provided that generates a force that resists the force that causes the finger structure to approach the first finger structure side.
  • the elastic body when the second finger structure swings toward the first finger structure, the elastic body generates a force that resists the force. Therefore, when a human shakes hands with this robot hand and applies compressive force in the width direction to the palm part, the second finger structure swings toward the first finger structure, and the elastic body moves toward the first finger structure. Generates the power to resist. At this time, humans perceive the force generated by this elastic body as elasticity, and can feel the softness of a human hand.
  • the second finger structure is provided on the wrist side, and the second finger structure is close to or close to the first finger structure.
  • the carpal bone includes an opposing surface that faces the carpal bone, and the carpal bone includes an abutting surface that abuts the opposing surface, and the opposing surface is attached to the first finger structure on the side of the first finger structure. It has a first inclined surface that recedes toward the fingertips closer to the body.
  • the second finger structure is supported by the carpal bone so as to be able to swing toward or away from the first finger structure. Therefore, when a human shakes hands with this robot hand, the second finger structure swings so as to approach the first finger structure. Then, when the second finger structure swings by a predetermined angle, the first inclined surface of the second finger structure comes into contact with the contact surface of the carpal bone, and further swinging is restricted. This can prevent the second finger structure from swinging toward the first finger structure more than necessary.
  • the carpal bone supports the second finger structure so as to be swingable also on the palm side, and the first inclined surface is on the palm side.
  • the device is provided with a second inclined surface that recedes toward the fingertips as the palm side approaches the fingertips.
  • the second finger structure is supported by the carpal bone so as to be swingable toward the palm side. Therefore, in a robot hand in which the index finger and the little finger are the second finger structures having this configuration, it is possible to make the user feel the softness of the palm described above. Further, since a part of the first inclined surface of the second finger structure is formed as a second inclined surface, when the second finger structure swings toward the palm side by a predetermined angle, the second finger structure The second inclined surface of the body contacts the contact surface of the carpal bone, and further rocking is restricted. This can prevent the second finger structure from swinging toward the palm side more than necessary.
  • the robot hand has flexibility and is provided between the carpal bone and the wrist side end member of the second finger structure.
  • a rod-shaped or cylindrical support member is provided, and a flexible cylindrical or rod-shaped support member is provided on the back side of the hand and/or the palm side, and extends over the wrist side end member of the second finger structure and the carpal bone.
  • a rotation regulating member is provided.
  • FIG. 2 is a perspective view of a robot hand.
  • FIG. 2 is an exploded perspective view of a finger structure of a robot hand.
  • FIG. 3 is a side sectional view of the finger structure.
  • It is a top view of a carpal bone
  • (b) is a perspective view of a carpal bone.
  • FIG. 3 is a diagram of the robot hand viewed from the wrist side in the direction of the axis of the middle finger.
  • (a) A plan view of the rear main body of the metacarpal bones of the index finger (b) a plan view of the rear main bodies of the metacarpal bones of the middle and ring fingers, and (c) a plan view of the rear main body of the metacarpal bones of the little finger.
  • FIG. 3 is a plan view of the robot hand in a state of shaking hands. It is a side view of the robot hand shaking hands.
  • 1 is a plan view of an embodiment of a robot hand according to the present invention.
  • FIG. 1 is a perspective view of the robot hand H in this embodiment.
  • finger structures F1, F2, F3, and F4 corresponding to the index finger, middle finger, ring finger, and little finger are shown, and the finger structure corresponding to the thumb is omitted.
  • index finger F1, middle finger F2, ring finger F3, and little finger F4 when distinguishing each finger structure F, it may be written as index finger F1, middle finger F2, ring finger F3, and little finger F4.
  • the fingertip side and wrist side are referred to as the front and back, respectively
  • the back side and palm side of the finger structure F are referred to as upper and lower, respectively
  • the direction connecting the fingertip side and the wrist side is referred to as the longitudinal direction, the up-down direction, and the longitudinal direction.
  • the orthogonal direction is sometimes referred to as the width direction. Therefore, a planar view means a directional view from the back of the hand.
  • FIGS. 2 and 3 the structure of the index finger F1 will be explained.
  • the other finger structures F are different in size from the index finger F1 but have substantially the same structure, so explanations of the middle finger F2, ring finger F3, and little finger F4 will be omitted.
  • the insertion tubular bodies 73, 74 and the tension spring 6, which will be described later, are omitted.
  • the finger structure F includes a metacarpal 1, a proximal phalanx 2, a middle phalanx 3, and a distal phalanx 4, and the end of the metacarpal 1 on the wrist side is attached to the carpal bone 5.
  • the metacarpal bones 1 and carpal bones 5 are covered with an elastic body corresponding to muscle or skin, and form a palm portion.
  • the carpal bones 5 that support the index finger F1, middle finger F2, ring finger F3, and little finger F4 are expressed as carpal bones 51, 52, 53, and 54, respectively. .
  • the metacarpal 1 includes an intermediate body part 11, a front body part 12 provided on the front side of the intermediate body part 11, a connecting piece 13 protruding from the front surface of the front body part 12, and a connecting piece 13 provided on the rear side of the intermediate body part 11.
  • a rear main body portion 14 is provided. Both the front main body part 12 and the rear main body part 14 have a substantially rectangular parallelepiped shape.
  • the intermediate main body part 11 has a rod shape that is thinner than these, and is connected to the approximate center of the rear surface of the front main body part 12 and the approximate center of the front surface of the rear main body part 14.
  • the connecting piece 13 has a plate shape that is slightly thick in the width direction, and is provided approximately at the center of the front surface of the front main body portion 12 . Furthermore, an insertion hole 13a is formed near the front end of the connecting piece 13, passing through in the width direction.
  • An upper front groove 12a and an upper rear groove 12b are formed at the front end and rear end of the upper surface of the front body part 12, respectively, and a lower front groove 12c and a lower rear groove 12d are formed at the front end and rear end of the lower surface, respectively. It is formed. Further, an upper insertion hole 12e that communicates with the upper front groove portion 12a and the upper rear groove portion 12b, and a lower insertion hole 12f that communicates with the lower front groove portion 12c and the lower rear groove portion 12d are formed.
  • An upper front groove 14a and an upper rear groove 14b are formed at the front end and rear end of the upper surface of the rear body portion 14, respectively, and a lower front groove 14c and a lower rear groove 14d are formed at the front end and rear end of the lower surface, respectively. It is formed. Further, an upper insertion groove 14e that is narrower than the upper front groove portion 14a and the upper rear groove portion 14b and communicates with the upper front groove portion 14a and the upper rear groove portion 14b is formed. Furthermore, a lower insertion groove 14f that is narrower than the lower front groove portion 14c and the lower rear groove portion 14d and communicates with the lower front groove portion 14c and the lower rear groove portion 14d is formed.
  • connection hole 14g used for connection with the carpal bone 5, which will be described later, is formed. There is. Furthermore, a screw hole 14h that reaches the connection hole 14g is formed on one side of the rear main body portion 14.
  • the proximal phalanx 2 is a substantially rectangular parallelepiped-shaped member whose length in the vertical direction and length in the width direction are substantially the same as the front body portion 12.
  • a notch 21 is formed at the rear end of the proximal phalanx 2, extending from the upper surface to the lower surface.
  • Bearing support holes 21a into which the bearings B2 are fitted are formed on both sides of the proximal phalanx 2 where the notches 21 are formed.
  • a connecting piece 22 that protrudes forward is provided substantially inside the front surface of the proximal phalanx 2 .
  • this connecting piece 22 is also plate-shaped with a slight thickness in the width direction, and an insertion hole 22a penetrating in the width direction is formed near the front end thereof.
  • a superior anterior groove portion 2a and a superior posterior groove portion 2b are formed at the front end of the upper surface of the proximal phalanx 2 and in front of the notch 21, respectively.
  • a lower anterior groove 2c and a lower posterior groove 2d are similarly formed on the lower surface of the proximal phalanx 2 at the front end and in front of the notch 21.
  • an upper insertion hole 2e that communicates with the upper front groove 2a and the upper rear groove 2b, and a lower insertion hole 2f that communicates with the lower front groove 2c and the lower rear groove 2d are formed.
  • the middle phalanx 3 is a substantially rectangular parallelepiped member whose length in the vertical direction and length in the width direction is substantially the same as that of the proximal phalanx 2, and whose length in the longitudinal direction is shorter than that of the proximal phalanx 2.
  • a notch 31 extending from the upper surface to the lower surface is formed at the rear end of the middle phalanx 3.
  • Bearing support holes 31a into which the bearing B3 is fitted are formed on both sides of the middle phalanx 3 where the notch 31 is formed.
  • a connecting piece 32 that protrudes forward is provided approximately at the center of the front surface of the middle phalanx 3.
  • this connecting piece 32 is also plate-shaped with a slight thickness in the width direction, and an insertion hole 32a penetrating in the width direction is formed near the front end thereof.
  • a superior anterior groove 3a and a superior posterior groove 3b are formed at the front end of the upper surface of the middle phalanx 3 and in front of the notch 31, respectively.
  • a lower anterior groove 3c and a lower posterior groove 3d are similarly formed on the lower surface of the middle phalanx 3 at the front end and in front of the notch 31.
  • an upper insertion hole 3e communicating with the upper front groove 3a and the upper rear groove 3b, and a lower insertion hole 3f communicating with the lower front groove 3c and the lower rear groove 3d are formed.
  • the distal phalanx 4 has almost the same shape as the middle phalanx, but differs in that the front end is arcuate in side view.
  • a notch 41 extending from the upper surface to the lower surface is formed at the rear end of the distal phalanx 4.
  • Bearing support holes 41a into which the bearings B4 are fitted are formed on both sides of the distal phalanx 4 where the notches 41 are formed.
  • a superior anterior groove portion 4a and a superior posterior groove portion 4b are formed at the front end of the upper surface of the distal phalanx 4 and in front of the notch 41, respectively.
  • a lower anterior groove 4c and a lower posterior groove 4d are similarly formed on the lower surface of the distal phalanx 4 at the front end and in front of the notch 41.
  • an upper insertion hole 4e communicating with the upper front groove part 4a and the upper rear groove part 4b, and a lower insertion hole 4f communicating with the lower front groove part 4c and the lower rear groove part 4d are formed.
  • the carpal bone 5 is a substantially rectangular parallelepiped member, is connected to the rear body portion 14 of the metacarpal bone 1, and has the function of supporting the finger structure F.
  • An upper insertion groove 5a and a lower insertion groove 5b are formed on the upper and lower surfaces of the carpal bone 5, respectively.
  • the width of the upper insertion groove 5a is slightly larger than the width of the superior posterior groove 14b of the posterior body 14 of the metacarpal 1
  • the width of the lower insertion groove 5b is slightly larger than that of the inferior posterior groove 14d of the posterior body 14 of the metacarpal 1. It is slightly larger than the width.
  • a connection hole used for connection with the finger structure F is provided at the center of the end surface of the carpal bone 5 facing the finger structure F (corresponding to the contact surface in the present invention. Hereinafter referred to as the contact surface 5c). 5d is formed. Further, a screw hole 5e is formed on one side of the carpal bone 5, reaching the connection hole 5d.
  • the carpal bone 5 has a substantially rectangular parallelepiped shape, but both side surfaces are sloped surfaces that recede inward toward the wrist. That is, in plan view, the carpal bone 5 has an isosceles trapezoid shape with the wrist side being the short side. In this embodiment, the inclination angle of each inclined surface is 5°. Therefore, as shown in FIG. 7, the four carpal bones 51, 52, 53, and 54 for supporting the four finger structures F1, F2, F3, and F4 are arranged so that their adjacent sides are parallel to each other. When placed, it becomes fan-shaped. In addition, as shown in FIG. 5, in this embodiment, the four carpal bones 51, 52, 53, and 54 are not arranged in parallel in a plane, but in a convex shape with the carpal bone 52 closest to the back of the hand. It is placed.
  • the bearings B2, B3, and B4 are fitted into the respective bearing support holes 21a, 31a, and 41a, respectively.
  • the connecting piece 13 of the metacarpal bone 1 is positioned inside the notch 21 so that the shaft hole of the pair of bearings B2 and the insertion hole 13a are concentric, and
  • the support shaft C2 is inserted through the support shaft C2.
  • the proximal phalanx 2 can rotate about the rotation axis A2, and the MP joint 92 is formed.
  • the connecting piece 22 of the proximal phalanx 2 is positioned inside the notch 31 so that the shaft hole of the pair of bearings B3 and the insertion hole 22a are concentric, and and insert the support shaft C3.
  • the middle phalanx 3 can rotate around the rotation axis A3, and a PIP joint 93 is formed.
  • the connecting piece 32 of the middle phalanx 3 is positioned inside the notch 41 so that the shaft hole of the pair of bearings B4 and the insertion hole 32a are concentric, and and insert the support shaft C4. Thereby, the distal phalanx 4 can rotate about the rotation axis A4, and a DIP joint 94 is formed.
  • the finger structure F assembled in this way is connected to the carpal bone 5.
  • the finger structure F and the carpal bone 5 are connected using a tension spring 6 (an example of a support member in the present invention), but instead of this, a flexible rod-shaped body or a cylindrical body is used. etc. can be used.
  • the tension spring 6 is inserted into the connection hole 14g of the rear body portion 14 of the metacarpal bone 1 of the finger structure F, and the fixing screw 71 is screwed into the screw hole 14h. Press the part. By pressing the fixing screw 71, it is possible to prevent the tension spring 6 and the finger structure F from rotating relative to each other.
  • the fixing screw 72 is screwed into the screw hole 5e, and the side of the tension spring 6 is pressed by the fixing screw 72.
  • the fixing screws 71 and 72 can prevent the finger structure F from rotating around the axis of the tension spring 6 with respect to the carpal bone 5.
  • the insertion tubular body 73 (an example of the rotation regulating member in the present invention) is arranged from the upper insertion groove 5a of the carpal bone 5 to the superior and posterior groove part 14b of the rear main body part 14 of the metacarpal bone 1.
  • an insertion tubular body 74 (an example of a rotation regulating member in the present invention) is arranged from the lower insertion groove 5b of the carpal bone 5 to the inferior posterior groove 14d of the rear main body 14 of the metacarpal 1.
  • These insertion tubular bodies 73 and 74 are flexible and do not inhibit the finger structure F from swinging relative to the carpal bone 5. Further, these insertion tubular bodies 73 and 74 can also prevent the finger structure F from rotating with respect to the carpal bone 5.
  • the insertion tubular bodies 73 and 74 can be used as passages for the wire. If such a wire is not provided, the insertion tubular bodies 73 and 74 may be rod-shaped bodies instead of tubular bodies.
  • the outer diameter of the tubular body 73 for insertion is approximately the same as the width of the superior posterior groove 14b of the posterior body portion 14 of the metacarpal 1
  • the outer diameter of the tubular body 74 for insertion is approximately the same as the width of the superior posterior groove portion 14b of the posterior body portion 14 of the metacarpal bone 1.
  • the width is approximately the same as the width of the lower rear groove portion 14d. Therefore, the insertion tubular bodies 73 and 74 have play with respect to the upper insertion groove 5a and the lower insertion groove 5b of the carpal bone 5, respectively.
  • the insertion tubular bodies 73 and 74 can be displaced relative to the upper insertion groove 5a and the lower insertion groove 5b, respectively, so that the finger structures Body F is more likely to swing.
  • the finger structure F in this embodiment can bend/extend each joint using wires. Therefore, as shown in FIG. 3, the extension wire W1 is transmitted from an actuator (not shown) to the insertion tubular body 73, the upper insertion groove 14e of the rear body part 14 of the middle phalanx 1, and the front body part 12 of the metacarpal bone 1. It is inserted through the upper insertion hole 12e of the proximal phalanx 2, the upper insertion hole 2e of the proximal phalanx 2, the upper insertion hole 3e of the middle phalanx 3, and the upper insertion hole 4e of the distal phalanx 4, and is fixed to the bottom surface of the upper front groove 4a of the distal phalanx 4. has been done.
  • By operating the actuator and applying a tensile force to the extension wire W1 force in the extension direction is applied to the MP joint 92, PIP joint 93, and DIP joint 94, and the finger structure F can be extended.
  • the bending wire W2 is connected from an actuator (not shown) to the insertion tubular body 74, the lower insertion groove 14f of the rear body part 14 of the metacarpal 1, the lower insertion hole 12f of the front body part 12 of the metacarpal 1, and the base. It is inserted through the lower insertion hole 2f of the phalanx 2, the lower insertion hole 3f of the middle phalanx 3, and the lower insertion hole 4f of the distal phalanx 4, and is fixed to the bottom surface of the inferior anterior groove 4c of the distal phalanx 4.
  • force in the bending direction acts on the MP joint 92, PIP joint 93, and DIP joint 94, and the finger structure F can be bent.
  • a tubular body for insertion may be provided at each joint portion as well.
  • a tension spring may be provided above the MP joint 92, the PIP joint 93, and the DIP joint 94, or a compression spring may be provided below.
  • a compression spring may be provided above the MP joint 92, the PIP joint 93, and the DIP joint 94, or a tension spring may be provided below. In this way, when a spring is provided at the joint, the extension wire W1 and the bending wire W2 may be inserted into the spring.
  • the finger structures F1, F2, F3, and F4 basically have the same configuration, but the shape of the rear body portion 14 of the metacarpal bone 1 is slightly different, so here, the rear body portion 14 specific shapes will be explained.
  • 6(a), (b), and (c) are views of the rear body portions 14 of the little finger F4, middle finger F2, ring finger F3, and index finger F1, respectively, viewed from the back side of the hand, and the right side in the figure is the wrist side. .
  • FIG. 6(a) shows the rear main body portion 14 of the index finger F1
  • FIG. 6(c) shows the rear main body portion 14 of the little finger F4.
  • the shapes of the opposing surfaces 14i are different. Specifically, in the rear main body portion 14 of the little finger F4, a portion of the opposing surface 14i on the ring finger F3 side (lower side in the figure) has an inclined surface (main) that recedes toward the fingertip (left side in the figure) as the ring finger F3 side approaches. This corresponds to the first inclined surface in the invention (hereinafter referred to as the first inclined surface 14j).
  • a portion of the opposing surface 14i on the middle finger F2 side is an inclined surface (corresponding to the first inclined surface in the present invention) that recedes toward the fingertip as the middle finger F2 approaches.
  • the first inclined surface 14j will be referred to as the first inclined surface 14j.
  • the inclination angle of the first inclined surface 14j of the index finger F1 and little finger F4 is 15 degrees.
  • two inclined surfaces are formed on the opposing surfaces 14i.
  • the upper part of the opposing surface 14i in the figure is an inclined surface that recedes toward the fingertip as it goes higher
  • the lower part in the figure is an inclined surface.
  • the side) part is a sloped surface that recedes toward the fingertips as it goes lower.
  • These inclined surfaces also correspond to the first inclined surfaces in the present invention, and are referred to as first inclined surfaces 14j.
  • the inclination angle of the first inclined surface 14j of the middle finger F2 and the ring finger F3 is 5°.
  • the finger structures F can swing so as to approach each other.
  • the finger structure F swings by a predetermined angle (the inclination angle of the first inclined surface 14j)
  • the first inclined surface 14j comes into contact with the contact surface 5c of the carpal bone 5. This restricts further rocking of the finger structures F, and prevents the finger structures F from coming closer than necessary.
  • FIGS. 6(d) and (e) are side views of the rear main body portions 14 of the little finger F4 and the index finger F1, viewed from the ring finger F3 side and from the middle finger F2 side, respectively.
  • the part of the first inclined surface 14j on the palm side is an inclined surface (corresponding to the second inclined surface in the present invention) that recedes toward the fingertips as the palm side approaches. (referred to as a second inclined surface 14k).
  • the inclination angle of the second inclined surface 14k is 10°.
  • the index finger F1 and the little finger F4 can swing toward the middle finger F2 and the ring finger F3, respectively, and can also swing toward the palm side.
  • the second inclined surface 14k comes into contact with the contact surface 5c of the carpal bone 5. This restricts further rocking of the finger structure F.
  • FIG. 7 is a diagram schematically showing the concept of the robot hand according to the present invention.
  • the figure shows the robot hand H seen from the back of the hand.
  • the four carpal bones 51, 52, 53, 54 are arranged in a fan shape in plan view, and each of the carpal bones 51, 52, 53, 54 has an index finger F1, a middle finger F2, a ring finger F3, Little finger F4 is supported.
  • the tension spring 6 is in a straight state, and the carpal bone 5 and the finger structure F are coaxial.
  • the portion of the opposing surface 14i of the rear body portion 14 of the index finger F1 where the first inclined surface 14j is not formed comes into contact with the contact surface 5c of the carpal bone 51, and is in a posture farthest from the middle finger F2.
  • the little finger F4 has a portion of the facing surface 14i of the rear body portion 14 where the first inclined surface is not formed in contact with the contact surface 5c of the carpal bone 54, and is in a posture farthest from the ring finger F3.
  • the portion of the opposing surface 14i of the rear body portion 14 where the first inclined surface is not formed is in contact with the contact surface 5c of the carpal bone 5.
  • the posture in which the finger structures F are separated from each other in this manner is the initial posture of the robot hand H in this embodiment.
  • an elastic body 8 is provided between adjacent finger structures F.
  • the elastic body 8 is provided between the metacarpals 1 of adjacent finger structures F.
  • this elastic body 8 When a force (force in the closing direction) is applied to the adjacent finger structures F, this elastic body 8 generates a force (force in the opening direction) in a direction that resists the force.
  • the two adjacent finger structures F correspond to a first finger structure and a second finger structure in the present invention.
  • the middle finger F2 is the first finger structure.
  • the middle finger F2 is the second finger structure
  • the index finger F1 or the ring finger F3 is the first finger structure.
  • the robot hand H is covered with an elastic material such as silicone resin that corresponds to skin and muscles, and the metacarpal bones 1 constitute the palm portion.
  • a compressive force acts on the palm portion in the width direction. That is, a force in the closing direction acts on the finger structure F, particularly on the metacarpal bone 1.
  • a rocking force acts on the index finger F1 toward the middle finger F2 and on the little finger F4 toward the ring finger F3. This force causes the tension spring 6 to bend, causing the index finger F1 and little finger F4 to swing close to the middle finger F2 and ring finger F3, respectively.
  • This swinging force is transmitted to the middle finger F2 and the ring finger F3 via the elastic body 8 provided between the index finger F1 and the middle finger F2 and the elastic body 8 provided between the little finger F4 and the ring finger F3, respectively.
  • the middle finger F2 and the ring finger F3 also swing toward each other (see FIG. 8).
  • the elastic body 8 generates a force that resists the force in the closing direction.
  • the person who shakes hands with robot hand H feels elasticity. This makes it possible to realize a robot hand H that more closely resembles the feel of a human hand when shaking hands.
  • the four carpal bones 51, 52, 53, and 54 are arranged so as to convex toward the back of the hand, so when a person shakes hands with the robot hand H, the index finger F1 and little finger F4 A force that displaces it toward the palm side is more likely to act on it.
  • This force becomes a force that causes the metacarpal bone 1 of the index finger F1 and the metacarpal bone 1 of the little finger F4 to swing toward the palm side with respect to the carpal bone 51 and the carpal bone 54, respectively.
  • the index finger F1 and the little finger F4 can swing toward the palm side, as shown in FIG. Note that this swinging is also realized by the tension spring 6 being bent.
  • FIG. 10 shows a robot hand H using urethane gel as the elastic body 8.
  • a sheet-like urethane gel 100 is wrapped around the metacarpal bone 1 of each finger structure F, particularly around the intermediate body portion 11.
  • an elastic body 8 made of urethane gel is provided between the metacarpal bones 1 of adjacent finger structures F.
  • the effects of the elastic body 8 made of urethane gel are as described above. Note that a configuration in which the urethane gel 100 is not provided may also be used.
  • a compression spring, a torsion spring, or any other elastic body other than urethane gel may be used as the elastic body 8.
  • the finger structure F is supported on the carpal bone 5 using a flexible rod-like body or cylinder like the tension spring 6, but other methods may be used as exemplified below. Also, the finger structure F can be supported on the carpal bone 5.
  • a plate spring is used in place of the tension spring 6.
  • the leaf spring is arranged so that the finger structure F to be supported can swing toward/away from the adjacent finger structure F. Therefore, with this configuration, the finger structure F cannot swing toward the palm side.
  • a universal joint is used in place of the tension spring 6.
  • the finger structure F can swing in any direction.
  • the universal joint does not have a restoring force like the tension spring 6, the finger structures F can return to the positions separated from each other by the elastic restoring force of the elastic body 8.
  • a separate mechanism is required in order to return the finger structure F that has swung toward the palm side to the back side of the hand.
  • the bearing and the shaft are arranged so that the supported finger structure F can swing toward and away from the adjacent finger structure F. Therefore, with this configuration, the finger structure F cannot swing toward the palm side. Further, when a bearing and a shaft are used, the finger structures F can be returned to the positions separated from each other by the elastic return force of the elastic body 8, as in the case where a universal joint is used.
  • connection part a support piece is provided that protrudes rearward from the rear body portion 14, and a support hole is provided in the carpal bone 5, which is slightly larger than the outer shape of the support piece and into which the support piece is inserted and supported.
  • the finger structure F can swing relative to the carpal bone 5.
  • the elastic restoring force of the elastic body 8 allows the finger structures F to return to the positions separated from each other.
  • the carpal bone 5 supports the finger structure F so that the finger structure F can swing relative to the carpal bone 5, but it is supported so that the finger structure F cannot swing relative to the carpal bone 5.
  • at least the metacarpal 1, particularly the intermediate body portion 11 may be formed of a flexible material.
  • the intermediate body part 11 is not rod-shaped but plate-shaped, the thickness direction is made to match the width direction, and the intermediate body part 11 is arranged so that the finger structures F are close to each other or adjacent finger structures F. Make it bend in the direction of separation. Even with this configuration, when a person shakes hands with the robot hand H, the person can feel the elasticity.
  • the robot hand H when a human shakes hands with the robot hand H, the user can feel the elasticity of the palm, and can feel more like shaking hands with a human hand.
  • the present invention can be used, for example, in remote communication systems.
  • a robot hand H according to the present invention and a monitor are installed at a location 1 where a user 1 is located, and a sensor and a camera such as a data glove that can detect hand movements are installed at a location 2 where a user 2 is located. and set up.
  • the image taken by the camera at point 2 is displayed on the monitor at point 1, and user 1 can visually recognize user 2.
  • the sensor detects the movement of grasping user 2's hand that information is reflected in the movement of robot hand H at point 1, and robot hand H moves the joints of each finger F to grasp user 1's hand. bend.
  • the present invention can also be used as an object grasping/manipulating system in, for example, a distribution/production line.
  • an object to be grasped and manipulated is placed in a work space in a distribution/production line, and a camera is installed to photograph the robot hand H and the work space.
  • the robot hand H automatically performs operations such as moving objects and attaching parts according to preprogrammed operations based on camera images.
  • a worker at a remote location operates the robot hand H while viewing a camera image displayed on a monitor to grasp and manipulate the object.
  • the robot hand H is operated in accordance with the information.
  • the metacarpal 1 can swing in the opening/closing direction (the direction in which the fingers move apart/approach each other) and in the bending direction (toward the palm side). Therefore, when the robot hand H grasps an object, the metacarpal bones 1 of each finger swing according to the shape of the object. As a result, the fingers and palm portion of the robot hand H can easily come into close contact with the object, and the robot hand H can firmly grasp the object.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Prostheses (AREA)

Abstract

簡易な構成で、自然な手の柔らかさを表現し得るロボットハンドを提供する。ロボットハンドHは、第1の指構造体F2と、第2の指構造体F1と、を並列する位置に配置している。第2の指構造体F1は、第1の指構造体F1に対して近接または離間する方向に揺動可能に支持されている。第1の指構造体F2と第2の指構造体F1との間には、第2の指構造体F1を第1の指構造体F2側に近接させる力に抗う力を生じさせる弾性体8が設けられている。

Description

ロボットハンド
 本発明は、ロボットハンド、特に、複数の指構造体を備えたロボットハンドに関する。
 多関節の指構造体を複数備えたマニピュレータやロボットハンド等(以下、ロボットハンドと総称する)と呼ばれる機器が開発され、製造現場等で使用されている。近年、人間の手を模したロボットハンドは、義手等の従来とは異なった分野への使用が広がっており、本発明の発明者は遠隔コミュニケーションツールとしての使用を提案している。
 本発明の発明者は、既に遠隔コミュニケーションツールに適したロボットハンドを発明しているが、さらなる研究を重ねるうちに、人がロボットハンドと握手した際に、人が手の柔らかさを感じることが重要であり、その柔らかさは掌がその幅方向に変形することによって実現されているという知見を得た。また、この掌部分の幅方向の変形は、指どうし、具体的には中手骨どうしが近接することが重要であるという知見も得た。
 しかしながら、従来の人間の手を模したロボットハンドでは、指は屈曲/伸展はするが、開閉(指同士が離間/近接)しないものが多く、たとえ、その表面が弾性部材で覆われていたとしても、その弾性部材の変形のみでは人間の手の柔らかさとは異なったものであるため、不自然さを与えてしまう。
 一方、特許文献1から3に示すように、指が開閉可能なロボットハンドも提案されている。特許文献1では、指の中手骨の内部にジョイントを設け、モータの動力によって指の開閉動作を可能としている。特許文献2では、指の手首側の端部を揺動可能に支持し、形状記憶合金製の線状部材を変形させることによって指の開閉動作を可能としている。特許文献3では、MP関節を2軸回りの回動を可能とし、それぞれに対して個別の流体圧シリンダを接続し、それぞれの流体圧を制御することによりMP関節の屈曲/伸展動作と開閉動作とを可能としている。
特開2003-117873号公報 特開2004-106115号公報 特開2010-264546号公報
 上述したように、特許文献1から3のロボットハンドのように、指が開閉可能であれば、人がロボットハンドを握った際に、指が閉じる、すなわち、指どうしが近接するように指を駆動することにより多少の柔らかさを感じさせることができる。しかしながら、これらのロボットハンドでは、人が握ったことを検知し、その握る力に応じて指を閉駆動する必要があるため、指を駆動するタイミングや速さ等に少しでもズレが生じると、違和感を生じてしまるため好ましくない。また、指を駆動するための構成が必要であるため、構造が複雑化するという問題もある。
 本発明は上記課題に鑑みてなされたものであり、その目的は、簡易な構成で、自然な手の柔らかさを表現し得るロボットハンドを提供することにある。
 上記課題を解決するために、本発明に係る、第1の指構造体と、第2の指構造体と、を並列する位置に配置したロボットハンドは、前記第2の指構造体は、前記第1の指構造体に対して近接または離間する方向に揺動可能に支持され、前記第1の指構造体と前記第2の指構造体との間には、前記第2の指構造体を前記第1の指構造体側に近接させる力に抗う力を生じさせる弾性体が設けられている。
 この構成では、第2の指構造体が第1の指構造体側に近接するように揺動すると、弾性体がその力に抗う力を生じさせる。そのため、人間がこのロボットハンドと握手をし、掌部分に幅方向の圧縮力を加えると、第2の指構造体が第1の指構造体側に近接するように揺動し、弾性体がそれに抗う力を生じさせる。このとき、人間はこの弾性体によって生じる力を弾力性として知覚し、人間の手のような柔らかさを感じることができる。
 本発明に係るロボットハンドの好適な実施形態の一つでは、前記第2の指構造体の手首側に設けられ、前記第2の指構造体が前記第1の指構造体に対して近接または離間する方向に揺動可能となるように、前記第2の指構造体の手首側端部部材を支持する手根骨を備え、前記第2の指構造体の前記手首側端部部材は、前記手根骨に対向する対向面を備え、前記手根骨は、前記対向面に当接する当接面を備え、前記対向面は、前記第1の指構造体側に、当該第1の指構造体側ほど指先側に引退する第1傾斜面を備えている。
 この構成では、第2の指構造体は、第1の指構造体に対して近接または離間する方向に揺動可能に、手根骨に支持されている。そのため、人間がこのロボットハンドと握手をすると、第2の指構造体が第1の指構造体に近接するように揺動する。そして、第2の指構造体が所定の角度揺動すると、第2の指構造体の第1傾斜面が手根骨の当接面に当接し、それ以上の揺動が規制される。これにより、第2の指構造体が必要以上に第1の指構造体側に揺動することを防止することができる。
 本発明に係るロボットハンドの好適な実施形態の一つでは、前記手根骨は、前記第2の指構造体を手の平側にも揺動可能に支持し、前記第1傾斜面は、手の平側に、当該手の平側ほど指先側に引退する第2傾斜面を備えている。
 実際の人間の手は、握手した際には人差し指と小指は手の平側に揺動し、この揺動も掌の柔らかさを生じる一因となっている。そこで、この構成では、第2の指構造体は手の平側に揺動可能に手根骨に支持されている。そのため、人差し指や小指をこの構成を備えた第2の指構造体としたロボットハンドでは、上述の掌の柔らかさを感じさせることができる。また、第2の指構造体の第1傾斜面の一部が第2傾斜面として形成されているため、第2の指構造体が手の平側に所定の角度揺動すると、第2の指構造体の第2傾斜面が手根骨の当接面に当接し、それ以上の揺動が規制される。これにより、第2の指構造体が必要以上に手の平側に揺動することを防止することができる。
 本発明に係るロボットハンドの好適な実施形態の一つでは、前記手根骨と、前記第2の指構造体の前記手首側端部部材と、の間にわたって設けられた、可撓性を有する棒状または筒状の支持部材を備え、手の甲側および/または手の平側に、前記第2の指構造体の前記手首側端部部材と前記手根骨とにわたって、可撓性を有する筒状または棒状の回転規制部材が設けられている。
 上述のように、第2の指構造体が揺動可能に、手根骨に支持させる方法は様々なものがあるが、その一つが可撓性を有する棒状または筒状の支持部材によって第2の指構造体と手根骨とを接続する方法である。ただし、この場合には、第2の指構造体と手根骨とが相対的に回転するおそれがある。そのため、上述の構成では、手の甲側および/または手の平側に、第2の指構造体の手首側端部部材と手根骨とにわたって、可撓性を有する筒状または棒状の回転規制部材を設けることにより、この相対回転を防止している。なお、指構造体の伸展/屈曲させるためにワイヤを用いる場合には、この回転規制部材を筒状とし、ワイヤの通路として使用すると、ワイヤの保護やワイヤの絡まりの防止等ができ、好ましい。
ロボットハンドの斜視図である。 ロボットハンドの指構造体の分解斜視図である。 指構造体の側断面図である。 (a)手根骨の平面図であり、(b)手根骨の斜視図である。 ロボットハンドを手首側から中指の軸心方向に見た図である。 (a)人差し指の中手骨の後方本体部の平面図であり、(b)中指と薬指の中手骨の後方本体部の平面図であり、(c)小指の中手骨の後方本体部の平面図であり、(d)人差し指の中手骨の後方本体部の側面図であり、(e)小指の中手骨の後方本体部の側面図である。 本発明に係るロボットハンドの概念を模式的に表した図である。 握手した状態のロボットハンドの平面図である。 握手したロボットハンドの側面図である。 本発明に係るロボットハンドの実施形態における平面図である。
 以下に図面を用いて、本発明に係るロボットハンドを説明する。以下の図面では右手に相当するロボットハンドを表すが、左手の場合は指構造体Fの配置が逆順となる。なお、以下の説明においては、指の付け根(MP関節近傍)から手首までの部分(指基底部,拇指球部,小指球部)を表す際には「掌部分」と表記し、手の裏表における裏(手の甲の反対側)を表す際には「手の平側」と表記している。
 図1は、本実施例におけるロボットハンドHの斜視図である。図では、人差し指、中指、薬指、小指に相当する指構造体F1,F2,F3,F4を表しており、親指に相当する指構造体は省略している。なお、以下の説明では、各々の指構造体Fを区別する際には人差し指F1,中指F2,薬指F3,小指F4と表記する場合がある。また、指先側および手首側をそれぞれ前、後ろと、指構造体Fの手の甲側および手の平側をそれぞれ上および下と、指先側と手首側とを結ぶ方向を長手方向、上下方向および長手方向に直交する方向を幅方向と、表記することがある。そのため、平面視とは手の甲側からの方向視を意味する。
 次に、図2および図3を用いて、指構造体Fの具体的な構造を説明する。ここでは人差し指F1の構造を説明する。他の指構造体Fは人差し指F1と大きさは異なるが構造は略同一であるため、中指F2,薬指F3および小指F4の説明は省略する。なお、図3では後述する挿通用管状体73,74および引張バネ6は省略している。
 図に示すように、指構造体Fは中手骨1,基節骨2,中節骨3,末節骨4を備えており、中手骨1の手首側の端部が手根骨5に支持されている。図には示していないが、中手骨1と手根骨5とは、筋肉や皮膚に相当する弾性体で被覆され、掌部分を形成している。なお、以下の説明において手根骨5を区別する際には、人差し指F1,中指F2,薬指F3および小指F4を支持する手根骨5をそれぞれ手根骨51,52,53,54と表記する。
 中手骨1は、中間本体部11,中間本体部11の前側に設けられた前方本体部12,前方本体部12の前面から突出する接続片13,中間本体部11の後ろ側に設けられた後方本体部14を備えている。前方本体部12および後方本体部14はいずれも略直方体状である。中間本体部11はそれらよりも細い棒状であり、前方本体部12の後面の略中央と、後方本体部14の前面の略中央とに接続されている。接続片13は、幅方向に少し厚みのある板状であり、前方本体部12の前面の略中央に設けられている。また、接続片13の前端部近傍には幅方向に貫通する挿通孔13aが形成されている。
 前方本体部12の上面の前端部および後端部にはそれぞれ上前溝部12aおよび上後溝部12bが形成され、下面の前端部および後端部にはそれぞれ下前溝部12cおよび下後溝部12dが形成されている。また、上前溝部12aと上後溝部12bとに連通する上部挿通孔12e、および、下前溝部12cと下後溝部12dとに連通する下部挿通孔12fが形成されている。
 後方本体部14の上面の前端部および後端部にはそれぞれ上前溝部14aおよび上後溝部14bが形成され、下面の前端部および後端部にはそれぞれ下前溝部14cおよび下後溝部14dが形成されている。また、上前溝部14aと上後溝部14bとに連通する、それらよりも細い上部挿通溝14eが形成されている。さらに、下前溝部14cと下後溝部14dとに連通する、それらよりも細い下部挿通溝14fが形成されている。
 後方本体部14の前方の端面(本発明における対向面に相当。以下、対向面14iと称する。)の中央には、後述する手根骨5との接続に用いられる接続穴14gが形成されている。また、後方本体部14の一方の側面には接続穴14gにまで達するネジ穴14hが形成されている。
 基節骨2は、上下方向長さおよび幅方向長さが前方本体部12と略同一の略直方体状の部材である。基節骨2の後端部には上面から下面にわたる切り欠き21が形成されている。この切り欠き21が形成されている基節骨2の両側面には、ベアリングB2を嵌め込むためのベアリング支持孔21aが形成されている。一方、基節骨2の前面の略中には前方に突出する接続片22が設けられている。この接続片22も接続片13と同様に幅方向に少し厚みのある板状であり、その前端部近傍には幅方向に貫通する挿通孔22aが形成されている。
 基節骨2の上面の前端部および切り欠き21の前方には上前溝部2aおよび上後溝部2bが、それぞれ形成されている。一方、基節骨2の下面にも同様に、前端部および切り欠き21の前方に下前溝部2cおよび下後溝部2dが形成されている。また、上前溝部2aと上後溝部2bとに連通する上部挿通孔2e、および、下前溝部2cと下後溝部2dとに連通する下部挿通孔2fが形成されている。
 中節骨3は、上下方向長さおよび幅方向長さが基節骨2と略同一であり、長手方向長さが基節骨2よりも短い略直方体状の部材である。中節骨3の後端部には上面から下面にわたる切り欠き31が形成されている。この切り欠き31が形成されている中節骨3の両側面には、ベアリングB3を嵌め込むためのベアリング支持孔31aが形成されている。一方、中節骨3の前面の略中央には前方に突出する接続片32が設けられている。この接続片32も接続片22と同様に幅方向に少し厚みのある板状であり、その前端部近傍には幅方向に貫通する挿通孔32aが形成されている。
 中節骨3の上面の前端部および切り欠き31の前方には上前溝部3aおよび上後溝部3bが、それぞれ形成されている。一方、中節骨3の下面にも同様に、前端部および切り欠き31の前方に下前溝部3cおよび下後溝部3dが形成されている。また、上前溝部3aと上後溝部3bとに連通する上部挿通孔3e、および、下前溝部3cと下後溝部3dとに連通する下部挿通孔3fが形成されている。
 末節骨4は、中節骨とほぼ同形状であるが、側面視において前端が弧状となっている点において異なっている。末節骨4の後端部には上面から下面にわたる切り欠き41が形成されている。この切り欠き41が形成されている末節骨4の両側面には、ベアリングB4を嵌め込むためのベアリング支持孔41aが形成されている。
 末節骨4の上面の前端部および切り欠き41の前方には上前溝部4aおよび上後溝部4bが、それぞれ形成されている。一方、末節骨4の下面にも同様に、前端部および切り欠き41の前方に下前溝部4cおよび下後溝部4dが形成されている。また、上前溝部4aと上後溝部4bとに連通する上部挿通孔4e、および、下前溝部4cと下後溝部4dとに連通する下部挿通孔4fが形成されている。
 手根骨5は、略直方体の部材であり、中手骨1の後方本体部14と接続され、指構造体Fを支持する機能を有している。手根骨5の上面および下面にはそれぞれ上部挿通溝5aおよび下部挿通溝5bが形成されている。上部挿通溝5aの幅は中手骨1の後方本体部14の上後溝部14bの幅よりも若干大きく、下部挿通溝5bの幅は中手骨1の後方本体部14の下後溝部14dの幅よりも若干大きくなっている。
 手根骨5の指構造体Fに対向する端面(本発明における当接面に相当。以下、当接面5cと称する。)の中央には、指構造体Fとの接続に用いられる接続穴5dが形成されている。また、手根骨5一方の側面には接続穴5dにまで達するネジ穴5eが形成されている。
 図4に示すように、手根骨5は略直方体状であるが、両側面は手首側ほど内側に引退する傾斜面となっている。すなわち、平面視において、手根骨5は手首側が短辺となる等脚台形となっている。本実施形態では、傾斜面の傾斜角度は各々5°としている。そのため、図7に示すように、4つの指構造体F1,F2,F3,F4を支持するための4つの手根骨51,52,53,54を、互いに隣接する側面が平行となるように配置すると扇型状となる。また、図5に示すように、本実施形態では4つの手根骨51,52,53,54は平面的に並列配置するのではなく、手根骨52が最も手の甲側となる凸状に並列配置している。
 次に、指構造体Fの組立方法を説明する。先ず、それぞれのベアリング支持孔21a,31a,41aにそれぞれベアリングB2,B3,B4を嵌め込む。次に、一対のベアリングB2の軸孔と挿通孔13aとが同心となるように、切り欠き21の内側に中手骨1の接続片13を位置させ、ベアリングB2の軸孔と挿通孔13aに対して支持軸C2を挿通する。これにより、基節骨2は回動軸心A2を中心として回動することができ、MP関節92が形成される。
 同様に、一対のベアリングB3の軸孔と挿通孔22aとが同心となるように、切り欠き31の内側に基節骨2の接続片22位置させ、ベアリングB3の軸孔と挿通孔22aに対して支持軸C3を挿通する。これにより、中節骨3は回動軸心A3を中心として回動することができ、PIP関節93が形成される。
 また、一対のベアリングB4の軸孔と挿通孔32aとが同心となるように、切り欠き41の内側に中節骨3の接続片32を位置させ、ベアリングB4の軸孔と挿通孔32aに対して支持軸C4を挿通する。これにより、末節骨4は回動軸心A4を中心として回動することができ、DIP関節94が形成される。
 次に、このようにして組み立てられた指構造体Fを手根骨5に接続する。本実施形態では、指構造体Fと手根骨5との接続は引張バネ6(本発明における支持部材の例)を用いているが、これに代えて可撓性の棒状体または筒状体等を用いることができる。具体的には、指構造体Fの中手骨1の後方本体部14の接続穴14gに引張バネ6を挿入し、ネジ穴14hに固定ネジ71をねじ込み、固定ネジ71によって引張バネ6の側部を押圧する。この固定ネジ71の押圧によって、引張バネ6と指構造体Fとが相対的に回転することを防止することができる。そして、この引張バネ6のもう一方の端部を手根骨5の接続穴5dに挿入し、ネジ穴5eに固定ネジ72をねじ込み、固定ネジ72によって引張バネ6の側部を押圧する。この固定ネジ72の押圧によって、引張バネ6と手根骨5とが相対的に回転することを防止することができる。すなわち、固定ネジ71,72によって、指構造体Fが手根骨5に対して引張バネ6の軸心周りに回転することを防止することができる。このようにして手根骨5に対して指構造体Fを接続することにより、CM関節91が形成される。したがって、中手骨1、特に、後方本体部14が本発明における手首側端部部材に相当する。
 そして、手根骨5の上部挿通溝5aから中手骨1の後方本体部14の上後溝部14bにわたって挿通用管状体73(本発明における回転規制部材の例)を配置する。また、手根骨5の下部挿通溝5bから中手骨1の後方本体部14の下後溝部14dにわたって挿通用管状体74(本発明における回転規制部材の例)を配置する。これらの挿通用管状体73,74は可撓性を有しており、手根骨5に対して指構造体Fが揺動するのを阻害しないようになっている。また、これらの挿通用管状体73,74によっても、指構造体Fが手根骨5に対して回転することを防止することができる。また、後述するように、指構造体Fを伸展/屈曲させるためのワイヤを配置する場合には、挿通用管状体73,74はそのワイヤの通路として利用することができる。そのようなワイヤを設けない場合には、挿通用管状体73,74は管状体でなく、棒状体としても構わない。
 挿通用管状体73の外径は中手骨1の後方本体部14の上後溝部14bの幅と略同一であり、挿通用管状体74の外径は中手骨1の後方本体部14の下後溝部14dの幅と略同一である。そのため、挿通用管状体73,74はそれぞれ手根骨5の上部挿通溝5a,下部挿通溝5bに対して遊びがある。この遊びによって、指構造体どうしが近接/離間する方向に揺動する際に、挿通用管状体73,74がそれぞれ上部挿通溝5a,下部挿通溝5bに対し変位することができるため、指構造体Fが揺動しやすくなっている。
 本実施形態における指構造体Fは、ワイヤによって各関節の屈曲/伸展を行うことができる。そのため、図3に示すように、伸展用ワイヤW1が、図示しないアクチュエータから、挿通用管状体73,中節骨1の後方本体部14の上部挿通溝14e,中手骨1の前方本体部12の上部挿通孔12e,基節骨2の上部挿通孔2e,中節骨3の上部挿通孔3e,末節骨4の上部挿通孔4eにわたって挿通され、末節骨4の上前溝部4aの底面に固定されている。アクチュエータを作動させ、伸展用ワイヤW1に引張力を作用させることにより、MP関節92,PIP関節93およびDIP関節94に伸展方向への力が作用し、指構造体Fを伸展させることができる。
 一方、屈曲用ワイヤW2は、図示しないアクチュエータから、挿通用管状体74,中手骨1の後方本体部14の下部挿通溝14f,中手骨1の前方本体部12の下部挿通孔12f,基節骨2の下部挿通孔2f,中節骨3の下部挿通孔3f,末節骨4の下部挿通孔4fにわたって挿通され、末節骨4の下前溝部4cの底面に固定されている。アクチュエータを作動させ、屈曲用ワイヤW2に引張力を作用させることにより、MP関節92,PIP関節93およびDIP関節94に屈曲方向への力が作用し、指構造体Fを屈曲させることができる。
 なお、各関節部分においても挿通用管状体を設けても構わない。また、指構造体Fの伸展動作を補助するために、MP関節92,PIP関節93およびDIP関節94の上側に引張バネを設けたり、下側に圧縮バネを設けたりすることができる。また、指構造体Fの屈曲動作を補助するために、MP関節92,PIP関節93およびDIP関節94の上側に圧縮バネを設けたり、下側に引張バネを設けたりすることができる。このように、関節部分にバネを設ける場合には、このバネの内部に伸展用ワイヤW1や屈曲用ワイヤW2を挿通すればよい。
 ここまで説明したように、指構造体F1,F2,F3,F4は基本的に同じ構成であるが、中手骨1の後方本体部14の形状が若干異なっているため、ここでは後方本体部14の具体的な形状を説明する。図6(a),(b),(c)はそれぞれ、小指F4、中指F2および薬指F3、人差し指F1の後方本体部14を手の甲側から見た図であり、図中右側が手首側である。なお、左手の場合には、図6(a)が人差し指F1の後方本体部14,図6(c)が小指F4の後方本体部14となる。
 これらの図に示すように、対向面14iの形状が異なっている。具体的には、小指F4の後方本体部14では、対向面14iのうち、薬指F3側(図中下側)の部分が薬指F3側ほど指先側(図中左側)に引退する傾斜面(本発明における第1傾斜面に相当。以下、第1傾斜面14jと称する)となっている。また、人差し指F1の後方本体部14では、対向面14iのうち、中指F2側(図中上側)の部分が中指F2側ほど指先側に引退する傾斜面(本発明における第1傾斜面に相当。以下、第1傾斜面14jと称する)となっている。本実施形態では、人差し指F1および小指F4の第1傾斜面14jの傾斜角度は15°としている。
 一方、中指F2および薬指F3の後方本体部14では、対向面14iに2つの傾斜面が形成されている。具体的には、対向面14iのうち、図中上側(人差し指F1側または中指F2側)部分が上側ほど指先側に引退する傾斜面となっており、図中下側(中指F2側または小指F4側)部分が下側ほど指先側に引退する傾斜面となっている。これらの傾斜面も本発明における第1傾斜面に相当し、第1傾斜面14jと称する。本実施形態では、中指F2および薬指F3の第1傾斜面14jの傾斜角度は5°としている。
 このように後方本体部14に第1傾斜面14jを形成することにより、指構造体Fは互いに近接するように揺動することができる。ただし、指構造体Fが所定の角度(第1傾斜面14jの傾斜角度)揺動すると、第1傾斜面14jが手根骨5の当接面5cに当接する。これにより指構造体Fのそれ以上の揺動が規制され、指構造体Fどうしが必要以上に近接することがないようになっている。
 図6(d),(e)はそれぞれ、小指F4および人差し指F1の後方本体部14を薬指F3側からおよび中指F2側から見た側面図である。これらの図に示すように、第1傾斜面14jのうち、手の平側(図中下側)の部分が手の平側ほど指先側に引退する傾斜面(本発明における第2傾斜面に相当。以下、第2傾斜面14kと称する)となっている。本実施形態では、第2傾斜面14kの傾斜角度は10°としている。このように第1傾斜面14jに第2傾斜面14kを形成することにより、人差し指F1および小指F4はそれぞれ中指F2側および薬指F3側に揺動するとともに、手の平側にも揺動することができる。ただし、人差し指F1および小指F4が手の平側に所定の角度(第2傾斜面14kの傾斜角度)揺動すると、第2傾斜面14kが手根骨5の当接面5cに当接する。これにより、指構造体Fのそれ以上の揺動が規制される。
 図7は、本発明に係るロボットハンドの概念を模式的に表した図である。図には手の甲側から見たロボットハンドHを示している。上述したように、4つの手根骨51,52,53,54は平面視において扇形上に配置され、手根骨51,52,53,54の各々には人差し指F1,中指F2,薬指F3,小指F4が支持されている。指構造体Fに外部から力が作用していない状態では、引張バネ6は真っ直ぐな状態であり、手根骨5と指構造体Fとは同軸方向となっている。この状態では、人差し指F1の後方本体部14の対向面14iの第1傾斜面14jが形成されていない部分が手根骨51の当接面5cに当接し、中指F2から最も離間した姿勢となっている。小指F4も同様に、後方本体部14の対向面14iの第1傾斜面が形成されていない部分が手根骨54の当接面5cに当接しており、薬指F3から最も離間した姿勢となっている。中指F2および薬指F3も、後方本体部14の対向面14iの第1傾斜面が形成されていない部分が手根骨5の当接面5cには当接している。このように、各々の指構造体Fどうしが離間した姿勢が、本実施形態におけるロボットハンドHの初期姿勢である。
 本発明のロボットハンドHは、図に示すように、隣接する指構造体Fの間に弾性体8が設けられている。具体的には、隣接する指構造体Fの中手骨1の間に弾性体8が設けられている。この弾性体8は、隣接する指構造体Fに対して近接させる力(閉方向の力)が作用すると、その力に抗う方向への力(開方向の力)を生じさせるものである。ここで、隣接する2本の指構造体Fが本発明における第1指構造体と第2指構造体に相当する。例えば、人差し指F1を第2指構造体とすると、中指F2が第1指構造体となる。また、中指F2を第2指構造体とすると、人差し指F1または薬指F3が第1指構造体となる。
 通常、ロボットハンドHは皮膚と筋肉に相当するシリコン樹脂等の弾性体で被覆され、中手骨1は掌部分を構成している。人がこのようなロボットハンドHと握手すると、掌部分には幅方向への圧縮力が作用する。すなわち、指構造体F、特に中手骨1には、閉方向への力が作用する。具体的には、人差し指F1は中指F2側に、小指F4は薬指F3側に揺動する力が作用する。この力によって、引張バネ6が撓み、人差し指F1および小指F4はそれぞれ、中指F2および薬指F3に近接するように揺動する。この揺動する力は、人差し指F1と中指F2との間に設けられた弾性体8および小指F4と薬指F3との間に設けられた弾性体8を介してそれぞれ中指F2および薬指F3に伝達され、引張バネ6が撓むことによって中指F2および薬指F3も互いに近接するように揺動する(図8参照)。これらの揺動が所定の角度(0°を含む)を超えると、弾性体8が閉方向への力に抗う力を生じる。これにより、ロボットハンドHと握手した人は弾力を感じる。これにより、握手した際に、より人の手の感触に近いロボットハンドHを実現することができる。なお、弾性体8の弾性力を超える力で握ったとしても、指構造体Fの近接方向への揺動は、後方本体部14の第1傾斜面14jが手根骨5の当接面5cに当接するまでで規制されるため、指構造体Fの必要以上の揺動を防止することができる。
 また、上述したように、4つの手根骨51,52,53,54は手の甲側に凸となるように配置されているため、人がロボットハンドHと握手した際には人差し指F1と小指F4には手の平側に変位する力が作用しやすくなっている。この力は、人差し指F1の中手骨1および小指F4の中手骨1がそれぞれ手根骨51および手根骨54に対して手の平側に揺動する力となる。本実施形態では、上述したように、第2傾斜面14kを形成しているため、図9に示すように、人差し指F1および小指F4は手の平側に揺動することができる。なお、この揺動も引張バネ6が撓むことによって実現される。このように、人差し指F1および小指F4が手の平側に揺動することにより、ロボットハンドHと握手した際の触感をより人間の手の触感に近づけることができる。なお、指構造体Fの手の平側への揺動は、後方本体部14の第2傾斜面14kが手根骨5の当接面5cに当接するまでで規制されるため、指構造体Fの必要以上の揺動を防止することができる。
 ロボットハンドHに対する力が解除されると、引張バネ6および弾性体8の復元力によって、ロボットハンドHは初期姿勢に復帰する。
 図10は、弾性体8としてウレタンゲルを用いたロボットハンドHを示している。本実施形態では、各指構造体Fの中手骨1、特に、中間本体部11にシート状のウレタンゲル100を巻き付けている。これにより、ロボットハンドHを握った際に、中手骨1の感触を弱めることができる。さらに、隣接する指構造体Fの中手骨1の間にはウレタンゲルからなる弾性体8が設けられている。このウレタンゲルからなる弾性体8の作用効果は上述した通りである。なお、ウレタンゲル100を設けない構成としても構わない。また、弾性体8として、圧縮バネやトーションバネ、その他、ウレタンゲル以外の弾性体を用いても構わない。
 上述の実施形態では、引張バネ6のような可撓性を有する棒状体または筒状態を用いて指構造体Fを手根骨5に支持させたが、以下に例示するように、他の方法によっても手根骨5に対して指構造体Fを支持させることができる。
(1)引張バネ6に代えて板バネを用いる。この場合、板バネは、支持する指構造体Fが隣接する指構造体Fに対して近接/離間するように揺動可能となるように配置する。そのため、この構成では、指構造体Fは手の平側に揺動することはできない。
(2)引張バネ6に代えてユニバーサルジョイントを用いる。この場合、引張バネ6を用いた場合と同様に、指構造体Fはいずれの方向にも揺動することができる。なお、ユニバーサルジョイントには引張バネ6のような復元力がないが、弾性体8の弾性復帰力によって指構造体Fは互いに離間した姿勢に復帰することができる。ただし、手の平側に揺動した指構造体Fを手の甲側に復帰させるためには、別途の機構が必要となる。
(3)ベアリングと軸とを用いる。この場合、ベアリングと軸とは、支持する指構造体Fが隣接する指構造体Fに対して近接/離間するように揺動可能となるように配置する。そのため、この構成では、指構造体Fは手の平側に揺動することはできない。また、ベアリングと軸を用いた場合には、ユニバーサルジョイントを用いた場合と同様に、弾性体8の弾性復帰力によって指構造体Fは互いに離間した姿勢に復帰することができる。
(4)接続部分に遊びを設ける。例えば、後方本体部14から後方に突出する支持片を設け、手根骨5にその支持片の外形よりも少し大きく、支持片を挿通支持する支持孔を設ける。この場合、支持片と支持孔との大きさの差、すなわち、遊びがあるため、指構造体Fは手根骨5に対して揺動することができる。この場合も、ユニバーサルジョイントやベアリングを用いた場合と同様に、弾性体8の弾性復帰力によって指構造体Fは互いに離間した姿勢に復帰することができる。
 なお、手根骨5に対して指構造体Fを支持させる方法はこれらに限定されるものではなく、本発明の作用効果を奏する範囲において適宜変更可能である。
 また、上述の実施形態では、指構造体Fは手根骨5に対して揺動可能となるように、手根骨5が指構造体Fを支持したが、揺動不能となるように支持しても構わない。この場合、可撓性を有する材料で、少なくとも中手骨1、特に中間本体部11を形成すればよい。なお、中間本体部11を棒状ではなく、板状とする場合には、厚み方向を幅方向に一致させ、中間本体部11が、指構造体Fが隣接する指構造体Fに対して近接または離間する方向に撓むようにする。この構成であっても、人がロボットハンドHと握手した際に、弾力を感じることができる。
 このように、本発明に係るロボットハンドHでは、人間がロボットハンドHと握手した際に、掌部分の弾力を感じることができ、より人間の手と握手したような感覚を得ることができる。
 本発明は、例えば遠隔コミュニケーションシステムに用いることができる。このような遠隔コミュニケーションシステムでは、例えば、ユーザ1がいる地点1に本発明に係るロボットハンドHとモニタを設置し、ユーザ2がいる地点2にデータグローブ等の手の動きを感知できるセンサとカメラとを設置する。地点2のカメラによって撮影された映像は地点1のモニタに表示され、ユーザ1はユーザ2を視認することができる。また、地点2において、センサによってユーザ2の手を握る動作を感知するとその情報は地点1のロボットハンドHの動作に反映され、ロボットハンドHはユーザ1の手を握るように各指Fの関節を屈曲させる。このような遠隔コミュニケーションシステムを用いることにより擬似的な身体の接触が可能となり、物理的に離れた場所にいるにも関わらず親近感を高めることができる。特に、本発明に係るロボットハンドHでは、握手した際に掌部分の触感を感じることができるため、より親近感を高めることができる。
 また、本発明は、例えば物流・生産ラインにおける物体の把持・操作システムとしても用いることができる。このようなシステムでは、例えば、把持・操作する対象となる物体を物流・生産ラインにおける作業スペースに置き、ロボットハンドHと作業スペースとを撮影するカメラを設置する。ロボットハンドHは、カメラの映像に基づいて、予めプログラムされた動作に従い、物体を移動させたり部品を取り付けたり等の操作を自動で実行する。または、遠隔地にいる作業者がモニタに表示されたカメラ映像を見ながらロボットハンドHを操作し、物体に対する把持・操作を実行する。後者の場合、データグローブやハンドトラッカー等の装置によって作業者の手の動きの情報を取得し、その情報に従ってロボットハンドHを動作させる。本発明に係るロボットハンドHでは、中手骨1は開閉方向(指どうしが離間/近接する方向)および屈曲方向(手のひら側)に揺動することができる。そのため、ロボットハンドHが物体を把持すると、物体の形状に応じて各指の中手骨1が揺動する。これにより、ロボットハンドHの指や掌部分が物体に密着しやすくなり、ロボットハンドHはしっかりと物体を把持することができる。
F:指構造体
F1:指構造体(人差し指)
F2:指構造体(中指)
F3:指構造体(薬指)
F4:指構造体(小指)
H:ロボットハンド
1:中手骨(手首側端部部材)
14:後方本体部(手首側端部部材)
14i:対向面
14j:第1傾斜面
14k:第2傾斜面
5,51,52,53,54:手根骨
5c:当接面
6:引張バネ(支持部材)
73:挿通用管状体(回転規制部材)
74:挿通用管状体(回転規制部材)
8:弾性体
 

 

Claims (4)

  1.  第1の指構造体と、第2の指構造体と、を並列する位置に配置したロボットハンドであって、
     前記第2の指構造体は、前記第1の指構造体に対して近接または離間する方向に揺動可能に支持され、
     前記第1の指構造体と前記第2の指構造体との間には、前記第2の指構造体を前記第1の指構造体側に近接させる力に抗う力を生じさせる弾性体が設けられているロボットハンド。
  2.  前記第2の指構造体の手首側に設けられ、前記第2の指構造体が前記第1の指構造体に対して近接または離間する方向に揺動可能となるように、前記第2の指構造体の手首側端部部材を支持する手根骨を備え、
     前記第2の指構造体の前記手首側端部部材は、前記手根骨に対向する対向面を備え、
     前記手根骨は、前記対向面に当接する当接面を備え、
     前記対向面は、前記第1の指構造体側に、当該第1の指構造体側ほど指先側に引退する第1傾斜面を備えている請求項1記載のロボットハンド。
  3.  前記手根骨は、前記第2の指構造体を手の平側にも揺動可能に支持し、
     前記第1傾斜面は、手の平側に、当該手の平側ほど指先側に引退する第2傾斜面を備えている請求項2記載のロボットハンド。
  4.  前記手根骨と、前記第2の指構造体の前記手首側端部部材と、の間にわたって設けられた、可撓性を有する棒状または筒状の支持部材を備え、
     手の甲側および/または手の平側に、前記第2の指構造体の前記手首側端部部材と前記手根骨とにわたって、可撓性を有する筒状または棒状の回転規制部材が設けられている請求項3記載のロボットハンド。
PCT/JP2023/011673 2022-05-23 2023-03-24 ロボットハンド WO2023228540A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-083635 2022-05-23
JP2022083635 2022-05-23

Publications (1)

Publication Number Publication Date
WO2023228540A1 true WO2023228540A1 (ja) 2023-11-30

Family

ID=88919021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011673 WO2023228540A1 (ja) 2022-05-23 2023-03-24 ロボットハンド

Country Status (1)

Country Link
WO (1) WO2023228540A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240834A (ja) * 2009-04-09 2010-10-28 Disney Enterprises Inc 人間のような指を有するロボットハンド
CN105193525A (zh) * 2015-10-29 2015-12-30 国家康复辅具研究中心 一种基于镍钛记忆合金的仿生五指假手
JP2016168645A (ja) * 2015-03-12 2016-09-23 株式会社岩田鉄工所 多指ハンド装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240834A (ja) * 2009-04-09 2010-10-28 Disney Enterprises Inc 人間のような指を有するロボットハンド
JP2016168645A (ja) * 2015-03-12 2016-09-23 株式会社岩田鉄工所 多指ハンド装置
CN105193525A (zh) * 2015-10-29 2015-12-30 国家康复辅具研究中心 一种基于镍钛记忆合金的仿生五指假手

Similar Documents

Publication Publication Date Title
US6042555A (en) Force-feedback interface device for the hand
Catalano et al. Adaptive synergies for the design and control of the Pisa/IIT SoftHand
EP0981423B1 (en) Force-feedback interface device for the hand
Prattichizzo et al. Towards wearability in fingertip haptics: a 3-dof wearable device for cutaneous force feedback
US7390157B2 (en) Force feedback and texture simulating interface device
US5898599A (en) Force reflecting haptic interface
EP0513199B1 (en) A force feedback and texture simulating interface device
Jadhav et al. Soft robotic glove for kinesthetic haptic feedback in virtual reality environments
WO2019033001A1 (en) HAND EXOSQUELET DEXTRE
JP7009072B2 (ja) 指機構およびこの指機構を組み込んだ人間型ハンド
JP3624374B2 (ja) 力覚呈示装置
O’malley et al. Haptic interfaces
WO2023228540A1 (ja) ロボットハンド
Pacchierotti et al. Cutaneous/tactile haptic feedback in robotic teleoperation: Motivation, survey, and perspectives
Evreinova et al. From kinesthetic sense to new interaction concepts: Feasibility and constraints
WO2022186033A1 (ja) 多関節指を備えたロボットハンド
Hussain et al. Augmenting human manipulation abilities with supernumerary robotic limbs
WO2023105926A1 (ja) 関節の可動構造およびその関節の可動構造を備えたロボットハンド
Basdogan et al. Perception of soft objects in virtual environments under conflicting visual and haptic cues
WO2017194527A1 (en) A task-custom finger device for kinesthetic and cutaneous feedback
Kashiwakura et al. Task-oriented design of a multi-degree of freedom upper limb prosthesis with integrated myocontrol and sensory feedback
JP7515188B2 (ja) ハンドモデル
Zamel et al. Robotic Hand Solution for Impaired Hands
Khatik et al. On Optimal Tendon Routing Based Design of Biologically Inspired Underactuated Hand Exoskeleton for Gross Grasping
Nanayakkara Investigation of the thumb and foldable palm interaction for optimum design of thumb assistive mechanisms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811419

Country of ref document: EP

Kind code of ref document: A1