WO2023228247A1 - Manufacturing method and manufacturing device for wavelength conversion module - Google Patents

Manufacturing method and manufacturing device for wavelength conversion module Download PDF

Info

Publication number
WO2023228247A1
WO2023228247A1 PCT/JP2022/021119 JP2022021119W WO2023228247A1 WO 2023228247 A1 WO2023228247 A1 WO 2023228247A1 JP 2022021119 W JP2022021119 W JP 2022021119W WO 2023228247 A1 WO2023228247 A1 WO 2023228247A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
temperature
wavelength conversion
conversion element
light
Prior art date
Application number
PCT/JP2022/021119
Other languages
French (fr)
Japanese (ja)
Inventor
晃次 圓佛
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/021119 priority Critical patent/WO2023228247A1/en
Publication of WO2023228247A1 publication Critical patent/WO2023228247A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure

Definitions

  • the present invention relates to a method and apparatus for manufacturing a wavelength conversion module.
  • Wavelength conversion technology is used in various application fields such as optical signal wavelength conversion in optical communications, optical processing, medical care, and bioengineering.
  • wavelength conversion technology is also used, for example, in wavelength conversion devices that perform wavelength conversion operations based on difference frequency generation and amplification operations using parametric effects, which will be described later.
  • PPLN periodically poled lithium niobate
  • LiNbO 3 lithium niobate
  • the second-order nonlinear optical effect utilizes a wavelength conversion mechanism in which light with a wavelength ⁇ 1 and light with a wavelength ⁇ 2 are input into a second-order nonlinear medium to generate a new wavelength ⁇ 3 .
  • the wavelength conversion expressed by the following equation is called sum frequency generation (SFG).
  • 1/ ⁇ 3 1/ ⁇ 1 + 1/ ⁇ 2 Equation (1)
  • SHG second harmonic generation
  • ⁇ 3 ⁇ 1 /2 Equation (2)
  • wavelength conversion that satisfies the following equation is called difference frequency generation (DFG).
  • 1/ ⁇ 3 1/ ⁇ 1 -1/ ⁇ 2 Equation (3)
  • the wavelength ⁇ 1 used to generate the difference frequency according to the above equation (3) is called pump light
  • ⁇ 2 is called signal light
  • ⁇ 3 is called idler light.
  • This optical amplifier is called a Phase Sensitive Amplifier (PSA), and it can amplify input light without degrading the signal-to-noise ratio, and is expected to be used as an optical amplifier for long-distance transmission in place of erbium-doped fiber amplifiers. has been done.
  • PSA Phase Sensitive Amplifier
  • Non-Patent Document 1 Two amplification operations are known in PSA.
  • One method utilizes degenerate parametric amplification in which a signal light and a pumping light having a wavelength half the wavelength of the signal light are input into a secondary nonlinear medium to amplify the signal light.
  • Non-Patent Document 2 The other method uses non-degenerate parametric amplification to amplify the signal light and idler light by inputting a pair of signal light and idler light, and a pump light having a wavelength that is the sum of the frequencies of the signal light and idler light.
  • the signal light and idler light pair are generated by the DFG mechanism described above.
  • DFG and optical parametric amplification are mainly used among the mechanisms based on the above-mentioned second-order nonlinear effect.
  • the signal light and idler light are in the 1.55 ⁇ m communication wavelength band, so the excitation light is in the 0.78 ⁇ m band.
  • FIG. 1 is a diagram showing the basic configuration of a wavelength conversion module.
  • FIG. 1(b) is a top view (xy plane) of the wavelength conversion module 100
  • FIG. 1(a) is a cross-sectional view (yz (surface) is shown in a partially simplified manner.
  • the wavelength conversion module 100 receives fundamental wave light from the optical window 105-1 and generates second harmonic light (SHG light), which is a type of sum frequency light, from the optical window 108-2.
  • the wavelength conversion module 100 includes, in a metal housing 101, a wavelength conversion element 102, a temperature control element 103, and a metal plate 104 that serves as a support for the wavelength conversion element.
  • the metal housing 101 includes fundamental wave optical windows 105-1 and 105-2 and SHG light optical windows 108-1 and 108-2. It includes lenses 106 before and after the wavelength conversion element 102, and further includes optical filters 107-1 and 107-2 and other filter elements for separating fundamental wave light and SHG light.
  • the wavelength conversion element 102 is, for example, a PPLN element.
  • FIG. 1 shows a configuration including a wavelength conversion element for SHG light generation
  • two lights with different wavelengths are converted from the fundamental wave optical window 105-1 and the SHG light optical window 108-2 on one side of the module.
  • modules for mechanisms such as PSA and OPA can also be realized.
  • arrows indicate the propagation direction of light when the fundamental wave light is inputted from the optical window 105-1 and the SHG light is outputted from the optical window 108-2.
  • SHG light can be generated from the fundamental light in the same way.
  • Fundamental wave light can also be input from the optical window 105-2 and SHG light can be output from the optical window 108-2, and the wavelength conversion module 100 has a symmetrical structure between input and output.
  • the wavelength conversion module 100 has a structure that can input and output a plurality of lights with different wavelengths.
  • Devices equipped with such modules have often been constructed with spatial optical system components using bulk optical components due to easy availability.
  • optical fiber-type optical components and optical waveguide-type optical components for communication wavelength bands have become widely available.
  • Devices equipped with wavelength conversion modules are also beginning to adopt the form of pigtail modules, which emphasize easy optical coupling with optical fibers.
  • the pigtail type module is small, does not require optical alignment, and is versatile enough to implement any of the wavelength conversion, PSA, and OPA configurations. For wider use, there is a need for manufacturing methods and equipment that can produce pigtail modules at low cost.
  • the PPLN element 102 of the wavelength conversion module 100 in FIG. 1 uses quasi-phase matching (QPM).
  • QPM quasi-phase matching
  • the phase matching wavelength is determined when the period of the repeating structure is determined. Since the refractive index of a nonlinear optical material has temperature dependence, it is necessary to set and control the optimum temperature of the PPLN element in order to achieve highly efficient wavelength conversion.
  • the present invention provides a method and apparatus for manufacturing a pigtail module with excellent mass productivity.
  • One aspect of the present invention is a method for manufacturing an optical module including a wavelength conversion element and a temperature control element fixed to the wavelength conversion element via a metal plate, wherein the wavelength conversion element is heated to an initial temperature. adjusting the input fiber so that the transmitted light of the fundamental wave light is maximized; and modifying the current temperature of the wavelength conversion element, the step of adjusting the current temperature of the wavelength conversion element, Sweeping the wavelength to determine a peak wavelength at which the level of the wavelength-converted light is maximum, based on the operating wavelength of the wavelength conversion element, the peak wavelength, the current temperature and the temperature dependence coefficient of the phase matching wavelength, a step of correcting, the step comprising calculating a corrected temperature of the wavelength conversion element; and resetting the wavelength conversion element to the corrected temperature; and at the corrected temperature, the wavelength converted light
  • This manufacturing method includes the steps of: realigning the input fiber so that the level of the input fiber is maximized; and fixing the aligned input fiber to a metal casing of the optical module.
  • Another aspect of the present invention is a method for manufacturing an optical module including a wavelength conversion element and a temperature control element fixed to the wavelength conversion element via a metal plate, and connected to a fundamental wave input fiber. , a step of setting the wavelength conversion element to an initial temperature, a step of aligning the output fiber so that transmitted light of the fundamental wave light is maximized, and a step of correcting the current temperature of the wavelength conversion element.
  • a method and apparatus for manufacturing a pigtail wavelength conversion module that is highly mass-producible is provided.
  • FIG. 2 is a diagram showing the basic configuration of a wavelength conversion module using PPLN elements. It is a figure showing the outline of a manufacturing process of a wavelength conversion module containing a PPLN element. It is a figure which shows the change of the phase matching curve before and after fixing of a wavelength conversion element.
  • FIG. 4 is a diagram illustrating the temperature dependence of the phase matching wavelength before and after fixing the element.
  • FIG. 3 is a diagram illustrating changes in operating wavelength through the manufacturing process of a wavelength conversion module. It is a figure explaining the procedure of connecting four PTFs to a wavelength conversion module.
  • 1 is a diagram illustrating an apparatus that implements a method for manufacturing a wavelength conversion module according to the present disclosure.
  • FIG. 1 is a diagram illustrating an apparatus that implements a method for manufacturing a wavelength conversion module according to the present disclosure.
  • FIG. 2 is a flow diagram illustrating the steps of a method for manufacturing a wavelength conversion module according to the present disclosure. It is a figure explaining the principle of calculating
  • FIG. 2 is a diagram illustrating the configuration of initial data in the manufacturing method of the present disclosure.
  • the method of manufacturing a wavelength conversion module of the present disclosure provides an efficient procedure for operating a PPLN element at a desired operating wavelength while simultaneously attaching an optical fiber to the module. By automating most of the processes under computer control, the problem of element temperature fluctuations peculiar to PPLN elements during the manufacturing process is addressed, and the mass productivity of pigtail type modules is improved.
  • the wavelength conversion module manufacturing method of the present disclosure also has the aspect of a wavelength conversion module manufacturing apparatus including a computer.
  • specific problems in a wavelength conversion module including a PPLN element will be described, and then a method for manufacturing a wavelength conversion module of the present disclosure, and a configuration, operation, and procedure of a manufacturing apparatus will be described in detail.
  • FIG. 2 is a diagram showing an outline of the manufacturing process of a wavelength conversion module including a PPLN element.
  • the manufacturing process begins with a chip sorting process 11 for PPLN elements.
  • chips that include a PPLN waveguide used for modularization and have wavelength conversion performance according to the intended function are selected.
  • This chip sorting step 11 includes a chip data acquisition step 15 in parallel.
  • chip data is acquired for each chip or each product type, including at least a predetermined operating wavelength ⁇ init corresponding to the phase matching wavelength and an initial temperature T init corresponding to the operating wavelength in step 15. be done.
  • the operating wavelength is a different value for each product type depending on the intended function, and can be the same wavelength for products of the same type. Different values of the operating wavelength ⁇ init may be set within the wavelength range for products of the same type.
  • the initial temperature T init means the temperature at which the element should be set in order to achieve a phase matching state at the operating wavelength ⁇ init . Therefore, in this chip data acquisition step 15, there is a one-to-one correspondence between the operating wavelength ⁇ init and the initial temperature T init .
  • step 12 of incorporating the chip into the module housing and fixing the chip is performed.
  • the wavelength conversion element 102 is fixed to a metal plate 104 serving as a support, as shown in FIG. .
  • a wavelength conversion element 102 such as a PPLN element
  • a stress change occurs inside the wavelength conversion element 102 due to the difference in thermal expansion coefficient between the element and the metal plate. Due to such stress changes, the refractive index of the wavelength conversion element 102 changes due to photoelastic effects, piezoelectric effects, Pockels effects, and the like.
  • the actual operating wavelength of the wavelength conversion element 102 once mounted on the module in the chip fixing step 12 deviates from the initial temperature T init obtained in the step 15 . That is, even if the initial temperature T init obtained in the chip data acquisition step 15 is set after the wavelength conversion element is mounted on the module in step 12, a phase matching state cannot be obtained. The details of this problem are further explained in FIGS. 3 and 4.
  • PTF pigtail fiber
  • the method for manufacturing a wavelength conversion module of the present disclosure corresponds to steps 13 and 14.
  • the chip data including the initial temperature acquired in the chip sorting step 11 is updated to the corrected temperature and others in the PTF fixing step 16.
  • FIG. 3 is a diagram showing changes in the phase matching curve before and after fixing the wavelength conversion element.
  • the vertical axis shows the transmitted light output spectrum 10 and the SHG optical output spectra 20 and 21 of the fundamental wave light in arbitrary units (au) with respect to the wavelength (nm) of the input fundamental wave light on the horizontal axis.
  • the transmitted light output spectrum 10 of the fundamental wave light is obtained as the output from the optical window 105-2 on the opposite side of the module by inputting the fundamental wave light through the optical window 105-1 in FIG.
  • the SHG optical output spectrum is obtained as the output from the optical window 108-1.
  • the SHG optical output spectra 20 and 21 are phase matching curves obtained when measuring the chip alone at the initial temperature T init and when setting the chip to the same initial temperature T init after fixing it to a metal plate, respectively. It shows. That is, it corresponds to the phase matching curve 20 obtained in steps 11 and 15 in FIG. 2, and the phase matching curve 21 after completing the chip fixing step 12 in FIG.
  • the peak wavelength of the phase matching curve 20 is the operating wavelength ⁇ init .
  • the phase matching curve changes significantly before and after fixing the wavelength conversion element.
  • the chip temperature must be corrected from the initial temperature T init .
  • FIG. 4 is a diagram illustrating the temperature dependence of the phase matching wavelength before and after fixing the wavelength conversion element.
  • the horizontal axis shows the set temperature of the chip (° C.), and the horizontal axis shows the peak wavelength of the SHG light, that is, the phase matching wavelength (nm).
  • the phase matching wavelength has an approximately linear temperature dependence, and from the temperature dependence curve 22 obtained in the sorting step 11 before and after fixing the chip of the wavelength conversion element, it can be seen that The temperature dependence curve 23 changes.
  • the slope of the temperature dependence curve corresponds to the temperature dependence coefficient (nm/°C), and the temperature dependence coefficient also changes before and after the chip is fixed.
  • FIG. 4 for the purpose of explanation, the change in temperature dependence before and after fixing the chip is illustrated with a little emphasis.
  • the phase matching wavelength obtained by setting the chip to the initial temperature T init changes before and after fixing the wavelength conversion element to the module.
  • the phase matching curve which has a bandwidth of only about 0.5 nm, deviates, so even if fundamental wave light with the operating wavelength ⁇ init is input, SHG light of the desired wavelength cannot be obtained at all. .
  • the desired wavelength conversion function but also alignment of the PTF cannot be performed unless SHG light is obtained. Therefore, after fixing the wavelength conversion element to the module, it is necessary to find the "corrected temperature" at which the phase matching is achieved at the operating wavelength ⁇ init in the most efficient way possible.
  • the element temperature In order to determine the "corrected temperature" of the wavelength conversion element, the element temperature must be changed. In order to efficiently search for a “modified temperature,” it is also necessary to avoid prolonging the time it takes for the device characteristics to stabilize. In addition, stress changes occurring inside the wavelength conversion element may also occur due to impact during the process of welding and fixing the fiber. It is also necessary to consider the possibility that a variation similar to the above-mentioned variation in the phase matching wavelength when fixing the chip occurs each time the fiber is fixed to the module housing.
  • the method for manufacturing a wavelength conversion module of the present disclosure solves or at least alleviates the above-mentioned problems, and significantly improves mass productivity by automating the module mounting process that previously relied on skilled workers.
  • FIG. 5 is a diagram illustrating variations in the phase matching wavelength through the manufacturing process of the wavelength conversion module.
  • the chip selection step 31 a specific type of wavelength conversion element is selected based on the intended operating wavelength ⁇ init . In an actual sorting process, a certain adjustment variation width exists at the operating wavelength ⁇ init .
  • an initial temperature T init corresponding to the operating wavelength ⁇ init is determined.
  • the actual operating wavelength at which the chip is phase matched when set at the initial temperature T init varies as explained in FIG. 4 . Since the amount of fluctuation caused by fixing the chip also varies, the actual operating wavelength variation when the initial temperature T init is set increases.
  • step 33 of module assembly including attaching the PTF to the module, a "corrected temperature" that achieves a phase matching state at the operating wavelength ⁇ init is determined and readjusted. In this way, variations in the actual operating wavelength can be kept within a certain range.
  • the wavelength conversion element 102 has two optical windows on one side (input side) and two optical windows on the other side (output side).
  • a wavelength conversion module with a total of 4 ports of 2 outputs will be explained as an example.
  • a case will be described in which a fundamental wave in the 1535 nm band is input to the input port, and transmitted light of the input light and SHG light in the 775 nm wavelength band are output from the output port.
  • Four PTFs are sequentially connected to the four ports to complete a pigtail module. Note that depending on the function to be realized, light of two different wavelengths may be input from the input side port.
  • FIG. 6 is a diagram illustrating an overview of the procedure for connecting four PTFs to the wavelength conversion module.
  • the wavelength conversion module 100 is a simplified version of the wavelength conversion module shown in FIG.
  • Port 1 corresponds to the fundamental wave optical port of optical window 105-1
  • port 3 corresponds to the fundamental wave optical port of optical window 105-2
  • Port 2 corresponds to the SHG light output port of optical window 108-1
  • port 4 corresponds to the SHG light output port of optical window 106-2.
  • the fundamental wave port is used as an input port for fundamental wave light and an output port for transmitted light of fundamental wave light.
  • FIG. 6A shows the step of connecting the first input PTF 202-1 to port 1, in which a fundamental wave 212 detector 203 and a SHG light 213 detector 206 are used.
  • initial data including the initial temperature T init acquired at the time of chip sorting is used.
  • FIG. 7 shows a specific configuration of the manufacturing apparatus, and the flow of the manufacturing method will be explained with FIG. 8.
  • FIG. 6(b) shows the stage of connecting the second input PTF 202-2 to port 3, and the input PTF 202-1 is already connected to port 1.
  • a fundamental wave light detector 210 and a SHG light 213 detector 206 connected to the input PTF 202-1 are used.
  • FIG. 10 shows a specific configuration of the manufacturing apparatus, and the flow of the manufacturing method is generally the same as that in FIG. 8. It should be noted that in the process of connecting the second and subsequent PTFs, updated data including the corrected temperature obtained in the process of connecting the first input PTF is used.
  • FIG. 6 shows the stage of connecting the third output PTF 211-1 to port 4, and two input PTFs 202-1 and 202-2 are already connected to ports 1 and 3. .
  • a wavelength swept light source (SW) 201 is connected to the input PTF 202-1, and a fundamental wave light detector 210 is connected to the input PTF 202-2.
  • FIG. 11 shows a specific configuration of the manufacturing apparatus, and the flow of the manufacturing method will be explained with FIG. 12. Updated data including corrected temperatures is utilized.
  • FIG. 6(d) shows the stage of connecting the fourth output PTF 211-2 to port 2, and three PTFs are already connected to the wavelength conversion module 100.
  • a wavelength swept light source 201 is connected to the input PTF 202-2, and a fundamental wave light detector 210 is connected to the input PTF 202-1.
  • the flow of the manufacturing method is generally the same as that shown in FIG. Updated data including corrected temperatures is utilized.
  • FIG. 7 is a diagram showing the configuration of an apparatus that implements the method for manufacturing a wavelength conversion module of the present disclosure.
  • the manufacturing apparatus connects the PTF to the wavelength conversion module 100 and has a configuration for searching and determining a modified operating temperature for operating the wavelength conversion element at a desired operating wavelength.
  • the manufacturing equipment includes a wavelength-sweepable light source 201 that supplies fundamental wave light, a detector 206 that detects SHG light 213 and converts it into an electric signal, and a detector 207 that detects transmitted light 212 of the fundamental wave light and converts it into an electric signal. including.
  • a centering device 203 is used to adjust the position of the PTF at the fiber connection point to align the optical axis between the waveguide in the chip and the core of the PTF, and the position of the lens 205-1 is adjusted. It also includes a lens aligner 204.
  • the elements described above are controlled by computer 208.
  • computer 208 includes a processor, memory, and an A/D converter that converts electrical signals from detectors 206, 207 into digital data. Computer 208 may be connected to an external storage device or network (not shown).
  • the initial data of the wavelength conversion element obtained in advance in the chip sorting step is read from a memory or the like and used in the flow of the manufacturing method described below.
  • the initial data is updated during the flow of the manufacturing method.
  • the initial data may be stored in memory within computer 208, on an external storage medium, or on a network.
  • FIG. 13 is a diagram illustrating the configuration of initial data of the wavelength conversion element in the manufacturing method of the present disclosure.
  • FIG. 13(a) shows initial data acquired in the chip sorting process.
  • (b) shows data updated in the flow of the manufacturing method described later.
  • data on a wavelength conversion element may include an element identification number, an operating wavelength, an initial temperature, a temperature dependence coefficient of a phase matching wavelength, a wavelength conversion efficiency, a loss element characteristic, and the like.
  • a file in a format such as a table is saved in the memory of a computer, and this file is read from the control program of the manufacturing method.
  • the PTF mounted in the module is identified by the element identification number, etc., and the wavelength of the light source 201 and the set temperature of the temperature control element (temperature regulator) inside the module are controlled.
  • FIG. 8 is a flow diagram illustrating the steps of the method for manufacturing a wavelength conversion module of the present disclosure.
  • the flowchart shown in FIG. 9 corresponds to the flow for connecting the input PTF 202-1 for inputting the first fundamental wave light shown in FIG. 6(a).
  • the description will be made while also referring to the configuration of the device shown in FIG.
  • Each step of the flow is explained using step numbers S100 to S116. It should be noted that the description of each step in FIG. 8 is simplified.
  • the wavelength conversion module, input PTF 202-1 to be connected, aligners 203 and 204, etc. are set in the adjustment jig of the manufacturing equipment.
  • initial data is read into the computer 208 and the fundamental wave light from the light source 201 is set to the operating wavelength. Further, the wavelength conversion element is set to the initial temperature T init in the initial data. After a certain temperature stabilization time, the wavelength conversion element reaches the initial temperature T init , and the initial temperature T init becomes the "current temperature.” The "current temperature” will be updated every time the “step of correcting the current temperature” is repeated, as will be described later.
  • the input PTF 202-1 is aligned by the detector 207 so that the level of the transmitted light 212 of the fundamental wave light is maximized. Alignment to maximize the level of transmitted light is performed by aligners 203, 204 and can be performed under processor control using appropriate control algorithms.
  • the fundamental wave light from the end face of the PTF 202-1 is optically coupled to the wavelength conversion element inside the module housing via the lens 205-1. As shown as the transmitted light 10 in FIG. 3, the transmitted light level of the fundamental wave light has almost no wavelength dependence and has very little temperature dependence. It is sufficient to set the light source wavelength to a wavelength near the operating wavelength. Note that this alignment step is performed on fundamental wave light.
  • the light source 201 is controlled to wavelength sweep the input light in a predetermined wavelength range centered on the fundamental wave light.
  • the predetermined wavelength range may be determined so that the peak wavelength of the SHG light can be observed, taking into consideration the variation in the phase matching wavelength of the SGH light that is assumed in the wavelength conversion element due to the chip fixing process.
  • the SHG light detector 206 acquires data on the wavelength dependent characteristic 21 of the SHG light level corresponding to the swept wavelength range as shown in FIG.
  • the peak wavelength ⁇ P is determined from the wavelength dependent characteristics of the acquired SHG light level.
  • This peak wavelength ⁇ P corresponds to the actual phase matching wavelength at the current temperature of the wavelength conversion element contained within the module.
  • This actual phase matching wavelength is shifted from the operating wavelength ⁇ init at which the element is originally desired to operate, and the wavelength difference between the peak wavelength ⁇ P and the operating wavelength ⁇ init is defined as ⁇ .
  • the wave light sweep by the light source 201 is executed a plurality of times to obtain the average value of the phase matching curve, thereby obtaining the peak wavelength ⁇ P at which the SHG light output is maximum.
  • the wavelength difference ⁇ between the peak wavelength ⁇ P and the operating wavelength ⁇ init is large, so in many cases, the SHG optical output at a level that allows alignment cannot be obtained. It is difficult to align the input PTF 202-1 so that the level of SHG light is maximized. Therefore, the current temperature of the wavelength conversion element is corrected to obtain a "corrected temperature" so that the wavelength difference ⁇ becomes smaller.
  • a "corrected temperature" is determined from the wavelength difference ⁇ . More specifically, the modified temperature of the wavelength conversion element is determined based on the operating wavelength ⁇ init of the wavelength conversion element, the above-mentioned peak wavelength ⁇ P , the current temperature, and the temperature dependence coefficient of the phase matching wavelength included in the initial data. Calculate.
  • FIG. 9 is a diagram illustrating the principle of determining the corrected temperature of the wavelength conversion element. Similar to FIG. 3, FIG. 9(a) is a diagram illustrating a shift in the phase matching wavelength due to the chip fixing process.
  • the wavelength difference ⁇ is the wavelength difference 24 between the peaks of the two phase matching curves 20 and 21.
  • FIG. 9(b) schematically shows the relationship between the phase matching wavelength (horizontal axis) and the corresponding chip temperature (° C.).
  • the black circle 26 corresponds to a state where the phase matching wavelength is at the operating wavelength ⁇ init , and this state is the target state.
  • the black circle 27 corresponds to the state where the phase matching wavelength is at the peak wavelength ⁇ P at the current temperature in S203.
  • the "current" chip temperature may be corrected by the temperature difference ⁇ T.
  • the value of the temperature dependence coefficient (nm/° C ) of the initial data shown in FIG. "Corrected temperature” can be determined.
  • the state 28 it is also possible to correct the state 28 to a position before the target state 26.
  • any general control algorithm may be used.
  • the wavelength difference ⁇ is compared with a first threshold value, which is a reference value. Since the direction of the wavelength deviation from the initial temperature when the chip is fixed may differ depending on the type of the wavelength conversion element, it is sufficient to compare the absolute value of the wavelength difference ⁇ with the positive first threshold value.
  • the first threshold value Y
  • the actual phase matching wavelength is sufficiently close to the operating wavelength ⁇ init , so the input PTF realignment process in S108 is performed. move on.
  • the wavelength difference ⁇ exceeds the first threshold (N) the actual phase matching wavelength is still far from the operating wavelength ⁇ init , so the wavelength conversion element is corrected from the current temperature in S106.
  • the procedure of the manufacturing method After waiting for a certain temperature stabilization time, the procedure of the manufacturing method returns to the step of wavelength sweeping the fundamental wave light in S102. When the process returns to S102, the "corrected temperature" becomes the "current temperature.”
  • the entire process from S102 to S106 described above can also be said to be a process of correcting the current temperature of the wavelength conversion element.
  • the step of determining the reference value in S105 can also be performed before S104 in which the corrected temperature is calculated. Further, in parallel with obtaining the "corrected temperature", the temperature dependence coefficient can also be updated in S107.
  • the temperature dependence coefficient is updated based on the operating wavelength, peak wavelength, current temperature, and revised temperature.
  • the temperature dependence coefficient of the phase matching wavelength can be determined from the wavelength difference ⁇ and the temperature difference ⁇ T, so the temperature dependence coefficient included in the initial data shown in FIG. 13 is updated. Then, using the new temperature dependent coefficient, the steps from S102 to S106 when returning can be carried out.
  • the light source 201 is set to the operating wavelength, and the input PTF 202-1 is aligned again using the electric signal from the detector 206 so that the level of the SHG light 213 is maximized.
  • Alignment to maximize the SHG light level is performed by aligners 203, 204 and can be performed under processor control using appropriate control algorithms. The reason why realignment is performed in S108 even though the alignment to maximize the level of the transmitted light 212 of the fundamental wave light is performed in S101 is as follows.
  • the alignment position where the fundamental wave light output is maximum and the alignment position where the SHG output is maximum may be different.
  • the waveguide mode shape of the fundamental wave light and the waveguide mode shape of the SHG light may not match depending on the core size.
  • the chip set temperature has changed from the initial temperature. For this reason, the shape of the wavelength conversion element changes slightly, and there is a possibility that it deviates from the optimal position aligned with the fundamental wave light.
  • the input PTF 202-1 is realigned in S108 so as to maximize the SHG output.
  • the reference value is a second threshold value which is a predetermined level of SHG light, and if it is equal to or higher than the second threshold value (Y), the process proceeds to the next step S111. If it is less than the second threshold (N), there is a high possibility that there is some kind of defect in the wavelength conversion element itself or in the module assembly process, so further steps are stopped.
  • the fundamental wave light is swept, the peak wavelength ⁇ P of the SHG light is determined, and the corrected temperature is calculated. Furthermore, in S113, the wavelength difference ⁇ is determined based on the reference value (first threshold), and if necessary, the current temperature is changed to the "corrected temperature", and the process returns to the fundamental wave light sweep in S112. . As explained in S107, the temperature dependence coefficient can also be updated.
  • the steps S112 and S113 are simplified descriptions of a series of steps S102 to S107, and substantially the same steps as S102 to S107 may be performed.
  • the manufacturing method proceeds to S113, where the transmission spectrum of the fundamental wave light and the phase matching curve are obtained.
  • the initial data is updated by the values that have been changed up to the step of S113 described above among the initial data read by the computer 208. Specifically, the initial temperature value is rewritten as shown in FIG. 13(b) using the corrected final temperature value. Furthermore, the value of the temperature dependence coefficient is rewritten by the last value of the corrected temperature dependence coefficient.
  • the present invention is a method of manufacturing an optical module 100 including a wavelength conversion element 102 and a temperature control element 103 fixed to the wavelength conversion element via a metal plate 104, in which the wavelength conversion element is adjusted to an initial temperature of a step S101 of aligning the input fiber so that the transmitted light of the fundamental wave light is maximized; and a step S101 of correcting the current temperature of the wavelength conversion element, the step S101 comprising adjusting the current temperature of the wavelength conversion element, Step S103 of sweeping the wavelength of the wave light to determine the peak wavelength at which the level of the wavelength-converted light is maximum, the operating wavelength of the wavelength conversion element, the peak wavelength, the current temperature, and the temperature dependence coefficient of the phase matching wavelength.
  • step S104 of calculating a corrected temperature of the wavelength conversion element based on the corrected temperature; and a step S106 of resetting the wavelength conversion element to the corrected temperature; , step S108 of realigning the input fiber so that the level of the wavelength-converted light is maximized, and step S111 of fixing the aligned input fiber to the metal casing of the optical module. It can be implemented as a method.
  • the updated data can be used as initial data in the process of connecting the second and subsequent PTFs to the same wavelength conversion element. That is, in the connection process shown in FIGS. 6(b) to 6(d), by using the "update data" that reflects the results of the connection process of the first PTF, the operating wavelength can be changed from a state very close to the operating wavelength ⁇ init . , you can start optimizing the chip operating temperature.
  • the process of connecting the second and subsequent PTFs can be carried out in a significantly shorter time than the process of connecting the first PTF shown in FIG.
  • FIG. 10 is a diagram showing another configuration of an apparatus that implements the method for manufacturing a wavelength conversion module of the present disclosure.
  • the device configuration in FIG. 10 shows the stage of connecting the second input PTF 202-2 shown in FIG. 6(b) to the optical window 105-2 (port 3), and ) is already connected to the input PTF 202-1.
  • a connector-type fundamental wave light detector 210 and a SHG light 213 detector 206 connected to the input PTF 202-1 are used.
  • the flow of the manufacturing method for connecting the second input PTF using the configuration of the manufacturing apparatus shown in FIG. 10 is generally the same as that shown in FIG. 8.
  • the difference is that the initial data read in S101 is not the initial data according to Table 1 of FIG. 13(a) but the updated data according to Table 2 of FIG.
  • the point is that the direction is exactly opposite to that in FIG. Therefore, a description of the method for manufacturing the wavelength conversion module for connecting the second input PTF will be omitted.
  • FIG. 11 is a diagram showing still another configuration of an apparatus that implements the method for manufacturing a wavelength conversion module of the present disclosure.
  • the device configuration in FIG. 11 shows the stage where the output PTF 202-2, which is the third fiber shown in FIG. 6(c), is connected to the optical window 101-1 (port 4). PTFs 202-1 and 202-2 are connected. A connector type SHG light detector 212 is used on the opposite side of the connection point of the output PTF 211-1.
  • the flow of the manufacturing method for connecting the output PTF according to the configuration of the manufacturing apparatus shown in FIG. 11 is generally the same as that shown in FIG. 8 except that the fiber to be aligned is the output PTF.
  • FIG. 12 is a flow diagram illustrating the steps of the method for manufacturing a wavelength conversion module of the present disclosure.
  • the flow diagram shown in FIG. 12 corresponds to the flow for connecting the first output PTF 211-1 for outputting SHG light, which is the third fiber shown in FIG. 6(c).
  • the description will be made while also referring to the configuration of the device shown in FIG.
  • Each step of the flow is explained using step numbers S200 to S216.
  • the description of each step in FIG. 12 is simplified.
  • the procedure in the flowchart of FIG. 12 is generally the same as the procedure in the flowchart of FIG. 8, and therefore will be explained in a simplified manner.
  • the wavelength conversion module, the output PTF 211-1 to be connected, the aligners 203 and 204, etc. are set in the adjustment jig of the manufacturing device.
  • initial data is read into the computer 208 and the fundamental wave light from the light source 201 is set to the operating wavelength. Further, the wavelength conversion element is set to the initial temperature T init in the initial data. However, this initial temperature T init is the initial temperature updated in the first fiber connection process. Similar to the flow in FIG. 8, the initial temperature T init becomes the "current temperature.” The "current temperature” will be updated every time the "step of correcting the current temperature” is repeated, as will be described later.
  • the output PTF 211-1 is aligned so that the level of the SHG light detected by the detector 212 is maximized. Alignment to maximize the SHG light level is performed by aligners 203, 204 and can be performed under processor control using appropriate control algorithms. SHG light from the wavelength conversion element inside the module housing is optically coupled to the end face of the output PTF 202-1 via a lens. Even in the main flow of FIG. 12 for connecting the output PTFs, the phase matching curves are shifted as shown in FIG. 3 at the current temperature, but the input PTFs 202-1 and 202-2 for fundamental wave light have already been aligned. and has been fixed. Furthermore, the temperature of the wavelength conversion element is set at the initial temperature T init updated in the first fiber connection process. Therefore, in S201, enough SHG light is obtained for alignment.
  • the light source 201 is controlled to wavelength sweep the input light in a predetermined wavelength range centered on the fundamental wave light.
  • the SHG light detector 212 acquires data of the wavelength dependent characteristic 21 of the SHG light level corresponding to the swept wavelength range as shown in FIG.
  • the peak wavelength ⁇ P is determined from the wavelength dependent characteristics of the acquired SHG light level.
  • This peak wavelength ⁇ P corresponds to the actual phase matching wavelength at the current temperature of the wavelength conversion element contained within the module.
  • This actual phase matching wavelength is shifted from the operating wavelength ⁇ init at which the element is originally desired to operate, and the wavelength difference between the peak wavelength ⁇ P and the operating wavelength ⁇ init is defined as ⁇ .
  • the wave light sweep by the light source 201 is executed a plurality of times to obtain the average value of the phase matching curve, and to obtain the peak wavelength ⁇ P at which the SHG light output is maximum.
  • a "corrected temperature" is determined from the wavelength difference ⁇ . Specifically, the corrected temperature of the wavelength conversion element is determined based on the operating wavelength ⁇ init of the wavelength conversion element, the above-mentioned peak wavelength ⁇ P , the current temperature, and the temperature dependence coefficient of the phase matching wavelength included in the initial data. calculate.
  • the operating wavelength ⁇ init the peak wavelength ⁇ P , the current temperature, the temperature of the phase matching wavelength Based on the dependence factor, a "corrected temperature" can be determined.
  • the wavelength difference ⁇ is compared with a first threshold value that is a reference value. Since the direction of the wavelength deviation from the initial temperature when the chip is fixed may differ depending on the type of the wavelength conversion element, it is sufficient to compare the absolute value of the wavelength difference ⁇ with the positive first threshold value.
  • the first threshold value Y
  • the actual phase matching wavelength is sufficiently close to the operating wavelength ⁇ init , so the output PTF realignment step of S208 move on.
  • the wavelength difference ⁇ exceeds the first threshold (N)
  • the actual phase matching wavelength is still far from the operating wavelength ⁇ init , so the wavelength conversion element is corrected from the current temperature in S206.
  • the procedure of the manufacturing method After waiting for a certain temperature stabilization time, the procedure of the manufacturing method returns to the step of wavelength sweeping the fundamental wave light in S202. When the process returns to S202, the "corrected temperature" becomes the "current temperature.”
  • the entire process from S202 to S206 described above can also be called a process of correcting the current temperature of the wavelength conversion element.
  • the step of comparing and determining the reference value in S205 can also be performed before S204 in which the corrected temperature is calculated. Further, in parallel with determining the "corrected temperature", the temperature dependence coefficient can also be updated in S207.
  • the temperature dependence coefficient is updated based on the operating wavelength, peak wavelength, current temperature, and modified temperature.
  • the temperature dependence coefficient included in the updated initial data shown in FIG. 13(b) can be updated, and the steps from S202 to S206 upon return can be carried out using the new temperature dependence coefficient.
  • the light source 201 is set to the operating wavelength, and the output PTF 211-1 is aligned again using the electrical signal from the detector 212 so that the level of the SHG light is maximized.
  • Alignment to maximize the SHG light level is performed by aligners 203, 204 and can be performed under processor control using appropriate control algorithms.
  • re-aligning the output PTF in S208 is similar to the flow for connecting the input PTF in FIG. 8. After the corrected temperature is set in S206, if S208 is reached after repeating S202 to S205, the chip set temperature has changed from the initial temperature. This is because the shape of the wavelength conversion element may change slightly, and the output PTF may deviate from the optimal position initially aligned in S201.
  • the reference value is a second threshold value which is a predetermined level of SHG light, and if it is equal to or higher than the second threshold value (Y), the process proceeds to the next step S211. If the SHG light level is less than the second threshold (N), there is a high possibility that there is some kind of defect in the wavelength conversion element itself or in the module assembly process, so further steps are stopped.
  • the fundamental wave light is swept, the peak wavelength ⁇ P of the SHG light is determined, and the corrected temperature is calculated. Furthermore, in S213, the wavelength difference ⁇ is compared with a reference value (first threshold), and if necessary, the current temperature is changed to a "corrected temperature", and the fundamental wave light sweep in S212 is performed. return. As explained in S207, the temperature dependence coefficient can also be updated in S213.
  • the steps S212 and S213 are simplified descriptions of a series of steps S202 to S207, and substantially the same steps as S202 to S207 may be performed.
  • the manufacturing method proceeds to S214 to acquire the transmission spectrum of the fundamental wave light and the phase matching curve.
  • the initial data is updated by the values that have been changed up to the step of S213 described above among the initial data read by the computer 208. Specifically, the initial temperature value is rewritten as shown in FIG. 13(b) using the corrected final temperature value. Once the initial data is updated, the procedure of the wavelength conversion module manufacturing method of FIG. 12 ends in S216.
  • the present invention provides an optical module 100 that includes a wavelength conversion element 102 and a temperature control element 103 fixed to the wavelength conversion element via a metal plate 104, and is connected to a fundamental wave input fiber 211-1.
  • the method includes the steps of setting the wavelength conversion element to an initial temperature, aligning the output fiber so that the transmitted light of the fundamental wave light is maximized, and correcting the current temperature of the wavelength conversion element.
  • the manufacturing method can also be implemented as a manufacturing method including step S211 of fixing to a metal casing.
  • the "corrected temperature" can be efficiently determined, as in the case where the input PTF is attached to the wavelength conversion module.
  • FIG. 13 is a diagram illustrating the structure of data of the wavelength conversion element.
  • Table 1 in FIG. 13(a) is initial data obtained in the chip sorting process.
  • FIG. 13(b) shows the updated initial data after the first PTF connection procedure is performed. In the procedure for connecting four PTFs to the wavelength conversion module described with reference to FIG. 6, it is assumed that the updated initial data is used in the procedure for connecting the second and subsequent PTFs.
  • the initial data may be updated each time the procedure for connecting one PTF is performed, or the same updated initial data may be used for the second to fourth PTFs.
  • the "corrected temperature" is approximately close to the temperature that achieves phase matching at the desired operating wavelength.
  • the initial data used in the second PTF can also be used as is.
  • the method for manufacturing an optical module of the present invention described above is not limited to a wavelength conversion module that outputs SHG light, but can be used when connecting a PTF to an input light port and an output port of wavelength converted light. Furthermore, the present invention can also be applied to a wavelength conversion module that uses a wavelength conversion element in only one direction. Furthermore, it goes without saying that the present invention can also be applied to the case where the PTF is connected to an OPA module using a DFG or OPA mechanism other than a wavelength conversion module.
  • the present invention can be used in manufacturing a device for optical signal processing.

Abstract

This manufacturing method for a wavelength conversion module of the present disclosure provides an efficient procedure for operating a wavelength conversion element at a desired operating wavelength while simultaneously attaching an optical fiber to the module. By automating most of the processes under computer control, the problem of element temperature fluctuations that are unique to wavelength conversion elements during the manufacturing process can be addressed, and the mass productivity of pigtail modules can be improved. The manufacturing method for a wavelength conversion module of the present disclosure also has the aspect of a manufacturing device including a computer for the wavelength conversion module.

Description

波長変換モジュールの製造方法および製造装置Manufacturing method and manufacturing device for wavelength conversion module
 本発明は、波長変換モジュールの製造方法、製造装置に関する。 The present invention relates to a method and apparatus for manufacturing a wavelength conversion module.
 波長変換技術は、光通信における光信号波長変換、光加工、医療、生物工学などの様々な応用分野に利用されている。光通信システムでも、例えば、後述する差周波発生による波長変換動作や、パラメトリック効果を利用した増幅動作をする波長変換装置などに波長変換技術が利用されている。波長変換に利用される材料に着目すると、2次非線形材料で大きな非線形定数を持つニオブ酸リチウム(LiNbO)による周期分極反転ニオブ酸リチウム(PPLN:Periodically Poled Lithium Niobate)導波路素子は、波長変換効率の高さから光源に広く使用されている。 Wavelength conversion technology is used in various application fields such as optical signal wavelength conversion in optical communications, optical processing, medical care, and bioengineering. In optical communication systems, wavelength conversion technology is also used, for example, in wavelength conversion devices that perform wavelength conversion operations based on difference frequency generation and amplification operations using parametric effects, which will be described later. Focusing on materials used for wavelength conversion, periodically poled lithium niobate (PPLN) waveguide elements made of lithium niobate (LiNbO 3 ), which is a second-order nonlinear material and has a large nonlinear constant, are used for wavelength conversion. It is widely used as a light source due to its high efficiency.
 2次非線形光学効果では、波長λの光と波長λの光を二次非線形媒質に入力して新たな波長λを発生させる、波長変換の機構が利用される。次式で表される波長変換を、和周波発生(SFG:Sum Frequency Generation)と呼ぶ。
1/λ=1/λ+1/λ      式(1)
またλ=λとして式(1)を変形した次式を満たす波長変換を第2高調波発生(SHG:Second Harmonic Generation)と呼ぶ。
λ=λ/2            式(2)
さらに次式を満たす波長変換を差周波発生(DFG:Difference Frequency Generation)と呼ぶ。
1/λ=1/λ-1/λ      式(3)
上述の式(3)による差周波発生の時に用いる波長λを励起光、λを信号光、λをアイドラ光とそれぞれ呼ぶ。さらに、非線形媒質を共振器の中に入れてλのみ入力して式(3)を満たすλおよびλを発生する光パラメトリック発振器を構成することもできる。
The second-order nonlinear optical effect utilizes a wavelength conversion mechanism in which light with a wavelength λ 1 and light with a wavelength λ 2 are input into a second-order nonlinear medium to generate a new wavelength λ 3 . The wavelength conversion expressed by the following equation is called sum frequency generation (SFG).
1/λ 3 = 1/λ 1 + 1/λ 2 Equation (1)
Further, wavelength conversion that satisfies the following equation, which is a modification of equation (1) with λ 12 , is called second harmonic generation (SHG).
λ 3 = λ 1 /2 Equation (2)
Furthermore, wavelength conversion that satisfies the following equation is called difference frequency generation (DFG).
1/λ 3 =1/λ 1 -1/λ 2 Equation (3)
The wavelength λ 1 used to generate the difference frequency according to the above equation (3) is called pump light, λ 2 is called signal light, and λ 3 is called idler light. Furthermore, it is also possible to construct an optical parametric oscillator that generates λ 2 and λ 3 that satisfy equation (3) by inserting a nonlinear medium into a resonator and inputting only λ 1 .
 近年、波長変換効率の向上により、通信の分野で二次非線形効果による光増幅動作が可能になっている。この光増幅器は、位相感応増幅器(PSA:Phase Sensitive Amplifier)と呼ばれており、入力光の信号雑音比を劣化させることなく増幅可能で、エルビウム添加ファイバアンプに代わる長距離伝送用光増幅器として期待されている。 In recent years, improvements in wavelength conversion efficiency have made it possible to perform optical amplification operations using second-order nonlinear effects in the field of communications. This optical amplifier is called a Phase Sensitive Amplifier (PSA), and it can amplify input light without degrading the signal-to-noise ratio, and is expected to be used as an optical amplifier for long-distance transmission in place of erbium-doped fiber amplifiers. has been done.
 PSAでは、2つの増幅動作が知られている。1つは、二次非線形媒質へ信号光と信号光の半分の波長の励起光とを入力し信号光を増幅する縮退パラメトリック増幅を利用する(非特許文献1)。もう1つは、信号光およびアイドラ光のペアと、さらに信号光およびアイドラ光の和周波となる波長の励起光とを入力し、信号光およびアイドラ光を増幅する非縮退パラメトリック増幅を利用する(非特許文献2)。信号光およびアイドラ光のペアは、上述のDFG機構によって生成される。 Two amplification operations are known in PSA. One method utilizes degenerate parametric amplification in which a signal light and a pumping light having a wavelength half the wavelength of the signal light are input into a secondary nonlinear medium to amplify the signal light (Non-Patent Document 1). The other method uses non-degenerate parametric amplification to amplify the signal light and idler light by inputting a pair of signal light and idler light, and a pump light having a wavelength that is the sum of the frequencies of the signal light and idler light ( Non-patent document 2). The signal light and idler light pair are generated by the DFG mechanism described above.
 通信分野において波長変換技術を用いる場合、上述の二次非線形効果による機構の中で、主にDFGおよび光パラメトリック増幅(OPA:Optical Parametric Amplification)が用いられる。DFGおよびOPAの各機構では、信号光およびアイドラ光が1.55μm帯の通信波長帯にあるため、励起光は0.78μm帯の光となる。 When wavelength conversion technology is used in the communication field, DFG and optical parametric amplification (OPA) are mainly used among the mechanisms based on the above-mentioned second-order nonlinear effect. In each of the DFG and OPA mechanisms, the signal light and idler light are in the 1.55 μm communication wavelength band, so the excitation light is in the 0.78 μm band.
 図1は、波長変換モジュールの基本構成を示した図である。図1の(b)は波長変換モジュール100の上面図(x-y面)を、図1の(a)はモジュール100をy軸に平行なIa-Ia線で切った断面図(y-z面)を一部簡略化して示している。波長変換モジュール100は、光学窓105-1から基本波光を入力し、光学窓108-2から和周波光の一種である第2高調波光(SHG光)を発生させる。波長変換モジュール100は、金属筐体101内に、波長変換素子102、温度制御素子103および波長変換素子の支持体となる金属板104を含む。金属筐体101は、基本波用光学窓105-1、105-2およびSHG光用光学窓108-1、108-2を備えている。波長変換素子102の前後にそれぞれレンズ106を、さらに基本波光とSHG光を分離する光学フィルタ107-1、107-2他のフィルタ素子を含む。波長変換素子102は、例えばPPLN素子である。 FIG. 1 is a diagram showing the basic configuration of a wavelength conversion module. FIG. 1(b) is a top view (xy plane) of the wavelength conversion module 100, and FIG. 1(a) is a cross-sectional view (yz (surface) is shown in a partially simplified manner. The wavelength conversion module 100 receives fundamental wave light from the optical window 105-1 and generates second harmonic light (SHG light), which is a type of sum frequency light, from the optical window 108-2. The wavelength conversion module 100 includes, in a metal housing 101, a wavelength conversion element 102, a temperature control element 103, and a metal plate 104 that serves as a support for the wavelength conversion element. The metal housing 101 includes fundamental wave optical windows 105-1 and 105-2 and SHG light optical windows 108-1 and 108-2. It includes lenses 106 before and after the wavelength conversion element 102, and further includes optical filters 107-1 and 107-2 and other filter elements for separating fundamental wave light and SHG light. The wavelength conversion element 102 is, for example, a PPLN element.
 図1ではSHG光発生の波長変換素子を含む構成を示しているが、モジュールの一方の基本波用光学窓105-1およびSHG光用光学窓108-2から波長の異なる2つの光を波長変換素子に入力することで、PSA、OPA等の機構のモジュールも実現できる。また図1の波長変換モジュール100では、光学窓105-1から基本波光を入力し、光学窓108-2からSHG光を出力する際の光の伝搬方向を矢印で示している。しかしながら、光伝搬方向を図1とは正反対にしても、同様に基本波光からSHG光を発生できる。光学窓105-2から基本波光を入力し、光学窓108-2からSHG光を出力することもでき、波長変換モジュール100は入出力間で対称構造となっている。 Although FIG. 1 shows a configuration including a wavelength conversion element for SHG light generation, two lights with different wavelengths are converted from the fundamental wave optical window 105-1 and the SHG light optical window 108-2 on one side of the module. By inputting the information to the elements, modules for mechanisms such as PSA and OPA can also be realized. Further, in the wavelength conversion module 100 of FIG. 1, arrows indicate the propagation direction of light when the fundamental wave light is inputted from the optical window 105-1 and the SHG light is outputted from the optical window 108-2. However, even if the light propagation direction is opposite to that shown in FIG. 1, SHG light can be generated from the fundamental light in the same way. Fundamental wave light can also be input from the optical window 105-2 and SHG light can be output from the optical window 108-2, and the wavelength conversion module 100 has a symmetrical structure between input and output.
 図1に示したように、波長変換モジュール100では波長が異なる複数の光を入出力できる構造となっている。このようなモジュールを搭載する装置は、入手のしやすさからバルク型の光学部品を適用した空間光学系部品とともに構成される場合が多かった。近年、光ファイバ通信用デバイスの開発が進み、通信波長帯用の光ファイバ型の光学部品や、光導波路型の光学部品が広く入手可能になっている。波長変換モジュールを搭載する装置でも、光ファイバとの簡単な光結合を重視したピッグテール型モジュールの形態を採用され始めている。ピッグテール型モジュールは、小型で光学アライメントも不要となり、波長変換、PSA、OPAのいずれの構成も実現可能な汎用性を持つ。より広い普及のため、低コストでピッグテール型モジュールを生産可能な製造方法、装置が求められている。 As shown in FIG. 1, the wavelength conversion module 100 has a structure that can input and output a plurality of lights with different wavelengths. Devices equipped with such modules have often been constructed with spatial optical system components using bulk optical components due to easy availability. In recent years, the development of optical fiber communication devices has progressed, and optical fiber-type optical components and optical waveguide-type optical components for communication wavelength bands have become widely available. Devices equipped with wavelength conversion modules are also beginning to adopt the form of pigtail modules, which emphasize easy optical coupling with optical fibers. The pigtail type module is small, does not require optical alignment, and is versatile enough to implement any of the wavelength conversion, PSA, and OPA configurations. For wider use, there is a need for manufacturing methods and equipment that can produce pigtail modules at low cost.
 図1の波長変換モジュール100のPPLN素子102は、疑似位相整合(QPM:Quasi-Phase Matching)を利用している。単一周期のQPM構造によるPPLN素子では、繰り返し構造の周期が決まれば位相整合波長が決まる。非線形光学材料の屈折率には温度依存性があるため、高効率に波長変換を実現するにはPPLN素子を最適な温度に設定し、制御する必要がある。 The PPLN element 102 of the wavelength conversion module 100 in FIG. 1 uses quasi-phase matching (QPM). In a PPLN element with a single-period QPM structure, the phase matching wavelength is determined when the period of the repeating structure is determined. Since the refractive index of a nonlinear optical material has temperature dependence, it is necessary to set and control the optimum temperature of the PPLN element in order to achieve highly efficient wavelength conversion.
 しかしながら、PPLN素子をモジュール化する際、素子単体の特性の取得から、すべてのファイバをモジュールへ固定するまでの様々な工程で、位相整合波長が変動してしまう問題があった。モジュールへファイバを取り付ける工程は、熟練した作業者による煩雑で複雑な工程を含み、量産性が不十分であった。本発明は、量産性に優れたピッグテール型モジュールの製造方法および製造装置を提供する。 However, when making a PPLN element into a module, there was a problem in that the phase matching wavelength fluctuated during various steps from obtaining the characteristics of the element alone to fixing all the fibers to the module. The process of attaching the fiber to the module involves a complicated and complicated process performed by skilled workers, and is not suitable for mass production. The present invention provides a method and apparatus for manufacturing a pigtail module with excellent mass productivity.
 本発明の1つの態様は、波長変換素子と、金属板を介して前記波長変換素子に固定された温度制御素子とを含む光モジュールの製造方法であって、前記波長変換素子を、初期温度に設定するステップと、基本波光の透過光が最大となるように入力ファイバを調芯するステップと、前記波長変換素子の現在の温度を修正するステップであって、所定の波長範囲で前記基本波光の波長を掃引して、波長変換光のレベルが最大となるピーク波長を決定する工程、前記波長変換素子の動作波長、前記ピーク波長、前記現在の温度および位相整合波長の温度依存係数に基づいて、前記波長変換素子の修正された温度を算出する工程、および、前記波長変換素子を前記修正された温度に再設定する工程を含む、修正するステップと、前記修正された温度において、前記波長変換光のレベルが最大となるように、前記入力ファイバを再調芯するステップと、調芯された前記入力ファイバを前記光モジュールの金属筐体に固定するステップとを備える製造方法である。 One aspect of the present invention is a method for manufacturing an optical module including a wavelength conversion element and a temperature control element fixed to the wavelength conversion element via a metal plate, wherein the wavelength conversion element is heated to an initial temperature. adjusting the input fiber so that the transmitted light of the fundamental wave light is maximized; and modifying the current temperature of the wavelength conversion element, the step of adjusting the current temperature of the wavelength conversion element, Sweeping the wavelength to determine a peak wavelength at which the level of the wavelength-converted light is maximum, based on the operating wavelength of the wavelength conversion element, the peak wavelength, the current temperature and the temperature dependence coefficient of the phase matching wavelength, a step of correcting, the step comprising calculating a corrected temperature of the wavelength conversion element; and resetting the wavelength conversion element to the corrected temperature; and at the corrected temperature, the wavelength converted light This manufacturing method includes the steps of: realigning the input fiber so that the level of the input fiber is maximized; and fixing the aligned input fiber to a metal casing of the optical module.
 本発明の別の態様は、波長変換素子と、金属板を介して前記波長変換素子に固定された温度制御素子とを含み、基本波用入力ファイバが接続された光モジュールの製造方法であって、前記波長変換素子を、初期温度に設定するステップと、基本波光の透過光が最大となるように出力ファイバを調芯するステップと、前記波長変換素子の現在の温度を修正するステップであって、所定の波長範囲で前記基本波光の波長を掃引して、波長変換光のレベルが最大となるピーク波長を決定する工程、前記波長変換素子の動作波長、前記ピーク波長、前記現在の温度および位相整合波長の温度依存係数に基づいて、前記波長変換素子の修正された温度を算出する工程、および、前記波長変換素子を前記修正された温度に再設定する工程を含む、修正するステップと、前記修正された温度において、前記波長変換光のレベルが最大となるように、前記出力ファイバを再調芯するステップと、調芯された前記出力ファイバを前記光モジュールの金属筐体に固定するステップとを備える製造方法である。 Another aspect of the present invention is a method for manufacturing an optical module including a wavelength conversion element and a temperature control element fixed to the wavelength conversion element via a metal plate, and connected to a fundamental wave input fiber. , a step of setting the wavelength conversion element to an initial temperature, a step of aligning the output fiber so that transmitted light of the fundamental wave light is maximized, and a step of correcting the current temperature of the wavelength conversion element. , a step of sweeping the wavelength of the fundamental light in a predetermined wavelength range to determine a peak wavelength at which the level of the wavelength-converted light is maximum; the operating wavelength of the wavelength conversion element, the peak wavelength, the current temperature and phase; calculating a modified temperature of the wavelength conversion element based on the temperature dependence coefficient of the matched wavelength; and resetting the wavelength conversion element to the modified temperature; realigning the output fiber so that the level of the wavelength-converted light is maximized at the corrected temperature; and fixing the aligned output fiber to a metal casing of the optical module. This is a manufacturing method comprising:
 量産性に富むピッグテール型波長変換モジュールの製造方法および製造装置を提供する。 A method and apparatus for manufacturing a pigtail wavelength conversion module that is highly mass-producible is provided.
PPLN素子による波長変換モジュールの基本構成を示す図である。FIG. 2 is a diagram showing the basic configuration of a wavelength conversion module using PPLN elements. PPLN素子を含む波長変換モジュールの製造工程概要を示す図である。It is a figure showing the outline of a manufacturing process of a wavelength conversion module containing a PPLN element. 波長変換素子の固定の前後における位相整合曲線の変化を示す図である。It is a figure which shows the change of the phase matching curve before and after fixing of a wavelength conversion element. 素子の固定の前後で、位相整合波長の温度依存性を説明する図である。FIG. 4 is a diagram illustrating the temperature dependence of the phase matching wavelength before and after fixing the element. 波長変換モジュールの製造工程を通じた動作波長変化を説明する図である。FIG. 3 is a diagram illustrating changes in operating wavelength through the manufacturing process of a wavelength conversion module. 波長変換モジュールに4本のPTFを接続する手順を説明する図である。It is a figure explaining the procedure of connecting four PTFs to a wavelength conversion module. 本開示の波長変換モジュールの製造方法を実施する装置を示す図である。1 is a diagram illustrating an apparatus that implements a method for manufacturing a wavelength conversion module according to the present disclosure. 本開示の波長変換モジュールの製造方法の手順を説明するフロー図である。FIG. 2 is a flow diagram illustrating the steps of a method for manufacturing a wavelength conversion module according to the present disclosure. 波長変換素子の修正された温度を求める原理を説明する図である。It is a figure explaining the principle of calculating|requiring the corrected temperature of a wavelength conversion element. 波長変換モジュール製造方法を実施する装置の別の構成を示す図である。It is a figure which shows another structure of the apparatus which implements the wavelength conversion module manufacturing method. 波長変換モジュール製造方法を実施する装置の他の構成を示す図である。It is a figure which shows the other structure of the apparatus which implements the wavelength conversion module manufacturing method. 波長変換モジュールの製造方法の別の手順を説明するフロー図である。It is a flowchart explaining another procedure of the manufacturing method of a wavelength conversion module. 本開示の製造方法における初期データの構成を説明する図である。FIG. 2 is a diagram illustrating the configuration of initial data in the manufacturing method of the present disclosure.
 本開示の波長変換モジュールの製造方法は、目的とする動作波長においてPPLN素子を動作させ、同時に光ファイバをモジュールに取り付けるための効率的な手順を提供する。ほとんどの工程をコンピュータによる制御によって自動化することで、製造工程におけるPPLN素子に特有の素子温度の変動の問題に対処し、ピッグテール型モジュールの量産性を向上させる。本開示の波長変換モジュールの製造方法は、コンピュータを含む波長変換モジュールの製造装置の側面も持っている。以下、PPLN素子を含む波長変換モジュールにおける特有の問題点について説明し、その後、本開示の波長変換モジュールの製造方法、製造装置の構成、動作、手順を詳細に説明する。 The method of manufacturing a wavelength conversion module of the present disclosure provides an efficient procedure for operating a PPLN element at a desired operating wavelength while simultaneously attaching an optical fiber to the module. By automating most of the processes under computer control, the problem of element temperature fluctuations peculiar to PPLN elements during the manufacturing process is addressed, and the mass productivity of pigtail type modules is improved. The wavelength conversion module manufacturing method of the present disclosure also has the aspect of a wavelength conversion module manufacturing apparatus including a computer. Hereinafter, specific problems in a wavelength conversion module including a PPLN element will be described, and then a method for manufacturing a wavelength conversion module of the present disclosure, and a configuration, operation, and procedure of a manufacturing apparatus will be described in detail.
 図2は、PPLN素子を含む波長変換モジュールの製造工程の概要を示す図である。製造工程は、PPLN素子のチップ選別工程11から始まる。この工程11では、モジュール化のために使用するPPLN導波路を含み目的の機能に応じた波長変換性能を持つチップを、選別する。このチップ選別工程11は、並行してチップデータの取得工程15を含む。この工程15において、個々のチップまたは個々の製品タイプに対して、工程15で位相整合波長に対応する所定の動作波長λinitと、動作波長に対応する初期温度Tinitを少なくとも含むチップデータが取得される。動作波長は、目的の機能に応じて製品タイプごとに異なる値であり、同じタイプの製品であれば、同一波長であり得る。同一タイプの製品でもある波長範囲内で異なる値の動作波長λinitが設定されても良い。 FIG. 2 is a diagram showing an outline of the manufacturing process of a wavelength conversion module including a PPLN element. The manufacturing process begins with a chip sorting process 11 for PPLN elements. In this step 11, chips that include a PPLN waveguide used for modularization and have wavelength conversion performance according to the intended function are selected. This chip sorting step 11 includes a chip data acquisition step 15 in parallel. In this step 15, chip data is acquired for each chip or each product type, including at least a predetermined operating wavelength λ init corresponding to the phase matching wavelength and an initial temperature T init corresponding to the operating wavelength in step 15. be done. The operating wavelength is a different value for each product type depending on the intended function, and can be the same wavelength for products of the same type. Different values of the operating wavelength λ init may be set within the wavelength range for products of the same type.
 あるPPLN素子に対して動作波長λinitが決まれば、モジュール化した後の状態でも、一貫して同じ動作波長λinitで動作させるのが原則である。初期温度Tinitは、動作波長λinitにおいて位相整合状態とするために素子に設定すべき温度を意味している。したがって、このチップデータの取得工程15においては、動作波長λinitと、初期温度Tinitとは1対1に対応している。 Once the operating wavelength λ init is determined for a certain PPLN element, the principle is to consistently operate it at the same operating wavelength λ init even after modularization. The initial temperature T init means the temperature at which the element should be set in order to achieve a phase matching state at the operating wavelength λ init . Therefore, in this chip data acquisition step 15, there is a one-to-one correspondence between the operating wavelength λ init and the initial temperature T init .
 図2の工程11に続いて、モジュール筐体へチップを組み込み、チップを固定する工程12が実施される。モジュール化の際に、波長変換素子102を安定に保持し、素子全体を均一に温度制御するため、図1に示したように、波長変換素子102は支持体となる金属板104に固定される。PPLN素子などの波長変換素子102を金属板104に固定すると、素子と金属板の間の熱膨張率の差から、波長変換素子102内部に応力変化が生じる。このような応力変化を原因として、光弾性効果や圧電効果、ポッケルス効果などにより、波長変換素子102の屈折率が変化する。このため、チップ固定工程12において一旦モジュールに実装した後の波長変換素子102の実際の動作波長は、工程15で取得された初期温度Tinitから乖離してくる。すなわち、工程12で波長変換素子をモジュールに実装した後で、チップデータの取得工程15で取得された初期温度Tinitに設定しても、位相整合状態は得られない。この問題の詳細は、さらに図3および図4で詳述する。 Following step 11 in FIG. 2, step 12 of incorporating the chip into the module housing and fixing the chip is performed. In order to stably hold the wavelength conversion element 102 and uniformly control the temperature of the entire element during modularization, the wavelength conversion element 102 is fixed to a metal plate 104 serving as a support, as shown in FIG. . When a wavelength conversion element 102 such as a PPLN element is fixed to a metal plate 104, a stress change occurs inside the wavelength conversion element 102 due to the difference in thermal expansion coefficient between the element and the metal plate. Due to such stress changes, the refractive index of the wavelength conversion element 102 changes due to photoelastic effects, piezoelectric effects, Pockels effects, and the like. Therefore, the actual operating wavelength of the wavelength conversion element 102 once mounted on the module in the chip fixing step 12 deviates from the initial temperature T init obtained in the step 15 . That is, even if the initial temperature T init obtained in the chip data acquisition step 15 is set after the wavelength conversion element is mounted on the module in step 12, a phase matching state cannot be obtained. The details of this problem are further explained in FIGS. 3 and 4.
 チップ固定工程12に続いて、モジュールにピッグテイルファイバ(以下、簡単のためPTFで略称)をセットし、調芯し、チップ温度を探索・最適化する工程13、およびPTFをモジュールに固定する工程14が続く。後述する本開示の波長変換モジュールの製造方法は、工程13および工程14に対応している。本開示の波長変換モジュールの製造方法では、チップ選別工程11において取得された初期温度他を含むチップデータは、PTFの固定工程16において修正された温度他に更新される。 Following the chip fixing step 12, a step 13 of setting a pigtail fiber (hereinafter abbreviated as PTF for simplicity) in the module, aligning it, searching and optimizing the chip temperature, and a step of fixing the PTF to the module. 14 follows. The method for manufacturing a wavelength conversion module of the present disclosure, which will be described later, corresponds to steps 13 and 14. In the wavelength conversion module manufacturing method of the present disclosure, the chip data including the initial temperature acquired in the chip sorting step 11 is updated to the corrected temperature and others in the PTF fixing step 16.
 図3は、波長変換素子の固定の前後における位相整合曲線の変化を示す図である。図3は、横軸の入力基本波光の波長(nm)に対して、縦軸に基本波光の透過光出力スペクトル10およびSHG光出力スペクトル20、21を任意単位(a.u.)で示している。基本波光の透過光出力スペクトル10は、図1の光学窓105-1から基本波光を入射して、モジュールの反対側の光学窓105-2からの出力として得られる。SHG光出力スペクトルは、光学窓108-1からの出力として得られる。SHG光出力スペクトル20、21は、それぞれ、チップ単体を初期温度Tinitに設定して測定した時、および、チップを金属板に固定した後に同じ初期温度Tinitに設定した時に得られる位相整合曲線を示している。すなわち、図2の工程11、15で取得される位相整合曲線20、および、図2のチップ固定工程12を終了後の位相整合曲線21に対応する。位相整合曲線20のピーク波長が動作波長λinitとなる。 FIG. 3 is a diagram showing changes in the phase matching curve before and after fixing the wavelength conversion element. In FIG. 3, the vertical axis shows the transmitted light output spectrum 10 and the SHG optical output spectra 20 and 21 of the fundamental wave light in arbitrary units (au) with respect to the wavelength (nm) of the input fundamental wave light on the horizontal axis. The transmitted light output spectrum 10 of the fundamental wave light is obtained as the output from the optical window 105-2 on the opposite side of the module by inputting the fundamental wave light through the optical window 105-1 in FIG. The SHG optical output spectrum is obtained as the output from the optical window 108-1. The SHG optical output spectra 20 and 21 are phase matching curves obtained when measuring the chip alone at the initial temperature T init and when setting the chip to the same initial temperature T init after fixing it to a metal plate, respectively. It shows. That is, it corresponds to the phase matching curve 20 obtained in steps 11 and 15 in FIG. 2, and the phase matching curve 21 after completing the chip fixing step 12 in FIG. The peak wavelength of the phase matching curve 20 is the operating wavelength λ init .
 図3から明らかなように、初期温度Tinitに設定しても、波長変換素子の固定の前後で位相整合曲線は大きく変化する。逆に、チップを金属板に固定した後に、動作波長λinitでピークを持つ位相整合状態とするためには、チップ温度を初期温度Tinitから修正しなくてはならない。 As is clear from FIG. 3, even if the initial temperature T init is set, the phase matching curve changes significantly before and after fixing the wavelength conversion element. Conversely, after the chip is fixed to a metal plate, in order to achieve a phase matching state with a peak at the operating wavelength λ init , the chip temperature must be corrected from the initial temperature T init .
 図4は、波長変換素子の固定前後の、位相整合波長の温度依存性を説明する図である。横軸にチップの設定温度(℃)、横軸にSHG光のピーク波長、すなわち位相整合波長(nm)を示している。位相整合波長は、概ね直線的な温度依存性を持っており、波長変換素子のチップの固定の前後で、選別工程11に取得される温度依存性曲線22から、チップ固定工程12の終了後の温度依存曲線23に変化する。温度依存曲線の傾きは温度依存性係数(nm/℃)に相当し、温度依存性係数もチップ固定の前後で変化する。尚、図4では説明の目的で、やや強調してチップ固定の前後温度依存性の変化を描いている。 FIG. 4 is a diagram illustrating the temperature dependence of the phase matching wavelength before and after fixing the wavelength conversion element. The horizontal axis shows the set temperature of the chip (° C.), and the horizontal axis shows the peak wavelength of the SHG light, that is, the phase matching wavelength (nm). The phase matching wavelength has an approximately linear temperature dependence, and from the temperature dependence curve 22 obtained in the sorting step 11 before and after fixing the chip of the wavelength conversion element, it can be seen that The temperature dependence curve 23 changes. The slope of the temperature dependence curve corresponds to the temperature dependence coefficient (nm/°C), and the temperature dependence coefficient also changes before and after the chip is fixed. In addition, in FIG. 4, for the purpose of explanation, the change in temperature dependence before and after fixing the chip is illustrated with a little emphasis.
 上述のように、波長変換素子をモジュールに固定する前後で、チップを初期温度Tinitに設定して得られる位相整合波長は変動する。図3に示したように、帯域幅が0.5nm程度しかない位相整合曲線がずれてしまうため、動作波長λinitの基本波光を入力しても、所望の波長のSHG光が全く得られなくなる。目的の波長変換機能が実現できないだけでなく、SHG光が得られなければ、PTFの調芯作業もできない。したがって、波長変換素子をモジュールに固定した後で、動作波長λinitにおいて位相整合状態となる「修正された温度」をできる限り効率的な方法で求める必要がある。波長変換素子の「修正された温度」を求めるためには、素子温度を変化させなければならない。「修正された温度」の効率的な探索のためには、素子の特性が安定するまでの時間が長期化しないようにする必要もある。また、波長変換素子の内部に生じる応力変化は、ファイバの溶接固定の工程の衝撃などにおいても生じる場合がある。上述のチップ固定時の位相整合波長の変動と同様の変動が、ファイバをモジュール筐体に固定する作業のたびに起こる可能性も考慮する必要がある。 As described above, the phase matching wavelength obtained by setting the chip to the initial temperature T init changes before and after fixing the wavelength conversion element to the module. As shown in Figure 3, the phase matching curve, which has a bandwidth of only about 0.5 nm, deviates, so even if fundamental wave light with the operating wavelength λ init is input, SHG light of the desired wavelength cannot be obtained at all. . Not only is it impossible to achieve the desired wavelength conversion function, but also alignment of the PTF cannot be performed unless SHG light is obtained. Therefore, after fixing the wavelength conversion element to the module, it is necessary to find the "corrected temperature" at which the phase matching is achieved at the operating wavelength λ init in the most efficient way possible. In order to determine the "corrected temperature" of the wavelength conversion element, the element temperature must be changed. In order to efficiently search for a "modified temperature," it is also necessary to avoid prolonging the time it takes for the device characteristics to stabilize. In addition, stress changes occurring inside the wavelength conversion element may also occur due to impact during the process of welding and fixing the fiber. It is also necessary to consider the possibility that a variation similar to the above-mentioned variation in the phase matching wavelength when fixing the chip occurs each time the fiber is fixed to the module housing.
 本開示の波長変換モジュールの製造方法は、上述の問題を解決または少なくとも軽減し、熟練した作業者に依存していたモジュール実装工程を、自動化することによって、量産性を大幅に向上させる。 The method for manufacturing a wavelength conversion module of the present disclosure solves or at least alleviates the above-mentioned problems, and significantly improves mass productivity by automating the module mounting process that previously relied on skilled workers.
 図5は、波長変換モジュールの製造工程を通じて、位相整合波長のばらつき変化を説明する図である。チップ選別の段階31においては、特定のタイプの波長変換素子に対して、目的とする動作波長λinitで選別される。実際の選別工程では、動作波長λinitで一定の調整ばらつき幅が存在している。チップ選別の段階31では、動作波長λinitに対応する初期温度Tinitが決定される。波長変換素子チップを金属板に固定した後の段階32では、チップを初期温度Tinitに設定したときに位相整合状態となる実際の動作波長は、図4で説明したように変動する。チップ固定による変動量もばらつくため、初期温度Tinitに設定したときの実際の動作波長ばらつきは拡大する。 FIG. 5 is a diagram illustrating variations in the phase matching wavelength through the manufacturing process of the wavelength conversion module. In the chip selection step 31, a specific type of wavelength conversion element is selected based on the intended operating wavelength λ init . In an actual sorting process, a certain adjustment variation width exists at the operating wavelength λ init . In the chip sorting step 31, an initial temperature T init corresponding to the operating wavelength λ init is determined. In step 32 after fixing the wavelength conversion element chip to the metal plate, the actual operating wavelength at which the chip is phase matched when set at the initial temperature T init varies as explained in FIG. 4 . Since the amount of fluctuation caused by fixing the chip also varies, the actual operating wavelength variation when the initial temperature T init is set increases.
 本開示の波長変換モジュールの製造方法では、PTFのモジュールへの取り付けを含むモジュール組立の段階33において、動作波長λinitにおいて位相整合状態を実現する「修正された温度」を求め、再調整することで、実際の動作波長を一定の範囲にばらつきを収めることになる。 In the method for manufacturing a wavelength conversion module of the present disclosure, in step 33 of module assembly including attaching the PTF to the module, a "corrected temperature" that achieves a phase matching state at the operating wavelength λ init is determined and readjusted. In this way, variations in the actual operating wavelength can be kept within a certain range.
 以下の説明では、図1に示したように、波長変換素子102に対して一方(入力側)に2つの光学窓を有し、他方(出力側)に2つの光学窓を有し、2入力・2出力の合計4ポートを備えた波長変換モジュールを例にして説明する。入力側のポートへは1535nm帯の基本波が入力され、出力側ポートから入力光の透過光および波長775nm帯のSHG光を出力する場合について説明する。4つのポートに、4本のPTFが順次接続され、ピッグテール型モジュールが完成される。尚、実現する機能に応じて、入力側のポートからは異なる2つの波長の光を入力する場合もあり得る。 In the following description, as shown in FIG. 1, the wavelength conversion element 102 has two optical windows on one side (input side) and two optical windows on the other side (output side). - A wavelength conversion module with a total of 4 ports of 2 outputs will be explained as an example. A case will be described in which a fundamental wave in the 1535 nm band is input to the input port, and transmitted light of the input light and SHG light in the 775 nm wavelength band are output from the output port. Four PTFs are sequentially connected to the four ports to complete a pigtail module. Note that depending on the function to be realized, light of two different wavelengths may be input from the input side port.
 図6は、波長変換モジュールに4本のPTFを接続する手順の概要を説明する図である。波長変換モジュール100は、図1の波長変換モジュールを簡略化して示したものである。ポート1は光学窓105-1の基本波光ポートに対応し、ポート3は光学窓105-2の基本波光ポートに対応する。ポート2は光学窓108-1のSHG光出力ポートに対応し、ポート4は光学窓106-2のSHG光出力ポートに対応する。以下説明する製造方法において、基本波ポートは、基本波光の入力ポートおよび基本波光の透過光の出力ポートとして利用される。 FIG. 6 is a diagram illustrating an overview of the procedure for connecting four PTFs to the wavelength conversion module. The wavelength conversion module 100 is a simplified version of the wavelength conversion module shown in FIG. Port 1 corresponds to the fundamental wave optical port of optical window 105-1, and port 3 corresponds to the fundamental wave optical port of optical window 105-2. Port 2 corresponds to the SHG light output port of optical window 108-1, and port 4 corresponds to the SHG light output port of optical window 106-2. In the manufacturing method described below, the fundamental wave port is used as an input port for fundamental wave light and an output port for transmitted light of fundamental wave light.
 図6の(a)は、1本目の入力PTF202-1をポート1に接続する段階を示しており、基本波212の検波器203およびSHG光213の検波器206が用いられる。1本目の入力PTFの接続工程では、チップ選別時に取得された初期温度Tinitを含む初期データが利用される。図7で具体的な製造装置の構成が示され、製造方法のフローが図8で説明される。 FIG. 6A shows the step of connecting the first input PTF 202-1 to port 1, in which a fundamental wave 212 detector 203 and a SHG light 213 detector 206 are used. In the step of connecting the first input PTF, initial data including the initial temperature T init acquired at the time of chip sorting is used. FIG. 7 shows a specific configuration of the manufacturing apparatus, and the flow of the manufacturing method will be explained with FIG. 8.
 図6の(b)は、2本目の入力PTF202-2をポート3に接続する段階を示しており、ポート1には既に入力PTF202-1が接続されている。入力PTF202-1に接続された基本波光の検波器210およびSHG光213の検波器206が用いられる。図10で具体的な製造装置の構成が示され、製造方法のフローは図8と概ね同じである。2本目以降のPTFの接続工程では、1本目の入力PTFの接続工程で得られた修正された温度を含む更新データが利用される点に留意されたい。 FIG. 6(b) shows the stage of connecting the second input PTF 202-2 to port 3, and the input PTF 202-1 is already connected to port 1. A fundamental wave light detector 210 and a SHG light 213 detector 206 connected to the input PTF 202-1 are used. FIG. 10 shows a specific configuration of the manufacturing apparatus, and the flow of the manufacturing method is generally the same as that in FIG. 8. It should be noted that in the process of connecting the second and subsequent PTFs, updated data including the corrected temperature obtained in the process of connecting the first input PTF is used.
 図6の(c)は、3本目の出力PTF211-1をポート4に接続する段階を示しており、ポート1、3には既に2本の入力PTF202-1、202-2が接続されている。波長掃引光源(SW)201が入力PTF202-1に接続され、基本波光の検波器210が入力PTF202-2に接続される。図11で具体的な製造装置の構成が示され、製造方法のフローは図12で説明される。修正された温度を含む更新データが利用される。 (c) of FIG. 6 shows the stage of connecting the third output PTF 211-1 to port 4, and two input PTFs 202-1 and 202-2 are already connected to ports 1 and 3. . A wavelength swept light source (SW) 201 is connected to the input PTF 202-1, and a fundamental wave light detector 210 is connected to the input PTF 202-2. FIG. 11 shows a specific configuration of the manufacturing apparatus, and the flow of the manufacturing method will be explained with FIG. 12. Updated data including corrected temperatures is utilized.
 図6の(d)は、4本目の出力PTF211-2をポート2に接続する段階を示しており、波長変換モジュール100には既に3本のPTFが接続されている。波長掃引光源201が入力PTF202-2に接続され、基本波光の検波器210が入力PTF202-1に接続される。製造方法のフローは図12と概ね同じである。修正された温度を含む更新データが利用される。 FIG. 6(d) shows the stage of connecting the fourth output PTF 211-2 to port 2, and three PTFs are already connected to the wavelength conversion module 100. A wavelength swept light source 201 is connected to the input PTF 202-2, and a fundamental wave light detector 210 is connected to the input PTF 202-1. The flow of the manufacturing method is generally the same as that shown in FIG. Updated data including corrected temperatures is utilized.
 以下、基本波光入力用のPTFを接続する場合の製造方法と、SHG光出力用のPTFを接続する場合の製造方法とに分けて、詳細にその手順を説明する。 Hereinafter, the manufacturing method for connecting a PTF for fundamental wave light input and the manufacturing method for connecting a PTF for SHG light output will be explained in detail, and the steps thereof will be explained in detail.
 図7は、本開示の波長変換モジュールの製造方法を実施する装置の構成を示す図である。製造装置は、波長変換モジュール100にPTFを接続し、波長変換素子を目的の動作波長で動作させるための修正された動作温度探索および決定するための構成を有する。製造装置は、基本波光を供給する波長掃引可能な光源201、SHG光213を検出して電気信号に変換する検波器206、基本波光の透過光212を検出して電気信号に変換する検波器207を含む。さらに、ファイバ接続点におけるPTFの位置を調整して、チップ内の導波路とPTFのコアとの間で光軸を揃えるための調芯器203、および、レンズ205-1の位置を調整するためのレンズ調芯器204も含む。上述の要素は、コンピュータ208によって制御される。図示していないが、コンピュータ208は、プロセッサ、メモリ、および検波器206、207からの電気信号をデジタルデータに変換するA/D変換器を含む。コンピュータ208は、図示しない外部記憶装置またはネットワークと接続され得る。 FIG. 7 is a diagram showing the configuration of an apparatus that implements the method for manufacturing a wavelength conversion module of the present disclosure. The manufacturing apparatus connects the PTF to the wavelength conversion module 100 and has a configuration for searching and determining a modified operating temperature for operating the wavelength conversion element at a desired operating wavelength. The manufacturing equipment includes a wavelength-sweepable light source 201 that supplies fundamental wave light, a detector 206 that detects SHG light 213 and converts it into an electric signal, and a detector 207 that detects transmitted light 212 of the fundamental wave light and converts it into an electric signal. including. Further, a centering device 203 is used to adjust the position of the PTF at the fiber connection point to align the optical axis between the waveguide in the chip and the core of the PTF, and the position of the lens 205-1 is adjusted. It also includes a lens aligner 204. The elements described above are controlled by computer 208. Although not shown, computer 208 includes a processor, memory, and an A/D converter that converts electrical signals from detectors 206, 207 into digital data. Computer 208 may be connected to an external storage device or network (not shown).
 本開示の波長変換モジュールの製造方法では、チップ選別工程においてあらかじめ取得した波長変換素子の初期データをメモリなどから読み出して、以下説明する製造方法のフローにおいて利用する。初期データは、製造方法のフローにおいて更新される。初期データは、コンピュータ208内のメモリ、外部記憶媒体、またはネットワーク上にストアされることができる。 In the method for manufacturing a wavelength conversion module of the present disclosure, the initial data of the wavelength conversion element obtained in advance in the chip sorting step is read from a memory or the like and used in the flow of the manufacturing method described below. The initial data is updated during the flow of the manufacturing method. The initial data may be stored in memory within computer 208, on an external storage medium, or on a network.
 図13は、本開示の製造方法における波長変換素子の初期データの構成を説明する図である。図13の(a)は、チップ選別工程において取得された初期データを示す。(b)は、後述する製造方法のフローにおいて更新されたデータを示す。一例を挙げれば、波長変換素子のデータは、素子識別番号、動作波長、初期温度,位相整合波長の温度依存性係数、波長変換効率、損失素子特性などを含み得る。表形式など形式によるファイルをコンピュータのメモリ等に保存し、製造方法の制御プログラムからこのファイルを読み込む。モジュール内に搭載されたPTFを素子の識別番号などによって特定し、光源201の波長およびモジュール内部の温度制御素子(温調器)の設定温度を制御する。 FIG. 13 is a diagram illustrating the configuration of initial data of the wavelength conversion element in the manufacturing method of the present disclosure. FIG. 13(a) shows initial data acquired in the chip sorting process. (b) shows data updated in the flow of the manufacturing method described later. For example, data on a wavelength conversion element may include an element identification number, an operating wavelength, an initial temperature, a temperature dependence coefficient of a phase matching wavelength, a wavelength conversion efficiency, a loss element characteristic, and the like. A file in a format such as a table is saved in the memory of a computer, and this file is read from the control program of the manufacturing method. The PTF mounted in the module is identified by the element identification number, etc., and the wavelength of the light source 201 and the set temperature of the temperature control element (temperature regulator) inside the module are controlled.
 図8は、本開示の波長変換モジュールの製造方法の手順を説明するフロー図である。図9に示したフロー図は、図6の(a)に示した1本目の基本波光を入力するための入力PTF202-1を接続するためのフローに対応する。図7の装置の構成も参照しながら説明する。フローの各工程は、ステップ番号S100~S116を使って説明される。図8における各工程の記述は、簡略化されて記載されていることに留意されたい。 FIG. 8 is a flow diagram illustrating the steps of the method for manufacturing a wavelength conversion module of the present disclosure. The flowchart shown in FIG. 9 corresponds to the flow for connecting the input PTF 202-1 for inputting the first fundamental wave light shown in FIG. 6(a). The description will be made while also referring to the configuration of the device shown in FIG. Each step of the flow is explained using step numbers S100 to S116. It should be noted that the description of each step in FIG. 8 is simplified.
 S100において、波長変換モジュール、接続する入力PTF202-1、調芯器203、204などを、製造装置の調整治具にセットする。 In S100, the wavelength conversion module, input PTF 202-1 to be connected, aligners 203 and 204, etc. are set in the adjustment jig of the manufacturing equipment.
 S101において、コンピュータ208に初期データを読み出して、光源201からの基本波光を動作波長に設定する。また、波長変換素子は、初期データの中の初期温度Tinitに設定される。一定の温度安定化時間を経ると、波長変換素子は初期温度Tinitに到達し、初期温度Tinitが「現在の温度」となる。「現在の温度」は、後述するように「現在の温度を修正するステップ」を繰り返すごとに、更新されることになる。 In S101, initial data is read into the computer 208 and the fundamental wave light from the light source 201 is set to the operating wavelength. Further, the wavelength conversion element is set to the initial temperature T init in the initial data. After a certain temperature stabilization time, the wavelength conversion element reaches the initial temperature T init , and the initial temperature T init becomes the "current temperature." The "current temperature" will be updated every time the "step of correcting the current temperature" is repeated, as will be described later.
 検波器207によって、基本波光の透過光212のレベルが最大となるように、入力PTF202-1を調芯する。透過光レベルを最大化する調芯は、調芯器203、204によって行い、適切な制御アルゴリズムを使い、プロセッサの制御によって実施できる。レンズ205-1を介してPTF202-1の端面からの基本波光をモジュール筐体内の波長変換素子に光学結合する。図3で透過光10として示したように、基本波光の透過光レベルは波長依存性がほとんど無く、温度依存性も非常に少ない。光源波長を動作波長の近辺の波長に設定すれば十分である。この調芯ステップは、基本波光に対して行われることに留意されたい。 The input PTF 202-1 is aligned by the detector 207 so that the level of the transmitted light 212 of the fundamental wave light is maximized. Alignment to maximize the level of transmitted light is performed by aligners 203, 204 and can be performed under processor control using appropriate control algorithms. The fundamental wave light from the end face of the PTF 202-1 is optically coupled to the wavelength conversion element inside the module housing via the lens 205-1. As shown as the transmitted light 10 in FIG. 3, the transmitted light level of the fundamental wave light has almost no wavelength dependence and has very little temperature dependence. It is sufficient to set the light source wavelength to a wavelength near the operating wavelength. Note that this alignment step is performed on fundamental wave light.
 次にS102において、光源201を制御して、基本波光を中心として所定の波長範囲で、入力光を波長掃引する。所定の波長範囲は、チップの固定工程によって波長変換素子において想定されるSGH光の位相整合波長ばらつきを考慮して、SHG光のピーク波長が観察されるように決定すれば良い。このとき、SHG光の検波器206によって、図3に示したような掃引波長範囲に対応するSHG光レベルの波長依存特性21のデータが取得される。 Next, in S102, the light source 201 is controlled to wavelength sweep the input light in a predetermined wavelength range centered on the fundamental wave light. The predetermined wavelength range may be determined so that the peak wavelength of the SHG light can be observed, taking into consideration the variation in the phase matching wavelength of the SGH light that is assumed in the wavelength conversion element due to the chip fixing process. At this time, the SHG light detector 206 acquires data on the wavelength dependent characteristic 21 of the SHG light level corresponding to the swept wavelength range as shown in FIG.
 次にS103において、取得されたSHG光レベルの波長依存特性から、ピーク波長λを決定する。このピーク波長λは、モジュール内に含まれる波長変換素子の現在の温度における実際の位相整合波長に相当する。この実際の位相整合波長は、素子を本来動作させたい動作波長λinitからずれており、ピーク波長λと動作波長λinitの間の波長差をΔλとする。尚、この工程では、光源201による波光掃引を複数回実行して,位相整合曲線の平均値を取得して、SHG光出力が最大となるピーク波長λを取得する。 Next, in S103, the peak wavelength λ P is determined from the wavelength dependent characteristics of the acquired SHG light level. This peak wavelength λ P corresponds to the actual phase matching wavelength at the current temperature of the wavelength conversion element contained within the module. This actual phase matching wavelength is shifted from the operating wavelength λ init at which the element is originally desired to operate, and the wavelength difference between the peak wavelength λ P and the operating wavelength λ init is defined as Δλ. In this step, the wave light sweep by the light source 201 is executed a plurality of times to obtain the average value of the phase matching curve, thereby obtaining the peak wavelength λ P at which the SHG light output is maximum.
 S103の状態では、ピーク波長λと動作波長λinitの間の波長差Δλが大きいため、多くの場合、調芯可能なレベルのSHG光出力は得られない。SHG光のレベルが最大となるように入力PTF202-1を調芯することが困難である。そこで、波長変換素子の現在の温度を修正して、波長差Δλが小さくなるように「修正された温度」を求める。 In the state of S103, the wavelength difference Δλ between the peak wavelength λ P and the operating wavelength λ init is large, so in many cases, the SHG optical output at a level that allows alignment cannot be obtained. It is difficult to align the input PTF 202-1 so that the level of SHG light is maximized. Therefore, the current temperature of the wavelength conversion element is corrected to obtain a "corrected temperature" so that the wavelength difference Δλ becomes smaller.
 S104において、波長差をΔλから「修正された温度」を求める。より具体的には、波長変換素子の動作波長λinit、上述のピーク波長λ、現在の温度、初期データに含まれる位相整合波長の温度依存係数に基づいて、波長変換素子の修正された温度を算出する。 In S104, a "corrected temperature" is determined from the wavelength difference Δλ. More specifically, the modified temperature of the wavelength conversion element is determined based on the operating wavelength λ init of the wavelength conversion element, the above-mentioned peak wavelength λ P , the current temperature, and the temperature dependence coefficient of the phase matching wavelength included in the initial data. Calculate.
 図9は、波長変換素子の修正された温度を求める原理を説明する図である。図9の(a)は、図3と同様に、チップ固定工程による位相整合波長のずれを説明する図である。波長差Δλは、2つの位相整合曲線20、21のピークの波長差24である。図9の(b)は、位相整合波長(横軸)と 対応するチップ温度(℃)の関係を模式的に示している。黒丸26は、位相整合波長が動作波長λinitにある状態に対応しており、この状態が目標状態となる。黒丸27は、S203において現在の温度において位相整合波長がピーク波長λにある状態に対応している。現在の黒丸27の状態から、目標の黒丸26の目標状態に近づけるには、「現在」のチップ温度を温度差分ΔTだけ修正すれば良い。図13に示した初期データの温度依存性係数(nm/℃)の値を利用すれば、動作波長λinit、ピーク波長λ、現在の温度、位相整合波長の温度依存係数に基づいて、「修正された温度」を求めることができる。ハンチング現象を避けるために目標状態26よりも手前の状態28に修正することもできる。修正された温度を求める具体的なアルゴリズムには何の制限もなく、一般的な制御アルゴリズムを利用すれば良い。再び図9に戻ると、S104に続いて、波長差Δλを、基準値と比較判断する。 FIG. 9 is a diagram illustrating the principle of determining the corrected temperature of the wavelength conversion element. Similar to FIG. 3, FIG. 9(a) is a diagram illustrating a shift in the phase matching wavelength due to the chip fixing process. The wavelength difference Δλ is the wavelength difference 24 between the peaks of the two phase matching curves 20 and 21. FIG. 9(b) schematically shows the relationship between the phase matching wavelength (horizontal axis) and the corresponding chip temperature (° C.). The black circle 26 corresponds to a state where the phase matching wavelength is at the operating wavelength λ init , and this state is the target state. The black circle 27 corresponds to the state where the phase matching wavelength is at the peak wavelength λ P at the current temperature in S203. In order to bring the current state of the black circle 27 closer to the target state of the target black circle 26, the "current" chip temperature may be corrected by the temperature difference ΔT. By using the value of the temperature dependence coefficient (nm/° C ) of the initial data shown in FIG. "Corrected temperature" can be determined. In order to avoid the hunting phenomenon, it is also possible to correct the state 28 to a position before the target state 26. There are no restrictions on the specific algorithm for determining the corrected temperature, and any general control algorithm may be used. Returning to FIG. 9 again, following S104, the wavelength difference Δλ is compared and determined with a reference value.
 S105において、波長差Δλを基準値である第1のしきい値と比較する。波長変換素子のタイプによって、チップ固定時の初期温度からの波長ずれの方向が異なる場合もあるので、波長差Δλの絶対値と正の値の第1のしきい値を比較すれば良い。ここで、波長差Δλが第1のしきい値以下である条件で(Y)、実際の位相整合波長が動作波長λinitに十分に近づいているので、S108の入力PTFの再調芯工程に進む。波長差Δλが第1のしきい値を越えている条件で(N)、実際の位相整合波長が動作波長λinitからまだ離れているので、S106において波長変換素子を現在の温度から修正された温度に設定する。一定の温度安定化時間を待って、製造方法の手順はS102の基本波光を波長掃引する工程に戻る。S102に戻った段階では、「修正された温度」が「現在の温度」となる。 In S105, the wavelength difference Δλ is compared with a first threshold value, which is a reference value. Since the direction of the wavelength deviation from the initial temperature when the chip is fixed may differ depending on the type of the wavelength conversion element, it is sufficient to compare the absolute value of the wavelength difference Δλ with the positive first threshold value. Here, under the condition that the wavelength difference Δλ is less than or equal to the first threshold value (Y), the actual phase matching wavelength is sufficiently close to the operating wavelength λ init , so the input PTF realignment process in S108 is performed. move on. Under the condition that the wavelength difference Δλ exceeds the first threshold (N), the actual phase matching wavelength is still far from the operating wavelength λ init , so the wavelength conversion element is corrected from the current temperature in S106. Set to temperature. After waiting for a certain temperature stabilization time, the procedure of the manufacturing method returns to the step of wavelength sweeping the fundamental wave light in S102. When the process returns to S102, the "corrected temperature" becomes the "current temperature."
 上述のS102からS106までの工程の全体は、波長変換素子の現在の温度を修正する工程と言うこともできる。S105の基準値との判断工程は、修正された温度を算出するS104の前に実施することもできる。また、「修正された温度」を求めるのと並行して、S107として温度依存性係数を更新することもできる。 The entire process from S102 to S106 described above can also be said to be a process of correcting the current temperature of the wavelength conversion element. The step of determining the reference value in S105 can also be performed before S104 in which the corrected temperature is calculated. Further, in parallel with obtaining the "corrected temperature", the temperature dependence coefficient can also be updated in S107.
 S107において、動作波長、ピーク波長、現在の温度および修正された温度に基づいて、温度依存係数を更新する。図9の(b)に示したように、波長差Δλと温度差分ΔTから、位相整合波長の温度依存係数を求めることができるので、図13に示した初期データに含まれる温度依存係数を更新して、新しい温度依存係数を用いて、戻った時のS102からS106までの工程を実施できる。 At S107, the temperature dependence coefficient is updated based on the operating wavelength, peak wavelength, current temperature, and revised temperature. As shown in FIG. 9(b), the temperature dependence coefficient of the phase matching wavelength can be determined from the wavelength difference Δλ and the temperature difference ΔT, so the temperature dependence coefficient included in the initial data shown in FIG. 13 is updated. Then, using the new temperature dependent coefficient, the steps from S102 to S106 when returning can be carried out.
 S108において、光源201を動作波長に設定して、検波器206からの電気信号を使用して、SHG光213のレベルが最大となるように、入力PTF202-1を再び調芯する。SHG光レベルを最大化する調芯は、調芯器203、204によって行い、適切な制御アルゴリズムを使い、プロセッサの制御によって実施できる。S101において基本波光の透過光212のレベルを最大化する調芯を実施しているのにもかかわらず、S108で再調芯を実施するのは、次の理由による。 In S108, the light source 201 is set to the operating wavelength, and the input PTF 202-1 is aligned again using the electric signal from the detector 206 so that the level of the SHG light 213 is maximized. Alignment to maximize the SHG light level is performed by aligners 203, 204 and can be performed under processor control using appropriate control algorithms. The reason why realignment is performed in S108 even though the alignment to maximize the level of the transmitted light 212 of the fundamental wave light is performed in S101 is as follows.
 第1に、基本波光の出力が最大となる調芯位置とSHG出力が最大となる調芯位置が異なる場合があるからである。基本波光の導波モード形状とSHG光の導波モードの形状は、コアサイズによって一致しない場合がある。第2に、S106において修正された温度に設定された後で、繰り返し後のS102~S105を経てS108に到達した場合、初期温度からチップ設定温度が変わっている。このため、波長変換素子の形状がわずかながら変化し、基本波光で調芯した最適位置からずれる可能性がある。上述の理由によって、S101において基本波光の透過光212のレベルを最大化する調芯に加えて、S108でSHG出力を最大とするように入力PTF202-1を再調芯する。 First, the alignment position where the fundamental wave light output is maximum and the alignment position where the SHG output is maximum may be different. The waveguide mode shape of the fundamental wave light and the waveguide mode shape of the SHG light may not match depending on the core size. Second, after the corrected temperature is set in S106, if S108 is reached after repeating S102 to S105, the chip set temperature has changed from the initial temperature. For this reason, the shape of the wavelength conversion element changes slightly, and there is a possibility that it deviates from the optimal position aligned with the fundamental wave light. For the above-mentioned reasons, in addition to the alignment to maximize the level of the transmitted fundamental light 212 in S101, the input PTF 202-1 is realigned in S108 so as to maximize the SHG output.
 次にS109において、SHG光レベルが基準値を満たすかどうかの判定が実施される。基準値は、所定のSHG光のレベルである第2のしきい値として、第2のしきい値以上であれば(Y)、次のS111へ進む。第2のしきい値未満であれば(N)、波長変換素子自身や、モジュール組み立て工程に何らかの不具合がある可能性が高いため、これ以上の工程を中止する。 Next, in S109, it is determined whether the SHG light level satisfies the reference value. The reference value is a second threshold value which is a predetermined level of SHG light, and if it is equal to or higher than the second threshold value (Y), the process proceeds to the next step S111. If it is less than the second threshold (N), there is a high possibility that there is some kind of defect in the wavelength conversion element itself or in the module assembly process, so further steps are stopped.
 S111において、YAGレーザ209による溶接等により、金属筐体とレンズ205-1、入力PTF202-1の固定を完了する。上述のS102~S107の工程、またはこれらの繰り返しによって「修正された温度」を求めて更新されており、モジュールに固定された後の状態で、動作波長において、波長変換素子の位相整合状態を実現している。しかしながら、S111におけるYAG溶接により、PPLN素子の帯電状態が変化したり、調芯中にドリフトが生じたりし得る。さらに、YAG溶接および入力PTF202-1の固定作業によって、光軸がずれて光結合率が低下することも起こり得る。 In S111, fixing of the metal casing, lens 205-1, and input PTF 202-1 is completed by welding using the YAG laser 209 or the like. The above-mentioned steps S102 to S107 or repetition thereof have been updated to obtain the "corrected temperature", and in the state after being fixed to the module, the phase matching state of the wavelength conversion element is realized at the operating wavelength. are doing. However, YAG welding in S111 may change the charged state of the PPLN element or cause drift during alignment. Furthermore, YAG welding and the fixing work of the input PTF 202-1 may cause the optical axis to shift and the optical coupling rate to decrease.
 そこでS112において、基本波光の掃引、SHG光のピーク波長λの決定、修正された温度の算出を行う。さらにS113において、波長差Δλを基準値(第1のしきい値)で判定し、必要であれば、現在の温度を「修正された温度」に変更して、S112の基本波光の掃引に戻る。S107で説明したように、温度依存性係数を更新することもできる。S112およびS113の工程は、S102~S107の一連の工程を簡略化して記載したものであって、実質的にS102~S107と同じ工程を実施すれば良い。 Therefore, in S112, the fundamental wave light is swept, the peak wavelength λ P of the SHG light is determined, and the corrected temperature is calculated. Furthermore, in S113, the wavelength difference Δλ is determined based on the reference value (first threshold), and if necessary, the current temperature is changed to the "corrected temperature", and the process returns to the fundamental wave light sweep in S112. . As explained in S107, the temperature dependence coefficient can also be updated. The steps S112 and S113 are simplified descriptions of a series of steps S102 to S107, and substantially the same steps as S102 to S107 may be performed.
 S112において、波長差Δλが第1のしきい値以下と判定されれば、製造方法の手順はS113に進み、基本波光の透過スペクトラムと、位相整合曲線を取得する。 In S112, if it is determined that the wavelength difference Δλ is less than or equal to the first threshold, the manufacturing method proceeds to S113, where the transmission spectrum of the fundamental wave light and the phase matching curve are obtained.
 次にS114において、コンピュータ208が読みだしていた初期データの内で、上述のS113の工程までに変更された値によって、初期データを更新する。具体的には、修正された温度の最後の値によって、図13の(b)に示したように初期温度の値を書き換える。また、修正された温度依存性係数の最後の値によって、温度依存性係数の値を書き換える。初期データを更新すると、図8の波長変換モジュールの製造方法の手順は、S116で終了する。 Next, in S114, the initial data is updated by the values that have been changed up to the step of S113 described above among the initial data read by the computer 208. Specifically, the initial temperature value is rewritten as shown in FIG. 13(b) using the corrected final temperature value. Furthermore, the value of the temperature dependence coefficient is rewritten by the last value of the corrected temperature dependence coefficient. Once the initial data is updated, the procedure of the wavelength conversion module manufacturing method in FIG. 8 ends in S116.
 したがって本発明は、波長変換素子102と、金属板104を介して前記波長変換素子に固定された温度制御素子103とを含む光モジュール100の製造方法であって、前記波長変換素子を、初期温度に設定するステップと、基本波光の透過光が最大となるように入力ファイバを調芯するステップS101と、前記波長変換素子の現在の温度を修正するステップであって、所定の波長範囲で前記基本波光の波長を掃引して、波長変換光のレベルが最大となるピーク波長を決定する工程S103、前記波長変換素子の動作波長、前記ピーク波長、前記現在の温度および位相整合波長の温度依存係数に基づいて、前記波長変換素子の修正された温度を算出する工程S104、および、前記波長変換素子を前記修正された温度に再設定する工程S106を含む、修正するステップと、前記修正された温度において、前記波長変換光のレベルが最大となるように、前記入力ファイバを再調芯するステップS108と、調芯された前記入力ファイバを前記光モジュールの金属筐体に固定するステップS111とを備える製造方法として実施できる。 Therefore, the present invention is a method of manufacturing an optical module 100 including a wavelength conversion element 102 and a temperature control element 103 fixed to the wavelength conversion element via a metal plate 104, in which the wavelength conversion element is adjusted to an initial temperature of a step S101 of aligning the input fiber so that the transmitted light of the fundamental wave light is maximized; and a step S101 of correcting the current temperature of the wavelength conversion element, the step S101 comprising adjusting the current temperature of the wavelength conversion element, Step S103 of sweeping the wavelength of the wave light to determine the peak wavelength at which the level of the wavelength-converted light is maximum, the operating wavelength of the wavelength conversion element, the peak wavelength, the current temperature, and the temperature dependence coefficient of the phase matching wavelength. a step S104 of calculating a corrected temperature of the wavelength conversion element based on the corrected temperature; and a step S106 of resetting the wavelength conversion element to the corrected temperature; , step S108 of realigning the input fiber so that the level of the wavelength-converted light is maximized, and step S111 of fixing the aligned input fiber to the metal casing of the optical module. It can be implemented as a method.
 更新されたデータは、同一の波長変換素子に対してさらに2本目以降のPTFの接続する工程における初期データとして利用できる。すなわち、図6の(b)~(d)の接続工程では、1本目のPTFの接続工程の結果が反映された「更新データ」を利用することによって、動作波長λinitに非常に近い状態から、チップ動作温度の最適化を開始できる。図8に示した1本目のPTFの接続工程よりも大幅に短縮した時間で、2本目以降のPTFの接続する工程を実施できる。 The updated data can be used as initial data in the process of connecting the second and subsequent PTFs to the same wavelength conversion element. That is, in the connection process shown in FIGS. 6(b) to 6(d), by using the "update data" that reflects the results of the connection process of the first PTF, the operating wavelength can be changed from a state very close to the operating wavelength λ init . , you can start optimizing the chip operating temperature. The process of connecting the second and subsequent PTFs can be carried out in a significantly shorter time than the process of connecting the first PTF shown in FIG.
 図10は、本開示の波長変換モジュールの製造方法を実施する装置の別の構成を示す図である。図10の装置構成は、図6の(b)に示した2本目の入力PTF202-2を光学窓105-2(ポート3)に接続する段階を示しており、光学窓105-1(ポート1)には既に入力PTF202-1が接続されている。入力PTF202-1に接続されたコネクタタイプの基本波光の検波器210およびSHG光213の検波器206が用いられる。図10の製造装置の構成による2本目の入力PTFを接続する製造方法のフローは、図8と概ね同じである。相違点は、S101において読み出す初期データが、図13の(a)の表1による初期データではなく、図13の(b)の表2による更新データである点と、基本波光およびSHG光の伝搬方向が図7とは正反対になっている点である。したがって、2本目の入力PTFを接続するための波長変換モジュールの製造方法の説明は省略する。 FIG. 10 is a diagram showing another configuration of an apparatus that implements the method for manufacturing a wavelength conversion module of the present disclosure. The device configuration in FIG. 10 shows the stage of connecting the second input PTF 202-2 shown in FIG. 6(b) to the optical window 105-2 (port 3), and ) is already connected to the input PTF 202-1. A connector-type fundamental wave light detector 210 and a SHG light 213 detector 206 connected to the input PTF 202-1 are used. The flow of the manufacturing method for connecting the second input PTF using the configuration of the manufacturing apparatus shown in FIG. 10 is generally the same as that shown in FIG. 8. The difference is that the initial data read in S101 is not the initial data according to Table 1 of FIG. 13(a) but the updated data according to Table 2 of FIG. The point is that the direction is exactly opposite to that in FIG. Therefore, a description of the method for manufacturing the wavelength conversion module for connecting the second input PTF will be omitted.
 図11は、本開示の波長変換モジュールの製造方法を実施する装置のさらに別の構成を示す図である。図11の装置構成は、図6の(c)に示した3本目のファイバである出力PTF202-2を光学窓101-1(ポート4)に接続する段階を示しており、既に2本の入力PTF202-1、202-2が接続されている。出力PTF211-1の接続点とは反対側にはコネクタタイプのSHG光の検波器212が用いられる。図11の製造装置の構成による出力PTFを接続する製造方法のフローは、調芯を行うファイバが出力PTFである点を除いて、概ね図8と同じである。 FIG. 11 is a diagram showing still another configuration of an apparatus that implements the method for manufacturing a wavelength conversion module of the present disclosure. The device configuration in FIG. 11 shows the stage where the output PTF 202-2, which is the third fiber shown in FIG. 6(c), is connected to the optical window 101-1 (port 4). PTFs 202-1 and 202-2 are connected. A connector type SHG light detector 212 is used on the opposite side of the connection point of the output PTF 211-1. The flow of the manufacturing method for connecting the output PTF according to the configuration of the manufacturing apparatus shown in FIG. 11 is generally the same as that shown in FIG. 8 except that the fiber to be aligned is the output PTF.
 図12は、本開示の波長変換モジュールの製造方法の手順を説明するフロー図である。図12に示したフロー図は、図6の(c)に示した3本目のファイバであって、SHG光を出力するための1本目の出力PTF211-1を接続するためのフローに対応する。図11の装置の構成も参照しながら説明する。フローの各工程は、ステップ番号S200~S216を使って説明される。図12における各工程の記述は、簡略化されて記載されている。上述のように、図12のフロー図の手順は、概ね図8のフロー図の手順と同じであるため、簡略化して説明する。 FIG. 12 is a flow diagram illustrating the steps of the method for manufacturing a wavelength conversion module of the present disclosure. The flow diagram shown in FIG. 12 corresponds to the flow for connecting the first output PTF 211-1 for outputting SHG light, which is the third fiber shown in FIG. 6(c). The description will be made while also referring to the configuration of the device shown in FIG. Each step of the flow is explained using step numbers S200 to S216. The description of each step in FIG. 12 is simplified. As mentioned above, the procedure in the flowchart of FIG. 12 is generally the same as the procedure in the flowchart of FIG. 8, and therefore will be explained in a simplified manner.
 S200において、波長変換モジュール、接続する出力PTF211-1、調芯器203、204などを、製造装置の調整治具にセットする。 In S200, the wavelength conversion module, the output PTF 211-1 to be connected, the aligners 203 and 204, etc. are set in the adjustment jig of the manufacturing device.
 S201において、コンピュータ208に初期データを読み出して、光源201からの基本波光を動作波長に設定する。また、波長変換素子は、初期データの中の初期温度Tinitに設定される。ただし、この初期温度Tinitは、1本目のファイバの接続工程において更新された初期温度である。図8のフローと同様に、初期温度Tinitが、「現在の温度」となる。「現在の温度」は、後述するように「現在の温度を修正するステップ」を繰り返すごとに、更新されることになる。 In S201, initial data is read into the computer 208 and the fundamental wave light from the light source 201 is set to the operating wavelength. Further, the wavelength conversion element is set to the initial temperature T init in the initial data. However, this initial temperature T init is the initial temperature updated in the first fiber connection process. Similar to the flow in FIG. 8, the initial temperature T init becomes the "current temperature." The "current temperature" will be updated every time the "step of correcting the current temperature" is repeated, as will be described later.
 さらにS201において、検波器212で検出されるSHG光のレベルが最大となるように、出力PTF211-1を調芯する。SHG光レベルを最大化する調芯は、調芯器203、204によって行い、適切な制御アルゴリズムを使い、プロセッサの制御によって実施できる。モジュール筐体内の波長変換素子からのSHG光を、レンズを介して出力PTF202-1の端面へ光学結合する。出力PTFを接続する図12の本フローにおいても、現在の温度では、図3に示したように位相整合曲線はずれているが、既に、基本波光用の入力PTF202-1、202-2が調芯され固定済みである。さらに波長変換素子は、1本目のファイバの接続工程で更新された初期温度Tinitで温度設定されている。したがって、S201においては、調芯できる程度のSHG光が得られる。 Furthermore, in S201, the output PTF 211-1 is aligned so that the level of the SHG light detected by the detector 212 is maximized. Alignment to maximize the SHG light level is performed by aligners 203, 204 and can be performed under processor control using appropriate control algorithms. SHG light from the wavelength conversion element inside the module housing is optically coupled to the end face of the output PTF 202-1 via a lens. Even in the main flow of FIG. 12 for connecting the output PTFs, the phase matching curves are shifted as shown in FIG. 3 at the current temperature, but the input PTFs 202-1 and 202-2 for fundamental wave light have already been aligned. and has been fixed. Furthermore, the temperature of the wavelength conversion element is set at the initial temperature T init updated in the first fiber connection process. Therefore, in S201, enough SHG light is obtained for alignment.
 次にS202において、光源201を制御して、基本波光を中心として所定の波長範囲で、入力光を波長掃引する。このとき、SHG光の検波器212によって、図3に示したような掃引波長範囲に対応するSHG光レベルの波長依存特性21のデータが取得される。 Next, in S202, the light source 201 is controlled to wavelength sweep the input light in a predetermined wavelength range centered on the fundamental wave light. At this time, the SHG light detector 212 acquires data of the wavelength dependent characteristic 21 of the SHG light level corresponding to the swept wavelength range as shown in FIG.
 次にS203において、取得されたSHG光レベルの波長依存特性から、ピーク波長λを決定する。このピーク波長λは、モジュール内に含まれる波長変換素子の現在の温度における実際の位相整合波長に相当する。この実際の位相整合波長は、素子を本来動作させたい動作波長λinitからずれており、ピーク波長λと動作波長λinitの間の波長差をΔλとする。この工程では、光源201による波光掃引を複数回実行して,位相整合曲線の平均値を取得して、SHG光出力が最大となるピーク波長λを取得する。 Next, in S203, the peak wavelength λ P is determined from the wavelength dependent characteristics of the acquired SHG light level. This peak wavelength λ P corresponds to the actual phase matching wavelength at the current temperature of the wavelength conversion element contained within the module. This actual phase matching wavelength is shifted from the operating wavelength λ init at which the element is originally desired to operate, and the wavelength difference between the peak wavelength λ P and the operating wavelength λ init is defined as Δλ. In this step, the wave light sweep by the light source 201 is executed a plurality of times to obtain the average value of the phase matching curve, and to obtain the peak wavelength λ P at which the SHG light output is maximum.
 S203の状態では、ピーク波長λと動作波長λinitの間に波長差Δλがあるので、正確な調芯のためにはSHG光のレベルは不十分である。そこで、波長変換素子の現在の温度を修正して、波長差Δλが小さくなるような「修正された温度」を求める。 In the state of S203, there is a wavelength difference Δλ between the peak wavelength λ P and the operating wavelength λ init , so the level of the SHG light is insufficient for accurate alignment. Therefore, the current temperature of the wavelength conversion element is corrected to find a "corrected temperature" that reduces the wavelength difference Δλ.
 S204において、波長差をΔλから「修正された温度」を求める。具体的には、波長変換素子の動作波長λinit、上述のピーク波長λ、現在の温度、初期データに含まれる位相整合波長の温度依存係数に基づいて、波長変換素子の修正された温度を算出する。 In S204, a "corrected temperature" is determined from the wavelength difference Δλ. Specifically, the corrected temperature of the wavelength conversion element is determined based on the operating wavelength λ init of the wavelength conversion element, the above-mentioned peak wavelength λ P , the current temperature, and the temperature dependence coefficient of the phase matching wavelength included in the initial data. calculate.
 図13の(b)に示した更新された初期データの温度依存性係数(nm/℃)の値を利用すれば、動作波長λinit、ピーク波長λ、現在の温度、位相整合波長の温度依存係数に基づいて、「修正された温度」を求めることができる。 By using the values of the temperature dependence coefficient (nm/°C) of the updated initial data shown in FIG. 13(b), the operating wavelength λ init , the peak wavelength λ P , the current temperature, the temperature of the phase matching wavelength Based on the dependence factor, a "corrected temperature" can be determined.
 次にS205において、波長差Δλを基準値である第1のしきい値と比較する。波長変換素子のタイプによって、チップ固定時の初期温度からの波長ずれの方向が異なる場合もあるので、波長差Δλの絶対値と正の値の第1のしきい値を比較すれば良い。ここで、波長差Δλが第1のしきい値以下である条件で(Y)、実際の位相整合波長が動作波長λinitに十分に近づいているので、S208の出力PTFの再調芯工程に進む。波長差Δλが第1のしきい値を越えている条件で(N)、実際の位相整合波長が動作波長λinitからまだ離れているので、S206において波長変換素子を現在の温度から修正された温度に設定する。一定の温度安定化時間を待って、製造方法の手順はS202の基本波光を波長掃引する工程に戻る。S202に戻った段階では、「修正された温度」が「現在の温度」となる。 Next, in S205, the wavelength difference Δλ is compared with a first threshold value that is a reference value. Since the direction of the wavelength deviation from the initial temperature when the chip is fixed may differ depending on the type of the wavelength conversion element, it is sufficient to compare the absolute value of the wavelength difference Δλ with the positive first threshold value. Here, under the condition that the wavelength difference Δλ is less than or equal to the first threshold value (Y), the actual phase matching wavelength is sufficiently close to the operating wavelength λ init , so the output PTF realignment step of S208 move on. Under the condition that the wavelength difference Δλ exceeds the first threshold (N), the actual phase matching wavelength is still far from the operating wavelength λ init , so the wavelength conversion element is corrected from the current temperature in S206. Set to temperature. After waiting for a certain temperature stabilization time, the procedure of the manufacturing method returns to the step of wavelength sweeping the fundamental wave light in S202. When the process returns to S202, the "corrected temperature" becomes the "current temperature."
 上述のS202からS206までの工程の全体は、波長変換素子の現在の温度を修正する工程と言うこともできる。S205の基準値との比較・判断工程は、修正された温度を算出するS204の前に実施することもできる。また、「修正された温度」を求めるのと並行して、S207として温度依存性係数を更新することもできる。 The entire process from S202 to S206 described above can also be called a process of correcting the current temperature of the wavelength conversion element. The step of comparing and determining the reference value in S205 can also be performed before S204 in which the corrected temperature is calculated. Further, in parallel with determining the "corrected temperature", the temperature dependence coefficient can also be updated in S207.
 S207において、動作波長、ピーク波長、現在の温度および修正された温度に基づいて、温度依存係数を更新する。図13の(b)に示した更新された初期データに含まれる温度依存係数を更新して、新しい温度依存係数を用いて、戻った時のS202からS206までの工程を実施できる。 At S207, the temperature dependence coefficient is updated based on the operating wavelength, peak wavelength, current temperature, and modified temperature. The temperature dependence coefficient included in the updated initial data shown in FIG. 13(b) can be updated, and the steps from S202 to S206 upon return can be carried out using the new temperature dependence coefficient.
 S208において、光源201を動作波長に設定して、検波器212からの電気信号を使用して、SHG光のレベルが最大となるように、出力PTF211-1を再び調芯する。SHG光レベルを最大化する調芯は、調芯器203、204によって行い、適切な制御アルゴリズムを使い、プロセッサの制御によって実施できる。S201においてSHG光のレベルを最大化する調芯を実施するのに加えて、S208で出力PTFの再調芯を実施するのは、図8の入力PTFを接続するためのフローと同様である。S206において修正された温度に設定された後で、繰り返し後のS202~S205を経てS208に到達した場合、チップ設定温度が初期温度から変わっている。このため、波長変換素子の形状がわずかながら変化し、最初にS201で調芯した出力PTFの最適位置からずれる可能性があるからである。 In S208, the light source 201 is set to the operating wavelength, and the output PTF 211-1 is aligned again using the electrical signal from the detector 212 so that the level of the SHG light is maximized. Alignment to maximize the SHG light level is performed by aligners 203, 204 and can be performed under processor control using appropriate control algorithms. In addition to performing alignment to maximize the level of the SHG light in S201, re-aligning the output PTF in S208 is similar to the flow for connecting the input PTF in FIG. 8. After the corrected temperature is set in S206, if S208 is reached after repeating S202 to S205, the chip set temperature has changed from the initial temperature. This is because the shape of the wavelength conversion element may change slightly, and the output PTF may deviate from the optimal position initially aligned in S201.
 次にS209において、SHG光レベルが基準値を満たすかどうかの判定が実施される。基準値は、所定のSHG光のレベルである第2のしきい値として、第2のしきい値以上であれば(Y)、次のS211へ進む。SHG光レベルが第2のしきい値未満であれば(N)、波長変換素子自身や、モジュール組み立て工程に何らかの不具合がある可能性が高いため、これ以上の工程を中止する。 Next, in S209, it is determined whether the SHG light level satisfies the reference value. The reference value is a second threshold value which is a predetermined level of SHG light, and if it is equal to or higher than the second threshold value (Y), the process proceeds to the next step S211. If the SHG light level is less than the second threshold (N), there is a high possibility that there is some kind of defect in the wavelength conversion element itself or in the module assembly process, so further steps are stopped.
 S211において、YAGレーザ209による溶接等により、金属筐体とレンズ、出力PTF211-1の固定を完了する。上述のS202~S207の工程、またはこれらの工程の繰り返しによって「修正された温度」を求めて、修正された温度で現在の温度が更新されている。「修正された温度」を利用することで、モジュールに固定された後の状態でも、目的の動作波長λinitにおいて、位相整合状態を実現している。しかしながら、S211におけるYAG溶接工程により、PPLN素子の帯電(焦電)状態が変化したり、調芯中に波長にドリフトが生じたりし得る。さらに、YAG溶接および出力PTF211-1の固定作業によって、光軸がずれて光結合率が低下することも起こり得る。 In S211, fixing of the metal housing, lens, and output PTF 211-1 is completed by welding using the YAG laser 209 or the like. The "corrected temperature" is obtained by performing the steps S202 to S207 described above or repeating these steps, and the current temperature is updated with the corrected temperature. By using the "corrected temperature," a phase-matched state is achieved at the target operating wavelength λ init even after it is fixed to the module. However, due to the YAG welding step in S211, the charged (pyroelectric) state of the PPLN element may change or a wavelength may drift during alignment. Furthermore, the optical axis may shift due to YAG welding and the fixing work of the output PTF 211-1, and the optical coupling rate may decrease.
 そこでS212において、基本波光の掃引、SHG光のピーク波長λの決定、修正された温度の算出を行う。さらにS213において、波長差Δλを基準値(第1のしきい値)と比較判定し、必要であれば、現在の温度を「修正された温度」に変更して、S212の基本波光の掃引に戻る。S207で説明したように、S213で温度依存性係数を更新することもできる。S212およびS213の工程は、S202~S207の一連の工程を簡略化して記載したものであって、実質的にS202~S207と同じ工程を実施すれば良い。 Therefore, in S212, the fundamental wave light is swept, the peak wavelength λ P of the SHG light is determined, and the corrected temperature is calculated. Furthermore, in S213, the wavelength difference Δλ is compared with a reference value (first threshold), and if necessary, the current temperature is changed to a "corrected temperature", and the fundamental wave light sweep in S212 is performed. return. As explained in S207, the temperature dependence coefficient can also be updated in S213. The steps S212 and S213 are simplified descriptions of a series of steps S202 to S207, and substantially the same steps as S202 to S207 may be performed.
 S213において、波長差Δλが第1のしきい値以下と判定されれば、製造方法の手順はS214に進み、基本波光の透過スペクトラムと、位相整合曲線を取得する。 In S213, if it is determined that the wavelength difference Δλ is less than or equal to the first threshold, the manufacturing method proceeds to S214 to acquire the transmission spectrum of the fundamental wave light and the phase matching curve.
 次にS215において、コンピュータ208が読みだしていた初期データの内で、上述のS213の工程までに変更された値によって、初期データを更新する。具体的には、修正された温度の最後の値によって、図13の(b)に示したように初期温度の値を書き換える。初期データを更新すると、図12の波長変換モジュールの製造方法の手順は、S216で終了する。 Next, in S215, the initial data is updated by the values that have been changed up to the step of S213 described above among the initial data read by the computer 208. Specifically, the initial temperature value is rewritten as shown in FIG. 13(b) using the corrected final temperature value. Once the initial data is updated, the procedure of the wavelength conversion module manufacturing method of FIG. 12 ends in S216.
 したがって本発明は、波長変換素子102と、金属板104を介して前記波長変換素子に固定された温度制御素子103とを含み、基本波用入力ファイバ211-1が接続された光モジュール100の製造方法であって、前記波長変換素子を、初期温度に設定するステップと、基本波光の透過光が最大となるように出力ファイバを調芯するステップS201と、前記波長変換素子の現在の温度を修正するステップであって、所定の波長範囲で前記基本波光の波長を掃引して、波長変換光のレベルが最大となるピーク波長を決定する工程S203、前記波長変換素子の動作波長、前記ピーク波長、前記現在の温度および位相整合波長の温度依存係数に基づいて、前記波長変換素子の修正された温度を算出する工程S204、および、前記波長変換素子を前記修正された温度に再設定する工程S206を含む、修正するステップと、前記修正された温度において、前記波長変換光のレベルが最大となるように、前記出力ファイバを再調芯するステップS208と、調芯された前記出力ファイバを前記光モジュールの金属筐体に固定するステップS211とを備える製造方法としても実施できる。 Therefore, the present invention provides an optical module 100 that includes a wavelength conversion element 102 and a temperature control element 103 fixed to the wavelength conversion element via a metal plate 104, and is connected to a fundamental wave input fiber 211-1. The method includes the steps of setting the wavelength conversion element to an initial temperature, aligning the output fiber so that the transmitted light of the fundamental wave light is maximized, and correcting the current temperature of the wavelength conversion element. A step S203 of sweeping the wavelength of the fundamental light in a predetermined wavelength range to determine a peak wavelength at which the level of the converted wavelength light is maximum, an operating wavelength of the wavelength conversion element, the peak wavelength, a step S204 of calculating a modified temperature of the wavelength conversion element based on the current temperature and a temperature dependence coefficient of the phase matching wavelength; and a step S206 of resetting the wavelength conversion element to the modified temperature. a step S208 of realigning the output fiber so that the level of the wavelength-converted light becomes maximum at the corrected temperature; and a step S208 of realigning the output fiber to the optical module. The manufacturing method can also be implemented as a manufacturing method including step S211 of fixing to a metal casing.
 以上詳細に述べたように、出力PTFを波長変換モジュールに取り付ける場合でも、入力PTFを波長変換モジュールに取り付ける場合と同様、「修正された温度」を効率的に求めることができる。製造装置に、モジュール、ファイバ、調芯部材を一旦セットしてしまえば、コンピュータの制御によって、すべての工程を自動化して実施できる。モジュールへファイバを取り付ける全工程で、量産性に優れたピッグテール型モジュールの製造方法を提供する。 As described in detail above, even when the output PTF is attached to the wavelength conversion module, the "corrected temperature" can be efficiently determined, as in the case where the input PTF is attached to the wavelength conversion module. Once the module, fiber, and alignment member are set in the manufacturing equipment, all processes can be automated and carried out under computer control. To provide a method for manufacturing a pigtail type module with excellent mass productivity through the entire process of attaching fibers to the module.
 図13は、既に述べたように、波長変換素子のデータの構成を説明する図である。図13の(a)の表1は、チップの選別工程で取得される初期データである。図13の(b)は、1本目のPTFの接続手順が実施された後の、更新された初期データである。図6で説明した波長変換モジュールに4本のPTFを接続する手順では、2本目以降のPTFの接続手順で、更新された初期データを利用するものとして説明した。 As already mentioned, FIG. 13 is a diagram illustrating the structure of data of the wavelength conversion element. Table 1 in FIG. 13(a) is initial data obtained in the chip sorting process. FIG. 13(b) shows the updated initial data after the first PTF connection procedure is performed. In the procedure for connecting four PTFs to the wavelength conversion module described with reference to FIG. 6, it is assumed that the updated initial data is used in the procedure for connecting the second and subsequent PTFs.
 初期データの更新は、1本のPTFの接続する手順の実施毎に、更新しても良いし、2~4本目で同じ更新された初期データを利用することもできる。1本目のPTFを接続する手順を実施した段階で、「修正された温度」は、概ね目的の動作波長で位相整合状態を実現する温度に近づいている。3本目、4本目のPTFを接続する手順で、2本目のPTFで使用した初期データをそのまま利用することもできる。 The initial data may be updated each time the procedure for connecting one PTF is performed, or the same updated initial data may be used for the second to fourth PTFs. By the time the procedure for connecting the first PTF has been performed, the "corrected temperature" is approximately close to the temperature that achieves phase matching at the desired operating wavelength. In the procedure for connecting the third and fourth PTFs, the initial data used in the second PTF can also be used as is.
 上述の本発明の光モジュールの製造方法は、SHG光を出力する波長変換モジュールだけに限られず、入力光のポートと、波長変換光の出力ポートにPTFを接続する場合に利用できる。また、波長変換素子を一方向だけで使用する波長変換モジュールにも適用できる。さらに、波長変換モジュール以外の、DFGまたはOPAの各機構を利用したOPAモジュールにPTFを接続する場合にも適用できることは言うまでもない。 The method for manufacturing an optical module of the present invention described above is not limited to a wavelength conversion module that outputs SHG light, but can be used when connecting a PTF to an input light port and an output port of wavelength converted light. Furthermore, the present invention can also be applied to a wavelength conversion module that uses a wavelength conversion element in only one direction. Furthermore, it goes without saying that the present invention can also be applied to the case where the PTF is connected to an OPA module using a DFG or OPA mechanism other than a wavelength conversion module.
 以上詳細に説明したように、量産性に優れたピッグテール型モジュールの製造方法が実現できる。 As explained in detail above, it is possible to realize a method for manufacturing a pigtail type module with excellent mass productivity.
 本発明は、光信号処理のための装置の製造に利用できる。 The present invention can be used in manufacturing a device for optical signal processing.

Claims (8)

  1.  波長変換素子と、金属板を介して前記波長変換素子に固定された温度制御素子とを含む光モジュールの製造方法であって、
     前記波長変換素子を、初期温度に設定するステップと、
     基本波光の透過光が最大となるように入力ファイバを調芯するステップと、
     前記波長変換素子の現在の温度を修正するステップであって、
      所定の波長範囲で前記基本波光の波長を掃引して、波長変換光のレベルが最大となるピーク波長を決定する工程、
      前記波長変換素子の動作波長、前記ピーク波長、前記現在の温度および位相整合波長の温度依存係数に基づいて、前記波長変換素子の修正された温度を算出する工程、および、
      前記波長変換素子を前記修正された温度に再設定する工程
    を含む、修正するステップと、
     前記修正された温度において、前記波長変換光のレベルが最大となるように、前記入力ファイバを再調芯するステップと、
     調芯された前記入力ファイバを前記光モジュールの金属筐体に固定するステップと
     を備える製造方法。
    A method for manufacturing an optical module including a wavelength conversion element and a temperature control element fixed to the wavelength conversion element via a metal plate, the method comprising:
    setting the wavelength conversion element to an initial temperature;
    aligning the input fiber so that the transmitted light of the fundamental wave light is maximized;
    a step of modifying the current temperature of the wavelength conversion element,
    Sweeping the wavelength of the fundamental light in a predetermined wavelength range to determine a peak wavelength at which the level of the wavelength-converted light is maximum;
    calculating a modified temperature of the wavelength conversion element based on a temperature dependence coefficient of the operating wavelength of the wavelength conversion element, the peak wavelength, the current temperature and the phase matching wavelength;
    resetting the wavelength conversion element to the modified temperature;
    realigning the input fiber so that the level of the wavelength-converted light is maximized at the modified temperature;
    A manufacturing method comprising: fixing the aligned input fiber to a metal casing of the optical module.
  2.  前記再調芯するステップの前に、
     前記ピーク波長と前記動作波長との間の波長差Δλの絶対値が、第1のしきい値以下であるかとうかを判定するステップと、
     前記波長差Δλが前記第1のしきい値を越えている条件で、前記修正するステップを繰り返すステップと
     をさらに備え、
     前記波長差Δλが前記第1のしきい値以下である条件で、前記波長変換光のレベルが最大となるように、前記入力ファイバを再調芯するステップを実施する請求項1に記載の製造方法。
    Before the re-aligning step,
    determining whether an absolute value of a wavelength difference Δλ between the peak wavelength and the operating wavelength is less than or equal to a first threshold;
    further comprising repeating the correcting step under the condition that the wavelength difference Δλ exceeds the first threshold;
    The manufacturing method according to claim 1, further comprising the step of realigning the input fiber so that the level of the wavelength-converted light is maximized under the condition that the wavelength difference Δλ is equal to or less than the first threshold value. Method.
  3.  波長変換素子と、金属板を介して前記波長変換素子に固定された温度制御素子とを含み、基本波用入力ファイバが接続された光モジュールの製造方法であって、
     前記波長変換素子を、初期温度に設定するステップと、
     基本波光の透過光が最大となるように出力ファイバを調芯するステップと、
     前記波長変換素子の現在の温度を修正するステップであって、
      所定の波長範囲で前記基本波光の波長を掃引して、波長変換光のレベルが最大となるピーク波長を決定する工程、
      前記波長変換素子の動作波長、前記ピーク波長、前記現在の温度および位相整合波長の温度依存係数に基づいて、前記波長変換素子の修正された温度を算出する工程、および、
      前記波長変換素子を前記修正された温度に再設定する工程
    を含む、修正するステップと、
     前記修正された温度において、前記波長変換光のレベルが最大となるように、前記出力ファイバを再調芯するステップと、
     調芯された前記出力ファイバを前記光モジュールの金属筐体に固定するステップと
     を備える製造方法。
    A method for manufacturing an optical module including a wavelength conversion element and a temperature control element fixed to the wavelength conversion element via a metal plate, and connected to a fundamental wave input fiber, the method comprising:
    setting the wavelength conversion element to an initial temperature;
    aligning the output fiber so that the transmitted light of the fundamental wave light is maximized;
    a step of modifying the current temperature of the wavelength conversion element,
    Sweeping the wavelength of the fundamental light in a predetermined wavelength range to determine a peak wavelength at which the level of the wavelength-converted light is maximum;
    calculating a modified temperature of the wavelength conversion element based on a temperature dependence coefficient of the operating wavelength of the wavelength conversion element, the peak wavelength, the current temperature and the phase matching wavelength;
    resetting the wavelength conversion element to the modified temperature;
    realigning the output fiber so that the level of the wavelength-converted light is maximized at the modified temperature;
    A manufacturing method comprising: fixing the aligned output fiber to a metal casing of the optical module.
  4.  前記再調芯するステップの前に、
     前記ピーク波長と前記動作波長との間の波長差Δλの絶対値が、第1のしきい値以下であるかとうかを判定するステップと、
     前記波長差Δλが前記第1のしきい値を越えている条件で、前記修正するステップを繰り返すステップと
     をさらに備え、
     前記波長差Δλが前記第1のしきい値以下である条件で、前記波長変換光のレベルが最大となるように、前記出力ファイバを再調芯するステップを実施する請求項3に記載の製造方法。
    Before the re-aligning step,
    determining whether an absolute value of a wavelength difference Δλ between the peak wavelength and the operating wavelength is less than or equal to a first threshold;
    further comprising repeating the correcting step under the condition that the wavelength difference Δλ exceeds the first threshold;
    The manufacturing method according to claim 3, further comprising the step of realigning the output fiber so that the level of the wavelength-converted light is maximized under the condition that the wavelength difference Δλ is equal to or less than the first threshold value. Method.
  5.  前記再調芯するステップの後で、
     前記波長変換光の前記レベルが、第2のしきい値以上であるかどうかを判定するステップと、
     前記波長変換光の前記レベルが、前記第2のしきい値以上である条件で、前記光モジュールの金属筐体に固定するステップを実施する請求項1または3に記載の製造方法。
    After said re-aligning step,
    determining whether the level of the wavelength-converted light is equal to or higher than a second threshold;
    4. The manufacturing method according to claim 1, further comprising the step of fixing the optical module to a metal casing under the condition that the level of the wavelength-converted light is equal to or higher than the second threshold value.
  6.  前記修正するステップは、
     前記動作波長、前記ピーク波長、前記現在の温度および前記修正された温度に基づいて、前記温度依存係数を更新する工程
     をさらに含む請求項2または4に記載の製造方法。
    The modifying step includes:
    The manufacturing method according to claim 2 or 4, further comprising: updating the temperature dependent coefficient based on the operating wavelength, the peak wavelength, the current temperature and the modified temperature.
  7.  前記初期温度は、前記波長変換素子の前記動作波長に対応する予め取得された初期温度、または、入力ファイバを前記光モジュールに接続するときに得られた前記修正された温度のいずれか一方である請求項1または3に記載の製造方法。 The initial temperature is either a previously obtained initial temperature corresponding to the operating wavelength of the wavelength conversion element or the modified temperature obtained when connecting the input fiber to the optical module. The manufacturing method according to claim 1 or 3.
  8.  波長変換素子と、金属板を介して前記波長変換素子に固定された温度制御素子とを含む光モジュールの製造装置であって、
     前記光モジュールへ基本波光を供給する光源と、
     前記光モジュールからの波長変換光を検出する第1の検波器と、
     前記光モジュールからの基本波透過光を検出する第2の検波器と、
     対象のファイバのための調芯器と、
     少なくともプロセッサおよびメモリを含むコンピュータと
     を備え、
     前記プロセッサは、
     前記光源、前記第1の検波器および前記第2の検波器からの電気信号のデータ変換および前記調芯器を制御し、
     前記メモリ、外部記憶装置またはネットワークから、前記波長変換素子の前記動作波長、前記初期温度、前記温度依存係数を少なくとも含む素子データを読み出し、および、
     前記初期温度を、前記修正された温度によって更新するよう構成され、
     請求項1乃至4いずれかに記載の方法を実施する製造装置。
    An optical module manufacturing apparatus including a wavelength conversion element and a temperature control element fixed to the wavelength conversion element via a metal plate,
    a light source that supplies fundamental wave light to the optical module;
    a first detector that detects wavelength-converted light from the optical module;
    a second detector that detects fundamental transmitted light from the optical module;
    a centering device for the target fiber;
    a computer including at least a processor and memory;
    The processor includes:
    controlling data conversion of electrical signals from the light source, the first wave detector, and the second wave detector, and the alignment device;
    reading element data including at least the operating wavelength, the initial temperature, and the temperature dependence coefficient of the wavelength conversion element from the memory, external storage device, or network, and
    configured to update the initial temperature with the modified temperature;
    A manufacturing apparatus for carrying out the method according to any one of claims 1 to 4.
PCT/JP2022/021119 2022-05-23 2022-05-23 Manufacturing method and manufacturing device for wavelength conversion module WO2023228247A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021119 WO2023228247A1 (en) 2022-05-23 2022-05-23 Manufacturing method and manufacturing device for wavelength conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021119 WO2023228247A1 (en) 2022-05-23 2022-05-23 Manufacturing method and manufacturing device for wavelength conversion module

Publications (1)

Publication Number Publication Date
WO2023228247A1 true WO2023228247A1 (en) 2023-11-30

Family

ID=88918658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021119 WO2023228247A1 (en) 2022-05-23 2022-05-23 Manufacturing method and manufacturing device for wavelength conversion module

Country Status (1)

Country Link
WO (1) WO2023228247A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912910A (en) * 1996-05-17 1999-06-15 Sdl, Inc. High power pumped mid-IR wavelength systems using nonlinear frequency mixing (NFM) devices
JP2005181897A (en) * 2003-12-22 2005-07-07 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength converter module
JP2005327823A (en) * 2004-05-12 2005-11-24 Canon Inc Light wavelength converter, its control method, and image projector employing it
JP2013045054A (en) * 2011-08-26 2013-03-04 Ushio Inc Laser light source device and method of controlling temperature of wavelength conversion element in laser light source device
WO2020100937A1 (en) * 2018-11-16 2020-05-22 日本電信電話株式会社 Wavelength conversion element and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5912910A (en) * 1996-05-17 1999-06-15 Sdl, Inc. High power pumped mid-IR wavelength systems using nonlinear frequency mixing (NFM) devices
JP2005181897A (en) * 2003-12-22 2005-07-07 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength converter module
JP2005327823A (en) * 2004-05-12 2005-11-24 Canon Inc Light wavelength converter, its control method, and image projector employing it
JP2013045054A (en) * 2011-08-26 2013-03-04 Ushio Inc Laser light source device and method of controlling temperature of wavelength conversion element in laser light source device
WO2020100937A1 (en) * 2018-11-16 2020-05-22 日本電信電話株式会社 Wavelength conversion element and method for manufacturing same

Similar Documents

Publication Publication Date Title
CN101504507B (en) Optical fiber type mid-IR laser source generated by 3-5micrometre continuous wave differential frequency and its implementing method
CN112969960B (en) Wavelength conversion device
US7907656B2 (en) Harmonic frequency conversion module
CN101794961B (en) Vacuum squeezed type light field generator
US20120162748A1 (en) Compact, high brightness light sources for the mid and far ir
CN101916961B (en) Double-wavelength external cavity resonance laser frequency converting device with tunable wavelength
CN116053911A (en) Laser beam method and system
CN111819744A (en) Wavelength tunable laser
US7386021B2 (en) Light source
WO2023228247A1 (en) Manufacturing method and manufacturing device for wavelength conversion module
US20020176454A1 (en) Method for tuning nonlinear frequency mixing devices through degeneracy
US6762876B2 (en) Optical converter with a designated output wavelength
JP5814183B2 (en) Wavelength conversion device
WO1996018132A1 (en) Frequency-doubled diode laser device
WO2022219688A1 (en) Wavelength conversion module
Mourikis et al. UV generation via periodically poled MgO: LiTaO 3 circular waveguide crystal and diode-based master oscillator power amplifier
JP4526489B2 (en) Wavelength conversion module, wavelength conversion light source, and wavelength conversion device
CN116594239B (en) Quantum light source system based on back phase matching
CN218896925U (en) Wide tuning single longitudinal mode mid-infrared light parametric oscillator
WO2022110284A1 (en) Method for regulating output power of 213 nm laser, and apparatus thereof
CN111262129B (en) 452nm frequency doubling system with adjustable power and capable of detecting offset
WO2022254640A1 (en) Wavelength conversion device
JP2005181897A (en) Optical wavelength converter module
Moss Feedback control in microwave photonic transversal filters based on Kerr microcombs
Asobe et al. Parametric optical amplification using a reflective multiple quasi-phase-matched LiNbO 3 waveguide module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943653

Country of ref document: EP

Kind code of ref document: A1