WO2023227143A1 - 一种改性膨胀珍珠岩颗粒及其制备方法和应用 - Google Patents

一种改性膨胀珍珠岩颗粒及其制备方法和应用 Download PDF

Info

Publication number
WO2023227143A1
WO2023227143A1 PCT/CN2023/108278 CN2023108278W WO2023227143A1 WO 2023227143 A1 WO2023227143 A1 WO 2023227143A1 CN 2023108278 W CN2023108278 W CN 2023108278W WO 2023227143 A1 WO2023227143 A1 WO 2023227143A1
Authority
WO
WIPO (PCT)
Prior art keywords
expanded perlite
reactor
particles
perlite particles
modified expanded
Prior art date
Application number
PCT/CN2023/108278
Other languages
English (en)
French (fr)
Inventor
万丽
张淞萱
Original Assignee
湖南三友环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南三友环保科技有限公司 filed Critical 湖南三友环保科技有限公司
Publication of WO2023227143A1 publication Critical patent/WO2023227143A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F2003/001Biological treatment of water, waste water, or sewage using granular carriers or supports for the microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to the field of preparation of expanded perlite particles and the field of sewage treatment, specifically a modified expanded perlite particle and its preparation method and application.
  • sewage biological treatment methods are divided into two categories: (1) One is the activated sludge method, which is characterized by the microorganisms that treat sewage are in a suspended state in the bioreactor; (2) The second category is the attachment and growth of sewage treatment microorganisms In this method, microorganisms attach to the surface of some form of carrier and grow immobilized.
  • the above two types of sewage biological treatment methods have a history of more than a hundred years since their invention.
  • the limiting factors of the activated sludge method include: (1) Limited by suspended growth characteristics and imperfect microbial diversity, which affects the effect of advanced treatment; (2) Limited by sewage treatment process parameters, the growth cycle of some key microorganisms is limited ; (3) Limited by changes in incoming water quality, the supply of nutrients for microbial growth fluctuates, affecting biological activity and actual treatment effects.
  • the limiting factors for microbial attachment and growth rules in sewage treatment include the energy consumption of particle recovery and recycling, the loading effect of the carrier on the electron donor, and the application device of particles in sewage treatment.
  • the publication number CN 110627226 A discloses an inorganic composite powder carrier and the composite powder carrier used in its application in enhanced biological denitrification in urban sewage treatment. It utilizes the large surface energy of expanded perlite particles and adopts wet filtration.
  • the nanoscale inorganic alternative carbon source is tightly adsorbed on the diatomaceous earth, attapulgite, perlite or zeolite expanded perlite particles by means of sexual stirring.
  • This kind of expanded perlite particles is easy to prepare and has good loading effect, but it still has the following shortcomings: first, the particle size difference between the carrier and the alternative carbon source is small, the equivalent particle size of the carrier is 10 microns, and the alternative carbon source The equivalent particle size of the powder is in the nanometer range, which results in the adsorption effect of the alternative carbon source powder not being tight enough and making it easy to desorb during later use. Secondly, the wet filtration and stirring method is used to cause the alternative carbon source powder to be unevenly distributed on the carrier.
  • the small loading capacity of expanded perlite particles per unit mass is detrimental to the subsequent attachment and growth of microorganisms and the formation of microbial colonies (including denitrifying bacteria, phosphorus-accumulating bacteria, etc.), and will also lead to the subsequent expansion of expanded perlite particles loaded with pyrite powder.
  • the dosage is large, the frequency of dosage is high, and the cost is high; finally, in terms of carrier sewage treatment applications, the organic composite powder carrier described in the comparison document is put into the sewage treatment biochemical tank and then stirred.
  • the mixing machine cannot separate and age. Sludge particles and fresh sludge particles.
  • mechanical stirring is not suitable for carriers with larger particle sizes, and can easily cause the structure of carriers with larger particle sizes to break.
  • the present invention uses a vacuum loading method to load pyrite powder on expanded perlite particles.
  • the expanded perlite is a product after roasting perlite and has low bulk density, high porosity and stable chemical properties. and no biological toxicity. Expanded perlite is used as filler in sewage treatment. It has a highly porous structure and uniform particle size distribution, which can provide attachment points for the growth of microorganisms. However, expanded perlite has problems such as low mechanical strength, easy breakage, and long film hanging period.
  • the sewage treatment reaction device used in the present invention is a sewage treatment device called an aerobic granular sludge culture device disclosed in Publication No. CN113860487A, which uses an activated sludge method and a microbial attachment growth method to construct a composite biological reaction.
  • the composite bioreactor includes suspended growth of microorganisms and biological carriers, so that a "double sludge" (i.e. activated sludge and sludge containing biological carriers) symbiotic microbial system is formed in the composite bioreactor to increase biological treatment.
  • the microbial growth amount of the unit can be improved to improve the nitrogen and phosphorus removal efficiency in the sewage treatment process.
  • the invention provides a modified expanded perlite particle and its preparation method and application, aiming to solve the problems of poor carrier loading effect, poor microbial enrichment environment, low sewage treatment efficiency, high energy consumption, etc. in the prior art. question.
  • the present invention provides a preparation method of modified expanded perlite particles, which is characterized in that it includes the steps:
  • the particle diameter of the expanded perlite particles is 0.5 ⁇ 4 mm, and the surface pore diameter of the expanded perlite particles is larger than the particle diameter of the pyrite powder;
  • the pyrite powder is refined pyrite that has been crushed and screened, and the sulfur content in the refined pyrite is >30%.
  • the mass ratio of the expanded perlite particles to the pyrite powder is 1 to 10:1.
  • the step S3 also includes a screening process and a drying process.
  • the screening process includes: passing the sinking particles through a 20-40 mesh quasi-sieve, and taking the sieved objects; the drying process includes : Drying the objects on the sieve, wherein the drying temperature is 105 ⁇ 150°C, and the drying time is 2 ⁇ 5 h.
  • the present invention also provides modified expanded perlite particles, which are prepared according to any one of the above preparation methods.
  • the present invention also provides an application of modified expanded perlite particles prepared by any of the above preparation methods in sewage treatment.
  • the application of the modified expanded perlite particles in sewage includes the steps:
  • S3 Add sewage to the bottom of the reactor in a pulse manner, where the direction of adding sewage is from bottom to top, and the frequency of pulse water inflow is: every 20 to 60 s, water inlet for 5 to 10 s;
  • step S4 collecting the liquid overflowing from the upper part of the reactor includes:
  • Part of the liquid overflowing from the upper part of the reactor is refluxed to the bottom of the reactor by pulse water inflow from bottom to top; the remaining liquid overflowing from the upper part of the reactor is transported to the liquid discharge device.
  • the method further includes: supplying oxygen to the bottom of the reactor.
  • the DO online monitoring system includes a first probe and a second probe. Needle;
  • the vertical distance between the first probe and the second probe is 0.4 ⁇ 0.6 m, the first probe is located below the second probe, and the distance between the first probe and the reactor is The vertical distance at the bottom is 0.1m;
  • the first probe range is controlled at 3-5 mg/L, and the second probe range is controlled below 0.5 mg/L.
  • the expanded perlite particles used in the present invention are expanded perlite particles, which have a highly rich pore structure and can provide sites for the attachment of pyrite powder and microorganisms to achieve controllable loading of pyrite powder. ;
  • the present invention uses a vacuum ballast method, so that the pyrite powder enters the internal skeleton of the expanded perlite under negative pressure conditions. Due to the expanded perlite particles and sulfur iron There is a huge particle size difference between the mineral powders. The two are tightly and evenly combined during the sewage treatment process and are not easy to desorb.
  • pyrite powder is loaded into expanded perlite particles.
  • a large number of sulfur autotrophic denitrifying bacteria are induced in the sewage treatment system.
  • autotrophic Denitrification removes nitrogen in the system, which has obvious advantages in treating low-carbon nitrogen ratio water quality;
  • the modified expanded perlite surface forms an aerobic/anoxic microenvironment after being coated with a film, which promotes the formation of internal carbon sources by functional bacterial colonies. , creating favorable conditions for simultaneous nitrification and denitrification.
  • the method of using modified expanded perlite particles to treat sewage in the present invention has strong adaptability to the modified expanded perlite particles.
  • the pulse hydraulic mixing method replaces traditional mechanical stirring to achieve the improvement.
  • the mixing of sexually expanded perlite particles, sewage and activated sludge effectively avoids the crushing and collision of the modified expanded perlite particle structure caused by mechanical stirring; on the other hand, the coating of the modified expanded perlite particles is completed
  • the activated sludge in the system and the aged biofilm shed from the carrier are gradually eliminated through sludge discharge, so that the microorganisms in the system maintain high activity, the sewage treatment efficiency is maintained at a high level, and the carrier is reduced in the later stage.
  • Dosing amount and frequency by dissolving oxygen to the bottom of the reactor, and using a DO detection system to detect the amount of dissolved oxygen in the area within the reactor, combined with the pulse water inlet method, aerobic ⁇ hypoxic ⁇
  • the anaerobic reaction block is conducive to nitrification and denitrification and improves sewage treatment efficiency.
  • Figure 1 is a diagram of an aerobic granular sludge cultivation device, including an inlet water tank 1, a lifting pump 2, a high water tank 3, a pneumatic valve 4, a mud storage tank 5, a reactor 6, a movable baffle 7, a mud discharge valve 8, and isolation.
  • Figure 2 is a physical picture of the modified expanded perlite particles obtained by the gravity ballast method in Example 1.
  • Figure 3 is a physical picture of the modified expanded perlite particles obtained by the vacuum method + gravity ballast method in Example 2.
  • Figure 4 (a) is a picture of the settlement of modified expanded perlite particles obtained by the vacuum method + gravity ballast method in Example 2.
  • Figure 4 (b) is a diagram of the settlement of modified expanded perlite particles obtained by the vacuum loading method in Example 3. Situation diagram.
  • Figure 5 is a physical picture of the modified expanded perlite particles obtained by the vacuum method in Example 3.
  • Figure 6 is a cross-sectional electron microscope image of modified expanded perlite particles obtained by vacuum method in Example 3.
  • Figure 7 is an electron microscope image of modified expanded perlite particles after coating in Example 7.
  • Figure 8 is a microscope picture of the sludge particles with modified expanded perlite as the core in Example 7.
  • the invention provides a method for preparing modified expanded perlite particles, which includes the steps:
  • the solid content is the ratio of the mass of pyrite powder to the total mass after adding water, and the unit is g/g.
  • the pyrite powder is refined pyrite that has been crushed and screened, and the sulfur content in the refined pyrite is >30%.
  • micron-sized or nano-sized pyrite powders can also be used as alternative carbon sources to be loaded on expanded perlite particles to provide nutrients for subsequent growth and enrichment of microorganisms.
  • the particle diameter of the expanded perlite particles is 0.5 ⁇ 4 mm, and the surface pore diameter of the expanded perlite particles is larger than the particle diameter of the pyrite powder, so that the pyrite powder can enter the internal voids of the expanded perlite particles. , providing more attachment sites for microbial growth.
  • the negative pressure container can be a suction filter bottle.
  • the expanded perlite particles can be placed in the suction filter bottle, the vacuum circulating water pump is turned on, so that a negative pressure of -0.1Mpa is formed in the suction filter bottle, and then the The pyrite powder slurry is injected into the suction filter bottle.
  • the pyrite powder slurry completely immerses the expanded perlite particles, so that the pyrite powder and the expanded perlite particles are fully combined. Due to the negative pressure environment, the pyrite powder enters the expanded perlite particles. In the internal honeycomb structure.
  • the mass ratio of the expanded perlite particles to the pyrite powder is 2 to 10.
  • step S3 also includes a screening process and a drying process.
  • the screening process includes: Passing the sinking particles through a 20-40 mesh quasi-sieve, and taking the Object; the drying process includes: drying the sieved object, wherein the drying temperature is 105 ⁇ 150°C, and the drying time is 2 ⁇ 5 h.
  • the amount of water added can be reasonably controlled so that the modified expanded perlite particles sink to the bottom and the unloaded expanded perlite particles are suspended (the expanded perlite particles have a honeycomb structure and are suspended in water) to achieve a stratification effect; If modified expanded perlite particles are used in a suction filtration bottle, the amount of water added can be 3ml, and the liquid level after adding water can be 2 ⁇ 3cm higher than the original liquid level.
  • the invention also provides modified expanded perlite particles, which are prepared by any one of the above preparation methods.
  • the invention also provides an application of modified expanded perlite particles prepared by the above preparation method in sewage treatment.
  • modified expanded perlite can be placed in an aerobic granular sludge culture device for sewage treatment.
  • the aerobic granular sludge culture device can include the following structures: inlet water tank, lifting pump, high level water tank, pneumatic valve, mud storage tank, reactor, movable baffle, sludge discharge valve, isolation plate, aeration System, DO online monitoring system, return pump, regulating valve, regulating valve, return water tank, outlet tank, partition board.
  • the aerobic granular sludge cultivation device mainly includes: a pulse water inlet structure, a reaction structure and a backflow discharge structure, as follows:
  • the pulse water inlet structure mainly includes an inlet water tank 1 and a high-level water tank 3 connected in sequence through pipelines. Among them, a lifting pump 2 is provided on the pipeline connecting the inlet water tank 1 and the high-level water tank 3. The high-level water tank 3 is connected to the reactor 6 The pipeline is provided with a pneumatic valve 4;
  • the reaction structure mainly includes a reactor 6.
  • the lower part of the reactor 6 is provided with a partition plate 9.
  • the reactor 6 is connected to the mud storage tank 5 through a partition plate 17, wherein the movable baffle 7 is located on the side of the partition plate 17.
  • the lower part of the reactor 6 is connected to the pneumatic valve 4 in the pulse water inlet structure.
  • the upper part is connected to the reflux discharge structure through a pipeline.
  • the lower part of the reactor 6 is also connected to the aeration system 10 through a pipeline.
  • the reaction structure also includes a DO online monitoring system 11.
  • the DO online monitoring system 11 mainly includes a first probe and a second probe.
  • the first probe is provided at a vertical distance of 10 cm above the isolation plate 9.
  • a second probe is arranged at a vertical distance of 40 cm above the first probe; a sludge discharge valve 8 is also arranged below the sludge tank.
  • the reflux discharge structure mainly includes a reflux box 15 and a water outlet tank 16.
  • the reflux box 15 and the water outlet tank 16 are connected to the reactor 6 through pipelines.
  • the pipelines are also respectively provided with a regulating valve 13 and a regulating valve 14; the reflux box 15 is also connected to the high-level water tank 3 through a pipeline, and a return pump 12 is provided on the pipeline.
  • the process of treating sewage by the aerobic granular sludge culture device of the present invention is as follows: a certain amount of modified expanded perlite particles are put into the reactor 6. After the particles are put in, the reaction is The sludge taken from the end of the aerobic tank is inoculated into the container 6, and the sludge is fully mixed with the modified expanded perlite particles. After the mixing is completed, the lift pump 2 is opened and the sewage in the inlet water tank 1 is pressed into The high-level water tank 3 realizes pulse water inflow by controlling the opening and closing frequency of the pneumatic valve 4.
  • the opening and closing frequency is: the pneumatic valve 4 is opened for 5 to 10 s and closed for 20 to 60 s; the water flow shear force is formed in the reactor 6 , the size of the water flow shear force can be further adjusted by further controlling the opening and closing frequency, combined with the aeration system 10 to dissolve oxygen into the reactor 6, so that the microbial community is rapidly granulated; open the movable baffle 7, the light sludge and the sludge from the carrier The aged biofilm (i.e. light material) that falls off enters the mud storage tank 5 from the movable baffle 7.
  • the mud storage tank 5 needs to open the mud discharge valve regularly to discharge waste; in addition, the reactor The supernatant in the upper part of 6 overflows from the reactor 6, and part of it enters the reflux water tank 15, and is pressed into the high water tank 3 through the reflux pump 12 to be combined with the sewage, while the other part directly enters the outlet water tank 16 and is discharged from the system.
  • the aeration system dissolves oxygen into the water body, which is conducive to the formation of a gradient difference in dissolved oxygen in the microbial aggregates, creating favorable conditions for sulfur autotrophic denitrification and simultaneous nitrification and denitrification.
  • the application of the modified expanded perlite particles in sewage treatment includes the steps:
  • the sludge can be taken from the end of the aerobic tank of a conventional active sewage treatment plant.
  • S3 Add sewage to the bottom of the reactor in a pulse manner, where the direction of adding sewage is from bottom to top, and the frequency of pulse water inflow is: every 20 to 60 s, water inlet for 5 to 10 s;
  • the sewage in an aerobic granular sludge culture device, the sewage can be lifted from the inlet water tank to the high water tank through a lifting pump, and then pressed into the reactor, and the bottom-up flow can be achieved at the bottom of the reactor by controlling the pneumatic valve. Pulse water inflow strongly agitates the water body in the reactor, fully mixing sludge, sewage, and modified expanded perlite particles to improve sewage treatment efficiency.
  • the method further includes: supplying oxygen to the bottom of the reactor.
  • oxygen can be introduced into the reactor through the aeration system in the aerobic granular sludge culture device, combined with pulsed water inflow, to promote the formation of a dissolved oxygen gradient in the reactor, and further form an aerobic environment from bottom to top. /Anoxic/anaerobic reaction block.
  • the aeration intensity of the aeration system can be adjusted so that the detection value in the DO online monitoring system meets the requirements.
  • the amount of dissolved oxygen in the reactor is detected through a DO online monitoring system: the DO online monitoring system includes a first probe and a second probe. probe;
  • the vertical distance between the first probe and the second probe is 0.4 ⁇ 0.6 m, the first probe is located below the second probe, and the distance between the first probe and the reactor is The vertical distance at the bottom is 0.1m;
  • the first probe range is controlled at 3-5 mg/L, and the second probe range is controlled below 0.5 mg/L.
  • the bottom of the reactor may be an isolation plate.
  • the first probe range indicates that the dissolved oxygen per liter of water within the first probe measurement range is controlled at 3-5 mg; similarly, the second probe range indicates Within the measurement range of the second probe, the dissolved oxygen per liter of water is controlled below 0.5 mg.
  • step S4 collecting the liquid overflowing from the upper part of the reactor includes:
  • Part of the liquid overflowing from the upper part of the reactor is refluxed to the bottom of the reactor by pulse water inflow from bottom to top; the remaining liquid overflowing from the upper part of the reactor is transported to the liquid discharge device.
  • the supernatant liquid that has not entered the high water tank is discharged from the water outlet tank and enters the water outlet tank discharge system.
  • the reflux ratio of the sewage entering the reflux tank is 50% to 100%
  • the light materials include light sludge and aged biofilms shed from the carrier.
  • the main components of the light sludge are active microbial groups with metabolic functions, endogenous respiration of microorganisms and auto-oxidation. Residues, refractory organic matter adsorbed by sludge floc and inorganic matter adsorbed by sludge floc.
  • the movable baffle when used in an aerobic granular sludge cultivation device, can be opened so that the light sludge enters the mud storage tank through the movable baffle under the action of water flow from bottom to top.
  • the sludge valve can be opened regularly to discharge the waste sludge to ensure the working efficiency and service life of the sludge valve discharge system.
  • the pyrite powder is loaded on the modified expanded perlite particles to provide an enriched environment for sulfur autotrophic denitrifying bacteria.
  • the modified expanded perlite particles are coated with film, aerobic bacteria are formed. /Hypoxic microenvironment.
  • the unit loading capacity (the mass of pyrite powder loaded on the expanded perlite particles per unit mass) and the loading rate (the loaded pyrite powder
  • the calculation of the ratio of the total input amount of pyrite powder) mainly utilizes the equal volume method, and the steps may include: S1: The total volume of the microbial carrier loaded with ultrafine powder is L, the total mass M, and the input The mass of pyrite powder is recorded as m; S2: Transfer the dried modified expanded perlite part into a measuring cylinder, adjust the volume to 1 1 ml, and measure its net weight m 1 ; take the floating microbial carrier , dried and adjusted to 1 1 mL, and the net weight m 2 of the floating microbial carrier was measured;
  • the mass of ultrafine powder loaded on l 1 volume of microbial carrier is m 1 -m 2
  • the mass of ultrafine powder loaded on unit mass of microbial carrier is m 1 -m 2 /m 2 ; when the volume is L, it is not loaded
  • the mass of microbial carrier of micron powder is L ⁇ m 2 /l 1
  • the measured loading capacity is: (ML ⁇ m 2 /l 1 )/m.
  • PE represents expanded perlite and PY represents pyrite.
  • the sinking PE particles Pass the sinking PE particles through a 40-objective sieve to remove unloaded PY until the filtrate under the sieve is clear, indicating that the screening is complete. Then put the PE particles above the sieve into the oven for processing. Drying operation, in which the drying temperature is 105°C and the drying time is 4 hours, the modified expanded perlite particles obtained by vacuum method and gravity ballast method are obtained; the volume of the upper floating PE particles and the lower floating PE particles after drying are measured respectively. The volume of PE particles is sedimented to calculate the sedimentation ratio; further detection and calculation are used to obtain the unit load capacity and load rate.
  • the vacuum method can solve the problem of PE floating. After vacuum treatment of PE, sinking PE particles account for 80% of the total PE, that is, the sedimentation ratio is 80%.
  • PY and water enter the internal pores of PE particles at the same time in a negative pressure environment.
  • the loading amount of PY per unit mass of PE is 0.6g/g, which is greatly improved compared to other methods.
  • the modified expanded perlite particles obtained by the vacuum method are shown in Figure 5, the sedimentation situation is shown in Figure 4(b), and the cross-sectional electron microscope picture of the modified expanded perlite particles obtained by the vacuum method is shown in Figure 6.
  • the comparison table of the unit loading of modified expanded perlite particles obtained by different methods according to Examples 1, 2, and 3 is shown in Table 2.
  • the vacuum holding time is beneficial to the increase of PY load per unit mass of PE, but the impact is small.
  • the sewage is taken from the fine grid effluent of urban sewage treatment plants.
  • the water quality characteristics are as follows: COD is 102 ⁇ 565 mg/L; ammonia nitrogen (NH 4 + -N) mass concentration is 13 ⁇ 28 mg/L; total nitrogen (TN) mass concentration is 24-57 mg/L; total phosphorus (TP) mass concentration is 2-9 mg/L; pH is 6.8-7.5.
  • the modified expanded perlite prepared in the present invention is added to the reactor of the aerobic granular sludge cultivation device, the dosage is 30% of the effective volume of the reactor, and at the same time, the reactor is inoculated with The activated sludge at the end of the aerobic tank has an inoculated sludge concentration of 3000 mg/L.
  • the sewage in the inlet water tank is pressed to the high-level water tank.
  • the opening and closing frequency of the pneumatic valve is controlled to pulse the sewage into the reactor from bottom to top.
  • the pneumatic valve is opened every 10 seconds and closed for 40 seconds. s.
  • the sewage entering the reactor, the sludge, and the modified expanded perlite particles are fully mixed under the action of the pulsed water flow, and then the liquid overflowing from the upper part of the reactor (i.e., the supernatant) is collected.
  • the supernatant overflows from the upper part of the reactor, and part of it enters the reflux water tank. It is combined with the sewage in the high water tank through the reflux pump, and then flows back from bottom to top to the bottom of the reactor in a pulse manner.
  • the reflux ratio is 50%. ; The other part goes into the water outlet tank.
  • the sludge particles with modified expanded perlite as the core are enriched in the system, with a particle size distribution of 0.5-4.5 mm, and a dense layer of biofilm can be observed wrapped in the carrier (wherein, after the film is attached
  • the electron microscope picture of modified expanded perlite particles is shown in Figure 7, and the microscope picture of sludge particles with modified expanded perlite as the core is shown in Figure 8), combined with the load of PY, forming an aerobic/anoxic microenvironment , forming microbial aggregates; under aeration conditions, oxygen is dissolved into the water body, forming a dissolved oxygen gradient difference.
  • the formed microbial aggregates have good sedimentation properties, and the sedimentation speed can reach 30-100 m/h, which improves the sewage treatment capacity of the system.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明提供了一中改性膨胀珍珠岩颗粒及其制备方法和应用,其制备方法包括以下步骤:S1:配置固含量为1%~15%的硫铁矿粉浆液,所述硫铁矿粉的粒径<10μm;S2:将膨胀珍珠岩颗粒置于表压为﹣0.1~﹣0.05 Mpa的负压容器中,向所述负压容器中注入所述硫铁矿粉浆液;所述膨胀珍珠岩颗粒的粒径为0.5~4 mm,且所述膨胀珍珠岩颗粒表面孔径大于所述硫铁矿粉的粒径;S3:向所述负压容器中加入水,静置5~120min,收集下沉颗粒,所述下沉颗粒为所述改性膨胀珍珠岩颗粒。本发明提供了一种改性膨胀珍珠岩颗粒载体、制备这种载体的方法及其在特定反应器中的污水处理应用,污水处理效果好,可实施性强,值得推广。

Description

一种改性膨胀珍珠岩颗粒及其制备方法和应用 技术领域
  本发明涉及膨胀珍珠岩颗粒制备领域以及污水处理领域,具体是一种改性膨胀珍珠岩颗粒及其制备方法和应用。
背景技术
随着环境容量以及水环境问题的日益突出,对环境保护的要求不断提高。现有污水处理厂均面临着将出水水质从一级B标准提升至一级A标准甚至更高标准的要求。目前常用的污水生物处理方法分为两类:(1)一类为活性污泥方法,特点是处理污水的微生物在生物反应器中处于悬浮状态;(2)第二类为污水处理微生物附着生长法,微生物附着于某种形式的载体表面固定化生长。上述两类污水生物处理方法从发明至今已有超过一百年的历史,经过一系列的改进和完善给人类的用水带来了极大的保障,但目前两类方法受技术本身的限制发展已陷入瓶颈。活性污泥法受限制因素包括:(1)受限于悬浮生长特性,微生物多样性不完善,影响深度处理效果;(2)受限于污水处理工艺过程参数,部分关键微生物的生长周期受限;(3)受限于进水的水质变化,微生物生长营养要素供给波动,影响生物活性及实际处理效果。而污水处理微生物附着生长法则的受限制因素包括颗粒回收循环利用能耗、载体对于电子供体的负载效果以及颗粒在污水处理中的应用装置。
如公开号为CN 110627226 A公开的一种无机复合粉末载体及其在城镇污水处理强化生物脱氮中的应用中使用的复合粉末载体,利用膨胀珍珠岩颗粒较大的表面能并采用湿式滤过性搅拌的方式,将纳米级无机替代碳源紧密吸附在硅藻土、凹凸棒土、珍珠岩或沸石膨胀珍珠岩颗粒上。
该种膨胀珍珠岩颗粒制备简易且负载效果较好,但仍有以下缺陷:首先,载体与替代碳源之间粒径差较小,载体当量粒径为10微米级,而所述替代碳源粉体当量粒径为纳米级,导致替代碳源粉体的吸附效果不够紧密,后期使用时极易脱附;其次,采用湿性过滤搅拌的方式,替代碳源粉体于载体之上分布不均,而且单位质量膨胀珍珠岩颗粒负载量少,对于后续微生物附着生长不利以及微生物菌落(包括反硝化菌、聚磷菌等)的形成不利,也会导致后续负载硫铁矿粉的膨胀珍珠岩颗粒投加量大、投加频率高、成本损耗高;最后,在载体污水处理应用的方面,对比文件所述有机复合粉末载体投入污水处理生化池后进行搅拌,一方面,混合机械搅拌无法分离老化污泥颗粒与新鲜的污泥颗粒,另一方面,机械搅拌不适用于粒径较大的载体,易造成粒径较大的载体结构破碎。
为解决上述问题,本发明利用真空负载法将硫铁矿粉负载在膨胀珍珠岩颗粒上,所述膨胀珍珠岩是珍珠岩焙烧后的制成品,具有低容重、孔隙率高、化学性能稳定以及无生物毒性等特征。膨胀珍珠岩作为填料应用于污水处理,具有高度多孔结构,粒度分布均匀,可为微生物的生长提供附着点。然而,膨胀珍珠岩存在机械强度低,易破碎,挂膜周期长等问题。
与此同时,本发明利用到的污水处理反应装置为公开号CN113860487A公开的,一种名为好氧颗粒污泥培养装置的污水处理装置,利用活性污泥法和微生物附着生长法构建复合生物反应器,复合生物反应器中包括悬浮生长的微生物和生物载体,以使复合生物反应器中形成“双泥”(即活性污泥和含生物载体的污泥)共生的微生物系统,以增加生物处理单元的微生物生长量,提高污水处理过程中的脱氮除磷效率。
发明内容
本发明提供一种改性膨胀珍珠岩颗粒及其制备方法和应用,旨在解决现有技术中载体负载效果不佳,污水处理过程中微生物富集环境差、污水处理效率低、能耗大等问题。
为实现上述目的,本发明提供一种改性膨胀珍珠岩颗粒的制备方法,其特征在于,包括步骤:
S1:配制固含量为1%~15%的硫铁矿粉浆液,其中,所述硫铁矿粉的粒径<10μm;
S2:将膨胀珍珠岩颗粒置于表压为﹣0.1~﹣0.05 Mpa的负压容器中,向所述负压容器中注入所述硫铁矿粉浆液;
其中,所述膨胀珍珠岩颗粒的粒径为0.5~4 mm,且所述膨胀珍珠岩颗粒的表面孔径大于所述硫铁矿粉的粒径;
S3:向所述负压容器中加入水,静置5~120min,收集下沉颗粒,其中,所述下沉颗粒为所述改性膨胀珍珠岩颗粒。
进一步的,所述硫铁矿粉为经破碎筛分处理过后的精硫铁矿,所述精硫铁矿中硫含量>30%。
进一步的所述膨胀珍珠岩颗粒与所述硫铁矿粉的质量比为1~10∶1。
进一步的,所述步骤S3中还包括筛分过程和烘干过程,所述筛分过程包括:将所述下沉颗粒通过20~40目标准筛,取筛上物;所述烘干过程包括:将所述筛上物烘干,其中,所述烘干温度为105~150℃,所述烘干时间为2~5 h。
本发明还提供一种改性膨胀珍珠岩颗粒,根据上述任意一项的制备方法制得。
本发明还提供一种由上述任意一项制备方法制得的改性膨胀珍珠岩颗粒在污水处理中的应用。
进一步的,所述改性膨胀珍珠岩颗粒在污水中的应用包括步骤:
S1:将所述改性膨胀珍珠岩颗粒投加至反应器中,所述改性膨胀珍珠岩颗粒的投加体积占所述反应器体积的10~50%;
S2:向所述反应器内接种浓度为3000 mg/L-6000 mg/L的污泥;
S3:向所述反应器底部以脉冲的方式加入污水,其中,所述加入污水的方向为由下至上,所述脉冲进水的频率为:每隔20~60s,进水5~10s;
S4:收集从所述反应器上部溢出的液体;
S5:所述反应器内的所述改性膨胀珍珠岩颗粒挂膜完成后,控制所述反应器内的轻质物料随自下向上的水流进入储泥池。
进一步的,所述步骤S4中,所述收集从所述反应器上部溢出的液体包括:
将部分所述反应器上部溢出的液体以自下至上脉冲进水的方式回流至所述反应器的底部;将其余所述反应器上部溢出的液体输送至出液装置。
进一步的,还包括:向所述反应器的底部供氧。
进一步的,在所述向所述反应器的底部供氧的过程中,通过DO在线监测系统检测所述反应器内的溶氧量:所述DO在线监测系统包括第一探针和第二探针;
其中,所述第一探针和所述第二探针的垂直距离为0.4~0.6 m,所述第一探针位于所述第二探针下方,所述第一探针距离所述反应器底部的垂直距离为0.1m;
所述第一探针范围控制在3-5 mg/L,所述第二探针范围控制在0.5 mg/L以下。
本发明的有益效果包括至少以下三点:
(1)本发明使用的膨胀珍珠岩颗粒为膨胀珍珠岩颗粒,所述具有高度丰富的孔隙结构,可为硫铁矿粉和微生物的附着提供位点,实现硫铁矿粉负载量的可调控;同时,较传统的重力压载、湿性搅拌,本发明使用真空压载法,使得硫铁矿粉在负压的条件下,进入膨胀珍珠岩的内部骨架中,由于膨胀珍珠岩颗粒和硫铁矿粉之间存在的巨大的粒径差,二者在污水处理过程中结合紧密、均匀,不易脱附。
(2)本发明中将硫铁矿粉负载于膨胀珍珠岩颗粒中,一方面,由于硫铁矿粉附着位点丰富,污水处理系统内诱导形成大量的硫自养反硝化菌,通过自养反硝化去除系统内的氮素,在处理低碳氮比水质时优势明显;另一方面,改性膨胀珍珠岩表面挂膜后形成好氧/缺氧的微环境,促进功能菌落形成内碳源,为同步硝化反硝化的创造了有利条件。
(3)本发明中利用改性膨胀珍珠岩颗粒处理污水的方式与改性膨胀珍珠岩颗粒具有很强的适配性,一方面,将脉冲水力混合的方式替代了传统的机械搅拌,实现改性膨胀珍珠岩颗粒、污水和活性污泥的混合,有效避免了因机械搅拌带来的挤压碰撞对改性膨胀珍珠岩颗粒结构的破碎;另一方面,改性膨胀珍珠岩颗粒挂膜完成后,通过排泥的方式逐步淘汰系统内的活性污泥以及从载体上脱落的老化生物膜,使系统内的微生物保持较高的活性,污水处理效率保持在较高水平,降低了后期载体的投放量与投放频率;最后本发明中通过向反应器底部溶氧,同时以DO检测系统检测反应器内区域溶氧量,结合脉冲进水方式,使得反应器内形成了好氧\缺氧\厌氧的反应区块,有利于硝化反硝化的进行,提高污水处理效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为好氧颗粒污泥培养装置图,包括进水水箱1,提升泵2,高位水箱3,气动阀4,储泥槽5,反应器6,活动挡板7,排泥阀8,隔离板9,曝气系统10, DO在线监测系统11,回流泵12,调节阀13,调节阀14,回流水箱15,出水箱16,分隔板17。
图2为实施例1中重力压载法获得的改性膨胀珍珠岩颗粒实物图。
图3为实施例2中真空法+重力压载法获得的改性膨胀珍珠岩颗粒实物图。
图4(a)为实施例2中真空法+重力压载法获得的改性膨胀珍珠岩颗粒沉降情况图,图4(b)为实施例3真空负载法获得的改性膨胀珍珠岩颗粒沉降情况图。
图5为实施例3中真空法获得的改性膨胀珍珠岩颗粒实物图。
图6为实施例3中真空法获得的改性膨胀珍珠岩颗粒截面电镜图。
图7为实施例7中挂膜后改性膨胀珍珠岩颗粒电镜图。
图8为实施例7中以改性膨胀珍珠岩为核心的污泥颗粒显微镜图。
具体实施方式
下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式仅仅是本发明的一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
并且,本发明各个实施方式之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。除非另外定义,本发明中使用的所有技术和科学术语与本技术领域的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。
本发明提供了一种改性膨胀珍珠岩颗粒的制备方法,包括步骤:
S1:配制固含量为1%~15%的硫铁矿粉浆液,其中,所述硫铁矿粉的粒径<10μm。
可以理解的是,所述固含量为硫铁矿粉质量与加水后总质量的比值,单位为g/g。
优选的是,所述硫铁矿粉为经破碎筛分处理过后的精硫铁矿,所述精硫铁矿中硫含量>30%。
可以理解的是,也可以采用其他的微米级或者纳米级硫铁矿粉作为替代碳源负载于膨胀珍珠岩颗粒,为后续微生物的生长富集提供营养。
S2:将膨胀珍珠岩颗粒置于表压为﹣0.1~﹣0.05 Mpa的负压容器中,向所述负压容器中注入所述硫铁矿粉浆液;
其中,所述膨胀珍珠岩颗粒的粒径为0.5~4 mm,且所述膨胀珍珠岩颗粒表面孔径大于所述硫铁矿粉的粒径,使得硫铁矿粉能够进入膨胀珍珠岩颗粒内部空隙中,为微生物的生长提供更多的附着位点。
可以理解的是,将干燥的膨胀珍珠岩颗粒置于负压容器中更加有利于硫铁矿粉浆的负载效果;还可以理解的是,湿润的膨胀珍珠岩也适用于本方案,只是负载效果不及干燥的膨胀珍珠岩颗粒。
可以理解的是,所述负压容器可以是抽滤瓶,可以将膨胀珍珠岩颗粒置于抽滤瓶中,打开真空循环水泵,使抽滤瓶内形成﹣0.1Mpa的负压,再向所述抽滤瓶中注入所述硫铁矿粉浆液。
还可以理解的是,所述硫铁矿粉浆液完全浸没所述膨胀珍珠岩颗粒,使得硫铁矿粉与膨胀珍珠岩颗粒充分结合,由于负压环境,硫铁矿粉进入膨胀珍珠岩颗粒的内部蜂窝结构中。
优选的是,所述膨胀珍珠岩颗粒与所述硫铁矿粉的质量比为2~10。
S3:向所述负压容器中加入水,静置5~120min,收集下沉颗粒,其中,所述下沉颗粒为所述改性膨胀珍珠岩颗粒。
优选的是,所述步骤S3中还包括筛分过程和烘干过程,所述筛分过程包括:所述筛分过程包括:将所述下沉颗粒通过20~40目标准筛,取筛上物;所述烘干过程包括:将所述筛上物烘干,其中,所述烘干温度为105~150℃,所述烘干时间为2~5 h。
可以理解的是,可以加完硫铁矿粉浆液后静置0.5-1 h,再向负压容器中加入水,使得硫铁矿粉在表面能和重力压载的作用下与珍珠岩颗粒充分结合;
可以理解的是,可以通过合理控制加水量,使得改性膨胀珍珠岩颗粒沉底,未负载膨胀珍珠岩颗粒悬浮(膨胀珍珠岩颗粒呈蜂窝结构,在水中呈悬浮态),达到分层效果;若在抽滤瓶中改性膨胀珍珠岩颗粒,加水量可以为3ml,加水后的液面可以高于原液面2~3cm。
可以理解的是,可以将所述筛上物置于滤网之上,利用清水洗涤过滤,直至筛下滤液澄清。
本发明还提供一种改性膨胀珍珠岩颗粒,通过上述任意一项制备方法制得。
本发明还提供了一种由上述制备方法制得的改性膨胀珍珠岩颗粒在污水处理中的应用。
可以理解的是,可以将将所述改性膨胀珍珠岩置于好氧颗粒污泥培养装置中进行污水处理。
可以理解的是,好氧颗粒污泥培养装置可以包括以下结构:进水水箱,提升泵,高位水箱,气动阀,储泥槽,反应器,活动挡板,排泥阀,隔离板,曝气系统,DO在线监测系统,回流泵,调节阀,调节阀,回流水箱,出水箱,分隔板。
可以理解的是,参照图1,所述好氧颗粒污泥培养装置主要包括:脉冲进水结构、反应结构以及回流排出结构,具体如下:
脉冲进水结构主要包括过管道依次相连的进水水箱1、高位水箱 3,其中,进水水箱1与高位水箱3连接的管道上设有提升泵2,高位水箱3与反应器6之间连接的管道上设有气动阀4;
反应结构主要包括反应器6,反应器6下部设有隔离板9,反应器6通过分隔板17连接所述储泥槽5,其中,所述活动挡板7位于所述分隔板17的上部四分之一处,所述反应器6的下部连接有脉冲进水结构中的气动阀4,上部通过管道与回流排出结构连接,所述反应器6下部还通过管道与曝气系统10连接;所述反应结构还包括DO在线监测系统11,DO在线监测系统11主要包括第一探针与第二探针,所述隔离板9的上方垂直距离10公分设置有第一探针,所述第一探针上方垂直距离40公分设置有一个第二探针;所述污泥槽的下方还设有排泥阀8。
回流排出结构主要包括回流箱15与出水箱16,所述回流箱15与出水箱16通过管道与反应器6连接,所述管道上还分别设有调节阀13与调节阀14;所述回流箱15还通过管道与高位水箱3连接,所述管道上设有回流泵12。
还可以理解的是,参照图1,本发明利用好氧颗粒污泥培养装置处理污水的流程如下:向反应器6中投入定量的改性膨胀珍珠岩颗粒,颗粒投放完毕后,向所述反应器6中接种取自好氧池末端的污泥,将所述污泥与所述改性膨胀珍珠岩颗粒充分混合,混合完毕后,打开提升泵2,将进水水箱1中的污水压入高位水箱3,通过控制气动阀4的开合频率实现脉冲进水,所述开合频率为:气动阀4打开5~10s,关闭20~60 s;所述反应器6中形成水流剪切力,通过进一步控制开合频率可以进一步调节水流剪切力的大小,结合曝气系统10向反应器6内溶解氧气,使得微生物群落快速颗粒化;打开活动挡板7,轻质污泥以及从载体上脱落的老化生物膜(即轻质物料)从所述活动挡板7中进入储泥槽5中,储泥槽5需要定期打开排泥阀进行排废;除此之外,所述反应器6上部的上清液从反应器6中溢出,部分进入回流水箱15,通过回流泵12压入高位水箱3与污水结合,另一部分则直接进入出水水箱16,排出系统。
还可以理解的是,所述曝气系统向水体中溶解氧气,有利于在微生物聚集体内形成了溶氧的梯度差,为硫自养反硝化和同步硝化反硝化创造了有利条件。
优选的是,所述改性膨胀珍珠岩颗粒在污水处理中的应用包括步骤:
S1:将所述改性膨胀珍珠岩颗粒投加至反应器中,所述改性膨胀珍珠岩颗粒的投加体积占所述反应器体积的10~50%;
S2:向所述反应器内接种浓度为3000 mg/L-6000 mg/L的污泥;
可以理解的是,所述污泥可以取自常规活性污水处理厂好氧池末端。
还可以理解的是,理论上活性污泥处于全池流化状态,取自任一点位均可,接种活性污泥的目的是引入污水处理微生物。
本领域技术人员还应当知道的是,在好氧颗粒污泥培养器中,接种污泥的体积可以达到反应器体积的四分之三。
S3:向所述反应器底部以脉冲的方式加入污水,其中,所述加入污水的方向为由下至上,所述脉冲进水的频率为:每隔20~60s,进水5~10s;
可以理解的是,在好氧颗粒污泥培养装置中,可以通过提升泵将污水从进水水箱中提升至高位水箱,再压入反应器,通过控制气动阀在反应器底部实现由下至上的脉冲进水,强烈搅动反应器内水体,使得污泥、污水、改性膨胀珍珠岩颗粒充分混合,提高污水处理效率。
可以理解的是,所述脉冲进水的过程中,污水的流速足以搅动水体。
优选的是,还包括:向所述反应器的底部供氧。
可以理解的是,可以通过好氧颗粒污泥培养装置中的曝气系统向反应器内进氧,结合脉冲进水的方式,促进反应器内溶氧梯度的形成,进一步由下至上形成好氧/缺氧/厌氧的反应区块。
还可以理解的是,所述曝气系统曝气强度可以调整,使得DO在线监测系统中的检测数值满足要求。
优选的是,在所述向所述反应器的底部供氧的过程中,通过DO在线监测系统检测所述反应器内的溶氧量:所述DO在线监测系统包括第一探针和第二探针;
其中,所述第一探针和所述第二探针的垂直距离为0.4~0.6 m,所述第一探针位于所述第二探针下方,所述第一探针距离所述反应器底部的垂直距离为0.1m;
所述第一探针范围控制在3-5 mg/L,所述第二探针范围控制在0.5 mg/L以下。
可以理解的是,在好氧颗粒污泥培养装置中,所述反应器底部可以为隔离板。
可以理解的是,所述第一探针范围表示的是第一探针测量范围内,每升水体的溶氧量控制在3-5 mg;同理,所述第二探针范围表示的是第二探针测量范围内,每升水体的溶氧量控制在0.5 mg以下。
S4:收集从所述反应器上部溢出的液体;
优选的是,所述步骤S4中,所述收集从所述反应器上部溢出的液体包括:
将部分所述反应器上部溢出的液体以自下至上脉冲进水的方式回流至所述反应器的底部;将其余所述反应器上部溢出的液体输送至出液装置。
可以理解的是,在好氧颗粒污泥培养装置中处理时,所述反应器上部溢出的液体(即上清液),部分进入回流水箱,通过回流泵与高位水箱中的污水结合,部分进入出水箱;
可以理解的是,未进入高位水箱的上清液从出水箱排出,进入出水箱排出系统。
还可以理解的是,从出水排出系统排出的上清液满足《城镇污水处理厂污染物排放标准》(GB 18918-2002)一级A标准甚至更严格的排放要求,对环境不会造成负担。
其中,所述进入回流水箱中的污水的回流比为50%~100%;
S5:所述反应器内的所述改性膨胀珍珠岩颗粒挂膜完成后,控制所述反应器内的轻质物料随自下向上的水流进入储泥池。
可以理解的是当颗粒表面清晰观察到一层浅黄色的生物膜,或者通过检测得知出水稳定达标时,所述改性膨胀珍珠岩颗粒挂膜完成。
可以理解的是,所述轻质物料包括轻质污泥以及从载体上脱落的老化生物膜,说述轻质污泥主要组分为具有代谢功能的活性微生物群体、微生物内源呼吸和自身氧化的残留物、被污泥絮体吸附的难降解有机物以及被污泥絮体吸附的无机物。
可以理解的是,应用于好氧颗粒污泥培养装置中时,可以打开活动挡板,使得所述轻质污泥在由下至上的水流作用下通过活动挡板进入储泥池中,除此之外,可以定期打开排泥阀,将废弃的污泥排出,保证排泥阀排出系统的工作效率与使用寿命。
可以理解的是,所述硫铁矿粉负载于所述改性膨胀珍珠岩颗粒,为硫自养反硝化菌提供富集环境,当所述改性膨胀珍珠岩颗粒挂膜后,形成好氧/缺氧的微环境。
本领域技术人员还应当理解的是,作为本技术方案负载效果的重要指标,单位负载量(单位质量膨胀珍珠岩颗粒上负载的硫铁矿粉质量)以及负载率(被负载的硫铁矿粉占总硫铁矿粉投入量的比值)的计算主要利用到等体积法,其步骤可以包括:S1:将所述负载超细粉体的微生物载体的总体积为L、总质量M,投入的硫铁矿粉的质量记为m;S2:将所述烘干后的改性膨胀珍珠岩部分转移至量筒中,定容至l 1ml,测得其净重m 1;取所述漂浮微生物载体,烘干并定容至l 1mL,测得所述漂浮微生物载体的净重m 2
其中,l 1体积的微生物载体负载上的超细粉体质量为m 1-m 2,单位质量微生物载体负载超细粉体质量为m 1-m 2/m 2;体积为L时,未负载微米粉末的微生物载体的质量为L×m 2/l 1,测得负载量为:(M-L×m 2/l 1)/m。
为了便于本领域技术人员对本发明做进一步理解,现举例说明:
其中,PE表示膨化珍珠岩,PY表示硫铁矿。
实施例1
重力压载法负载硫铁矿
1、制备步骤
预称取2gPE(0.5-4mm),1gPY至250mL烧杯中,加入50mL水,磁力搅拌30min,倒入40目标准筛中,滤除未负载的PY粉末,105℃烘干,得通过重力压载法得到的改性膨胀珍珠岩颗粒,其中,重力压载法获得的改性膨胀珍珠岩颗粒如图2所示。同理,制得不同PY:PE配比下,通过重力压载法得到的改性膨胀珍珠岩颗粒,进一步的得到其单位负载量以及总负载率。
2、实验结果
不同质量配比的膨胀珍珠岩颗粒和硫铁矿使用重力压载法结合时负载率以及单位负载量如表1所示。  
实施例2
真空法+重力压载法负载PY
1、制备步骤
预称取30gPE(0.5-4mm)颗粒,15 gPY,将PE(干燥)颗粒和PY颗粒放置在抽滤瓶中,准备一个1L的烧杯,装入300mL水,打开真空循环水泵,使抽滤瓶中形成负压,真空循环水泵的真空度表盘(表压)达到-0.1Mpa时,往抽滤瓶中注水约300mL,水面可完全浸没PE颗粒。完成后再向瓶中加水300mL,静沉5min,将下沉PE颗粒通过40目标准筛筛除未负载PY,直至筛下滤液澄清,表示筛分完成,再将筛上PE颗粒放入烘箱进行烘干操作,其中,烘干温度为105℃,烘干时间为4h,得通过真空法和重力压载法制得的改性膨胀珍珠岩颗粒;分别测量烘干后的上层漂浮PE颗粒体积、下沉PE颗粒体积,计算出沉降比;进一步检测计算得到单位负载量与负载率。
2、实验结果
抽滤瓶中加入300mlPE(30g)颗粒,300ml水进行真空法处理,上浮PE颗粒体积为60mL,通过计算沉降比为80%,单位质量PE负载PY量为0.17g/g,其中真空法+重力压载法获得的改性膨胀珍珠岩颗粒如图3所示,沉降情况图如图4(a)所示。
实施例3
真空法负载PY
1、制备步骤
预称取30gPE(0.5-4mm)颗粒,将PE(干燥)颗粒放置在抽滤瓶中,准备一个1L的烧杯,向其中加入15gPY,加水配置成300mL浆液(固含量约为4.8%),打开真空循环水泵,使抽滤瓶中形成负压,当真空循环水泵的真空度表盘(表压)达到-0.1Mpa时,往抽滤瓶中注入300ml浆液,液面可完全浸没PE颗粒。完成后再向瓶中加水300mL,静沉5min,并将下沉PE颗粒通过40目标准筛筛除未负载PY,直至筛下滤液澄清,表示筛分完成,再将筛上PE颗粒放入烘箱进行烘干操作,其中,烘干温度为105℃,烘干时间为4h,得通过真空法制得的改性膨胀珍珠岩颗粒;分别测量烘干后的上层漂浮PE颗粒体积、下沉PE颗粒体积,计算出沉降比;进一步检测计算得到单位负载量。
2、实验结果
真空法可以解决PE上浮的问题,通过真空处理后的PE,下沉PE颗粒占总PE为80%,即沉降比为80%。
将PY负载与真空法结合,在负压环境下,PY与水同时进入到PE颗粒内部孔隙中,通过对PE内部截面观测可知:PE内部PY负载均匀,负载效果好。单位质量PE负载PY量为0.6g/g,相较于其他方法负载率有较大提高。
其中真空法获得的改性膨胀珍珠岩颗粒如图5所示,沉降情况图如图4(b)所示,利用真空法获得的改性膨胀珍珠岩颗粒的截面电镜图如图6所示。根据实施例1、2、3得到的不同方法获得的改性膨胀珍珠岩颗粒单位负载量对比表如表2所示。
实施例4
PE/PY配比不同时的负载情况
1、实验步骤
称取30gPE(0.5-4mm、干燥)颗粒,将其放置在抽滤瓶中,准备1L的烧杯,分别装入3g、18g、30gPY,加水配成300mL浆液(固含量分别约为1%、5.7%、9.1%),打开真空循环水泵,抽真空使抽滤瓶中形成负压,真空循环水泵的真空度表盘(表压)达到-0.1Mpa时,往抽滤瓶中注PY浆液300mL,液面完全浸没PE颗粒。浸没后再向瓶中加水300mL,静沉5min,分别收集上层漂浮PE颗粒、下沉PE颗粒,并将下沉PE颗粒通过40目标准筛筛除未负载PY,直至筛下滤液澄清,表示筛分完成,再将筛上PE颗粒放入烘箱进行烘干操作,其中,烘干温度为105℃,烘干时间为4h,得改性膨胀珍珠岩颗粒。再收集下沉颗粒并烘干,进一步测得不同PE/PY配比下真空负载法得到的改性膨胀珍珠岩颗粒的单位负载量以及负载率。
2、实验结果
不同PE/PY配比下真空负载法得到的改性膨胀珍珠岩颗粒的单位负载量以及负载率如表3所示。
PY/PE质量比越高,单位质量PE负载PY量越多,负载量反而越小。
实施例5
不同真空度保持时间的负载情况
1、实验步骤
称取30gPE颗粒(0.5-4mm、干燥),将其放置在抽滤瓶中,准备1L的烧杯,装入30gPY,加水定容至300mL(固含量约为9.1%)。打开真空循环水泵,使抽滤瓶中形成负压,真空循环水泵的真空度表盘(表压)达到-0.1Mpa时,保持该真空度1min,往抽滤瓶中注PY浆液300mL,液面可完全浸没PE颗粒。浸没后再向瓶中加水300mL,静沉5min,分层,得上层漂浮PE颗粒以及下沉PE颗粒,将下沉PE颗粒通过40目标准筛筛除未负载PY,直至筛下滤液澄清,表示筛分完成,收集筛上PE颗粒进行105℃烘干,烘干时间为4h,得不同真空度保持时间下通过真空法制得的改性膨胀珍珠岩颗粒,进一步计算得单位负载量与负载率;同理制备真空度未保持样品,并计算其单位负载量以及负载率。
2、实验结果
真空度保持时间有利于单位质量PE负载PY量的提高,但影响较小。
实施例6
PE颗粒PY脱附试验
1、实验步骤
称取30gPE颗粒(0.5-4mm、干燥),将其放置在抽滤瓶中,准备1L的烧杯,装入10gPY浆液,加水定容至300mL(固含量约为3.2%)。打开真空循环水泵,使抽滤瓶中形成负压,真空循环水泵的真空度表盘(表压)达到-0.1Mpa时,保持该真空度1min,往抽滤瓶中注PY浆液300mL,液面可完全浸没PE颗粒。浸没后再向瓶中加水300mL,静沉5min,收集上层漂浮PE颗粒、下沉PE颗粒,将下沉PE颗粒通过40目标准筛筛除未负载PY,直至筛下滤液澄清,表示筛分完成,收集部分筛上PE颗粒进行105℃烘干,烘干时间为4h,得改性膨胀珍珠岩颗粒,烘干后的PE颗粒进一步计算得到单位负载量与负载率。另一部分筛上PE颗粒进行PY脱附试验,将收集的未烘干下沉PE颗粒10g,放置在250mL的烧杯中,加入200ml水,打开磁力搅拌,通过磁力搅拌对PE颗粒进行处理,转速为200rpm,使得负载PY的PE颗粒能够良好的分散在水中,磁力搅拌2h后,收集PE颗粒进行105℃烘干,烘干时间为4h。烘干后的PE颗粒进一步计算的单位负载量以及负载率。
2、实验结果
搅拌时间越长PY脱附的量随之增加,但PY脱附的量较小,PY负载的较稳定。
实施例7:
本实施例中污水为取自城镇污水处理厂细格栅出水,水质特征如下:COD为102~565 mg/L;氨氮(NH 4 +-N)质量浓度为13~28 mg/L;总氮(TN)质量浓度为24~57 mg/L;总磷(TP)质量浓度为2~9 mg/L;pH为6.8~7.5。
将本发明制得的改性膨胀珍珠岩投加至好氧颗粒污泥培养装置的反应器中,投加量为所述反应器有效容积的30%,同时向所述反应器中接种取自好氧池末端的活性污泥,接种污泥浓度为3000 mg/L。
通过提升泵,将进水水箱中的污水压至高位水箱,同时,控制气动阀开合频次,向所述反应器中由下至上脉冲进污水,其中,所述气动阀每打开10s,关闭40 s。
调节曝气强度,控制DO在线监测系统中第一探针范围DO浓度控制在3~5 mg/L,第二探针范围DO浓度控制在0.5 mg/L以下,在垂直梯度上形成DO的浓度差。
所述进入反应器的污水与所述污泥、所述改性膨胀珍珠岩颗粒在脉冲进水的水流作用下充分混合,然后,收集反应器上部溢出的液体(即上清液),所述上清液从所述反应器上部溢出,部分进入回流水箱,通过回流泵与所述高位水箱中的污水结合,再以脉冲的方式由下至上回流至所述反应器底部,回流比为50%;另一部分进入出水箱。
在反应器运行的第20 d,改性膨胀珍珠岩颗粒挂膜完成,打开活动挡板,轻质的活性污泥以及从载体上脱落的老化生物膜在自下向上的水流作用下进入储泥池,定期打开排泥阀,将储泥池中的废泥淘汰出系统。
系统运行稳定后,以改性膨胀珍珠岩为核心的污泥颗粒在系统内富集,粒径分布在0.5-4.5 mm,可观察到一层致密的生物膜包裹在载体(其中,挂膜后的改性膨胀珍珠岩颗粒电镜图如图7所示,以改性膨胀珍珠岩为核心的污泥颗粒显微镜图如图8所示),结合PY的负载,形成好氧/缺氧的微环境,形成微生物聚集体;在曝气条件下,向水体内溶解氧,形成溶氧梯度差。
此外,形成的微生物聚集体具有良好的沉降性能,沉降速度可达30-100 m/h,提升了系统的污水处理能力。
连续取样检测出水水质,其中COD为10~30 mg/L;氨氮(NH 4 +-N)质量浓度为0.2~0.8 mg/L;总氮(TN)质量浓度为7~10 mg/L;总磷(TP)质量浓度为0.2~0.5 mg/L。
综上所述,本发明的上述技术方案中,以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的技术构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围。

Claims (10)

  1. 一种改性膨胀珍珠岩颗粒的制备方法,其特征在于,包括步骤:
    S1:配制固含量为1%~15%的硫铁矿粉浆液,其中,所述硫铁矿粉的粒径<10μm;
    S2:将膨胀珍珠岩颗粒置于表压为﹣0.1~﹣0.05 Mpa的负压容器中,向所述负压容器中注入所述硫铁矿粉浆液;
    其中,所述膨胀珍珠岩颗粒的粒径为0.5~4 mm,且所述膨胀珍珠岩颗粒的表面孔径大于所述硫铁矿粉的粒径;
    S3:向所述负压容器中加入水,静置5~120min,收集下沉颗粒,其中,所述下沉颗粒为所述改性膨胀珍珠岩颗粒。
  2. 根据权利要求1所述的一种改性膨胀珍珠岩颗粒的制备方法,其特征在于,所述硫铁矿粉为经破碎筛分处理过后的精硫铁矿,所述精硫铁矿中硫含量>30%。
  3. 根据权利要求1所述的一种改性膨胀珍珠岩颗粒的制备方法,其特征在于,所述膨胀珍珠岩颗粒与所述硫铁矿粉的质量比为1~10∶1。
  4. 根据权利要求1所述的一种改性膨胀珍珠岩颗粒的制备方法,其特征在于,所述步骤S3中还包括筛分过程和烘干过程,所述筛分过程包括:将所述下沉颗粒通过20~40目标准筛,取筛上物;所述烘干过程包括:将所述筛上物烘干,其中,所述烘干温度为105~150℃,所述烘干时间为2~5 h。
  5. 一种改性膨胀珍珠岩颗粒,其特征在于,根据权利要求1~4中任意一项的制备方法制得。
  6. 一种如权利要求5所述的改性膨胀珍珠岩颗粒在污水处理中的应用。
  7. 根据权利要求6所述的改性膨胀珍珠岩颗粒在污水处理中的应用,其特征在于,包括步骤:
    S1:将所述改性膨胀珍珠岩颗粒投加至反应器中,所述改性膨胀珍珠岩颗粒的投加体积占所述反应器体积的10~50%;
    S2:向所述反应器内接种浓度为3000 mg/L-6000 mg/L的污泥;
    S3:向所述反应器底部以脉冲的方式加入污水,其中,所述加入污水的方向为由下至上,所述脉冲进水的频率为:每隔20~60s,进水5~10s;
    S4:收集从所述反应器上部溢出的液体;
    S5:所述反应器内的所述改性膨胀珍珠岩颗粒挂膜完成后,控制所述反应器内的轻质物料随自下向上的水流进入储泥池。
  8. 根据权利要求7所述的改性膨胀珍珠岩颗粒在污水处理中的应用,其特征在于,所述步骤S4中,所述收集从所述反应器上部溢出的液体包括:
    将部分所述反应器上部溢出的液体以自下至上脉冲进水的方式回流至所述反应器的底部;将其余所述反应器上部溢出的液体输送至出液装置。
  9. 根据权利要求7所述的改性膨胀珍珠岩颗粒在污水处理中的应用,其特征在于,还包括:向所述反应器的底部供氧。
  10. 根据权利要求7所述的改性膨胀珍珠岩颗粒在污水处理中的应用,其特征在于,在所述向所述反应器的底部供氧的过程中,通过DO在线监测系统检测所述反应器内的溶氧量:所述DO在线监测系统包括第一探针和第二探针;
    其中,所述第一探针和所述第二探针的垂直距离为0.4~0.6 m,所述第一探针位于所述第二探针下方,所述第一探针距离所述反应器底部的垂直距离为0.1m;
    所述第一探针范围控制在3-5 mg/L,所述第二探针范围控制在0.5 mg/L以下。
PCT/CN2023/108278 2022-05-24 2023-07-20 一种改性膨胀珍珠岩颗粒及其制备方法和应用 WO2023227143A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210575248.5A CN114804360B (zh) 2022-05-24 2022-05-24 一种改性膨胀珍珠岩颗粒及其制备方法和应用
CN202210575248.5 2022-05-24

Publications (1)

Publication Number Publication Date
WO2023227143A1 true WO2023227143A1 (zh) 2023-11-30

Family

ID=82516464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108278 WO2023227143A1 (zh) 2022-05-24 2023-07-20 一种改性膨胀珍珠岩颗粒及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114804360B (zh)
WO (1) WO2023227143A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117958146A (zh) * 2024-04-02 2024-05-03 三亚市林业科学研究院 一种基于珍珠岩的兰花培养箱及培养方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804360B (zh) * 2022-05-24 2023-06-02 湖南五方环境科技研究院有限公司 一种改性膨胀珍珠岩颗粒及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739376A (ja) * 1993-08-04 1995-02-10 Kansai Paint Co Ltd 微生物固定化用担体
CN105907745A (zh) * 2016-06-28 2016-08-31 陈建峰 一种水产养殖水体净化专用光合材料的制备方法
CN110282948A (zh) * 2019-06-21 2019-09-27 南京理工大学 添加固载微生物的膨胀珍珠岩修复混凝土裂缝的方法
CN110627226A (zh) * 2019-10-31 2019-12-31 湖南三友环保科技有限公司 一种无机复合粉末载体及其在城镇污水处理强化生物脱氮中的应用
CN110668561A (zh) * 2019-10-31 2020-01-10 同济大学 一种有机复合粉末载体及其在城镇污水处理强化生物脱氮中的应用
CN111453841A (zh) * 2020-04-29 2020-07-28 广东亮科环保工程有限公司 一种缓释碳源镂空棒的制备方法
CN113115772A (zh) * 2021-03-30 2021-07-16 仲恺农业工程学院 一种以膨胀珍珠岩为载体的缓释农药及其制备方法
CN114804360A (zh) * 2022-05-24 2022-07-29 湖南五方环境科技研究院有限公司 一种改性膨胀珍珠岩颗粒及其制备方法和应用
CN114873727A (zh) * 2022-05-24 2022-08-09 湖南五方环境科技研究院有限公司 复合载体颗粒的制备方法及复合生物反应器、污水处理系统与方法
CN115140840A (zh) * 2022-05-24 2022-10-04 湖南五方环境科技研究院有限公司 一种新型功能载体及其在污水处理中的应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6712974B1 (en) * 1997-01-10 2004-03-30 Advanced Minerals Corporation Filterable composite adsorbents
CN108636442A (zh) * 2018-05-21 2018-10-12 北京高能时代环境技术股份有限公司 负载型臭氧催化剂、制备方法及其应用和酸性蓝染料污染废水的处理方法
CN111056634A (zh) * 2020-01-15 2020-04-24 北京泰科智康环保科技有限公司 一种自养反硝化脱氮载体及其制备方法
CN112624541A (zh) * 2021-02-03 2021-04-09 江苏科技大学 一种离子吸附耦合微生物矿化的重金属修复材料及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739376A (ja) * 1993-08-04 1995-02-10 Kansai Paint Co Ltd 微生物固定化用担体
CN105907745A (zh) * 2016-06-28 2016-08-31 陈建峰 一种水产养殖水体净化专用光合材料的制备方法
CN110282948A (zh) * 2019-06-21 2019-09-27 南京理工大学 添加固载微生物的膨胀珍珠岩修复混凝土裂缝的方法
CN110627226A (zh) * 2019-10-31 2019-12-31 湖南三友环保科技有限公司 一种无机复合粉末载体及其在城镇污水处理强化生物脱氮中的应用
CN110668561A (zh) * 2019-10-31 2020-01-10 同济大学 一种有机复合粉末载体及其在城镇污水处理强化生物脱氮中的应用
CN111453841A (zh) * 2020-04-29 2020-07-28 广东亮科环保工程有限公司 一种缓释碳源镂空棒的制备方法
CN113115772A (zh) * 2021-03-30 2021-07-16 仲恺农业工程学院 一种以膨胀珍珠岩为载体的缓释农药及其制备方法
CN114804360A (zh) * 2022-05-24 2022-07-29 湖南五方环境科技研究院有限公司 一种改性膨胀珍珠岩颗粒及其制备方法和应用
CN114873727A (zh) * 2022-05-24 2022-08-09 湖南五方环境科技研究院有限公司 复合载体颗粒的制备方法及复合生物反应器、污水处理系统与方法
CN115140840A (zh) * 2022-05-24 2022-10-04 湖南五方环境科技研究院有限公司 一种新型功能载体及其在污水处理中的应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117958146A (zh) * 2024-04-02 2024-05-03 三亚市林业科学研究院 一种基于珍珠岩的兰花培养箱及培养方法
CN117958146B (zh) * 2024-04-02 2024-05-31 三亚市林业科学研究院 一种基于珍珠岩的兰花培养箱的培养方法

Also Published As

Publication number Publication date
CN114804360A (zh) 2022-07-29
CN114804360B (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
WO2023227143A1 (zh) 一种改性膨胀珍珠岩颗粒及其制备方法和应用
Long et al. Stability of aerobic granular sludge in a pilot scale sequencing batch reactor enhanced by granular particle size control
Yu et al. Effects of Fe2+ on sludge granulation in upflow anaerobic sludge blanket reactors
Zhou et al. Optimizing granules size distribution for aerobic granular sludge stability: effect of a novel funnel-shaped internals on hydraulic shear stress
CN104961313B (zh) 一种增强厌氧消化污泥重金属稳定化过程的方法
CN105130137A (zh) 复合型污染地下水的原位修复系统及修复方法
CN110217882B (zh) 一种农村生活污水处理的填料耦合反硝化设备及方法
CN113860497B (zh) 城市及市政污水脱氮除磷填料及其制备方法
CN110217898B (zh) 一种农村生活污水处理的生物菌剂、挂膜填料、填料的制备方法和挂膜方法
CN106630131A (zh) 一种改性凹凸棒土颗粒的制备方法及利用其加速厌氧污泥颗粒化的方法
CN108793395A (zh) 脱氮除磷装置的组建方法、脱氮除磷装置和脱氮除磷方法
CN108975626B (zh) 一种具有氮磷回收作用的景观水处理装置
CN1800053A (zh) 一种利用颗粒污泥进行亚硝酸盐脱氮的方法
CN115140840B (zh) 一种功能载体及其在污水处理中的应用
Chen et al. Magnetic bio-flocculation for cost-effective fast organic matter pre-concentration for sewage with enhanced capture and settling of sludge
CN109092249B (zh) 一种用于污水强化生物处理的免烧结磁化的污泥炭顺磁载体的制备方法
CN208883669U (zh) 一种用于农村生活污水处理的一体化生物生态耦合装置
CN106865753B (zh) 一种基于好氧颗粒污泥去除废水中纳米级微粒的处理装置及处理方法
CN114873720A (zh) 一种提高硫自养反硝化滤池脱氮性能的方法
CN213085760U (zh) 一种载体生物强化耦合污水处理装置
CN208038245U (zh) 一种畜禽废水的集中处理系统
CN111960529A (zh) 一种高效降解烟碱的好氧颗粒污泥的培养装置及快速培养方法
Duan Study on the treatment process of wastewater from cephalosporin production
CN110436749A (zh) 利用磁化微米四氧化三铁加快活性污泥沉降速度的方法
CN108218117A (zh) 一种废水处理装置及废水处理工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811213

Country of ref document: EP

Kind code of ref document: A1