WO2023228362A1 - Elevator governor system inspection device and inspection method - Google Patents

Elevator governor system inspection device and inspection method Download PDF

Info

Publication number
WO2023228362A1
WO2023228362A1 PCT/JP2022/021582 JP2022021582W WO2023228362A1 WO 2023228362 A1 WO2023228362 A1 WO 2023228362A1 JP 2022021582 W JP2022021582 W JP 2022021582W WO 2023228362 A1 WO2023228362 A1 WO 2023228362A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
car
governor system
simulated
overspeed
Prior art date
Application number
PCT/JP2022/021582
Other languages
French (fr)
Japanese (ja)
Inventor
洋輔 久保
勇来 齊藤
康司 伊藤
秀隆 座間
徹也 中山
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2022/021582 priority Critical patent/WO2023228362A1/en
Publication of WO2023228362A1 publication Critical patent/WO2023228362A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/04Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed
    • B66B5/06Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed electrical

Definitions

  • the present invention relates to an inspection device and an inspection method for inspecting the operation of an elevator governor system that operates an elevator emergency stop device.
  • Elevator equipment is equipped with a governor and an emergency stop device to constantly monitor the elevator car's elevator speed and bring the elevator car to an emergency stop when it reaches a predetermined overspeed condition.
  • a governor rope connected to the cage is wound around the governor pulley.
  • the governor rope moves with the car, causing the pulley to rotate.
  • the pulley rotates, the pendulum attached to the pulley swings due to centrifugal force.
  • the pendulum activates a gripping mechanism for the governor rope, and the movement of the governor rope is restricted. This activates the emergency stop device on the car side, causing the car to come to an emergency stop.
  • Patent Document 1 As a conventional technique that operates an emergency stop device based on the speed of the car detected using a non-contact sensor without using a mechanical governor as described above, there is a technique described in Patent Document 1. It has been known.
  • the monitoring device determines that there is an abnormality in the driving situation based on speed information from the car speed detection section in the detection means that detects the position and speed of the car, it outputs an activation signal to the emergency stop device. do.
  • the position/speed detection device for a moving object described in Patent Document 1 detects the speed of the moving object based on an image taken by a camera included in the moving object. If the moving object is an elevator, the walls and pillars of the hoistway are photographed.
  • the present invention provides an elevator governor system inspection device and inspection method that can easily inspect the operation of a governor system that detects the speed of a car using a non-contact sensor.
  • an inspection device for an elevator governor system detects the speed of the car based on a non-contact sensor provided in the car and a sensor signal of the non-contact sensor. If the overspeed state of the car is determined based on the detected speed, the operation of the governor system, which is equipped with a safety control device that operates an emergency stop device, is tested, and based on the detected speed, a simulated speed larger than the detected speed is
  • the safety control device includes a simulated speed generation unit that generates a simulated speed, and during an inspection, the safety control device determines an overspeed state of the car based on the simulated speed.
  • a method for inspecting an elevator governor system detects the speed of the car based on a non-contact sensor provided in the car and a sensor signal of the non-contact sensor, and A method for inspecting the operation of a governor system comprising a safety control device that operates an emergency stop device when an overspeed condition of a car is determined based on the , a simulated speed larger than the detected speed is generated based on the detected speed, and the safety control device determines an overspeed state of the car based on the simulated speed.
  • the operation of the governor system can be easily inspected without causing the car to become overspeeded.
  • FIG. 1 is a schematic configuration diagram of an elevator system that is an embodiment of the present invention.
  • the elevator system includes a car 1, a non-contact sensor 2, an electric operating device 3, a link mechanism 4, and an emergency stop device 5.
  • the emergency stop device 5 is simply illustrated, and the detailed configuration of the emergency stop device 5 is omitted.
  • the emergency stop device 5 in this embodiment is based on a known technique.
  • the car 1 is suspended by a main rope (not shown) in a hoistway provided in a building, and is slidably engaged with a guide rail 7 via a guide device.
  • a main rope (not shown)
  • a drive device a hoisting machine, not shown
  • the car 1 moves up and down within the hoistway.
  • the non-contact sensor 2 is provided in the car 1. Using the non-contact sensor 2, the position of the car 1 in the hoistway is detected, and the ascending and descending speed of the car 1 is constantly detected from the detected position of the car 1. Therefore, using the non-contact sensor 2, it is possible to detect that the lifting speed of the car exceeds a predetermined overspeed.
  • the non-contact sensor 2 includes an image sensor and detects the position and speed of the car 1 based on image information of the surface state of the guide rail 7 acquired by the image sensor.
  • the electric operating device 3 is an electromagnetic operating device in the first embodiment, and is arranged at the top of the car 1.
  • the electromagnetic operating device includes a movable piece or a movable rod that is driven by, for example, a solenoid or an electromagnet.
  • the electric operating device 3 includes an electromagnet, and is in an inactive state while the electromagnet is energized.
  • the power to the electromagnet is cut off.
  • the electric operating device 3 is actuated to displace the link mechanism 4 and put the emergency stop device 5 into a braking state.
  • the link mechanism 4 includes a link shaft 40 driven by the electric actuator 3, a pull-up link 41 operatively linked to the link shaft 40, and a pull-up rod 42 connected to the pull-up link 41. 3, the pulling rods 42 disposed on the left and right sides of the car 1 are pulled up substantially simultaneously via the pulling links 41. As a result, when the brake 51 of the emergency stop device 5 attached to the pulling rod 42 is pulled up to the braking position, the brake 51 clamps the guide rail 7 .
  • the emergency stop devices 5 are arranged one on each side of the car 1.
  • the brake element 51 included in the emergency stop device 5 is movable between a braking position and a non-braking position, and clamps the guide rail 7 in the braking position.
  • a braking force is generated by the frictional force acting between the brake element 51 and the guide rail 7.
  • the emergency stop device 5 is activated when the car 1 falls into an overspeed state, and brings the car 1 to an emergency stop.
  • the elevator apparatus of this embodiment includes a so-called ropeless governor system that does not use a governor rope.
  • the ropeless governor system when the lifting speed of the car 1 exceeds the rated speed and reaches the first overspeed (for example, a speed not exceeding 1.3 times the rated speed), the traction sheave around which the main rope is wound is activated. Cut off the power to the drive device (hoisting machine) and the control device that controls this drive device.
  • the drive device hovering machine
  • the control device that controls this drive device.
  • the electric operating device 3 provided in the car 1 is activated.
  • the emergency stop device 5 is actuated to bring the car 1 to an emergency stop.
  • the ropeless governor system includes a non-contact sensor 2 and a safety control device 100 (FIG. 1) that determines the overspeed state of the car 1 based on the output signal of the non-contact sensor 2. Ru.
  • a safety control device 100 is provided on a car 1, as shown in FIG.
  • the safety control device 100 measures the speed of the car 1 based on the sensor signal of the non-contact sensor 2, and when it is determined that the measured speed has reached the first overspeed, the safety control device 100 turns on the power source of the drive device (hoisting machine). and outputs a command signal to cut off the power to the control device that controls this drive device. Furthermore, when the safety control device 100 determines that the measured speed has reached the second overspeed, it outputs a command signal for driving the electric operating device 3.
  • the safety control device 100 has a function of inspecting the operation of the ropeless governor system that detects the speed of the car 1 using the non-contact sensor 2.
  • FIG. 2 is a functional block diagram showing the configuration of the ropeless governor system in this embodiment.
  • the safety control device 100 includes a speed detection section 101, a simulated speed generation section 102, an inspection mode detection section 105, an inspection mode switching section 106, an overspeed determination section 107, a drive power cutoff command section 108, and an electromagnet power supply.
  • a cutoff command section 109 is provided.
  • the safety control device 100 includes a computer system such as a microcomputer, and the computer system operates as each part by executing a predetermined program.
  • the speed detection unit 101 acquires a sensor signal from the non-contact sensor 2, and detects the speed of the car 1 by image signal processing based on the acquired sensor signal.
  • the speed detection unit 101 calculates the speed from the moving distance of the image feature amount of the surface state of the guide rail 7 in a predetermined time. Further, for example, the speed detection unit 101 detects the position of the car 1 by comparing image information of the surface state of the guide rail 7 stored in the storage device in advance with image information obtained from the sensor signal, Furthermore, the speed of the car 1 is measured by calculating the temporal change in the detected position.
  • the speed detection unit 101 outputs the detected speed of the car 1 to the overspeed determination unit 107 via the inspection mode detection unit 105.
  • the inspection mode detection unit 105 connects any of the outputs of the speed detection unit 101 and the simulated speed generation unit 102 (described later) to the input of the overspeed determination unit 107.
  • the inspection mode detection section 105 connects the output of the speed detection section 101 to the input of the overspeed determination section 107.
  • the overspeed determining unit 107 determines whether the detected speed input from the speed detecting unit 101 is equal to or higher than the first overspeed. When the overspeed determination section 107 determines that the detected speed is equal to or higher than the first overspeed, the overspeed determination section 107 sends the determination result to the drive power cutoff command section 108 .
  • the drive power cutoff command unit 108 When the drive power cutoff command unit 108 receives the determination result from the overspeed determination unit 107, it outputs a command signal to shut off the power to the hoisting machine and the control device 60.
  • the overspeed determination unit 107 determines whether the detected speed input from the speed detection unit 101 is equal to or higher than the second overspeed. When the overspeed determination section 107 determines that the detected speed is equal to or higher than the second overspeed, the overspeed determination section 107 sends the determination result to the electromagnet power cutoff command section 109 .
  • the electromagnet power cutoff command unit 109 Upon receiving the determination result from the overspeed determination unit 107, the electromagnet power cutoff command unit 109 outputs a command signal to shut off the power to the electromagnet of the electric actuator 3 (FIG. 1) in the electric emergency stop device.
  • a maintenance terminal device 200 is communicably connected to the safety control device 100.
  • the maintenance terminal device 200 is configured by a personal computer or the like.
  • the maintenance terminal device 200 uses the inspection mode command unit 201 to send a command signal to the safety control device 100 to instruct switching from the normal operation mode to the inspection operation mode.
  • the inspection mode switching unit 106 in the safety control device 100 When the inspection mode switching unit 106 in the safety control device 100 receives a command signal from the maintenance terminal device 200, the inspection mode switching unit 106 instructs the inspection mode detection unit 105 to output the output of the simulated speed generation unit 102 and the input of the overspeed determination unit 107. Command the connection.
  • the inspection mode detection section 105 disconnects the output of the speed detection section 101 and the input of the overspeed determination section 107 in response to a command from the inspection mode switching section 106, and connects the output of the simulated speed generation section 102 with the overspeed determination section. It is connected to the input of section 107.
  • the simulated speed generation unit 102 generates a simulated speed for inspection by multiplying the detected speed of the car 1 output by the speed detection unit 101 by a constant using the proportional device 103.
  • the detected speed output by the speed detection unit 101 may include a vibration component due to the vibration of the car 1 due to the elasticity of the main rope.
  • this vibration component is also multiplied by a constant. Therefore, in this embodiment, the vibration component of the simulated speed output by the proportional device 103 is removed by the low-pass filter 104.
  • the simulated speed generation unit 102 outputs a simulated speed from which vibration components have been removed. This improves the reliability of testing the ropeless governor system.
  • the car 1 When testing the operation of the ropeless governor system, the car 1 is operated in a speed range below the rated speed.
  • the cutoff frequency of the low-pass filter 104 is set to the natural frequency of the vibration system consisting of the main rope and the car 1. Since the length of the main rope that constitutes the vibration system differs depending on the position of the car 1, the natural frequency varies. For this reason, the cutoff frequency is preferably set to the minimum natural frequency.
  • the simulated speed generation unit 102 outputs the simulated speed of the car 1 to the overspeed determination unit 107 via the inspection mode detection unit 105.
  • the overspeed determining unit 107 determines whether the simulated speed input from the simulated speed generating unit 102 is greater than or equal to the first overspeed.
  • the overspeed determination unit 107 determines that the simulated speed is equal to or higher than the first overspeed, it sends the determination result and the value of the simulated speed to the maintenance terminal device 200 .
  • the maintenance terminal device 200 detects that the ropeless governor system performs a predetermined operation when the speed of the car 1 reaches the first overspeed, and detects the speed of the car 1 at that time.
  • the maintenance terminal device 200 displays the determination result and the simulated speed value received from the overspeed determination section 107 using a speed display section 202 that includes a display device such as a liquid crystal display.
  • the overspeed determining unit 107 determines whether the simulated speed input from the simulated speed generating unit 102 is equal to or higher than the second overspeed.
  • the overspeed determination unit 107 determines that the simulated speed is equal to or higher than the second overspeed, it sends the determination result and the value of the simulated speed to the maintenance terminal device 200 .
  • the maintenance terminal device 200 detects that the ropeless governor system performs a predetermined operation when the speed of the car 1 reaches the second overspeed, and detects the speed of the car 1 at that time. In this case as well, the maintenance terminal device 200 displays the determination result received from the overspeed determining section 107 and the value of the simulated speed using the speed display section 202.
  • the overspeed determination section 107 does not send the determination result to the drive power cutoff command section 108 and the electromagnet power cutoff command section 109. Therefore, the car 1 will not be brought to an emergency stop. Note that the determination result may be invalidated in the drive power cutoff command section 108 and the electromagnet power cutoff command section 109.
  • FIG. 3 is a flowchart showing processing operations in the inspection operation mode of the safety control device 100 of this embodiment.
  • a maintenance engineer inspects the operation of the ropeless governor system using the maintenance terminal device 200 on the car 1 in which the safety control device 100 is installed. At this time, the operation mode of the elevator system is set to maintenance operation mode. In the maintenance operation mode, a maintenance engineer manually operates a maintenance operation panel provided on the car 1 to cause the car 1 to travel at a speed lower than the rated speed.
  • a maintenance engineer communicably connects the maintenance terminal device 200 to the safety control device 100 via a communication line. Next, the maintenance engineer operates the maintenance terminal device 200 to switch the operation mode of the safety control device 100 from the normal operation mode to the inspection operation mode.
  • step S1 the maintenance engineer operates the maintenance operation panel, and the car 1 starts traveling.
  • the car 1 starts traveling, it accelerates in a speed range lower than the rated speed.
  • step S2 the safety control device 100 acquires a sensor signal from the non-contact sensor 2.
  • step S3 the safety control device 100 uses the speed detection unit 101 to detect the speed of the car 1 based on the sensor signal acquired in step S1.
  • step S4 the safety control device 100 uses the proportional device 103 in the simulated speed generation unit 102 to multiply the detected speed of the car 1 obtained in step S3 by a constant, thereby creating a simulated speed for inspection. Calculate.
  • step S5 the safety control device 100 filters the simulated speed calculated in step S4 using the low-pass filter 104 in the simulated speed generating section 102.
  • step S6 the safety control device 100 uses the overspeed determination unit 107 to determine whether the simulated speed filtered in step S5 is equal to or higher than the first overspeed. If the safety control device 100 determines that the simulated speed is not equal to or higher than the first overspeed (NO in step S6), it re-executes the processes from step S2 onwards. Further, if the safety control device 100 determines that the simulated speed is equal to or higher than the first overspeed (YES in step S6), then it executes step S7.
  • step S7 the safety control device 100 uses the overspeed determining unit 107 to send the first overspeed data including the value of the simulated speed determined to be equal to or higher than the first overspeed to the maintenance terminal device 200. Output to.
  • the maintenance terminal device 200 uses the speed display unit 202 to display the first overspeed data on a display device included in the maintenance terminal device 200. Thereby, the maintenance engineer confirms that the ropeless governor system performs a predetermined operation when the speed of the car 1 reaches the first overspeed.
  • step S8 the safety control device 100 then executes step S8.
  • step S8 the safety control device 100 acquires the sensor signal from the non-contact sensor 2.
  • step S9 the safety control device 100 uses the speed detection unit 101 to detect the speed of the car 1 based on the sensor signal acquired in step S8.
  • step S10 the safety control device 100 uses the proportional device 103 in the simulated speed generation unit 102 to multiply the detected speed of the car 1 obtained in step S9 by a constant, thereby creating a simulated speed for inspection. Calculate.
  • step S11 the safety control device 100 filters the simulated speed calculated in step S10 using the low-pass filter 104 in the simulated speed generating section 102.
  • step S12 the safety control device 100 uses the overspeed determining unit 107 to determine whether the simulated speed filtered in step S11 is equal to or higher than the second overspeed. If the safety control device 100 determines that the simulated speed is not equal to or higher than the second overspeed (NO in step S12), it re-executes the processes from step S8 onwards. Further, if the safety control device 100 determines that the simulated speed is equal to or higher than the second overspeed (YES in step S12), then it executes step S13.
  • step S13 the safety control device 100 uses the overspeed determining unit 107 to send second overspeed data including the value of the simulated speed determined to be equal to or higher than the second overspeed in step S12 to the maintenance terminal device 200.
  • the maintenance terminal device 200 uses the speed display section 202 to display the second overspeed data on a display device included in the maintenance terminal device 200.
  • the maintenance engineer confirms that the ropeless governor system performs a predetermined operation when the speed of the car 1 reaches the second overspeed.
  • step S14 the safety control device 100 then executes step S14.
  • step S14 the maintenance engineer operates the maintenance operation panel to stop the car 1 from running.
  • the safety control device 100 ends the series of processes.
  • the operation of the ropeless governor system can be inspected by running the car 1 at a low speed below the rated speed without overspeeding the car 1. Therefore, the operation of a ropeless governor system that detects the speed of a car using a non-contact sensor can be easily inspected.
  • the non-contact sensor 2 may detect a barcode or a predetermined pattern that includes positional information in the height direction within the hoistway.
  • the barcode or predetermined pattern is set on the surface of a long object to be detected, such as a tape.
  • a magnetic sensor may be used as the non-contact sensor.
  • a tape-like elongated member magnetized with a pattern including positional information is used as the object to be detected.
  • the present invention is not limited to the embodiments described above, and includes various modifications.
  • the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described.
  • the electric operating device 3 may be provided not only in the upper part of the car 1 but also in the lower part or the side part.
  • the elevator device may have a machine room or may be a so-called machine room-less elevator.

Abstract

Disclosed is an elevator governor system inspection device which makes it possible to easily inspect the operation of a governor system for detecting the speed of an elevator passenger car by using a contactless sensor. An elevator governor system inspection device equipped with a contactless sensor (2) provided to the passenger car and a safety control device (100) for detecting the passenger car speed on the basis of a sensor signal from the contactless sensor, and operating an emergency stop device when it is determined on the basis of the detected speed that the passenger car speed is too fast, said inspection device being: further equipped with a simulated speed generation unit (102) which generates a simulated speed which is greater than the detected speed on the basis of the detected speed; and further configured in a manner such that during inspection, the safety control device determines that the passenger car speed is too fast on the basis of the simulated speed.

Description

エレベータ用ガバナシステムの検査装置および検査方法Inspection device and method for elevator governor system
 本発明は、エレベータ用非常止め装置を作動させるエレベータ用ガバナシステムの動作を検査する検査装置および検査方法に関する。 The present invention relates to an inspection device and an inspection method for inspecting the operation of an elevator governor system that operates an elevator emergency stop device.
 エレベータ装置には、乗りかごの昇降速度を常時監視して、所定の過速状態に陥った乗りかごを非常停止させるために、ガバナおよび非常止め装置が備えられている。ガバナのプーリには、乗りかごに結合されたガバナロープが巻き掛けられている。乗りかごが昇降すると、乗りかごとともにガバナロープが動くため、プーリが回転する。プーリが回転すると、プーリに設けられている振子が、遠心力によって振れる。乗りかごが過速状態となり振子の振れが大きくなると、振子によってガバナロープの把持機構が作動し、ガバナロープの動きが拘束される。これにより、乗りかご側の非常止め装置が作動し、乗りかごが非常停止する。 Elevator equipment is equipped with a governor and an emergency stop device to constantly monitor the elevator car's elevator speed and bring the elevator car to an emergency stop when it reaches a predetermined overspeed condition. A governor rope connected to the cage is wound around the governor pulley. When the car moves up and down, the governor rope moves with the car, causing the pulley to rotate. When the pulley rotates, the pendulum attached to the pulley swings due to centrifugal force. When the car is in an overspeed state and the swing of the pendulum becomes large, the pendulum activates a gripping mechanism for the governor rope, and the movement of the governor rope is restricted. This activates the emergency stop device on the car side, causing the car to come to an emergency stop.
 このようなエレベータ装置では、昇降路内に長尺物であるガバナロープを敷設するため、省スペース化および低コスト化が難しい。また、ガバナロープが振れる場合、昇降路内における構造物とガバナロープとが干渉しやすくなる。 In such an elevator system, since a long governor rope is laid in the hoistway, it is difficult to save space and reduce costs. Further, when the governor rope swings, structures in the hoistway and the governor rope tend to interfere with each other.
 これに対し、上述のような機械的なガバナを用いず、非接触センサを用いて検出される乗りかごの速度に基づいて非常止め装置を作動させる従来技術として、特許文献1に記載された技術が知られている。 On the other hand, as a conventional technique that operates an emergency stop device based on the speed of the car detected using a non-contact sensor without using a mechanical governor as described above, there is a technique described in Patent Document 1. It has been known.
 本従来技術では、監視装置が、乗りかごの位置と速度を検出する検出手段におけるかご速度検出部からの速度情報に基づいて運転状況に異常があると判断すると、非常止め装置に作動信号を出力する。また、特許文献1(図15)に記載される移動体の位置・速度検出装置は、移動体が備えるカメラによって撮影される画像に基づいて、移動体の速度を検出する。移動体がエレベータである場合、昇降路の壁や柱が撮影される。 In this conventional technology, when the monitoring device determines that there is an abnormality in the driving situation based on speed information from the car speed detection section in the detection means that detects the position and speed of the car, it outputs an activation signal to the emergency stop device. do. Furthermore, the position/speed detection device for a moving object described in Patent Document 1 (FIG. 15) detects the speed of the moving object based on an image taken by a camera included in the moving object. If the moving object is an elevator, the walls and pillars of the hoistway are photographed.
国際公開第2006/073015号International Publication No. 2006/073015
 機械式ガバナの動作の検査では、プーリからガバナロープを外して、駆動装置によりプーリを回転させることにより、乗りかごを走行させずに、検査を行うことができる。しかし、非接触センサを用いて乗りかごの速度を検出するガバナシステムでは、乗りかごを加速走行させて過速状態にする必要があり、検査が煩雑になったり、検査時間が長くなったりする。 When inspecting the operation of a mechanical governor, the governor rope is removed from the pulley and the pulley is rotated by the drive device, thereby making it possible to inspect the operation without running the car. However, in a governor system that detects the speed of a car using a non-contact sensor, it is necessary to accelerate the car to bring it into an overspeed state, which makes the inspection complicated and takes a long time.
 そこで、本発明は、非接触センサを用いて乗りかごの速度を検出するガバナシステムの動作を容易に検査することができる、エレベータ用ガバナシステムの検査装置および検査方法を提供する。 Therefore, the present invention provides an elevator governor system inspection device and inspection method that can easily inspect the operation of a governor system that detects the speed of a car using a non-contact sensor.
 上記課題を解決するために、本発明によるエレベータ用ガバナシステムの検査装置は、乗りかごに設けられる非接触センサと、非接触センサのセンサ信号に基づいて乗りかごの速度を検出し、検出速度に基づいて乗りかごの過速状態を判定すると、非常止め装置を動作させる安全制御装置とを備えるガバナシステムの動作を検査するものであって、検出速度に基づいて、検出速度よりも大きな模擬速度を生成する模擬速度生成部を備え、検査時に、安全制御装置は、模擬速度に基づいて乗りかごの過速状態を判定する。 In order to solve the above problems, an inspection device for an elevator governor system according to the present invention detects the speed of the car based on a non-contact sensor provided in the car and a sensor signal of the non-contact sensor. If the overspeed state of the car is determined based on the detected speed, the operation of the governor system, which is equipped with a safety control device that operates an emergency stop device, is tested, and based on the detected speed, a simulated speed larger than the detected speed is The safety control device includes a simulated speed generation unit that generates a simulated speed, and during an inspection, the safety control device determines an overspeed state of the car based on the simulated speed.
 上記課題を解決するために、本発明によるエレベータ用ガバナシステムの検査方法は、乗りかごに設けられる非接触センサと、非接触センサのセンサ信号に基づいて乗りかごの速度を検出し、検出速度に基づいて乗りかごの過速状態を判定すると、非常止め装置を動作させる安全制御装置とを備えるガバナシステムの動作を検査する方法であって、乗りかごを、定格速度以下の速度範囲で運転しながら、検出速度に基づいて、検出速度よりも大きな模擬速度を生成し、安全制御装置は、模擬速度に基づいて乗りかごの過速状態を判定する。 In order to solve the above problems, a method for inspecting an elevator governor system according to the present invention detects the speed of the car based on a non-contact sensor provided in the car and a sensor signal of the non-contact sensor, and A method for inspecting the operation of a governor system comprising a safety control device that operates an emergency stop device when an overspeed condition of a car is determined based on the , a simulated speed larger than the detected speed is generated based on the detected speed, and the safety control device determines an overspeed state of the car based on the simulated speed.
 本発明によれば、乗りかごを過速状態にすることなく、ガバナシステムの動作を容易に検査することができる。 According to the present invention, the operation of the governor system can be easily inspected without causing the car to become overspeeded.
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be made clear by the following description of the embodiments.
実施例であるエレベータ装置の概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram of the elevator apparatus which is an Example. 実施例におけるロープレスガバナシステムの構成を示す機能ブロック図である。It is a functional block diagram showing the composition of the ropeless governor system in an example. 実施例の安全制御装置の検査動作モードにおける処理動作を示すフローチャートである。It is a flowchart which shows the processing operation in the inspection operation mode of the safety control device of an example.
 以下、本発明の実施形態について、実施例により、図面を用いながら説明する。なお、各図において、参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。 Hereinafter, embodiments of the present invention will be described by way of examples and with reference to the drawings. In each figure, the same reference numbers indicate the same constituent elements or constituent elements with similar functions.
 図1は、本発明の一実施例であるエレベータ装置の概略構成図である。 FIG. 1 is a schematic configuration diagram of an elevator system that is an embodiment of the present invention.
 図1に示すように、エレベータ装置は、乗りかご1と、非接触センサ2と、電動操作器3と、リンク機構4と、非常止め装置5とを備えている。図1では、非常止め装置5は簡略に図示し、非常止め装置5の詳細な構成については省略している。なお、本実施例における非常止め装置5は、公知技術によるものである。 As shown in FIG. 1, the elevator system includes a car 1, a non-contact sensor 2, an electric operating device 3, a link mechanism 4, and an emergency stop device 5. In FIG. 1, the emergency stop device 5 is simply illustrated, and the detailed configuration of the emergency stop device 5 is omitted. The emergency stop device 5 in this embodiment is based on a known technique.
 乗りかご1は、建築物に設けられる昇降路内に主ロープ(図示せず)により吊られており、ガイド装置を介してガイドレール7に摺動可能に係合している。駆動装置(巻上機:図示せず)により主ロープが摩擦駆動されると、乗りかご1は昇降路内を昇降する。 The car 1 is suspended by a main rope (not shown) in a hoistway provided in a building, and is slidably engaged with a guide rail 7 via a guide device. When the main rope is frictionally driven by a drive device (a hoisting machine, not shown), the car 1 moves up and down within the hoistway.
 非接触センサ2は、乗りかご1に設けられている。非接触センサ2を用いて、昇降路内における乗りかご1の位置が検出されるとともに、検出された乗りかご1の位置から乗りかご1の昇降速度が常時検出される。したがって、非接触センサ2を用いて、乗りかごの昇降速度が所定の過速度を超えたことを検出することができる。 The non-contact sensor 2 is provided in the car 1. Using the non-contact sensor 2, the position of the car 1 in the hoistway is detected, and the ascending and descending speed of the car 1 is constantly detected from the detected position of the car 1. Therefore, using the non-contact sensor 2, it is possible to detect that the lifting speed of the car exceeds a predetermined overspeed.
 本実施例では、非接触センサ2は、画像センサを備え、画像センサによって取得されるガイドレール7の表面状態の画像情報に基づいて、乗りかご1の位置および速度を検出する。 In this embodiment, the non-contact sensor 2 includes an image sensor and detects the position and speed of the car 1 based on image information of the surface state of the guide rail 7 acquired by the image sensor.
 電動操作器3は、本実施例1では電磁操作器であり、乗りかご1の上部に配置される。電磁操作器は、例えば、ソレノイドもしくは電磁石によって駆動される、可動片もしくは可動杆を備えるものである。電動操作器3は、電磁石を備え、電磁石が通電中は、非作動状態である。非接触センサ2によって乗りかご1の所定の過速状態が検出されると、電磁石の電源が遮断される。これにより、電動操作器3は、作動して、リンク機構4を変位させて非常止め装置5を制動状態にする。 The electric operating device 3 is an electromagnetic operating device in the first embodiment, and is arranged at the top of the car 1. The electromagnetic operating device includes a movable piece or a movable rod that is driven by, for example, a solenoid or an electromagnet. The electric operating device 3 includes an electromagnet, and is in an inactive state while the electromagnet is energized. When a predetermined overspeed state of the car 1 is detected by the non-contact sensor 2, the power to the electromagnet is cut off. As a result, the electric operating device 3 is actuated to displace the link mechanism 4 and put the emergency stop device 5 into a braking state.
 リンク機構4は、電動操作器3によって駆動されるリンクシャフト40、リンクシャフト40に連動可能にリンクする引き上げリンク41、および引き上げリンク41に連結される引き上げロッド42を有しており、電動操作器3の作動に応じて引き上げリンク41を介して乗りかご1の左右に配置された引き上げロッド42を略同時に引き上げる。これにより、引き上げロッド42に取り付けられる、非常止め装置5の制動子51が、制動位置まで引き上げられると、制動子51はガイドレール7を挟持する。 The link mechanism 4 includes a link shaft 40 driven by the electric actuator 3, a pull-up link 41 operatively linked to the link shaft 40, and a pull-up rod 42 connected to the pull-up link 41. 3, the pulling rods 42 disposed on the left and right sides of the car 1 are pulled up substantially simultaneously via the pulling links 41. As a result, when the brake 51 of the emergency stop device 5 attached to the pulling rod 42 is pulled up to the braking position, the brake 51 clamps the guide rail 7 .
 非常止め装置5は、乗りかご1の左右に一台ずつ配置される。非常止め装置5が備える制動子51は、制動位置および非制動位置の間で可動であり、制動位置においてガイドレール7を挟持する。ガイドレール7を挟持した制動子51が、乗りかご1の下降により乗りかご1に対して相対的に上昇すると、制動子51とガイドレール7との間に作用する摩擦力により制動力を生じる。これにより、非常止め装置5は、乗りかご1が過速状態に陥ったときに作動し、乗りかご1を非常停止する。 The emergency stop devices 5 are arranged one on each side of the car 1. The brake element 51 included in the emergency stop device 5 is movable between a braking position and a non-braking position, and clamps the guide rail 7 in the braking position. When the brake element 51 holding the guide rail 7 rises relative to the car 1 due to the lowering of the car 1, a braking force is generated by the frictional force acting between the brake element 51 and the guide rail 7. Thereby, the emergency stop device 5 is activated when the car 1 falls into an overspeed state, and brings the car 1 to an emergency stop.
 本実施例のエレベータ装置は、ガバナロープを用いない、いわゆるロープレスガバナシステムを備える。ロープレスガバナシステムは、乗りかご1の昇降速度が定格速度を超えて第1過速度(例えば、定格速度の1.3倍を超えない速度)に達すると、主ロープが巻き掛けられるトラクションシーブを駆動する駆動装置(巻上機)の電源およびこの駆動装置を制御する制御装置の電源を遮断する。また、ロープレスガバナシステムは、乗りかご1の下降速度が第2過速度(例えば、定格速度の1.4倍を超えない速度)に達すると、乗りかご1に設けられる電動操作器3を電気的に駆動して、非常止め装置5を作動させて、乗りかご1を非常停止する。 The elevator apparatus of this embodiment includes a so-called ropeless governor system that does not use a governor rope. In the ropeless governor system, when the lifting speed of the car 1 exceeds the rated speed and reaches the first overspeed (for example, a speed not exceeding 1.3 times the rated speed), the traction sheave around which the main rope is wound is activated. Cut off the power to the drive device (hoisting machine) and the control device that controls this drive device. In addition, in the ropeless governor system, when the descending speed of the car 1 reaches a second overspeed (for example, a speed that does not exceed 1.4 times the rated speed), the electric operating device 3 provided in the car 1 is activated. The emergency stop device 5 is actuated to bring the car 1 to an emergency stop.
 本実施例において、ロープレスガバナシステムは、非接触センサ2と、非接触センサ2の出力信号に基づいて、乗りかご1の過速状態を判定する安全制御装置100(図1)とから構成される。本実施例において、図1に示すように、安全制御装置100は乗りかご1上に設けられる。 In this embodiment, the ropeless governor system includes a non-contact sensor 2 and a safety control device 100 (FIG. 1) that determines the overspeed state of the car 1 based on the output signal of the non-contact sensor 2. Ru. In this embodiment, a safety control device 100 is provided on a car 1, as shown in FIG.
 安全制御装置100は、非接触センサ2のセンサ信号に基づいて乗りかご1の速度を計測し、計測された速度が第1過速度に達したと判定すると、駆動装置(巻上機)の電源およびこの駆動装置を制御する制御装置の電源を遮断するための指令信号を出力する。また、安全制御装置100は、計測された速度が第2過速度に達したと判定すると、電動操作器3を駆動するための指令信号を出力する。 The safety control device 100 measures the speed of the car 1 based on the sensor signal of the non-contact sensor 2, and when it is determined that the measured speed has reached the first overspeed, the safety control device 100 turns on the power source of the drive device (hoisting machine). and outputs a command signal to cut off the power to the control device that controls this drive device. Furthermore, when the safety control device 100 determines that the measured speed has reached the second overspeed, it outputs a command signal for driving the electric operating device 3.
 後述するように、安全制御装置100は、非接触センサ2を用いて乗りかご1の速度を検出するロープレスガバナシステムの動作を検査する機能を備えている。 As will be described later, the safety control device 100 has a function of inspecting the operation of the ropeless governor system that detects the speed of the car 1 using the non-contact sensor 2.
 図2は、本実施例におけるロープレスガバナシステムの構成を示す機能ブロック図である。 FIG. 2 is a functional block diagram showing the configuration of the ropeless governor system in this embodiment.
 安全制御装置100は、速度検出部101と、模擬速度生成部102と、検査モード検出部105と、検査モード切替部106と、過速度判定部107と、駆動電源遮断指令部108と、電磁石電源遮断指令部109とを備えている。 The safety control device 100 includes a speed detection section 101, a simulated speed generation section 102, an inspection mode detection section 105, an inspection mode switching section 106, an overspeed determination section 107, a drive power cutoff command section 108, and an electromagnet power supply. A cutoff command section 109 is provided.
 本実施例において、安全制御装置100はマイクロコンピュータなどのコンピュータシステムを備え、コンピュータシステムが、所定のプログラムを実行することにより、各部として動作する。 In this embodiment, the safety control device 100 includes a computer system such as a microcomputer, and the computer system operates as each part by executing a predetermined program.
 まず、ロープレスガバナシステムの通常動作であるガバナとしての動作について説明する。 First, the operation as a governor, which is the normal operation of the ropeless governor system, will be explained.
 速度検出部101は、非接触センサ2からのセンサ信号を取得し、取得したセンサ信号に基づいて、画像信号処理により、乗りかご1の速度を検出する。 The speed detection unit 101 acquires a sensor signal from the non-contact sensor 2, and detects the speed of the car 1 by image signal processing based on the acquired sensor signal.
 例えば、速度検出部101は、ガイドレール7の表面状態の画像特徴量の所定時間における移動距離から速度を算出する。また、例えば、速度検出部101は、予め記憶装置に記憶されるガイドレール7の表面状態の画像情報と、センサ信号から得られる画像情報を照合することにより、乗りかご1の位置を検出し、さらに、検出位置の時間変化を算出することにより乗りかご1の速度を計測する。 For example, the speed detection unit 101 calculates the speed from the moving distance of the image feature amount of the surface state of the guide rail 7 in a predetermined time. Further, for example, the speed detection unit 101 detects the position of the car 1 by comparing image information of the surface state of the guide rail 7 stored in the storage device in advance with image information obtained from the sensor signal, Furthermore, the speed of the car 1 is measured by calculating the temporal change in the detected position.
 速度検出部101は、乗りかご1の検出速度を、検査モード検出部105を介して過速度判定部107へ出力する。 The speed detection unit 101 outputs the detected speed of the car 1 to the overspeed determination unit 107 via the inspection mode detection unit 105.
 なお、検査モード検出部105は、速度検出部101および後述する模擬速度生成部102の各出力のいずれかを、過速度判定部107の入力に接続する。ロープレスガバナシステムの通常動作中、検査モード検出部105は、速度検出部101の出力を、過速度判定部107の入力に接続する。 Note that the inspection mode detection unit 105 connects any of the outputs of the speed detection unit 101 and the simulated speed generation unit 102 (described later) to the input of the overspeed determination unit 107. During normal operation of the ropeless governor system, the inspection mode detection section 105 connects the output of the speed detection section 101 to the input of the overspeed determination section 107.
 過速度判定部107は、速度検出部101から入力する検出速度が、第1過速度以上であるかを判定する。過速度判定部107は、検出速度が第1過速度以上であると判定すると、判定結果を駆動電源遮断指令部108へ送る。 The overspeed determining unit 107 determines whether the detected speed input from the speed detecting unit 101 is equal to or higher than the first overspeed. When the overspeed determination section 107 determines that the detected speed is equal to or higher than the first overspeed, the overspeed determination section 107 sends the determination result to the drive power cutoff command section 108 .
 駆動電源遮断指令部108は、過速度判定部107から判定結果を受けると、巻上機および制御装置60の電源を遮断するための指令信号を出力する。 When the drive power cutoff command unit 108 receives the determination result from the overspeed determination unit 107, it outputs a command signal to shut off the power to the hoisting machine and the control device 60.
 また、過速度判定部107は、速度検出部101から入力する検出速度が、第2過速度以上であるかを判定する。過速度判定部107は、検出速度が第2過速度以上であると判定すると、判定結果を電磁石電源遮断指令部109へ送る。 Additionally, the overspeed determination unit 107 determines whether the detected speed input from the speed detection unit 101 is equal to or higher than the second overspeed. When the overspeed determination section 107 determines that the detected speed is equal to or higher than the second overspeed, the overspeed determination section 107 sends the determination result to the electromagnet power cutoff command section 109 .
 電磁石電源遮断指令部109は、過速度判定部107から判定結果を受けると、電動非常止め装置における電動操作器3(図1)の電磁石の電源を遮断するための指令信号を出力する。 Upon receiving the determination result from the overspeed determination unit 107, the electromagnet power cutoff command unit 109 outputs a command signal to shut off the power to the electromagnet of the electric actuator 3 (FIG. 1) in the electric emergency stop device.
 次に、ロープレスガバナシステムの検査時における動作について説明する。 Next, the operation during inspection of the ropeless governor system will be explained.
 保守用端末装置200が、安全制御装置100に、通信可能に接続される。なお、保守用端末装置200は、パーソナルコンピュータなどによって構成される。 A maintenance terminal device 200 is communicably connected to the safety control device 100. Note that the maintenance terminal device 200 is configured by a personal computer or the like.
 保守用端末装置200は、検査モード指令部201によって、安全制御装置100に対して、通常動作モードから検査動作モードへの切り替えを指令する指令信号を送る。 The maintenance terminal device 200 uses the inspection mode command unit 201 to send a command signal to the safety control device 100 to instruct switching from the normal operation mode to the inspection operation mode.
 安全制御装置100における検査モード切替部106は、保守用端末装置200から指令信号を受けると、検査モード検出部105に対して、模擬速度生成部102の出力と過速度判定部107の入力との接続を指令する。検査モード検出部105は、検査モード切替部106の指令に応じて、速度検出部101の出力と過速度判定部107の入力との接続を解除し、模擬速度生成部102の出力と過速度判定部107の入力とを接続する。 When the inspection mode switching unit 106 in the safety control device 100 receives a command signal from the maintenance terminal device 200, the inspection mode switching unit 106 instructs the inspection mode detection unit 105 to output the output of the simulated speed generation unit 102 and the input of the overspeed determination unit 107. Command the connection. The inspection mode detection section 105 disconnects the output of the speed detection section 101 and the input of the overspeed determination section 107 in response to a command from the inspection mode switching section 106, and connects the output of the simulated speed generation section 102 with the overspeed determination section. It is connected to the input of section 107.
 模擬速度生成部102は、速度検出部101が出力する乗りかご1の検出速度に、比例器103によって定数を掛けることによって、検査用の模擬速度を生成する。 The simulated speed generation unit 102 generates a simulated speed for inspection by multiplying the detected speed of the car 1 output by the speed detection unit 101 by a constant using the proportional device 103.
 非接触センサ2が乗りかご1に設けられているため、速度検出部101が出力する検出速度は、主ロープの弾性による乗りかご1の振動に伴う振動成分を含む場合がある。模擬速度生成部102においては、この振動成分も定数倍される。そこで、本実施例においては、比例器103が出力する模擬速度の振動成分をローパスフィルタ104により除去する。模擬速度生成部102は、振動成分が除去された模擬速度を出力する。これにより、ロープレスガバナシステムの検査の信頼性が向上する。 Since the non-contact sensor 2 is provided in the car 1, the detected speed output by the speed detection unit 101 may include a vibration component due to the vibration of the car 1 due to the elasticity of the main rope. In the simulated velocity generating section 102, this vibration component is also multiplied by a constant. Therefore, in this embodiment, the vibration component of the simulated speed output by the proportional device 103 is removed by the low-pass filter 104. The simulated speed generation unit 102 outputs a simulated speed from which vibration components have been removed. This improves the reliability of testing the ropeless governor system.
 ロープレスガバナシステムの動作検査時には、乗りかご1は、定格速度以下の速度範囲で運転される。定数Kは、速度範囲内の所定速度をK倍した速度が上述の第2過速度に等しくなるように設定される(0<所定速度≦定格速度、K×所定速度=第2過速度)。これにより、乗りかご1を定格速度以下の速度で走行させながら、ロープレスガバナシステムの動作を検査することができる。 When testing the operation of the ropeless governor system, the car 1 is operated in a speed range below the rated speed. The constant K is set such that the speed obtained by multiplying the predetermined speed within the speed range by K is equal to the above-mentioned second overspeed (0<predetermined speed≦rated speed, K×predetermined speed=second overspeed). Thereby, the operation of the ropeless governor system can be inspected while the car 1 is running at a speed below the rated speed.
 ローパスフィルタ104の遮断周波数は、主ロープおよび乗りかご1からなる振動系の固有周波数に設定される。乗りかご1の位置によって、振動系を構成する主ロープの長さが異なるため、固有周波数は変動する。このため、好ましくは、遮断周波数は、最小の固有周波数に設定される。 The cutoff frequency of the low-pass filter 104 is set to the natural frequency of the vibration system consisting of the main rope and the car 1. Since the length of the main rope that constitutes the vibration system differs depending on the position of the car 1, the natural frequency varies. For this reason, the cutoff frequency is preferably set to the minimum natural frequency.
 模擬速度生成部102は、乗りかご1の模擬速度を、検査モード検出部105を介して過速度判定部107へ出力する。 The simulated speed generation unit 102 outputs the simulated speed of the car 1 to the overspeed determination unit 107 via the inspection mode detection unit 105.
 過速度判定部107は、模擬速度生成部102から入力する模擬速度が、第1過速度以上であるかを判定する。過速度判定部107は、模擬速度が第1過速度以上であると判定すると、判定結果および模擬速度の値を保守用端末装置200へ送る。これにより、保守用端末装置200は、乗りかご1の速度が第1過速度に達するとロープレスガバナシステムが所定の動作を行うこと、並びにその際の乗りかご1の速度を検出する。 The overspeed determining unit 107 determines whether the simulated speed input from the simulated speed generating unit 102 is greater than or equal to the first overspeed. When the overspeed determination unit 107 determines that the simulated speed is equal to or higher than the first overspeed, it sends the determination result and the value of the simulated speed to the maintenance terminal device 200 . Thereby, the maintenance terminal device 200 detects that the ropeless governor system performs a predetermined operation when the speed of the car 1 reaches the first overspeed, and detects the speed of the car 1 at that time.
 保守用端末装置200は、液晶ディスプレイなどの表示装置を備える速度表示部202によって、過速度判定部107から受けた判定結果および模擬速度の値を表示する。 The maintenance terminal device 200 displays the determination result and the simulated speed value received from the overspeed determination section 107 using a speed display section 202 that includes a display device such as a liquid crystal display.
 さらに、過速度判定部107は、模擬速度生成部102から入力する模擬速度が、第2過速度以上であるかを判定する。過速度判定部107は、模擬速度が第2過速度以上であると判定すると、判定結果および模擬速度の値を保守用端末装置200へ送る。これにより、保守用端末装置200は、乗りかご1の速度が第2過速度に達するとロープレスガバナシステムが所定の動作を行うこと、並びにその際の乗りかご1の速度を検出する。この場合においても、保守用端末装置200は、速度表示部202によって、過速度判定部107から受けた判定結果および模擬速度の値を表示する。 Further, the overspeed determining unit 107 determines whether the simulated speed input from the simulated speed generating unit 102 is equal to or higher than the second overspeed. When the overspeed determination unit 107 determines that the simulated speed is equal to or higher than the second overspeed, it sends the determination result and the value of the simulated speed to the maintenance terminal device 200 . Thereby, the maintenance terminal device 200 detects that the ropeless governor system performs a predetermined operation when the speed of the car 1 reaches the second overspeed, and detects the speed of the car 1 at that time. In this case as well, the maintenance terminal device 200 displays the determination result received from the overspeed determining section 107 and the value of the simulated speed using the speed display section 202.
 検査動作モードにおいて、過速度判定部107は、駆動電源遮断指令部108および電磁石電源遮断指令部109には判定結果を送らない。したがって、乗りかご1が非常停止されることはない。なお、駆動電源遮断指令部108および電磁石電源遮断指令部109において、判定結果が無効化されるようにしてもよい。 In the inspection operation mode, the overspeed determination section 107 does not send the determination result to the drive power cutoff command section 108 and the electromagnet power cutoff command section 109. Therefore, the car 1 will not be brought to an emergency stop. Note that the determination result may be invalidated in the drive power cutoff command section 108 and the electromagnet power cutoff command section 109.
 図3は、本実施例の安全制御装置100の検査動作モードにおける処理動作を示すフローチャートである。 FIG. 3 is a flowchart showing processing operations in the inspection operation mode of the safety control device 100 of this embodiment.
 本実施例では、安全制御装置100が設けられている乗りかご1上において、保守技術者が、保守用端末装置200を用いて、ロープレスガバナシステムの動作の検査を実行する。このとき、エレベータ装置の運転モードは、保守運転モードに設定されている。保守運転モードおいて、保守技術者は、乗りかご1上に設けられる保守用操作盤を手動操作することにより、定格速度よりも低速で、乗りかご1を走行させる。 In this embodiment, a maintenance engineer inspects the operation of the ropeless governor system using the maintenance terminal device 200 on the car 1 in which the safety control device 100 is installed. At this time, the operation mode of the elevator system is set to maintenance operation mode. In the maintenance operation mode, a maintenance engineer manually operates a maintenance operation panel provided on the car 1 to cause the car 1 to travel at a speed lower than the rated speed.
 保守技術者は、保守用端末装置200を、通信線を介して、安全制御装置100に通信可能に接続する。次に、保守技術者は、保守用端末装置200を操作して、安全制御装置100の動作モードを、通常動作モードから検査動作モードへ切り替える。 A maintenance engineer communicably connects the maintenance terminal device 200 to the safety control device 100 via a communication line. Next, the maintenance engineer operates the maintenance terminal device 200 to switch the operation mode of the safety control device 100 from the normal operation mode to the inspection operation mode.
 安全制御装置100が処理動作を開始すると、まず、ステップS1において、保守技術者が保守用操作盤を操作することにより、乗りかご1が走行を開始する。乗りかご1は、走行を開始すると、定格速度よりも低速の速度範囲で、加速走行する。 When the safety control device 100 starts the processing operation, first, in step S1, the maintenance engineer operates the maintenance operation panel, and the car 1 starts traveling. When the car 1 starts traveling, it accelerates in a speed range lower than the rated speed.
 ステップS2において、安全制御装置100は、非接触センサ2からのセンサ信号を取得する。 In step S2, the safety control device 100 acquires a sensor signal from the non-contact sensor 2.
 次に、ステップS3において、安全制御装置100は、速度検出部101を用いて、ステップS1で取得したセンサ信号に基づいて、乗りかご1の速度を検出する。 Next, in step S3, the safety control device 100 uses the speed detection unit 101 to detect the speed of the car 1 based on the sensor signal acquired in step S1.
 次に、ステップS4において、安全制御装置100は、模擬速度生成部102における比例器103を用いて、ステップS3で得られた乗りかご1の検出速度を定数倍することによって、検査用の模擬速度を算出する。 Next, in step S4, the safety control device 100 uses the proportional device 103 in the simulated speed generation unit 102 to multiply the detected speed of the car 1 obtained in step S3 by a constant, thereby creating a simulated speed for inspection. Calculate.
 次に、ステップS5において、安全制御装置100は、模擬速度生成部102におけるローパスフィルタ104を用いて、ステップS4で算出した模擬速度をフィルタリングする。 Next, in step S5, the safety control device 100 filters the simulated speed calculated in step S4 using the low-pass filter 104 in the simulated speed generating section 102.
 次に、ステップS6において、安全制御装置100は、過速度判定部107を用いて、ステップS5でフィルタリングされた模擬速度が、第1過速度以上であるかを判定する。安全制御装置100は、模擬速度が第1過速度以上ではないと判定すると(ステップS6のNO)、ステップS2以降の処理を再度実行する。また、安全制御装置100は、模擬速度が第1過速度以上であると判定すると(ステップS6のYES)、次に、ステップS7を実行する。 Next, in step S6, the safety control device 100 uses the overspeed determination unit 107 to determine whether the simulated speed filtered in step S5 is equal to or higher than the first overspeed. If the safety control device 100 determines that the simulated speed is not equal to or higher than the first overspeed (NO in step S6), it re-executes the processes from step S2 onwards. Further, if the safety control device 100 determines that the simulated speed is equal to or higher than the first overspeed (YES in step S6), then it executes step S7.
 ステップS7において、安全制御装置100は、過速度判定部107を用いて、ステップS6で第1過速度以上であると判定した模擬速度の値を含む第1過速度データを、保守用端末装置200へ出力する。保守用端末装置200は、速度表示部202を用いて、保守用端末装置200が備える表示装置に第1過速度データを表示する。これにより、保守技術者は、乗りかご1の速度が第1過速度に達するとロープレスガバナシステムが所定の動作を行うことを確認する。安全制御装置100は、ステップS7を実行後、次に、ステップS8を実行する。 In step S7, the safety control device 100 uses the overspeed determining unit 107 to send the first overspeed data including the value of the simulated speed determined to be equal to or higher than the first overspeed to the maintenance terminal device 200. Output to. The maintenance terminal device 200 uses the speed display unit 202 to display the first overspeed data on a display device included in the maintenance terminal device 200. Thereby, the maintenance engineer confirms that the ropeless governor system performs a predetermined operation when the speed of the car 1 reaches the first overspeed. After executing step S7, the safety control device 100 then executes step S8.
 ステップS8において、安全制御装置100は、非接触センサ2からのセンサ信号を取得する。 In step S8, the safety control device 100 acquires the sensor signal from the non-contact sensor 2.
 次に、ステップS9において、安全制御装置100は、速度検出部101を用いて、ステップS8で取得したセンサ信号に基づいて、乗りかご1の速度を検出する。 Next, in step S9, the safety control device 100 uses the speed detection unit 101 to detect the speed of the car 1 based on the sensor signal acquired in step S8.
 次に、ステップS10において、安全制御装置100は、模擬速度生成部102における比例器103を用いて、ステップS9で得られた乗りかご1の検出速度を定数倍することによって、検査用の模擬速度を算出する。 Next, in step S10, the safety control device 100 uses the proportional device 103 in the simulated speed generation unit 102 to multiply the detected speed of the car 1 obtained in step S9 by a constant, thereby creating a simulated speed for inspection. Calculate.
 次に、ステップS11において、安全制御装置100は、模擬速度生成部102におけるローパスフィルタ104を用いて、ステップS10で算出した模擬速度をフィルタリングする。 Next, in step S11, the safety control device 100 filters the simulated speed calculated in step S10 using the low-pass filter 104 in the simulated speed generating section 102.
 次に、ステップS12において、安全制御装置100は、過速度判定部107を用いて、ステップS11でフィルタリングされた模擬速度が、第2過速度以上であるかを判定する。安全制御装置100は、模擬速度が第2過速度以上ではないと判定すると(ステップS12のNO)、ステップS8以降の処理を再度実行する。また、安全制御装置100は、模擬速度が第2過速度以上であると判定すると(ステップS12のYES)、次に、ステップS13を実行する。 Next, in step S12, the safety control device 100 uses the overspeed determining unit 107 to determine whether the simulated speed filtered in step S11 is equal to or higher than the second overspeed. If the safety control device 100 determines that the simulated speed is not equal to or higher than the second overspeed (NO in step S12), it re-executes the processes from step S8 onwards. Further, if the safety control device 100 determines that the simulated speed is equal to or higher than the second overspeed (YES in step S12), then it executes step S13.
 ステップS13において、安全制御装置100は、過速度判定部107を用いて、ステップS12で第2過速度以上であると判定した模擬速度の値を含む第2過速度データを保守用端末装置200へ出力する。保守用端末装置200は、速度表示部202を用いて、保守用端末装置200が備える表示装置に第2過速度データを表示する。これにより、保守技術者は、乗りかご1の速度が第2過速度に達するとロープレスガバナシステムが所定の動作を行うことを確認する。安全制御装置100は、ステップS13を実行後、次に、ステップS14を実行する。 In step S13, the safety control device 100 uses the overspeed determining unit 107 to send second overspeed data including the value of the simulated speed determined to be equal to or higher than the second overspeed in step S12 to the maintenance terminal device 200. Output. The maintenance terminal device 200 uses the speed display section 202 to display the second overspeed data on a display device included in the maintenance terminal device 200. Thereby, the maintenance engineer confirms that the ropeless governor system performs a predetermined operation when the speed of the car 1 reaches the second overspeed. After executing step S13, the safety control device 100 then executes step S14.
 ステップS14において、保守技術者が保守用操作盤を操作することにより、乗りかご1の走行を停止する。乗りかご1が停止すると、安全制御装置100は、一連の処理を終了する。 In step S14, the maintenance engineer operates the maintenance operation panel to stop the car 1 from running. When the car 1 stops, the safety control device 100 ends the series of processes.
 上述のように、本実施例によれば、乗りかご1を過速状態することなく、定格速度以下の低速度で走行させて、ロープレスガバナシステムの動作を検査することができる。したがって、非接触センサを用いて乗りかごの速度を検出するロープレスガバナシステムの動作を容易に検査することができる。 As described above, according to this embodiment, the operation of the ropeless governor system can be inspected by running the car 1 at a low speed below the rated speed without overspeeding the car 1. Therefore, the operation of a ropeless governor system that detects the speed of a car using a non-contact sensor can be easily inspected.
 なお、非接触センサ2は、昇降路内の高さ方向における位置情報を含むバーコードや所定のパターンを検出してもよい。この場合、バーコードや所定のパターンは、テープ状のような長尺状の被検出体の表面に設定される。 Note that the non-contact sensor 2 may detect a barcode or a predetermined pattern that includes positional information in the height direction within the hoistway. In this case, the barcode or predetermined pattern is set on the surface of a long object to be detected, such as a tape.
 また、非接触センサとして、磁気センサを用いてもよい。この場合、被検出体として、位置情報を含むパターンで磁化された、テープ状のような長尺状の部材が用いられる。 Additionally, a magnetic sensor may be used as the non-contact sensor. In this case, a tape-like elongated member magnetized with a pattern including positional information is used as the object to be detected.
 なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。 Note that the present invention is not limited to the embodiments described above, and includes various modifications. For example, the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described. Furthermore, it is possible to add, delete, or replace some of the configurations of the embodiments with other configurations.
 例えば、電動操作器3は、乗りかご1の上方部のほか、下方部や側方部に設けられてもよい。また、エレベータ装置は、機械室を有してもよいし、いわゆる機械室レスエレベータでもよい。 For example, the electric operating device 3 may be provided not only in the upper part of the car 1 but also in the lower part or the side part. Further, the elevator device may have a machine room or may be a so-called machine room-less elevator.
1…乗りかご、2…非接触センサ、3…電動操作器、4…リンク機構、5…非常止め装置、7…ガイドレール、40…リンクシャフト、41…引き上げリンク、42…引き上げロッド、51…制動子、60…巻上機および制御装置、100…安全制御装置、101…速度検出部、102…模擬速度生成部、103…比例器、104…ローパスフィルタ、105…検査モード検出部、106…検査モード切替部、107…過速度判定部、108…駆動電源遮断指令部、109…電磁石電源遮断指令部、200…保守用端末装置、201…検査モード指令部、202…速度表示部 DESCRIPTION OF SYMBOLS 1... Car, 2... Non-contact sensor, 3... Electric operating device, 4... Link mechanism, 5... Emergency stop device, 7... Guide rail, 40... Link shaft, 41... Pulling link, 42... Pulling rod, 51... Brake element, 60...Hoisting machine and control device, 100...Safety control device, 101...Speed detection section, 102...Simulated speed generation section, 103...Proportional device, 104...Low pass filter, 105...Inspection mode detection section, 106... Inspection mode switching section, 107... Overspeed determination section, 108... Drive power cutoff command section, 109... Electromagnet power cutoff command section, 200... Maintenance terminal device, 201... Inspection mode command section, 202... Speed display section

Claims (7)

  1.  乗りかごに設けられる非接触センサと、前記非接触センサのセンサ信号に基づいて前記乗りかごの速度を検出し、検出速度に基づいて前記乗りかごの過速状態を判定すると、非常止め装置を動作させる安全制御装置とを備えるガバナシステムの動作を検査するエレベータ用ガバナシステムの検査装置において、
     前記検出速度に基づいて、前記検出速度よりも大きな模擬速度を生成する模擬速度生成部を備え、
     検査時に、前記安全制御装置は、前記模擬速度に基づいて前記乗りかごの前記過速状態を判定することを特徴とするエレベータ用ガバナシステムの検査装置。
    A non-contact sensor provided on the car and the speed of the car are detected based on a sensor signal from the non-contact sensor, and when an overspeed state of the car is determined based on the detected speed, an emergency stop device is activated. In an inspection device for an elevator governor system that inspects the operation of a governor system equipped with a safety control device,
    comprising a simulated speed generation unit that generates a simulated speed larger than the detected speed based on the detected speed,
    An inspection device for an elevator governor system, wherein during inspection, the safety control device determines the overspeed state of the car based on the simulated speed.
  2.  請求項1に記載のエレベータ用ガバナシステムの検査装置において、
     前記模擬速度生成部は、前記検出速度に定数を掛けることにより前記模擬速度を生成することを特徴とするエレベータ用ガバナシステムの検査装置。
    The inspection device for an elevator governor system according to claim 1,
    An inspection device for an elevator governor system, wherein the simulated speed generating section generates the simulated speed by multiplying the detected speed by a constant.
  3.  請求項2に記載のエレベータ用ガバナシステムの検査装置において、
     前記検査時には、前記乗りかごは、定格速度以下の速度範囲で運転され、
     前記定数は、前記速度範囲における所定速度に前記定数を掛けた速度値が前記過速状態における前記乗りかごの速度に等しくなるように設定されることを特徴とするエレベータ用ガバナシステムの検査装置。
    The inspection device for an elevator governor system according to claim 2,
    At the time of the inspection, the car is operated at a speed range below the rated speed,
    The inspection device for an elevator governor system, wherein the constant is set so that a speed value obtained by multiplying a predetermined speed in the speed range by the constant is equal to the speed of the car in the overspeed state.
  4.  請求項2に記載のエレベータ用ガバナシステムの検査装置において、
     前記模擬速度生成部は、前記模擬速度をローパスフィルタによってフィルタリングすることを特徴とするエレベータ用ガバナシステムの検査装置。
    The inspection device for an elevator governor system according to claim 2,
    An inspection device for an elevator governor system, wherein the simulated speed generation section filters the simulated speed using a low-pass filter.
  5.  請求項1に記載のエレベータ用ガバナシステムの検査装置において、
     前記安全制御装置は、前記模擬速度生成部を備えることを特徴とするエレベータ用ガバナシステムの検査装置。
    The inspection device for an elevator governor system according to claim 1,
    An inspection device for an elevator governor system, wherein the safety control device includes the simulated speed generation section.
  6.  請求項5に記載のエレベータ用ガバナシステムの検査装置において、
     前記安全制御装置は、前記センサ信号に基づいて前記検出速度を算出する速度検出部と、
     前記検出速度を入力として、前記乗りかごの前記過速状態を判定する過速度判定部と、
    を有し、
     前記検査時には、前記過速度判定部の前記入力を、前記検出速度から前記模擬速度に切り替えることを特徴とするエレベータ用ガバナシステムの検査装置。
    The inspection device for an elevator governor system according to claim 5,
    The safety control device includes a speed detection unit that calculates the detected speed based on the sensor signal;
    an overspeed determination unit that receives the detected speed as input and determines the overspeed state of the car;
    has
    An inspection device for an elevator governor system, characterized in that during the inspection, the input of the overspeed determining section is switched from the detected speed to the simulated speed.
  7.  乗りかごに設けられる非接触センサと、前記非接触センサのセンサ信号に基づいて前記乗りかごの速度を検出し、検出速度に基づいて前記乗りかごの過速状態を判定すると、非常止め装置を動作させる安全制御装置とを備えるガバナシステムの動作を検査するエレベータ用ガバナシステムの検査方法において、
     前記乗りかごを、定格速度以下の速度範囲で運転しながら、前記検出速度に基づいて、前記検出速度よりも大きな模擬速度を生成し、
     前記安全制御装置は、前記模擬速度に基づいて前記乗りかごの前記過速状態を判定することを特徴とするエレベータ用ガバナシステムの検査方法。
    A non-contact sensor provided on the car and the speed of the car are detected based on a sensor signal from the non-contact sensor, and when an overspeed state of the car is determined based on the detected speed, an emergency stop device is activated. In an inspection method for an elevator governor system, which inspects the operation of a governor system equipped with a safety control device,
    While operating the car in a speed range below the rated speed, generating a simulated speed greater than the detected speed based on the detected speed,
    A method for inspecting an elevator governor system, wherein the safety control device determines the overspeed state of the car based on the simulated speed.
PCT/JP2022/021582 2022-05-26 2022-05-26 Elevator governor system inspection device and inspection method WO2023228362A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021582 WO2023228362A1 (en) 2022-05-26 2022-05-26 Elevator governor system inspection device and inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021582 WO2023228362A1 (en) 2022-05-26 2022-05-26 Elevator governor system inspection device and inspection method

Publications (1)

Publication Number Publication Date
WO2023228362A1 true WO2023228362A1 (en) 2023-11-30

Family

ID=88918755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021582 WO2023228362A1 (en) 2022-05-26 2022-05-26 Elevator governor system inspection device and inspection method

Country Status (1)

Country Link
WO (1) WO2023228362A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073015A1 (en) * 2005-01-04 2006-07-13 Mitsubishi Denki Kabushiki Kaisha Elevator bolt detecting device, elevator system, and mover position/speed detecting device
CN202229909U (en) * 2011-08-21 2012-05-23 上海龙钰电梯配件有限公司 Debugging device of speed limiter
JP2013159479A (en) * 2012-02-08 2013-08-19 Hitachi Ltd Speed detection device, elevator device with speed detection device and method for inspecting elevator device
JP2016069093A (en) * 2014-09-26 2016-05-09 株式会社日立製作所 Elevator device and method of inspecting electronic safety system for elevator device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006073015A1 (en) * 2005-01-04 2006-07-13 Mitsubishi Denki Kabushiki Kaisha Elevator bolt detecting device, elevator system, and mover position/speed detecting device
CN202229909U (en) * 2011-08-21 2012-05-23 上海龙钰电梯配件有限公司 Debugging device of speed limiter
JP2013159479A (en) * 2012-02-08 2013-08-19 Hitachi Ltd Speed detection device, elevator device with speed detection device and method for inspecting elevator device
JP2016069093A (en) * 2014-09-26 2016-05-09 株式会社日立製作所 Elevator device and method of inspecting electronic safety system for elevator device

Similar Documents

Publication Publication Date Title
JP5468128B2 (en) Starter and elevator configured to start a safety device of an elevator system part
JP5468127B2 (en) Elevator safety system and elevator with safety system
US20100154527A1 (en) Elevator Brake Condition Testing
EP2660180B1 (en) Overspeed detecting device for elevator apparatus with a safety interlock
JP7212201B2 (en) elevator equipment
CN105923477B (en) Elevator
JP5538751B2 (en) Elevator control device
EP1958911B1 (en) Elevator device
WO2005115898A1 (en) Elevator controller
WO2023228362A1 (en) Elevator governor system inspection device and inspection method
WO2023228363A1 (en) Inspection device and inspection method for elevator governor system
JP7185858B2 (en) Elevator rope tester device and elevator system
JP5356458B2 (en) Elevator equipment
WO2005092766A1 (en) Elevator control device
CN113825716B (en) Emergency stop device for elevator, and inspection device for emergency stop device for elevator
WO2023079733A1 (en) Operation test device and operation test method for elevator governor system
WO2023079734A1 (en) Action testing method and action testing device of governor system for elevator
KR100898205B1 (en) Elevator apparatus
JP6272199B2 (en) Elevator apparatus and electronic safety system inspection method for elevator apparatus
KR100904800B1 (en) Elevator device
WO2024004122A1 (en) Device for testing emergency stop of elevator and method for testing emergency stop of elevator
JP2023014525A (en) Test method and test device of standby-type brake for elevator
JP5168831B2 (en) Elevator seismic control device
JP6578066B2 (en) Elevator control device
JP2021116148A (en) Wear inspection system of rope-type elevator and wear inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942964

Country of ref document: EP

Kind code of ref document: A1