WO2023228344A1 - Ozone system and ozone supply method - Google Patents

Ozone system and ozone supply method Download PDF

Info

Publication number
WO2023228344A1
WO2023228344A1 PCT/JP2022/021506 JP2022021506W WO2023228344A1 WO 2023228344 A1 WO2023228344 A1 WO 2023228344A1 JP 2022021506 W JP2022021506 W JP 2022021506W WO 2023228344 A1 WO2023228344 A1 WO 2023228344A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
value
room
humidity
control unit
Prior art date
Application number
PCT/JP2022/021506
Other languages
French (fr)
Japanese (ja)
Inventor
芳明 有馬
佳明 尾台
登起子 山内
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022559752A priority Critical patent/JP7270853B1/en
Priority to PCT/JP2022/021506 priority patent/WO2023228344A1/en
Priority to JP2023071113A priority patent/JP2023174539A/en
Publication of WO2023228344A1 publication Critical patent/WO2023228344A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/24Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media
    • F24F8/26Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using sterilising media using ozone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/40Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ozonisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/80Self-contained air purifiers

Definitions

  • the present disclosure relates to an ozone system and an ozone supply method that perform sterilization using ozone.
  • Ozone which has strong oxidizing power, is used in various fields for purposes such as disinfection, sterilization, deodorization, decolorization, and organic matter removal.
  • the ozone CT Concentrration-Time Value
  • the ozone CT value which is the product of the ozone concentration and the time of exposure to ozone, is set in advance, and ozone generation is stopped when the set ozone CT value is reached. Control is in place to stop it.
  • Patent Document 1 discloses that when performing control to stop ozone generation when a set ozone CT value is reached, the amount of discoloration or the shade of discoloration of a chemical substance that changes color by reacting with ozone is monitored. discloses a technique for detecting the product of ozone concentration and ozone treatment time.
  • the present disclosure has been made in view of the above, and aims to provide an ozone system that can provide a user with a comfortable sterilization space while taking indoor humidity into consideration.
  • an ozone system that supplies ozone indoors.
  • the ozone system includes an ozone generation section that generates ozone, a humidity measurement section that measures indoor humidity, and controls the amount of ozone generated by the ozone generation section based on the indoor humidity measured by the humidity measurement section.
  • a control unit that controls the amount of ozone generated by the ozone generation section based on the indoor humidity measured by the humidity measurement section.
  • the ozone system According to the ozone system according to the present disclosure, it is possible to provide a comfortable sterilization space to the user in consideration of indoor humidity.
  • FIG. 1 Schematic diagram showing a configuration example of an ozone system according to Embodiment 1
  • Schematic diagram showing a configuration example of a CT value equivalent amount detection section of the ozone system according to Embodiment 1 A schematic diagram showing a configuration example of a gas flow path of an ozone generator of an ozone system according to Embodiment 1.
  • Characteristic diagram showing the relationship between ozone CT value and color difference of ozone indicator in Embodiment 1 Flowchart showing an overview of the operation of the ozone system according to the first embodiment Flowchart showing the procedure of the first example of operation of the ozone system according to the first embodiment Diagram for explaining the concept of the relationship between relative humidity and required ozone CT value in Embodiment 1
  • Third diagram illustrating the concept of a method for determining ozone generation stop conditions in the ozone system according to the first embodiment Flowchart showing the procedure of the second operation example of the ozone system according to the first embodiment Schematic diagram showing a gas flow path formed in the case of the ozone generator of the ozone system according to Embodiment 2 Schematic diagram showing a configuration example of an ozone system according to Embodiment 3 Schematic diagram showing a configuration example of an automatic supply mechanism of an ozone indicator in a CT value equivalent amount detection unit included in the ozone system according to Embodiment 3 Cross-sectional view showing the structure of an ozone indicator sheet in the CT value equivalent amount detection section included in the ozone system according to Embodiment 3 A block diagram showing a functional configuration related to automatic supply of an ozone indicator in a CT value equivalent amount detection unit included in the ozone system according to Embodiment 3.
  • FIG. 1 is a schematic diagram showing a configuration example of an ozone system 100 according to the first embodiment.
  • FIG. 1 shows a state in which an ozone system 100 is applied to an indoor room 200 that is a space to be treated with ozone.
  • FIG. 2 is a block diagram showing an example of the functional configuration of the ozone system 100 according to the first embodiment.
  • FIG. 3 is a schematic diagram showing a configuration example of the CT value equivalent amount detection section 2 of the ozone system 100 according to the first embodiment.
  • FIG. 4 is a schematic diagram showing a configuration example of the gas flow path 11 of the ozone generator 1 of the ozone system 100 according to the first embodiment.
  • the operation of the ozone system 100 will be explained using a virus as an example, but the objects to be sterilized by the ozone system 100 include microorganisms such as viruses and bacteria.
  • the ozone system 100 is an ozone sterilization system that sterilizes the indoor room 200 by supplying ozone to the indoor room 200, which is a space to be ozone treated.
  • the ozone system 100 includes an ozone generator 1 and a CT value equivalent amount detection section 2.
  • the ozone generator 1 is placed near one wall 203 on the floor 201 of the room 200 .
  • the CT value equivalent amount detection unit 2 is arranged at a corner of the room 200 sandwiched between the ceiling 202 and the other wall 204 in the room 200 .
  • the CT value equivalent amount detection unit 2 is arranged in the room 200 at a position farthest from the ozone generator 1. Thereby, the ozone system 100 can distribute ozone to a location away from the ozone generator 1 within the ozone treatment target space.
  • the ozone generator 1 generates ozone by inhaling raw material gas containing oxygen, and inactivates viruses in the room 200 by diffusing the generated ozone into the room 200.
  • the ozone generator 1 includes a gas flow path 11 , a blower section 12 , an ozone generator 13 , a humidity measurement section 14 , and a control device 15 .
  • the gas flow path 11 , the blowing section 12 , the ozone generating section 13 , the humidity measuring section 14 , and the control device 15 are provided inside the housing 10 .
  • the humidity measuring section 14 may be provided in the housing 10 at a position facing the outside of the housing 10.
  • the control device 15 includes a storage section 16, a timer 17, a communication section 18, and a system control section 19. Information can be exchanged between each component of the ozone generator 1.
  • the gas flow path 11 is a flow path through which source gas containing oxygen and ozone generated in the ozone generation section 13 flow.
  • the raw material gas is introduced into the gas flow path 11 from outside the housing 10 . Further, ozone generated in the ozone generator 13 is discharged from the gas flow path 11 to the outside of the housing 10 and diffused into the room.
  • the raw material gas containing oxygen is a gas that serves as a raw material for ozone generated by the ozone generator 13, and indoor air, which is the air in the room 200 that is the space to be ozonated, is used. Note that the raw material gas containing oxygen is not limited to room air, as long as it contains oxygen.
  • arrows 211 indicate the flow of indoor air.
  • arrows 212 indicate the flow of ozone and indoor air.
  • the blower section 12 forms an airflow from an inlet 111 that is one end of the gas flow path 11 to an outlet 112 that is the other end of the gas flow path 11 .
  • room air which is a source gas containing oxygen, is introduced into the gas flow path 11 from the suction port 111.
  • ozone generated in the ozone generator 13 is mixed with indoor air and flows from the gas flow path 11 to the outside of the housing 10. be discharged. That is, ozone generated in the ozone generator 13 is discharged from the gas flow path 11 to the outside of the housing 10 together with the indoor air introduced into the gas flow path 11.
  • ozone can be adjusted to a desired concentration.
  • the ozone generator 13 generates ozone using indoor air, which is the source gas introduced into the gas flow path 11.
  • the ozone generated in the ozone generator 13 is mixed with indoor air by the airflow formed by the blower 12, adjusted to a desired concentration, discharged to the outside of the casing 10, and diffused into the room 200.
  • a general method can be used to generate ozone in the ozone generator 13. For example, by applying an alternating current voltage between electrodes arranged through a dielectric, a gas containing oxygen is passed through a discharge space where a silent discharge has occurred, and by giving energy to oxygen and activating it, dissociation or Some of the excited oxygen changes to ozone.
  • the humidity measurement unit 14 measures the relative humidity of the room 200, which is the space to be ozone treated, at a predetermined cycle or at a predetermined timing. Specifically, the humidity measurement unit 14 measures the humidity of indoor air.
  • the humidity measurement unit 14 transmits information on the relative humidity of the room 200, which is the measurement result, to the system control unit 19.
  • the humidity measuring section 14 is arranged, for example, at the entrance of the gas flow path 11 formed in the ozone generator 1, as shown in FIG. That is, the humidity measuring section 14 is arranged in a region adjacent to the suction port 111 in the gas flow path 11 of the ozone generator 1. Note that relative humidity is simply called humidity.
  • the humidity measurement unit 14 only needs to be able to appropriately measure the humidity of indoor air, and the location where it is placed is not limited to the entrance portion of the gas flow path 11.
  • the humidity measurement unit 14 may be placed on the outer surface of the housing 10 or may be placed in a location away from the housing 10 of the ozone generator 1 in the room 200.
  • the storage unit 16 stores various types of information used to control the ozone system 100.
  • the timer 17 measures the operating time of the ozone system 100, such as the operating time of the ozone generator 13, that is, the time of ozone generation in the ozone generator 13.
  • the timer 17 is set with the remaining ozone generation time by the system control unit 19, and measures the remaining time of the ozone generation time.
  • the timer 17 completes measuring the remaining time, it sends a remaining time end notification to the system control unit 19 to the effect that the remaining time has ended.
  • the system control unit 19 can determine that the ozone generation stop condition is satisfied.
  • the ozone generation time in the ozone generator 13 can be expressed as the time of exposure to ozone.
  • the communication unit 18 communicates with a sensor communication unit 25 of a color difference sensor 22 of the CT value equivalent amount detection unit 2, which will be described later.
  • the system control unit 19 is a control unit that controls the operation of the ozone generation unit 13 and controls the entire ozone system 100.
  • the system control unit 19 controls the operation of the ozone generating unit 13 so that the ozone CT value necessary for inactivating viruses floating in the room 200 or attached to articles is achieved in the room 200.
  • the target value of the ozone CT value which is the product of the ozone concentration in the room and the ozone generation time in the ozone generator 13, is corrected based on the humidity of the room 200 to calculate the necessary target value, and the ozone CT value of the room 200 is calculated. Control is performed to stop the generation of ozone in the ozone generator 13 at the time when the value reaches the required target value.
  • the system control unit 19 also calculates ozone generation stop conditions until the ozone CT value in the room 200 reaches the required target value. That is, the system control unit 19 controls the amount of ozone generated by the ozone generation unit 13 based on the humidity in the room 200 measured by the humidity measurement unit 14.
  • the ozone system 100 takes the humidity of the room 200 into account and appropriately achieves the ozone CT value in the room 200 necessary for inactivating viruses floating in the indoor space or viruses attached to items in the room 200. be able to.
  • the ozone generation stop condition is the ozone generation time, which is the time from when the ozone generator 13 starts generating ozone until it stops generating ozone.
  • the CT value equivalent amount detection unit 2 is provided independently from the casing 10 of the ozone generator 1 and is placed at a position away from the casing 10 in the room 200. Further, the CT value equivalent amount detection unit 2 is fixedly arranged at a corner of the room 200.
  • the CT value equivalent amount detection section 2 detects an equivalent amount corresponding to the product of the ozone concentration in the room 200 and the time of exposure to ozone, here the ozone generation time in the ozone generation section 13. That is, the CT value equivalent amount detection unit 2 detects the CT value equivalent amount.
  • the CT value equivalent amount detection section 2 includes an ozone indicator 21 and a color difference sensor 22.
  • the ozone indicator 21 is a detection unit that changes color by reacting with ozone, and is a detection unit that changes color as the ozone CT value changes.
  • the ozone indicator 21 includes a chemical substance 21a that is a chemical substance that changes color when reacting with ozone, and that changes color as the ozone CT value changes.
  • the ozone indicator 21 is constructed by applying, for example, the above-mentioned chemical substance 21a onto the surface of a support 21b.
  • the color difference sensor 22 detects the color difference of the ozone indicator 21, that is, the color difference of the chemical substance 21a that has reacted with ozone in the room 200, at a predetermined period or at a predetermined timing.
  • the color difference of the chemical substance 21a is the amount of reaction of the chemical substance 21a when it reacts with ozone, and is the difference in color that occurs in the chemical substance 21a when it reacts with ozone. This is the amount of change in the color of the ozone indicator 21 from the color in the state before the ozone indicator 21 reacts with ozone.
  • the color difference sensor 22 transmits information on the color difference of the ozone indicator 21, which is the detection result, to the system control unit 19 as a signal corresponding to the CT value. Thereby, the system control unit 19 can acquire information on the color difference of the ozone indicator 21 as a numerical value.
  • the color difference sensor 22 detects the color difference of the ozone indicator 21 using an optical method.
  • the color difference sensor 22 is, for example, a color sensor. Note that the color difference sensor 22 may detect the color difference of the ozone indicator 21 using an electrical method. That is, the CT value equivalent amount may be substituted with electrical conductivity.
  • the color difference of the ozone indicator 21 is a value that has a correlation with the ozone CT value. That is, the color difference of the ozone indicator 21 can be said to be a CT value equivalent amount, which is an equivalent amount corresponding to the ozone CT value.
  • FIG. 5 is a characteristic diagram showing the relationship between the ozone CT value and the color difference of the ozone indicator 21 in the first embodiment. In FIG. 5, the ozone CT value (ppm ⁇ min) is shown on the horizontal axis, and the color difference of the ozone indicator 21 is shown on the vertical axis.
  • the sensor storage unit 24 of the color difference sensor 22 stores in advance information on the correspondence between the color difference of the ozone indicator 21, which is an amount equivalent to the CT value, and the ozone CT value at the reference humidity.
  • the correspondence information between the CT value equivalent amount and the ozone CT value is information indicating the relative relationship between the ozone CT value and the CT value equivalent amount, as shown in FIG. Note that the correspondence information between the CT value equivalent amount and the ozone CT value may be stored in the sensor control unit 26.
  • the reference humidity is the humidity of indoor air that is used as a reference when inactivating viruses in the room 200 using the ozone system 100.
  • the correspondence information between the CT value equivalent amount and the ozone CT value is the CT value equivalent amount and the ozone CT value corresponding to the CT value equivalent amount, which has been collected in advance by repeating experiments using the ozone system 100 at the standard humidity. It is created based on multiple data of and.
  • a plurality of ozone CT values and virus inactivation rates corresponding to the ozone CT values collected in advance by repeating experiments using the ozone system 100 at the standard humidity are used. Determined based on data.
  • the CT value equivalent amount detected by the color difference sensor 22 can be converted into a CT value.
  • the color difference sensor 22 includes a detection section 23, a sensor storage section 24, a sensor communication section 25, and a sensor control section 26.
  • the detection unit 23 detects the color difference of the ozone indicator 21 that has reacted with ozone diffused into the room 200.
  • the sensor storage unit 24 stores various information used to control the color difference sensor 22. Additionally, the sensor storage unit 24 stores various types of information transmitted from the system control unit 19.
  • the sensor communication unit 25 communicates with the communication unit 18 of the ozone generator 1.
  • the sensor control unit 26 controls the entire color difference sensor 22.
  • the ozone supply method using the ozone system 100 is an ozone sterilization method that sterilizes the indoor room 200 by supplying ozone to the indoor room 200, which is a space to be ozone treated.
  • FIG. 6 is a flowchart showing an overview of the operation of the ozone system 100 according to the first embodiment.
  • step S110 reference humidity information is acquired.
  • the reference humidity is the humidity of the indoor air that is used as a reference when inactivating viruses in the room 200 using the ozone system 100.
  • the system control unit 19 acquires information on the reference humidity.
  • Information on the reference humidity is input to the ozone generator 13 from outside the ozone generator 13 via the communication unit 18, for example.
  • the system control unit 19 receives reference humidity information from the communication unit 18 and stores it. Thereby, information on the reference humidity is acquired by the system control unit 19. After that, the process advances to step S120.
  • step S120 information on the set ozone CT value is acquired.
  • the system control unit 19 acquires information on the set ozone CT value.
  • the set ozone CT value is an ozone CT value that is set in the ozone system 100 when inactivating viruses in the room 200 in an environment where the humidity of the indoor air is the reference humidity. This is the ozone CT value required when inactivating viruses indoors 200 under a certain environment. That is, the set ozone CT value is based on the ozone concentration in the room 200 and the ozone generation time in the room 200, which are required when inactivating the virus in the room 200 in an environment where the humidity of the indoor air is the reference humidity. This can be expressed as the target value of the product of
  • Information on the set ozone CT value is input to the ozone generator 13 from outside the ozone generator 13 via the communication unit 18, for example.
  • the system control unit 19 receives information on the set ozone CT value from the communication unit 18 and stores it. As a result, information on the set ozone CT value is acquired by the system control unit 19.
  • the set ozone CT value is determined based on, for example, information on the general inactivation rate of viruses or the results of an experiment in which a virus in a space having a volume equivalent to the room 200 was inactivated by ozone. After that, the process advances to step S130.
  • step S130 information on the humidity of the room 200, that is, information on the humidity of the indoor air is acquired.
  • the system control unit 19 acquires information on the humidity of indoor air.
  • the humidity measurement unit 14 measures the humidity of the indoor air, and transmits information on the humidity of the indoor air, which is the measurement result, to the system control unit 19 as a signal of the humidity of the indoor air.
  • the system control unit 19 receives and stores information on the humidity of indoor air transmitted from the humidity measurement unit 14. As a result, information on the humidity of indoor air is acquired by the system control unit 19. After that, the process advances to step S140.
  • step S140 the required ozone CT value is determined. Specifically, the system control unit 19 determines the required ozone CT value. The system control unit 19 transmits information on the determined required ozone CT value to the sensor control unit 26 of the color difference sensor 22 of the CT value equivalent amount detection unit 2 via the communication unit 18. The sensor control unit 26 receives information on the required ozone CT value transmitted from the system control unit 19 via the sensor communication unit 25 and stores it. After that, the process advances to step S150.
  • the required ozone CT value is a correction value of the CT value obtained by correcting the set ozone CT value based on the humidity of the room 200.
  • the required ozone CT value is an ozone CT value required when inactivating viruses in the room 200, taking into consideration the humidity in the room 200. That is, the required ozone CT value can be expressed as a necessary target value obtained by correcting the above-mentioned target value of the product of the ozone concentration in the room 200 and the ozone generation time in the room 200 based on the humidity of the room 200.
  • the ability of ozone to inactivate viruses increases as the humidity of the air in the space to be ozonated increases. Therefore, if the humidity in the room 200 is higher than the standard humidity, less ozone will be used to inactivate the virus in the room 200 under the standard humidity conditions. can be inactivated, and the ozone generation time can be shortened for the same ozone concentration. Therefore, when the humidity in the room 200 is higher than the reference humidity, ozone generation can be stopped after being generated for a shorter time than when the ozone concentration is the same and the reference humidity is the same.
  • the system control unit 19 determines the required ozone CT value to be smaller than the set ozone CT value based on the humidity in the room 200. That is, when the humidity in the room 200 is higher than the reference humidity, it can be said that the required target value is determined to be a value smaller than the above target value based on the humidity in the room 200.
  • the ability of ozone to inactivate viruses decreases as the humidity of the air in the space to be ozonated decreases. Therefore, if the humidity in the room 200 is lower than the standard humidity, in order to inactivate the virus at the same level as inactivating the virus in the room 200 under the standard humidity conditions, it is necessary to Since more ozone is required than in the case of the conventional method, the ozone generation time must be increased for the same ozone concentration. Therefore, when the humidity in the room 200 is lower than the reference humidity, ozone generation must be stopped after being generated for a longer time than when the ozone concentration is the same and the humidity is the reference humidity.
  • the system control unit 19 determines the required ozone CT value to be larger than the set ozone CT value based on the humidity in the room 200. That is, when the humidity in the room 200 is lower than the reference humidity, it can be said that the required target value is determined to be larger than the above target value based on the humidity in the room 200.
  • step S150 ozone generation is started, and ozone aeration into the room 200 is started.
  • the system control unit 19 performs control to start generating ozone and start diffusing the ozone into the room 200 .
  • the system control unit 19 controls the ventilation unit 12, the ozone generation unit 13, the humidity measurement unit 14, and the color difference sensor 22 to start operating.
  • the blower section 12 operates, indoor air is introduced into the gas flow path 11 from the suction port 111 of the housing 10 of the ozone generator 1 and further supplied to the ozone generator 13 .
  • the ozone generator 13 generates ozone using indoor air as a raw material. Ozone is mixed with indoor air and adjusted by the air flow formed by the blower 12, and is discharged to the outside of the casing 10 from the exhaust port 112 and diffused into the room 200.
  • the process advances to step S160.
  • step S160 information on the color difference of the ozone indicator 21, which is an amount equivalent to a CT value, is acquired.
  • the color difference sensor 22 of the CT value equivalent amount detection unit 2 acquires information on the color difference of the ozone indicator 21.
  • the color difference sensor 22 detects, at predetermined intervals, the color difference of the ozone indicator 21, which changes color due to reaction with ozone diffused into the room 200.
  • the color difference sensor 22 transmits information on the detected color difference of the ozone indicator 21 to the system control unit 19. After that, the process advances to step S170.
  • step S170 the ozone generation in the ozone generator 13 is stopped when the color difference of the ozone indicator 21 reaches the required ozone CT value. Specifically, based on the information on the color difference of the ozone indicator 21, the system control unit 19 stops the generation of ozone in the ozone generator 13 when the color difference of the ozone indicator 21 reaches an amount corresponding to the required ozone CT value. control.
  • steps S110 to S140 can also be performed after aeration of ozone into the room 200 is started in step S150.
  • FIG. 7 is a flowchart showing the procedure of a first example of operation of the ozone system 100 according to the first embodiment.
  • step S210 reference humidity information is acquired. Specifically, in the same manner as in step S110 described above, the system control unit 19 acquires information on the reference humidity.
  • An example of the reference humidity of the room 200 is 60%. After that, the process advances to step S220.
  • step S220 information on the set ozone CT value is acquired. Specifically, the system control unit 19 acquires the set ozone CT value in the same manner as in step S120 described above.
  • An example of the required ozone CT value is 60 (ppm ⁇ min), or a lower limit of 50 (ppm ⁇ min) or more and an upper limit of 330 (ppm ⁇ min) or less. After that, the process advances to step S230.
  • step S230 information on the humidity of indoor air is acquired. Specifically, in the same manner as in step S130 described above, the system control unit 19 acquires information on the humidity of indoor air. After that, the process advances to step S240.
  • step S240 the required ozone CT value is determined. Specifically, the system control unit 19 determines the required ozone CT value. In the first operation example, when the humidity of the indoor air is higher than the reference humidity, the system control unit 19 determines the set ozone CT value as it is as the required ozone CT value. That is, the system control unit 19 does not change the ozone CT value used for controlling the ozone generation unit 13 from the set ozone CT value when the humidity of the indoor air is higher than the reference humidity.
  • the system control unit 19 transmits information on the required ozone CT value: 60 (ppm ⁇ min) when the humidity of the indoor air is higher than the reference humidity to the sensor control unit 26 of the color difference sensor 22.
  • the sensor control unit 26 receives information on the required ozone CT value transmitted from the system control unit 19 and stores it. Note that the sensor control unit 26 may cause the sensor storage unit 24 to store information on the required ozone CT value.
  • FIG. 8 is a diagram for explaining the concept of the relationship between relative humidity and required ozone CT value in the first embodiment.
  • the horizontal axis shows the relative humidity
  • the vertical axis shows the required ozone CT value.
  • the characteristic diagram shown in FIG. 8 is correspondence information showing the relationship between relative humidity and required ozone CT value.
  • the correspondence information is stored in the system control unit 19 in advance.
  • the system control unit 19 reads the ozone CT value corresponding to the humidity of indoor air from the correspondence information indicating the relationship between the relative humidity and the required ozone CT value, and determines the ozone CT value as the required ozone CT value.
  • Correspondence information indicating the relationship between relative humidity and required ozone CT value is created as follows using, for example, FIG. 8. First, when the indoor air humidity is 60%, which is the standard humidity, a value of 60 (ppm ⁇ min) is obtained as the set ozone CT value necessary for inactivating the virus in the room 200. Then, the required ozone CT value: 60 (ppm ⁇ min) when the indoor air humidity is 60% is plotted in the characteristic diagram shown in FIG.
  • the ozone CT value that gives the same level of virus inactivation rate as when the humidity of indoor air is 60% is set as the value of 100 (ppm min). obtain.
  • the value of 100 (ppm/min) is obtained based on the results of an experiment in which ozone was used to inactivate viruses in a space with a volume equivalent to 200 indoors when the indoor air humidity was 30%.
  • the value of 100 (ppm ⁇ min) is plotted in the characteristic diagram shown in FIG. 8 as the required ozone CT value when the indoor air humidity is 30%.
  • the system control unit 19 transmits information on the determined required ozone CT value to the sensor control unit 26 of the color difference sensor 22 of the CT value equivalent amount detection unit 2 via the communication unit 18.
  • the sensor control unit 26 receives information on the required ozone CT value transmitted from the system control unit 19 via the sensor communication unit 25 and stores it. After that, the process advances to step S250.
  • step S250 ozone generation is started, and ozone aeration into the room 200 is started. Specifically, in the same manner as in step S150 described above, the system control unit 19 performs control to start aeration of ozone into the room 200. After that, the process advances to step S260.
  • step S260 the color difference of the ozone indicator 21, which is an amount equivalent to the CT value, is detected.
  • the color difference sensor 22 of the CT value equivalent amount detection unit 2 detects the color difference of the ozone indicator 21, which changes color due to reaction with ozone diffused into the room 200, at a predetermined period. After that, the process advances to step S270.
  • step S270 it is determined whether the color difference of the ozone indicator 21 detected by the color difference sensor 22 corresponds to the required ozone CT value: 60 (ppm min) when the humidity is higher than the reference humidity. Ru. Specifically, the sensor control unit 26 of the color difference sensor 22 sets the ozone CT value corresponding to 60 (ppm min) when the color difference of the ozone indicator 21 detected by the color difference sensor 22 is at a humidity higher than the reference humidity. It is determined whether or not there is a color difference. The sensor control unit 26 makes the above determination using the correspondence relationship information between the CT value equivalent amount and the ozone CT value stored in the sensor storage unit 24.
  • the sensor control unit 26 associates the color difference of the ozone indicator 21 detected by the color difference sensor 22 with the vertical axis in the correspondence information shown in FIG. Obtain the ozone CT value of Then, the sensor control unit 26 determines whether the acquired current ozone CT value has a color difference corresponding to the required ozone CT value: 60 (ppm ⁇ min).
  • step S270 If it is determined that the color difference of the ozone indicator 21 detected by the color difference sensor 22 does not correspond to the required ozone CT value when the humidity is higher than the reference humidity: 60 (ppm min), step S270 The answer is No, and the process returns to step S260. If it is determined that the color difference of the ozone indicator 21 detected by the color difference sensor 22 corresponds to the required ozone CT value when the humidity is higher than the reference humidity: 60 (ppm min), Yes in step S270. Then, the process advances to step S280.
  • step S280 when the color difference of the ozone indicator 21 detected by the color difference sensor 22 is a humidity higher than the reference humidity, an arrival signal indicating that the condition of required ozone CT value: 60 (ppm min) has been reached is transmitted to the system control. 19.
  • the sensor control unit 26 transmits the arrival signal to the system control unit 19 via the sensor communication unit 25 of the color difference sensor 22.
  • the system control unit 19 receives the arrival signal transmitted from the sensor control unit 26 via the communication unit 18. Then, based on the arrival signal, the system control unit 19 sets the condition that the required ozone CT value is 60 (ppm min) when the color difference of the ozone indicator 21 detected by the color difference sensor 22 is at a humidity higher than the reference humidity. is determined to have been reached. After that, the process advances to step S290.
  • step S290 it is determined whether the humidity of the indoor air is equal to or higher than the reference humidity. Specifically, the system control unit 19 determines whether the humidity of the indoor air is equal to or higher than the reference humidity based on the information on the humidity of the indoor air acquired in step S230.
  • step S290 If it is determined that the humidity of the indoor air is equal to or higher than the reference humidity, the answer is Yes in step S290, and the process proceeds to step S300. If it is determined that the humidity of the indoor air is lower than the reference humidity, the result in step S290 is No, and the process proceeds to step S310.
  • step S300 the generation of ozone in the ozone generator 13 is stopped, and the aeration of ozone into the room 200 is stopped.
  • the system control unit 19 performs control to stop the generation of ozone in the ozone generator 13 and stop the diffusion of ozone into the room 200.
  • the system control unit 19 performs control to stop the operations of the ozone generation unit 13, humidity measurement unit 14, and color difference sensor 22.
  • the system control unit 19 controls the blower unit 12 to operate even after stopping the generation of ozone in the ozone generator 13, and to stop the blower unit 12 after operating for a predetermined time. This completes a series of operations of the ozone system 100.
  • the system control unit 19 determines, based on the information on the color difference of the ozone indicator 21, that when the color difference of the ozone indicator 21 reaches an amount corresponding to the required ozone CT value, the ozone generator 13 Performs control to stop the generation of ozone.
  • step S310 after the required ozone CT value corresponding to the humidity of the indoor air is achieved in the indoor air, the generation of ozone in the ozone generator 13 is stopped, and the aeration of ozone into the room 200 is stopped. . That is, the operation of the ozone generator 13 is controlled so that the required ozone CT value corresponding to the humidity of the indoor air is satisfied in the room 200. Specifically, the system control unit 19 continues to diffuse ozone into the room 200 until the required ozone CT value corresponding to the humidity of the indoor air is achieved in the room 200, and then continues to diffuse ozone into the room 200. Stop your mind.
  • the system control unit 19 stops the operations of the ventilation unit 12, ozone generation unit 13, humidity measurement unit 14, and color difference sensor 22 after the required ozone CT value corresponding to the humidity of the indoor air is achieved in the indoor air. This completes a series of operations of the ozone system 100.
  • the system control unit 19 performs control to stop the ozone generation in the ozone generation unit 13 when the ozone CT value in the room 200 reaches the required ozone CT value.
  • the system control unit 19 controls the amount of ozone generated by the ozone generation unit 13 based on the humidity in the room 200 measured by the humidity measurement unit 14. Further, the system control unit 19 controls the operation of the ozone generator 13 based on the target value of the ozone CT value, which is the product of the ozone concentration in the room 200 and the ozone generation time in the ozone generator 13. Further, the system control unit 19 controls the operation of the ozone generation unit 13 based on the required target value, which is the target value of the ozone CT value corrected based on the humidity of the room 200 measured by the humidity measurement unit 14. Further, the system control unit 19 performs control to stop the ozone generation in the ozone generation unit 13 when the ozone CT value reaches the required target value.
  • step S310 ozone aeration into the indoor room 200 is continued until the required ozone CT value corresponding to the humidity of the indoor air is achieved in the indoor air, and then ozone aeration into the indoor room 200 is stopped.
  • the control method will be explained.
  • FIG. 9 is a first diagram illustrating the concept of a method for determining ozone generation stop conditions in the ozone system 100 according to the first embodiment.
  • time is shown on the horizontal axis
  • ozone concentration is shown on the vertical axis.
  • FIG. 9 shows a case where it is assumed that the ozone concentration in the room 200 is kept constant.
  • step S270 the system control unit 19 determines that the required ozone CT value when the color difference of the ozone indicator 21 detected by the color difference sensor 22 is at a humidity higher than the reference humidity has reached the condition of 60 (ppm min). It is assumed that 50 minutes have passed since the start of operation of the ozone generating section 13 at the time when it is determined that The ozone CT value at this time corresponds to the area of region A in FIG. In this case, since the ozone CT value is 60 (ppm ⁇ min), the system control unit 19 can calculate that the average concentration of ozone in the room 200 is 1.2 ppm.
  • the system control unit 19 can determine that the required ozone CT value is 100 from the correspondence information showing the relationship between the relative humidity and the required ozone CT value in FIG.
  • the system control unit 19 can calculate that the entire operation of the ozone generation unit 13 required to achieve the required ozone CT value: 100 (ppm ⁇ min) is 83.33 minutes. That is, if the ozone generating unit 13 operates for 83.33 minutes, the required ozone CT value: 100 (ppm min) is achieved in the room 200, so the ozone generation stop condition is calculated as 83.33 minutes.
  • the system control unit 19 only has to stop the operation of the ozone generation unit 13 83.33 minutes after the ozone generation unit 13 starts generating ozone. Therefore, the system control unit 19 continues the operation of the ozone generation unit 13 for the remaining 33.3 minutes from the time when it is determined that the condition of the required ozone CT value: 60 (ppm min) has been reached in the room 200. , the operation of the ozone generator 13 may be stopped.
  • the ozone CT value for 33.3 minutes in this case corresponds to the area of region B in FIG.
  • the system control unit 19 controls the required ozone CT value.
  • the remaining ozone generation time until the ozone generator 13 continues to operate until the value: 100 (ppm/min) is calculated, and the remaining time is set in the timer 17.
  • the system control unit 19 sets the required ozone CT value: 100. (ppm/min), that is, the remaining ozone generation time until the color difference of the ozone indicator 21 reaches the required target value corresponding to the humidity of the indoor air. The time is calculated and the remaining time is set in the timer 17.
  • the timer 17 measures the set remaining time.
  • the system control unit 19 controls the ozone generation unit 13 to stop generating ozone when the timer 17 completes measuring the remaining time.
  • FIG. 10 is a second diagram illustrating the concept of a method for determining ozone generation stop conditions in the ozone system 100 according to the first embodiment.
  • time is shown on the horizontal axis
  • ozone concentration is shown on the vertical axis.
  • FIG. 10 shows a case where it is assumed that the relationship between the ozone concentration in the room 200 and the elapsed time is a linear function. As ozone continues to be generated, the ozone concentration in the room 200 gradually increases, so the graph in Figure 10 shows the concept of the relationship between ozone concentration and elapsed time more closely than the graph in Figure 9. It can be said.
  • step S270 the system control unit 19 determines that the required ozone CT value when the color difference of the ozone indicator 21 detected by the color difference sensor 22 is at a humidity higher than the reference humidity has reached the condition of 60 (ppm min). It is assumed that 60 minutes have passed since the start of operation of the ozone generating section 13 at the time when it is determined that.
  • the ozone CT value at this time corresponds to the area of region C in FIG. In this case, since the ozone CT value is 60 (ppm/min), the system control unit 19 determines that the ozone concentration in the room 200 at 60 minutes from the start of operation of the ozone generator 13 is 2 ppm. It can be calculated from 10.
  • the system control unit 19 determines that the required ozone CT value is 100 (ppm ⁇ min) from the correspondence relationship information showing the relationship between the relative humidity and the required ozone CT value in FIG. It can be determined that there is.
  • the required ozone CT value: 100 (ppm/min) it is assumed that the ozone concentration continues to increase linearly as a linear function as shown by the broken line in FIG.
  • the system control unit 19 can calculate that the entire operation of the ozone generation unit 13 required to achieve the required ozone CT value of 100 (ppm ⁇ min) is 77.46 minutes. That is, if the ozone generator 13 operates for 77.46 minutes, the required ozone CT value: 100 (ppm min) is achieved in the room 200, so the ozone generation stop condition is calculated as 77.46 minutes.
  • the system control unit 19 only has to stop the operation of the ozone generation unit 13 77.46 minutes after the ozone generation unit 13 starts generating ozone. Therefore, the system control unit 19 continues the operation of the ozone generation unit 13 for the remaining 17.46 minutes from the time when it is determined that the condition of the required ozone CT value: 60 (ppm min) has been reached in the room 200. , the operation of the ozone generator 13 may be stopped.
  • the ozone CT value for 17.46 minutes in this case corresponds to the area of region D in FIG.
  • the method for calculating the ozone generation stop conditions is as follows. From FIG. 10, when the required ozone CT value reaches 60 (ppm/min) in the room 200, 60 minutes have passed since the start of operation of the ozone generator 13, and the ozone concentration in the room 200 is 2 ppm. . To find the time to reach the condition of the required ozone CT value: 100 (ppm min) indoors 200 from the start of operation of the ozone generator 13, the required ozone CT value: 100 (ppm min) in the room 200 from the start of operation of the ozone generator 13.
  • FIG. 11 is a third diagram illustrating the concept of a method for determining ozone generation stop conditions in the ozone system 100 according to the first embodiment.
  • time is shown on the horizontal axis
  • ozone concentration is shown on the vertical axis.
  • FIG. 11 shows a case where it is assumed that the relationship between the ozone concentration in the room 200 and the elapsed time is a logarithmic function.
  • the relationship between the ozone concentration in the room 200 and the elapsed time may be another function, such as a logarithmic function as shown in FIG. It may be a function.
  • the conditions for stopping ozone generation can be calculated using the same concept as above.
  • FIGS. 9 to 11 described above are not actually applied to calculating the ozone generation stop conditions in the ozone system 100, but are examples for explaining the concept of a method for determining the ozone generation stop conditions.
  • FIG. 12 is a flowchart showing the procedure of a second example of operation of the ozone system 100 according to the first embodiment. Below, steps different from the first operation example described above will be explained.
  • steps S210 to S260 are performed. After that, the process advances to step S410.
  • step S410 the color difference information of the ozone indicator 21 is continuously and sequentially transmitted to the system control unit 19 as a signal corresponding to the CT value.
  • the color difference sensor 22 continuously transmits color difference information, which is a detection result detected at a predetermined period, to the system control unit 19 as a signal corresponding to a CT value.
  • the system control unit 19 receives and stores the signal corresponding to the CT value transmitted from the color difference sensor 22. Thereby, information on the color difference of the ozone indicator 21, which is a detection result detected at a predetermined period, is acquired by the system control unit 19 in real time. After that, the process advances to step S420.
  • step S420 it is determined whether the color difference of the ozone indicator 21 detected by the color difference sensor 22 corresponds to the required ozone CT value: 100 (ppm min) when the humidity of the indoor air is 30%. , is determined. Specifically, the system control unit 19 determines that the color difference of the ozone indicator 21 detected by the color difference sensor 22 is the color difference corresponding to the required ozone CT value: 100 (ppm min) when the humidity of the indoor air is 30%. Determine whether it has happened or not. The system control unit 19 makes the above determination using the correspondence relationship information between the CT value equivalent amount and the ozone CT value stored in the storage unit 16 of the ozone generator 1.
  • the system control unit 19 associates the color difference of the ozone indicator 21 detected by the color difference sensor 22 with the vertical axis in the correspondence relationship information shown in FIG. Obtain the ozone CT value of Then, the system control unit 19 determines whether the acquired current ozone CT value has a color difference corresponding to the required ozone CT value: 100 (ppm ⁇ min).
  • step S420 If it is determined that the color difference of the ozone indicator 21 detected by the color difference sensor 22 does not correspond to the required ozone CT value: 100 (ppm min) when the humidity of the indoor air is 30%, No is determined in step S420, and the process returns to step S410. If it is determined that the color difference of the ozone indicator 21 detected by the color difference sensor 22 corresponds to the required ozone CT value when the indoor air humidity is 30%: 100 (ppm min), step S420 The result is Yes, and the process advances to step S300.
  • step S420 and step S300 the system control unit 19 determines, based on the information on the color difference of the ozone indicator 21, that when the color difference of the ozone indicator 21 reaches an amount corresponding to the required ozone CT value, the ozone generation unit 13 Performs control to stop the generation of ozone.
  • the ozone system 100 is an ozone system that supplies ozone indoors, and the ozone system 100 is an ozone system that supplies ozone indoors.
  • An ozone system including a control section that controls the amount of ozone generated by the generation section 13 is realized.
  • an ozone supply method for supplying ozone indoors includes a step of obtaining indoor humidity, a step of supplying ozone indoors, and a step based on the indoor humidity. and controlling the amount of ozone generated.
  • the system control unit 19 controls the amount of ozone necessary to inactivate viruses in the room 200 in an environment where the humidity of the indoor air is the reference humidity.
  • the set ozone CT value which is a CT value, is corrected based on the humidity in the room 200, and the necessary ozone CT value required when inactivating the virus in the room 200 is calculated by taking into consideration the humidity in the room 200. .
  • the system control unit 19 performs control to stop the ozone generation in the ozone generation unit 13 when the indoor ozone CT value reaches the required target value.
  • the ozone system 100 takes the humidity of the room 200 into account and operates the ozone generator even if the humidity of the room 200 is higher than the reference humidity or the humidity of the indoor air is lower than the reference humidity. 13 can be appropriately controlled.
  • the virus inactivation effect in the room 200 may become insufficient, or more ozone than necessary may be diffused into the room 200. do not have. That is, in the ozone system 100, the ozone CT value necessary for inactivating airborne viruses in the indoor space or viruses attached to objects in the room 200 can be appropriately achieved in the room 200. Inactivation is possible.
  • the ozone system 100 uses an ozone indicator 21 equipped with a chemical substance 21a whose color changes with changes in the ozone CT value, to determine the ozone concentration in the room 200 and the ozone generation time in the ozone generator 13.
  • a CT value equivalent amount which is an equivalent amount corresponding to the ozone CT value, which is the product, is detected.
  • the system control unit 19 can perform control to stop the generation of ozone when the CT value in the room 200 reaches the required target value. That is, the system control unit 19 can perform control to stop the generation of ozone when the CT value equivalent amount in the room 200 reaches the required target value.
  • the ozone system 100 can appropriately inactivate viruses in the room 200 without detecting the ozone concentration in the room 200 using an ozone concentration meter. Moreover, the ozone system 100 can detect the amount equivalent to the CT value in the room 200 using the chemical substance 21a, which is cheaper than an ozone concentration meter, and the ozone system 100 can be realized at a low cost.
  • the CT value equivalent amount detection section 2 equipped with the ozone indicator 21 is arranged in the room 200 at a position away from the casing 10 of the ozone generator 1 in which the ozone generation section 13 is provided. .
  • the CT value equivalent amount detection section 2 is disposed in the room 200 at a position away from the casing 10 of the ozone generator 1 in which the ozone generation section 13 is provided.
  • the CT value equivalent amount detection unit 2 is installed at the farthest position from the ozone generator 1 in the room 200. Therefore, in the ozone system 100, it can be more reliably confirmed that the desired required target value is achieved in the indoor space of the room 200. Therefore, in the ozone system 100, by selecting the installation location of the CT value equivalent amount detection unit 2 in the room 200, it is possible to improve the detection accuracy of the ozone CT value equivalent amount.
  • the CT value equivalent amount detection unit 2 may be installed in a space in the room 200 on the side toward which the suction port 111 of the housing 10 faces. It is difficult for ozone to reach the space on the side where the suction port 111 faces from the discharge port 112 of the housing 10 . Therefore, by installing the CT value equivalent amount detection unit 2 in the space on the side where the suction port 111 of the housing 10 faces in the room 200, it is possible to more reliably reach the space on the side where the suction port 111 of the housing 10 faces. It is possible to obtain ozone generation stop conditions that allow sterilization by ozone.
  • the CT value equivalent amount detection unit 2 detects the position of the casing 10 in the indoor space and the direction in which the suction port 111 of the casing 10 faces. Depending on the circumstances, it may be installed in a space in the room 200 that is difficult for air to reach.
  • ozone generation enables more reliable ozone sterilization even to the space on the side where the inlet 111 of the housing 10 faces. Stop conditions can be obtained.
  • the user can select the reliability of the sterilization level of the room 200 that the user desires, increasing the degree of freedom in selecting the sterilization level. It becomes possible to realize an ozone system 100 that is large and easy to use for the user.
  • the ozone system 100 has the effect of being able to provide a comfortable space to the user in consideration of the humidity in the room 200.
  • Embodiment 2 In the first embodiment described above, a case has been described in which the CT value equivalent amount detection section 2 is provided independently from the casing 10 of the ozone generator 1 and is arranged at a position away from the casing 10. In Embodiment 2, a case will be described in which the CT value equivalent amount detection section 2 is provided in the housing 10 of the ozone generator 1.
  • FIG. 13 is a schematic diagram showing the gas flow path 11 formed in the housing 10 of the ozone generator 1a of the ozone system 100a according to the second embodiment.
  • the CT value equivalent amount detection section 2 is located adjacent to the entrance area of the gas flow path 11 in the case 10 of the ozone generator 1a, that is, adjacent to the suction port 111.
  • the casing 10 is exposed on the outer surface of the casing 10.
  • the color difference sensor 22 is arranged in the lower part of the region adjacent to the suction port 111 in the gas flow path 11 .
  • the ozone indicator 21 is disposed in the gas flow path 11 at a lower part of a region adjacent to the suction port 111 and below the color difference sensor 22 .
  • the ozone indicator 21 comes into contact with the indoor air introduced into the suction port 111. Then, the color difference sensor 22 detects the color difference of the ozone indicator 21. As a result, the ozone indicator 21 does not come into contact with the ozone generated by the ozone generator 13 within the gas flow path 11 and is not affected by the ozone generated by the ozone generator 13 within the gas flow path 11. It is possible to detect color differences. Moreover, since the ozone indicator 21 is arranged in the region adjacent to the suction port 111 in the gas flow path 11, maintenance such as inspection and replacement of the ozone indicator 21 is easy.
  • the ozone system 100a according to the second embodiment configured as described above has the same effects as the ozone system 100 according to the first embodiment.
  • the color difference sensor 22 is capable of exchanging information with the system control unit 19 via a communication line (not shown) inside the housing 10. Therefore, in the ozone system 100a, wireless communication can be performed between the CT value equivalent amount detection unit 2 located at a position away from the housing 10 and the housing 10, which was necessary in the ozone system 100 according to the first embodiment. No configuration for communication or wired communication is required. Thereby, in the ozone system 100a, the configuration can be simplified and the cost can be reduced.
  • the CT value equivalent amount detection section 2 is incorporated into the casing 10 of the ozone generator 1a, thereby simplifying the overall configuration of the ozone system 100a.
  • installation of the ozone system 100a is completed simply by installing the ozone generator 1a at a desired position in the room 200, and the installation work of the ozone system 100a becomes easy.
  • the CT value equivalent amount detection unit 2 is installed at a position relatively close to the housing 10 in the room 200.
  • the CT value equivalent amount detection unit 2 By installing the CT value equivalent amount detection unit 2 in a position relatively close to the housing 10 in the room 200, it is possible to obtain ozone generation stop conditions that allow the room 200 to be sterilized while reducing the amount of ozone gas generated. can. Since high concentrations of ozone are not favorable for the human body, ozone sterilization with an emphasis on safety can be performed by installing the CT value equivalent amount detection unit 2 in a position relatively close to the housing 10 in the room 200. can.
  • the CT value equivalent amount detection unit 2 may be arranged on the outer surface of the front side of the casing 10 of the ozone generator 1a.
  • the color difference of the ozone indicator 21 can be detected by the color difference sensor 22 of the CT value equivalent amount detection section 2 .
  • the front surface of the housing 10 is the side of the outer surface of the housing 10 where the suction port 111 is formed.
  • Embodiment 3 In the first embodiment described above, a case has been described in which the CT value equivalent amount detection section 2, which is independent from the housing 10 of the ozone generator 1, is fixedly arranged at a position away from the housing 10. In Embodiment 3, a case will be described in which the CT value equivalent amount detection unit 2a independent from the housing 10 of the ozone generator 1 can be manually placed at a desired position in the room 200.
  • FIG. 14 is a schematic diagram showing a configuration example of an ozone system 100b according to the third embodiment.
  • FIG. 14 shows a state in which the ozone system 100b is applied to an indoor room 200 that is a space to be ozone treated.
  • the ozone system 100b according to the third embodiment is different from the first embodiment in that, instead of the CT value equivalent amount detection section 2, a CT value equivalent amount detection section 2a that can be manually placed at a desired position in the room 200 is provided.
  • This ozone system 100 is different.
  • FIG. 15 is a schematic diagram showing a configuration example of the automatic supply mechanism 300 of the ozone indicator in the CT value equivalent amount detection section 2a included in the ozone system 100b according to the third embodiment.
  • the color difference sensor 22 is also shown.
  • FIG. 16 is a sectional view showing the structure of the ozone indicator sheet 301 in the CT value equivalent amount detection section 2a included in the ozone system 100b according to the third embodiment.
  • a cross section along the longitudinal direction of the ozone indicator sheet 301 and the thickness direction of the ozone indicator sheet 301 is shown.
  • FIG. 17 is a block diagram showing a functional configuration related to automatic supply of an ozone indicator in the CT value equivalent amount detection section 2a included in the ozone system 100b according to the third embodiment.
  • the CT value equivalent amount detection unit 2a may be provided with the above-described single ozone indicator 21, or may be provided with an automatic ozone indicator supply mechanism 300 instead of the single ozone indicator 21.
  • the ozone indicator automatic supply mechanism 300 automatically supplies the ozone indicator to a position where the color difference sensor 22 can detect the color difference of the ozone indicator.
  • FIG. 15 shows a case where the ozone indicator automatic supply mechanism 300 automatically supplies the ozone indicator 21 to a position directly below the color difference sensor 22.
  • the ozone indicator automatic supply mechanism 300 includes an ozone indicator sheet 301, a sheet unwinding section 302, a sheet winding section 303, a film peeling section 304, and an automatic supply control section 305.
  • the ozone indicator sheet 301 includes a long roll paper 311 as a support, a chemical substance 312, and a laminate film 313 made of aluminum, which are laminated in this order.
  • the chemical substance 312 is a chemical substance whose color changes with the change in the ozone CT value described above.
  • the chemical substances 312 are arranged at predetermined positions in the width direction of the roll paper 311 on the surface of the roll paper 311 at predetermined intervals in the longitudinal direction of the roll paper 311. There is.
  • the chemical substance 312 is sealed between the paper roll 311 and the laminate film 313, and is not exposed to indoor air and does not react with ozone until the laminate film 313 is peeled off.
  • the sheet unwinding unit 302 includes a sheet unwinding roll 321 wound with an ozone indicator sheet 301 in which no chemical substance 312 is used.
  • the sheet winding unit 303 includes a sheet winding roll 322 around which the used ozone indicator sheet 301 is wound, and a sheet winding motor 323 that rotationally drives the sheet winding roll 322.
  • the film peeling unit 304 peels the laminate film 313 from the unused ozone indicator sheet 301 unwound from the sheet unwinding roll 321.
  • the film peeling unit 304 includes a film winding roll 324 around which the laminate film 313 peeled from the unused ozone indicator sheet 301 is wound, and a film winding motor 325 that rotationally drives the film winding roll 324. Be prepared. Before use, the laminate film 313 at the starting end of the ozone indicator sheet 301 wound around the sheet unwinding roll 321 is peeled off, and the peeled laminate film 313 is wound around the film winding roll 324.
  • the automatic supply control unit 305 controls the operations of the sheet winding motor 323 and the film winding motor 325 to supply the chemical to a position where the color difference of the chemical substance 312 of the ozone indicator can be detected by the color difference sensor 22. Control automatic supply of substance 312.
  • the automatic supply control unit 305 controls automatic supply of the chemical substance 312 under the control of the system control unit 19 .
  • the automatic supply control unit 305 is capable of communicating with the sheet winding motor 323 and the film winding motor 325, and transmits control signals to the sheet winding motor 323 and the film winding motor 325.
  • the sheet winding motor 323 and the film winding motor 325 receive the control signal transmitted from the automatic supply control section 305 and operate based on the control signal.
  • the ozone indicator chemical substance 312 is automatically supplied to a position directly below the color difference sensor 22 before the ozone generation section 13 starts generating ozone. That is, the sheet winding motor 323 of the sheet winding section 303 rotates the sheet winding roll 322, so that the unused ozone indicator sheet 301 is unwound from the sheet winding roll 321.
  • the ozone indicator sheet 301 unwound from the sheet unwinding roll 321 has the laminate film 313 on the surface of the ozone indicator sheet 301 peeled off by the film peeling section 304 . That is, when the film winding motor 325 rotates the film winding roll 324, the laminate film 313 on the surface of the ozone indicator sheet 301 is peeled off.
  • the ozone indicator sheet 301 unwound from the sheet unwinding roll 321 is conveyed from the sheet unwinding roll 321 toward the sheet winding roll 322 while the laminate film 313 is peeled off by the film peeling section 304.
  • the ozone indicator sheet 301 with the laminate film 313 peeled off and the chemical substance 312 exposed is conveyed from the sheet unwinding roll 321 toward the sheet winding roll 322.
  • the sheet winding motor 323 is stopped.
  • the chemical substance 312 is automatically supplied to a position directly below the color difference sensor 22.
  • the automatic supply operation of the ozone indicator described above is performed after the ozone generator 1 starts operating and before the ozone generator 13 starts generating ozone. Thereby, unused chemical substances 312 can be automatically prepared when the ozone system 100b is used.
  • the ozone system 100b according to the third embodiment described above has the same effects as the ozone system 100 according to the first embodiment.
  • the CT value equivalent amount detection unit 2a which is independent from the housing 10 of the ozone generator 1, can be manually placed at a desired position in the room 200. This allows the ozone system 100b to freely move the CT value equivalent amount detection unit 2a to any location according to the indoor layout, realizing an ozone system 100b with a high degree of freedom in placement and ease of use. has been done.
  • the CT value equivalent amount detection unit 2a is equipped with an automatic ozone indicator supply mechanism 300, so that the burden of replacing the ozone indicator is significantly reduced, and an easy-to-use ozone system 100b is realized. .
  • the control unit 80 includes the system control unit 19 of the ozone generator 1 according to the first to third embodiments, the sensor control unit 26 of the color difference sensor 22, and the ozone indicator automatic supply mechanism 300 according to the third embodiment. This corresponds to each of the automatic supply control units 305.
  • Each function of the control unit 80 according to Embodiments 1 to 3 is realized by a processing circuit.
  • the processing circuit may be dedicated hardware or may be a processing device that executes a program stored in a storage device.
  • FIG. 18 is a diagram showing a configuration in which each function of the control unit 80 according to Embodiments 1 to 3 is realized by hardware.
  • the processing circuit 81 includes a logic circuit 81a that implements the functions of the control section 80.
  • control unit 80 When the processing circuit 81 is a processing device, the functions of the control unit 80 are realized by software, firmware, or a combination of software and firmware.
  • FIG. 19 is a diagram showing a configuration in which each function of the control unit 80 according to Embodiments 1 to 3 is realized by software.
  • the processing circuit 81 includes a processor 811 that executes a program 81b, a random access memory 812 that the processor 811 uses as a work area, and a storage device 813 that stores the program 81b.
  • the functions of the control unit 80 are realized by the processor 811 loading the program 81b stored in the storage device 813 onto the random access memory 812 and executing it.
  • Software or firmware is written in a programming language and stored in storage device 813.
  • the processor 811 can be, for example, a central processing unit, but is not limited thereto.
  • the storage device 813 is RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), or EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). Apply semiconductor memory such as can.
  • the semiconductor memory may be a non-volatile memory or a volatile memory.
  • the storage device 813 can be a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc).
  • the processor 811 may output data such as calculation results to the storage device 813 for storage, or may store the data in an auxiliary storage device (not shown) via the random access memory 812.
  • the functions of the control section 80 can be realized by a microcomputer.
  • the processing circuit 81 realizes the functions of the control unit 80 by reading and executing the program 81b stored in the storage device 813. It can also be said that the program 81b causes the computer to execute procedures and methods for realizing the functions of the control unit 80.
  • processing circuit 81 may realize some of the functions of the control unit 80 using dedicated hardware, and may realize some of the functions of the control unit 80 using software or firmware.
  • the processing circuit 81 can realize each of the above functions using hardware, software, firmware, or a combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

An ozone system (100) supplies ozone indoors. The ozone system (100) comprises an ozone generating unit (13) that generates ozone, a humidity measuring unit (14) that measures the indoor humidity, and a control unit that controls the amount of ozone generated by the ozone generating unit (13) on the basis of the indoor humidity measured by the humidity measuring unit (14). This ozone system (100) exhibits the effect that it is possible to provide a user with a comfortable sterilized space in consideration of indoor humidity.

Description

オゾンシステムおよびオゾン供給方法Ozone system and ozone supply method
 本開示は、オゾンを用いた除菌を行うオゾンシステムおよびオゾン供給方法に関する。 The present disclosure relates to an ozone system and an ozone supply method that perform sterilization using ozone.
 酸化力が強いオゾンは、消毒、殺菌、脱臭、脱色および有機物除去などを目的として、様々な分野で使用されている。オゾンを用いた殺菌では、オゾンの濃度とオゾンに曝露された時間との積であるオゾンCT(Concentration-Time Value)値を予め設定し、設定したオゾンCT値になったときにオゾンの発生を停止させる制御が行われている。 Ozone, which has strong oxidizing power, is used in various fields for purposes such as disinfection, sterilization, deodorization, decolorization, and organic matter removal. In sterilization using ozone, the ozone CT (Concentration-Time Value) value, which is the product of the ozone concentration and the time of exposure to ozone, is set in advance, and ozone generation is stopped when the set ozone CT value is reached. Control is in place to stop it.
 特許文献1には、設定したオゾンCT値になったときにオゾンの発生を停止させる制御を行う場合に、オゾンと反応して色が変化する化学物質の変色量あるいは変色の濃淡をモニタリングすることにより、オゾン濃度とオゾンによる処理時間の積を検知する技術が開示されている。 Patent Document 1 discloses that when performing control to stop ozone generation when a set ozone CT value is reached, the amount of discoloration or the shade of discoloration of a chemical substance that changes color by reacting with ozone is monitored. discloses a technique for detecting the product of ozone concentration and ozone treatment time.
特開2007-159820号公報Japanese Patent Application Publication No. 2007-159820
 しかしながら、特許文献1の技術のように予め設定したオゾンCT値になったときにオゾンの発生を停止する制御だけでは、オゾン処理対象空間の殺菌に必要なオゾンの散気量を適切に制御できない場合が生じる。 However, just by controlling the generation of ozone to stop when a preset ozone CT value is reached, as in the technology of Patent Document 1, it is not possible to appropriately control the amount of ozone diffused necessary for sterilizing the space to be ozone treated. A situation may arise.
 本開示は、上記に鑑みてなされたものであって、室内の湿度を考慮したユーザに快適な除菌空間を提供可能なオゾンシステムを得ることを目的とする。 The present disclosure has been made in view of the above, and aims to provide an ozone system that can provide a user with a comfortable sterilization space while taking indoor humidity into consideration.
 上述した課題を解決し、目的を達成するために、本開示にかかるオゾンシステムは、室内にオゾンを供給するオゾンシステムである。オゾンシステムは、オゾンを発生させるオゾン発生部と、室内の湿度を測定する湿度測定部と、湿度測定部において測定された室内の湿度に基づいて、オゾン発生部が発生させるオゾンの量を制御する制御部と、を備える。 In order to solve the above-mentioned problems and achieve the objectives, an ozone system according to the present disclosure is an ozone system that supplies ozone indoors. The ozone system includes an ozone generation section that generates ozone, a humidity measurement section that measures indoor humidity, and controls the amount of ozone generated by the ozone generation section based on the indoor humidity measured by the humidity measurement section. A control unit.
 本開示にかかるオゾンシステムによれば、室内の湿度を考慮したユーザに快適な除菌空間を提供可能である、という効果を奏する。 According to the ozone system according to the present disclosure, it is possible to provide a comfortable sterilization space to the user in consideration of indoor humidity.
実施の形態1にかかるオゾンシステムの構成例を示す模式図Schematic diagram showing a configuration example of an ozone system according to Embodiment 1 実施の形態1にかかるオゾンシステムの機能構成例を示すブロック図Block diagram showing an example of functional configuration of the ozone system according to Embodiment 1 実施の形態1にかかるオゾンシステムのCT値相当量検知部の構成例を示す模式図Schematic diagram showing a configuration example of a CT value equivalent amount detection section of the ozone system according to Embodiment 1 実施の形態1にかかるオゾンシステムのオゾン発生装置のガス流路の構成例を示す模式図A schematic diagram showing a configuration example of a gas flow path of an ozone generator of an ozone system according to Embodiment 1. 実施の形態1におけるオゾンCT値とオゾンインジケータの色差との関係を示す特性図Characteristic diagram showing the relationship between ozone CT value and color difference of ozone indicator in Embodiment 1 実施の形態1にかかるオゾンシステムの動作の概要を示すフローチャートFlowchart showing an overview of the operation of the ozone system according to the first embodiment 実施の形態1にかかるオゾンシステムの第1の動作例の手順を示すフローチャートFlowchart showing the procedure of the first example of operation of the ozone system according to the first embodiment 実施の形態1における相対湿度と必要オゾンCT値との関係の概念を説明するための図Diagram for explaining the concept of the relationship between relative humidity and required ozone CT value in Embodiment 1 実施の形態1にかかるオゾンシステムにおけるオゾン発生停止条件を決定する方法の概念を説明する第1の図A first diagram illustrating the concept of a method for determining ozone generation stop conditions in the ozone system according to the first embodiment. 実施の形態1にかかるオゾンシステムにおけるオゾン発生停止条件を決定する方法の概念を説明する第2の図A second diagram illustrating the concept of a method for determining ozone generation stop conditions in the ozone system according to the first embodiment. 実施の形態1にかかるオゾンシステムにおけるオゾン発生停止条件を決定する方法の概念を説明する第3の図Third diagram illustrating the concept of a method for determining ozone generation stop conditions in the ozone system according to the first embodiment 実施の形態1にかかるオゾンシステムの第2の動作例の手順を示すフローチャートFlowchart showing the procedure of the second operation example of the ozone system according to the first embodiment 実施の形態2にかかるオゾンシステムのオゾン発生装置の筐体に形成されたガス流路を示す模式図Schematic diagram showing a gas flow path formed in the case of the ozone generator of the ozone system according to Embodiment 2 実施の形態3にかかるオゾンシステムの構成例を示す模式図Schematic diagram showing a configuration example of an ozone system according to Embodiment 3 実施の形態3にかかるオゾンシステムが備えるCT値相当量検知部におけるオゾンインジケータの自動供給機構の構成例を示す模式図Schematic diagram showing a configuration example of an automatic supply mechanism of an ozone indicator in a CT value equivalent amount detection unit included in the ozone system according to Embodiment 3 実施の形態3にかかるオゾンシステムが備えるCT値相当量検知部におけるオゾンインジケータシートの構造を示す断面図Cross-sectional view showing the structure of an ozone indicator sheet in the CT value equivalent amount detection section included in the ozone system according to Embodiment 3 実施の形態3にかかるオゾンシステムが備えるCT値相当量検知部におけるオゾンインジケータの自動供給に関わる機能構成を示すブロック図A block diagram showing a functional configuration related to automatic supply of an ozone indicator in a CT value equivalent amount detection unit included in the ozone system according to Embodiment 3. 実施の形態1から実施の形態3にかかる制御部のそれぞれの機能をハードウェアで実現した構成を示す図A diagram showing a configuration in which each function of the control unit according to Embodiment 1 to Embodiment 3 is realized by hardware. 実施の形態1から実施の形態3にかかる制御部のそれぞれの機能をソフトウェアで実現した構成を示す図A diagram showing a configuration in which each function of the control unit according to Embodiment 1 to Embodiment 3 is realized by software.
 以下に、実施の形態にかかるオゾンシステムおよびオゾン供給方法を図面に基づいて詳細に説明する。なお、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。 Below, an ozone system and an ozone supply method according to an embodiment will be described in detail based on the drawings. In addition, in the drawings shown below, for ease of understanding, the scale of each member may be different from the actual scale. The same applies between each drawing.
実施の形態1.
 図1は、実施の形態1にかかるオゾンシステム100の構成例を示す模式図である。図1においては、オゾン処理対象空間である室内200にオゾンシステム100が適用された状態を示している。図2は、実施の形態1にかかるオゾンシステム100の機能構成例を示すブロック図である。図3は、実施の形態1にかかるオゾンシステム100のCT値相当量検知部2の構成例を示す模式図である。図4は、実施の形態1にかかるオゾンシステム100のオゾン発生装置1のガス流路11の構成例を示す模式図である。ここではオゾンシステム100の動作についてウイルスを例に説明するが、オゾンシステム100の除菌対象にはウイルスおよび細菌といった微生物が含まれる。
Embodiment 1.
FIG. 1 is a schematic diagram showing a configuration example of an ozone system 100 according to the first embodiment. FIG. 1 shows a state in which an ozone system 100 is applied to an indoor room 200 that is a space to be treated with ozone. FIG. 2 is a block diagram showing an example of the functional configuration of the ozone system 100 according to the first embodiment. FIG. 3 is a schematic diagram showing a configuration example of the CT value equivalent amount detection section 2 of the ozone system 100 according to the first embodiment. FIG. 4 is a schematic diagram showing a configuration example of the gas flow path 11 of the ozone generator 1 of the ozone system 100 according to the first embodiment. Here, the operation of the ozone system 100 will be explained using a virus as an example, but the objects to be sterilized by the ozone system 100 include microorganisms such as viruses and bacteria.
 オゾンシステム100は、オゾン処理対象空間である室内200にオゾンを供給することにより室内200の除菌を行うオゾン除菌システムである。オゾンシステム100は、図1に示すように、オゾン発生装置1と、CT値相当量検知部2と、を備える。オゾン発生装置1は、室内200の床201における一方の壁203の壁際に配置されている。また、CT値相当量検知部2は、室内200における天井202と他方の壁204とに挟まれた室内200の隅に配置されている。CT値相当量検知部2は、室内200において、オゾン発生装置1から最も離れた位置に配置されている。これにより、オゾンシステム100は、オゾン処理対象空間内においてオゾン発生装置1から離れた箇所にオゾンを行き渡らせることができる。 The ozone system 100 is an ozone sterilization system that sterilizes the indoor room 200 by supplying ozone to the indoor room 200, which is a space to be ozone treated. As shown in FIG. 1, the ozone system 100 includes an ozone generator 1 and a CT value equivalent amount detection section 2. The ozone generator 1 is placed near one wall 203 on the floor 201 of the room 200 . Further, the CT value equivalent amount detection unit 2 is arranged at a corner of the room 200 sandwiched between the ceiling 202 and the other wall 204 in the room 200 . The CT value equivalent amount detection unit 2 is arranged in the room 200 at a position farthest from the ozone generator 1. Thereby, the ozone system 100 can distribute ozone to a location away from the ozone generator 1 within the ozone treatment target space.
 オゾン発生装置1は、酸素を含有する原料ガスを吸い込んでオゾンを発生させ、発生させたオゾンを室内200に散気することにより、室内200のウイルスの不活化を行う。オゾン発生装置1は、ガス流路11と、送風部12と、オゾン発生部13と、湿度測定部14と、制御装置15と、を備える。ガス流路11と送風部12とオゾン発生部13と湿度測定部14と制御装置15とは、筐体10の内部に設けられている。なお、湿度測定部14は、筐体10において筐体10の外側に面する位置に設けられてもよい。制御装置15は、記憶部16と、タイマ17と、通信部18と、システム制御部19と、を備える。オゾン発生装置1の各構成部間では、情報の授受が可能である。 The ozone generator 1 generates ozone by inhaling raw material gas containing oxygen, and inactivates viruses in the room 200 by diffusing the generated ozone into the room 200. The ozone generator 1 includes a gas flow path 11 , a blower section 12 , an ozone generator 13 , a humidity measurement section 14 , and a control device 15 . The gas flow path 11 , the blowing section 12 , the ozone generating section 13 , the humidity measuring section 14 , and the control device 15 are provided inside the housing 10 . Note that the humidity measuring section 14 may be provided in the housing 10 at a position facing the outside of the housing 10. The control device 15 includes a storage section 16, a timer 17, a communication section 18, and a system control section 19. Information can be exchanged between each component of the ozone generator 1.
 ガス流路11は、酸素を含有する原料ガスと、オゾン発生部13で発生したオゾンと、が流れる流路である。原料ガスは、筐体10の外部からガス流路11に導入される。また、オゾン発生部13で発生したオゾンは、ガス流路11から筐体10の外部に排出されて、室内に散気される。 The gas flow path 11 is a flow path through which source gas containing oxygen and ozone generated in the ozone generation section 13 flow. The raw material gas is introduced into the gas flow path 11 from outside the housing 10 . Further, ozone generated in the ozone generator 13 is discharged from the gas flow path 11 to the outside of the housing 10 and diffused into the room.
 酸素を含有する原料ガスは、オゾン発生部13が発生するオゾンの原料となるガスであり、オゾン処理対象空間である室内200の空気である室内空気が用いられる。なお、酸素を含有する原料ガスは、酸素を含有していればよく、室内空気に限定されない。図4において、矢印211は、室内空気の流れを示している。図4において、矢印212は、オゾンおよび室内空気の流れを示している。 The raw material gas containing oxygen is a gas that serves as a raw material for ozone generated by the ozone generator 13, and indoor air, which is the air in the room 200 that is the space to be ozonated, is used. Note that the raw material gas containing oxygen is not limited to room air, as long as it contains oxygen. In FIG. 4, arrows 211 indicate the flow of indoor air. In FIG. 4, arrows 212 indicate the flow of ozone and indoor air.
 送風部12は、ガス流路11における一方の端部である吸込口111から、ガス流路11における他方の端部である排出口112に向かう気流を形成する。ガス流路11において吸込口111から排出口112に向かう気流が形成されることにより、酸素を含有する原料ガスである室内空気が、吸込口111からガス流路11に導入される。 The blower section 12 forms an airflow from an inlet 111 that is one end of the gas flow path 11 to an outlet 112 that is the other end of the gas flow path 11 . By forming an airflow from the suction port 111 toward the discharge port 112 in the gas flow path 11, room air, which is a source gas containing oxygen, is introduced into the gas flow path 11 from the suction port 111.
 また、ガス流路11において吸込口111から排出口112に向かう気流が形成されることにより、オゾン発生部13において発生したオゾンが室内空気と混合されてガス流路11から筐体10の外部に排出される。すなわち、オゾン発生部13において発生したオゾンは、ガス流路11に導入された室内空気とともにガス流路11から筐体10の外部に排出される。オゾン発生部13において発生したオゾンに室内空気を混合させることにより、オゾンを所望の濃度に調整することができる。 In addition, by forming an airflow from the suction port 111 toward the discharge port 112 in the gas flow path 11, ozone generated in the ozone generator 13 is mixed with indoor air and flows from the gas flow path 11 to the outside of the housing 10. be discharged. That is, ozone generated in the ozone generator 13 is discharged from the gas flow path 11 to the outside of the housing 10 together with the indoor air introduced into the gas flow path 11. By mixing indoor air with the ozone generated in the ozone generator 13, ozone can be adjusted to a desired concentration.
 オゾン発生部13は、ガス流路11に導入された原料ガスである室内空気を用いてオゾンを発生させる。オゾン発生部13で発生したオゾンは、送風部12によって形成される気流によって室内空気と混合されて所望の濃度に調整されて、筐体10の外部に排出され、室内200に散気される。 The ozone generator 13 generates ozone using indoor air, which is the source gas introduced into the gas flow path 11. The ozone generated in the ozone generator 13 is mixed with indoor air by the airflow formed by the blower 12, adjusted to a desired concentration, discharged to the outside of the casing 10, and diffused into the room 200.
 オゾン発生部13におけるオゾンの発生方法は、一般的な方法を用いることができる。例えば、誘電体を介して配置された電極間に交流電圧を印加することで無声放電が生じた放電空間に酸素を含有するガスを通し、酸素にエネルギーを与えて活性化させることにより、解離または励起された酸素の一部がオゾンに変化する。 A general method can be used to generate ozone in the ozone generator 13. For example, by applying an alternating current voltage between electrodes arranged through a dielectric, a gas containing oxygen is passed through a discharge space where a silent discharge has occurred, and by giving energy to oxygen and activating it, dissociation or Some of the excited oxygen changes to ozone.
 湿度測定部14は、オゾン処理対象空間である室内200の相対湿度を、予め決められた周期で、または予め決められたタイミングで、測定する。具体的に、湿度測定部14は、室内空気の湿度を測定する。湿度測定部14は、測定結果である室内200の相対湿度の情報を、システム制御部19に送信する。湿度測定部14は、例えば図4に示すようにオゾン発生装置1に形成されたガス流路11の入り口部分に配置されている。すなわち、湿度測定部14は、オゾン発生装置1のガス流路11において、吸込口111に隣接する領域に配置されている。なお、相対湿度を単に湿度と呼ぶ。 The humidity measurement unit 14 measures the relative humidity of the room 200, which is the space to be ozone treated, at a predetermined cycle or at a predetermined timing. Specifically, the humidity measurement unit 14 measures the humidity of indoor air. The humidity measurement unit 14 transmits information on the relative humidity of the room 200, which is the measurement result, to the system control unit 19. The humidity measuring section 14 is arranged, for example, at the entrance of the gas flow path 11 formed in the ozone generator 1, as shown in FIG. That is, the humidity measuring section 14 is arranged in a region adjacent to the suction port 111 in the gas flow path 11 of the ozone generator 1. Note that relative humidity is simply called humidity.
 なお、湿度測定部14は、室内空気の湿度を適切に測定できればよく、配置される場所はガス流路11の入り口部分に限定されない。湿度測定部14は、筐体10の外面に配置されてもよく、室内200においてオゾン発生装置1の筐体10から離れた場所に配置されてもよい。 Note that the humidity measurement unit 14 only needs to be able to appropriately measure the humidity of indoor air, and the location where it is placed is not limited to the entrance portion of the gas flow path 11. The humidity measurement unit 14 may be placed on the outer surface of the housing 10 or may be placed in a location away from the housing 10 of the ozone generator 1 in the room 200.
 記憶部16は、オゾンシステム100の制御に用いられる各種の情報を記憶する。 The storage unit 16 stores various types of information used to control the ozone system 100.
 タイマ17は、オゾン発生部13の運転時間、すなわちオゾン発生部13におけるオゾンの発生時間といったオゾンシステム100における動作時間を計測する。タイマ17は、システム制御部19によってオゾンの発生時間の残時間が設定され、当該オゾンの発生時間の残時間を計測する。タイマ17は、残時間の計測完了時に、残時間が終了した旨の残時間終了通知をシステム制御部19に送信する。システム制御部19は、当該残時間終了通知を受信することにより、オゾン発生停止条件が満たされたことを判定できる。オゾン発生部13におけるオゾンの発生時間は、オゾンに曝露された時間と換言できる。 The timer 17 measures the operating time of the ozone system 100, such as the operating time of the ozone generator 13, that is, the time of ozone generation in the ozone generator 13. The timer 17 is set with the remaining ozone generation time by the system control unit 19, and measures the remaining time of the ozone generation time. When the timer 17 completes measuring the remaining time, it sends a remaining time end notification to the system control unit 19 to the effect that the remaining time has ended. By receiving the remaining time end notification, the system control unit 19 can determine that the ozone generation stop condition is satisfied. The ozone generation time in the ozone generator 13 can be expressed as the time of exposure to ozone.
 通信部18は、CT値相当量検知部2の後述する色差センサ22のセンサ通信部25との間で通信を行う。 The communication unit 18 communicates with a sensor communication unit 25 of a color difference sensor 22 of the CT value equivalent amount detection unit 2, which will be described later.
 システム制御部19は、オゾン発生部13の運転を制御するとともにオゾンシステム100全体の制御を行う制御部である。システム制御部19は、室内200に浮遊し、または物品に付着したウイルスの不活化に必要なオゾンCT値を室内200で達成するように、オゾン発生部13の運転を制御する。室内におけるオゾン濃度と、オゾン発生部13におけるオゾンの発生時間との積であるオゾンCT値の目標値を室内200の湿度に基づいて補正して必要目標値を算出し、室内200のオゾンCT値が必要目標値に到達する時点でオゾン発生部13におけるオゾンの発生を停止させる制御を行う。また、システム制御部19は、室内200のオゾンCT値が必要目標値に到達するまでのオゾン発生停止条件を算出する。すなわち、システム制御部19は、湿度測定部14において測定された室内200の湿度に基づいて、オゾン発生部13が発生させるオゾンの量を制御する。 The system control unit 19 is a control unit that controls the operation of the ozone generation unit 13 and controls the entire ozone system 100. The system control unit 19 controls the operation of the ozone generating unit 13 so that the ozone CT value necessary for inactivating viruses floating in the room 200 or attached to articles is achieved in the room 200. The target value of the ozone CT value, which is the product of the ozone concentration in the room and the ozone generation time in the ozone generator 13, is corrected based on the humidity of the room 200 to calculate the necessary target value, and the ozone CT value of the room 200 is calculated. Control is performed to stop the generation of ozone in the ozone generator 13 at the time when the value reaches the required target value. The system control unit 19 also calculates ozone generation stop conditions until the ozone CT value in the room 200 reaches the required target value. That is, the system control unit 19 controls the amount of ozone generated by the ozone generation unit 13 based on the humidity in the room 200 measured by the humidity measurement unit 14.
 これにより、オゾンシステム100では、室内200の湿度を考慮して、室内空間中の浮遊ウイルス、あるいは室内200の物品に付着したウイルスの不活化に必要なオゾンCT値を室内200で適切に達成することができる。 As a result, the ozone system 100 takes the humidity of the room 200 into account and appropriately achieves the ozone CT value in the room 200 necessary for inactivating viruses floating in the indoor space or viruses attached to items in the room 200. be able to.
 オゾン発生停止条件は、オゾン発生部13においてオゾンの発生を開始してからオゾン発生を停止するまでの時間であるオゾン発生時間である。 The ozone generation stop condition is the ozone generation time, which is the time from when the ozone generator 13 starts generating ozone until it stops generating ozone.
 CT値相当量検知部2は、オゾン発生装置1の筐体10から独立して設けられ、室内200において筐体10から離れた位置に配置されている。また、CT値相当量検知部2は、室内200の隅に固定配置されている。CT値相当量検知部2は、室内200におけるオゾン濃度と、オゾンに曝露された時間、ここではオゾン発生部13におけるオゾンの発生時間との積に相当する相当量を検知する。すなわち、CT値相当量検知部2は、CT値相当量を検知する。CT値相当量検知部2は、オゾンインジケータ21と、色差センサ22と、を備える。 The CT value equivalent amount detection unit 2 is provided independently from the casing 10 of the ozone generator 1 and is placed at a position away from the casing 10 in the room 200. Further, the CT value equivalent amount detection unit 2 is fixedly arranged at a corner of the room 200. The CT value equivalent amount detection section 2 detects an equivalent amount corresponding to the product of the ozone concentration in the room 200 and the time of exposure to ozone, here the ozone generation time in the ozone generation section 13. That is, the CT value equivalent amount detection unit 2 detects the CT value equivalent amount. The CT value equivalent amount detection section 2 includes an ozone indicator 21 and a color difference sensor 22.
 オゾンインジケータ21は、オゾンと反応して色が変化する検知部であり、オゾンCT値の変化に伴って色が変化する検知部である。オゾンインジケータ21は、オゾンと反応して色が変化する化学物質であってオゾンCT値の変化に伴って色が変化する化学物質21aを備える。オゾンインジケータ21は、例えば上記の化学物質21aが支持体21bの表面に塗布されて構成されている。 The ozone indicator 21 is a detection unit that changes color by reacting with ozone, and is a detection unit that changes color as the ozone CT value changes. The ozone indicator 21 includes a chemical substance 21a that is a chemical substance that changes color when reacting with ozone, and that changes color as the ozone CT value changes. The ozone indicator 21 is constructed by applying, for example, the above-mentioned chemical substance 21a onto the surface of a support 21b.
 色差センサ22は、オゾンインジケータ21の色差を、すなわち、室内200におけるオゾンと反応した化学物質21aの色差を、予め決められた周期で、または予め決められたタイミングで、検知する。化学物質21aの色差は、オゾンと反応した際の化学物質21aの反応量であり、オゾンと反応した際に化学物質21aに生じる色の違いであり、室内200に散気されたオゾンと反応したオゾンインジケータ21の色の、当該オゾンインジケータ21がオゾンと反応する前の状態の色からの変化量である。 The color difference sensor 22 detects the color difference of the ozone indicator 21, that is, the color difference of the chemical substance 21a that has reacted with ozone in the room 200, at a predetermined period or at a predetermined timing. The color difference of the chemical substance 21a is the amount of reaction of the chemical substance 21a when it reacts with ozone, and is the difference in color that occurs in the chemical substance 21a when it reacts with ozone. This is the amount of change in the color of the ozone indicator 21 from the color in the state before the ozone indicator 21 reacts with ozone.
 色差センサ22は、検知結果であるオゾンインジケータ21の色差の情報を、CT値相当量の信号として、システム制御部19に送信する。これにより、システム制御部19は、オゾンインジケータ21の色差の情報を数値として取得することができる。色差センサ22は、光学的手法を用いてオゾンインジケータ21の色差を検知する。色差センサ22は、例えばカラーセンサが例示される。なお、色差センサ22は、オゾンインジケータ21の色差を電気的手法によって検知してもよい。すなわち、CT値相当量は、電気伝導率で代用してもよい。 The color difference sensor 22 transmits information on the color difference of the ozone indicator 21, which is the detection result, to the system control unit 19 as a signal corresponding to the CT value. Thereby, the system control unit 19 can acquire information on the color difference of the ozone indicator 21 as a numerical value. The color difference sensor 22 detects the color difference of the ozone indicator 21 using an optical method. The color difference sensor 22 is, for example, a color sensor. Note that the color difference sensor 22 may detect the color difference of the ozone indicator 21 using an electrical method. That is, the CT value equivalent amount may be substituted with electrical conductivity.
 オゾンインジケータ21の色差は、オゾンCT値と相関関係を有する値である。すなわち、オゾンインジケータ21の色差は、オゾンCT値に対応する相当量であるCT値相当量といえる。図5は、実施の形態1におけるオゾンCT値とオゾンインジケータ21の色差との関係を示す特性図である。図5においては、横軸にオゾンCT値(ppm・min)が示され、縦軸にオゾンインジケータ21の色差が示されている。 The color difference of the ozone indicator 21 is a value that has a correlation with the ozone CT value. That is, the color difference of the ozone indicator 21 can be said to be a CT value equivalent amount, which is an equivalent amount corresponding to the ozone CT value. FIG. 5 is a characteristic diagram showing the relationship between the ozone CT value and the color difference of the ozone indicator 21 in the first embodiment. In FIG. 5, the ozone CT value (ppm·min) is shown on the horizontal axis, and the color difference of the ozone indicator 21 is shown on the vertical axis.
 色差センサ22のセンサ記憶部24には、基準湿度における、CT値相当量であるオゾンインジケータ21の色差とオゾンCT値との対応関係情報が予め記憶されている。CT値相当量とオゾンCT値との対応関係情報は、図5に示されるような、オゾンCT値とCT値相当量との相対関係を示す情報である。なお、CT値相当量とオゾンCT値との対応関係情報は、センサ制御部26に記憶されてもよい。 The sensor storage unit 24 of the color difference sensor 22 stores in advance information on the correspondence between the color difference of the ozone indicator 21, which is an amount equivalent to the CT value, and the ozone CT value at the reference humidity. The correspondence information between the CT value equivalent amount and the ozone CT value is information indicating the relative relationship between the ozone CT value and the CT value equivalent amount, as shown in FIG. Note that the correspondence information between the CT value equivalent amount and the ozone CT value may be stored in the sensor control unit 26.
 基準湿度は、オゾンシステム100によって室内200のウイルスの不活化を行う場合に、基準とする室内空気の湿度である。 The reference humidity is the humidity of indoor air that is used as a reference when inactivating viruses in the room 200 using the ozone system 100.
 CT値相当量とオゾンCT値との対応関係情報は、基準湿度においてオゾンシステム100を用いて予め実験を繰り返して収集された、CT値相当量と、当該CT値相当量に対応するオゾンCT値と、の複数のデータに基づいて作成される。また、このときのオゾンCT値については、基準湿度においてオゾンシステム100を用いて予め実験を繰り返して収集された、オゾンCT値と、当該オゾンCT値に対応するウイルスの不活化率との複数のデータに基づいて決定されている。 The correspondence information between the CT value equivalent amount and the ozone CT value is the CT value equivalent amount and the ozone CT value corresponding to the CT value equivalent amount, which has been collected in advance by repeating experiments using the ozone system 100 at the standard humidity. It is created based on multiple data of and. In addition, regarding the ozone CT value at this time, a plurality of ozone CT values and virus inactivation rates corresponding to the ozone CT values collected in advance by repeating experiments using the ozone system 100 at the standard humidity are used. Determined based on data.
 対応関係情報を用いることにより、色差センサ22で検知されたCT値相当量をCT値に変換することができる。 By using the correspondence information, the CT value equivalent amount detected by the color difference sensor 22 can be converted into a CT value.
 色差センサ22は、検出部23と、センサ記憶部24と、センサ通信部25と、センサ制御部26と、を備える。 The color difference sensor 22 includes a detection section 23, a sensor storage section 24, a sensor communication section 25, and a sensor control section 26.
 検出部23は、室内200に散気されたオゾンと反応したオゾンインジケータ21の色差を検知する。 The detection unit 23 detects the color difference of the ozone indicator 21 that has reacted with ozone diffused into the room 200.
 センサ記憶部24は、色差センサ22の制御に用いられる各種の情報を記憶する。また、センサ記憶部24は、システム制御部19から送信された各種の情報を記憶する。 The sensor storage unit 24 stores various information used to control the color difference sensor 22. Additionally, the sensor storage unit 24 stores various types of information transmitted from the system control unit 19.
 センサ通信部25は、オゾン発生装置1の通信部18との間で通信を行う。 The sensor communication unit 25 communicates with the communication unit 18 of the ozone generator 1.
 センサ制御部26は、色差センサ22全体の制御を行う。 The sensor control unit 26 controls the entire color difference sensor 22.
 つぎに、オゾンシステム100によって室内200にオゾンを供給してウイルスの不活化を行うオゾン供給方法について説明する。オゾンシステム100によるオゾン供給方法は、オゾン処理対象空間である室内200にオゾンを供給することにより室内200の除菌を行うオゾン除菌方法である。まず、オゾンシステム100によって室内200のウイルスの不活化が行われる場合のオゾンシステム100の動作の概要について説明する。図6は、実施の形態1にかかるオゾンシステム100の動作の概要を示すフローチャートである。 Next, an ozone supply method for inactivating viruses by supplying ozone into the room 200 using the ozone system 100 will be explained. The ozone supply method using the ozone system 100 is an ozone sterilization method that sterilizes the indoor room 200 by supplying ozone to the indoor room 200, which is a space to be ozone treated. First, an overview of the operation of the ozone system 100 when the ozone system 100 inactivates viruses in the room 200 will be described. FIG. 6 is a flowchart showing an overview of the operation of the ozone system 100 according to the first embodiment.
 ステップS110において、基準湿度の情報が、取得される。上述したように、基準湿度は、オゾンシステム100によって室内200のウイルスの不活化を行う場合に、基準とする室内空気の湿度である。具体的に、システム制御部19が、基準湿度の情報を取得する。基準湿度の情報は、例えば通信部18を介してオゾン発生部13の外部からオゾン発生部13に入力される。システム制御部19は、通信部18から基準湿度の情報を受信して記憶する。これにより、基準湿度の情報が、システム制御部19において取得される。その後、ステップS120に進む。 In step S110, reference humidity information is acquired. As described above, the reference humidity is the humidity of the indoor air that is used as a reference when inactivating viruses in the room 200 using the ozone system 100. Specifically, the system control unit 19 acquires information on the reference humidity. Information on the reference humidity is input to the ozone generator 13 from outside the ozone generator 13 via the communication unit 18, for example. The system control unit 19 receives reference humidity information from the communication unit 18 and stores it. Thereby, information on the reference humidity is acquired by the system control unit 19. After that, the process advances to step S120.
 ステップS120では、設定オゾンCT値の情報が、取得される。具体的に、システム制御部19が、設定オゾンCT値の情報を取得する。設定オゾンCT値は、室内空気の湿度が基準湿度である環境下において室内200のウイルスの不活化を行う場合にオゾンシステム100に設定されるオゾンCT値であり、室内空気の湿度が基準湿度である環境下において室内200のウイルスの不活化を行う場合に必要とされるオゾンCT値である。すなわち、設定オゾンCT値は、室内空気の湿度が基準湿度である環境下において室内200のウイルスの不活化を行う場合に必要とされる、室内200におけるオゾン濃度と、室内200におけるオゾンの発生時間との積の目標値と換言できる。 In step S120, information on the set ozone CT value is acquired. Specifically, the system control unit 19 acquires information on the set ozone CT value. The set ozone CT value is an ozone CT value that is set in the ozone system 100 when inactivating viruses in the room 200 in an environment where the humidity of the indoor air is the reference humidity. This is the ozone CT value required when inactivating viruses indoors 200 under a certain environment. That is, the set ozone CT value is based on the ozone concentration in the room 200 and the ozone generation time in the room 200, which are required when inactivating the virus in the room 200 in an environment where the humidity of the indoor air is the reference humidity. This can be expressed as the target value of the product of
 設定オゾンCT値の情報は、例えば通信部18を介してオゾン発生部13の外部からオゾン発生部13に入力される。システム制御部19は、通信部18から設定オゾンCT値の情報を受信して記憶する。これにより、設定オゾンCT値の情報が、システム制御部19において取得される。設定オゾンCT値は、例えば、ウイルスの一般的な不活化率の情報または室内200と同等の容積を有する空間のウイルスをオゾンによって不活化する実験を行った実験結果に基づいて決定される。その後、ステップS130に進む。 Information on the set ozone CT value is input to the ozone generator 13 from outside the ozone generator 13 via the communication unit 18, for example. The system control unit 19 receives information on the set ozone CT value from the communication unit 18 and stores it. As a result, information on the set ozone CT value is acquired by the system control unit 19. The set ozone CT value is determined based on, for example, information on the general inactivation rate of viruses or the results of an experiment in which a virus in a space having a volume equivalent to the room 200 was inactivated by ozone. After that, the process advances to step S130.
 ステップS130では、室内200の湿度の情報、すなわち室内空気の湿度の情報が、取得される。具体的に、システム制御部19が、室内空気の湿度の情報を取得する。湿度測定部14は、室内空気の湿度を測定し、測定結果である室内空気の湿度の情報を、室内空気の湿度の信号としてシステム制御部19に送信する。システム制御部19は、湿度測定部14から送信された室内空気の湿度の情報を受信して記憶する。これにより、室内空気の湿度の情報が、システム制御部19において取得される。その後、ステップS140に進む。 In step S130, information on the humidity of the room 200, that is, information on the humidity of the indoor air is acquired. Specifically, the system control unit 19 acquires information on the humidity of indoor air. The humidity measurement unit 14 measures the humidity of the indoor air, and transmits information on the humidity of the indoor air, which is the measurement result, to the system control unit 19 as a signal of the humidity of the indoor air. The system control unit 19 receives and stores information on the humidity of indoor air transmitted from the humidity measurement unit 14. As a result, information on the humidity of indoor air is acquired by the system control unit 19. After that, the process advances to step S140.
 ステップS140では、必要オゾンCT値が、決定される。具体的に、システム制御部19が、必要オゾンCT値を決定する。システム制御部19は、決定した必要オゾンCT値の情報を、通信部18を介してCT値相当量検知部2の色差センサ22のセンサ制御部26に送信する。センサ制御部26は、システム制御部19から送信された必要オゾンCT値の情報を、センサ通信部25を介して受信し、記憶する。その後、ステップS150に進む。 In step S140, the required ozone CT value is determined. Specifically, the system control unit 19 determines the required ozone CT value. The system control unit 19 transmits information on the determined required ozone CT value to the sensor control unit 26 of the color difference sensor 22 of the CT value equivalent amount detection unit 2 via the communication unit 18. The sensor control unit 26 receives information on the required ozone CT value transmitted from the system control unit 19 via the sensor communication unit 25 and stores it. After that, the process advances to step S150.
 必要オゾンCT値は、室内200の湿度に基づいて設定オゾンCT値が補正されたCT値の補正値である。必要オゾンCT値は、室内200の湿度を考慮した、室内200のウイルスの不活化を行う場合に必要とされるオゾンCT値である。すなわち、必要オゾンCT値は、上述した、室内200におけるオゾン濃度と、室内200におけるオゾンの発生時間との積の目標値を室内200の湿度に基づいて補正した必要目標値と換言できる。 The required ozone CT value is a correction value of the CT value obtained by correcting the set ozone CT value based on the humidity of the room 200. The required ozone CT value is an ozone CT value required when inactivating viruses in the room 200, taking into consideration the humidity in the room 200. That is, the required ozone CT value can be expressed as a necessary target value obtained by correcting the above-mentioned target value of the product of the ozone concentration in the room 200 and the ozone generation time in the room 200 based on the humidity of the room 200.
 オゾンによるウイルスの不活化の能力は、オゾン処理対象空間の空気の湿度が高いほど高くなる。このため、室内200の湿度が基準湿度よりも高い場合には、基準湿度の条件の場合よりも少ないオゾンで、基準湿度の条件で室内200のウイルスの不活化を行う場合と同様のレベルのウイルスの不活化を行うことができ、同じオゾン濃度に対してオゾンの発生時間を短くすることができる。したがって、室内200の湿度が基準湿度よりも高い場合には、オゾン濃度が同じであり基準湿度である場合よりも短い時間だけオゾンを発生させた後にオゾン発生を停止させることができる。 The ability of ozone to inactivate viruses increases as the humidity of the air in the space to be ozonated increases. Therefore, if the humidity in the room 200 is higher than the standard humidity, less ozone will be used to inactivate the virus in the room 200 under the standard humidity conditions. can be inactivated, and the ozone generation time can be shortened for the same ozone concentration. Therefore, when the humidity in the room 200 is higher than the reference humidity, ozone generation can be stopped after being generated for a shorter time than when the ozone concentration is the same and the reference humidity is the same.
 すなわち、室内200の湿度が基準湿度よりも高い場合には、設定オゾンCT値よりも小さいオゾンCT値の条件で室内200のウイルスの不活化を行うことにより、基準湿度および設定オゾンCT値の条件で室内200のウイルスの不活化を行う場合と同様のレベルのウイルスの不活化が可能である。このため、システム制御部19は、室内200の湿度が基準湿度よりも高い場合には、室内200の湿度に基づいて、設定オゾンCT値よりも小さい値に必要オゾンCT値を決定する。すなわち、室内200の湿度が基準湿度よりも高い場合には、室内200の湿度に基づいて、上記の目標値よりも小さい値に必要目標値が決定されるといえる。 That is, when the humidity in the room 200 is higher than the standard humidity, the conditions of the standard humidity and the set ozone CT value are inactivated by inactivating the virus in the room 200 under the condition of an ozone CT value smaller than the set ozone CT value. It is possible to inactivate viruses at the same level as when inactivating viruses indoors. Therefore, when the humidity in the room 200 is higher than the reference humidity, the system control unit 19 determines the required ozone CT value to be smaller than the set ozone CT value based on the humidity in the room 200. That is, when the humidity in the room 200 is higher than the reference humidity, it can be said that the required target value is determined to be a value smaller than the above target value based on the humidity in the room 200.
 一方、オゾンによるウイルスの不活化の能力は、オゾン処理対象空間の空気の湿度が低いほど低くなる。このため、室内200の湿度が基準湿度よりも低い場合、基準湿度の条件で室内200のウイルスの不活化を行う場合と同様のレベルのウイルスの不活化を行うためには、基準湿度の条件の場合よりも多くのオゾンが必要になるため、同じオゾン濃度に対してオゾンの発生時間を長くしなくてはならない。したがって、室内200の湿度が基準湿度よりも低い場合には、オゾン濃度が同じであり基準湿度である場合よりも長い時間だけオゾンを発生させた後にオゾン発生を停止させなければならない。 On the other hand, the ability of ozone to inactivate viruses decreases as the humidity of the air in the space to be ozonated decreases. Therefore, if the humidity in the room 200 is lower than the standard humidity, in order to inactivate the virus at the same level as inactivating the virus in the room 200 under the standard humidity conditions, it is necessary to Since more ozone is required than in the case of the conventional method, the ozone generation time must be increased for the same ozone concentration. Therefore, when the humidity in the room 200 is lower than the reference humidity, ozone generation must be stopped after being generated for a longer time than when the ozone concentration is the same and the humidity is the reference humidity.
 すなわち、室内200の湿度が基準湿度よりも低い場合には、基準湿度および設定オゾンCT値の条件で室内200のウイルスの不活化を行う場合と同様のレベルのウイルスの不活化を行うためには、設定オゾンCT値よりも大きいオゾンCT値の条件で室内200のウイルスの不活化を行う必要がある。このため、システム制御部19は、室内200の湿度が基準湿度よりも低い場合には、室内200の湿度に基づいて、設定オゾンCT値よりも大きい値に必要オゾンCT値を決定する。すなわち、室内200の湿度が基準湿度よりも低い場合には、室内200の湿度に基づいて、上記の目標値よりも大きい値に必要目標値が決定されるといえる。 That is, when the humidity in the room 200 is lower than the standard humidity, in order to inactivate the virus at the same level as inactivating the virus in the room 200 under the conditions of the standard humidity and the set ozone CT value, , it is necessary to inactivate the virus indoors 200 under the condition of an ozone CT value larger than the set ozone CT value. Therefore, when the humidity in the room 200 is lower than the reference humidity, the system control unit 19 determines the required ozone CT value to be larger than the set ozone CT value based on the humidity in the room 200. That is, when the humidity in the room 200 is lower than the reference humidity, it can be said that the required target value is determined to be larger than the above target value based on the humidity in the room 200.
 ステップS150では、オゾン発生が開始されて、室内200へのオゾンの散気が、開始される。具体的に、システム制御部19が、オゾン発生を開始させて、室内200へのオゾンの散気を開始させる制御を行う。システム制御部19は、送風部12、オゾン発生部13、湿度測定部14および色差センサ22の動作を開始させる制御を行う。送風部12が動作することにより、室内空気が、オゾン発生装置1の筐体10の吸込口111からガス流路11に導入され、さらにオゾン発生部13に供給される。そして、オゾン発生部13が、室内空気を原料としてオゾンを発生する。オゾンは、送風部12が形成する気流によって室内空気と混合されて調整され、排出口112から筐体10の外部に排出されて、室内200に散気される。その後、ステップS160に進む。 In step S150, ozone generation is started, and ozone aeration into the room 200 is started. Specifically, the system control unit 19 performs control to start generating ozone and start diffusing the ozone into the room 200 . The system control unit 19 controls the ventilation unit 12, the ozone generation unit 13, the humidity measurement unit 14, and the color difference sensor 22 to start operating. When the blower section 12 operates, indoor air is introduced into the gas flow path 11 from the suction port 111 of the housing 10 of the ozone generator 1 and further supplied to the ozone generator 13 . Then, the ozone generator 13 generates ozone using indoor air as a raw material. Ozone is mixed with indoor air and adjusted by the air flow formed by the blower 12, and is discharged to the outside of the casing 10 from the exhaust port 112 and diffused into the room 200. After that, the process advances to step S160.
 ステップS160では、CT値相当量であるオゾンインジケータ21の色差の情報が、取得される。具体的に、CT値相当量検知部2の色差センサ22が、オゾンインジケータ21の色差の情報を取得する。色差センサ22は、室内200に散気されたオゾンと反応して色が変化したオゾンインジケータ21の色差を、予め決められた周期で検知する。色差センサ22は、検知したオゾンインジケータ21の色差の情報を、システム制御部19に送信する。その後、ステップS170に進む。 In step S160, information on the color difference of the ozone indicator 21, which is an amount equivalent to a CT value, is acquired. Specifically, the color difference sensor 22 of the CT value equivalent amount detection unit 2 acquires information on the color difference of the ozone indicator 21. The color difference sensor 22 detects, at predetermined intervals, the color difference of the ozone indicator 21, which changes color due to reaction with ozone diffused into the room 200. The color difference sensor 22 transmits information on the detected color difference of the ozone indicator 21 to the system control unit 19. After that, the process advances to step S170.
 ステップS170では、オゾンインジケータ21の色差が必要オゾンCT値に到達する時点でオゾン発生部13におけるオゾンの発生を停止される。具体的に、システム制御部19が、オゾンインジケータ21の色差の情報に基づいて、オゾンインジケータ21の色差が必要オゾンCT値に相当する量に到達する時点でオゾン発生部13におけるオゾンの発生を停止させる制御を行う。 In step S170, the ozone generation in the ozone generator 13 is stopped when the color difference of the ozone indicator 21 reaches the required ozone CT value. Specifically, based on the information on the color difference of the ozone indicator 21, the system control unit 19 stops the generation of ozone in the ozone generator 13 when the color difference of the ozone indicator 21 reaches an amount corresponding to the required ozone CT value. control.
 なお、ステップS110からステップS140は、ステップS150において室内200へのオゾンの散気が開始された後に行うことも可能である。 Incidentally, steps S110 to S140 can also be performed after aeration of ozone into the room 200 is started in step S150.
 つぎに、オゾンシステム100の具体的な動作例について説明する。まず、オゾンシステム100の第1の動作例について説明する。図7は、実施の形態1にかかるオゾンシステム100の第1の動作例の手順を示すフローチャートである。 Next, a specific example of the operation of the ozone system 100 will be explained. First, a first example of operation of the ozone system 100 will be described. FIG. 7 is a flowchart showing the procedure of a first example of operation of the ozone system 100 according to the first embodiment.
 ステップS210において、基準湿度の情報が、取得される。具体的に、上述したステップS110の場合と同様にして、システム制御部19が、基準湿度の情報を取得する。室内200の基準湿度の例は、60%である。その後、ステップS220に進む。 In step S210, reference humidity information is acquired. Specifically, in the same manner as in step S110 described above, the system control unit 19 acquires information on the reference humidity. An example of the reference humidity of the room 200 is 60%. After that, the process advances to step S220.
 ステップS220では、設定オゾンCT値の情報が、取得される。具体的に、上述したステップS120の場合と同様にして、システム制御部19が、設定オゾンCT値を取得する。必要オゾンCT値の例は、60(ppm・min)、あるいは下限値:50(ppm・min)以上、上限値:330(ppm・min)以下といった値である。その後、ステップS230に進む。 In step S220, information on the set ozone CT value is acquired. Specifically, the system control unit 19 acquires the set ozone CT value in the same manner as in step S120 described above. An example of the required ozone CT value is 60 (ppm·min), or a lower limit of 50 (ppm·min) or more and an upper limit of 330 (ppm·min) or less. After that, the process advances to step S230.
 ステップS230では、室内空気の湿度の情報が、取得される。具体的に、上述したステップS130の場合と同様にして、システム制御部19が、室内空気の湿度の情報を取得する。その後、ステップS240に進む。 In step S230, information on the humidity of indoor air is acquired. Specifically, in the same manner as in step S130 described above, the system control unit 19 acquires information on the humidity of indoor air. After that, the process advances to step S240.
 ステップS240では、必要オゾンCT値が、決定される。具体的に、システム制御部19が、必要オゾンCT値を決定する。第1の動作例では、システム制御部19は、室内空気の湿度が基準湿度以上の湿度である場合には、設定オゾンCT値をそのまま必要オゾンCT値として決定する。すなわち、システム制御部19は、室内空気の湿度が基準湿度以上の湿度である場合には、オゾン発生部13の制御に用いるオゾンCT値を設定オゾンCT値から変化させない。 In step S240, the required ozone CT value is determined. Specifically, the system control unit 19 determines the required ozone CT value. In the first operation example, when the humidity of the indoor air is higher than the reference humidity, the system control unit 19 determines the set ozone CT value as it is as the required ozone CT value. That is, the system control unit 19 does not change the ozone CT value used for controlling the ozone generation unit 13 from the set ozone CT value when the humidity of the indoor air is higher than the reference humidity.
 システム制御部19は、室内空気の湿度が基準湿度以上の湿度である場合の必要オゾンCT値:60(ppm・min)の情報を、色差センサ22のセンサ制御部26に送信する。センサ制御部26は、システム制御部19から送信された必要オゾンCT値の情報を受信し、記憶する。なお、センサ制御部26は、必要オゾンCT値の情報をセンサ記憶部24に記憶させてもよい。 The system control unit 19 transmits information on the required ozone CT value: 60 (ppm·min) when the humidity of the indoor air is higher than the reference humidity to the sensor control unit 26 of the color difference sensor 22. The sensor control unit 26 receives information on the required ozone CT value transmitted from the system control unit 19 and stores it. Note that the sensor control unit 26 may cause the sensor storage unit 24 to store information on the required ozone CT value.
 一方、システム制御部19は、室内空気の湿度が基準湿度より低い湿度である場合には、例えば相対湿度と必要オゾンCT値との関係を示す対応関係情報を用いて、必要オゾンCT値を決定する。図8は、実施の形態1における相対湿度と必要オゾンCT値との関係の概念を説明するための図である。図8においては、横軸に相対湿度が示され、縦軸に必要オゾンCT値が示されている。図8に示す特性図は、相対湿度と必要オゾンCT値との関係を示す対応関係情報である。対応関係情報は、予めシステム制御部19に記憶されている。システム制御部19は、室内空気の湿度に対応するオゾンCT値を相対湿度と必要オゾンCT値との関係を示す対応関係情報から読み出して、必要オゾンCT値に決定する。 On the other hand, if the humidity of the indoor air is lower than the reference humidity, the system control unit 19 determines the required ozone CT value using, for example, correspondence information indicating the relationship between relative humidity and the required ozone CT value. do. FIG. 8 is a diagram for explaining the concept of the relationship between relative humidity and required ozone CT value in the first embodiment. In FIG. 8, the horizontal axis shows the relative humidity, and the vertical axis shows the required ozone CT value. The characteristic diagram shown in FIG. 8 is correspondence information showing the relationship between relative humidity and required ozone CT value. The correspondence information is stored in the system control unit 19 in advance. The system control unit 19 reads the ozone CT value corresponding to the humidity of indoor air from the correspondence information indicating the relationship between the relative humidity and the required ozone CT value, and determines the ozone CT value as the required ozone CT value.
 相対湿度と必要オゾンCT値との関係を示す対応関係情報は、例えば図8を用いて以下のようにして作成される。まず、室内空気の湿度が基準湿度である60%の場合における、室内200のウイルスの不活化に必要な設定オゾンCT値として60(ppm・min)の値を得る。そして、室内空気の湿度が60%である場合における必要オゾンCT値:60(ppm・min)の値が、図8に示す特性図にプロットされる。 Correspondence information indicating the relationship between relative humidity and required ozone CT value is created as follows using, for example, FIG. 8. First, when the indoor air humidity is 60%, which is the standard humidity, a value of 60 (ppm·min) is obtained as the set ozone CT value necessary for inactivating the virus in the room 200. Then, the required ozone CT value: 60 (ppm·min) when the indoor air humidity is 60% is plotted in the characteristic diagram shown in FIG.
 つぎに、室内空気の湿度が30%である場合における、室内空気の湿度が湿度60%の場合と同レベルのウイルスの不活化率となるオゾンCT値として、100(ppm・min)の値を得る。100(ppm・min)の値は、室内200と同等の容積を有する空間のウイルスをオゾンによって不活化する実験を室内空気の湿度が30%である場合に行った実験結果に基づいて取得される。そして、100(ppm・min)の値が、室内空気の湿度が30%である場合における必要オゾンCT値として、図8に示す特性図にプロットされる。 Next, when the humidity of indoor air is 30%, the ozone CT value that gives the same level of virus inactivation rate as when the humidity of indoor air is 60% is set as the value of 100 (ppm min). obtain. The value of 100 (ppm/min) is obtained based on the results of an experiment in which ozone was used to inactivate viruses in a space with a volume equivalent to 200 indoors when the indoor air humidity was 30%. . Then, the value of 100 (ppm·min) is plotted in the characteristic diagram shown in FIG. 8 as the required ozone CT value when the indoor air humidity is 30%.
 つぎに、図8に示す特性図において、「相対湿度:60%、必要オゾンCT値:60(ppm・min)」の点と、「相対湿度:30%、必要オゾンCT値:100(ppm・min)」の点とを直線で結ぶことにより、相対湿度と設定オゾンCT値との関係を示す特性図が作成される。また、室内空気の相対湿度が30%以下である場合については、図8に示す特性図に外挿法を適用することよって、図8に示す破線部の特性図が得られる。これにより、図8の特性図で示されるような相対湿度と設定オゾンCT値との関係を示す対応関係情報が得られる。 Next, in the characteristic diagram shown in FIG. 8, the point "Relative humidity: 60%, required ozone CT value: 60 (ppm・min)" and "Relative humidity: 30%, required ozone CT value: 100 (ppm・min)" By connecting the points "min)" with a straight line, a characteristic diagram showing the relationship between relative humidity and set ozone CT value is created. Further, when the relative humidity of the indoor air is 30% or less, by applying an extrapolation method to the characteristic diagram shown in FIG. 8, the characteristic diagram indicated by the broken line shown in FIG. 8 can be obtained. As a result, correspondence information indicating the relationship between the relative humidity and the set ozone CT value as shown in the characteristic diagram of FIG. 8 is obtained.
 システム制御部19は、決定した必要オゾンCT値の情報を、通信部18を介してCT値相当量検知部2の色差センサ22のセンサ制御部26に送信する。センサ制御部26は、システム制御部19から送信された必要オゾンCT値の情報を、センサ通信部25を介して受信し、記憶する。その後、ステップS250に進む。 The system control unit 19 transmits information on the determined required ozone CT value to the sensor control unit 26 of the color difference sensor 22 of the CT value equivalent amount detection unit 2 via the communication unit 18. The sensor control unit 26 receives information on the required ozone CT value transmitted from the system control unit 19 via the sensor communication unit 25 and stores it. After that, the process advances to step S250.
 ステップS250では、オゾン発生が開始されて、室内200へのオゾンの散気が、開始される。具体的に、上述したステップS150の場合と同様にして、システム制御部19が、室内200へのオゾンの散気を開始させる制御を行う。その後、ステップS260に進む。 In step S250, ozone generation is started, and ozone aeration into the room 200 is started. Specifically, in the same manner as in step S150 described above, the system control unit 19 performs control to start aeration of ozone into the room 200. After that, the process advances to step S260.
 ステップS260では、CT値相当量であるオゾンインジケータ21の色差が、検知される。具体的に、CT値相当量検知部2の色差センサ22が、室内200に散気されたオゾンと反応して色が変化したオゾンインジケータ21の色差を、予め決められた周期で検知する。その後、ステップS270に進む。 In step S260, the color difference of the ozone indicator 21, which is an amount equivalent to the CT value, is detected. Specifically, the color difference sensor 22 of the CT value equivalent amount detection unit 2 detects the color difference of the ozone indicator 21, which changes color due to reaction with ozone diffused into the room 200, at a predetermined period. After that, the process advances to step S270.
 ステップS270では、色差センサ22において検知されたオゾンインジケータ21の色差が基準湿度以上の湿度である場合の必要オゾンCT値:60(ppm・min)に相当する色差となったか否かが、判定される。具体的に、色差センサ22のセンサ制御部26が、色差センサ22において検知されたオゾンインジケータ21の色差が基準湿度以上の湿度である場合の設定オゾンCT値:60(ppm・min)に相当する色差となったか否かを、判定する。センサ制御部26は、センサ記憶部24に記憶されているCT値相当量とオゾンCT値との対応関係情報を用いて、上記の判定を行う。 In step S270, it is determined whether the color difference of the ozone indicator 21 detected by the color difference sensor 22 corresponds to the required ozone CT value: 60 (ppm min) when the humidity is higher than the reference humidity. Ru. Specifically, the sensor control unit 26 of the color difference sensor 22 sets the ozone CT value corresponding to 60 (ppm min) when the color difference of the ozone indicator 21 detected by the color difference sensor 22 is at a humidity higher than the reference humidity. It is determined whether or not there is a color difference. The sensor control unit 26 makes the above determination using the correspondence relationship information between the CT value equivalent amount and the ozone CT value stored in the sensor storage unit 24.
 すなわち、センサ制御部26は、図5に示す対応関係情報における縦軸に、色差センサ22において検知されたオゾンインジケータ21の色差を対応させることで、オゾンインジケータ21の色差に対応する現在の室内200のオゾンCT値を取得する。そして、センサ制御部26は、取得した現在のオゾンCT値が必要オゾンCT値:60(ppm・min)に相当する色差となったか否かを判定する。 That is, the sensor control unit 26 associates the color difference of the ozone indicator 21 detected by the color difference sensor 22 with the vertical axis in the correspondence information shown in FIG. Obtain the ozone CT value of Then, the sensor control unit 26 determines whether the acquired current ozone CT value has a color difference corresponding to the required ozone CT value: 60 (ppm·min).
 色差センサ22において検知されたオゾンインジケータ21の色差が基準湿度以上の湿度である場合の必要オゾンCT値:60(ppm・min)に相当する色差となっていないと判定された場合は、ステップS270においてNoとなり、ステップS260に戻る。色差センサ22において検知されたオゾンインジケータ21の色差が基準湿度以上の湿度である場合の必要オゾンCT値:60(ppm・min)に相当する色差となったと判定された場合は、ステップS270においてYesとなり、ステップS280に進む。 If it is determined that the color difference of the ozone indicator 21 detected by the color difference sensor 22 does not correspond to the required ozone CT value when the humidity is higher than the reference humidity: 60 (ppm min), step S270 The answer is No, and the process returns to step S260. If it is determined that the color difference of the ozone indicator 21 detected by the color difference sensor 22 corresponds to the required ozone CT value when the humidity is higher than the reference humidity: 60 (ppm min), Yes in step S270. Then, the process advances to step S280.
 ステップS280では、色差センサ22において検知されたオゾンインジケータ21の色差が基準湿度以上の湿度である場合の必要オゾンCT値:60(ppm・min)の条件に到達した旨の到達信号が、システム制御部19に送信される。具体的に、センサ制御部26が、色差センサ22のセンサ通信部25を介して、到達信号をシステム制御部19に送信する。システム制御部19は、センサ制御部26から送信された到達信号を、通信部18を介して受信する。そして、システム制御部19は、当該到達信号に基づいて、色差センサ22において検知されたオゾンインジケータ21の色差が基準湿度以上の湿度である場合の必要オゾンCT値:60(ppm・min)の条件に到達したと判定する。その後、ステップS290に進む。 In step S280, when the color difference of the ozone indicator 21 detected by the color difference sensor 22 is a humidity higher than the reference humidity, an arrival signal indicating that the condition of required ozone CT value: 60 (ppm min) has been reached is transmitted to the system control. 19. Specifically, the sensor control unit 26 transmits the arrival signal to the system control unit 19 via the sensor communication unit 25 of the color difference sensor 22. The system control unit 19 receives the arrival signal transmitted from the sensor control unit 26 via the communication unit 18. Then, based on the arrival signal, the system control unit 19 sets the condition that the required ozone CT value is 60 (ppm min) when the color difference of the ozone indicator 21 detected by the color difference sensor 22 is at a humidity higher than the reference humidity. is determined to have been reached. After that, the process advances to step S290.
 ステップS290では、室内空気の湿度が基準湿度以上であるか否かが、判定される。具体的に、システム制御部19が、ステップS230で取得された室内空気の湿度の情報に基づいて、室内空気の湿度が基準湿度以上であるか否かを判定する。 In step S290, it is determined whether the humidity of the indoor air is equal to or higher than the reference humidity. Specifically, the system control unit 19 determines whether the humidity of the indoor air is equal to or higher than the reference humidity based on the information on the humidity of the indoor air acquired in step S230.
 室内空気の湿度が基準湿度以上であると判定された場合は、ステップS290においてYesとなり、ステップS300に進む。室内空気の湿度が基準湿度より低いと判定された場合は、ステップS290においてNoとなり、ステップS310に進む。 If it is determined that the humidity of the indoor air is equal to or higher than the reference humidity, the answer is Yes in step S290, and the process proceeds to step S300. If it is determined that the humidity of the indoor air is lower than the reference humidity, the result in step S290 is No, and the process proceeds to step S310.
 ステップS300では、オゾン発生部13におけるオゾンの発生が停止されて、室内200へのオゾンの散気が、停止される。具体的に、システム制御部19が、オゾン発生部13におけるオゾンの発生を停止させ、室内200へのオゾンの散気を停止させる制御を行う。システム制御部19は、オゾン発生部13、湿度測定部14および色差センサ22の動作を停止させる制御を行う。システム制御部19は、オゾン発生部13におけるオゾンの発生を停止させた後も送風部12を運転させ、予め決められた時間だけ運転させた後に送風部12を停止させる制御を行う。これにより、オゾンシステム100の一連の動作が終了する。 In step S300, the generation of ozone in the ozone generator 13 is stopped, and the aeration of ozone into the room 200 is stopped. Specifically, the system control unit 19 performs control to stop the generation of ozone in the ozone generator 13 and stop the diffusion of ozone into the room 200. The system control unit 19 performs control to stop the operations of the ozone generation unit 13, humidity measurement unit 14, and color difference sensor 22. The system control unit 19 controls the blower unit 12 to operate even after stopping the generation of ozone in the ozone generator 13, and to stop the blower unit 12 after operating for a predetermined time. This completes a series of operations of the ozone system 100.
 したがって、システム制御部19は、ステップS270からステップS300において、オゾンインジケータ21の色差の情報に基づいて、オゾンインジケータ21の色差が必要オゾンCT値に相当する量に到達する時点でオゾン発生部13におけるオゾンの発生を停止させる制御を行う。 Therefore, in steps S270 to S300, the system control unit 19 determines, based on the information on the color difference of the ozone indicator 21, that when the color difference of the ozone indicator 21 reaches an amount corresponding to the required ozone CT value, the ozone generator 13 Performs control to stop the generation of ozone.
 ステップS310では、室内空気の湿度に対応した必要オゾンCT値が室内空気で達成された後に、オゾン発生部13におけるオゾンの発生が停止されて、室内200へのオゾンの散気が、停止される。すなわち、オゾン発生部13の運転が、室内空気の湿度に対応した必要オゾンCT値が室内200で満たされるように制御される。具体的に、システム制御部19が、室内空気の湿度に対応した必要オゾンCT値が室内200で達成されるまで室内200へのオゾンの散気を継続してから、室内200へのオゾンの散気を停止する。システム制御部19は、室内空気の湿度に対応した必要オゾンCT値が室内空気で達成された後に、送風部12、オゾン発生部13、湿度測定部14および色差センサ22の動作を停止させる。これにより、オゾンシステム100の一連の動作が終了する。 In step S310, after the required ozone CT value corresponding to the humidity of the indoor air is achieved in the indoor air, the generation of ozone in the ozone generator 13 is stopped, and the aeration of ozone into the room 200 is stopped. . That is, the operation of the ozone generator 13 is controlled so that the required ozone CT value corresponding to the humidity of the indoor air is satisfied in the room 200. Specifically, the system control unit 19 continues to diffuse ozone into the room 200 until the required ozone CT value corresponding to the humidity of the indoor air is achieved in the room 200, and then continues to diffuse ozone into the room 200. Stop your mind. The system control unit 19 stops the operations of the ventilation unit 12, ozone generation unit 13, humidity measurement unit 14, and color difference sensor 22 after the required ozone CT value corresponding to the humidity of the indoor air is achieved in the indoor air. This completes a series of operations of the ozone system 100.
 したがって、システム制御部19は、ステップS270からステップS290およびステップS310において、室内200のオゾンCT値が必要オゾンCT値に到達する時点でオゾン発生部13におけるオゾンの発生を停止させる制御を行う。 Therefore, in steps S270 to S290 and step S310, the system control unit 19 performs control to stop the ozone generation in the ozone generation unit 13 when the ozone CT value in the room 200 reaches the required ozone CT value.
 室内空気の湿度が基準湿度より低い場合は、室内空気の湿度が基準湿度である場合よりも、より多くのオゾンが必要になるため、室内空気の湿度に対応した必要オゾンCT値が室内空気で達成されるまでオゾン発生部13の運転を継続してからオゾン発生部13におけるオゾン発生を停止する。 When the humidity of the indoor air is lower than the standard humidity, more ozone is required than when the humidity of the indoor air is the standard humidity, so the required ozone CT value corresponding to the humidity of the indoor air is The operation of the ozone generator 13 is continued until the target is achieved, and then the ozone generation in the ozone generator 13 is stopped.
 上記のように、システム制御部19は、湿度測定部14において測定された室内200の湿度に基づいて、オゾン発生部13が発生させるオゾンの量を制御する。また、システム制御部19は、室内200におけるオゾン濃度と、オゾン発生部13におけるオゾンの発生時間との積であるオゾンCT値の目標値に基づいて、オゾン発生部13の運転を制御する。また、システム制御部19は、湿度測定部14において測定された室内200の湿度に基づいてオゾンCT値の目標値が補正された必要目標値に基づいて、オゾン発生部13の運転を制御する。また、システム制御部19は、オゾンCT値が必要目標値に到達するときに、オゾン発生部13におけるオゾンの発生を停止させる制御を行う。 As described above, the system control unit 19 controls the amount of ozone generated by the ozone generation unit 13 based on the humidity in the room 200 measured by the humidity measurement unit 14. Further, the system control unit 19 controls the operation of the ozone generator 13 based on the target value of the ozone CT value, which is the product of the ozone concentration in the room 200 and the ozone generation time in the ozone generator 13. Further, the system control unit 19 controls the operation of the ozone generation unit 13 based on the required target value, which is the target value of the ozone CT value corrected based on the humidity of the room 200 measured by the humidity measurement unit 14. Further, the system control unit 19 performs control to stop the ozone generation in the ozone generation unit 13 when the ozone CT value reaches the required target value.
 つぎに、ステップS310において室内空気の湿度に対応した必要オゾンCT値を室内空気で達成されるまで室内200へのオゾンの散気を継続してから、室内200へのオゾンの散気を停止する制御方法について説明する。 Next, in step S310, ozone aeration into the indoor room 200 is continued until the required ozone CT value corresponding to the humidity of the indoor air is achieved in the indoor air, and then ozone aeration into the indoor room 200 is stopped. The control method will be explained.
 図9は、実施の形態1にかかるオゾンシステム100におけるオゾン発生停止条件を決定する方法の概念を説明する第1の図である。図9においては、横軸に時間が示され、縦軸にオゾン濃度が示されている。図9では、室内200におけるオゾン濃度が一定に保たれると仮定した場合について示している。 FIG. 9 is a first diagram illustrating the concept of a method for determining ozone generation stop conditions in the ozone system 100 according to the first embodiment. In FIG. 9, time is shown on the horizontal axis, and ozone concentration is shown on the vertical axis. FIG. 9 shows a case where it is assumed that the ozone concentration in the room 200 is kept constant.
 例えば、ステップS270において、システム制御部19が、色差センサ22において検知されたオゾンインジケータ21の色差が基準湿度以上の湿度である場合の必要オゾンCT値:60(ppm・min)の条件に到達したと判定した時点で、オゾン発生部13の運転開始から50分が経過していたと仮定する。この時のオゾンCT値は、図9における領域Aの面積に対応する。この場合、オゾンCT値:60(ppm・min)であることから、システム制御部19は、室内200のオゾンの平均濃度が1.2ppmであることを算出できる。 For example, in step S270, the system control unit 19 determines that the required ozone CT value when the color difference of the ozone indicator 21 detected by the color difference sensor 22 is at a humidity higher than the reference humidity has reached the condition of 60 (ppm min). It is assumed that 50 minutes have passed since the start of operation of the ozone generating section 13 at the time when it is determined that The ozone CT value at this time corresponds to the area of region A in FIG. In this case, since the ozone CT value is 60 (ppm·min), the system control unit 19 can calculate that the average concentration of ozone in the room 200 is 1.2 ppm.
 例えば、室内200の湿度が30%のときには、図8の相対湿度と必要オゾンCT値との関係を示す対応関係情報から、システム制御部19は、必要オゾンCT値が100であると判定できる。必要オゾンCT値:100(ppm・min)までオゾン発生部13の運転を継続するにあたって、図9における破線部分で示すようにオゾン濃度はそのまま上記の平均濃度:1.2ppmが続くと仮定すれば、システム制御部19は、必要オゾンCT値:100(ppm・min)を達成するために必要なオゾン発生部13の全体の運転が83.33分間であることを算出できる。すなわち、オゾン発生部13が83.33分間運転すれば、室内200で必要オゾンCT値:100(ppm・min)が達成されるため、オゾン発生停止条件は83.33分と算出される。 For example, when the humidity in the room 200 is 30%, the system control unit 19 can determine that the required ozone CT value is 100 from the correspondence information showing the relationship between the relative humidity and the required ozone CT value in FIG. When continuing the operation of the ozone generator 13 until the required ozone CT value: 100 (ppm/min), it is assumed that the ozone concentration will continue to remain at the above average concentration: 1.2 ppm, as shown by the broken line in FIG. , the system control unit 19 can calculate that the entire operation of the ozone generation unit 13 required to achieve the required ozone CT value: 100 (ppm·min) is 83.33 minutes. That is, if the ozone generating unit 13 operates for 83.33 minutes, the required ozone CT value: 100 (ppm min) is achieved in the room 200, so the ozone generation stop condition is calculated as 83.33 minutes.
 これにより、システム制御部19は、オゾン発生部13においてオゾンの発生を開始してから83.33分後にオゾン発生部13の運転を停止させればよい。したがって、システム制御部19は、室内200で必要オゾンCT値:60(ppm・min)の条件に到達したと判定した時点から、残り33.3分間だけオゾン発生部13の運転を継続させてから、オゾン発生部13の運転を停止させればよい。この場合の33.3分間のオゾンCT値は、図9における領域Bの面積に対応する。 As a result, the system control unit 19 only has to stop the operation of the ozone generation unit 13 83.33 minutes after the ozone generation unit 13 starts generating ozone. Therefore, the system control unit 19 continues the operation of the ozone generation unit 13 for the remaining 33.3 minutes from the time when it is determined that the condition of the required ozone CT value: 60 (ppm min) has been reached in the room 200. , the operation of the ozone generator 13 may be stopped. The ozone CT value for 33.3 minutes in this case corresponds to the area of region B in FIG.
 オゾン発生停止条件は、50分×(100/60)=83.33の式により算出される。(100/60)は、室内200の湿度が60%のときの必要オゾンCT値に対する、室内200の湿度が30%のときの必要オゾンCT値の比率である。 The ozone generation stop condition is calculated by the formula: 50 minutes x (100/60) = 83.33. (100/60) is the ratio of the required ozone CT value when the humidity in the room 200 is 30% to the required ozone CT value when the humidity in the room 200 is 60%.
 したがって、システム制御部19は、色差センサ22において検知されたオゾンインジケータ21の色差が基準湿度以上の湿度である場合の必要オゾンCT値:60(ppm・min)の条件に到達すると、必要オゾンCT値:100(ppm・min)までオゾン発生部13の運転を継続するまでのオゾンの発生時間の残時間を算出し、残時間をタイマ17に設定する。 Therefore, when the color difference of the ozone indicator 21 detected by the color difference sensor 22 reaches the condition that the required ozone CT value is 60 (ppm/min) when the humidity is higher than the reference humidity, the system control unit 19 controls the required ozone CT value. The remaining ozone generation time until the ozone generator 13 continues to operate until the value: 100 (ppm/min) is calculated, and the remaining time is set in the timer 17.
 すなわち、システム制御部19は、CT値相当量であるオゾンインジケータ21の色差が、室内200におけるオゾン濃度と室内200におけるオゾンの発生時間との積の目標値に到達すると、必要オゾンCT値:100(ppm・min)に到達するまでのオゾンの発生時間の残時間を、すなわちオゾンインジケータ21の色差が室内空気の湿度に対応した必要目標値に相当する量となるまでのオゾンの発生時間の残時間を算出し、残時間をタイマ17に設定する。 That is, when the color difference of the ozone indicator 21, which is an amount equivalent to the CT value, reaches the target value of the product of the ozone concentration in the room 200 and the ozone generation time in the room 200, the system control unit 19 sets the required ozone CT value: 100. (ppm/min), that is, the remaining ozone generation time until the color difference of the ozone indicator 21 reaches the required target value corresponding to the humidity of the indoor air. The time is calculated and the remaining time is set in the timer 17.
 タイマ17は、設定された残時間を計測する。システム制御部19は、タイマ17における残時間の計測が完了する時点で、オゾン発生部13におけるオゾンの発生を停止させる制御を行う。 The timer 17 measures the set remaining time. The system control unit 19 controls the ozone generation unit 13 to stop generating ozone when the timer 17 completes measuring the remaining time.
 図10は、実施の形態1にかかるオゾンシステム100におけるオゾン発生停止条件を決定する方法の概念を説明する第2の図である。図10においては、横軸に時間が示され、縦軸にオゾン濃度が示されている。図10では、室内200におけるオゾン濃度と経過時間との関係が一次関数であると仮定した場合について示している。オゾンの発生を続けると、室内200のオゾン濃度は徐々に増加していくため、図9のグラフよりも図10のグラフのほうが実情に近いオゾン濃度と経過時間との関係の概念を示しているといえる。 FIG. 10 is a second diagram illustrating the concept of a method for determining ozone generation stop conditions in the ozone system 100 according to the first embodiment. In FIG. 10, time is shown on the horizontal axis, and ozone concentration is shown on the vertical axis. FIG. 10 shows a case where it is assumed that the relationship between the ozone concentration in the room 200 and the elapsed time is a linear function. As ozone continues to be generated, the ozone concentration in the room 200 gradually increases, so the graph in Figure 10 shows the concept of the relationship between ozone concentration and elapsed time more closely than the graph in Figure 9. It can be said.
 例えば、ステップS270において、システム制御部19が、色差センサ22において検知されたオゾンインジケータ21の色差が基準湿度以上の湿度である場合の必要オゾンCT値:60(ppm・min)の条件に到達したと判定した時点で、オゾン発生部13の運転開始から60分が経過していたと仮定する。この時のオゾンCT値は、図10における領域Cの面積に対応する。この場合、オゾンCT値:60(ppm・min)であることから、システム制御部19は、オゾン発生部13の運転開始から60分時点での室内200のオゾンの濃度が2ppmであることを図10から算出できる。 For example, in step S270, the system control unit 19 determines that the required ozone CT value when the color difference of the ozone indicator 21 detected by the color difference sensor 22 is at a humidity higher than the reference humidity has reached the condition of 60 (ppm min). It is assumed that 60 minutes have passed since the start of operation of the ozone generating section 13 at the time when it is determined that. The ozone CT value at this time corresponds to the area of region C in FIG. In this case, since the ozone CT value is 60 (ppm/min), the system control unit 19 determines that the ozone concentration in the room 200 at 60 minutes from the start of operation of the ozone generator 13 is 2 ppm. It can be calculated from 10.
 例えば、室内200の湿度が30%のときには、図8の相対湿度と必要オゾンCT値との関係を示す対応関係情報から、システム制御部19は、必要オゾンCT値が100(ppm・min)であると判定できる。必要オゾンCT値:100(ppm・min)までオゾン発生部13の運転を継続するにあたって、図10における破線部分で示すようにオゾン濃度はそのまま一次関数で直線的に増加が続くと仮定すれば、システム制御部19は、必要オゾンCT値:100(ppm・min)を達成するために必要なオゾン発生部13の全体の運転が77.46分間であることを算出できる。すなわち、オゾン発生部13が77.46分間運転すれば、室内200で必要オゾンCT値:100(ppm・min)が達成されるため、オゾン発生停止条件は77.46分と算出される。 For example, when the humidity in the room 200 is 30%, the system control unit 19 determines that the required ozone CT value is 100 (ppm・min) from the correspondence relationship information showing the relationship between the relative humidity and the required ozone CT value in FIG. It can be determined that there is. When continuing the operation of the ozone generator 13 until the required ozone CT value: 100 (ppm/min), it is assumed that the ozone concentration continues to increase linearly as a linear function as shown by the broken line in FIG. The system control unit 19 can calculate that the entire operation of the ozone generation unit 13 required to achieve the required ozone CT value of 100 (ppm·min) is 77.46 minutes. That is, if the ozone generator 13 operates for 77.46 minutes, the required ozone CT value: 100 (ppm min) is achieved in the room 200, so the ozone generation stop condition is calculated as 77.46 minutes.
 これにより、システム制御部19は、オゾン発生部13においてオゾンの発生を開始してから77.46分後にオゾン発生部13の運転を停止させればよい。したがって、システム制御部19は、室内200で必要オゾンCT値:60(ppm・min)の条件に到達したと判定した時点から、残り17.46分間だけオゾン発生部13の運転を継続させてから、オゾン発生部13の運転を停止させればよい。この場合の17.46分間のオゾンCT値は、図10における領域Dの面積に対応する。 As a result, the system control unit 19 only has to stop the operation of the ozone generation unit 13 77.46 minutes after the ozone generation unit 13 starts generating ozone. Therefore, the system control unit 19 continues the operation of the ozone generation unit 13 for the remaining 17.46 minutes from the time when it is determined that the condition of the required ozone CT value: 60 (ppm min) has been reached in the room 200. , the operation of the ozone generator 13 may be stopped. The ozone CT value for 17.46 minutes in this case corresponds to the area of region D in FIG.
 オゾン発生停止条件の算出方法は、以下のとおりである。図10より、室内200で必要オゾンCT値:60(ppm・min)に到達した時点で、オゾン発生部13の運転開始から60分が経過しており、室内200のオゾンの濃度は2ppmである。オゾン発生部13の運転開始から室内200で必要オゾンCT値:100(ppm・min)の条件に到達する時間を求めるには、オゾン発生部13の運転開始から室内200で必要オゾンCT値:100(ppm・min)の条件に到達する到達時間をX分とし、その時の濃度をYppmとすると、「60分:2ppm=X分:Yppm」の関係式が成り立ち、「Y=2ppm×X分/60」となる。 The method for calculating the ozone generation stop conditions is as follows. From FIG. 10, when the required ozone CT value reaches 60 (ppm/min) in the room 200, 60 minutes have passed since the start of operation of the ozone generator 13, and the ozone concentration in the room 200 is 2 ppm. . To find the time to reach the condition of the required ozone CT value: 100 (ppm min) indoors 200 from the start of operation of the ozone generator 13, the required ozone CT value: 100 (ppm min) in the room 200 from the start of operation of the ozone generator 13. If the arrival time to reach the condition of (ppm/min) is X minutes and the concentration at that time is Yppm, then the relational expression "60 minutes: 2 ppm = X minutes: Yppm" is established, and "Y = 2 ppm x X minutes/ 60".
 図10において領域Cと領域Dとにより構成される三角形の面積が、必要オゾンCT値:100(ppm・min)に対応する。三角形の底辺がX分に対応し、三角形の高さがYに対応することより、
X分×(2ppm×X分/60分)/2=必要オゾンCT値
→X×2ppm/60分/2=必要オゾンCT値
→X=必要オゾンCT値×2×60/2ppm=必要オゾンCT値×2/(2/60分)
→X=SQRT(CT値×2ppm/(2/60分))
と計算式を展開できる。そして、CT値=100を代入して、
X=SQRT(100×2ppm/(2/60分))=77.46分
のようにオゾン発生停止条件が算出される。
In FIG. 10, the area of the triangle formed by region C and region D corresponds to the required ozone CT value: 100 (ppm·min). Since the base of the triangle corresponds to X and the height of the triangle corresponds to Y,
X minutes × (2 ppm × X minutes / 60 minutes) / 2 = required ozone CT value → X 2 × 2 ppm / 60 minutes / 2 = required ozone CT value → Ozone CT value x 2/(2/60 minutes)
→X=SQRT (CT value x 2ppm/(2/60 minutes))
You can expand the calculation formula. Then, substitute CT value = 100,
The ozone generation stop condition is calculated as follows: X=SQRT(100×2ppm/(2/60 minutes))=77.46 minutes.
 オゾン発生停止条件を決定する方法の概念は、上記の方法に限定されない。図11は、実施の形態1にかかるオゾンシステム100におけるオゾン発生停止条件を決定する方法の概念を説明する第3の図である。図11においては、横軸に時間が示され、縦軸にオゾン濃度が示されている。図11では、室内200におけるオゾン濃度と経過時間との関係が対数関数であると仮定した場合について示している。例えば、室内200におけるオゾン濃度と経過時間との関係は、他の関数であってもよく、例えば図11に示すような対数関数、あるいは一定区間の多次多項式関数のような、傾きが漸減する関数であってもよい。この場合も上記と同様の考え方で、オゾン発生停止条件の算出が可能である。 The concept of the method for determining ozone generation stop conditions is not limited to the above method. FIG. 11 is a third diagram illustrating the concept of a method for determining ozone generation stop conditions in the ozone system 100 according to the first embodiment. In FIG. 11, time is shown on the horizontal axis, and ozone concentration is shown on the vertical axis. FIG. 11 shows a case where it is assumed that the relationship between the ozone concentration in the room 200 and the elapsed time is a logarithmic function. For example, the relationship between the ozone concentration in the room 200 and the elapsed time may be another function, such as a logarithmic function as shown in FIG. It may be a function. In this case as well, the conditions for stopping ozone generation can be calculated using the same concept as above.
 オゾンは、時間の経過に伴って自然減衰が生じる。このため、傾きが漸減する図11のグラフのほうが図10のグラフよりも、より実情に近いオゾン濃度と経過時間との関係の概念を示しているといえる。発明者らが行った、オゾンの自然減衰を考慮した数値流体力学(Computational Fluid Dynamics)シミュレーションによっても、傾きが漸減する対数関数である場合のほうが、1次関数である場合よりもオゾン濃度と経過時間との関係の実情に近いという知見が得られている。 Ozone undergoes natural attenuation over time. Therefore, it can be said that the graph of FIG. 11, in which the slope gradually decreases, shows the concept of the relationship between ozone concentration and elapsed time that is closer to the actual situation than the graph of FIG. 10. Computational Fluid Dynamics simulations conducted by the inventors that take into account the natural attenuation of ozone also show that a logarithmic function whose slope gradually decreases is better than a linear function when the ozone concentration changes over time. We have obtained knowledge that this is close to the actual situation of our relationship with time.
 なお、上述した図9から図11は、実際にオゾンシステム100におけるオゾン発生停止条件の算出に適用されるものではなく、オゾン発生停止条件を決定する方法の概念を説明する例である。 Note that FIGS. 9 to 11 described above are not actually applied to calculating the ozone generation stop conditions in the ozone system 100, but are examples for explaining the concept of a method for determining the ozone generation stop conditions.
 つぎに、オゾンシステム100の第2の動作例について説明する。図12は、実施の形態1にかかるオゾンシステム100の第2の動作例の手順を示すフローチャートである。以下では、上述した第1の動作例と異なるステップについて説明する。 Next, a second operation example of the ozone system 100 will be explained. FIG. 12 is a flowchart showing the procedure of a second example of operation of the ozone system 100 according to the first embodiment. Below, steps different from the first operation example described above will be explained.
 まず、上述した第1の動作例の場合と同様に、ステップS210からステップS260が、行われる。その後、ステップS410に進む。 First, as in the case of the first operation example described above, steps S210 to S260 are performed. After that, the process advances to step S410.
 ステップS410では、オゾンインジケータ21の色差の情報が、CT値相当量の信号としてシステム制御部19に連続的に逐次送信される。具体的に、色差センサ22が、予め決められた周期で検知した検知結果である色差の情報を、CT値相当量の信号としてシステム制御部19に連続的に逐次送信する。システム制御部19は、色差センサ22から送信されたCT値相当量の信号を受信して記憶する。これにより、予め決められた周期で検知した検知結果であるオゾンインジケータ21の色差の情報が、リアルタイムでシステム制御部19において取得される。その後、ステップS420に進む。 In step S410, the color difference information of the ozone indicator 21 is continuously and sequentially transmitted to the system control unit 19 as a signal corresponding to the CT value. Specifically, the color difference sensor 22 continuously transmits color difference information, which is a detection result detected at a predetermined period, to the system control unit 19 as a signal corresponding to a CT value. The system control unit 19 receives and stores the signal corresponding to the CT value transmitted from the color difference sensor 22. Thereby, information on the color difference of the ozone indicator 21, which is a detection result detected at a predetermined period, is acquired by the system control unit 19 in real time. After that, the process advances to step S420.
 ステップS420では、色差センサ22において検知されたオゾンインジケータ21の色差が、室内空気の湿度が30%である場合における必要オゾンCT値:100(ppm・min)に相当する色差となったか否かが、判定される。具体的に、システム制御部19が、色差センサ22において検知されたオゾンインジケータ21の色差が室内空気の湿度が30%である場合における必要オゾンCT値:100(ppm・min)に相当する色差となったか否かを、判定する。システム制御部19は、オゾン発生装置1の記憶部16に記憶されているCT値相当量とオゾンCT値との対応関係情報を用いて、上記の判定を行う。 In step S420, it is determined whether the color difference of the ozone indicator 21 detected by the color difference sensor 22 corresponds to the required ozone CT value: 100 (ppm min) when the humidity of the indoor air is 30%. , is determined. Specifically, the system control unit 19 determines that the color difference of the ozone indicator 21 detected by the color difference sensor 22 is the color difference corresponding to the required ozone CT value: 100 (ppm min) when the humidity of the indoor air is 30%. Determine whether it has happened or not. The system control unit 19 makes the above determination using the correspondence relationship information between the CT value equivalent amount and the ozone CT value stored in the storage unit 16 of the ozone generator 1.
 すなわち、システム制御部19は、図5に示す対応関係情報における縦軸に、色差センサ22において検知されたオゾンインジケータ21の色差を対応させることで、オゾンインジケータ21の色差に対応する現在の室内200のオゾンCT値を取得する。そして、システム制御部19は、取得した現在のオゾンCT値が必要オゾンCT値:100(ppm・min)に相当する色差となったか否かを判定する。 That is, the system control unit 19 associates the color difference of the ozone indicator 21 detected by the color difference sensor 22 with the vertical axis in the correspondence relationship information shown in FIG. Obtain the ozone CT value of Then, the system control unit 19 determines whether the acquired current ozone CT value has a color difference corresponding to the required ozone CT value: 100 (ppm·min).
 色差センサ22において検知されたオゾンインジケータ21の色差が室内空気の湿度が30%である場合における必要オゾンCT値:100(ppm・min)に相当する色差となっていないと判定された場合は、ステップS420においてNoとなり、ステップS410に戻る。色差センサ22において検知されたオゾンインジケータ21の色差が室内空気の湿度が30%である場合における必要オゾンCT値:100(ppm・min)に相当する色差となったと判定された場合は、ステップS420においてYesとなり、ステップS300に進む。 If it is determined that the color difference of the ozone indicator 21 detected by the color difference sensor 22 does not correspond to the required ozone CT value: 100 (ppm min) when the humidity of the indoor air is 30%, No is determined in step S420, and the process returns to step S410. If it is determined that the color difference of the ozone indicator 21 detected by the color difference sensor 22 corresponds to the required ozone CT value when the indoor air humidity is 30%: 100 (ppm min), step S420 The result is Yes, and the process advances to step S300.
 したがって、システム制御部19は、ステップS420およびステップS300において、オゾンインジケータ21の色差の情報に基づいて、オゾンインジケータ21の色差が必要オゾンCT値に相当する量に到達する時点でオゾン発生部13におけるオゾンの発生を停止させる制御を行う。 Therefore, in step S420 and step S300, the system control unit 19 determines, based on the information on the color difference of the ozone indicator 21, that when the color difference of the ozone indicator 21 reaches an amount corresponding to the required ozone CT value, the ozone generation unit 13 Performs control to stop the generation of ozone.
 実施の形態1にかかるオゾンシステム100においては、室内にオゾンを供給するオゾンシステムであって、オゾンを発生させるオゾン発生部13と、湿度測定部14において測定された室内の湿度に基づいて、オゾン発生部13が発生させるオゾンの量を制御する制御部と、を備えるオゾンシステムが、実現される。 The ozone system 100 according to the first embodiment is an ozone system that supplies ozone indoors, and the ozone system 100 is an ozone system that supplies ozone indoors. An ozone system including a control section that controls the amount of ozone generated by the generation section 13 is realized.
 実施の形態1にかかるオゾンシステム100においては、室内にオゾンを供給するオゾン供給方法であって、室内の湿度を取得するステップと、室内にオゾンを供給するステップと、室内の湿度に基づいて、発生させるオゾンの量を制御するステップと、を含むオゾン供給方法、を実施可能である。 In the ozone system 100 according to the first embodiment, an ozone supply method for supplying ozone indoors includes a step of obtaining indoor humidity, a step of supplying ozone indoors, and a step based on the indoor humidity. and controlling the amount of ozone generated.
 上述したように、実施の形態1にかかるオゾンシステム100では、システム制御部19は、室内空気の湿度が基準湿度である環境下において室内200のウイルスの不活化を行う場合に必要とされるオゾンCT値である設定オゾンCT値を室内200の湿度に基づいて補正して、室内200の湿度を考慮して室内200のウイルスの不活化を行う場合に必要とされる必要オゾンCT値が算出する。そして、システム制御部19は、室内のオゾンCT値が必要目標値に到達する時点でオゾン発生部13におけるオゾンの発生を停止させる制御を行う。 As described above, in the ozone system 100 according to the first embodiment, the system control unit 19 controls the amount of ozone necessary to inactivate viruses in the room 200 in an environment where the humidity of the indoor air is the reference humidity. The set ozone CT value, which is a CT value, is corrected based on the humidity in the room 200, and the necessary ozone CT value required when inactivating the virus in the room 200 is calculated by taking into consideration the humidity in the room 200. . Then, the system control unit 19 performs control to stop the ozone generation in the ozone generation unit 13 when the indoor ozone CT value reaches the required target value.
 オゾンシステム100は、このような制御を行うことにより、室内200の湿度が基準湿度よりも高い、あるいは室内空気の湿度が基準湿度よりも低い場合でも、室内200の湿度を考慮してオゾン発生部13を停止させるタイミングを適切に制御することができる。これにより、オゾンシステム100では、室内200の湿度の変化によって、室内200のウイルスの不活化効果が不十分となる場合、あるいは必要以上のオゾンを過剰に室内200に散気してしまう場合が生じない。すなわち、オゾンシステム100では、室内空間中の浮遊ウイルス、あるいは室内200の物品に付着したウイルスの不活化に必要なオゾンCT値を室内200で適切に達成することができ、室内200のウイルスの適切な不活化が実現可能である。 By performing such control, the ozone system 100 takes the humidity of the room 200 into account and operates the ozone generator even if the humidity of the room 200 is higher than the reference humidity or the humidity of the indoor air is lower than the reference humidity. 13 can be appropriately controlled. As a result, in the ozone system 100, due to changes in the humidity in the room 200, the virus inactivation effect in the room 200 may become insufficient, or more ozone than necessary may be diffused into the room 200. do not have. That is, in the ozone system 100, the ozone CT value necessary for inactivating airborne viruses in the indoor space or viruses attached to objects in the room 200 can be appropriately achieved in the room 200. Inactivation is possible.
 また、オゾンシステム100は、オゾンCT値の変化に伴って色が変化する化学物質21aを備えたオゾンインジケータ21を用いて、室内200におけるオゾン濃度と、オゾン発生部13におけるオゾンの発生時間との積であるオゾンCT値に相当する相当量であるCT値相当量を検知する。そして、システム制御部19は、室内200におけるCT値相当量に基づいて、室内200のCT値が必要目標値に到達する時点でオゾンの発生を停止させる制御を行うことができる。すなわち、システム制御部19は、室内200におけるCT値相当量が必要目標値に相当する量となる時点でオゾンの発生を停止させる制御を行うことができる。 Further, the ozone system 100 uses an ozone indicator 21 equipped with a chemical substance 21a whose color changes with changes in the ozone CT value, to determine the ozone concentration in the room 200 and the ozone generation time in the ozone generator 13. A CT value equivalent amount, which is an equivalent amount corresponding to the ozone CT value, which is the product, is detected. Based on the CT value equivalent amount in the room 200, the system control unit 19 can perform control to stop the generation of ozone when the CT value in the room 200 reaches the required target value. That is, the system control unit 19 can perform control to stop the generation of ozone when the CT value equivalent amount in the room 200 reaches the required target value.
 このため、オゾンシステム100は、オゾン濃度計を用いて室内200のオゾン濃度を検知することなく、室内200のウイルスの適切な不活化が実現可能である。また、オゾンシステム100は、オゾン濃度計と比べて安価な化学物質21aを用いて室内200のCT値相当量を検知することができ、オゾンシステム100を安価に実現できる。 Therefore, the ozone system 100 can appropriately inactivate viruses in the room 200 without detecting the ozone concentration in the room 200 using an ozone concentration meter. Moreover, the ozone system 100 can detect the amount equivalent to the CT value in the room 200 using the chemical substance 21a, which is cheaper than an ozone concentration meter, and the ozone system 100 can be realized at a low cost.
 また、オゾンシステム100では、オゾンインジケータ21を備えたCT値相当量検知部2は、室内200においてオゾン発生部13が設けられたオゾン発生装置1の筐体10から離れた位置に配置されている。室内200のレイアウトにもよるが、室内200においてオゾン発生装置1から離れた場所のほうが、オゾン発生部13で発生したオゾンが到達し難い。したがって、室内200における筐体10から離れた場所においてCT値が必要目標値に到達していることが確認できれば、室内200の室内空間において所望の必要目標値が実現されていると考えることができる。したがって、CT値相当量検知部2は、室内200においてオゾン発生部13が設けられたオゾン発生装置1の筐体10から離れた位置に配置されることが好ましい。 Further, in the ozone system 100, the CT value equivalent amount detection section 2 equipped with the ozone indicator 21 is arranged in the room 200 at a position away from the casing 10 of the ozone generator 1 in which the ozone generation section 13 is provided. . Although it depends on the layout of the room 200, it is more difficult for the ozone generated in the ozone generator 13 to reach a location in the room 200 that is farther away from the ozone generator 1. Therefore, if it is confirmed that the CT value has reached the required target value at a location away from the casing 10 in the room 200, it can be considered that the desired required target value has been achieved in the indoor space of the room 200. . Therefore, it is preferable that the CT value equivalent amount detection section 2 is disposed in the room 200 at a position away from the casing 10 of the ozone generator 1 in which the ozone generation section 13 is provided.
 また、オゾンシステム100では、CT値相当量検知部2は、室内200において、オゾン発生装置1から最も離れた位置に設置されている。これにより、オゾンシステム100では、室内200の室内空間において所望の必要目標値が実現されていることをより確実に確認できる。したがって、オゾンシステム100では、室内200におけるCT値相当量検知部2の設置個所を選択することで、オゾンCT値相当量の検知精度の向上を図ることができる。 Furthermore, in the ozone system 100, the CT value equivalent amount detection unit 2 is installed at the farthest position from the ozone generator 1 in the room 200. Thereby, in the ozone system 100, it can be more reliably confirmed that the desired required target value is achieved in the indoor space of the room 200. Therefore, in the ozone system 100, by selecting the installation location of the CT value equivalent amount detection unit 2 in the room 200, it is possible to improve the detection accuracy of the ozone CT value equivalent amount.
 また、室内200において筐体10から相対的に遠い位置にCT値相当量検知部2が設置されることにより、筐体10から相対的に遠い位置まで、より確実にオゾンによる除菌ができるオゾン発生停止条件を得ることができる。 In addition, by installing the CT value equivalent amount detection unit 2 at a position relatively far from the housing 10 in the room 200, ozone can more reliably sterilize the area relatively far from the housing 10. The generation and stop conditions can be obtained.
 また、CT値相当量検知部2は、室内200において、筐体10の吸込口111が向く側の空間に設置されてもよい。吸込口111が向く側の空間は、筐体10の排出口112からオゾンが到達し難い。このため、室内200において筐体10の吸込口111が向く側の空間にCT値相当量検知部2が設置されることにより、筐体10の吸込口111が向く側の空間まで、より確実にオゾンによる除菌ができるオゾン発生停止条件を得ることができる。 Furthermore, the CT value equivalent amount detection unit 2 may be installed in a space in the room 200 on the side toward which the suction port 111 of the housing 10 faces. It is difficult for ozone to reach the space on the side where the suction port 111 faces from the discharge port 112 of the housing 10 . Therefore, by installing the CT value equivalent amount detection unit 2 in the space on the side where the suction port 111 of the housing 10 faces in the room 200, it is possible to more reliably reach the space on the side where the suction port 111 of the housing 10 faces. It is possible to obtain ozone generation stop conditions that allow sterilization by ozone.
 また、室内空間において空気調和機または扇風機といった空気調和機が設置されている場合は、CT値相当量検知部2は、室内空間における筐体10の位置および筐体10の吸込口111が向く方向にも因るが、室内200において送風が到達し難い空間に設置されてもよい。空気調和機の送風が到達し難い空間にCT値相当量検知部2が設置されることにより、筐体10の吸込口111が向く側の空間まで、より確実にオゾンによる除菌ができるオゾン発生停止条件を得ることができる。 Further, when an air conditioner such as an air conditioner or an electric fan is installed in the indoor space, the CT value equivalent amount detection unit 2 detects the position of the casing 10 in the indoor space and the direction in which the suction port 111 of the casing 10 faces. Depending on the circumstances, it may be installed in a space in the room 200 that is difficult for air to reach. By installing the CT value equivalent amount detection unit 2 in a space that is difficult for air from the air conditioner to reach, ozone generation enables more reliable ozone sterilization even to the space on the side where the inlet 111 of the housing 10 faces. Stop conditions can be obtained.
 また、ユーザは、CT値相当量検知部2の設置位置を選択することにより、ユーザが求める室内200の除菌レベルの確実性を選択することが可能となり、除菌レベルを選択の自由度が大きく、ユーザにとって使い勝手が良いオゾンシステム100を実現することが可能となる。 In addition, by selecting the installation position of the CT value equivalent amount detection unit 2, the user can select the reliability of the sterilization level of the room 200 that the user desires, increasing the degree of freedom in selecting the sterilization level. It becomes possible to realize an ozone system 100 that is large and easy to use for the user.
 上述したように、実施の形態1にかかるオゾンシステム100によれば、室内200の湿度を考慮したユーザに快適な空間を提供可能である、という効果を奏する。 As described above, the ozone system 100 according to the first embodiment has the effect of being able to provide a comfortable space to the user in consideration of the humidity in the room 200.
実施の形態2.
 上述した実施の形態1では、CT値相当量検知部2がオゾン発生装置1の筐体10から独立して設けられて筐体10から離れた位置に配置されている場合について説明した。実施の形態2では、CT値相当量検知部2がオゾン発生装置1の筐体10に設けられる場合について説明する。
Embodiment 2.
In the first embodiment described above, a case has been described in which the CT value equivalent amount detection section 2 is provided independently from the casing 10 of the ozone generator 1 and is arranged at a position away from the casing 10. In Embodiment 2, a case will be described in which the CT value equivalent amount detection section 2 is provided in the housing 10 of the ozone generator 1.
 図13は、実施の形態2にかかるオゾンシステム100aのオゾン発生装置1aの筐体10に形成されたガス流路11を示す模式図である。図13に示すように、実施の形態2にかかるオゾンシステム100aでは、CT値相当量検知部2が、オゾン発生装置1aの筐体10におけるガス流路11の入り口領域、すなわち吸込口111に隣接する領域に配置されて、筐体10の外面に露出されている。色差センサ22は、ガス流路11において、吸込口111に隣接する領域の下部に配置されている。また、オゾンインジケータ21は、ガス流路11において、吸込口111に隣接する領域の下部であって色差センサ22の下方の位置に配置されている。 FIG. 13 is a schematic diagram showing the gas flow path 11 formed in the housing 10 of the ozone generator 1a of the ozone system 100a according to the second embodiment. As shown in FIG. 13, in the ozone system 100a according to the second embodiment, the CT value equivalent amount detection section 2 is located adjacent to the entrance area of the gas flow path 11 in the case 10 of the ozone generator 1a, that is, adjacent to the suction port 111. The casing 10 is exposed on the outer surface of the casing 10. The color difference sensor 22 is arranged in the lower part of the region adjacent to the suction port 111 in the gas flow path 11 . Further, the ozone indicator 21 is disposed in the gas flow path 11 at a lower part of a region adjacent to the suction port 111 and below the color difference sensor 22 .
 上記のように構成されたオゾンシステム100aでは、オゾンインジケータ21が、吸込口111に導入される室内空気に接触する。そして、色差センサ22が、オゾンインジケータ21の色差を検知する。これにより、ガス流路11内においてオゾン発生部13で発生されたオゾンに接触することが無く、ガス流路11内においてオゾン発生部13で発生されたオゾンの影響を受けずに、オゾンインジケータ21の色差を検知することができる。また、オゾンインジケータ21は、ガス流路11において吸込口111に隣接する領域に配置されているため、オゾンインジケータ21の点検および交換といったメンテナンスが容易である。 In the ozone system 100a configured as described above, the ozone indicator 21 comes into contact with the indoor air introduced into the suction port 111. Then, the color difference sensor 22 detects the color difference of the ozone indicator 21. As a result, the ozone indicator 21 does not come into contact with the ozone generated by the ozone generator 13 within the gas flow path 11 and is not affected by the ozone generated by the ozone generator 13 within the gas flow path 11. It is possible to detect color differences. Moreover, since the ozone indicator 21 is arranged in the region adjacent to the suction port 111 in the gas flow path 11, maintenance such as inspection and replacement of the ozone indicator 21 is easy.
 上記のように構成された実施の形態2にかかるオゾンシステム100aは、実施の形態1にかかるオゾンシステム100と同様の効果を有する。 The ozone system 100a according to the second embodiment configured as described above has the same effects as the ozone system 100 according to the first embodiment.
 また、オゾンシステム100aでは、色差センサ22は、筐体10の内部において不図示の通信線を介してシステム制御部19との間で情報の授受が可能とされている。このため、オゾンシステム100aでは、実施の形態1にかかるオゾンシステム100において必要であった、筐体10から離れた位置に配置されたCT値相当量検知部2と筐体10との間で無線通信あるいは有線通信を行うための構成が不要となる。これにより、オゾンシステム100aでは、構成の簡略化が可能であり、またコストの低減が可能である。 Furthermore, in the ozone system 100a, the color difference sensor 22 is capable of exchanging information with the system control unit 19 via a communication line (not shown) inside the housing 10. Therefore, in the ozone system 100a, wireless communication can be performed between the CT value equivalent amount detection unit 2 located at a position away from the housing 10 and the housing 10, which was necessary in the ozone system 100 according to the first embodiment. No configuration for communication or wired communication is required. Thereby, in the ozone system 100a, the configuration can be simplified and the cost can be reduced.
 また、オゾンシステム100aでは、CT値相当量検知部2がオゾン発生装置1aの筐体10に組み込まれることにより、オゾンシステム100aの全体の構成が簡略化されている。これにより、オゾンシステム100aでは、オゾン発生装置1aを室内200における所望の位置に設置するだけで、オゾンシステム100aの設置が完了し、オゾンシステム100aの設置作業が容易となる。 Furthermore, in the ozone system 100a, the CT value equivalent amount detection section 2 is incorporated into the casing 10 of the ozone generator 1a, thereby simplifying the overall configuration of the ozone system 100a. Thereby, in the ozone system 100a, installation of the ozone system 100a is completed simply by installing the ozone generator 1a at a desired position in the room 200, and the installation work of the ozone system 100a becomes easy.
 また、オゾンシステム100aでは、実施の形態1にかかるオゾンシステム100と比べて、室内200における筐体10から相対的に近い位置にCT値相当量検知部2が設置されている。室内200において筐体10から相対的に近い位置にCT値相当量検知部2が設置されることにより、オゾンガスの発生量を少なめにしながら室内200を除菌ができるオゾン発生停止条件を得ることができる。オゾンは濃度が高いと人体にとって好ましくないため、室内200において筐体10から相対的に近い位置にCT値相当量検知部2を設置することにより、安全性を重視したオゾン除菌を行うことができる。 Furthermore, in the ozone system 100a, compared to the ozone system 100 according to the first embodiment, the CT value equivalent amount detection unit 2 is installed at a position relatively close to the housing 10 in the room 200. By installing the CT value equivalent amount detection unit 2 in a position relatively close to the housing 10 in the room 200, it is possible to obtain ozone generation stop conditions that allow the room 200 to be sterilized while reducing the amount of ozone gas generated. can. Since high concentrations of ozone are not favorable for the human body, ozone sterilization with an emphasis on safety can be performed by installing the CT value equivalent amount detection unit 2 in a position relatively close to the housing 10 in the room 200. can.
 また、CT値相当量検知部2は、オゾン発生装置1aの筐体10の前面側の外面に配置されてもよい。この場合も、CT値相当量検知部2の色差センサ22においてオゾンインジケータ21の色差を検知可能である。筐体10の前面は、筐体10の外面において吸込口111が形成されている側の面である。 Furthermore, the CT value equivalent amount detection unit 2 may be arranged on the outer surface of the front side of the casing 10 of the ozone generator 1a. In this case as well, the color difference of the ozone indicator 21 can be detected by the color difference sensor 22 of the CT value equivalent amount detection section 2 . The front surface of the housing 10 is the side of the outer surface of the housing 10 where the suction port 111 is formed.
実施の形態3.
 上述した実施の形態1では、オゾン発生装置1の筐体10から独立したCT値相当量検知部2が筐体10から離れた位置に固定配置されている場合について説明した。実施の形態3では、オゾン発生装置1の筐体10から独立したCT値相当量検知部2aが室内200における所望の位置に手動で配置可能な場合について説明する。
Embodiment 3.
In the first embodiment described above, a case has been described in which the CT value equivalent amount detection section 2, which is independent from the housing 10 of the ozone generator 1, is fixedly arranged at a position away from the housing 10. In Embodiment 3, a case will be described in which the CT value equivalent amount detection unit 2a independent from the housing 10 of the ozone generator 1 can be manually placed at a desired position in the room 200.
 図14は、実施の形態3にかかるオゾンシステム100bの構成例を示す模式図である。図14においては、オゾン処理対象空間である室内200にオゾンシステム100bが適用された状態を示している。実施の形態3にかかるオゾンシステム100bは、CT値相当量検知部2の代わりに、室内200における所望の位置に手動で配置可能なCT値相当量検知部2aを備えることが実施の形態1にかかるオゾンシステム100と異なる。 FIG. 14 is a schematic diagram showing a configuration example of an ozone system 100b according to the third embodiment. FIG. 14 shows a state in which the ozone system 100b is applied to an indoor room 200 that is a space to be ozone treated. The ozone system 100b according to the third embodiment is different from the first embodiment in that, instead of the CT value equivalent amount detection section 2, a CT value equivalent amount detection section 2a that can be manually placed at a desired position in the room 200 is provided. This ozone system 100 is different.
 図15は、実施の形態3にかかるオゾンシステム100bが備えるCT値相当量検知部2aにおけるオゾンインジケータの自動供給機構300の構成例を示す模式図である。図15においては、色差センサ22も示されている。図16は、実施の形態3にかかるオゾンシステム100bが備えるCT値相当量検知部2aにおけるオゾンインジケータシート301の構造を示す断面図である。図16においては、オゾンインジケータシート301の長手方向およびオゾンインジケータシート301の厚さ方向に沿った断面を示している。図17は、実施の形態3にかかるオゾンシステム100bが備えるCT値相当量検知部2aにおけるオゾンインジケータの自動供給に関わる機能構成を示すブロック図である。 FIG. 15 is a schematic diagram showing a configuration example of the automatic supply mechanism 300 of the ozone indicator in the CT value equivalent amount detection section 2a included in the ozone system 100b according to the third embodiment. In FIG. 15, the color difference sensor 22 is also shown. FIG. 16 is a sectional view showing the structure of the ozone indicator sheet 301 in the CT value equivalent amount detection section 2a included in the ozone system 100b according to the third embodiment. In FIG. 16, a cross section along the longitudinal direction of the ozone indicator sheet 301 and the thickness direction of the ozone indicator sheet 301 is shown. FIG. 17 is a block diagram showing a functional configuration related to automatic supply of an ozone indicator in the CT value equivalent amount detection section 2a included in the ozone system 100b according to the third embodiment.
 CT値相当量検知部2aは、上述した単体のオゾンインジケータ21を備えてもよく、単体のオゾンインジケータ21の代わりに、オゾンインジケータの自動供給機構300を備えてもよい。オゾンインジケータの自動供給機構300は、色差センサ22によりオゾンインジケータの色差を検知可能な位置に、オゾンインジケータを自動で供給する。図15においては、オゾンインジケータの自動供給機構300が色差センサ22の直下の位置にオゾンインジケータ21を自動で供給する場合について示している。 The CT value equivalent amount detection unit 2a may be provided with the above-described single ozone indicator 21, or may be provided with an automatic ozone indicator supply mechanism 300 instead of the single ozone indicator 21. The ozone indicator automatic supply mechanism 300 automatically supplies the ozone indicator to a position where the color difference sensor 22 can detect the color difference of the ozone indicator. FIG. 15 shows a case where the ozone indicator automatic supply mechanism 300 automatically supplies the ozone indicator 21 to a position directly below the color difference sensor 22.
 オゾンインジケータの自動供給機構300は、オゾンインジケータシート301と、シート巻出し部302と、シート巻取り部303と、フィルム剥離部304と、自動供給制御部305と、を備える。 The ozone indicator automatic supply mechanism 300 includes an ozone indicator sheet 301, a sheet unwinding section 302, a sheet winding section 303, a film peeling section 304, and an automatic supply control section 305.
 図16に示すように、オゾンインジケータシート301は、支持体である長尺のロール紙311と、化学物質312と、アルミニウムからなるラミネートフィルム313と、がこの順で積層されている。化学物質312は、上述したオゾンCT値の変化に伴って色が変化する化学物質である。オゾンインジケータシート301において、化学物質312は、ロール紙311の長手方向において予め決められた間隔を空けて、ロール紙311の表面におけるロール紙311の幅方向における予め決められた位置に、配置されている。化学物質312は、ロール紙311とラミネートフィルム313との間に密閉されており、当該ラミネートフィルム313が剥離されるまでは、室内空気に暴露されることが無く、オゾンと反応することが無い。 As shown in FIG. 16, the ozone indicator sheet 301 includes a long roll paper 311 as a support, a chemical substance 312, and a laminate film 313 made of aluminum, which are laminated in this order. The chemical substance 312 is a chemical substance whose color changes with the change in the ozone CT value described above. In the ozone indicator sheet 301, the chemical substances 312 are arranged at predetermined positions in the width direction of the roll paper 311 on the surface of the roll paper 311 at predetermined intervals in the longitudinal direction of the roll paper 311. There is. The chemical substance 312 is sealed between the paper roll 311 and the laminate film 313, and is not exposed to indoor air and does not react with ozone until the laminate film 313 is peeled off.
 シート巻出し部302は、化学物質312が未使用のオゾンインジケータシート301が巻回されたシート巻出しロール321を備える。 The sheet unwinding unit 302 includes a sheet unwinding roll 321 wound with an ozone indicator sheet 301 in which no chemical substance 312 is used.
 シート巻取り部303は、使用済みのオゾンインジケータシート301が巻回されるシート巻取りロール322と、シート巻取りロール322を回転駆動させるシート巻取り用モータ323と、を備える。 The sheet winding unit 303 includes a sheet winding roll 322 around which the used ozone indicator sheet 301 is wound, and a sheet winding motor 323 that rotationally drives the sheet winding roll 322.
 フィルム剥離部304は、シート巻出しロール321から巻き出された未使用のオゾンインジケータシート301から、ラミネートフィルム313を剥離する。フィルム剥離部304は、未使用のオゾンインジケータシート301から剥離されたラミネートフィルム313が巻回されるフィルム巻取りロール324と、フィルム巻取りロール324を回転駆動させるフィルム巻取り用モータ325と、を備える。シート巻出しロール321に巻回されたオゾンインジケータシート301は、使用前に始端部のラミネートフィルム313が剥離され、剥離されたラミネートフィルム313がフィルム巻取りロール324に巻き取られている。 The film peeling unit 304 peels the laminate film 313 from the unused ozone indicator sheet 301 unwound from the sheet unwinding roll 321. The film peeling unit 304 includes a film winding roll 324 around which the laminate film 313 peeled from the unused ozone indicator sheet 301 is wound, and a film winding motor 325 that rotationally drives the film winding roll 324. Be prepared. Before use, the laminate film 313 at the starting end of the ozone indicator sheet 301 wound around the sheet unwinding roll 321 is peeled off, and the peeled laminate film 313 is wound around the film winding roll 324.
 自動供給制御部305は、シート巻取り用モータ323とフィルム巻取り用モータ325との動作を制御することにより、色差センサ22によりオゾンインジケータの化学物質312の色差を検知可能な位置への、化学物質312の自動供給を制御する。自動供給制御部305は、システム制御部19の制御に従って、化学物質312の自動供給を制御する。自動供給制御部305は、シート巻取り用モータ323およびフィルム巻取り用モータ325と通信可能であり、シート巻取り用モータ323およびフィルム巻取り用モータ325に制御信号を送信する。シート巻取り用モータ323およびフィルム巻取り用モータ325は、自動供給制御部305から送信された制御信号を受信し、当該制御信号に基づいて動作する。 The automatic supply control unit 305 controls the operations of the sheet winding motor 323 and the film winding motor 325 to supply the chemical to a position where the color difference of the chemical substance 312 of the ozone indicator can be detected by the color difference sensor 22. Control automatic supply of substance 312. The automatic supply control unit 305 controls automatic supply of the chemical substance 312 under the control of the system control unit 19 . The automatic supply control unit 305 is capable of communicating with the sheet winding motor 323 and the film winding motor 325, and transmits control signals to the sheet winding motor 323 and the film winding motor 325. The sheet winding motor 323 and the film winding motor 325 receive the control signal transmitted from the automatic supply control section 305 and operate based on the control signal.
 オゾンシステム100bは、オゾン発生部13におけるオゾン発生の開始前に、オゾンインジケータの化学物質312が、色差センサ22の直下の位置に自動で供給される。すなわち、シート巻取り部303のシート巻取り用モータ323がシート巻取りロール322を回転させることにより、未使用のオゾンインジケータシート301がシート巻出しロール321から巻き出される。シート巻出しロール321から巻き出されたオゾンインジケータシート301は、フィルム剥離部304によって、オゾンインジケータシート301の表面のラミネートフィルム313が剥離される。すなわち、フィルム巻取り用モータ325がフィルム巻取りロール324を回転させることにより、オゾンインジケータシート301の表面のラミネートフィルム313が剥離される。 In the ozone system 100b, the ozone indicator chemical substance 312 is automatically supplied to a position directly below the color difference sensor 22 before the ozone generation section 13 starts generating ozone. That is, the sheet winding motor 323 of the sheet winding section 303 rotates the sheet winding roll 322, so that the unused ozone indicator sheet 301 is unwound from the sheet winding roll 321. The ozone indicator sheet 301 unwound from the sheet unwinding roll 321 has the laminate film 313 on the surface of the ozone indicator sheet 301 peeled off by the film peeling section 304 . That is, when the film winding motor 325 rotates the film winding roll 324, the laminate film 313 on the surface of the ozone indicator sheet 301 is peeled off.
 そして、シート巻出しロール321から巻き出されたオゾンインジケータシート301は、フィルム剥離部304によってラミネートフィルム313が剥離されながら、シート巻出しロール321からシート巻取りロール322に向かって搬送される。これにより、ラミネートフィルム313が剥離されて化学物質312が露出したオゾンインジケータシート301がシート巻出しロール321からシート巻取りロール322に向かって搬送される。その後、ラミネートフィルム313が剥離されて露出した化学物質312が色差センサ22の直下の位置に搬送された時点で、シート巻取り用モータ323が停止する。これにより、化学物質312が、色差センサ22の直下の位置に自動で供給される。 Then, the ozone indicator sheet 301 unwound from the sheet unwinding roll 321 is conveyed from the sheet unwinding roll 321 toward the sheet winding roll 322 while the laminate film 313 is peeled off by the film peeling section 304. As a result, the ozone indicator sheet 301 with the laminate film 313 peeled off and the chemical substance 312 exposed is conveyed from the sheet unwinding roll 321 toward the sheet winding roll 322. Thereafter, when the laminate film 313 is peeled off and the exposed chemical substance 312 is transported to a position directly below the color difference sensor 22, the sheet winding motor 323 is stopped. As a result, the chemical substance 312 is automatically supplied to a position directly below the color difference sensor 22.
 上述したオゾンインジケータの自動供給動作は、オゾン発生装置1の稼働後からオゾン発生部13におけるオゾンの発生開始前までの間に行われる。これにより、オゾンシステム100bの使用時に、未使用の化学物質312を自動で用意することができる。 The automatic supply operation of the ozone indicator described above is performed after the ozone generator 1 starts operating and before the ozone generator 13 starts generating ozone. Thereby, unused chemical substances 312 can be automatically prepared when the ozone system 100b is used.
 上述した実施の形態3にかかるオゾンシステム100bは、実施の形態1にかかるオゾンシステム100と同様の効果を有する。 The ozone system 100b according to the third embodiment described above has the same effects as the ozone system 100 according to the first embodiment.
 また、オゾンシステム100bは、オゾン発生装置1の筐体10から独立したCT値相当量検知部2aが室内200における所望の位置に手動で配置可能である。これにより、オゾンシステム100bは、室内のレイアウトに合わせてCT値相当量検知部2aを任意の場所に自由に移動させることが可能とされ、配置の自由度が高く使い勝手の良いオゾンシステム100bが実現されている。 Furthermore, in the ozone system 100b, the CT value equivalent amount detection unit 2a, which is independent from the housing 10 of the ozone generator 1, can be manually placed at a desired position in the room 200. This allows the ozone system 100b to freely move the CT value equivalent amount detection unit 2a to any location according to the indoor layout, realizing an ozone system 100b with a high degree of freedom in placement and ease of use. has been done.
 また、オゾンシステム100bは、CT値相当量検知部2aがオゾンインジケータの自動供給機構300を備えることにより、オゾンインジケータの交換の負荷が大幅に低減され、勝手の良いオゾンシステム100bが実現されている。 In addition, in the ozone system 100b, the CT value equivalent amount detection unit 2a is equipped with an automatic ozone indicator supply mechanism 300, so that the burden of replacing the ozone indicator is significantly reduced, and an easy-to-use ozone system 100b is realized. .
 続いて、実施の形態1から実施の形態3にかかる制御部80のそれぞれのハードウェア構成について説明する。制御部80は、実施の形態1から実施の形態3にかかるオゾン発生装置1のシステム制御部19、色差センサ22のセンサ制御部26、および実施の形態3にかかるオゾンインジケータの自動供給機構300の自動供給制御部305のそれぞれに対応する。実施の形態1から実施の形態3にかかる制御部80のそれぞれの機能は、処理回路により実現される。処理回路は、専用のハードウェアであってもよく、記憶装置に格納されるプログラムを実行する処理装置であってもよい。 Next, the respective hardware configurations of the control unit 80 according to Embodiments 1 to 3 will be described. The control unit 80 includes the system control unit 19 of the ozone generator 1 according to the first to third embodiments, the sensor control unit 26 of the color difference sensor 22, and the ozone indicator automatic supply mechanism 300 according to the third embodiment. This corresponds to each of the automatic supply control units 305. Each function of the control unit 80 according to Embodiments 1 to 3 is realized by a processing circuit. The processing circuit may be dedicated hardware or may be a processing device that executes a program stored in a storage device.
 処理回路が専用のハードウェアである場合、処理回路は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、またはこれらを組み合わせたものが該当する。図18は、実施の形態1から実施の形態3にかかる制御部80のそれぞれの機能をハードウェアで実現した構成を示す図である。処理回路81には、制御部80の機能を実現する論理回路81aが組み込まれている。 If the processing circuitry is dedicated hardware, the processing circuitry may be a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an application-specific integrated circuit, a field programmable gate array, or a combination thereof. is applicable. FIG. 18 is a diagram showing a configuration in which each function of the control unit 80 according to Embodiments 1 to 3 is realized by hardware. The processing circuit 81 includes a logic circuit 81a that implements the functions of the control section 80.
 処理回路81が処理装置の場合、制御部80の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。 When the processing circuit 81 is a processing device, the functions of the control unit 80 are realized by software, firmware, or a combination of software and firmware.
 図19は、実施の形態1から実施の形態3にかかる制御部80のそれぞれの機能をソフトウェアで実現した構成を示す図である。処理回路81は、プログラム81bを実行するプロセッサ811と、プロセッサ811がワークエリアに用いるランダムアクセスメモリ812と、プログラム81bを記憶する記憶装置813を有する。記憶装置813に記憶されているプログラム81bをプロセッサ811がランダムアクセスメモリ812上に展開し、実行することにより、制御部80の機能が実現される。ソフトウェアまたはファームウェアは、プログラム言語で記述され、記憶装置813に格納される。プロセッサ811は、中央処理装置を例示できるがこれに限定はされない。記憶装置813は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、またはEEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)といった半導体メモリを適用できる。半導体メモリは、不揮発性メモリでもよいし揮発性メモリでもよい。また、記憶装置813は、半導体メモリ以外にも、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスクまたはDVD(Digital Versatile Disc)を適用できる。なお、プロセッサ811は、演算結果といったデータを記憶装置813に出力して記憶させてもよいし、ランダムアクセスメモリ812を介して不図示の補助記憶装置に当該データを記憶させてもよい。プロセッサ811、ランダムアクセスメモリ812および記憶装置813を1チップに集積することにより、制御部80の機能をマイクロコンピュータにより実現することができる。 FIG. 19 is a diagram showing a configuration in which each function of the control unit 80 according to Embodiments 1 to 3 is realized by software. The processing circuit 81 includes a processor 811 that executes a program 81b, a random access memory 812 that the processor 811 uses as a work area, and a storage device 813 that stores the program 81b. The functions of the control unit 80 are realized by the processor 811 loading the program 81b stored in the storage device 813 onto the random access memory 812 and executing it. Software or firmware is written in a programming language and stored in storage device 813. The processor 811 can be, for example, a central processing unit, but is not limited thereto. The storage device 813 is RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), or EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). Apply semiconductor memory such as can. The semiconductor memory may be a non-volatile memory or a volatile memory. In addition to semiconductor memory, the storage device 813 can be a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, or a DVD (Digital Versatile Disc). Note that the processor 811 may output data such as calculation results to the storage device 813 for storage, or may store the data in an auxiliary storage device (not shown) via the random access memory 812. By integrating the processor 811, random access memory 812, and storage device 813 into one chip, the functions of the control section 80 can be realized by a microcomputer.
 処理回路81は、記憶装置813に記憶されたプログラム81bを読み出して実行することにより、制御部80の機能を実現する。プログラム81bは、制御部80の機能を実現する手順および方法をコンピュータに実行させるものであるとも言える。 The processing circuit 81 realizes the functions of the control unit 80 by reading and executing the program 81b stored in the storage device 813. It can also be said that the program 81b causes the computer to execute procedures and methods for realizing the functions of the control unit 80.
 なお、処理回路81は、制御部80の機能の一部を専用のハードウェアで実現し、制御部80の機能の一部をソフトウェアまたはファームウェアで実現するようにしてもよい。 Note that the processing circuit 81 may realize some of the functions of the control unit 80 using dedicated hardware, and may realize some of the functions of the control unit 80 using software or firmware.
 このように、処理回路81は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。 In this way, the processing circuit 81 can realize each of the above functions using hardware, software, firmware, or a combination thereof.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the embodiments above are merely examples, and can be combined with other known techniques, or can be combined with other embodiments, within the scope of the gist. It is also possible to omit or change part of the configuration.
 1,1a オゾン発生装置、2,2a CT値相当量検知部、10 筐体、11 ガス流路、12 送風部、13 オゾン発生部、14 湿度測定部、15 制御装置、16 記憶部、17 タイマ、18 通信部、19 システム制御部、21 オゾンインジケータ、21a,312 化学物質、21b 支持体、22 色差センサ、23 検出部、24 センサ記憶部、25 センサ通信部、26 センサ制御部、80 制御部、81 処理回路、81a 論理回路、81b プログラム、100,100a,100b オゾンシステム、111 吸込口、112 排出口、200 室内、201 床、202 天井、203 一方の壁、204 他方の壁、211,212 矢印、300 オゾンインジケータの自動供給機構、301 オゾンインジケータシート、302 シート巻出し部、303 シート巻取り部、304 フィルム剥離部、305 自動供給制御部、311 ロール紙、313 ラミネートフィルム、321 シート巻出しロール、322 シート巻取りロール、323 シート巻取り用モータ、324 フィルム巻取りロール、325 フィルム巻取り用モータ、811 プロセッサ、812 ランダムアクセスメモリ、813 記憶装置。 1, 1a ozone generator, 2, 2a CT value equivalent amount detection unit, 10 housing, 11 gas flow path, 12 ventilation unit, 13 ozone generation unit, 14 humidity measurement unit, 15 control device, 16 storage unit, 17 timer , 18 communication section, 19 system control section, 21 ozone indicator, 21a, 312 chemical substance, 21b support, 22 color difference sensor, 23 detection section, 24 sensor storage section, 25 sensor communication section, 26 sensor control section, 80 control section , 81 Processing circuit, 81a Logic circuit, 81b Program, 100, 100a, 100b Ozone system, 111 Inlet, 112 Outlet, 200 Indoor, 201 Floor, 202 Ceiling, 203 One wall, 204 Other wall, 211, 212 Arrow, 300 ozone indicator automatic supply mechanism, 301 ozone indicator sheet, 302 sheet unwinding section, 303 sheet winding section, 304 film peeling section, 305 automatic supply control section, 311 roll paper, 313 laminated film, 321 sheet unwinding roll, 322 sheet winding roll, 323 sheet winding motor, 324 film winding roll, 325 film winding motor, 811 processor, 812 random access memory, 813 storage device.

Claims (13)

  1.  室内にオゾンを供給するオゾンシステムであって、
     前記オゾンを発生させるオゾン発生部と、
     前記室内の湿度を測定する湿度測定部と、
     前記湿度測定部において測定された前記室内の湿度に基づいて、前記オゾン発生部が発生させる前記オゾンの量を制御する制御部と、
     を備えることを特徴とするオゾンシステム。
    An ozone system that supplies ozone indoors,
    an ozone generating section that generates the ozone;
    a humidity measuring unit that measures the indoor humidity;
    a control unit that controls the amount of ozone generated by the ozone generation unit based on the indoor humidity measured by the humidity measurement unit;
    An ozone system characterized by comprising:
  2.  前記制御部は、前記室内におけるオゾン濃度と、前記オゾン発生部における前記オゾンの発生時間との積の目標値に基づいて、前記オゾン発生部の運転を制御すること、
     を特徴とする請求項1に記載のオゾンシステム。
    The control unit controls the operation of the ozone generator based on a target value of the product of the ozone concentration in the room and the ozone generation time in the ozone generator;
    The ozone system according to claim 1, characterized in that:
  3.  前記制御部は、前記湿度測定部において測定された前記室内の湿度に基づいて前記目標値が補正された必要目標値に基づいて、前記オゾン発生部の運転を制御すること、
     を特徴とする請求項2に記載のオゾンシステム。
    The control unit controls the operation of the ozone generation unit based on a necessary target value, which is the target value corrected based on the indoor humidity measured by the humidity measurement unit;
    The ozone system according to claim 2, characterized in that:
  4.  前記制御部は、前記積が前記必要目標値に到達するときに、前記オゾン発生部における前記オゾンの発生を停止させる制御を行うこと、
     を特徴とする請求項3に記載のオゾンシステム。
    The control unit performs control to stop the generation of the ozone in the ozone generation unit when the product reaches the required target value;
    The ozone system according to claim 3, characterized in that:
  5.  前記室内における前記積に相当する相当量を検出する相当量検出部を備え、
     前記制御部は、前記室内における前記相当量に基づいて、前記室内の前記積が前記必要目標値に到達する時点で前記オゾン発生部における前記オゾンの発生を停止させる制御を行うこと、
     を特徴とする請求項4に記載のオゾンシステム。
    comprising an equivalent amount detection unit that detects an equivalent amount corresponding to the product in the room,
    The control unit performs control to stop the generation of the ozone in the ozone generating unit at the time when the product in the room reaches the required target value, based on the equivalent amount in the room;
    The ozone system according to claim 4, characterized in that:
  6.  前記制御部は、前記相当量が前記目標値に相当する量に到達した時点で、前記相当量が前記必要目標値に相当する量となるまでの前記オゾンの発生時間の残時間を算出し、前記残時間の計測が完了する時点で前記オゾン発生部における前記オゾンの発生を停止させる制御を行うこと、
     を特徴とする請求項5に記載のオゾンシステム。
    When the equivalent amount reaches the target value, the control unit calculates the remaining ozone generation time until the equivalent amount reaches the required target value, performing control to stop the generation of the ozone in the ozone generator at the time when the measurement of the remaining time is completed;
    The ozone system according to claim 5, characterized in that:
  7.  前記オゾン発生部における前記オゾンの発生時間を計測するタイマを備え、
     前記制御部は、前記残時間をタイマに設定し、前記タイマにおける前記残時間の計測が完了する時点で前記オゾン発生部における前記オゾンの発生を停止させる制御を行うこと、
     を特徴とする請求項6に記載のオゾンシステム。
    comprising a timer that measures the time during which the ozone is generated in the ozone generator;
    The control unit sets the remaining time on a timer, and controls the ozone generation unit to stop generating the ozone when the timer completes measuring the remaining time;
    The ozone system according to claim 6, characterized in that:
  8.  前記制御部は、前記室内における前記相当量が前記必要目標値に相当する量に到達する時点で前記オゾン発生部における前記オゾンの発生を停止させる制御を行うこと、
     を特徴とする請求項5に記載のオゾンシステム。
    The control unit performs control to stop the generation of the ozone in the ozone generation unit at the time when the equivalent amount in the room reaches the amount equivalent to the required target value;
    The ozone system according to claim 5, characterized in that:
  9.  前記相当量検出部は、前記室内に配置されて前記積の変化に伴って色が変化する化学物質と、前記相当量として前記オゾン発生部における前記オゾンの発生開始からの前記化学物質の色差を検出するセンサとを備えること、
     を特徴とする請求項5から8のいずれか1つに記載のオゾンシステム。
    The equivalent amount detection section detects a color difference between a chemical substance disposed in the room and whose color changes with a change in the product and the chemical substance from the start of generation of ozone in the ozone generation section as the equivalent amount. comprising a sensor for detecting;
    Ozone system according to any one of claims 5 to 8, characterized in that:
  10.  前記化学物質は、前記室内において前記オゾン発生部が設けられた筐体から離れた位置に配置されていること、
     を特徴とする請求項9に記載のオゾンシステム。
    The chemical substance is located in the room at a position away from a casing in which the ozone generating section is provided;
    The ozone system according to claim 9, characterized in that:
  11.  長尺の支持体とラミネートフィルムとの間に複数の前記化学物質が密閉されるとともに前記長尺の支持体の長手方向において予め決められた間隔を空けて前記長尺の支持体の表面に複数の前記化学物質が配置された化学物質シートから、前記ラミネートフィルムを剥離することにより未使用の前記化学物質を露出させ、露出させた前記化学物質を前記センサにより前記色差を検知可能な位置に自動で配置する自動供給機構を備えること、
     を特徴とする請求項10に記載のオゾンシステム。
    A plurality of chemical substances are sealed between the long support and the laminate film, and a plurality of chemical substances are placed on the surface of the long support at predetermined intervals in the longitudinal direction of the long support. The unused chemical substance is exposed by peeling off the laminate film from the chemical substance sheet on which the chemical substance is arranged, and the exposed chemical substance is automatically moved to a position where the color difference can be detected by the sensor. be equipped with an automatic feeding mechanism for placing the
    11. The ozone system according to claim 10.
  12.  前記オゾン発生部が配置され、室内空気が導入される吸込口と、前記オゾン発生部で発生されたオゾンが排出される排出口とが両端部に形成されたガス流路と、
     前記ガス流路において前記オゾン発生部よりも前記吸込口側の位置に設けられて前記室内の室内空気を前記ガス流路に導入する気流を形成する送風部と、
     を備え、
     前記化学物質は、前記ガス流路において前記送風部よりも前記吸込口側の位置に配置されていること、
     を特徴とする請求項9に記載のオゾンシステム。
    a gas flow path in which the ozone generating section is arranged, an inlet through which indoor air is introduced, and an outlet through which ozone generated in the ozone generating section is discharged, formed at both ends;
    a blower section that is provided at a position closer to the suction port than the ozone generating section in the gas flow path and forms an air flow that introduces the indoor air into the gas flow path;
    Equipped with
    the chemical substance is disposed in the gas flow path at a position closer to the suction port than the blower;
    The ozone system according to claim 9, characterized in that:
  13.  室内にオゾンを供給するオゾン供給方法であって、
     前記室内の湿度を取得するステップと、
     前記室内に前記オゾンを供給するステップと、
     前記室内の湿度に基づいて、発生させる前記オゾンの量を制御するステップと、
     を含むことを特徴とするオゾン供給方法。
    An ozone supply method for supplying ozone indoors,
    obtaining the indoor humidity;
    supplying the ozone into the room;
    controlling the amount of ozone to be generated based on the humidity in the room;
    An ozone supply method characterized by comprising:
PCT/JP2022/021506 2022-05-26 2022-05-26 Ozone system and ozone supply method WO2023228344A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022559752A JP7270853B1 (en) 2022-05-26 2022-05-26 Ozone generator and ozone supply method
PCT/JP2022/021506 WO2023228344A1 (en) 2022-05-26 2022-05-26 Ozone system and ozone supply method
JP2023071113A JP2023174539A (en) 2022-05-26 2023-04-24 Ozone generator and ozone supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021506 WO2023228344A1 (en) 2022-05-26 2022-05-26 Ozone system and ozone supply method

Publications (1)

Publication Number Publication Date
WO2023228344A1 true WO2023228344A1 (en) 2023-11-30

Family

ID=86316763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021506 WO2023228344A1 (en) 2022-05-26 2022-05-26 Ozone system and ozone supply method

Country Status (2)

Country Link
JP (2) JP7270853B1 (en)
WO (1) WO2023228344A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182142A (en) * 1992-08-25 1994-07-05 Nippon Ceramic Co Ltd Air purifier
JP2002333195A (en) * 2001-05-14 2002-11-22 Rinnai Corp Air conditioner
JP2005231977A (en) * 2004-02-23 2005-09-02 Ebara Jitsugyo Co Ltd Control method for ozone generator in ozone fumigation system and ozone generator using the method
JP2007159820A (en) * 2005-12-14 2007-06-28 Ishikawajima Harima Heavy Ind Co Ltd Ozone sterilization method and its apparatus
JP2008107139A (en) * 2006-10-24 2008-05-08 Nippon Telegr & Teleph Corp <Ntt> Gas concentration detecting tape, gas concentration measuring instrument, and cartridge and case for the gas concentration measuring instrument
JP2011085538A (en) * 2009-10-17 2011-04-28 Ntt-At Creative Corp Gas sensor
JP2012046272A (en) * 2010-08-25 2012-03-08 Mitsubishi Electric Corp Handrail sterilizing apparatus for man conveyor, and the man conveyor
JP2015142730A (en) * 2013-12-27 2015-08-06 ダイキン工業株式会社 Air-purifying unit and air-treating apparatus
JP2017013036A (en) * 2015-07-07 2017-01-19 日本エアーテック株式会社 Safety cabinet and decontamination method for safety cabinet
WO2019044254A1 (en) * 2017-08-28 2019-03-07 パナソニックIpマネジメント株式会社 Sterilization performance prediction system and sterilization performance prediction method
WO2019142647A1 (en) * 2018-01-22 2019-07-25 パナソニックIpマネジメント株式会社 Space environment control system, space environment control device, and space environment control method
JP2019187653A (en) * 2018-04-20 2019-10-31 高砂熱学工業株式会社 Sterilization disinfection apparatus and method
JP2021164905A (en) * 2020-04-07 2021-10-14 三菱パワー環境ソリューション株式会社 Air conditioner
JP2022088848A (en) * 2020-12-03 2022-06-15 三菱重工パワー環境ソリューション株式会社 Virus inactivation system and virus inactivation method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182142A (en) * 1992-08-25 1994-07-05 Nippon Ceramic Co Ltd Air purifier
JP2002333195A (en) * 2001-05-14 2002-11-22 Rinnai Corp Air conditioner
JP2005231977A (en) * 2004-02-23 2005-09-02 Ebara Jitsugyo Co Ltd Control method for ozone generator in ozone fumigation system and ozone generator using the method
JP2007159820A (en) * 2005-12-14 2007-06-28 Ishikawajima Harima Heavy Ind Co Ltd Ozone sterilization method and its apparatus
JP2008107139A (en) * 2006-10-24 2008-05-08 Nippon Telegr & Teleph Corp <Ntt> Gas concentration detecting tape, gas concentration measuring instrument, and cartridge and case for the gas concentration measuring instrument
JP2011085538A (en) * 2009-10-17 2011-04-28 Ntt-At Creative Corp Gas sensor
JP2012046272A (en) * 2010-08-25 2012-03-08 Mitsubishi Electric Corp Handrail sterilizing apparatus for man conveyor, and the man conveyor
JP2015142730A (en) * 2013-12-27 2015-08-06 ダイキン工業株式会社 Air-purifying unit and air-treating apparatus
JP2017013036A (en) * 2015-07-07 2017-01-19 日本エアーテック株式会社 Safety cabinet and decontamination method for safety cabinet
WO2019044254A1 (en) * 2017-08-28 2019-03-07 パナソニックIpマネジメント株式会社 Sterilization performance prediction system and sterilization performance prediction method
WO2019142647A1 (en) * 2018-01-22 2019-07-25 パナソニックIpマネジメント株式会社 Space environment control system, space environment control device, and space environment control method
JP2019187653A (en) * 2018-04-20 2019-10-31 高砂熱学工業株式会社 Sterilization disinfection apparatus and method
JP2021164905A (en) * 2020-04-07 2021-10-14 三菱パワー環境ソリューション株式会社 Air conditioner
JP2022088848A (en) * 2020-12-03 2022-06-15 三菱重工パワー環境ソリューション株式会社 Virus inactivation system and virus inactivation method

Also Published As

Publication number Publication date
JPWO2023228344A1 (en) 2023-11-30
JP2023174539A (en) 2023-12-07
JP7270853B1 (en) 2023-05-10

Similar Documents

Publication Publication Date Title
WO2001026697A1 (en) Formaldehyde gas sterilizer
KR100748215B1 (en) Device and method for determining concentration of sterilant
US7919059B2 (en) Vaporized hydrogen peroxide decontamination system with concentration adjustment mode
US20090047174A1 (en) Method and apparatus for decontaminating a region without dehumidification
JP2007159820A (en) Ozone sterilization method and its apparatus
WO2019194116A1 (en) Photodeodorization method and photodeodorization device
JP4995431B2 (en) Decontamination system and decontamination method
WO2023228344A1 (en) Ozone system and ozone supply method
JP2006116095A (en) System for introducing and discharging gas for decontamination
JP2007159821A (en) Ozone sterilization method and its apparatus
JP5341434B2 (en) Incubator
KR20160025386A (en) Apparatus and method for sterilizing water flow path
JP2006020669A (en) Active oxygen sterilizer and active oxygen sterilization method
CN116056736A (en) Ozone treatment device and reporting device
JP2916131B1 (en) Closed space sterilization method
KR102544569B1 (en) Gas humidifying apparatus
JP2011167463A (en) Sterilizer and electronic equipment
AU2020295064A1 (en) A method and device eor monitoring the status of a high-level disinfection device
JP2942531B2 (en) Ozone sterilizer
JP2020110226A (en) Hypochlorous acid gas emission system and hypochlorous acid gas emission method
JP2002355278A (en) Closed space atmosphere keeper
JP2019076481A (en) Optical deodorization apparatus, and optical deodorization method
JPH01270870A (en) Gaseous formaldehyde sterilization device
JP7189459B1 (en) humidifier
JPH09122214A (en) Capacity confirming device of ozone sterilizer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022559752

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943746

Country of ref document: EP

Kind code of ref document: A1