WO2023228442A1 - 情報処理方法及びプログラム - Google Patents

情報処理方法及びプログラム Download PDF

Info

Publication number
WO2023228442A1
WO2023228442A1 PCT/JP2022/044406 JP2022044406W WO2023228442A1 WO 2023228442 A1 WO2023228442 A1 WO 2023228442A1 JP 2022044406 W JP2022044406 W JP 2022044406W WO 2023228442 A1 WO2023228442 A1 WO 2023228442A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
variables
explanatory
candidate
acquiring
Prior art date
Application number
PCT/JP2022/044406
Other languages
English (en)
French (fr)
Inventor
晃司 小野
茂 冨田
Original Assignee
株式会社エクサウィザーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エクサウィザーズ filed Critical 株式会社エクサウィザーズ
Publication of WO2023228442A1 publication Critical patent/WO2023228442A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/30Prediction of properties of chemical compounds, compositions or mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to an information processing method and program.
  • Cited Document 1 discloses a technology related to materials informatics that efficiently searches for substances by combining information processing technologies such as data mining when conducting research and development of new substances and alternative substances.
  • the material of the sample actually produced by the production device is measured, and Bayesian optimization is performed from the data set containing the production conditions and physical property values of a predetermined number of samples, which are the measurement results. and estimate the sample preparation conditions that optimize the physical properties.
  • Bayesian optimization it is generally desirable to obtain a large number of data sets in order to improve accuracy.
  • the present invention was made in view of the above problems, and an object of the present invention is to obtain an information processing method that can efficiently perform optimization.
  • An information processing method is an information processing method executed by an information processing device, and includes a step of acquiring information on a raw material as an explanatory variable in a substance consisting of a plurality of raw materials, and a step of acquiring information on the raw material as an explanatory variable, and responding to input of the explanatory variable. inputting the explanatory variables into a learning model that has been machine learned to output the predicted physical properties of the substance as a target variable, acquiring information on the target variables output by the learning model, and acquiring the acquired purpose.
  • optimization can be performed efficiently.
  • FIG. 1 is a diagram illustrating an example of the configuration of an information processing system according to an embodiment.
  • FIG. 2 is a diagram showing an example of the hardware configuration of a server device according to the present embodiment.
  • FIG. 2 is a diagram illustrating an example of the hardware configuration of a user terminal according to the present embodiment.
  • FIG. 2 is a diagram showing an example of a functional configuration of a server device according to the present embodiment.
  • FIG. 2 is an explanatory diagram showing an example of explanatory variables and objective variables.
  • FIG. 2 is an explanatory diagram showing an overview of an embodiment.
  • 3 is a flowchart illustrating an example of processing executed by the information processing system.
  • the information processing system according to the present embodiment is a system for presenting combination candidates of raw materials that satisfy predetermined physical property values and minimize costs when manufacturing a tablet made of a plurality of raw materials.
  • this system is a system that optimizes variables that correspond to "cost” after setting variables that correspond to "physical property values” as constraints.
  • Information processing systems can be used in the development of drugs, foods, and the like.
  • FIG. 1 is a diagram showing an example of the configuration of an information processing system according to this embodiment.
  • the information processing system 10 includes a server device 12 as an information processing device and a user terminal 14, which are communicably connected to each other via a network N.
  • the network N is, for example, a wired LAN (Local Area Network), a wireless LAN, the Internet, a public line network, a mobile data communication network, or a combination thereof.
  • the server device 12 is an example of an information processing device (computer) that calculates possible combinations of raw materials for tablets based on input information.
  • the server device 12 may be a PC (Personal Computer), a smartphone, a tablet terminal, a microcomputer, or a combination thereof.
  • the server device 12 will be described in detail later.
  • the user terminal 14 is an example of an information processing device used by the user U who refers to raw material combination candidates presented by the information processing system 10.
  • the user terminal 14 receives input from the user U of information regarding raw materials (hereinafter simply referred to as "raw material information"), related information (details will be described later), and information on desired predetermined physical property values, and inputs the information, It is transmitted to the server device 12 via the network N. Further, the user terminal 14 acquires information regarding raw material combination candidates from the server device 12 via the network N.
  • the user U displays and views the information acquired by the user terminal 14 on the display device of the user terminal 14.
  • the user terminal 14 is a PC, a smartphone, or a tablet terminal, but is not limited thereto.
  • the user U is an administrator of the information processing system or an employee of the office where the information processing system is installed, but is not limited thereto.
  • FIG. 2 is a diagram showing an example of the hardware configuration of the server device 12.
  • the server device 12 includes a processor 16, a memory 18, a storage 20, and a communication I/F 22, which are interconnected via a bus B.
  • the processor 16 controls each configuration of the server device 12 and realizes the functions of the server device 12 by expanding the program stored in the storage 20 into the memory 18 and executing it.
  • the programs executed by the processor 16 include, but are not limited to, an OS (Operating System) and a cost optimization program.
  • the information processing method according to this embodiment is realized by the processor 16 executing the cost optimization program.
  • the processor 16 is, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), a DSP (Digital Signal Processor), or a combination thereof.
  • the cost optimization program mentioned above corresponds to the "program" of Claim 4.
  • the memory 18 is, for example, ROM (Read Only Memory), RAM (Random Access Memory), or a combination thereof.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the ROM is, for example, PROM (Programmable ROM), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), or a combination thereof.
  • the RAM is, for example, DRAM (Dynamic RAM), SRAM (Static RAM), MRAM (Magnetoresistive RAM), or a combination thereof.
  • the storage 20 stores an OS, a cost optimization program, and various data.
  • the storage 20 is, for example, a flash memory, an HDD (Hard Disk Drive), an SSD (Solid State Drive), an SCM (Storage Class Memories), or a combination thereof.
  • the communication I/F 22 is an interface for connecting the server device 12 to external devices including the user terminal 14 via the network N and controlling communication.
  • the communication I/F 22 is, for example, an adapter compliant with Bluetooth (registered trademark), Wi-Fi (registered trademark), ZigBee (registered trademark), Ethernet (registered trademark), or optical communication (for example, Fiber Channel). , but not limited to this.
  • FIG. 3 is a diagram showing an example of the hardware configuration of the user terminal 14.
  • the user terminal 14 includes a processor 16, a memory 18, a storage 20, a communication I/F 22, and a user I/F 24, which are interconnected via a bus B.
  • the user I/F 24 is an interface for inputting and outputting various information on the user terminal 14.
  • the input device is, for example, a mouse, keyboard, touch panel, microphone, scanner, camera, various sensors, operation buttons, or a combination thereof.
  • devices that perform output include a display, a projector, a printer, a speaker, a vibrator, or a combination thereof.
  • the cost optimization program may be written into the memory 18 or the storage 20 at the manufacturing stage of the server device 12, or may be provided to the server device 12 via the network N, or the cost optimization program may be provided to the server device 12 via the network N.
  • the information may be provided to the server device 12 via a non-transitory computer-readable recording medium such as a non-transitory disk medium.
  • FIG. 4 is a diagram showing an example of the functional configuration of the server device 12.
  • the server device 12 includes a communication section 30, a storage section 32, and a control section 34.
  • the communication unit 30 is realized by the communication I/F 22.
  • the communication unit 30 transmits and receives information to and from the user terminal 14 via the network N.
  • the communication unit 30 receives information input from the user terminal 14.
  • the communication unit 30 also transmits information such as raw material combination candidates to the user terminal 14 and receives requests from the user U from the user terminal 14 .
  • the storage unit 32 is realized by the memory 18 and the storage 20.
  • the storage unit 32 stores a learning model 36, raw material information 38, and desired prescription information 40.
  • the learning model 36 is a trained learning model that has been machine-trained in advance to output the predicted physical properties of a tablet made of the raw material as a target variable in response to input of raw material information 38 as an explanatory variable (see FIG. 5 as well). reference). In other words, the learning model 36 is capable of outputting predicted physical properties that have a causal relationship with the input of the raw material information 38.
  • the learning process and relearning process of the learning model 36 are performed by the server device 12, for example, but are not limited thereto.
  • the learning process and relearning process of the learning model 36 may be performed by a device other than the server device 12 and provided to the server device 12.
  • the learning model 36 is, for example, a neural network such as a DNN (Deep Neural Network), an RNN (Recurrent Neural Network), a CNN (Convolutional Neural Network), or an LSTM (Long Short-Term Memory), but is not limited thereto.
  • the learning model 36 may be a learning model such as a decision tree or a SVM (Support Vector Machine).
  • the learning method of the learning model 36 is, for example, a gradient descent method, a stochastic gradient descent method, or an error backpropagation method, but is not limited thereto.
  • the raw material information 38 is information that includes at least one of the components, physical properties, and structures of each of the plurality of raw materials that make up the tablet. Furthermore, in this embodiment, manufacturing method parameters are included as explanatory variables. Specifically, the manufacturing method parameters include at least one of the model information of the device that mixes the raw materials, the volume information at the time of mixing, and the amount of raw materials to be charged.
  • the predicted physical properties are information predicted about at least one of the hardness, disintegration time, dissolution rate, purity, quantitative determination, mass deviation, content uniformity, and storage stability of the tablet produced from the input raw material information 38. There is.
  • the desired prescription information 40 is information on predetermined physical property values desired by the user U in the generated tablet.
  • the hardness desired by the user U is acquired as the predetermined hardness.
  • the control unit 34 is realized by the processor 16 reading a program from the memory 18, executing it, and cooperating with other hardware configurations.
  • the control unit 34 controls the entire operation of the server device 12.
  • the control unit 34 includes an acquisition unit 42, a calculation unit 44, and an output unit 46.
  • the acquisition unit 42 acquires the raw material information 38 from the information input to the user terminal 14 and stores it in the storage unit 32.
  • the acquisition unit 42 is capable of acquiring raw material information 38 in various forms such as text information and images.
  • the acquisition unit 42 acquires related information from the information input to the user terminal 14 and stores it in the storage unit 32.
  • Related information is information other than explanatory variables that is necessary to obtain the target variable from the learning model 36, and specifically, information about raw materials that is difficult to find a causal relationship with the predicted physical property that is the target variable. This includes cost information, environmental load information, information on difficulty of acquisition, etc.
  • the related information is cost information for each raw material (see FIG. 6(b)).
  • the acquisition unit 42 acquires information on a predetermined physical property value desired by the user U from the information input to the user terminal 14, and stores it in the storage unit 32.
  • the acquisition unit 42 uses the learning model 36 to predict the physical properties of the tablet. That is, by inputting the raw material information 38 and manufacturing method parameters acquired by the acquisition unit 42 to the learning model 36, the physical properties of the tablet made of the raw materials are predicted. In this embodiment, as an example, physical properties including the hardness of a tablet are predicted (see FIG. 6(a)).
  • the acquisition unit 42 acquires a plurality of explanatory variables that provide a predetermined hardness desired by the user U as candidate variables from among the information on the predicted hardness of the tablet acquired using the learning model 36 (Fig. 6 (see (b)). That is, the acquisition unit 42 acquires raw material information 38 (explanatory variable) corresponding to a tablet predicted to have a predetermined hardness (objective variable) based on the output of the learning model 36. Note that the raw material information 38 corresponds to the "candidate variable" described in claim 1.
  • the acquisition unit 42 acquires a plurality of pieces of related information (cost information for each raw material) that corresponds to the candidate variable (raw material information 38) and is information other than the information (raw material information 38) necessary to obtain a predetermined hardness. get.
  • the calculation unit 44 performs optimization processing on the related information acquired by the acquisition unit 42. Specifically, the calculation unit 44 performs Bayesian optimization in black box optimization processing and estimates tablet manufacturing conditions (combination candidates including the amount of raw materials to be prepared) that optimize raw material costs.
  • FIG. 6C shows a conceptual graph of the processing content of Bayesian optimization. The horizontal axis shows candidate variables (combination candidates including the amount of raw materials to be prepared), and the vertical axis shows costs. Note that although the search is actually performed in a multidimensional space of three or more dimensions, a two-dimensional graph is shown for convenience in FIG. 6(c).
  • the calculation unit 44 assumes that the candidate variables and the corresponding cost information follow a Gaussian distribution, and searches for a point where the cost is minimum. That is, the calculation unit 44 estimates the mean and variance from the distribution of candidate variables and cost information corresponding thereto, and derives a Gaussian process. Then, the calculation unit 44 performs optimization using an evaluation function called an acquisition function, and searches for a point (optimal solution) where the cost is minimized. Note that the calculation unit 44 may receive setting inputs of numerical ranges of candidate variables and cost information in advance, and perform a search within the numerical ranges.
  • the calculation unit 44 estimates candidate variables that are considered to be optimal, that is, manufacturing conditions for tablets that are optimal in cost and satisfy a predetermined hardness (candidate combinations including the amount of raw materials to be prepared) (see FIG. 6). d)).
  • candidate variables that are considered to be optimal that is, manufacturing conditions for tablets that are optimal in cost and satisfy a predetermined hardness (candidate combinations including the amount of raw materials to be prepared) (see FIG. 6). d)).
  • the output unit 46 outputs, to the user terminal 14, candidate information on combinations of raw materials for tablets that is estimated by the calculation unit 44 and provides the optimum cost and satisfies a predetermined hardness. This allows the user U to confirm the combination candidate information.
  • each functional configuration of the server device 12 may be realized by software, or by hardware such as an IC chip, SoC (System on Chip), LSI (Large Scale Integration), or microcomputer. You can.
  • FIG. 7 is a flowchart illustrating an example of processing executed by the information processing system.
  • the processor 16 reads the cost optimization program according to the present embodiment from the memory 18 or the storage 20, expands it to the memory 18, and executes it, thereby performing processing based on the cost optimization program according to the present embodiment.
  • the processor 16 acquires information on predetermined physical property values desired by the user U (step 100), and acquires raw material information 38 (step 102). Then, the processor 16 inputs the raw material information 38 to the learning model 36 (step 104), and obtains predicted physical property information output from the learning model 36 (step 106).
  • the processor 16 determines whether a plurality of raw material information 38, that is, a plurality of candidate variables, corresponding to a tablet that is predicted to have a desired predetermined hardness (target variable) has been obtained (step 108). If a plurality of candidate variables have not been acquired (step 108: NO), the processor 16 moves the process to step 106. On the other hand, if a plurality of candidate variables are acquired (step 108: YES), the processor 16 acquires cost information corresponding to the candidate variables (step 110).
  • the processor 16 performs Bayesian optimization processing to estimate the manufacturing conditions (combination candidates including the amount of raw materials) for producing tablets that are optimal in cost and satisfy a predetermined hardness (step 112), and the estimation results are provided to the user. It is output to be displayed on the terminal 14 (step 114).
  • the processor 16 determines whether an instruction to end the process has been obtained from the user terminal 14 (step 116). If the termination instruction has not been obtained (step 116: NO), the processor 16 moves the process to step 100. On the other hand, if the termination instruction is obtained (step 116: YES), the processor 16 terminates the processing based on the cost optimization program.
  • candidate variables are obtained from the objective variables (physical property values) output by inputting explanatory variables (raw material information 38) into the learning model 36, and related information corresponding to the candidate variables is optimized.
  • candidate variables that match predetermined conditions are obtained through analysis. That is, when performing optimization analysis, it is possible to perform optimization analysis based on the objective variables obtained from the learning model 36. Therefore, a data set can be obtained more easily than when a data set is obtained by measuring an actually produced substance. Thereby, optimization can be performed efficiently.
  • data sets can be added quickly according to the conditions of optimization analysis. Thereby, it is possible to reduce the processing time including optimization analysis.
  • the server device 12 can perform cost optimization with simple processing by performing a Bayesian optimization method in the optimization analysis. Moreover, the amount of calculation (number of searches) of the server device 12 can be reduced.
  • the related information is cost information for each raw material, it is possible to infer the raw material information 38 with the minimum cost when using physical property values as objective variables.
  • Bayesian optimization method of optimization analysis is used, but the optimization analysis is not limited to this, and other methods such as Monte Carlo method, Markov chain Monte Carlo method, and reinforcement learning can be used. May be done.
  • related information is defined as cost information, it is not limited to this, and may include environmental load information (carbon dioxide emissions, etc.) and information on the degree of difficulty of obtaining information, as described above. It may be other information, such as the content of substances (salt, purines, etc.), or a combination of these.
  • the information processing system 10 of the present embodiment is applied to the case of producing a tablet made of a plurality of raw materials
  • the information processing system 10 is not limited to this, and can be applied to the case of producing a substance other than a tablet made of a plurality of raw materials. You can.
  • the present invention may be a system for presenting combination candidates of raw materials that are optimized under predetermined conditions when producing a chamber that satisfies conditions other than predetermined physical property values and is made of a plurality of raw materials.
  • An information processing method executed by an information processing device comprising: a step of acquiring information about the raw material in a substance consisting of multiple raw materials as an explanatory variable; inputting the explanatory variables into a learning model that is machine-learned to output predicted physical properties of the substance as objective variables in response to input of the explanatory variables; obtaining information on the objective variable output by the learning model; a step of acquiring a plurality of explanatory variables from which a predetermined predicted physical property can be obtained from among the acquired objective variables as candidate variables; obtaining a plurality of pieces of related information that corresponds to the plurality of candidate variables and is information other than information necessary to obtain the target variable; obtaining the candidate variables that match a predetermined condition through an optimization analysis of the obtained related information; An information processing method having
  • the optimization analysis uses a black box optimization method using one or more of Bayesian optimization, Monte Carlo method, Markov chain Monte Carlo method, and reinforcement learning, The information processing method described in Appendix 1.
  • the related information is cost information for each raw material, The information processing method described in Supplementary Note 1 or Supplementary Note 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Medical Informatics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Data Mining & Analysis (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

最適化を効率良く行う。 一実施形態にかかる情報処理方法は、情報処理装置が実行する情報処理方法であって、複数の原材料からなる物質における当該原材料の情報を説明変数として取得するステップと、前記説明変数の入力に対して前記物質の予測物性を目的変数として出力するよう機械学習された学習モデルへ前記説明変数を入力するステップと、前記学習モデルが出力する前記目的変数の情報を取得するステップと、取得した前記目的変数のうち所定の予測物性が得られる前記目的変数に対応した前記説明変数を候補変数として複数取得するステップと、複数の前記候補変数に対応しかつ前記目的変数を取得するために必要な情報以外の情報である関連情報を複数取得するステップと、取得した前記関連情報の最適化解析により所定の条件に一致する前記候補変数を取得するステップと、を含む。

Description

情報処理方法及びプログラム
本発明は、情報処理方法及びプログラムに関する。
 引用文献1には、新規物質、代替物質の研究、開発などを行う際に、データマイニング等の情報処理技術を組み合わせて効率的に物質探索を行うマテリアルズ・インフォマティクスに関する技術が開示されている。
特許第6842731号
 上記先行技術文献に開示された方法の場合、作製装置が実際に作成した試料の物質を測定し、当該測定結果である所定数の試料の作製条件と物性値とを含むデータセットからベイズ最適化を行い、物性値を最適化する試料の作製条件を推定する。ところで、一般的に最適化を行う際には、データセットを多く取得することが精度を高める上で望ましい。しかしながら、最適化を行うために必要なデータセットを作製装置や実験などにより実際に作製した物質を測定した結果から得るには時間とコストが必要となる。したがって、最適化を効率良く行うには改善の余地がある。
 本発明は、上記の課題を鑑みてなされたものであり、最適化を効率良く行うことができる情報処理方法を得ることを目的とする。
 一実施形態にかかる情報処理方法は、情報処理装置が実行する情報処理方法であって、複数の原材料からなる物質における当該原材料の情報を説明変数として取得するステップと、前記説明変数の入力に対して前記物質の予測物性を目的変数として出力するよう機械学習された学習モデルへ前記説明変数を入力するステップと、前記学習モデルが出力する前記目的変数の情報を取得するステップと、取得した前記目的変数のうち所定の予測物性が得られる前記目的変数に対応した前記説明変数を候補変数として複数取得するステップと、複数の前記候補変数に対応しかつ前記目的変数を取得するために必要な情報以外の情報である関連情報を複数取得するステップと、取得した前記関連情報の最適化解析により所定の条件に一致する前記候補変数を取得するステップと、を含む。
 一実施形態によれば、最適化を効率良く行うことができる。
本実施形態に係る情報処理システムの構成の一例を示す図である。 本実施形態に係るサーバ装置のハードウェア構成の一例を示す図である。 本実施形態に係るユーザ端末のハードウェア構成の一例を示す図である。 本実施形態に係るサーバ装置の機能構成の一例を示す図である。 説明変数及び目的変数の一例を示す説明図である。 実施の形態の概要を示す説明図である。 情報処理システムが実行する処理の一例を示すフローチャートである。
 以下、本発明の各実施形態について、添付の図面を参照しながら説明する。なお、各実施形態に係る明細書及び図面の記載に関して、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複した説明を省略する。
<システム概要>
 まず、本実施形態に係る情報処理システムの概要について説明する。本実施形態に係る情報処理システムは、所定の物性値を満たしかつ複数の原材料から成る錠剤を作製する場合におけるコストを最小化する原材料の組み合わせ候補を提示するためのシステムである。つまり、本システムは「物性値」に該当する変数を制約条件にした上で、「コスト」に該当する変数を最適化するシステムである。情報処理システムは、薬剤や食品等の開発において利用することができる。
<システム構成>
 図1は、本実施形態に係る情報処理システムの構成の一例を示す図である。図1に示すように、本実施形態に係る情報処理システム10は、ネットワークNを介して相互に通信可能に接続された、情報処理装置としてのサーバ装置12と、ユーザ端末14と、を備える。ネットワークNは、例えば、有線LAN(Local Area Network)、無線LAN、インターネット、公衆回線網、モバイルデータ通信網、又はこれらの組み合わせである。
 サーバ装置12は、入力された情報に基づいて錠剤の原材料の組み合わせ候補を算出する情報処理装置(コンピュータ)の一例である。サーバ装置12は、PC(Personal Computer)、スマートフォン、タブレット端末、マイクロコンピュータ、又はこれらの組み合わせであってもよい。サーバ装置12について、詳しくは後述する。
 ユーザ端末14は、情報処理システム10が提示する原材料の組み合わせ候補を参照するユーザUが利用する情報処理装置の一例である。ユーザ端末14は、ユーザUによる原材料に関する情報(以下、単に「原材料情報」と称する。)、関連情報(詳細は後述する)及び所望する所定の物性値の情報の入力を受け付けかつ当該情報を、ネットワークNを介してサーバ装置12へ送信する。また、ユーザ端末14は、ネットワークNを介してサーバ装置12から原材料の組み合わせ候補に関する情報を取得する。ユーザUは、ユーザ端末14が取得した情報を、ユーザ端末14の表示装置で表示して閲覧する。ユーザ端末14は、PC、スマートフォン、又はタブレット端末であるが、これに限られない。ユーザUは、情報処理システムの管理者、情報処理システムが導入された事業所の従業者であるが、これに限られない。
<ハードウェア構成>
 次に、サーバ装置12のハードウェア構成について説明する。図2は、サーバ装置12のハードウェア構成の一例を示す図である。図2に示すように、サーバ装置12は、バスBを介して相互に接続された、プロセッサ16と、メモリ18と、ストレージ20と、通信I/F22と、を備える。
 プロセッサ16は、ストレージ20に記憶されたプログラムをメモリ18に展開して実行することにより、サーバ装置12の各構成を制御し、サーバ装置12の機能を実現する。プロセッサ16が実行するプログラムは、OS(Operating System)及びコスト最適化プログラムを含むが、これに限られない。プロセッサ16がコスト最適化プログラムを実行することにより、本実施形態に係る情報処理方法が実現される。プロセッサ16は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、DSP(Digital Signal Processor)、又はこれらの組み合わせである。なお、上述したコスト最適化プログラムが、請求項4に記載の「プログラム」に相当する。
 メモリ18は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、又はこれらの組み合わせである。ROMは、例えば、PROM(Programmable ROM)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、又はこれらの組み合わせである。RAMは、例えば、DRAM(Dynamic RAM)、SRAM(Static RAM)、MRAM(Magnetoresistive RAM)、又はこれらの組み合わせである。
 ストレージ20は、OS、コスト最適化プログラム、及び各種のデータを記憶する。ストレージ20は、例えば、フラッシュメモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)、SCM(Storage Class Memories)、又はこれらの組み合わせである。
 通信I/F22は、サーバ装置12を、ネットワークNを介して、ユーザ端末14を含む外部装置に接続し、通信を制御するためのインタフェースである。通信I/F22 は、例えば、Bluetooth(登録商標)、Wi-Fi(登録商標)、ZigBee(登録商標)、Ethernet(登録商標)、又は光通信(例えば、Fibre Channel)に準拠したアダプタであるが、これに限られない。
 次に、ユーザ端末14のハードウェア構成について説明する。図3は、ユーザ端末14のハードウェア構成の一例を示す図である。図3に示すように、ユーザ端末14は、バスBを介して相互に接続された、プロセッサ16と、メモリ18と、ストレージ20と、通信I/F22と、ユーザI/F24と、を備える。
 ユーザI/F24は、ユーザ端末14における各種情報の入力及び出力を行うためのインタフェースである。具体的には、入力を行う装置として例えば、マウス、キーボード、タッチパネル、マイク、スキャナ、カメラ、各種センサ、操作ボタン、又はこれらの組み合わせである。また、出力を行う装置として例えば、ディスプレイ、プロジェクタ、プリンタ、スピーカ、バイブレータ、又はこれらの組み合わせである。
 なお、本実施形態において、コスト最適化プログラムは、サーバ装置12の製造段階でメモリ18又はストレージ20に書き込まれてもよいし、ネットワークNを介してサーバ装置12に提供されてもよいし、図示しないディスクメディアなどの非一時的でコンピュータ読み取り可能な記録媒体を介してサーバ装置12に提供されてもよい。
<機能構成>
 次に、サーバ装置12の機能構成について説明する。図4は、サーバ装置12の機能構成の一例を示す図である。図4に示すように、サーバ装置12は、通信部30と、記憶部32と、制御部34と、を備える。
 通信部30は、通信I/F22により実現される。通信部30は、ネットワークNを介して、ユーザ端末14との間で情報の送受信を行う。通信部30は、ユーザ端末14から入力された情報を受信する。また、通信部30は、ユーザ端末14に対して原材料の組み合わせ候補等の情報を送信し、ユーザ端末14からユーザUによるリクエストを受信する。
 記憶部32は、メモリ18及びストレージ20により実現される。記憶部32には、学習モデル36と、原材料情報38と、所望処方情報40と、が格納される。
 学習モデル36は、説明変数としての原材料情報38の入力に対して、当該原材料からなる錠剤の予測物性を目的変数として出力するように予め機械学習された学習済みの学習モデルである(図5も参照)。つまり、学習モデル36は、原材料情報38の入力に対して、これと因果関係が見出せる予測物性の出力が可能とされている。学習モデル36の学習処理及び再学習処理は、例えば、サーバ装置12により行われるが、これに限られない。学習モデル36の学習処理及び再学習処理は、サーバ装置12以外の他の装置で行われ、サーバ装置12に提供されてもよい。学習モデル36は、例えば、DNN(Deep Neural Network)、RNN(Recurrent Neural Network)、CNN(Convolutional Neural Network)、LSTM(Long Short-Term Memory)等のニューラルネットワークであるが、これに限られない。学習モデル36は、決定木、SVM(Support Vector Machine)等の学習モデルであってもよい。また、学習モデル36の学習方法は、例えば、勾配降下法、確率的勾配降下法、又は誤差逆伝播法であるが、これに限られない。
 原材料情報38は、図5に示されるように、錠剤を構成する複数の原材料ごとの成分、物性及び構造の少なくとも一方を含む情報とされている。また、本実施形態では、説明変数として製法パラメータが含まれている。具体的には、製法パラメータでは、原材料の混合等を行う装置の機種情報、混合時の容積情報及び原材料の仕込み量の少なくとも一つが含まれている。
 予測物性は、入力された原材料情報38から生成される錠剤の硬度、崩壊時間、溶出率、純度、定量、質量偏差、含量均一性及び保存安定性の少なくとも一つについて予測された情報とされている。
 図4に示されるように、所望処方情報40は、生成された錠剤においてユーザUが所望する所定の物性値の情報とされている。本実施形態では、一例として、ユーザUが所望する硬度を所定の硬度として取得している。
 制御部34は、プロセッサ16がメモリ18からプログラムを読み出して実行し、他のハードウェア構成と協働することにより実現される。制御部34は、サーバ装置12の動作全体を制御する。制御部34は、取得部42と、算出部44と、出力部46と、を備える。
 取得部42は、ユーザ端末14に入力された情報から、原材料情報38を取得し、記憶部32に格納する。取得部42は、文字情報、画像など各種形態の原材料情報38の取得が可能とされている。
 また、取得部42は、ユーザ端末14に入力された情報から、関連情報を取得し、記憶部32に格納する。関連情報とは、学習モデル36から目的変数を取得するために必要となる説明変数以外の情報であり、具体的には、目的変数である予測物性との因果関係が見出し難い情報である原材料のコスト情報、環境負荷情報、入手難易度情報等が該当する。本実施形態では、一例として、関連情報は原材料ごとのコスト情報とされている(図6(b)参照)。
 さらに、取得部42は、ユーザ端末14に入力された情報から、ユーザUが所望する所定の物性値の情報を取得し、記憶部32に格納する。
 取得部42は、学習モデル36を利用して錠剤の物性を予測する。すなわち、取得部42が取得した原材料情報38及び製法パラメータを学習モデル36へ入力することで、原材料からなる錠剤の物性を予測する。本実施形態では、一例として、錠剤の硬度を含む物性を予測する(図6(a)参照)。
 また、取得部42は、学習モデル36を利用して取得した錠剤の予測される硬度の情報のうち、ユーザUが所望する所定の硬度が得られる説明変数を候補変数として複数取得する(図6(b)参照)。すなわち、取得部42は、学習モデル36の出力により所定の硬度(目的変数)が得られると予測される錠剤に対応する原材料情報38(説明変数)を取得する。なお、当該原材料情報38が請求項1記載の「候補変数」に相当する。そして、取得部42は、当該候補変数(原材料情報38)に対応しかつ所定の硬度を得るために必要な情報(原材料情報38)以外の情報である関連情報(原材料ごとのコスト情報)を複数取得する。
 算出部44は、取得部42が取得した関連情報の最適化処理を行う。具体的には、算出部44は、ブラックボックス最適化処理におけるベイズ最適化を行い、原材料コストを最適化する錠剤の作製条件(原材料の仕込み量を含めた組み合わせ候補)を推定する。図6(C)に、ベイズ最適化の処理内容の概念的なグラフを示す。横軸は候補変数(原材料の仕込み量を含めた組み合わせ候補)を、縦軸はコストを示す。なお、実際には3次元以上の多次元空間で探索を行うが、図6(c)では便宜的に2次元のグラフで図示している。
 算出部44は、候補変数とこれに対応するコスト情報とがガウス分布に従うと仮定し、コストが最小となる点を探索する。すなわち、算出部44は、候補変数とこれに対応するコスト情報の分布から平均及び分散を推定し、ガウス過程を導出する。そして算出部44は、獲得関数(Acquisition function)と呼ばれる評価用の関数を用いて最適化を行い、コストが最小化する点(最適解)を探索する。なお、算出部44は、事前に候補変数及びコスト情報の数値範囲の設定入力を受け付け、当該数値範囲で探索を行ってもよい。
 上記の処理により、算出部44は、最適と思われる候補変数、すなわちコストが最適となりかつ所定の硬度を満たす錠剤の作製条件(原材料の仕込み量を含めた組み合わせ候補)を推定する(図6(d)参照)。換言すると、上記処理は、学習モデル36を利用して取得された予測物性を制約条件とした上でコストの最適化解析を実施することで、コストが最適となる原材料の組み合わせ候補を得ることができる。
 出力部46は、算出部44により推定された、コストが最適となりかつ所定の硬度を満たす錠剤の原材料の組み合わせ候補情報をユーザ端末14に出力する。これにより、ユーザUが当該組み合わせ候補情報を確認することが可能となる。
 以上のサーバ装置12の各機能構成は、上記の通り、ソフトウェアにより実現されてもよいし、ICチップ、SoC(System on Chip)、LSI(Large Scale Integration)、マイクロコンピュータ等のハードウェアによって実現されてもよい。
<フローチャート>
 次に、本実施形態にかかる情報処理システムが実行する処理について説明する。図7は、情報処理システムが実行する処理の一例を示すフローチャートである。プロセッサ16がメモリ18又はストレージ20から本実施形態に係るコスト最適化プログラムを読み出し、メモリ18に展開して実行することにより、本実施形態に係るコスト最適化プログラムに基づく処理が行われる。
 プロセッサ16は、ユーザUが所望する所定の物性値の情報を取得する(ステップ100)と共に、原材料情報38を取得する(ステップ102)。そして、プロセッサ16は、原材料情報38を学習モデル36へ入力し(ステップ104)、学習モデル36から出力される予測物性情報を取得する(ステップ106)。
 プロセッサ16は、所望する所定の硬度(目的変数)が得られると予測される錠剤に対応する原材料情報38、すなわち候補変数を複数取得したか否かを判定する(ステップ108)。候補変数を複数取得していない場合(ステップ108:NO)、プロセッサ16は、ステップ106へ処理を移行する。一方、候補変数を複数取得した場合(ステップ108:YES)、プロセッサ16は、当該候補変数に対応したコスト情報を取得する(ステップ110)。
 プロセッサ16は、ベイズ最適化処理を行うことでコストが最適となりかつ所定の硬度を満たす錠剤の作製条件(原材料の仕込み量を含めた組み合わせ候補)を推定し(ステップ112)、当該推定結果がユーザ端末14に表示されるように出力する(ステップ114)。
 プロセッサ16は、ユーザ端末14から処理の終了指示を取得したか否かを判定する(ステップ116)。終了指示を取得していない場合(ステップ116:NO)、プロセッサ16は、ステップ100へ処理を移行する。一方、終了指示を取得した場合(ステップ116:YES)、プロセッサ16は、コスト最適化プログラムに基づく処理を終了する。
<本実施形態の作用・効果>  
 次に、本実施形態の作用並びに効果を説明する。  
 本実施形態によれば、説明変数(原材料情報38)を学習モデル36へ入力することで出力される目的変数(物性値)から候補変数を取得して当該候補変数に対応する関連情報の最適化解析により所定の条件(コストの最適化)に一致する候補変数を取得する。つまり、最適化解析を行うに際して、学習モデル36から得られた目的変数を基に最適化解析を行うことができる。したがって、実際に作製した物質を測定してデータセットを得る場合と比べて容易にデータセットを得ることができる。これにより、最適化を効率良く行うことができる。また、実際に原材料を組み合わせて錠剤を作製した上でデータセットを得る場合と比べて、最適化解析の条件に応じてデータセットを素早く追加することができる。これにより、最適化解析を含めた処理の時間短縮を図ることができる。
 また、サーバ装置12は、最適化解析のうちベイズ最適化の手法を行うことで、簡易な処理でコストの最適化を行うことができる。また、サーバ装置12の計算量(探索回数)を削減することができる。
 さらに、関連情報は、原材料ごとのコスト情報とされていることから、物性値を目的変数とする場合において、コストが最小となる原材料情報38を推測することができる。
 なお、上述した実施形態では、最適化解析のうちベイズ最適化の手法が用いられているが、これに限らず、モンテカルロ法、マルコフ連鎖モンテカルロ法及び強化学習等の他の手法により最適化解析が行われてもよい。
 また、関連情報はコスト情報とされているが、これに限らず、前述したように環境負荷情報(二酸化炭素の排出量等)や入手難易度情報などであってもよく、これ以外にも特定の物質(塩分やプリン体等)の含有量など、他の情報であってもよく、これらの組み合わせでもよい。
 さらに、本実施形態の情報処理システム10は、複数の原材料から成る錠剤を作製する場合に適用されているが、これに限らず、複数の原材料から成る錠剤以外の物質を作成する場合に適用してもよい。また、所定の物性値以外の条件を満たしかつ複数の原材料から成る部室を作製する場合における所定の条件にて最適化された原材料の組み合わせ候補を提示するためのシステムであってもよい。
<付記>
 本実施形態は、以下の開示を含む。
(付記1)
 情報処理装置が実行する情報処理方法であって、
 複数の原材料からなる物質における当該原材料の情報を説明変数として取得するステップと、
 前記説明変数の入力に対して前記物質の予測物性を目的変数として出力するよう機械学習された学習モデルへ前記説明変数を入力するステップと、
 前記学習モデルが出力する前記目的変数の情報を取得するステップと、
 取得した前記目的変数のうち所定の予測物性が得られる前記説明変数を候補変数として複数取得するステップと、
 複数の前記候補変数に対応しかつ前記目的変数を取得するために必要な情報以外の情報である関連情報を複数取得するステップと、
 取得した前記関連情報の最適化解析により所定の条件に一致する前記候補変数を取得するステップと、
 を有する情報処理方法。
(付記2)
 前記最適化解析は、ベイズ最適化、モンテカルロ法、マルコフ連鎖モンテカルロ法及び強化学習のうち1以上の手法によるブラックボックス最適化の手法を用いる、
 付記1に記載の情報処理方法。
(付記3)
 前記関連情報は、前記原材料ごとのコスト情報とされている、
 付記1又は付記2に記載の情報処理方法。
(付記4)
複数の原材料からなる物質における当該原材料の情報を説明変数として取得するステップと、
 前記説明変数の入力に対して前記物質の予測物性を目的変数として出力するよう機械学習された学習モデルへ前記説明変数を入力するステップと、
 前記学習モデルが出力する前記目的変数の情報を取得するステップと、
 取得した前記目的変数のうち所定の予測物性が得られる前記説明変数を候補変数として複数取得するステップと、
 複数の前記候補変数における前記目的変数を取得するために必要な情報以外の情報である関連情報を複数取得するステップと、
 取得した前記関連情報の最適化解析により所定の条件に一致する前記候補変数を取得するステップと、
 をコンピュータに実行させるためのプログラム。
 今回開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。また、本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
12   サーバ装置(情報処理装置)
36   学習モデル
38   原材料情報(原材料の情報)

Claims (4)

  1.  情報処理装置が実行する情報処理方法であって、
     複数の原材料からなる物質における当該原材料の情報を説明変数として取得するステップと、
     前記説明変数の入力に対して前記物質の予測物性を目的変数として出力するよう機械学習された学習モデルへ前記説明変数を入力するステップと、
     前記学習モデルが出力する前記目的変数の情報を取得するステップと、
     取得した前記目的変数のうち所定の予測物性が得られる前記目的変数に対応した前記説明変数を候補変数として複数取得するステップと、
     複数の前記候補変数に対応しかつ前記目的変数を取得するために必要な情報以外の情報である関連情報を複数取得するステップと、
     取得した前記関連情報の最適化解析により所定の条件に一致する前記候補変数を取得するステップと、
     を有する情報処理方法。
  2.  前記最適化解析は、ベイズ最適化、モンテカルロ法、マルコフ連鎖モンテカルロ法及び強化学習のうち1以上のブラックボックス最適化の手法を用いる、
     請求項1に記載の情報処理方法。
  3.  前記関連情報は、前記原材料ごとのコスト情報とされている、
     請求項1又は請求項2に記載の情報処理方法。
  4. 複数の原材料からなる物質における当該原材料の情報を説明変数として取得するステップと、
     前記説明変数の入力に対して前記物質の予測物性を目的変数として出力するよう機械学習された学習モデルへ前記説明変数を入力するステップと、
     前記学習モデルが出力する前記目的変数の情報を取得するステップと、
     取得した前記目的変数のうち所定の予測物性が得られる前記目的変数に対応した前記説明変数を候補変数として複数取得するステップと、
     複数の前記候補変数に対応しかつ前記目的変数を取得するために必要な情報以外の情報である関連情報を複数取得するステップと、
     取得した前記関連情報の最適化解析により所定の条件に一致する前記候補変数を取得するステップと、
     をコンピュータに実行させるためのプログラム。
     
PCT/JP2022/044406 2022-05-26 2022-12-01 情報処理方法及びプログラム WO2023228442A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-086455 2022-05-26
JP2022086455A JP7157402B1 (ja) 2022-05-26 2022-05-26 情報処理方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2023228442A1 true WO2023228442A1 (ja) 2023-11-30

Family

ID=83691029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044406 WO2023228442A1 (ja) 2022-05-26 2022-12-01 情報処理方法及びプログラム

Country Status (2)

Country Link
JP (2) JP7157402B1 (ja)
WO (1) WO2023228442A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160162796A1 (en) * 2014-12-09 2016-06-09 Institute For Information Industry Combination selecting method and system using the same
WO2019088185A1 (ja) * 2017-11-01 2019-05-09 株式会社日立製作所 設計支援装置及び設計支援方法
JP2020030683A (ja) * 2018-08-23 2020-02-27 横浜ゴム株式会社 ゴム材料設計方法、ゴム材料設計装置、及びプログラム
JP2020166749A (ja) * 2019-03-29 2020-10-08 株式会社カネカ 製造システム、情報処理方法、および製造方法
JP6842731B1 (ja) * 2019-09-05 2021-03-17 国立大学法人東京工業大学 作製評価システム、作製評価方法及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160162796A1 (en) * 2014-12-09 2016-06-09 Institute For Information Industry Combination selecting method and system using the same
WO2019088185A1 (ja) * 2017-11-01 2019-05-09 株式会社日立製作所 設計支援装置及び設計支援方法
JP2020030683A (ja) * 2018-08-23 2020-02-27 横浜ゴム株式会社 ゴム材料設計方法、ゴム材料設計装置、及びプログラム
JP2020166749A (ja) * 2019-03-29 2020-10-08 株式会社カネカ 製造システム、情報処理方法、および製造方法
JP6842731B1 (ja) * 2019-09-05 2021-03-17 国立大学法人東京工業大学 作製評価システム、作製評価方法及びプログラム

Also Published As

Publication number Publication date
JP2023174450A (ja) 2023-12-07
JP7157402B1 (ja) 2022-10-20
JP2023173905A (ja) 2023-12-07

Similar Documents

Publication Publication Date Title
Löhr et al. A kinetic ensemble of the Alzheimer’s Aβ peptide
Fowler et al. Deep mutational scanning: a new style of protein science
JP6956884B2 (ja) 細胞培養支援装置の作動プログラム、細胞培養支援装置、細胞培養支援装置の作動方法
Bajorath Computer-aided drug discovery
Cox et al. Using noise to probe and characterize gene circuits
Miskovic et al. Rites of passage: requirements and standards for building kinetic models of metabolic phenotypes
Copperman et al. Accelerated estimation of long-timescale kinetics from weighted ensemble simulation via non-Markovian “microbin” analysis
Green et al. Leveraging high-throughput screening data, deep neural networks, and conditional generative adversarial networks to advance predictive toxicology
Zhang et al. Predicting human splicing branchpoints by combining sequence-derived features and multi-label learning methods
Pfeiffenberger et al. Predicting improved protein conformations with a temporal deep recurrent neural network
Dominic III et al. Building insightful, memory-enriched models to capture long-time biochemical processes from short-time simulations
Vieira et al. A pipeline for the reconstruction and evaluation of context-specific human metabolic models at a large-scale
KR20150041590A (ko) 동적 워크플로우 우선순위 선정 및 작업 수행을 위한 방법들 및 시스템들
Schoell et al. Determining particle‐size distributions from chord length measurements for different particle morphologies
WO2021200281A1 (ja) 試験評価システム、プログラムおよび試験評価方法
WO2023228442A1 (ja) 情報処理方法及びプログラム
Zhou et al. Molecular dynamics study of conformation transition from helix to sheet of Aβ42 peptide
JP2016139336A (ja) 予測装置、予測方法および予測プログラム
Johnston et al. Continuum electrostatics model for ion solvation and relative acidity of HCl in supercritical water
Choudhury et al. Generative machine learning produces kinetic models that accurately characterize intracellular metabolic states
Carroll et al. Departures from neutrality induced by niche and relative fitness differences
Godwin et al. Structure and dynamics of tRNAMet containing core substitutions
TW202203098A (zh) 用於通過近紅外光譜學和機器學習技術在製造過程中進行端點檢測之設備和方法,及相關電腦可讀取媒體
Raevsky et al. Six global and local QSPR models of aqueous solubility at pH= 7.4 based on structural similarity and physicochemical descriptors
Myers et al. Using machine learning surrogate modeling for faster QSP VP cohort generation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943841

Country of ref document: EP

Kind code of ref document: A1