WO2023227065A1 - 通信方法,装置和可读存储介质 - Google Patents

通信方法,装置和可读存储介质 Download PDF

Info

Publication number
WO2023227065A1
WO2023227065A1 PCT/CN2023/096308 CN2023096308W WO2023227065A1 WO 2023227065 A1 WO2023227065 A1 WO 2023227065A1 CN 2023096308 W CN2023096308 W CN 2023096308W WO 2023227065 A1 WO2023227065 A1 WO 2023227065A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
sub
terminal device
resource
resource pool
Prior art date
Application number
PCT/CN2023/096308
Other languages
English (en)
French (fr)
Inventor
吴昊
李翔宇
才宇
彭文杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023227065A1 publication Critical patent/WO2023227065A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load

Definitions

  • the present application relates to the field of communication, and more specifically, to a communication method, device and readable storage medium.
  • SL data transmitted between terminal devices can be called sidelink (SL) data.
  • the terminal device can select a carrier with a less busy channel among multiple carriers to transmit SL data.
  • the network device can configure at least one resource pool for each carrier. Different resource pools can correspond to different regional identifiers.
  • the terminal device determines the unique corresponding resource pool according to the regional identifier of the location, and determines the unique corresponding resource pool according to the configuration parameters of the resource pool.
  • the channel busy ratio (CBR) is measured, and then a carrier with a lower CBR is selected to transmit the SL data, where the only resource pool determined by the terminal device is the candidate resource pool used by the terminal device for the SL data transmission.
  • CBR channel busy ratio
  • terminal equipment can use one or more resource pools in the carrier to transmit SL data. For example, the terminal device can select one or more appropriate resource pools in the carrier for SL data transmission based on the amount of SL data.
  • the terminal device selects a carrier for the SL data transmission from multiple carriers by determining the busyness of the carrier.
  • the present application provides a communication method, device and readable storage medium, with a view to enabling a terminal device to support the use of one or more resource pools in a carrier to transmit side link SL data, that is, the carrier is used for the side link of the terminal device.
  • the carrier used for the SL data transmission can be selected by determining the busyness of the carrier.
  • a communication method is provided.
  • the method can be implemented by a terminal device or a chip in the terminal device.
  • the method includes: the first terminal device acquires some or all of the multiple resource pools in the first carrier.
  • the measurement results of each resource pool in the part or all resource pools are used to determine the channel busy rate of the first carrier, and the channel busy rate of the first carrier is used to determine the channel busy rate from multiple carriers.
  • a first carrier; a first terminal device uses the first carrier to transmit sidelink data with a second terminal device; wherein multiple resource pools in the first carrier are candidates for transmission of sidelink data Resource pool.
  • the multiple resource pools in the first carrier may be resource pools configured by the network device for the first terminal device.
  • Each resource pool may perform measurements based on its own configuration parameters to obtain measurement results, where the configuration parameters may include the following parameters: One or more of: a parameter indicating the number of physical resource blocks in a subchannel, a parameter indicating a measurement time for making measurements, a parameter indicating a preset threshold for determining a busy subchannel (e.g. , when the first terminal is set When measuring the received signal strength indicator RSSI, the preset threshold may be a threshold that is compared with the RSSI).
  • the first carrier may be the first L carriers with the lowest channel busy rate among multiple carriers, where L is a positive integer and smaller than the number of multiple carriers, thereby achieving reliable transmission of SL data.
  • L may be determined based on the predefined protocol, or the configuration of the network device, or the transmission requirements of the SL data.
  • the transmission of side link data between the first terminal device and the second terminal device may include: the first terminal device sending side link data to the second terminal device, and/or the first terminal device receiving data from the second terminal device. Sidelink data.
  • the first terminal device can obtain the measurement results of part or all of the resource pools in the carrier, and obtain the channel busy rate of the carrier based on the measurement results of part or all of the resource pools, thereby enabling the terminal device to operate on multiple One or more carriers used for transmitting SL data are determined among the carriers.
  • the first terminal device can refer to or use the configuration parameters of the resource pool to obtain the measurement results of each resource pool in the part or all resource pools, thereby reducing signaling transmission between the terminal device and the network device and reducing signaling overhead.
  • referring to certain information may refer to performing appropriate processing on the information, such as performing calculations on the parameters, or performing calculations on the parameters from multiple available Select a parameter from the parameters for reference; using a certain information can refer to using the information without processing it.
  • a certain parameter can be used directly, or it can include the aforementioned "reference" meaning.
  • some or all of the resource pools are determined based on at least one of the following information of each of the plurality of resource pools: the number of sub-channels, resource blocks The number of resource blocks included in the sub-channel.
  • some or all of the resource pools are resource pools in which one or more of the number of sub-channels, the number of resource blocks, or the number of resource blocks included in the sub-channels in the multiple resource pools is greater than or equal to their respective corresponding specific thresholds.
  • some or all of the resource pools are the top K resource pools that have a larger number of one or more of the number of sub-channels, the number of resource blocks, or the number of resource blocks included in the sub-channels in the multiple resource pools.
  • K is a positive integer and smaller than the number of the multiple resource pools. It can be understood that the value of K corresponding to the number of sub-channels, the number of resource blocks or the number of resource blocks included in the sub-channel may be the same or different.
  • the value of K may be determined based on the predefined protocol, or the configuration of the network device, or the transmission requirements of the SL data.
  • the number of sub-channels or resource blocks in a resource pool can affect the importance of the resource pool in determining the channel busy rate of the carrier.
  • the terminal device or network device can select an appropriate one based on multiple parameters.
  • the resource pool is used to determine the channel busy rate of the carrier, thereby improving the credibility of the channel busy rate.
  • the method further includes: the first terminal device receiving first information from the network device, the first information indicating the part or all of the resource pool; the first terminal device The device obtains the measurement results of each resource pool in the part or all resource pools, including: the first terminal device obtains the measurement results of each resource pool in the part or all resource pools based on the first information.
  • the first information may directly indicate the part or all of the resource pool.
  • the first information may include the identification information of the part or all of the resource pool; or the first information may indicate the determination of the part or all of the resource pool.
  • the part or all of the resource pool for example, the first information indicates that the first terminal device will have one or more of the number of sub-channels, the number of resource blocks, or the number of resource blocks included in the sub-channel is greater than or equal to the respective corresponding
  • the resource pool with a specific threshold is used as part or all of the resource pool.
  • the network device can configure the first terminal device to determine which resource or resources to use.
  • the measurement results of the pool determine the first information of the channel busy rate of the first carrier, thereby enabling the first terminal device to quickly obtain the measurement results of the part or all of the resource pool without obtaining resources other than the part or all of the resource pool.
  • the measurement results of the pool are thus improved to improve the efficiency of determining the channel busy rate of the first carrier.
  • some or all of the resource pools are determined based on the measurement results of each of the plurality of resource pools.
  • the first terminal device can first obtain the measurement results of the multiple resource pools, and then select an appropriate part or all of the resource pools based on the measurement results of each resource pool to determine the channel busy rate of the carrier, thereby improving Confidence in channel busy rate.
  • some or all of the resource pools are the top N resource pools of multiple resource pools in ascending order of measurement results, or some or all of the resource pools are multiple resource pools.
  • the first M resource pools sorted in descending order by measurement results, where N and M are positive integers.
  • the value of N or M can be determined based on the predefined protocol, or the configuration of the network device, or the transmission requirements of the SL data.
  • some or all of the resource pools are resource pools whose measurement results are greater than or equal to the first specific threshold among multiple resource pools.
  • some or all of the resource pools are resource pools whose measurement results are less than or equal to the second specific threshold among multiple resource pools.
  • threshold resource pool, or some or all of the resource pools are resource pools whose measurement results are within a specific range among multiple resource pools. The values of the first specific threshold, the second specific threshold or the specific interval may be determined based on the predefined protocol, or the configuration of the network device, or the transmission requirements of the SL data.
  • the measurement results of one or more resource pools with higher or lower measurement results can be used to determine the channel busy rate of the first carrier according to different scenario requirements, for example, when users are communicating on sidelinks
  • higher measurement results are more reliable, so the measurement results of the resource pool with higher measurement results can be selected to determine the channel busy rate of the first carrier; for another example, in a situation where there are fewer users performing sidelink communication
  • the measurement results of the resource pool with lower measurement results can be selected to determine the channel busy rate of the first carrier, thereby increasing the utilization of the carrier, and thus this technical solution can support the application of multiple scenarios.
  • “higher” in this application may mean higher than a corresponding threshold
  • “lower” may mean lower than a corresponding threshold.
  • the method further includes: the first terminal device sends the measurement results of each resource pool in part or all of the resource pools to the network device; the first terminal device receives data from the network device.
  • the channel busy rate of the first carrier of the device, or the first terminal device receives second information from the network device, the second information indicating the first carrier.
  • the first terminal device can report the measurement results to the network device, and the network device determines the channel busy rate of the carrier, and then the network device notifies the first terminal device of the channel busy rate, or directly informs the channel used to transmit SL data.
  • the first carrier enables terminal equipment that does not support the ability to determine the channel busy rate based on measurement results, or terminal equipment that does not determine the channel busy rate based on measurement results due to power saving needs, to be able to determine the use of multiple carriers for SL data transmission. one or more carriers.
  • the method further includes: the first terminal device determines the channel busy rate of the first carrier based on the measurement results of each resource pool in the part or all of the resource pools; A terminal device determines the first carrier from multiple carriers based on the channel busy rate of the first carrier, or the first terminal device sends the channel busy rate of the first carrier to the network device and receives second information from the network device , the second information is used to indicate the first carrier.
  • the first terminal device can determine the channel busy rate of the carrier by itself and select the channel for transmitting SL Data carrier, thereby reducing signaling transmission between network equipment and terminal equipment, thereby reducing signaling overhead.
  • some or all of the resource pools include a first resource pool, and the measurement result of the first resource pool is that the number of first busy sub-channels accounts for 1% of the first resource pool.
  • the ratio of the total number of sub-channels, where the first busy sub-channel is a sub-channel in the first resource pool whose received measurement value is greater than or equal to the first threshold, and the received measured value is at least one of the following values: received signal Strength indication, reference signal received power or reference signal received quality.
  • the channel busy rate of the first carrier is a weighted average of the measurement results of part or all of the resource pool, and the weighting coefficient corresponding to the measurement result of the first resource pool is the same as the weighted average of the measurement results of the first resource pool.
  • the total number of sub-channels in a resource pool is positively correlated, or is positively correlated with the total number of resource blocks in the first resource pool, or the channel busy rate of the first carrier is the average of the measurement results of some or all of the resource pools. .
  • the channel busy rate of the first carrier can be the measurement result of the resource pool.
  • the first terminal device can synthesize the measurement results of part or all of the resource pool and perform weighted averaging or averaging processing, thereby improving the credibility of the channel busy rate.
  • a communication method is provided, which method can be implemented by a terminal device or a chip in the terminal device.
  • the method includes: the first terminal device determines the channel busy rate of the first carrier, and the channel busy rate of the first carrier The ratio of the number of busy subchannels to the number of all subchannels, which are subchannels configured in the first carrier for determining the channel busy rate of the first carrier, or configured for sidelinks in the first carrier
  • the busy subchannel is a subchannel included in the candidate resource pool for data transmission.
  • the busy subchannel is a subchannel whose received measurement value is greater than or equal to the measurement threshold among all subchannels, where the received measurement value is at least one of the following values: received signal Strength indication, reference signal received power or reference signal received quality; the first terminal device determines the first carrier from multiple carriers based on the channel busy rate of the first carrier; the first terminal device uses the first carrier to communicate with the second terminal device Transmission of sidelink data.
  • the candidate resource pool configured for sidelink data transmission in the first carrier may be one or more resource pools configured by the network device according to the service requirements of the first terminal device for sidelink data transmission.
  • the subchannels included in the candidate resource pool may refer to the set of subchannels of all candidate resource pools excluding duplicate subchannels.
  • the first carrier may be the top L carriers with the lowest channel busy rate among multiple carriers, where L is a positive integer and smaller than the number of multiple carriers, thereby achieving reliable transmission of sidelink SL data.
  • the transmission of side link data between the first terminal device and the second terminal device may include: the first terminal device sending side link data to the second terminal device, and/or the first terminal device receiving data from the second terminal device. Sidelink data.
  • the first terminal device can measure all sub-channels based on the parameters used to determine the channel busy rate of the first carrier, thereby enabling the terminal device to select a carrier for transmitting SL data among multiple carriers. Transmit SL data.
  • the first terminal device receives parameter information from the network device, where the parameter information is used to indicate the measurement threshold.
  • the first terminal device refers to the configuration parameters of the resource pool, such as the time to receive the measurement value, the frequency domain position of the sub-channel, and the location of each sub-channel.
  • the number of resource blocks included in the sub-channel, and all sub-channels are measured to determine the channel busy rate of the first carrier.
  • the parameter information is also used to indicate at least one of the following information: the time at which the measurement value is received, the frequency domain position of all sub-channels, the The number of resource blocks included in each sub-channel.
  • the network device can configure parameter information for determining the channel busy rate of the carrier at carrier granularity, so that the first terminal device can quickly and reliably determine the appropriate carrier to transmit sidelink data based on the channel busy rate of the carrier.
  • a communication method is provided.
  • the method can be implemented by a network device or a chip in the network device.
  • the method includes: the network device sends first information to the first terminal device, and the first information indicates the Some or all resource pools in multiple resource pools, the measurement results of each resource pool in some or all resource pools are used to determine the channel busy rate of the first carrier, and the channel busy rate of the first carrier is used to obtain the results from multiple carriers.
  • a first carrier is determined, and the first carrier is used for transmission of sidelink data; wherein multiple resource pools in the first carrier are candidate resource pools for transmission of the sidelink data.
  • the third aspect also provides a communication method, which can be implemented by a terminal device or a chip in the terminal device.
  • the method includes: the first terminal device receives first information from the network device, the first information indicates that the first terminal device receives the first information from the network device. Some or all of the multiple resource pools in one carrier; the first terminal device obtains the measurement results of each resource pool in the part or all of the resource pool based on the first information, and each resource in the part or all of the resource pool The measurements from the pool are used to determine the channel busy rate of the first carrier.
  • the first terminal device can obtain the measurement results of part or all of the resource pools in the carrier, and obtain the channel busy rate of the carrier based on the measurement results of part or all of the resource pools, thereby enabling the terminal device to operate on multiple A carrier used for transmitting SL data is selected among the carriers.
  • the network device may configure the first terminal device with the first information used to determine which resource pool or pools of measurement results are used to determine the channel busy rate of the first carrier, thereby enabling the first terminal device to quickly obtain part or all of the resource pool.
  • the measurement results of the resource pool may eliminate the need to obtain the measurement results of resource pools other than part or all of the resource pool, thereby improving the efficiency of determining the channel busy rate of the first carrier.
  • some or all of the resource pools are determined based on at least one of the following information of each resource pool in the plurality of resource pools: the number of sub-channels, resource blocks The number of resource blocks included in the sub-channel.
  • the network device receives measurement results from each resource pool in part or all of the resource pools of the first terminal device, or the network device receives measurement results from the first terminal device.
  • the channel busy rate of the first carrier in the case where the network device receives the measurement results of each resource pool in the part or all resource pools from the first terminal device, the network device is based on the measurement results of each resource pool in the part or all resource pools.
  • the measurement result sends the channel busy rate of the first carrier to the first terminal device, or the network device sends second information to the first terminal device based on the measurement results of each resource pool in part or all of the resource pools, and the second information indicates the first Carrier; when the network device receives the channel busy rate of the first carrier from the first terminal device, the network device sends the second information to the first terminal device based on the channel busy rate of the first carrier.
  • some or all of the resource pools include a first resource pool, and the measurement result of the first resource pool is that the number of first busy sub-channels accounts for 1% of the first resource pool.
  • the ratio of the total number of sub-channels, the first busy sub-channel is the sub-channel in the first resource pool whose received measurement value is greater than or equal to the first threshold, where,
  • the reception measurement value is at least one of the following: received signal strength indication, reference signal reception power or reference signal reception quality, and the first resource pool is one of part or all of the resource pools.
  • the channel busy rate of the first carrier is a weighted average of the measurement results of some or all resource pools, and the weighting coefficient corresponding to the measurement results of the first resource pool is the same as the weighted average of the measurement results of the first resource pool.
  • the total number of sub-channels in a resource pool is positively correlated, or is positively correlated with the total number of resource blocks in the first resource pool, or the channel busy rate of the first carrier is the average of the measurement results of part or all of the resource pool.
  • the various implementation methods of the third aspect are network device methods corresponding to the various implementation methods of the first aspect.
  • the beneficial technical effects of the various implementation methods of the third aspect please refer to the description of the relevant implementation methods of the first aspect. , will not be described in detail here.
  • a communication method is provided.
  • the method can be implemented by a network device or a chip in the network device.
  • the method includes: the network device sends parameter information to a first terminal device, and the parameter information is used to indicate a measurement threshold.
  • the measurement The threshold is used to determine the channel busy rate of the first carrier, where the channel busy rate of the first carrier is the ratio of the number of busy subchannels to the number of all subchannels. All subchannels are configured in the first carrier and is used to determine the first carrier.
  • the subchannel of the carrier's channel busy rate, or all subchannels are subchannels included in the candidate resource pool configured for sidelink data transmission in the first carrier, and the busy subchannel is the reception measurement value of all subchannels that is greater than or For a subchannel equal to the measurement threshold, the received measurement value is at least one of the following values: received signal strength indication, reference signal received power, or reference signal received quality.
  • the fourth aspect also provides a communication method, which can be implemented by a terminal device or a chip in the terminal device.
  • the method includes: the first terminal device receives parameter information from the network device, and the parameter information is used to indicate the following information: At least one of: a measurement threshold, a measurement time for receiving measurement values, frequency domain positions of all sub-channels, or the number of resource blocks included in each sub-channel of all sub-channels, the measurement threshold is used to determine the first carrier Channel busy rate, where the channel busy rate of the first carrier is the ratio of the number of busy sub-channels to the number of all sub-channels, and all sub-channels are the sub-channels in the first carrier configured to determine the channel busy rate of the first carrier , or all subchannels are subchannels included in the candidate resource pool configured for sidelink data transmission in the first carrier, and busy subchannels are subchannels in all subchannels whose received measurement values are greater than or equal to the measurement threshold.
  • the measured value is at least one of the following values: received signal strength indication
  • the parameters used to determine the channel busy rate of the first carrier may include the aforementioned measurement threshold, the aforementioned time for measuring and receiving measurement values, the aforementioned frequency domain positions of all sub-channels, and the aforementioned resource blocks included in each sub-channel of all sub-channels. quantity.
  • One or more of the time at which the measurement value is received, the frequency domain position of all sub-channels, or the number of resource blocks included in each sub-channel in all sub-channels may be used to determine the first step.
  • the sub-channel of the carrier's channel busy rate may be used to determine the first step.
  • the parameter information may be used to indicate all or part of the aforementioned parameters used to determine the channel busy rate of the first carrier, and parameters not indicated by the parameter information may be predefined by the protocol.
  • the parameter information may be carried in one message or in multiple messages.
  • the first terminal device can measure all sub-channels based on the parameters used to determine the channel busy rate of the first carrier, thereby enabling the terminal device to determine the channel busy rate of the first carrier.
  • the channel busy rate of the first carrier may be used to select a carrier for transmitting SL data from multiple carriers.
  • the various implementation methods of the fourth aspect are network device methods corresponding to the various implementation methods of the second aspect.
  • the beneficial technical effects of the various implementation methods of the fourth aspect please refer to the description of the relevant implementation methods of the second aspect. , will not be described in detail here.
  • a communication method which method can be implemented by a terminal device or a chip in the terminal device.
  • the method includes: the first terminal device obtains the channel busy rate of each carrier among the N carriers, wherein, the The channel busy rate of the i-th carrier among the N carriers is determined based on the measurement results of each resource pool in part or all of the multiple resource pools in the i-th carrier.
  • the i-th carrier Multiple resource pools in the carrier are candidate resource pools for transmission of sidelink data, and the channel busy rate of each carrier in the N carriers is used to determine the first carrier; the first terminal device uses all The first carrier transmits side link data with the second terminal device, and N is a positive integer, i ⁇ [1, N].
  • a sixth aspect provides a communication device having the function of implementing the method in the first aspect, or any possible implementation of the first aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • a seventh aspect provides a communication device having the function of implementing the method in the second aspect, or any possible implementation of the second aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • An eighth aspect provides a communication device having the function of implementing the method in the third aspect, or any possible implementation of the third aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • a ninth aspect provides a communication device having the function of implementing the method in the fourth aspect, or any possible implementation of the fourth aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • a communication device including a processor and a memory.
  • a transceiver may also be included.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, and control the transceiver to send and receive signals, so that the communication device performs the first aspect or the second aspect, or any one of these aspects. method in any possible implementation of the aspect.
  • the communication device is a terminal device.
  • a communication device including a processor and a memory.
  • a transceiver may also be included.
  • the memory is used to store computer programs
  • the processor is used to call and run the computer programs stored in the memory, and control the transceiver to send and receive signals, so that the communication device performs the third aspect or the fourth aspect, or any of these aspects. method in any possible implementation of the aspect.
  • the communication device is a network device.
  • a communication device including a processor and a communication interface.
  • the communication interface is used to receive data and/or information and transmit the received data and/or information to the processor.
  • the processor processes the data and/or information, and the communication interface is also used to output the data and/or information processed by the processor, so as to achieve the first aspect or the second aspect, or any of these aspects.
  • the method in any possible implementation is executed.
  • the communication device may be a chip applied to terminal equipment.
  • a communication device including a processor and a communication interface.
  • the communication interface is used to receive data and/or information and transmit the received data and/or information to the processor.
  • the processor processes the data and/or information, and the communication interface is also used to output data and/or information processed by the processor, so as to enable any possible implementation of the third aspect or the fourth aspect, or any of these aspects.
  • the method in the method is executed.
  • the communication device may be a chip used in network equipment.
  • a computer-readable storage medium is provided.
  • Computer instructions are stored in the computer-readable storage medium.
  • the results shown in the first aspect or the second aspect, or in these aspects, are: Methods in any possible implementation of either aspect are executed.
  • a computer-readable storage medium is provided.
  • Computer instructions are stored in the computer-readable storage medium.
  • the results shown in the third aspect or the fourth aspect, or in these aspects are Methods in any possible implementation of either aspect are executed.
  • a computer program product comprising computer program code, when the computer program code is run on a computer, it causes the first aspect or the second aspect, or any of these aspects. Methods in any possible implementation of an aspect are executed.
  • a computer program product comprising computer program code, when the computer program code is run on a computer, it causes the third aspect or the fourth aspect, or any of these aspects. Methods in any possible implementation of an aspect are executed.
  • An eighteenth aspect provides a wireless communication system, including the communication device as described in the sixth aspect, and/or the communication device as described in the eighth aspect.
  • a nineteenth aspect provides a wireless communication system, including the communication device as described in the seventh aspect, and/or the communication device as described in the ninth aspect.
  • a twentieth aspect provides a wireless communication system, including the communication device described in any one or more of the tenth to seventeenth aspects, or any possible implementation of any of these aspects. communication device.
  • Figure 1 is a schematic diagram of a communication scenario suitable for the technical solution of this application.
  • Figure 2 is a schematic diagram of multiple resource pools
  • Figure 3 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 4 is a schematic flow chart of a possible implementation provided by the embodiment of the present application.
  • Figure 5 is a schematic flow chart of another communication method provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of sub-channels included in the resource pool provided by the embodiment of the present application.
  • Figure 7 is a schematic diagram of a sub-channel configured for determining the channel busy rate of a carrier provided by an embodiment of the present application
  • FIGS 8 to 10 are schematic structural diagrams of possible devices provided by embodiments of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as: fifth generation (5th generation, 5G) systems or new radio (new radio, NR), wireless fidelity (wireless fidelity, Wi-Fi) systems, Cellular systems related to the 3rd generation partnership project (3GPP), communication systems that support the integration of multiple wireless technologies, or future-oriented evolutionary systems are not subject to restrictions.
  • 5G fifth generation
  • NR new radio
  • NR wireless fidelity
  • Wi-Fi wireless fidelity
  • 3GPP 3rd generation partnership project
  • mobile communication systems will not only support traditional communications, but also support, for example, devices to Device to device (D2D) communication, machine to machine (M2M) communication, machine type communication (MTC), vehicle to everything (V2X) communication (also called vehicle network communication), for example, vehicle-to-vehicle (V2V) communication (also known as vehicle-to-vehicle communication), vehicle-to-infrastructure (V2I) communication (also known as vehicle-to-infrastructure communication) ), vehicle-to-pedestrian (V2P) communication (also called vehicle-to-person communication), vehicle-to-network (V2N) communication (also called vehicle-to-network communication).
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2P vehicle-to-pedestrian
  • V2N vehicle-to-network communication
  • FIG. 1 is a schematic diagram of the architecture of a communication system suitable for embodiments of the present application.
  • the communication system applicable to the embodiments of the present application mainly includes terminal equipment, such as the terminal equipment 121 and the terminal equipment 122 shown in Figure 1, and network equipment, such as the network equipment 110 shown in Figure 1.
  • the communication system mainly includes two communication interfaces, such as the communication interface (Uu port) between the terminal device 121 and the network device 110, and the communication interface (PC5 port) between the terminal device 121 and the terminal device 122.
  • the Uu port is used for communication between terminal equipment and network equipment
  • the PC5 port is used for side link communication between terminal equipment and terminal equipment.
  • the link on the Uu port through which the terminal device sends data to the network device is called an uplink, and the link through which the terminal device receives data sent by the network device is called a downlink.
  • the link that transmits data between the terminal device on the PC5 port and the terminal device is called a sidelink or a direct link.
  • Sidelinks are generally used in device-to-device (D2D) scenarios where direct communication can be performed between devices. In this scenario, data transmission between devices does not need to go through network devices.
  • V2X Vehicle to everything
  • RRC radio resource control
  • DRB data radio bearer
  • SRB signaling radio bearer
  • a wireless bearer includes a packet data convergence protocol (PDCP) entity and a radio link control (RLC) bearer.
  • PDCP packet data convergence protocol
  • RLC radio link control
  • an RLC bearer includes an RLC entity and the corresponding logical channel (Logical Channel, LCH).
  • the configuration of the radio bearer is the configuration of the PDCP entity, RLC entity and logical channel of the radio bearer.
  • the configuration of the wireless bearer needs to be able to ensure the quality of service (QoS) requirements of the services transmitted through the wireless bearer.
  • QoS quality of service
  • the wireless bearer configuration is configured by the network device for the terminal device.
  • the wireless bearer on the PC5 port can be called a sidelink radio bearer (SL RB).
  • SL RB sidelink radio bearer
  • the wireless bearers on the PC5 port are established by the sending terminal device and the receiving terminal device themselves respectively.
  • the configuration of the wireless bearer is predefined by the standard or by the sending terminal device and the receiving end. The terminal device determines it itself.
  • the names of the Uu port or PC5 port may remain unchanged or may be replaced by other names, which is not limited in this application.
  • the terminal device in the embodiment of this application may be referred to as a terminal for short.
  • the terminal device may be a device with wireless transceiver function.
  • Terminal equipment can be mobile or fixed. Terminal equipment can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; it can also be deployed on water (such as ships, etc.); it can also be deployed in the air (such as aircraft, balloons, satellites, etc.).
  • the terminal equipment may include a mobile phone (mobile phone), a tablet computer (pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal equipment, an augmented reality (augmented reality, AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical, smart grid A wireless terminal device in a grid, a wireless terminal device in transportation safety, a wireless terminal device in a smart city, and/or a wireless terminal device in a smart home.
  • a mobile phone mobile phone
  • a tablet computer pad
  • a computer with wireless transceiver functions a virtual reality (VR) terminal equipment
  • an augmented reality (augmented reality, AR) terminal equipment wireless terminal equipment in industrial control
  • wireless terminal equipment in self-driving wireless terminal equipment in remote medical
  • smart grid A wireless terminal device in a grid, a wireless terminal device in transportation safety, a wireless terminal device in a smart city, and/or a wireless terminal device in a smart home.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a device with wireless communications Functional handheld devices or computing devices, vehicle-mounted devices, wearable devices, terminal devices in the fifth generation (the 5th generation, 5G) network or terminals in the future evolved public land mobile communication network (public land mobile network, PLMN) Equipment etc. Terminal equipment may also be called user equipment (UE) sometimes.
  • the terminal device can communicate with multiple access network devices of different technologies.
  • the terminal device can communicate with an access network device that supports LTE, can also communicate with an access network device that supports 5G, and can also communicate with an access network device that supports 5G. Dual connectivity of access network equipment that supports LTE and access network equipment that supports 5G. This disclosure is not limiting.
  • the device used to realize the function of the terminal device may be a terminal device; it may also be a device capable of supporting the terminal device to realize the function, such as a chip system, a hardware circuit, a software module, or a hardware circuit plus a software module.
  • the device It can be installed in the terminal device or used in conjunction with the terminal device.
  • the technical solution provided by the present disclosure is described by taking the device for realizing the functions of the terminal device being a terminal device and the terminal device being a UE as an example.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the network device in the embodiment of this application may also be called an access network (radio access network, RAN) device.
  • RAN radio access network
  • RAN equipment is a node or device that connects terminal equipment to a wireless network.
  • RAN equipment can also be called a base station.
  • Examples of RAN equipment include but are not limited to: base stations, next-generation node B (gNB) in 5G, evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved node B, or home node B, HNB), baseband unit (base band unit (BBU), transmitting and receiving point (TRP), transmitting point (TP), and/or mobile switching center, etc.
  • gNB next-generation node B
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • base station controller base station controller
  • BSC base transceiver station
  • BTS home base station
  • the access network equipment may also be a centralized unit (CU), distributed unit (DU), centralized unit control plane (CU control plane, CU-CP) node, centralized unit user plane (CU user plane) , CU-UP) node, integrated access and backhaul (IAB), or at least one wireless controller in a cloud radio access network (CRAN) scenario.
  • the access network equipment may be a relay station, an access point, a vehicle-mounted device, a terminal device, a wearable device, an access network device in a 5G network, or an access network device in a future evolved public land mobile network (PLMN). Access network equipment, etc.
  • the device used to realize the function of the access network device may be the access network device; it may also be a device that can support the access network device to realize the function, such as a chip system, a hardware circuit, a software module, or a hardware circuit
  • the device can be installed in access network equipment or used in conjunction with access network equipment.
  • the device used to realize the functions of the access network equipment is the access network equipment, and the access network equipment is Taking a base station as an example, the technical solution provided by this application is described.
  • the architecture that can be applied to the embodiment of the present application shown in Figure 1 is only an example.
  • the architecture applicable to the embodiment of the present application is not limited to this. Any architecture that can realize the functions of each of the above devices is suitable for the implementation of the present application. example.
  • FR1 and FR2 The electromagnetic spectrum is often subdivided into various categories, frequency bands, channels, etc. based on frequency/wavelength.
  • FR1 and FR2 two frequency band ranges are defined, FR1 and FR2.
  • FR1 (410MHz-7.125GHz) represents the low-frequency band.
  • FR2 (24.25GHz-52.6GHz) represents the millimeter wave high-frequency band and is the extended frequency band of 5G.
  • the frequencies between FR1 and FR2 are often called the mid-frequency band.
  • frequency ranges are divided into multiple carriers, and the allocated carriers can be used for communication between network equipment and terminal equipment or between terminal equipment and terminal equipment.
  • Terminal equipment can use resources in the sidelink resource pool for data transmission.
  • a resource pool can be configured with one or more continuous physical resource blocks (PRBs) in the frequency domain and one or more continuous physical resource blocks (PRBs) in the time domain. Multiple time slots (slots), where multiple time slots can be consecutive or non-consecutive.
  • PRBs physical resource blocks
  • PRBs continuous physical resource blocks
  • Multiple time slots (slots), where multiple time slots can be consecutive or non-consecutive In order to facilitate understanding of the meaning of the resource pool, the resource pool in the sidelink is exemplified below with reference to Figure 2.
  • Figure 2 shows a schematic diagram of multiple resource pools.
  • a part of the carrier bandwidth (carrier bandwidth) used for SL spectrum can be called the sidelink bandwidth part SL BWP (sidelink bandwidth part).
  • Multiple resource pools can be defined within the SL BWP, such as the three resource pools shown in Figure 2. Taking one of the resource pools is an example.
  • a resource pool can be configured with multiple continuous PRBs in the frequency domain. A certain number of continuous PRBs can form a sub-channel.
  • the terminal device can use one or more sub-channels to transmit SL. data.
  • a resource pool can be configured with multiple time slots in the time domain that can be used for SL transmission of the terminal device.
  • the terminal device can determine the starting time slot of the time domain range to which the multiple time slots belong through the synchronization signal of the physical layer (such as synchronization signal block (SSB)), where the multiple time slots belong to
  • the time domain range may be multiple consecutive time slots that can be used for SL data transmission by multiple terminal devices, such as 10 time slots (slots), 20 time slots, 40 time slots, or 100 time slots.
  • the positions of the multiple time slots that can be used for SL transmission of the terminal device within the corresponding time domain range may be indicated in a bitmap manner.
  • the bitmap "0011000000" can indicate that the 3rd and 4th time slots within the time domain of 10 slots are time slots that can be used for SL transmission of the terminal device, that is, the resource pool of the terminal device is configured in the time domain. These are the 3rd and 4th time slots.
  • the number of time units represented by each bit in the bitmap such as the number of time slots, can be one or more, and the specific number can be predefined based on the protocol, or configured by the network device.
  • the terminal device may be configured with multiple resource pools for SL transmission of multiple terminal devices.
  • the terminal device has only one candidate resource pool for SL transmission by the terminal device.
  • a terminal device determines a unique candidate resource pool for SL transmission from multiple resource pools indicated by the network device for multiple terminal devices based on the zone ID of its location.
  • the number of candidate resource pools for the terminal device to perform SL transmission may be more than one.
  • the terminal device when the configuration parameter of the terminal device is set to sl-ScheduedCofig, the terminal device can use mode 1 (mode 1) for SL transmission, which means that when the terminal device transmits SL data or signaling, SL data or signaling can be populated into one or more resource pools.
  • mode 1 mode 1
  • the terminal device can use mode 2 for SL transmission, which means that the terminal device can select one or more resource pools from multiple resource pools for data Transmission, that is, there can be multiple candidate resource pools for sidelink data transmission in Mode 2.
  • CBR can be used to indicate the busyness of the channel. For example, if the value of CBR is high, it can mean that there are more nearby users occupying the channel, or that there is a terminal device that is close to the terminal device that is the CBR measuring party occupying the channel. channel. Among them, "occupancy" is not limited to the transmission of SL data, and may include the transmission of Uu port data, or the transmission of other wireless data, which is not limited here.
  • the CBR can be used by the terminal device or network device to select resources for transmitting SL data. In order to ensure the reliability of SL data transmission, the terminal device or network device can select a carrier with a lower CBR for SL data transmission.
  • the terminal device can determine the CBR value by measuring the received signal strength indications (RSSI) of the sub-channel, where RSSI can represent the strength of the received signal, and a continuously high RSSI can represent the received signal.
  • RSSI received signal strength indications
  • the interference is greater.
  • the CBR of a resource pool can be defined as the ratio of busy subchannels to all subchannels in the resource pool within the length of the time window for measuring CBR.
  • the length of the time window is related to the resource configuration parameters.
  • the resource configuration parameters are When the time slot is granular, the time window length can be set to 100 time slots, or when the resource configuration parameters are millisecond granular, the time window length can be set to 100 milliseconds.
  • This time window should be before the aforementioned time slot configured for SL transmission of the terminal device, for example, based on the aforementioned time slot configured for SL transmission of the terminal device and the terminal device determines the time slot used for the terminal based on the CBR.
  • the time window is determined by the time the device takes to prepare for SL transmission after the carrier of the SL transmission.
  • the subchannel may be considered a busy subchannel.
  • predetermined in this application can be protocol predefined, prestored, preconfigured, preset, or prefired, which is not limited here.
  • the terminal device may use the configuration parameters of the resource pool to perform CBR measurement.
  • sl-SubchannelSize-r16 can indicate the number of PRBs in a subchannel
  • sl-ThreshS-RSSI-CBR-r16 can indicate the predetermined threshold of RSSI
  • sl-TimeWindowSizeCBR-r16 can indicate the length of the time window for measuring CBR.
  • the terminal device can use the configuration parameters of the resource pool to perform CBR measurement.
  • the method of measuring CBR and selecting carriers based on CBR shown above can be applied to the scenario where there is only a certain candidate resource pool for SL transmission when measuring CBR.
  • the zone ID knows the unique resource pool used for SL transmission. If the terminal device does not know the actual resource pool for SL transmission during the process of measuring CBR, that is, when the candidate resource pool is uncertain, the method shown above cannot be implemented.
  • This application proposes a communication method and device that enables a terminal device to transmit SL data using one or more resource pools in a carrier, that is, the number of candidate resource pools for SL data transmission of the terminal device is multiple. time, the busyness of the carrier can be determined. This communication method is explained below.
  • Figure 3 is a schematic flow chart of a communication method proposed by an embodiment of the present application.
  • the first terminal device obtains the measurement results of each resource pool in some or all of the multiple resource pools in the first carrier.
  • the measurement results of each resource pool in some or all of the resource pools are used to determine the channel busy rate of the first carrier, and the channel busy rate of the first carrier is used to determine the first carrier from multiple carriers.
  • the first carrier may be a carrier configured to use one or more resource pools for SL transmission.
  • the first carrier may be a corresponding carrier when the configuration parameter of the first terminal device is set to sl-ScheduedCofig.
  • the multiple resource pools in the first carrier may be resource pools configured by the network device for the first terminal device.
  • the network device may configure the first terminal device through the parameter SL-BWP-PoolConfig in the sidelink information elements.
  • One terminal device is configured with 8 resource pools.
  • Some or all of the multiple resource pools may refer to: the part or all of the resource pool may be one of the multiple resource pools, or part of multiple resource pools of the multiple resource pools, or are all resource pools of the multiple resource pools.
  • the following is an exemplary description of the measurement results of one resource pool (for example, the first resource pool) among some or all of the resource pools.
  • the measurement result of the first resource pool is the ratio of the number of first busy sub-channels to the total number of sub-channels in the first resource pool.
  • the first busy sub-channel is a sub-channel in the first resource pool with a reception measurement value greater than or equal to the first threshold, and the reception measurement value may be at least one of the following values: received signal strength indicator RSSI, reference signal Received power or reference signal reception quality.
  • the first terminal device may use or refer to relevant parameters in the first resource pool (for example, see the relevant parameters introduced above for CBR in the sidelink) to perform the measurement. Furthermore, the first terminal device can obtain the measurement results of each resource pool in the part or all of the resource pools.
  • the above describes how to obtain the measurement results of the resource pool.
  • the following describes how to determine the part or all of the resource pool.
  • the first terminal device may determine part or all of the resource pool according to instructions from the network device. In this manner, step S310 may be implemented by step S311 and step S312.
  • the network device sends the first information to the first terminal device.
  • the first terminal device receives the first information from the network device.
  • the first information is used to indicate part or all of the resource pool, where the indication method may be direct indication or indirect indication. It can be understood that indirect instructions in this application, such as A indirectly indicating C, can be achieved by A indicating B, and the corresponding relationship between B and C. The corresponding relationship between B and C can be predefined or preconfigured by the protocol, and is not limited here.
  • the first information is also used to instruct the first terminal device to perform CBR measurement on part or all of the resource pool indicated by the first information.
  • the first information may indicate the identification information of part or all of the resource pool.
  • the first information may include the identification of part or all of the resource pool, or the first information may include the part or all of the resource pool.
  • the location information of the resource pool in the resource (such as the time slot number or sub-channel number corresponding to part or all of the resource pool, etc.).
  • the network device may, according to each of the multiple resource pools, At least one of the following information of each resource pool determines part or all of the resource pool: the number of sub-channels, the number of resource blocks, and the number of resource blocks included in the sub-channel. For example, the network device may select the resource pool with the largest number of subchannels, resource blocks, or resource blocks included in the subchannel; or select the resource pool with the largest number of subchannels, resource blocks, or resource blocks included in the subchannel to be greater than a specific threshold.
  • the network device performs an operation on one or more of the number of sub-channels, the number of resource blocks, and the number of resource blocks included in the sub-channel, and selects a resource pool whose operation result meets the preset conditions.
  • the determination method of part or all of the resource pools can be designed according to the actual application scenario, and this application does not impose any special restrictions on this.
  • the network device can send the identified identification information of part or all of the resource pool to the first terminal device through the first information, and the first terminal device can obtain the measurement results of the part or all of the resource pool based on the first information without obtaining Measurement results of resource pools other than part or all of the resource pool can save measurement resources.
  • the first information may indicate a method of determining the part or all of the resource pool.
  • the network device may notify the first terminal device of one or more of the following ways through the first information:
  • the first terminal device may determine part or all of the resource pool according to at least one of the following information of each resource pool in the plurality of resource pools: the number of sub-channels, the number of resource blocks, and the number of resource blocks included in the sub-channel.
  • This method is similar to the description of the network equipment determining part or all of the resource pool described above, and will not be described again here.
  • the first terminal device may determine the part or all of the resource pools based on the measurement results of each resource pool in the plurality of resource pools.
  • some or all of the resource pools are the top N resource pools of the multiple resource pools in ascending order of measurement results.
  • some or all of the resource pools are the first M resource pools sorted in descending order of the measurement results, where the N and M are positive integers.
  • some or all of the resource pools are resource pools whose measurement results are greater than or equal to a specific threshold among multiple resource pools.
  • some or all of the resource pools are resource pools whose measurement results are less than or equal to a specific threshold among multiple resource pools.
  • some or all of the resource pools are resource pools whose measurement results are within a specific interval among multiple resource pools.
  • the first terminal device may obtain the measurement results of each resource pool in the first carrier, and determine part or all of the resource pools based on each measurement result.
  • the network device can directly indicate the mode of part or all of the resource pool.
  • the network device may indirectly indicate the determination mode.
  • the network device and the first terminal device may pre-agree on the number identification of the determination mode, and then the first information may include the number of the mode to indirectly indicate the determination mode.
  • the network device may also use a combination of direct instructions and indirect instructions to indicate the determination method.
  • the first information includes the above-mentioned value of N, indirectly instructing the first terminal device to select the first N resource pools in ascending order of measurement results.
  • network equipment and terminal equipment can use one of the aforementioned methods based on protocol predefinition.
  • the resource pools are the top N resource pools of multiple resource pools sorted in ascending order according to measurement results.
  • the first information may indicate the parameters corresponding to the method.
  • the first information may include the value of N in the above method.
  • the first information indicates The value of N is analyzed by the network device and the first terminal device based on predetermined rules as part or all of the resource pools as the top N resource pools of multiple resource pools in ascending order of measurement results. This application does not specifically limit this.
  • the first information can also be used to instruct the first terminal device to return the test results of part or all of the resource pool.
  • measurement results, or the protocol predefines that the first terminal device returns the measurement results of part or all of the resource pool, so that the network device can determine the channel busy rate of the first carrier based on the measurement results.
  • the first information may also be used to instruct the first terminal device to determine the channel busy rate of the first carrier based on the measurement results of part or all of the resource pool, or the protocol predefines the first terminal device to determine the channel busy rate of the first carrier based on part or all of the resource pool.
  • the measurement result determines the channel busy rate of the first carrier, so that the first terminal device can determine the channel busy rate of the first carrier according to the measurement result.
  • the method for determining the channel busy rate of the first carrier may include one or more of the following.
  • the specific determination method can also be directly or indirectly indicated by the aforementioned first information.
  • the determination method may also be one of those predefined by the protocol, which is not limited here.
  • the number of some or all resource pools is one or more.
  • the top K resource pools with the largest number of sub-channels are used to determine the channel busy rate of the first carrier.
  • K is a positive integer and smaller than the number of the multiple resource pools.
  • K is equal to 1, that is, the number of resource pools used to determine the channel busy rate of the first carrier is one
  • the channel busy rate of the first carrier may be the measurement result of the determined one resource pool.
  • K is greater than or equal to 2
  • the number of some or all resource pools used to determine the channel busy rate of the first carrier can be processed by processing multiple measurement results. obtained later.
  • the channel busy rate of the first carrier may be an average of the measurement results of part or all of the resource pools.
  • CBR carrier represents the channel busy rate of the first carrier
  • CBR RPi represents the measurement result of the i-th resource pool in some or all of s resource pools
  • ⁇ i represents the weighting coefficient corresponding to the measurement result of the i-th resource pool
  • s is a positive integer.
  • the weighting coefficient ⁇ i may be positively correlated with the total number of sub-channels in the i-th resource pool.
  • the weighting coefficient ⁇ i may be the ratio of the total number of sub-channels in the i-th resource pool to the total number of sub-channels in part or all of the resource pool.
  • the weighting coefficient ⁇ i may be positively correlated with the total number of resource blocks in the i-th resource pool.
  • the weighting coefficient ⁇ i may be the ratio of the total number of resource blocks in the i-th resource pool to the total number of resource blocks in part or all of the resource pool. ratio.
  • the meaning of positive correlation means that the independent variable increases (such as the total number of sub-channels), and the dependent variable (weighting coefficient) also increases.
  • the two variables change in the same direction, and the proportional relationship is positive.
  • this application does not place any limitation on the directly related form.
  • the first terminal device obtains the measurement results of each resource pool in the part or all resource pools.
  • the first terminal device may select part or all of the resource pools among multiple resource pools of the first carrier based on the first information, and measure the part or all of the resource pools to obtain the data of each resource pool in the part or all of the resource pools. Measurement results.
  • the method in which the first terminal device selects part or all of the resource pool may be referred to the relevant description of step S311.
  • the method in which the first terminal device measures part or all of the resource pool may be referred to the relevant description in step S310, which will not be described again here.
  • the above describes the manner in which the network device instructs the first terminal device to instruct part or all of the resource pool.
  • the first terminal device may determine the part or all of the resource pools from multiple resource pools according to a preset determination method.
  • Step S310 may be implemented by step S312. That is to say, the first terminal device can learn the method of determining part or all of the resource pool through preconfiguration, that is, the first terminal device determines the corresponding method of determining part or all of the resource pool on its own based on the protocol predefinition. For example, the first terminal device may determine based on the number of sub-channels, the number of resource blocks of each resource pool in the multiple resource pools, or the number of resource blocks included in the sub-channels.
  • One or more of the quantities determine the part or all of the resource pool, or the first terminal device may also determine the part or all of the resource pool based on the measurement results of each of the plurality of resource pools.
  • the determination method may be similar to that described in step S311, and will not be described again here.
  • S320 The first terminal device or network device determines the channel busy rate of the first carrier.
  • S330, the first terminal device or network device determines the first carrier from multiple carriers.
  • the first terminal device or network device determines that the first carrier is used for the transmission of SL data based on the channel busy rate of the first carrier determined in S320.
  • the first carrier is one of multiple carriers.
  • the method of determining the first carrier from multiple carriers may include one of the following.
  • the specific method may be predefined by the protocol, preset on the network device and the first terminal device, or configured by the network device:
  • the channel busy rate of the first carrier in step S320 may be determined by the first terminal device, or may also be determined by the network device.
  • the first carrier in step S330 may be determined by the first terminal device, or may also be determined by the network device. Possible implementations of step S320 and step S330 are described below with reference to FIG. 4 .
  • step S320 can be implemented by step S321a, and step S330 can be implemented by step S331A.
  • the first terminal device determines the channel busy rate of the first carrier based on the measurement results of part or all of the resource pool.
  • the manner in which the first terminal device determines the channel busy rate of the first carrier may be preconfigured, or may be obtained through the first information sent by the network device.
  • the implementation method for the first terminal device to determine the channel busy rate of the first carrier may refer to the description of step S311, which will not be described again here.
  • the first terminal device determines the first carrier from multiple carriers based on the channel busy rate of the first carrier.
  • the first terminal device may select the first L carriers with the lowest channel busy rate among multiple carriers, where L is a positive integer and smaller than the number of multiple carriers, as the first carrier for SL transmission. That is, the first terminal device can determine the carrier channel busy rate for multiple carriers that is similar to the channel busy rate of the first carrier, and assign the carrier with a smaller channel busy rate, such as the first carrier in this application, Used for the transmission of SL data (also referred to as SL transmission). It can be understood that the SL data in this application includes SL service data and/or signaling.
  • the method of selecting the first carrier from multiple carriers and/or the number of first carriers may be preconfigured by the first terminal device, or instructed by the network device, or the first terminal device may be configured according to the transmitted
  • the side link data or operating environment are determined, and this application does not specifically limit this.
  • step S320 can be implemented through steps S321b and S322b, and step S330 can be implemented through steps S331B and step S332B.
  • S321b The first terminal device sends the measurement results of each resource pool in part or all of the resource pools to the network device.
  • the network device receives the measurement results of each resource pool in the part or all of the resource pools from the first terminal device. fruit.
  • the first terminal device may be pre-configured to return the obtained measurement results to the network device, or may return the obtained measurement results to the network device based on the indication of the first information.
  • the network device determines the channel busy rate of the first carrier based on the measurement results of part or all of the resource pool.
  • the implementation method for the network device to determine the channel busy rate of the first carrier may refer to the relevant description in step S311, which will not be described again here.
  • S331B The network device sends the channel busy rate of the first carrier to the first terminal device.
  • the first terminal device receives the channel busy rate of the first carrier from the network device.
  • the network device may send the channel busy rate of the first carrier to the first terminal device in response to the measurement result sent by the first terminal device.
  • the first terminal device determines the first carrier from multiple carriers based on the channel busy rate of the first carrier.
  • the first terminal device may select the first L carriers with the lowest channel busy rate among multiple carriers, where L is a positive integer and smaller than the number of multiple carriers, as the first carrier for SL transmission.
  • L is a positive integer and smaller than the number of multiple carriers
  • step S320 can be implemented through the above-mentioned steps S321b and S322b (not described in detail below), and step S330 can be implemented through steps S331C and S332C. accomplish.
  • the network device determines the first carrier from multiple carriers based on the channel busy rate of the first carrier.
  • the first terminal device may select the first L carriers with the lowest channel busy rate among multiple carriers, where L is a positive integer and smaller than the number of multiple carriers, as the first carrier for SL transmission.
  • L is a positive integer and smaller than the number of multiple carriers
  • S332C The network device sends the second information to the first terminal device, and correspondingly, the first terminal device receives the second information from the network device.
  • the second information is used to indicate the first carrier.
  • the second information may include identification information of the first carrier.
  • the second information is used to instruct the first terminal device to use the first carrier to transmit sidelink data.
  • step S320 can be implemented through steps S321c and S322c, and step S330 can be implemented through the above-mentioned steps S331C and step S332C.
  • the first terminal device determines the channel busy rate of the first carrier based on the measurement results of part or all of the resource pool.
  • the manner in which the first terminal device determines the channel busy rate of the first carrier may be preconfigured, or may be obtained through the first information sent by the network device.
  • the implementation method for the first terminal device to determine the channel busy rate of the first carrier may refer to the description of step S311, which will not be described again here.
  • the first terminal device sends the channel busy rate of the first carrier to the network device.
  • the network device receives the channel busy rate of the first carrier from the first terminal device.
  • the sending of information in this application does not The way to limit the sending of information, for example, may be to send the information, such as sending the channel busy rate of the first carrier itself, or it may be to send information corresponding to the information, such as sending the channel busy rate indicating the first carrier. rate information, such as an index corresponding to the channel busy rate of the first carrier.
  • the first terminal device may determine channel busy rates of multiple carriers including the first carrier, and send the channel busy rates of the multiple carriers to the network device, so that the network device can determine the channel busy rate based on the channel busy rates of the multiple carriers.
  • the rate determines the first carrier among the plurality of carriers used to transmit SL data.
  • steps S320 and S330 introduced above can be used flexibly to support rich application scenarios.
  • the first terminal device uses the first carrier to transmit sidelink data with the second terminal device.
  • the transmission in this application may include the first terminal device sending side link data to the second terminal device, or the second terminal device sending side link data to the first terminal device.
  • the first terminal device can obtain the measurement results of part or all of the resource pools in the carrier, and obtain the channel busy rate of the carrier based on the measurement results of part or all of the resource pools, thereby enabling the terminal device to operate on multiple A carrier used for transmitting SL data is selected among the carriers.
  • the terminal device can determine the channel busy rate of the first carrier based on the measurement results of the resource pool.
  • This method can make use of relevant parameters of the resource pool, such as the above in the sidelink.
  • the relevant parameters introduced by CBR measure the resource pool and can reduce air interface consumption between terminal equipment and network equipment.
  • This application also provides a communication method that can perform carrier CBR measurement based on the definition of the carrier's channel busy rate, that is, using carrier granularity parameters to determine the channel busy rate of the first carrier, so that the terminal device can select among multiple carriers.
  • the carrier wave used for transmitting SL data transmits SL data. This method will be described below with reference to Figure 5 .
  • Figure 5 shows a schematic flowchart of another method for determining carrier CBR.
  • S510 The first terminal device determines the channel busy rate of the first carrier.
  • the channel busy rate of the first carrier is the ratio of the number of busy sub-channels to the number of all sub-channels.
  • a busy subchannel is a subchannel with a received measurement value greater than or equal to the measurement threshold among all subchannels, where the received measurement value is at least one of the following values: received signal strength indication, reference signal received power, or reference signal received quality.
  • the measurement threshold is the measurement threshold of the busy sub-channel used to determine the busy rate of the carrier channel, which may be different from the measurement threshold of the busy sub-channel used to determine the busy rate of the resource pool channel.
  • All subchannels are subchannels included in the candidate resource pool configured for sidelink SL data transmission in the first carrier.
  • the subchannels included in the candidate resource pool in the first carrier are subchannels included after deduplication processing.
  • the first carrier includes three candidate resource pools #1-3 , the subchannels included in candidate resource pool #1 are subchannels #1-3, the subchannels included in candidate resource pool #2 are subchannels #3-5, and the subchannels included in candidate resource pool #3 are subchannels #7- 9. Then all sub-channels are sub-channels #1-5 and sub-channels #7-9. Even if candidate resource pool #1 and candidate resource pool #2 overlap on subchannel #3, the subchannels included in the candidate resource pool in the first carrier will not repeatedly include subchannel #3.
  • the first terminal device can perform measurements on all sub-channels after deduplication processing, such as sub-channels #1-5 and sub-channels #7-9 shown in Figure 6(a), and obtain the reception measurement value of each sub-channel. , determine the channel busy rate of the first carrier based on the measurement threshold.
  • candidate resource pool# 1 includes time slots #1-3
  • candidate resource pool #2 includes time slots #3-5
  • candidate resource pool #3 includes time slots 8-10
  • the measurement time of the first terminal device receiving the measurement value includes repeated time Slot #3
  • the first terminal device also performs deduplication processing on Slot #3 when measuring the sub-channels included in the candidate resource pool.
  • All sub-channels are sub-channels in the first carrier that are configured for determining the channel busy rate of the first carrier.
  • the number of all sub-channels can also be replaced by the total number of sub-channels.
  • the network device may configure a sub-channel for determining the channel busy rate of the first carrier for the first terminal device.
  • all sub-channels refer to all sub-channels used to determine the channel busy rate
  • all sub-channels may be all sub-channels configured for transmitting sidelink SL data, such that The CBR of the first carrier can be made more accurate, or some sub-channels among all sub-channels configured for transmitting SL data can be used to reduce the measurement amount of the terminal equipment. For example, this part of the sub-channels is used for transmitting SL data.
  • the granularity of the subchannel configured for determining the channel busy rate of the first carrier may be the same as the granularity of the subchannel configured for sidelink SL data transmission, In this way, configuration signaling can be reduced and the consistency of terminal device processing can be improved.
  • the granularity of the subchannel configured for determining the channel busy rate of the first carrier may be different from the granularity of the subchannel configured for sidelink SL data transmission, In this way, a configuration more suitable for the sub-channel used to determine the channel busy rate of the first carrier can be adopted, so that the configuration is more in line with system requirements.
  • FIG. 7 shows a schematic diagram of a sub-channel configured for determining the channel busy rate of the first carrier.
  • sub-channel #1 to sub-channel #4 are sub-channels configured to determine the channel busy rate of the first carrier.
  • Each sub-channel may include at least one PRB, and the number of PRBs included in each sub-channel may be the same. It may be different.
  • the sub-channel used to determine the channel busy rate of the first carrier may be continuous or non-continuous.
  • the measurement parameters may include one or more of the following: the number of sub-channels (that is, all sub-channels) configured to determine the channel busy rate of the first carrier, the frequency of all sub-channels Domain position, the number of PRBs included in each subchannel in all subchannels, measurement thresholds, and the time to receive measurement values.
  • the above measurement parameters may be pre-configured (for example, predefined protocols), or may be indicated by the network device, or part of the measurement parameters may be pre-configured and part may be indicated by the network device.
  • the indication may be direct or indirect. instruct.
  • the first terminal device is configured with multiple sets of measurement parameters and an index that has a corresponding relationship with each set of measurement parameters (for example, the aforementioned corresponding relationship is stored in the form of a table or a string).
  • the first terminal device can indicate based on the network device
  • the index determines the parameters to configure the CBR for the first carrier.
  • all sub-channels are sub-channels included in the candidate resource pool configured for SL data transmission in the first carrier, the number of all sub-channels, the frequency domain positions of all sub-channels, the Each piece in The number of PRBs included in the channel and the time for measuring and receiving measurement values can be determined by referring to or using the parameters in the candidate resource pool (such as the relevant parameters introduced above for CBR in the sidelink).
  • the parameters in the candidate resource pool may be a function of the parameters in the candidate resource pool.
  • the specific function may be predefined; the measurement threshold may be predefined by the protocol, that is, preconfigured, or through the network device. The way indicated is determined.
  • all sub-channels are sub-channels in the first carrier that are configured to determine the channel busy rate of the first carrier.
  • All or part of the above-mentioned measurement parameters may be pre-stored or pre-configured in the in the first terminal device, or may also be determined based on instructions from the network device.
  • the method may also perform step S520.
  • the network device sends parameter information to the first terminal device.
  • the parameter information indicates one or more of the aforementioned measurement parameters when performing measurement.
  • the first terminal device receives the parameter from the network device. information.
  • the parameters when performing measurement may include the measurement threshold.
  • the measurement threshold may be predefined by the protocol or configured by the network device to the first terminal device.
  • the first terminal device when the first terminal device measures the sub-channels included in the resource pool, it can refer to the configuration parameters of each resource pool to determine the time to measure and receive the measurement value (for example, refer to the measurement CBR indicated by sl-TimeWindowSizeCBR-r16). Time window length), the number of PRBs in the subchannel (such as the number of PRBs indicated by reference to sl-SubchannelSize-r16) are measured to obtain the reception measurement value of each subchannel, which can then be compared with the aforementioned measurement threshold.
  • the parameters when performing measurement may include at least one of the following information: measurement threshold, time for receiving measurement values, frequency domain positions of all sub-channels, and the frequency of each sub-channel in all sub-channels.
  • the number of resource blocks included in the subchannel. All or part of these parameters may be predefined by the protocol, or configured by the network device to the first terminal device, for example, by indicating one or more of the aforementioned parameters through parameter information.
  • the specific configuration method may be direct configuration, or Can be configured indirectly. That is, the network device may configure parameters for determining the channel busy rate of the carrier at a carrier granularity.
  • the parameter information may indicate the time at which the measured value is received at the granularity of a time slot, or may also indicate the time at which the measured value is received at the granularity of other time units (eg, milliseconds).
  • the parameter information may indicate the frequency domain position of each subchannel by indicating the starting PRB position of the starting subchannel in all subchannels and the number of PRBs included in the subchannel. That is, the first terminal device can determine the frequency domain position of each subchannel in all subchannels in combination with preconfigured parameters, such as the number of PRBs spaced between subchannels, the starting PRB position indicated by the parameter information and the number of PRBs included in the subchannel.
  • the parameter information can use various forms to indicate the parameters used to measure all sub-channels, which is not particularly limited in this application.
  • the first terminal device determines the first carrier from multiple carriers based on the channel busy rate of the first carrier.
  • the first terminal device may select a carrier with a smaller channel busy rate among multiple carriers as the first carrier for SL transmission. That is, the first terminal device can determine the carrier channel busy rate for multiple carriers that is similar to the channel busy rate of the first carrier, and assign the carrier with a smaller channel busy rate, such as the first carrier in this application, Used for the transmission of SL data (also referred to as SL transmission).
  • SL data also referred to as SL transmission.
  • the SL data in this application includes SL service data and signaling.
  • the first terminal device uses the first carrier to transmit side link data with the second terminal device.
  • the first terminal device can measure all sub-channels based on the parameters used to determine the channel busy rate of the first carrier, thereby enabling the terminal device to select a carrier for transmitting SL data among multiple carriers. Transmit SL data.
  • a piece of information may be carried in one or more messages or one or more information elements in the same message.
  • the first information in the embodiment of the present application is used to indicate part or all of the resource pool, and the first information is also used to instruct the first terminal device to use the measurement results of the part or all of the resource pool to determine the first
  • the first information can be split into two pieces of indication information indicating the two contents respectively, for example, two messages, or two cells in the same message. This application does not do this. Specially limited.
  • FIG. 8 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • the device 800 may include a transceiver unit 810 and a processing unit 820 .
  • the transceiver unit 810 can communicate with the outside of the device, and the processing unit 820 is used for data processing.
  • the transceiver unit 810 may also be called a communication interface or a transceiver unit.
  • the device 800 can implement a process corresponding to the process executed by the first terminal device in the method embodiment shown in FIG. 3 above, wherein the processing unit 820 is used to execute the method implementation shown in FIG. 3 above.
  • the transceiver unit 810 is configured to perform the transceiver-related operations of the first terminal device in the method embodiment shown in FIG. 3 above.
  • the processing unit 820 is configured to obtain the measurement results of each resource pool in part or all of the multiple resource pools in the first carrier, and the measurement results of each resource pool in the part or all of the resource pools. Used to determine the channel busy rate of the first carrier, and the channel busy rate of the first carrier is used to determine the first carrier from multiple carriers; Transceiver unit 810, used to use the first carrier to conduct side communication with the second terminal device Transmission of side link data; wherein, multiple resource pools in the first carrier are candidate resource pools for transmission of side link data.
  • the first terminal device can obtain the measurement results of part or all of the resource pools in the carrier, and obtain the channel busy rate of the carrier based on the measurement results of part or all of the resource pools, thereby enabling the terminal device to operate on multiple One or more carriers used for transmitting SL data are selected and determined among the carriers.
  • the first terminal device may refer to or use the configuration parameters of the resource pool to obtain the measurement results of each resource pool in the part or all of the resource pools, thereby reducing signaling transmission between the terminal device and the network device.
  • some or all of the resource pools are determined based on at least one of the following information of each resource pool in the plurality of resource pools: the number of sub-channels, the number of resource blocks, and the number of resource blocks included in the sub-channel.
  • the number of sub-channels or resource blocks in a resource pool can affect the importance of the resource pool in determining the channel busy rate of the carrier.
  • the terminal device or network device can select an appropriate one based on multiple parameters.
  • the resource pool is used to determine the channel busy rate of the carrier, thereby improving the credibility of the channel busy rate.
  • the transceiver unit 810 is also configured to receive first information from the network device, the first information indicating the part or all of the resource pool; the processing unit 820 is specifically configured to obtain the part or all of the resource pool based on the first information. Measurements for each resource pool in .
  • the network device can configure the first information for determining which resource pool or pools of measurement results are used to determine the channel busy rate of the first carrier to the first terminal device, thereby enabling the first terminal device to quickly obtain the The measurement results of some or all resource pools do not need to obtain resources other than this part or all resource pools. The measurement results of the pool are thus improved to improve the efficiency of determining the channel busy rate of the first carrier.
  • some or all of the resource pools are determined based on the measurement results of each of the plurality of resource pools.
  • the first terminal device can first obtain the measurement results of the multiple resource pools, and then select an appropriate part or all of the resource pools based on the measurement results of each resource pool to determine the channel busy rate of the carrier, thereby improving Confidence in channel busy rate.
  • some or all of the resource pools are the top N resource pools of multiple resource pools sorted in ascending order of measurement results, or some or all of the resource pools are the top M resource pools of multiple resource pools sorted in descending order of measurement results, Among them, N and M are positive integers.
  • the measurement results of one or more resource pools with higher or lower measurement results can be used to determine the channel busy rate of the first carrier according to different scenario requirements, which can support the application of multiple scenarios.
  • the transceiver unit 810 is also configured to send the measurement results of each resource pool in part or all of the resource pools to the network device; the transceiver unit 810 is also configured to receive the channel busy rate of the first carrier from the network device, Alternatively, the transceiver unit 810 is also configured to receive second information from the network device, where the second information indicates the first carrier.
  • the first terminal device can report the measurement results to the network device, and the network device determines the channel busy rate of the carrier, and then the network device notifies the first terminal device of the channel busy rate, or directly informs the channel used to transmit SL data.
  • the first carrier enables terminal equipment that does not support the ability to determine the channel busy rate based on measurement results, or terminal equipment that does not determine the channel busy rate based on measurement results due to power saving needs, to be able to determine the use of multiple carriers for SL data transmission. one or more carriers.
  • the processing unit 820 is also configured to determine the channel busy rate of the first carrier based on the measurement results of each resource pool in some or all of the resource pools; the processing unit 820 is also configured to determine the channel busy rate of the first carrier based on the measurement results of each resource pool in the part or all resource pools.
  • the first terminal device can determine the channel busy rate of the carrier by itself and select the carrier used to transmit SL data, thereby reducing signaling transmission between the network device and the terminal device, thereby reducing signaling overhead.
  • some or all of the resource pools include the first resource pool, and the measurement result of the first resource pool is the ratio of the number of first busy subchannels to the total number of subchannels in the first resource pool, where the first busy subchannel It is a sub-channel in the first resource pool whose reception measurement value is greater than or equal to the first threshold, and the reception measurement value is at least one of the following values: received signal strength indication, reference signal reception power or reference signal reception quality.
  • the channel busy rate of the first carrier is a weighted average of the measurement results of part or all of the resource pool, and the weighting coefficient corresponding to the measurement result of the first resource pool is positively correlated with the total number of sub-channels in the first resource pool, or with The total number of resource blocks in the first resource pool is positively correlated, or the channel busy rate of the first carrier is the average of the measurement results of part or all of the resource pools.
  • the first terminal device can synthesize the measurement results of part or all of the resource pool and perform weighted averaging or averaging processing, thereby improving the accuracy of the channel busy rate.
  • the device 800 can implement a process corresponding to the network device execution in the method embodiment shown in Figure 3 above, wherein the transceiver unit 810 is used to perform the method embodiment shown in Figure 3 above.
  • the processing unit 820 is configured to perform operations related to the processing of the network device in the method embodiment shown in FIG. 3 above.
  • the first terminal device can obtain the measurement results of part or all of the resource pools in the carrier, and obtain the channel busy rate of the carrier based on the measurement results of part or all of the resource pools, thereby enabling the terminal device to One or more carriers for transmitting SL data can be selected and determined among multiple carriers.
  • the processing unit 820 is configured to generate first information, the first information indicates some or all of the multiple resource pools in the first carrier, and the measurement results of each resource pool in some or all of the resource pools are used.
  • the channel busy rate of the first carrier is used to determine the first carrier from multiple carriers, and the first carrier is used to send side link data; the transceiver unit 810 is used to send the first carrier to the first carrier.
  • the terminal device sends first information; wherein the plurality of resource pools in the first carrier are candidate resource pools for transmission of the sidelink data.
  • some or all of the resource pools are determined based on at least one of the following information of each resource pool in the plurality of resource pools: the number of sub-channels, the number of resource blocks, and the number of resource blocks included in the sub-channel.
  • the transceiver unit 810 is configured to receive the measurement results of each resource pool in part or all of the resource pools of the first terminal device, or to receive the channel busy rate of the first carrier from the first terminal device; in When the transceiver unit 810 is configured to receive the measurement results from each resource pool in part or all of the resource pools of the first terminal device, the processing unit 820 is configured to transmit the measurement results to the third resource pool based on the measurement results of each resource pool in part or all of the resource pools.
  • a terminal device sends the channel busy rate of the first carrier, or the transceiver unit 810 is also configured to send second information to the first terminal device based on the measurement results of each resource pool in part or all of the resource pools, and the second information indicates the first Carrier; when the transceiver unit 810 is configured to receive the channel busy rate of the first carrier from the first terminal device, the transceiver unit 8110 is also configured to send the second information to the first terminal device based on the channel busy rate of the first carrier.
  • part or all of the resource pool includes a first resource pool.
  • the measurement result of the first resource pool is the ratio of the number of first busy sub-channels to the total number of sub-channels in the first resource pool.
  • the first busy sub-channel is the first busy sub-channel.
  • a subchannel in a resource pool has a reception measurement value greater than or equal to a first threshold, where the reception measurement value is at least one of the following: received signal strength indication, reference signal reception power, or reference signal reception quality.
  • the channel busy rate of the first carrier is a weighted average of the measurement results of part or all of the resource pool, and the weighting coefficient corresponding to the measurement result of the first resource pool is positively correlated with the total number of sub-channels in the first resource pool, or with The total number of resource blocks in the first resource pool is positively correlated, or the channel busy rate of the first carrier is the average of the measurement results of part or all of the resource pools.
  • the device 800 can implement a process corresponding to the process executed by the first terminal device in the method embodiment shown in Figure 5 above, wherein the processing unit 820 is used to perform the method shown in Figure 5 above.
  • the transceiver unit 810 is configured to perform operations related to the processing of the first terminal device in the method embodiment shown in FIG. 5 above.
  • the processing unit 820 is used to determine the channel busy rate of the first carrier.
  • the channel busy rate of the first carrier is the ratio of the number of busy sub-channels to the number of all sub-channels in the first carrier.
  • the busy rate determines the first carrier from multiple carriers; the transceiver unit 810 is configured to use the first carrier to transmit sidelink data with the second terminal device.
  • the first terminal device can measure all sub-channels based on the definition of the channel busy rate of the first carrier, thereby enabling the terminal device to determine the carrier used for transmitting SL data among multiple carriers.
  • the transceiver unit 810 is also configured to receive parameter information from the network device, where the parameter information is used to indicate the measurement threshold.
  • the parameter information is also used to indicate at least one of the following information: the time at which measurement values are received, the frequency domain positions of all sub-channels, and the number of resource blocks included in each sub-channel in all sub-channels.
  • the first terminal device can measure all sub-channels based on the parameters used to determine the channel busy rate of the first carrier, thereby enabling the terminal device to select a carrier for transmitting SL data among multiple carriers. Transmit SL data.
  • the device 800 can implement a process corresponding to the network device execution in the method embodiment shown in Figure 5 above, wherein the processing unit 820 is used to execute the method embodiment shown in Figure 5 above.
  • the transceiver unit 810 is configured to perform operations related to the processing of the network device in the method embodiment shown in FIG. 5 above.
  • the processing unit 820 is configured to generate parameter information.
  • the parameter information is used to indicate the measurement threshold, the time at which the measurement value is received, the frequency domain position of all sub-channels, or the resource blocks included in each sub-channel in all sub-channels.
  • the measurement threshold is used to determine the channel busy rate of the first carrier, where the channel busy rate of the first carrier is the ratio of the number of busy sub-channels to the number of all sub-channels, which are configured for use in the first carrier.
  • the subchannels used to determine the channel busy rate of the first carrier, or the subchannels included in the candidate resource pool configured for sidelink data transmission in the first carrier, the busy subchannel is the reception measurement value of all subchannels greater than Or a sub-channel equal to the measurement threshold, the received measurement value is at least one of the following values: received signal strength indication, reference signal received power or reference signal received quality; the transceiver unit 810 is used to send the parameter information to the first terminal device .
  • the first terminal device can measure all sub-channels based on the parameters used to determine the channel busy rate of the first carrier, thereby enabling the terminal device to select a carrier for transmitting SL data among multiple carriers. Transmit SL data.
  • the device 800 here is embodied in the form of a functional unit.
  • the term "unit” as used herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor, or a group of processors) used to execute one or more software or firmware programs. processor, etc.) and memory, merged logic circuitry, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • the device 800 can be specifically the first terminal device in the above embodiment or a chip applied to the first terminal device, and can be used to perform the above method embodiment and the first terminal device.
  • the process corresponding to the terminal device, or the device 800 can be specifically the network device in the above embodiment or a chip applied to the network device, and can be used to execute the process corresponding to the network device in the above method embodiment. To avoid duplication, here No further details will be given.
  • the above-mentioned device 800 has the function of realizing the corresponding steps performed by the first terminal device in the above-mentioned method, or the above-mentioned device 800 has the function of realizing the corresponding steps performed by the network device in the above-mentioned method.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiving unit. (machine replacement), other units, such as processing units, etc., can be replaced by processors to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • the above-mentioned transceiver unit may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing unit may be a processing circuit.
  • the device in Figure 8 may be the network device or the first terminal device in the previous embodiment, or it may be a chip or a chip system, such as a system on chip (SoC).
  • SoC system on chip
  • the transceiver unit may be an input-output circuit or a communication interface.
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip. No limitation is made here.
  • Figure 9 shows a communication device 900 provided by an embodiment of the present application.
  • the device 200 includes a processor 910 and a memory 920.
  • the memory 920 is used to store instructions, and the processor 910 can call the instructions stored in the memory 920 to execute the process corresponding to the first terminal device or network device in the above method embodiment.
  • the memory 920 is used to store instructions, and the processor 910 can call the instructions stored in the memory 920 to execute the process corresponding to the first terminal device in the above method embodiment.
  • the memory 920 is used to store instructions, and the processor 910 can call the instructions stored in the memory 920 to execute the process corresponding to the network device in the above method embodiment.
  • the apparatus 900 may be specifically the first terminal device or network device in the above embodiment, or may be a chip or chip system used for the first terminal device or network device. Specifically, the apparatus 900 may be used to execute the process corresponding to the first terminal device or network device in the above method embodiment.
  • the memory 920 may include read-only memory and random access memory and provide instructions and data to the processor.
  • a portion of the memory may also include non-volatile random access memory.
  • the memory may also store device type information.
  • the processor 910 may be configured to execute instructions stored in the memory, and when the processor 910 executes the instructions stored in the memory, the processor 910 is configured to execute the above method embodiment corresponding to the first terminal device or network device. process.
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component.
  • the processor in the embodiment of the present application can implement or execute the various methods, steps and logical block diagrams disclosed in the embodiment of the present application.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
  • the non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static RAM static Random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • FIG. 10 shows a communication device 1000 provided by an embodiment of the present application.
  • the device 1000 includes a processing circuit 1010 and a transceiver circuit 1020.
  • the processing circuit 1010 and the transceiver circuit 1020 communicate with each other through internal connection paths.
  • the processing circuit 1010 is used to execute instructions to control the transceiver circuit 1020 to send signals and/or receive signals.
  • the device 1000 may also include a storage medium 1030, which communicates with the processing circuit 1010 and the transceiver circuit 1020 through internal connection paths.
  • the storage medium 1030 is used to store instructions, and the processing circuit 1010 can execute the instructions stored in the storage medium 1030 .
  • the apparatus 1000 is configured to implement the process corresponding to the first terminal device in the above method embodiment.
  • the apparatus 1000 is configured to implement the process corresponding to the network device in the above method embodiment.
  • the processing circuit 1010 is used to implement the functions of the above-mentioned processing unit 820
  • the transceiver circuit 1020 is used to implement the above-mentioned transceiver unit 810 or the transceiver unit 810 and the processing unit 820. Function.
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the steps shown in Figures 3 to 5. The method in the example is shown.
  • the present application also provides a computer-readable medium.
  • the computer-readable medium stores program code.
  • the program code When the program code is run on a computer, it causes the computer to execute the steps shown in Figures 3 to 5. The method in the example is shown.
  • the present application also provides a system, which includes the aforementioned first terminal device, second terminal device and network device.
  • At least one of! or "at least one of" herein refers to all or any combination of the listed items, for example, "at least one of A, B and C", It can mean: A exists alone, B exists alone, C exists alone, A and B exist simultaneously, B and C exist simultaneously, and A, B and C exist simultaneously. "At least one” in this article means one or more. "Multiple" means two or more.
  • B corresponding to A means that B is associated with A, and B can be determined based on A.
  • determining B based on A does not mean determining B only based on A.
  • B can also be determined based on A and/or other information.
  • the terms “including,” “includes,” “having,” and variations thereof all mean “including but not limited to,” unless otherwise specifically emphasized.
  • instruction may include direct instructions and indirect instructions, and may also include explicit instructions and implicit instructions.
  • the information indicated by a certain piece of information (such as the first information mentioned above) is called Information to be indicated, during the specific implementation process, there are many ways to indicate the information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated itself or the index of the information to be indicated, etc.
  • the information to be indicated may also be indirectly indicated by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance.
  • the indication of specific information can also be achieved by means of a pre-agreed (for example, protocol stipulated) arrangement order of each piece of information, thereby reducing the indication overhead to a certain extent.
  • pre-configuration can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in the device (for example, the first terminal device), This application does not limit its specific implementation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the computer software product is stored in a storage medium and includes a number of instructions to A computer device (which may be a personal computer, a server, or a network device, etc.) is caused to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Abstract

本申请提供一种通信方法,装置和可读存储介质,其中该方法包括:第一终端设备获取第一载波中的多个资源池中的部分或者全部资源池中每个资源池的测量结果,其中第一载波中的多个资源池为用于侧行链路数据的传输的候选资源池,该部分或者全部资源池中每个资源池的测量结果用于确定第一载波的信道繁忙率,第一终端设备或者网络设备可以基于该信道繁忙率从多个载波中确定第一载波,进而使得第一终端设备能够使用该第一载波进行侧行链路数据的传输。

Description

通信方法,装置和可读存储介质
本申请要求于2022年5月26日提交中国国家知识产权局、申请号为202210582445.X、申请名称为“通信方法,装置和可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及一种通信方法,装置和可读存储介质。
背景技术
目前,终端设备与终端设备之间传输的数据可以称为侧行链路(sidelink,SL)数据。为了能够实现SL数据的可靠传输,终端设备可以在多个载波中选择信道繁忙程度较低的载波进行SL数据的传输。例如,网络设备可以为每个载波配置至少一个资源池,不同的资源池可以对应不同的区域标识,终端设备根据所处位置的区域标识确定唯一对应的资源池,并根据该资源池的配置参数进行信道繁忙率(channel busy ratio,CBR)测量,进而选择CBR较低的载波传输SL数据,其中终端设备所确定的唯一的资源池为该终端设备用于所述SL数据传输的候选资源池。
随着通信技术的发展,为了实现更为灵活的SL数据传输,终端设备可以使用载波中的一个或多个资源池传输SL数据。例如,终端设备可以根据SL数据的数据量大小选择载波中合适的一个或多个资源池进行SL数据传输。但是在这种场景中,目前并没有定义终端设备如何通过确定载波的繁忙程度从多个载波中选择用于所述SL数据传输的载波。
发明内容
本申请提供一种通信方法,装置和可读存储介质,以期终端设备在支持使用载波中的一个或多个资源池传输侧行链路SL数据,也即,载波中用于该终端设备侧行链路SL数据传输的候选资源池的数量可以为多个时,能够通过确定载波的繁忙程度选择用于所述SL数据传输的载波。
第一方面,提供了一种通信方法,该方法可以由终端设备或者终端设备中的芯片实现,该方法包括:第一终端设备获取第一载波中的多个资源池中的部分或者全部资源池中每个资源池的测量结果,该部分或者全部资源池中每个资源池的测量结果用于确定第一载波的信道繁忙率,第一载波的信道繁忙率用于从多个载波中确定该第一载波;第一终端设备使用该第一载波与第二终端设备进行侧行链路数据的传输;其中,第一载波中的多个资源池为用于侧行链路数据的传输的候选资源池。
第一载波中的多个资源池可以是网络设备为第一终端设备配置的资源池,每个资源池可以基于自身的配置参数进行测量以获得测量结果,其中,该配置参数可以包括以下参数中的一项或多项:用于指示一个子信道中的物理资源块数量的参数、用于指示进行测量的测量时间的参数、用于指示用于确定繁忙子信道的预设阈值的参数(例如,当第一终端设 备测量接收信号强度指示RSSI时,该预设阈值可以为与RSSI进行比较的阈值)。
该第一载波可以是多个载波中信道繁忙率最低的前L个载波,其中L为正整数且小于该多个载波的数量,从而实现SL数据的可靠传输。其中,L的取值可以基于协议预定义,或,网络设备的配置,或,所述SL数据的传输需求,确定。
第一终端设备与第二终端设备进行侧行链路数据的传输可以包括:第一终端设备向第二终端设备发送侧行链路数据,和/或第一终端设备接收来自第二终端设备的侧行链路数据。
基于该技术方案,第一终端设备可以获取载波中的部分或者全部资源池的测量结果,并且基于该部分或者全部资源池的测量结果获取该载波的信道繁忙率,进而使得终端设备能够在多个载波中确定用于进行SL数据的传输的一个或多个载波。
另外,第一终端设备可以参考或者使用资源池的配置参数获取该部分或者全部资源池中每个资源池的测量结果,从而减少终端设备和网络设备之间的信令传输,减少信令开销。
需要说明的是,在本申请实施例中,参考某一信息(例如测量结果、参数等)可以是指对该信息进行适当的处理,例如可以对该参数进行运算,再例如可以从多个可供参考的参数中选取一个参数;使用某一信息既可以是指对该信息不作处理进行使用,例如,可以直接使用某一参数,也可以包括前述“参考”的含义。
结合第一方面,在第一方面的某些实现方式中,部分或全部资源池是根据多个资源池中每个资源池的以下信息中的至少一项确定的:子信道的数量、资源块的数量、子信道包括的资源块的数量。
例如,该部分或全部资源池为多个资源池中子信道的数量、资源块的数量或者子信道包括的资源块的数量中的一项或多项大于或等于各自对应的特定阈值的资源池。又例如,该部分或全部资源池为多个资源池中子信道的数量、资源块的数量或者子信道包括的资源块的数量中的一项或多项中分别较多的前K个资源池,其中,K为正整数且小于所述多个资源池的数量。可以理解的是,子信道的数量、资源块的数量或者子信道包括的资源块的数量所对应的K的取值可以相同,也可以不同。其中,K的取值可以基于协议预定义,或,网络设备的配置,或,所述SL数据的传输需求,确定。
基于该技术方案,一个资源池中的子信道或资源块的数量可以影响该资源池在确定载波的信道繁忙率过程中的重要程度,进而,终端设备或者网络设备可以综合多个参数选择合适的资源池用于载波的信道繁忙率的确定,从而提高该信道繁忙率的可信度。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:第一终端设备接收来自网络设备的第一信息,该第一信息指示该部分或全部资源池;该第一终端设备获取该部分或者全部资源池中每个资源池的测量结果,包括:第一终端设备基于第一信息获取该部分或者全部资源池中每个资源池的测量结果。
该第一信息可以直接指示该部分或者全部资源池,例如,该第一信息包括该部分或者全部资源池的标识信息;或者,该第一信息可以通过指示确定该部分或者全部资源池的方式指示该部分或者全部资源池,例如该第一信息指示第一终端设备将具有子信道的数量、资源块的数量或者子信道包括的资源块的数量中的一项或多项大于或等于各自对应的特定阈值的资源池作为该部分或者全部资源池。
基于该技术方案,网络设备可以向第一终端设备配置用于确定使用哪个或者哪些资源 池的测量结果确定第一载波的信道繁忙率的第一信息,进而使得第一终端设备能够快速获取到该部分或者全部资源池的测量结果,可以无需获取除该部分或全部资源池之外的资源池的测量结果,从而提高确定第一载波的信道繁忙率的效率。
结合第一方面,在第一方面的某些实现方式中,部分或者全部资源池是根据多个资源池中每个资源池的测量结果确定的。
基于该技术方案,第一终端设备可以先获取该多个资源池的测量结果,再基于每个资源池的测量结果选取出合适的部分或者全部资源池用于确定载波的信道繁忙率,从而提高信道繁忙率的可信度。
结合第一方面,在第一方面的某些实现方式中,部分或者全部资源池为多个资源池按测量结果递增排序的前N个资源池,或者,部分或者全部资源池为多个资源池按测量结果递减排序的前M个资源池,其中,N和M为正整数。其中,N或M的取值可以基于协议预定义,或,网络设备的配置,或,所述SL数据的传输需求,确定。
或者,该部分或者全部资源池为多个资源池中测量结果大于或等于第一特定阈值的资源池,再或者,该部分或者全部资源池为多个资源池中测量结果小于或等于第二特定阈值的资源池,再或者,该部分或者全部资源池为多个资源池中测量结果处于特定区间的资源池。其中,第一特定阈值,第二特定阈值或特定区间的取值可以基于协议预定义,或,网络设备的配置,或,所述SL数据的传输需求,确定。
基于该技术方案,可以根据不同的场景需求,确定采用测量结果较高或者较低的一个或多个资源池的测量结果确定第一载波的信道繁忙率,例如在进行侧行链路通信的用户较多的场景中,较高的测量结果较为可靠,从而可以选择测量结果较高的资源池的测量结果确定第一载波的信道繁忙率;再例如在进行侧行链路通信的用户较少的场景中,可以选择测量结果较低的资源池的测量结果确定第一载波的信道繁忙率,从而能够增加载波的利用率,进而本技术方案能够支持多种场景的运用。可以理解的是,本申请中的“较高”可以是指比一相应阈值高,“较低”可以是指比一相应阈值低。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:第一终端设备向网络设备发送部分或者全部资源池中每个资源池的测量结果;第一终端设备接收来自网络设备的该第一载波的信道繁忙率,或者,第一终端设备接收来自该网络设备的第二信息,该第二信息指示该第一载波。
基于该技术方案,第一终端设备可以将测量结果上报给网络设备,由网络设备确定载波的信道繁忙率,然后网络设备告知第一终端设备该信道繁忙率,或者直接告知用于传输SL数据的第一载波,使得不支持根据测量结果确定信道繁忙率能力的终端设备,或者因存在省电需求不进行根据测量结果确定信道繁忙率的终端设备也能够在多个载波中确定用于SL数据传输的一个或多个载波。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:第一终端设备根据该部分或者全部资源池中每个资源池的测量结果确定第一载波的信道繁忙率;第一终端设备基于第一载波的信道繁忙率从多个载波中确定该第一载波,或者,该第一终端设备向网络设备发送第一载波的信道繁忙率,并接收来自网络设备的第二信息,该第二信息用于指示该第一载波。
基于该技术方案,第一终端设备可以自行确定载波的信道繁忙率,选择用于传输SL 数据的载波,从而减少网络设备和终端设备之间的信令传输,进而减少信令开销。
结合第一方面,在第一方面的某些实现方式中,该部分或者全部资源池包括第一资源池,该第一资源池的测量结果为第一繁忙子信道的数量占第一资源池的子信道总数的比值,其中,第一繁忙子信道为第一资源池的子信道中接收测量值大于或等于第一阈值的子信道,该接收测量值为以下值中的至少一项:接收信号强度指示、参考信号接收功率或者参考信号接收质量。
结合第一方面,在第一方面的某些实现方式中,第一载波的信道繁忙率为部分或者全部资源池的测量结果的加权平均值,第一资源池的测量结果对应的加权系数与第一资源池的子信道总数正相关,或者与所述第一资源池的资源块总数正相关,或者,所述第一载波的信道繁忙率为所述部分或者全部资源池的测量结果的平均值。
可以理解的是,如果该部分或者全部资源池的数量为一,那么该第一载波的信道繁忙率可以为该资源池的测量结果。
基于该技术方案,第一终端设备可以综合该部分或者全部资源池的测量结果,进行加权平均或者平均处理,从而提高信道繁忙率的可信度。
第二方面,提供了一种通信方法,该方法可以由终端设备或者终端设备中的芯片实现,该方法包括:第一终端设备确定第一载波的信道繁忙率,第一载波的信道繁忙率为繁忙子信道的数量占全部子信道的数量的比值,该全部子信道为第一载波中配置用于确定第一载波的信道繁忙率的子信道,或者,第一载波中配置用于侧行链路数据传输的候选资源池所包括的子信道,该繁忙子信道为全部子信道中接收测量值大于或等于测量阈值的子信道,其中,接收测量值为以下值中的至少一项:接收信号强度指示、参考信号接收功率或者参考信号接收质量;第一终端设备基于第一载波的信道繁忙率从多个载波中确定第一载波;第一终端设备使用该第一载波与第二终端设备进行侧行链路数据的传输。
第一载波中配置用于侧行链路数据传输的候选资源池可以是网络设备根据第一终端设备进行侧行链路数据传输的业务需求配置的一个或多个资源池。该候选资源池所包括的子信道可以是指全部候选资源池的子信道去掉重复子信道的合集。
该第一载波可以是多个载波中信道繁忙率最低的前L个的载波,其中L为正整数且小于该多个载波的数量,从而实现侧行链路SL数据的可靠传输。
第一终端设备与第二终端设备进行侧行链路数据的传输可以包括:第一终端设备向第二终端设备发送侧行链路数据,和/或第一终端设备接收来自第二终端设备的侧行链路数据。
基于该技术方案,第一终端设备可以基于用于确定第一载波的信道繁忙率的参数对全部子信道进行测量,进而使得终端设备能够在多个载波中选择用于进行SL数据的传输的载波进行SL数据的传输。
结合第二方面,在第二方面的某些实现方式中,第一终端设备接收来自网络设备的参数信息,该参数信息用于指示测量阈值。
可选地,当全部子信道为第一载波中的资源池所包括的子信道时,第一终端设备参考资源池的配置参数,例如测量接收测量值的时间、子信道的频域位置、每个子信道包括的资源块的数量,对全部子信道进行测量,以确定第一载波的信道繁忙率。
基于该技术方案,能够实现终端设备和网络设备之间较少的信令传输,进而减少信令 开销。
结合第二方面,在第二方面的某些实现方式中,参数信息还用于指示以下信息中的至少一项:测量接收测量值的时间、该全部子信道的频域位置、该全部子信道中每个子信道包括的资源块的数量。
基于该技术方案,网络设备可以以载波粒度配置用于确定载波的信道繁忙率的参数信息,使得第一终端设备能够快速可靠的基于载波的信道繁忙率确定合适的载波传输侧行链路数据。
第三方面,提供了一种通信方法,该方法可以由网络设备或者网络设备中的芯片实现,该方法包括:网络设备向第一终端设备发送第一信息,第一信息指示第一载波中的多个资源池中的部分或者全部资源池,部分或者全部资源池中每个资源池的测量结果用于确定第一载波的信道繁忙率,第一载波的信道繁忙率用于从多个载波中确定第一载波,第一载波用于侧行链路数据的传输;其中,第一载波中的多个资源池为用于该侧行链路数据的传输的候选资源池。
相应的,第三方面还提供一种通信方法,该方法可以由终端设备或终端设备中的芯片实现,该方法包括:第一终端设备接收来自网络设备的第一信息,该第一信息指示第一载波中的多个资源池中的部分或者全部资源池;第一终端设备基于第一信息获取该部分或者全部资源池中每个资源池的测量结果,该部分或者全部资源池中每个资源池的测量结果用于确定第一载波的信道繁忙率。
基于该技术方案,第一终端设备可以获取载波中的部分或者全部资源池的测量结果,并且基于该部分或者全部资源池的测量结果获取该载波的信道繁忙率,进而使得终端设备能够在多个载波中选择用于进行SL数据的传输的载波。此外,网络设备可以向第一终端设备配置用于确定使用哪个或者哪些资源池的测量结果确定第一载波的信道繁忙率的第一信息,进而使得第一终端设备能够快速获取到该部分或者全部资源池的测量结果,可以无需获取除该部分或全部资源池之外的资源池的测量结果,从而提高确定第一载波的信道繁忙率的效率。
结合第三方面,在第三方面的某些实现方式中,部分或者全部资源池是根据多个资源池中每个资源池的以下信息中的至少一项确定的:子信道的数量、资源块的数量、子信道包括的资源块的数量。
结合第三方面,在第三方面的某些实现方式中,网络设备接收来自第一终端设备的部分或者全部资源池中每个资源池的测量结果,或者,网络设备接收来自第一终端设备的第一载波的信道繁忙率;在网络设备接收来自第一终端设备的该部分或者全部资源池中每个资源池的测量结果的情况下,网络设备基于部分或者全部资源池中每个资源池的测量结果向第一终端设备发送第一载波的信道繁忙率,或者,网络设备基于部分或者全部资源池中每个资源池的测量结果向第一终端设备发送第二信息,第二信息指示第一载波;在网络设备接收来自第一终端设备的第一载波的信道繁忙率的情况下,网络设备基于第一载波的信道繁忙率向第一终端设备发送该第二信息。
结合第三方面,在第三方面的某些实现方式中,该部分或者全部资源池包括第一资源池,该第一资源池的测量结果为第一繁忙子信道的数量占第一资源池的子信道总数的比值,第一繁忙子信道为第一资源池的子信道中接收测量值大于或等于第一阈值的子信道,其中, 接收测量值为以下中的至少一项:接收信号强度指示、参考信号接收功率或者参考信号接收质量,第一资源池为部分或全部资源池中的一个。
结合第三方面,在第三方面的某些实现方式中,第一载波的信道繁忙率为部分或者全部资源池的测量结果的加权平均值,第一资源池的测量结果对应的加权系数与第一资源池的子信道总数正相关,或者与第一资源池的资源块总数正相关,或者,第一载波的信道繁忙率为部分或者全部资源池的测量结果的平均值。
第三方面的各种实现方式是与第一方面的各种实现方式对应的网络设备的方法,关于第三方面的各种实现方式的有益技术效果,可以参考第一方面的相关实现方式的说明,在此不予以赘述。
第四方面,提供了一种通信方法,该方法可以由网络设备或者网络设备中的芯片实现,该方法包括:网络设备向第一终端设备发送参数信息,参数信息用于指示测量阈值,该测量阈值用于确定第一载波的信道繁忙率,其中,第一载波的信道繁忙率为繁忙子信道的数量占全部子信道的数量的比值,全部子信道为第一载波中配置用于确定第一载波的信道繁忙率的子信道,或者全部子信道为第一载波中配置用于侧行链路数据传输的候选资源池所包括的子信道,繁忙子信道为全部子信道中接收测量值大于或等于测量阈值的子信道,接收测量值为以下值中的至少一项:接收信号强度指示、参考信号接收功率或者参考信号接收质量。
相应的,第四方面还提供一种通信方法,该方法可以由终端设备或终端设备中的芯片实现,该方法包括:第一终端设备接收来自网络设备的参数信息,参数信息用于指示以下信息中的至少一项:测量阈值、测量接收测量值的时间、全部子信道的频域位置、或,全部子信道中每个子信道包括的资源块的数量,该测量阈值用于确定第一载波的信道繁忙率,其中,第一载波的信道繁忙率为繁忙子信道的数量占全部子信道的数量的比值,全部子信道为第一载波中配置用于确定第一载波的信道繁忙率的子信道,或者全部子信道为第一载波中配置用于侧行链路数据传输的候选资源池所包括的子信道,繁忙子信道为全部子信道中接收测量值大于或等于测量阈值的子信道,接收测量值为以下值中的至少一项:接收信号强度指示、参考信号接收功率或者参考信号接收质量;第一终端设备基于该参数信息确定第一载波的信道繁忙率。
其中,用于确定第一载波的信道繁忙率的参数可以包括前述测量阈值、前述测量接收测量值的时间、前述全部子信道的频域位置和前述全部子信道中每个子信道包括的资源块的数量。
前述测量接收测量值的时间、前述全部子信道的频域位置、或,前述全部子信道中每个子信道包括的资源块的数量中的一项或多项可以用于确定前述用于确定第一载波的信道繁忙率的子信道。
所述参数信息可以用于指示前述用于确定第一载波的信道繁忙率的参数中的全部或部分,所述参数信息未指示的参数可以为协议预定义的。
可选的,所述参数信息可以携带在一条消息中或多条消息中。
基于该技术方案,第一终端设备可以基于用于确定第一载波的信道繁忙率的参数对全部子信道进行测量,进而使得终端设备能够确定第一载波的信道繁忙率。可选的,第一载波的信道繁忙率可以用于从多个载波中选择用于进行SL数据的传输的载波。
第四方面的各种实现方式是与第二方面的各种实现方式对应的网络设备的方法,关于第四方面的各种实现方式的有益技术效果,可以参考第二方面的相关实现方式的说明,在此不予以赘述。
第五方面,提供了一种通信方法,该方法可以由终端设备或者终端设备中的芯片实现,该方法包括:第一终端设备获取N个载波中每个载波的信道繁忙率,其中,所述N个载波中的第i个载波的信道繁忙率是根据所述第i个载波中的多个资源池中的部分或者全部资源池中每个资源池的测量结果确定的,所述第i个载波中的多个资源池为用于侧行链路数据的传输的候选资源池,所述N个载波中每个载波的信道繁忙率用于确定第一载波;所述第一终端设备使用所述第一载波与第二终端设备进行侧行链路数据的传输,所述N为正整数,i∈[1,N]。
第六方面,提供一种通信装置,所述通信装置具有实现第一方面,或第一方面的任一可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第七方面,提供一种通信装置,所述通信装置具有实现第二方面,或第二方面的任一可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第八方面,提供一种通信装置,所述通信装置具有实现第三方面,或第三方面的任一可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第九方面,提供一种通信装置,所述通信装置具有实现第四方面,或第四方面的任一可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第十方面,提供一种通信装置,包括处理器和存储器。可选地,还可以包括收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使通信装置执行如第一方面或第二方面,或这些方面中的任一方面的任一可能的实现方式中的方法。
示例性地,该通信装置为终端设备。
第十一方面,提供一种通信装置,包括处理器和存储器。可选地,还可以包括收发器。其中,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,并控制收发器收发信号,以使通信装置执行如第三方面或第四方面,或这些方面中的任一方面的任一可能的实现方式中的方法。
示例性地,该通信装置为网络设备。
第十二方面,提供一种通信装置,包括处理器和通信接口,所述通信接口用于接收数据和/或信息,并将接收到的数据和/或信息传输至所述处理器,所述处理器处理所述数据和/或信息,以及,通信接口还用于输出经处理器处理之后的数据和/或信息,以使得如第一方面或第二方面,或这些方面中的任一方面的任一可能的实现方式中的方法被执行。其中,该通信装置可以为应用于终端设备的芯片。
第十三方面,提供一种通信装置,包括处理器和通信接口,所述通信接口用于接收数据和/或信息,并将接收到的数据和/或信息传输至所述处理器,所述处理器处理所述数据 和/或信息,以及,通信接口还用于输出经处理器处理之后的数据和/或信息,以使得如第三方面或第四方面,或这些方面中的任一方面的任一可能的实现方式中的方法被执行。其中,该通信装置可以为应用于网络设备的芯片。
第十四方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第一方面或第二方面,或这些方面中的任一方面的任一可能的实现方式中的方法被执行。
第十五方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如第三方面或第四方面,或这些方面中的任一方面的任一可能的实现方式中的方法被执行。
第十六方面,提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如第一方面或第二方面,或这些方面中的任一方面的任一可能的实现方式中的方法被执行。
第十七方面,提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如第三方面或第四方面,或这些方面中的任一方面的任一可能的实现方式中的方法被执行。
第十八方面,提供一种无线通信系统,包括如第六方面所述的通信装置,和/或如第八方面所述的通信装置。
第十九方面,提供一种无线通信系统,包括如第七方面所述的通信装置,和/或如第九方面所述的通信装置。
第二十方面,提供了一种无线通信系统,包括如第十方面至第十七方面中任意一个或多个方面所述的通信装置,或这些方面中的任一方面的任一可能的实现方式中的通信装置。
附图说明
图1为适用于本申请技术方案的通信场景的示意图;
图2为一种多个资源池的示意图;
图3是本申请实施例提供的一种通信方法的示意性流程图;
图4是本申请实施例提供的可能的实现方式的示意性流程图;
图5是本申请实施例提供的另一种通信方法的示意性流程图;
图6是本申请实施例提供的资源池包括的子信道的示意图;
图7是本申请实施例提供的配置用于确定载波的信道繁忙率的子信道的示意图;
图8至图10是本申请实施例提供的可能的装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR),无线保真(wireless fidelity,Wi-Fi)系统,第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的蜂窝系统,支持多种无线技术融合的通信系统,或者是面向未来的演进系统等,不予限制。
随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到 设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),车辆与万物(vehicle to everything,V2X)通信(也可以称为车辆网通信),例如,车辆与车辆(vehicle to vehicle,V2V)通信(也可以称为车到车通信)、车辆与基础设施(vehicle to infrastructure,V2I)通信(也可以称为车到基础设施通信),车辆与行人(vehicle to pedestrian,V2P)通信(也可以称为车到人通信),车辆与网络(vehicle to network,V2N)通信(也可以称为车到网络通信)。
图1是适用于本申请实施例的一种通信系统的架构的示意图。
本申请实施例适用的通信系统主要包括终端设备,例如图1所示的终端设备121与终端设备122,以及网络设备,例如图1所示的网络设备110。另外,该通信系统主要包括两种通信接口,例如分别为终端设备121与网络设备110之间的通信接口(Uu口),和终端设备121与终端设备122之间的通信接口(PC5口),其中Uu口用于终端设备与网络设备之间的通信,PC5口用于终端设备与终端设备之间的侧行链路通信。Uu口上终端设备发送数据给网络设备的链路称为上行链路(uplink),而终端设备接收网络设备发送的数据的链路称为下行链路(downlink)。PC5口上的终端设备和终端设备之间传输数据的链路称为侧行链路(sidelink)或直通链路。侧行链路一般用于设备到设备(device to device,D2D)等可以在设备间进行直联通信的场景,在该场景中,设备之间的数据传输不需要经过网络设备。车联网(vehicle to everything,V2X)通信可以看成是D2D通信的一种情形。
在Uu口上,终端设备和网络设备之间通过无线承载来传输数据和无线资源控制(radio resource control,RRC)信令中的一项或多项。其中,用于传输数据的无线承载称为数据无线承载(data radio bearer,DRB),用于传输RRC信令的承载称为信令无线承载(signaling radio bearer,SRB)。一个无线承载包括分组数据汇聚协议(packet data convergence protocol,PDCP)实体和无线链路控制(radio link control,RLC)承载。其中,一个RLC承载包括一个RLC实体和对应的逻辑信道(Logical Channel,LCH)。无线承载的配置即为该无线承载的PDCP实体,RLC实体和逻辑信道的配置。无线承载的配置需要能够保证通过该无线承载传输的业务的服务质量(quality of service,QoS)要求。在Uu口,无线承载的配置由网络设备为终端设备配置。
在PC5口上,终端设备和终端设备之间也通过无线承载来传输数据和RRC信令中的一项或多项。PC5口上的无线承载可以称为侧行链路无线承载(sidelink radio bearer,SL RB)。在长期演进(long term evolution,LTE)V2X系统中,PC5口上的无线承载分别由发送端终端设备和接收端终端设备自己建立,无线承载的配置通过标准预定义或者由发送端终端设备和接收端终端设备自己确定。
在未来通信中,Uu口或PC5口这些接口的名称可以不变,或者也可以用其它名称代替,本申请对此不作限定。
本申请实施例中的终端设备可以简称为终端。终端设备可以是一种具有无线收发功能的设备。终端设备可以是移动的,或固定的。终端设备可以部署在陆地上,包括室内或室外,手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以包括手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实 (augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self driving)中的无线终端设备、远程医疗(remote medical)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、和/或智慧家庭(smart home)中的无线终端设备。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备或计算设备、车载设备、可穿戴设备,第五代(the 5th generation,5G)网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。终端设备有时也可以称为用户设备(user equipment,UE)。可选的,终端设备可以与不同技术的多个接入网设备进行通信,例如,终端设备可以与支持LTE的接入网设备通信,也可以与支持5G的接入网设备通信,又可以与支持LTE的接入网设备以及支持5G的接入网设备的双连接。本公开并不限定。
本申请中,用于实现终端设备的功能的装置可以是终端设备;也可以是能够支持终端设备实现该功能的装置,例如芯片系统、硬件电路、软件模块、或硬件电路加软件模块,该装置可以被安装在终端设备中或可以与终端设备匹配使用。本公开提供的技术方案中,以用于实现终端设备的功能的装置是终端设备,终端设备是UE为例,描述本公开提供的技术方案。
本申请中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备,也可以称为接入网(radio access network,RAN)设备。
RAN设备为将终端设备接入到无线网络的节点或设备,RAN设备又可以称为基站。RAN设备例如包括但不限于:基站、5G中的下一代节点B(generation nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(base band unit,BBU)、收发点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、和/或移动交换中心等。或者,接入网设备还可以是集中单元(centralized unit,CU)、分布单元(distributed unit,DU)、集中单元控制面(CU control plane,CU-CP)节点、集中单元用户面(CU user plane,CU-UP)节点、接入回传一体化(integrated access and backhaul,IAB)、或云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器等中的至少一个。或者,接入网设备可以为中继站、接入点、车载设备、终端设备、可穿戴设备、5G网络中的接入网设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的接入网设备等。
本申请中,用于实现接入网设备的功能的装置可以是接入网设备;也可以是能够支持接入网设备实现该功能的装置,例如芯片系统、硬件电路、软件模块、或硬件电路加软件模块,该装置可以被安装在接入网设备中或可以与接入网设备匹配使用。在本申请提供的技术方案中,以用于实现接入网设备的功能的装置是接入网设备,接入网设备是 基站为例,描述本申请提供的技术方案。
上述图1所示的本申请实施例能够应用的架构仅是一种举例说明,适用本申请实施例的架构并不局限于此,任何能够实现上述各个设备的功能的架构都适用于本申请实施例。
还应理解,上述命名仅为便于区分不同的功能而定义,不应对本申请构成任何限定。本申请并不排除在5G网络以及未来其它的网络中采用其他命名的可能。例如,在6G网络中,上述各个设备中的部分或全部可以沿用5G中的术语,也可能采用其他名称等。图1中的各个设备之间的接口名称只是一个示例,具体实现中接口的名称可能为其他的名称,本申请对此不作具体限定。此外,上述各个设备之间的所传输的消息(或信令)的名称也仅仅是一个示例,对消息本身的功能不构成任何限定。
为了便于理解本申请实施例,首先对本申请中涉及到的术语做以下说明。
1、载波
电磁频谱通常基于频率/波长而被细分为各种类别、频带、信道等。在5G NR中,定义了两种频段范围,FR1和FR2,FR1(410MHz-7.125GHz)表示低频频段。FR2(24.25GHz-52.6GHz)表示毫米波高频频段,是5G的扩展频段。在FR1和FR2之间的频率通常称为中频频段。
这些频段范围被分成多个载波,网络设备与终端设备之间或终端设备与终端设备之间可以利用所分配的载波进行通信。
2、侧行链路中资源池(resource pool)
终端设备可以使用侧行链路资源池中的资源进行数据传输,一个资源池可以在频域上配置一个或多个连续的物理资源块(physical resource block,PRB),在时域上配置一个或多个时隙(slot),其中多个时隙可以是连续或者非连续的。为了便于理解资源池的含义,以下结合图2对侧行链路中的资源池进行示例性说明。
图2示出了一种多个资源池的示意图。载波带宽(carrier bandwidth)中的一部分用于SL的频谱可以称为侧行部分带宽SL BWP(sidelink bandwidth part),SL BWP内可以定义多个资源池,例如图2示出的三个资源池。以其中一个资源池进行是示例性说明,一个资源池在频域上可以配置有多个连续的PRB,一定数量的连续的PRB可以组成一个子信道,终端设备可以使用一个或多个子信道传输SL数据。换句话说,终端设备发送或者接收SL数据的最小单位粒度可以称为子信道,一个子信道中PRB的数量可以是10、12、15、20、25、50、75或100个。一个资源池在时域上可以配置多个能够用于该终端设备的SL传输的时隙。示例性地,终端设备可以通过物理层的同步信号(例如同步信号块(synchronization signal block,SSB))确定该多个时隙所属时域范围的起始时隙,其中,该多个时隙所属时域范围可以为可以用于多个终端设备SL数据传输的多个连续的时隙,比如10个时隙(slot),20个时隙,40个时隙,或,100个时隙等。可以通过位图(bitmap)的方式指示该多个能够用于该终端设备的SL传输的时隙在所属时域范围内的位置。例如,位图“0011000000”可以表示在10slot的时域范围内第3、4个时隙为能够用于该终端设备的SL传输的时隙,即该终端设备的资源池在时域上配置的为该第3、4个时隙。可以理解的是,位图中每个比特(bit)所代表的时间单元数,比如时隙数,可以为一个或多个,具体数量可以基于协议预定义,或,由网络设备配置。
终端设备可以被配置多个用于多个终端设备的SL传输的资源池,在一种可能的实现 方式中,终端设备用于该终端设备SL传输的候选资源池只有唯一的一个。例如,在LTE V2X中,终端设备根据所在位置的区域标识(zone ID)从网络设备指示的用于多个终端设备的多个资源池中确定唯一的一个候选资源池进行SL传输。
在另一种可能的实现方式中,终端设备进行SL传输的候选资源池的数量可以多于一个。例如,在NR V2X中,当终端设备的配置参数设置为sl-ScheduedCofig时,终端设备可以采用模式1(mode 1)的方式进行SL传输,也就是说终端设备在传输SL数据或者信令时,可以将SL数据或者信令填充至一个或者多个资源池中。当终端设备的配置参数设置为sl-SelectedConfig时,终端设备可以采用模式2(mode 2)的方式进行SL传输,也就是说终端设备可以在多个资源池中选择一个或多个资源池进行数据传输,即在模式2下用于侧行链路数据传输的候选资源池也可以有多个。
3、信道繁忙率(channel busy ratio,CBR)
CBR可以用于表示信道的繁忙程度,例如,若CBR的值较高,则可以表示附近有较多的用户占用该信道,或者,存在与作为CBR测量方的终端设备较近的终端设备占用该信道。其中,“占用”不限于SL数据的传输,可以包括Uu口数据的传输,或,其他无线数据的传输,在此不予限定。可选的,该CBR可以用于终端设备或者网络设备选择传输SL数据的资源,为了保证SL数据传输的可靠性,终端设备或者网络设备可以选择CBR较低的载波进行SL数据传输。
在目前的通信系统中,终端设备可以通过测量子信道的接收信号强度指示(received signal strength indications,RSSI)确定CBR取值,其中RSSI可以表示接收信号的强度,RSSI持续过高可以表示接收的信号受到的干扰较大。例如,一个资源池的CBR可以定义为在测量CBR的时间窗长度内,繁忙的子信道占该资源池全部子信道的比率,其中,时间窗长度与资源配置参数相关,例如,资源配置参数以时隙为粒度时,该时间窗长度可以设置为100个时隙,或者资源配置参数以毫秒为粒度,该时间窗长度可以设置为100毫秒。该时间窗应在前述配置用于该终端设备的SL传输的时隙之前,比如,基于前述配置用于该终端设备的SL传输的时隙和所述终端设备基于所述CBR确定用于该终端设备的SL传输的载波后为SL传输做准备的时间确定该时间窗。当子信道的RSSI值大于预定阈值时,该子信道可以认为是繁忙的子信道。可以理解的是,本申请中的“预定”可以为协议预定义,预存储,预配置,预设置,或,预烧制,在此不予限定。
在一种实施方式中,终端设备可以使用资源池的配置参数进行CBR测量。例如,sl-SubchannelSize-r16可以指示一个子信道中的PRB数,sl-ThreshS-RSSI-CBR-r16可以指示RSSI的预定阈值,sl-TimeWindowSizeCBR-r16可以指示测量CBR的时间窗长度。进而在终端设备使用一个资源池的情况下,终端设备可以使用资源池的配置参数进行CBR测量。
可见,上文所示的测量CBR,以及根据CBR选择载波的方式可以适用于在测量CBR时用于SL传输的候选资源池只有确定的一个的场景,例如,在测量CBR时就已经根据自身的zone ID获知用于SL传输的唯一的资源池。如果终端设备在测量CBR的过程中,并不知道实际进行SL传输的资源池时,也即候选资源池不确定时,上文所示的方式便不能够被实现。本申请提出了一种通信方法和装置,使得终端设备在支持使用载波中的一个或多个资源池传输SL数据,即,用于该终端设备的SL数据传输的候选资源池的数量为多个时,能够确定载波的繁忙程度。以下对该通信方法进行说明。
图3是本申请实施例提出的一种通信方法的示意性流程图。
S310,第一终端设备获取第一载波中的多个资源池中的部分或者全部资源池中每个资源池的测量结果。
该部分或者全部资源池中每个资源池的测量结果用于确定第一载波的信道繁忙率,第一载波的信道繁忙率用于从多个载波中确定该第一载波。
该第一载波可以是被配置为使用其中的一个或者多个资源池进行SL传输的载波,例如,第一载波可以是第一终端设备的配置参数设置为sl-ScheduedCofig时对应的载波。
第一载波中的多个资源池可以是网络设备为第一终端设备配置的资源池,例如,网络设备可以通过侧行链路信息单元(sidelink information elements)中的参数SL-BWP-PoolConfig为第一终端设备配置8个资源池。
多个资源池中的部分或者全部资源池可以是指:该部分或者全部资源池可以是该多个资源池中的一个资源池,或者是该多个资源池中的部分多个资源池,或者是该多个资源池的全部资源池。
以下对该部分或者全部资源池中的一个资源池(例如第一资源池)的测量结果进行示例性说明。
第一资源池的测量结果为第一繁忙子信道的数量占第一资源池的子信道总数的比值。其中,第一繁忙子信道为第一资源池的子信道中接收测量值大于或等于第一阈值的子信道,接收测量值可以为以下值中的至少一项:接收信号强度指示RSSI、参考信号接收功率或者参考信号接收质量。
第一终端设备在对第一资源池进行CBR测量的测量过程中,可以使用或者参考第一资源池中的相关参数(例如参见上文侧行链路中的CBR介绍的相关参数)进行测量。进而,第一终端设备可以获取该部分或者全部资源池中每个资源池的测量结果。
以上介绍了资源池的测量结果的获取方式,以下对如何确定该部分或者全部资源池进行说明。
在一种可能的实现方式中,第一终端设备可以根据网络设备的指示确定部分或者全部资源池。在这种方式中,步骤S310可以由步骤S311和步骤S312实现。
S311,网络设备向第一终端设备发送第一信息,对应地,第一终端设备接收来自网络设备的第一信息。
该第一信息用于指示该部分或者全部资源池,其中,指示方式可以为直接指示或间接指示。可以理解的是,本申请中间接指示,比如A间接指示C可以通过A指示B,以及B和C的对应关系来实现。B和C的对应关系可以为协议预定义的或预配置的,在此不予限定。
可选地,该第一信息还用于指示第一终端设备对第一信息指示的部分或者全部资源池进行CBR测量。
在一种可能的实现方式中,该第一信息可以指示该部分或者全部资源池的标识信息,例如该第一信息可以包括该部分或者全部资源池的标识,或者第一信息包括该部分或者全部资源池的在资源中的位置信息(例如该部分或者全部资源池对应的时隙号或子信道号等)。
示例性地,网络设备可以在向第一终端设备发送第一信息之前,根据多个资源池中每 个资源池的以下信息中的至少一项确定该部分或者全部资源池:子信道的数量、资源块的数量、子信道包括的资源块的数量。例如,网络设备可以选取子信道数量、资源块的数量或者子信道包括的资源块的数量最多的资源池;或者选取子信道数量、资源块的数量或者子信道包括的资源块的数量大于特定阈值的资源池;或者网络设备对子信道的数量、资源块的数量、子信道包括的资源块的数量中的一项或多项进行运算,选取运算结果达到预设条件的资源池。部分或者全部资源池的确定方式可以根据实际的运用场景进行设计,本申请对此不作特别限定。进而,网络设备可以通过第一信息将确定的部分或者全部资源池的标识信息发送给第一终端设备,第一终端设备可以基于第一信息获取该部分或者全部资源池的测量结果,而无需获取除该部分或全部资源池之外的资源池的测量结果,可以节省测量资源。
在另一种可能的实现方式中,该第一信息可以指示确定该部分或者全部资源池的方式。示例性地,网络设备可以通过第一信息告知第一终端设备如下方式中的一项或多项:
方式1:
第一终端设备可以根据多个资源池中每个资源池的以下信息中的至少一项确定该部分或者全部资源池:子信道的数量、资源块的数量、子信道包括的资源块的数量。
该方式与上文描述的网络装备确定部分或者全部资源池的描述类似,在此不予赘述。
方式2:
第一终端设备可以根据多个资源池中每个资源池的测量结果确定该部分或者全部资源池。
示例性地,该部分或者全部资源池为多个资源池按测量结果递增排序的前N个资源池。或者,该部分或者全部资源池为所述多个资源池按测量结果递减排序的前M个资源池,其中,所述N和所述M为正整数。或者,该部分或者全部资源池为多个资源池中测量结果大于或等于特定阈值的资源池。再或者,该部分或者全部资源池为多个资源池中测量结果小于或等于特定阈值的资源池。再或者,该部分或者全部资源池为多个资源池中测量结果处于特定区间的资源池。进而,第一终端设备可以获取第一载波中的每个资源池的测量结果,并根据每个测量结果确定部分或者全部资源池。
可以理解的是,网络设备可以直接指示该部分或者全部资源池的方式。或者,网络设备可以间接指示确定方式,例如,网络设备和第一终端设备预先约定确定方式的编号标识,进而该第一信息可以包括方式的编号间接指示确定方式。或者,网络设备也可以采用直接指示和间接指示相结合的方式指示确定方式,例如,该第一信息包括上述N的数值,间接指示第一终端设备选取测量结果递增排序的前N个资源池。可选的,网络设备和终端设备可以基于协议预定义采用前述多种方式中的一种,比如,该部分或者全部资源池为多个资源池按测量结果递增排序的前N个资源池,确定该部分或者全部资源池,这种情况下,该第一信息可以指示该方式对应的参数,例如,该第一信息可以包括上述方式中N的数值,换句话说,该第一信息所指示的N的数值,网络设备和第一终端设备基于预先的规则解析为该部分或者全部资源池为多个资源池按测量结果递增排序的前N个资源池。本申请对此不作特别限定。
以上对第一信息指示全部或者部分资源池的两种方式进行了说明。
需要说明的是,第一信息还可以用于指示第一终端设备返回部分或者全部资源池的测 量结果,或者,协议预定义第一终端设备返回部分或者全部资源池的测量结果,这样,网络设备可以根据该测量结果确定第一载波的信道繁忙率。或者,该第一信息还可以用于指示第一终端设备根据该部分或者全部资源池的测量结果确定第一载波的信道繁忙率,或者,协议预定义第一终端设备根据该部分或者全部资源池的测量结果确定第一载波的信道繁忙率,这样第一终端设备可以根据测量结果确定第一载波的信道繁忙率。
可选的,第一载波的信道繁忙率的确定方式可以包括以下中的一种或多种。当确定方式有多种时,具体的确定方式也可以通过前述第一信息来直接或间接指示。或者,确定方式也可以为协议预定义的其中一种,在此不予限定。
示例性地,部分或全部资源池的数量为一个或多个,比如第一载波中的多个资源池中子信道的数量最大的前K个资源池为用于确定第一载波的信道繁忙率的一个或多个资源池,K为正整数且小于该多个资源池的数量。在K等于1,即用于确定第一载波的信道繁忙率的资源池的数量为一个的情况下,第一载波的信道繁忙率可以是该确定的一个资源池的测量结果。在K大于或等于2,即用于确定第一载波的信道繁忙率的部分或全部资源池的数量为多个的情况下,那么第一载波的信道繁忙率可以是对多个测量结果进行处理后获得的。例如,第一载波的信道繁忙率可以为部分或者全部资源池的测量结果的平均值。或者,再例如,第一载波的信道繁忙率可以为部分或者全部资源池的测量结果的加权平均值,比如可以满足式1:
CBRcarrier=ω1*CBRRP1i*CBRRPi+……+ωs*CBRRPs          式1
其中,CBRcarrier表示第一载波的信道繁忙率,CBRRPi表示s个部分或者全部资源池中第i个资源池的测量结果,ωi表示第i个资源池的测量结果对应的加权系数,s为正整数。
加权系数ωi可以与第i个资源池的子信道总数正相关,例如,该加权系数ωi可以为第i个资源池的子信道总数占该部分或者全部资源池的子信道总数的比值。
或者,加权系数ωi可以与第i个资源池的资源块总数正相关,例如,该加权系数ωi可以为第i个资源池的资源块总数占该部分或者全部资源池的资源块总数的比值。
可以理解的是,在本申请中,正相关的含义是指自变量增长(例如子信道总数),因变量(加权系数)也跟着增长,两个变量的变动方向相同,而正比例关系是正相关的其中一种形式,本申请对正相关的形式不作任何限定。
S312,第一终端设备获取该部分或者全部资源池中每个资源池的测量结果。
第一终端设备可以基于第一信息在第一载波的多个资源池中选取该部分或者全部资源池,对该部分或者全部资源池进行测量,以获得部分或者全部资源池中每个资源池的测量结果。第一终端设备选取部分或者全部资源池的方式可以参见步骤S311的相关描述,第一终端设备对该部分或者全部资源池进行测量的方式可以参见步骤S310的相关描述,在此不予赘述。
以上对网络设备指示第一终端设备部分或者全部资源池的方式进行了说明。
在另一种可能的实现方式中,第一终端设备可以根据预设置的确定方式从多个资源池中确定该部分或者全部资源池。步骤S310可以由步骤S312实现。也就是说,第一终端设备可以通过预配置的方式获知确定部分或者全部资源池的方式,也即,第一终端设备基于协议预定义自行确定相应的确定部分或者全部资源池的方式。比如,第一终端设备可以基于多个资源池中每个资源池的子信道的数量、资源块的数量或者子信道包括的资源块的数 量中的一项或多项确定该部分或者全部资源池,或者第一终端设备也可以根据多个资源池中每个资源池的测量结果确定该部分或者全部资源池。确定的方式可以与步骤S311中描述的类似,在此不予赘述。
S320,第一终端设备或者网络设备确定第一载波的信道繁忙率。
可选的,S330,第一终端设备或者网络设备从多个载波中确定第一载波。
其中,第一终端设备或者网络设备基于S320确定的第一载波的信道繁忙率,确定第一载波用于SL数据的传输。其中,第一载波为多个载波中的一个。
从多个载波中确定第一载波的方式,可以包括如下中的一种,具体为哪种方式可以由协议预定义,在网络设备和第一终端设备预设置,或者,由网络设备进行配置:
确定多个载波中的一个或多个载波的信道繁忙率,将前述一个或多个载波的信道繁忙率大于预定阈值的一个或多个第一载波确定为用于SL数据传输的载波;或,
对多个载波确定各自的信道繁忙率,并依据该多个载波对应的信道繁忙率的排序,确定信道繁忙率最低的一个或多个第一载波为用于SL数据传输的载波。
步骤S320中的第一载波的信道繁忙率可以由第一终端设备确定,或者也可以由网络设备确定。步骤S330中的第一载波可以由第一终端设备确定,或者也可以由网络设备确定。以下结合图4对步骤S320和步骤S330可能的实现方式进行说明。
可能的第一种实现方式:
当第一载波的信道繁忙率由第一终端设备确定,第一载波也由第一终端设备确定时,步骤S320可以通过步骤S321a实现,步骤S330可以通过步骤S331A实现。
S321a,第一终端设备基于部分或者全部资源池的测量结果确定第一载波的信道繁忙率。
第一终端设备确定第一载波的信道繁忙率的方式可以是预先配置的,或者也可以是通过网络设备发送的第一信息获取的。第一终端设备确定第一载波的信道繁忙率的实现方式可以参见步骤S311的描述,在此不予赘述。
S331A,第一终端设备基于第一载波的信道繁忙率从多个载波中确定第一载波。
示例性地,第一终端设备可以选取多个载波中信道繁忙率最低的前L个载波,其中L为正整数且小于该多个载波的数量,作为用于SL传输的第一载波。也即,第一终端设备可以针对多个载波进行和前述第一载波的信道繁忙率类似的载波信道繁忙率的确定,并将信道繁忙率较小的载波,比如本申请中的第一载波,用于SL数据的传输(也简称为SL传输)。可以理解的是,本申请的SL数据,包括SL业务数据和/或信令。
需要说明的是,从多个载波中选取第一载波的方式和/或第一载波的数量可以是第一终端设备预先配置的,或者是网络设备指示的,或者是第一终端设备根据传输的侧行链路数据或运行环境等确定的,本申请对此不作特别限定。
可能的第二种实现方式:
当第一载波的信道繁忙率由网络设备确定,第一载波由第一终端设备确定时,步骤S320可以通过步骤S321b和S322b实现,步骤S330可以通过步骤S331B和步骤S332B实现。
S321b,第一终端设备向网络设备发送部分或者全部资源池中每个资源池的测量结果,对应地,网络设备接收来自第一终端设备的该部分或者全部资源池中每个资源池的测量结 果。
第一终端设备可以预先配置将获得的测量结果返回给网络设备,或者也可以基于第一信息的指示将获得的测量结果返回给网络设备。
S322b,网络设备基于部分或者全部资源池的测量结果确定第一载波的信道繁忙率。
网络设备确定第一载波的信道繁忙率的实现方式可以参见步骤S311中的相关描述,在此不予赘述。
S331B,网络设备向第一终端设备发送第一载波的信道繁忙率,对应地,第一终端设备接收来自网络设备的该第一载波的信道繁忙率。
例如,网络设备可以响应于第一终端设备发送的测量结果向第一终端设备发送该第一载波的信道繁忙率。
S332B,第一终端设备基于第一载波的信道繁忙率从多个载波中确定第一载波。
示例性地,第一终端设备可以选取多个载波中信道繁忙率最低的前L个载波,其中L为正整数且小于该多个载波的数量,作为用于SL传输的第一载波。详细的描述可以参考步骤S331A的描述,在此不予赘述。
可能的第三种实现方式:
当第一载波的信道繁忙率由网络设备确定,第一载波也由网络设备确定时,步骤S320可以通过上述的步骤S321b和S322b实现(以下不予赘述),步骤S330可以通过步骤S331C和步骤S332C实现。
S331C,网络设备基于第一载波的信道繁忙率从多个载波中确定第一载波。
示例性地,第一终端设备可以选取多个载波中信道繁忙率最低的前L个载波,其中L为正整数且小于该多个载波的数量,作为用于SL传输的第一载波。详细的描述可以参考步骤S331A的描述,在此不予赘述。
S332C,网络设备向第一终端设备发送第二信息,对应地,第一终端设备接收来自网络设备的第二信息。
该第二信息用于指示该第一载波。
例如,第二信息可以包括第一载波的标识信息。换句话说,该第二信息用于指示第一终端设备使用该第一载波传输侧行链路数据。
可能的第四种实现方式:
当第一载波的信道繁忙率由第一终端设备确定,第一载波由网络设备确定时,步骤S320可以通过步骤S321c和S322c实现,步骤S330可以通过上述的步骤S331C和步骤S332C实现。
S321c,第一终端设备基于部分或者全部资源池的测量结果确定第一载波的信道繁忙率。
第一终端设备确定第一载波的信道繁忙率的方式可以是预先配置的,或者也可以是通过网络设备发送的第一信息获取的。第一终端设备确定第一载波的信道繁忙率的实现方式可以参见步骤S311的描述,在此不予赘述。
S322c,第一终端设备向网络设备发送第一载波的信道繁忙率,对应地,网络设备接收来自第一终端设备的该第一载波的信道繁忙率。
可以理解的是,和“指示”包括直接指示和间接指示类似,本申请中的信息发送并不 限定信息发送的方式,比如,可以是发送该信息,比如发送所述第一载波的信道繁忙率本身,或者,也可以是发送该信息对应的信息,比如发送用于指示第一载波的信道繁忙率的信息,比如和所述第一载波的信道繁忙率对应的索引。
可选地,第一终端设备可以确定包括第一载波的多个载波的信道繁忙率,并将该多个载波的信道繁忙率发送给网络设备,从而网络设备可以基于该多个载波的信道繁忙率在该多个载波中确定用于传输SL数据的第一载波。
从而,上文介绍的步骤S320和S330的可能的实现方式可以灵活使用,进而支持丰富的运用场景。
S340,第一终端设备使用第一载波与第二终端设备进行侧行链路数据的传输。
可以理解的是,本申请中的传输可以包括第一终端设备向第二终端设备发送侧行链路数据,或,第二终端设备向第一终端设备发送侧行链路数据。
基于该技术方案,第一终端设备可以获取载波中的部分或者全部资源池的测量结果,并且基于该部分或者全部资源池的测量结果获取该载波的信道繁忙率,进而使得终端设备能够在多个载波中选择用于进行SL数据的传输的载波。
在图3和图4所提供的通信方法中,终端设备可以基于资源池的测量结果确定第一载波的信道繁忙率,该方法可以利用资源池的相关参数,比如上文侧行链路中的CBR介绍的相关参数,对资源池进行测量,能够减少终端设备和网络设备之间空口消耗。本申请还提供了一种通信方法,可以基于载波的信道繁忙率的定义进行载波的CBR测量,即采用载波粒度的参数确定第一载波的信道繁忙率,使得终端设备能够在多个载波中选择用于进行SL数据的传输的载波进行SL数据的传输。以下结合图5对该方法进行说明。
图5示出了另一种载波CBR的确定方法的示意性流程图。
S510,第一终端设备确定第一载波的信道繁忙率。
第一载波的信道繁忙率为繁忙子信道的数量占全部子信道的数量的比值。
繁忙子信道为全部子信道中接收测量值大于或等于测量阈值的子信道,其中,接收测量值为以下值中的至少一项:接收信号强度指示、参考信号接收功率或者参考信号接收质量。有关繁忙子信道的定义可以参考图3中步骤S310中的描述,在此不予赘述。可以理解的是,该测量阈值为用于确定载波信道繁忙率的繁忙子信道的测量阈值,其可以不同于用于确定资源池信道繁忙率的繁忙子信道的测量阈值。
全部子信道的定义可以采用如下两种方式,以下结合图6分别对该两种方式进行说明。
方式1:
全部子信道为第一载波中配置用于侧行链路SL数据传输的候选资源池所包括的子信道。
第一载波中的候选资源池所包括的子信道是经过去重处理后包括的子信道。例如,对于配置频分复用方式的候选资源池,如果候选资源池在频域上存在子信道重叠的情况,参见图6(a),第一载波中包括三个候选资源池#1-3,候选资源池#1包括的子信道为子信道#1-3,候选资源池#2包括的子信道为子信道#3-5,候选资源池#3包括的子信道为子信道#7-9。那么全部子信道为子信道#1-5以及子信道#7-9。即使候选资源池#1和候选资源池#2在子信道#3上存在重叠,那么第一载波中的候选资源池所包括的子信道不会重复包括子信道#3。
第一终端设备可以在经过去重处理后的全部子信道,例如图6(a)所示的子信道#1-5以及子信道#7-9上进行测量,获取每个子信道的接收测量值,基于测量阈值确定第一载波的信道繁忙率。
需要说明的是,对于配置时分复用方式的候选资源池,参见图6(b),如果候选资源池在时域上存在时隙(或者其它时间单元粒度)重叠的情况下,候选资源池#1包括时隙#1-3,候选资源池#2包括时隙#3-5,候选资源池#3包括时隙8-10,如果第一终端设备的测量接收测量值的时间包括重复的时隙#3,那么第一终端设备在测量候选资源池所包括的子信道时,对时隙#3也进行去重处理。
方式2:
全部子信道为第一载波中配置用于确定第一载波的信道繁忙率的子信道。
其中,全部子信道的数量,也可以替换为子信道总数。
网络设备可以为第一终端设备配置用于确定第一载波的信道繁忙率的子信道。可以理解的是,在该实现方式中,该全部子信道是指用于确定信道繁忙率的全部的子信道,全部子信道可以是配置用于传输侧行链路SL数据的所有子信道,这样可以使得第一载波的CBR更准确,或者,也可以是配置用于传输SL数据的所有子信道中的部分子信道,这样可以减少终端设备的测量量,比如,该部分子信道是用于传输侧行链路SL数据的所有子信道中每R个中的一个且均匀分布,或者,和,配置用于传输SL数据的所有子信道部分重叠,即可以包括第一载波中不是配置用于传输SL数据的子信道,这样,可以引入非SL传输,比如Uu口的测量,可以使第一载波的CBR的确定更准确。
可选的,配置用于确定第一载波的信道繁忙率的子信道的粒度,即每个子信道包括的PRB的数量,可以和配置用于侧行链路SL数据传输的子信道的粒度相同,这样,可以减少配置的信令,提高终端设备处理的一致性。
可选的,配置用于确定第一载波的信道繁忙率的子信道的粒度,即每个子信道包括的PRB的数量,可以和配置用于侧行链路SL数据传输的子信道的粒度不同,这样,可以采用更适用于用于确定第一载波的信道繁忙率的子信道的配置,使得该配置更符合系统需求。
示例性地,图7示出了一种配置的用于确定第一载波的信道繁忙率的子信道的示意图。参加图7,子信道#1至子信道#4是配置用于确定第一载波的信道繁忙率的子信道,每个子信道可以包括至少一个PRB,每个子信道包括的PRB的个数可以相同也可以不同,用于确定第一载波的信道繁忙率的子信道可以是连续的也可以是非连续的。
其中,在上述两种方式中,测量参数可以包括以下中的一项或多项:配置用于确定第一载波的信道繁忙率的子信道(即全部子信道)的数量、全部子信道的频域位置、全部子信道中每个子信道中包括的PRB的个数、测量阈值、测量接收测量值的时间。以上测量参数可以是预先配置(例如协议预定义)的,或者也可以是网络设备指示的,或者测量参数中的一部分是预先配置的,一部分是网络设备指示的,该指示可以为直接指示或间接指示。比如,第一终端设备中配置有多组测量参数,以及与每组测量参数具有对应关系的索引,(例如以表格或字符串的形式存储前述对应关系),第一终端设备可以基于网络设备指示的索引确定配置用于所述第一载波的CBR的参数。
例如,在上述的方式1中,全部子信道为第一载波中配置用于SL数据传输的候选资源池所包括的子信道,全部子信道的数量、全部子信道的频域位置、全部子信道中每个子 信道中包括的PRB的个数、测量接收测量值的时间可以采用参考或者使用所在的候选资源池中的参数(例如上文侧行链路中的CBR介绍的相关参数)确定,比如,直接采用所述候选资源池中的参数,或者,是所述候选资源池中的参数的函数,具体函数可以为预定义的;测量阈值可以为协议预定义的,即预先配置的,或者,通过网络设备指示的方式确定。
再例如,在上述的方式2中,全部子信道为第一载波中配置用于确定第一载波的信道繁忙率的子信道,上述测量参数中的全部或部分可以预存储或预配置在所述第一终端设备中,或者也可以基于网络设备的指示确定。
当测量参数中存在一个或多个测量参数由网络设备指示给第一终端设备时,在步骤S510之前,该方法还可以执行步骤S520。
可选地,S520,网络设备向第一终端设备发送参数信息,该参数信息指示进行测量时的前述测量参数中的一项或多项,对应地,第一终端设备接收来自网络设备的该参数信息。
示例性地,在方式1中,进行测量时的参数可以包括该测量阈值。该测量阈值可以由协议预定义也可以由网络设备配置给第一终端设备。
需要说明的是,第一终端设备在对资源池所包括的子信道进行测量时,可以参考各个资源池的配置参数确定测量接收测量值的时间(例如参考sl-TimeWindowSizeCBR-r16指示的测量CBR的时间窗长度)、子信道中的PRB数(例如参考sl-SubchannelSize-r16指示的PRB数)进行测量,以获取每个子信道的接收测量值,然后可以与前述测量阈值进行比较。
再示例性地,在方式2中,进行测量时的参数可以包括以下信息中的至少一项:测量阈值、测量接收测量值的时间、该全部子信道的频域位置、该全部子信道中每个子信道包括的资源块的数量。这些参数中的全部或部分可以由协议预定义,或者,由网络设备配置给第一终端设备,比如,通过参数信息指示前述参数中的一项或多项,具体配置方式可以是直接配置,也可以是间接配置。也就是说,网络设备可以以载波粒度配置用于确定载波的信道繁忙率的参数。
例如,该参数信息可以以时隙的粒度指示测量接收测量值的时间,或者也可以以其它时间单元(例如毫秒)的粒度指示测量接收测量值的时间。另外,该参数信息可以通过指示全部子信道中的起始子信道的起始PRB位置和子信道包括的PRB数指示每个子信道频域位置。即第一终端设备可以结合预先配置的参数,例如子信道之间间隔PRB的个数,以及参数信息指示的起始PRB位置和子信道包括的PRB数确定全部子信道中每个子信道的频域位置。可以理解的是,该参数信息可以采用多种形式指示用于测量全部子信道的参数,本申请对次不作特别限定。
S530,第一终端设备基于第一载波的信道繁忙率从多个载波中确定第一载波。
示例性地,第一终端设备可以选取多个载波中信道繁忙率较小的载波作为用于SL传输的第一载波。也即,第一终端设备可以针对多个载波进行和前述第一载波的信道繁忙率类似的载波信道繁忙率的确定,并将信道繁忙率较小的载波,比如本申请中的第一载波,用于SL数据的传输(也简称为SL传输)。可以理解的是,本申请的SL数据,包括SL业务数据,也包括信令。
S540,第一终端设备使用第一载波与第二终端设备进行侧行链路数据的传输。
基于该技术方案,第一终端设备可以基于用于确定第一载波的信道繁忙率的参数对全部子信道进行测量,进而使得终端设备能够在多个载波中选择用于进行SL数据的传输的载波进行SL数据的传输。
应理解,在上文实施例的描述过程中,一条信息可以承载在一条或多条消息或同一条消息中的一个或多个信元中。例如,本申请实施例中的第一信息,当第一信息用于指示部分或全部资源池,且第一信息还用于指示第一终端设备采用该部分或全部资源池的测量结果确定第一载波的信道繁忙率时,该第一信息可以拆分成分别指示该两项内容的两条指示信息,比如,两条消息,或,同一条消息中的两个信元,本申请对此不作特别限定。
以上描述了本申请实施例的方法实施例,下面对相应的装置实施例进行介绍。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图8为本申请实施例提供的一种通信装置的示意图。如图8所示,该装置800可以包括收发单元810和处理单元820。收发单元810可以与该装置的外部进行通信,处理单元820用于进行数据处理。收发单元810还可以称为通信接口或收发单元。
在一种可能的设计中,该装置800可实现对应于上文图3所示方法实施例中的第一终端设备执行的流程,其中,处理单元820用于执行上文图3所示方法实施例中第一终端设备的处理相关的操作,收发单元810用于执行上文图3所示方法实施例中第一终端设备的收发相关的操作。
示例性地,处理单元820,用于获取第一载波中的多个资源池中的部分或者全部资源池中每个资源池的测量结果,该部分或者全部资源池中每个资源池的测量结果用于确定第一载波的信道繁忙率,第一载波的信道繁忙率用于从多个载波中确定该第一载波;;收发单元810,用于使用该第一载波与第二终端设备进行侧行链路数据的传输;其中,第一载波中的多个资源池为用于侧行链路数据的传输的候选资源池。
基于该技术方案,第一终端设备可以获取载波中的部分或者全部资源池的测量结果,并且基于该部分或者全部资源池的测量结果获取该载波的信道繁忙率,进而使得终端设备能够在多个载波中选择确定用于进行SL数据的传输的一个或多个载波。另外,第一终端设备可以参考或者使用资源池的配置参数获取该部分或者全部资源池中每个资源池的测量结果,从而减少终端设备和网络设备之间的信令传输。
可选地,部分或全部资源池是根据多个资源池中每个资源池的以下信息中的至少一项确定的:子信道的数量、资源块的数量、子信道包括的资源块的数量。
基于该技术方案,一个资源池中的子信道或资源块的数量可以影响该资源池在确定载波的信道繁忙率过程中的重要程度,进而,终端设备或者网络设备可以综合多个参数选择合适的资源池用于载波的信道繁忙率的确定,从而提高该信道繁忙率的可信度。可选地,收发单元810,还用于接收来自网络设备的第一信息,该第一信息指示该部分或全部资源池;处理单元820,具体用于基于第一信息获取该部分或者全部资源池中每个资源池的测量结果。
基于该技术方案,网络设备可以向第一终端设备配置用于确定使用哪个或者哪些资源池的测量结果确定第一载波的信道繁忙率的第一信息,进而使得第一终端设备能够快速获取到该部分或者全部资源池的测量结果,可以无需获取除该部分或全部资源池之外的资源 池的测量结果,从而提高确定第一载波的信道繁忙率的效率。
可选地,部分或者全部资源池是根据多个资源池中每个资源池的测量结果确定的。
基于该技术方案,第一终端设备可以先获取该多个资源池的测量结果,再基于每个资源池的测量结果选取出合适的部分或者全部资源池用于确定载波的信道繁忙率,从而提高信道繁忙率的可信度。
可选地,部分或者全部资源池为多个资源池按测量结果递增排序的前N个资源池,或者,部分或者全部资源池为多个资源池按测量结果递减排序的前M个资源池,其中,N和M为正整数。
基于该技术方案,可以根据不同的场景需求,确定采用测量结果较高或者较低的一个或多个资源池的测量结果确定第一载波的信道繁忙率,能够支持多种场景的运用。
可选地,收发单元810,还用于向网络设备发送部分或者全部资源池中每个资源池的测量结果;收发单元810,还用于接收来自网络设备的该第一载波的信道繁忙率,或者,收发单元810,还用于接收来自该网络设备的第二信息,该第二信息指示该第一载波。
基于该技术方案,第一终端设备可以将测量结果上报给网络设备,由网络设备确定载波的信道繁忙率,然后网络设备告知第一终端设备该信道繁忙率,或者直接告知用于传输SL数据的第一载波,使得不支持根据测量结果确定信道繁忙率能力的终端设备,或者因存在省电需求不进行根据测量结果确定信道繁忙率的终端设备也能够在多个载波中确定用于SL数据传输的一个或多个载波。
可选地,处理单元820,还用于根据该部分或者全部资源池中每个资源池的测量结果确定第一载波的信道繁忙率;处理单元820,还用于基于第一载波的信道繁忙率从多个载波中确定该第一载波,或者收发单元810用于向网络设备发送第一载波的信道繁忙率,并接收来自网络设备的第二信息,该第二信息用于指示该第一载波。
基于该技术方案,第一终端设备可以自行确定载波的信道繁忙率,选择用于传输SL数据的载波,从而减少网络设备和终端设备之间的信令传输,进而减少信令开销。
可选地,该部分或者全部资源池包括第一资源池,第一资源池的测量结果为第一繁忙子信道的数量占第一资源池的子信道总数的比值,其中,第一繁忙子信道为第一资源池的子信道中接收测量值大于或等于第一阈值的子信道,该接收测量值为以下值中的至少一项:接收信号强度指示、参考信号接收功率或者参考信号接收质量。
可选地,第一载波的信道繁忙率为部分或者全部资源池的测量结果的加权平均值,第一资源池的测量结果对应的加权系数与第一资源池的子信道总数正相关,或者与第一资源池的资源块总数正相关,或者,第一载波的信道繁忙率为部分或者全部资源池的测量结果的平均值。
基于该技术方案,第一终端设备可以综合该部分或者全部资源池的测量结果,进行加权平均或者平均处理,从而提高信道繁忙率的准确性。在又一种可能的设计中,该装置800可实现对应于上文图3所示方法实施例中的网络设备执行的流程,其中,收发单元810用于执行上文图3所示方法实施例中网络设备的收发相关的操作,处理单元820用于执行上文图3所示方法实施例中网络设备的处理相关的操作。
基于该技术方案,第一终端设备可以获取载波中的部分或者全部资源池的测量结果,并且基于该部分或者全部资源池的测量结果获取该载波的信道繁忙率,进而使得终端设备 能够在多个载波中选择确定用于进行SL数据的传输的一个或多个载波。示例性地,处理单元820,用于生成第一信息,第一信息指示第一载波中的多个资源池中的部分或者全部资源池,部分或者全部资源池中每个资源池的测量结果用于确定第一载波的信道繁忙率,第一载波的信道繁忙率用于从多个载波中确定第一载波,第一载波用于发送侧行链路数据;收发单元810,用于向第一终端设备发送第一信息;其中,第一载波中的多个资源池为用于该侧行链路数据的传输的候选资源池。
可选地,部分或者全部资源池是根据多个资源池中每个资源池的以下信息中的至少一项确定的:子信道的数量、资源块的数量、子信道包括的资源块的数量。
可选地,收发单元810,用于接收来自第一终端设备的部分或者全部资源池中每个资源池的测量结果,或者用于接收来自第一终端设备的第一载波的信道繁忙率;在收发单元810用于接收来自第一终端设备的部分或者全部资源池中每个资源池的测量结果的情况下,处理单元820用于基于部分或者全部资源池中每个资源池的测量结果向第一终端设备发送第一载波的信道繁忙率,或者,收发单元810还用于基于部分或者全部资源池中每个资源池的测量结果向第一终端设备发送第二信息,第二信息指示第一载波;在收发单元810用于接收来自第一终端设备的第一载波的信道繁忙率时,收发单元8110还用于基于第一载波的信道繁忙率向第一终端设备发送该第二信息。
可选地,该部分或者全部资源池包括第一资源池,第一资源池的测量结果为第一繁忙子信道的数量占第一资源池的子信道总数的比值,第一繁忙子信道为第一资源池的子信道中接收测量值大于或等于第一阈值的子信道,其中,接收测量值为以下中的至少一项:接收信号强度指示、参考信号接收功率或者参考信号接收质量。
可选地,第一载波的信道繁忙率为部分或者全部资源池的测量结果的加权平均值,第一资源池的测量结果对应的加权系数与第一资源池的子信道总数正相关,或者与第一资源池的资源块总数正相关,或者,第一载波的信道繁忙率为部分或者全部资源池的测量结果的平均值。
在又一种可能的设计中,该装置800可实现对应于上文图5所示方法实施例中的第一终端设备执行的流程,其中,处理单元820用于执行上文图5所示方法实施例中第一终端设备的处理相关的操作,收发单元810用于执行上文图5所示方法实施例中第一终端设备的收发相关的操作。
示例性地,处理单元820,用于确定第一载波的信道繁忙率,第一载波的信道繁忙率为繁忙子信道的数量占全部子信道的数量的比值,该全部子信道为第一载波中配置用于确定第一载波的信道繁忙率的子信道,或者,第一载波中配置用于侧行链路数据传输的候选资源池所包括的子信道,该繁忙子信道为全部子信道中接收测量值大于或等于测量阈值的子信道,其中,接收测量值为以下值中的至少一项:接收信号强度指示、参考信号接收功率或者参考信号接收质量;第一终端设备基于第一载波的信道繁忙率从多个载波中确定第一载波;收发单元810,用于使用该第一载波与第二终端设备进行侧行链路数据的传输。
基于该技术方案,第一终端设备可以基于第一载波的信道繁忙率的定义对全部子信道进行测量,进而使得终端设备能够在多个载波中确定用于进行SL数据的传输的载波。
可选地,收发单元810,还用于接收来自网络设备的参数信息,该参数信息用于指示测量阈值。
基于该技术方案,能够实现终端设备和网络设备之间较少的信令传输,进而减少信令开销。
可选地,参数信息还用于指示以下信息中的至少一项:测量接收测量值的时间、该全部子信道的频域位置、该全部子信道中每个子信道包括的资源块的数量。
基于该技术方案,第一终端设备可以基于用于确定第一载波的信道繁忙率的参数对全部子信道进行测量,进而使得终端设备能够在多个载波中选择用于进行SL数据的传输的载波进行SL数据的传输。
在又一种可能的设计中,该装置800可实现对应于上文图5所示方法实施例中的网络设备执行的流程,其中,处理单元820用于执行上文图5所示方法实施例中网络设备的处理相关的操作,收发单元810用于执行上文图5所示方法实施例中网络设备的收发相关的操作。
示例性地,处理单元820,用于生成参数信息,参数信息用于指示测量阈值,测量接收测量值的时间,全部子信道的频域位置,或,全部子信道中每个子信道包括的资源块的数量中的一项或多项。其中,测量阈值用于确定第一载波的信道繁忙率,其中,第一载波的信道繁忙率为繁忙子信道的数量占全部子信道的数量的比值,该全部子信道为第一载波中配置用于确定第一载波的信道繁忙率的子信道,或者,第一载波中配置用于侧行链路数据传输的候选资源池所包括的子信道,繁忙子信道为全部子信道中接收测量值大于或等于测量阈值的子信道,接收测量值为以下值中的至少一项:接收信号强度指示、参考信号接收功率或者参考信号接收质量;收发单元810,用于向第一终端设备发送该参数信息。
基于该技术方案,第一终端设备可以基于用于确定第一载波的信道繁忙率的参数对全部子信道进行测量,进而使得终端设备能够在多个载波中选择用于进行SL数据的传输的载波进行SL数据的传输。
应理解,这里的装置800以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置800可以具体为上述实施例中的第一终端设备或应用于第一终端设备的芯片,可以用于执行上述方法实施例中与第一终端设备对应的流程,或者,装置800可以具体为上述实施例中的网络设备或应用于网络设备的芯片,可以用于执行上述方法实施例中与网络设备对应的流程,为避免重复,在此不予赘述。
上述装置800具有实现上述方法中第一终端设备所执行的相应步骤的功能,或者,上述装置800具有实现上述方法中网络设备所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。在本申请的实施例,图8中的装置可以是前述实施例中的网络设备或第一终端设备,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。 其中,收发单元可以是输入输出电路、通信接口。处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图9示出了本申请实施例提供的通信装置900。该装置200包括处理器910和存储器920。存储器920用于存储指令,该处理器910可以调用该存储器920中存储的指令,以执行上述方法实施例中的第一终端设备或网络设备对应的流程。
具体地,在一种可能的实现方式中,存储器920用于存储指令,该处理器910可以调用该存储器920中存储的指令,以执行上述方法实施例中的第一终端设备对应的流程。
具体地,在另一种可能的实现方式中,存储器920用于存储指令,该处理器910可以调用该存储器920中存储的指令,以执行上述方法实施例中的网络设备对应的流程。
应理解,装置900可以具体为上述实施例中的第一终端设备或网络设备,也可以是用于第一终端设备或网络设备的芯片或者芯片系统。具体地,该装置900可以用于执行上述方法实施例中与第一终端设备或网络设备对应的流程。
可选地,该存储器920可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器910可以用于执行存储器中存储的指令,并且当该处理器910执行存储器中存储的指令时,该处理器910用于执行上述与第一终端设备或网络设备对应的方法实施例的流程。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。本申请实施例中的处理器可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态 随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图10示出了本申请实施例提供的通信装置1000。该装置1000包括处理电路1010和收发电路1020。其中,处理电路1010和收发电路1020通过内部连接通路互相通信,该处理电路1010用于执行指令,以控制该收发电路1020发送信号和/或接收信号。
可选地,该装置1000还可以包括存储介质1030,该存储介质1030与处理电路1010、收发电路1020通过内部连接通路互相通信。该存储介质1030用于存储指令,该处理电路1010可以执行该存储介质1030中存储的指令。
在一种可能的实现方式中,装置1000用于实现上述方法实施例中的第一终端设备对应的流程。
在另一种可能的实现方式中,装置1000用于实现上述方法实施例中的网络设备对应的流程。
当通信装置1000用于实现图2至图5所示的方法时,处理电路1010用于实现上述处理单元820的功能,收发电路1020用于实现上述收发单元810或者收发单元810和处理单元820的功能。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图3至图5所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图3至图5所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的第一终端设备、第二终端设备和网络设备。
本文中术语“……中的至少一个”或“……中的至少一种”,表示所列出的各项的全部或任意组合,例如,“A、B和C中的至少一种”,可以表示:单独存在A,单独存在B,单独存在C,同时存在A和B,同时存在B和C,同时存在A、B和C这六种情况。本文中的“至少一个”表示一个或者多个。“多个”表示两个或者两个以上。
应理解,在本申请各实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
还应理解,在本申请的各种实施例中,第一、第二以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。例如,区分不同的信息等。
还应理解,在本申请的各种实施例中,“指示”可以包括直接指示和间接指示,也可以包括显式指示和隐式指示。将某一信息(例如上文所述的第一信息)所指示的信息称为 待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
还应理解,在本申请的各种实施例中,“预先配置”可以通过在设备(例如,第一终端设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不予赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (33)

  1. 一种通信方法,其特征在于,由第一终端设备或用于第一终端设备的芯片执行,所述方法包括:
    获取第一载波中的多个资源池中的部分或者全部资源池中每个资源池的测量结果,所述部分或者全部资源池中每个资源池的测量结果用于确定所述第一载波的信道繁忙率,所述第一载波的信道繁忙率用于从多个载波中确定所述第一载波;
    使用所述第一载波与第二终端设备进行侧行链路数据的传输;其中,所述第一载波中的多个资源池为用于所述侧行链路数据的传输的候选资源池。
  2. 如权利要求1所述的方法,其特征在于,所述部分或者全部资源池是根据所述多个资源池中每个资源池的以下信息中的至少一项确定的:子信道的数量、资源块的数量、子信道包括的资源块的数量。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收来自网络设备的第一信息,所述第一信息指示所述部分或全部资源池;
    获取所述部分或者全部资源池中每个资源池的测量结果,包括:
    基于所述第一信息获取所述部分或者全部资源池中每个资源池的测量结果。
  4. 如权利要求1所述的方法,其特征在于,所述部分或者全部资源池是根据所述多个资源池中每个资源池的测量结果确定的。
  5. 如权利要求4所述的方法,其特征在于,所述部分或者全部资源池为所述多个资源池按测量结果递增排序的前N个资源池,或者,所述部分或者全部资源池为所述多个资源池按测量结果递减排序的前M个资源池,其中,所述N和所述M为正整数。
  6. 如权利要求1至5任一项所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送所述部分或者全部资源池中每个资源池的测量结果;
    接收来自所述网络设备的所述第一载波的信道繁忙率,或者,
    接收来自所述网络设备的第二信息,所述第二信息指示所述第一载波。
  7. 如权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述部分或者全部资源池中每个资源池的测量结果确定所述第一载波的信道繁忙率;
    基于所述第一载波的信道繁忙率从所述多个载波中确定所述第一载波,或者,向所述网络设备发送所述第一载波的信道繁忙率,并接收来自所述网络设备的第二信息,所述第二信息指示所述第一载波。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述部分或全部资源池包括第一资源池,所述第一资源池的测量结果为第一繁忙子信道的数量占所述第一资源池的子信道总数的比值,其中,所述第一繁忙子信道为所述第一资源池的子信道中接收测量值大于或等于第一阈值的子信道,所述接收测量值为以下值中的至少一项:接收信号强度指示、参考信号接收功率或者参考信号接收质量。
  9. 如权利要求8中所述的方法,其特征在于,所述第一载波的信道繁忙率为所述部分或者全部资源池的测量结果的加权平均值,所述第一资源池的测量结果对应的加权系数与所述第一资源池的子信道总数正相关,或者与所述第一资源池的资源块总数正相关,或者,
    所述第一载波的信道繁忙率为所述部分或者全部资源池的测量结果的平均值。
  10. 一种通信方法,其特征在于,由第一终端设备或用于第一终端设备的芯片执行,所述方法包括:
    确定第一载波的信道繁忙率,所述第一载波的信道繁忙率为繁忙子信道的数量占全部子信道的数量的比值,所述全部子信道为所述第一载波中配置用于确定所述第一载波的信道繁忙率的子信道,或者,所述第一载波中配置用于侧行链路数据传输的候选资源池所包括的子信道,所述繁忙子信道为所述全部子信道中接收测量值大于或等于测量阈值的子信道,其中,所述接收测量值为以下值中的至少一项:接收信号强度指示、参考信号接收功率或者参考信号接收质量;
    基于所述第一载波的信道繁忙率从多个载波中确定所述第一载波;
    使用所述第一载波与第二终端设备进行侧行链路数据的传输。
  11. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    接收来自网络设备的参数信息,所述参数信息用于指示所述测量阈值。
  12. 如权利要求11所述的方法,其特征在于,所述参数信息还用于指示以下信息中的至少一项:测量所述接收测量值的时间、所述全部子信道的频域位置、所述全部子信道中每个子信道包括的资源块的数量。
  13. 一种通信方法,其特征在于,由网络设备或用于网络设备的芯片执行,所述方法包括:
    向第一终端设备发送第一信息,所述第一信息指示第一载波中的多个资源池中的部分或者全部资源池,所述部分或者全部资源池中每个资源池的测量结果用于确定所述第一载波的信道繁忙率,所述第一载波的信道繁忙率用于从多个载波中确定所述第一载波,所述第一载波用于侧行链路数据的传输;其中,所述第一载波中的多个资源池为用于所述侧行链路数据的传输的候选资源池。
  14. 如权利要求13所述的方法,其特征在于,所述部分或者全部资源池是根据所述多个资源池中每个资源池的以下信息中的至少一项确定的:子信道的数量、资源块的数量、子信道包括的资源块的数量。
  15. 如权利要求13或14所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一终端设备的所述部分或者全部资源池中每个资源池的测量结果,或者,接收来自所述第一终端设备的所述第一载波的信道繁忙率;
    在接收来自所述第一终端设备的所述部分或者全部资源池中每个资源池的测量结果的情况下,基于所述部分或者全部资源池中每个资源池的测量结果向所述第一终端设备发送所述第一载波的信道繁忙率,或者,所述网络设备基于所述部分或者全部资源池中每个资源池的测量结果向所述第一终端设备发送第二信息,所述第二信息指示所述第一载波;
    在接收来自所述第一终端设备的所述第一载波的信道繁忙率的情况下,基于所述第一载波的信道繁忙率向所述第一终端设备发送所述第二信息。
  16. 如权利要求13至15中任一项所述的方法,其特征在于,所述部分或全部资源池包括第一资源池,所述第一资源池的测量结果为第一繁忙子信道的数量占所述第一资源池的子信道总数的比值,所述第一繁忙子信道为所述第一资源池的子信道中接收测量值大于或等于第一阈值的子信道,其中,所述接收测量值为以下中的至少一项:接收信号强度指 示、参考信号接收功率或者参考信号接收质量。
  17. 如权利要求16所述的方法,其特征在于,所述第一载波的信道繁忙率为所述部分或者全部资源池的测量结果的加权平均值,所述第一资源池的测量结果对应的加权系数与所述第一资源池的子信道总数正相关,或者与所述第一资源池的资源块总数正相关,或者,
    所述第一载波的信道繁忙率为所述部分或者全部资源池的测量结果的平均值。
  18. 一种通信方法,其特征在于,由网络设备或用于网络设备的芯片执行,所述方法包括:
    向第一终端设备发送参数信息,所述参数信息用于指示测量阈值,所述测量阈值用于确定第一载波的信道繁忙率,其中,所述第一载波的信道繁忙率为繁忙子信道的数量占全部子信道的数量的比值,所述全部子信道为所述第一载波中配置用于确定所述第一载波的信道繁忙率的子信道,或者所述全部子信道为所述第一载波配置用于侧行链路数据传输的候选资源池所包括的子信道,所述繁忙子信道为所述全部子信道中接收测量值大于或等于所述测量阈值的子信道,所述接收测量值为以下值中的至少一项:接收信号强度指示、参考信号接收功率或者参考信号接收质量。
  19. 如权利要求18所述的方法,其特征在于,所述参数信息还用于指示以下信息中的至少一项:测量所述接收测量值的时间、所述全部子信道的频域位置、所述全部子信道中每个子信道包括的资源块的数量。
  20. 一种通信方法,其特征在于,由第一终端设备或用于第一终端设备的芯片执行,所述方法包括:
    接收来自网络设备的第一信息,所述第一信息指示第一载波中的多个资源池中的部分或者全部资源池;
    基于所述第一信息获取所述部分或者全部资源池中每个资源池的测量结果,所述部分或者全部资源池中每个资源池的测量结果用于确定所述第一载波的信道繁忙率。
  21. 如权利要求20所述的方法,其特征在于,所述部分或者全部资源池是根据所述多个资源池中每个资源池的以下信息中的至少一项确定的:子信道的数量、资源块的数量、子信道包括的资源块的数量。
  22. 如权利要求20或21所述的方法,其特征在于,所述方法还包括:
    向所述网络设备发送所述部分或者全部资源池中每个资源池的测量结果;
    接收来自所述网络设备的所述第一载波的信道繁忙率,或者,
    接收来自所述网络设备的第二信息,所述第二信息指示所述第一载波。
  23. 如权利要求20或21所述的方法,其特征在于,所述方法还包括:
    根据所述部分或者全部资源池中每个资源池的测量结果确定所述第一载波的信道繁忙率;
    基于所述第一载波的信道繁忙率从所述多个载波中确定所述第一载波,或者,向所述网络设备发送所述第一载波的信道繁忙率,并接收来自所述网络设备的第二信息,所述第二信息指示所述第一载波。
  24. 如权利要求20至23中任一项所述的方法,其特征在于,所述部分或全部资源池包括第一资源池,所述第一资源池的测量结果为第一繁忙子信道的数量占所述第一资源池的子信道总数的比值,其中,所述第一繁忙子信道为所述第一资源池的子信道中接收测量 值大于或等于第一阈值的子信道,所述接收测量值为以下值中的至少一项:接收信号强度指示、参考信号接收功率或者参考信号接收质量。
  25. 如权利要求24所述的方法,其特征在于,所述第一载波的信道繁忙率为所述部分或者全部资源池的测量结果的加权平均值,所述第一资源池的测量结果对应的加权系数与所述第一资源池的子信道总数正相关,或者与所述第一资源池的资源块总数正相关,或者,所述第一载波的信道繁忙率为所述部分或者全部资源池的测量结果的平均值。
  26. 一种通信方法,其特征在于,由第一终端设备或用于第一终端设备的芯片执行,所述方法包括:
    接收来自网络设备的参数信息,所述参数信息指示以下信息中的至少一项:测量阈值、测量接收测量值的时间、全部子信道的频域位置、所述全部子信道中每个子信道包括的资源块的数量,其中,所述测量阈值用于确定第一载波的信道繁忙率,所述第一载波的信道繁忙率为繁忙子信道的数量占全部子信道的数量的比值,所述全部子信道为所述第一载波中配置用于确定所述第一载波的信道繁忙率的子信道,或者所述全部子信道为所述第一载波配置用于侧行链路数据传输的候选资源池所包括的子信道,所述繁忙子信道为所述全部子信道中接收测量值大于或等于所述测量阈值的子信道,所述接收测量值为以下值中的至少一项:接收信号强度指示、参考信号接收功率或者参考信号接收质量;
    基于所述参数信息确定第一载波的信道繁忙率。
  27. 一种通信装置,其特征在于,包括用于执行权利要求1至9中任一项所述方法的单元,或者包括用于执行权利要求10至12中任一项所述方法的单元,或者包括用于执行权利要求13至17中任一项所述方法的单元,或者包括用于执行权利要求18至19中任一项所述方法的单元,或者包括用于执行权利要求20至25中任一项所述方法的单元,或者包括用于执行权利要求26所述方法的单元。
  28. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收计算机代码或指令,并传输至所述处理器,所述处理器运行所述计算机代码或指令,如权利要求1至9中任一项所述的方法被执行,或者如权利要求10至12中任一项所述的方法被执行,或者如权利要求13至17中任一项所述的方法被执行,或者如权利要求18至19中任一项所述的方法被执行,或者如权利要求20至25中任一项所述的方法被执行,或者如权利要求26所述的方法被执行。
  29. 一种通信装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,如权利要求1至9中任一项所述的方法被执行,或者如权利要求10至12中任一项所述的方法被执行,或者如权利要求13至17中任一项所述的方法被执行,或者如权利要求18至19中任一项所述的方法被执行,或者如权利要求20至25中任一项所述的方法被执行,或者如权利要求26所述的方法被执行。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算机上运行时,如权利要求1至9中任一项所述的方法被执行,或者如权利要求10至12中任一项所述的方法被执行,或者如权利要求13至17中任一项所述的方法被执行,或者如权利要求18至19中任一项所述的方法被执行,或者如权利要求20至25中任一项所述的方法被执行,或者如权利要求26所述的方法被执行。
  31. 一种计算机程序产品,其特征在于,包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机实现如权利要求1至9中任一项所述的方法,或者使得所述计算机实现如权利要求10至12中任一项所述的方法,或者使得所述计算机实现如权利要求13至17中任一项所述的方法,或者使得所述计算机实现如权利要求18至19中任一项所述的方法,或者使得所述计算机实现如权利要求20至25中任一项所述的方法,或者使得所述计算机实现如权利要求26所述的方法。
  32. 一种芯片,其特征在于,包括一个或多个处理电路,其中,所述一个或多个处理电路用于实现如权利要求1至9中任一项所述的方法,或者实现如权利要求10至12中任一项所述的方法,或者实现如权利要求13至17中任一项所述的方法,或者实现如权利要求18至19中任一项所述的方法,或者实现如权利要求20至25中任一项所述的方法,或者实现如权利要求26所述的方法。
  33. 一种通信系统,其特征在于,包括执行如权利要求1至9或权利要求10至12或权利要求20至25或权利要求26中任一项方法的装置,以及,执行如权利要求13至17或权利要求18至19中任一项方法的装置。
PCT/CN2023/096308 2022-05-26 2023-05-25 通信方法,装置和可读存储介质 WO2023227065A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210582445.XA CN117202360A (zh) 2022-05-26 2022-05-26 通信方法,装置和可读存储介质
CN202210582445.X 2022-05-26

Publications (1)

Publication Number Publication Date
WO2023227065A1 true WO2023227065A1 (zh) 2023-11-30

Family

ID=88918579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096308 WO2023227065A1 (zh) 2022-05-26 2023-05-25 通信方法,装置和可读存储介质

Country Status (2)

Country Link
CN (1) CN117202360A (zh)
WO (1) WO2023227065A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165524A (zh) * 2014-01-29 2016-11-23 交互数字专利控股公司 用于设备到设备发现或通信的资源选择
US20200314803A1 (en) * 2016-08-10 2020-10-01 Samsung Electronics Co., Ltd Method and apparatus for selecting resources in v2x communications
CN111742598A (zh) * 2018-05-07 2020-10-02 Oppo广东移动通信有限公司 通信方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165524A (zh) * 2014-01-29 2016-11-23 交互数字专利控股公司 用于设备到设备发现或通信的资源选择
US20200314803A1 (en) * 2016-08-10 2020-10-01 Samsung Electronics Co., Ltd Method and apparatus for selecting resources in v2x communications
CN111742598A (zh) * 2018-05-07 2020-10-02 Oppo广东移动通信有限公司 通信方法和设备
CN112188633A (zh) * 2018-05-07 2021-01-05 Oppo广东移动通信有限公司 通信方法和设备

Also Published As

Publication number Publication date
CN117202360A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
CN108632825B (zh) 通信方法、基站、无线通信节点和用户设备
US11399361B2 (en) V2X sidelink communication
WO2020063334A1 (zh) 一种控制信道波束指示方法及设备
US11082965B2 (en) Resource allocation method and relevant device
CN111201818A (zh) 侧行链路通信中载波聚合的方法和装置
CN112087291B (zh) 更新传输配置指示tci信息的方法与通信装置
US11582736B2 (en) Communication method and apparatus and communication system
WO2022001241A1 (zh) 一种波束管理方法及装置
CN110050415B (zh) 用于上行链路传送的方法和设备
CN112543443A (zh) 通信方法和通信装置
CN113596782B (zh) 一种数据传输方法及通信装置
CN111512685A (zh) 信道状态信息测量方法、装置及计算机存储介质
EP3211959B1 (en) Method, apparatus, and computer program product for establishing a mix of d2d direct and cellular communication links between two devices for interaction
WO2021031048A1 (zh) 一种通信方法及装置
WO2021134682A1 (zh) 一种定向测量方法及设备
CN112351451B (zh) 波束失败恢复方法及装置
WO2023227065A1 (zh) 通信方法,装置和可读存储介质
EP4184968A1 (en) Random access resource selection method and related device
WO2020221261A1 (zh) 一种通信方法及装置
US20220369290A1 (en) Communication apparatuses and communication methods for utilisation of sl-rsrp in v2x resource sensing and selection
WO2021167527A1 (en) Communication apparatuses and communication methods for utilization of reserved resource
WO2023160254A1 (zh) 一种通信方法和装置
WO2023151391A1 (zh) 波束训练方法及通信装置
WO2023024967A1 (zh) 资源配置方法及装置
WO2022030075A1 (ja) 端末、基地局、及び、通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811135

Country of ref document: EP

Kind code of ref document: A1