WO2023226929A1 - 冷凝水分离装置及半导体工艺设备 - Google Patents

冷凝水分离装置及半导体工艺设备 Download PDF

Info

Publication number
WO2023226929A1
WO2023226929A1 PCT/CN2023/095512 CN2023095512W WO2023226929A1 WO 2023226929 A1 WO2023226929 A1 WO 2023226929A1 CN 2023095512 W CN2023095512 W CN 2023095512W WO 2023226929 A1 WO2023226929 A1 WO 2023226929A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
gas
separation device
condensed water
water separation
Prior art date
Application number
PCT/CN2023/095512
Other languages
English (en)
French (fr)
Inventor
光耀华
石磊
王立卡
Original Assignee
北京北方华创微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京北方华创微电子装备有限公司 filed Critical 北京北方华创微电子装备有限公司
Publication of WO2023226929A1 publication Critical patent/WO2023226929A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/06Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by reversal of direction of flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention belongs to the technical field of semiconductor process equipment, and more specifically, relates to a condensed water separation device and semiconductor process equipment.
  • the diffusion furnace is one of the important process equipment in the front process of the integrated circuit production line. Its main purpose is to dope semiconductors. Although some processes can use ion implantation for doping, thermal diffusion is still the most important and common doping method.
  • Thermal oxidation of silicon causes the surface of the silicon wafer to react with an oxidant at high temperature to grow a silicon dioxide film.
  • oxidation methods dry oxygen oxidation and wet oxygen oxidation. Oxide film thickness, uniformity and particle content are key indicators for evaluating vertical furnace equipment. These indicators are affected by many factors, one of which is the stability of the chamber pressure.
  • Diffusion furnaces generally contain five basic components: control system, process furnace tube, gas delivery system, gas exhaust system and loading system.
  • the gas exhaust system is connected to the factory system including the factory exhaust unit and the factory drainage unit. It is used to discharge by-products and unused raw material gases in the process, and is also used to control the pressure in the chamber within a certain range. fluctuation.
  • the pressure control valve group in the gas discharge system is a key component to achieve stable chamber pressure control. There are many factors that affect the pressure control stability, among which the process exhaust gas temperature, condensate water content and impurity content are the main influencing factors.
  • the pressure control valve group is easily affected by the condensate flowing back from the factory exhaust unit, causing the pressure control valve group to have unstable pressure control effect and even the valve body is damaged.
  • the object of the present invention is to provide a condensed water separation device in view of the deficiencies existing in the prior art.
  • the condensed water separation device is installed at the outlet end of the pressure control valve group of the gas discharge system, which can prevent the reverse flow of condensed water from entering the pressure control valve group.
  • the present invention provides a condensed water separation device, which is used in a gas exhaust system of semiconductor process equipment.
  • the gas exhaust system includes an exhaust pipeline, and a control device is provided on the exhaust pipeline.
  • Pressure valve group, the condensed water separation device includes:
  • the device body is provided with a zigzag-shaped gas channel inside the device body.
  • the gas channel includes a plurality of channels connected in sequence along the gas flow direction.
  • the air inlet end of the most upstream channel is used as an air inlet for communicating with the device body.
  • the outlet end of the pressure control valve group is connected; the outlet end of the most downstream channel is used as an air outlet and is higher than the air inlet end of the channel; the outlet end of at least one of the remaining channels is lower than the air inlet end;
  • a one-way drainage structure is connected to the connection between the channel with the air outlet end lower than the air inlet end and the downstream channel, and is used to drain the condensed water flowing through.
  • the plurality of channels include a first channel, a second channel and a third channel, wherein the lower end of the first channel is open and forms the air inlet, and the upper end of the first channel passes downwards
  • the inclined third channel is connected to the air inlet end of the second channel, and the upper end of the second channel is open and forms the air outlet; the air inlet end of the second channel is lower than its upper end;
  • One end of the one-way drain structure is connected to the lower end of the second channel, and the other end of the one-way drain structure forms a drain port.
  • the second channel includes a first sub-channel and an inclined second sub-channel, the axis of the first sub-channel is parallel to the axis of the first channel, the first sub-channel has the third The air inlet end of the second channel is connected to the upper end of the first channel through the third channel, and the lower end of the first sub-channel is connected to one end of the one-way drainage structure; the first sub-channel The channel also has an air outlet end connected to the lower end of the second sub-channel, and the air outlet end is higher than the air inlet end of the second channel;
  • the upper end of the second sub-channel forms the air outlet on the device body, and the air outlet is coaxially arranged with the air inlet.
  • the one-way drainage structure includes:
  • valve body a valve chamber is provided inside the valve body, the valve chamber includes a first straight cylinder section, a tapered section and a second straight cylinder section connected in sequence, one end of the second straight cylinder section away from the tapered section
  • a liquid inlet is formed on the valve body, and the liquid inlet is connected to the connection of each channel with the air outlet end lower than the air inlet end and the downstream channel;
  • a partition plate is provided in the first straight cylinder section.
  • the partition plate is provided with a plurality of through holes connecting both sides of the partition plate.
  • a sphere is provided on one side of the partition plate close to the tapered section.
  • the sphere is in sliding fit with the first straight section, and an elastic component is provided between the sphere and the partition.
  • the elastic force of the elastic component can exert an elastic force on the sphere in the direction of the tapered section,
  • the ball is brought into contact with the inner wall of the tapered section and blocks the valve cavity.
  • the first straight cylindrical section is formed on the valve body on the side of the partition away from the tapered section. The drain port.
  • the one-way drainage structure also includes:
  • a first connecting pipe, the liquid inlet is connected to the connection of each channel with the air outlet end lower than the air inlet end and the downstream channel through the first connecting pipe; the valve body and the first connecting pipe are detachable connect;
  • a fourth connecting pipe is detachably connected to the valve body and communicates with the drain port.
  • the air inlet is connected to a second connecting pipe, and a heating component is provided on the outer periphery of the second connecting pipe.
  • the heating component includes a heating wire spirally wound around the outer periphery of the second connecting tube.
  • the air outlet is connected to a third connecting pipe, and a refrigeration component is provided on the outer periphery of the third connecting pipe.
  • the refrigeration component includes a cooling jacket, a cooling cavity is provided inside the cooling jacket, and a water inlet pipe and a water outlet pipe connected to the cooling cavity are provided outside the cooling jacket.
  • a temperature sensor is provided in the second channel.
  • the present invention also provides a semiconductor process equipment.
  • the semiconductor process equipment includes a reaction chamber and a gas exhaust system.
  • the gas exhaust system includes:
  • a pressure control valve group is provided on the exhaust pipeline
  • the air inlet of the condensed water separation device and the outlet end of the pressure control valve group are detachably connected.
  • Tail gas condensation device gas-liquid separation device and condensate water discharge device
  • the gas-liquid separation device is connected to the reaction chamber through a first pipeline.
  • a tail gas condensation device is provided on the first pipeline.
  • the liquid outlet and gas outlet of the gas-liquid separation device pass through a second pipeline respectively. and a third pipeline connected to the condensate discharge device and the pressure control valve group;
  • the air outlet of the condensed water separation device is used to connect to the exhaust unit of the plant service system
  • the liquid drain port is used to connect to the drainage unit of the plant service system
  • the condensed water discharge device passes through a fourth
  • the pipeline is connected to the drainage unit.
  • the invention provides a condensed water separation device, the beneficial effects of which are:
  • the condensed water separation device is installed at the outlet end of the pressure control valve group of the gas discharge system of the semiconductor process equipment.
  • a zigzag-shaped gas channel is provided inside the device body.
  • the gas channel includes multiple gas channels connected in sequence along the gas flow direction. There are two channels, the air inlet end of the most upstream channel is used as the air inlet, used to connect with the outlet end of the pressure control valve group; the air outlet end of the most downstream channel is used as the air outlet, and is higher than the air inlet end of the channel; The air outlet end of at least one of the remaining channels is lower than the air inlet end.
  • the gas enters from the air inlet and is discharged from the air outlet after passing through the zigzag gas channel.
  • outlet end of at least one channel By making the outlet end of at least one channel lower than the air inlet end, it is possible to make it difficult for the reversed condensed water to flow into the upstream channel after entering the channel. , and can be discharged through the one-way drainage structure, which can prevent the backflow of condensed water from entering the pressure control valve group;
  • the condensate separation device is connected to the exhaust unit of the plant system and the drainage unit of the plant system through the second connecting pipe and the third connecting pipe respectively, and the outer peripheries of the second connecting pipe and the third connecting pipe are respectively provided with heating devices.
  • components and refrigeration components can heat the gas entering the first channel from
  • the refrigeration component promotes the condensation effect at the third connecting pipe in the upper part of the second channel, and causes the condensed water there to flow into the lower end of the second channel and then pass through the one-way discharge.
  • the liquid structure is discharged to further prevent the condensed water from flowing back into the control valve group;
  • the gas discharge system of the semiconductor process equipment is provided with the above-mentioned condensation water separation device between the outlet end of the pressure control valve group and the exhaust unit of the plant service system.
  • the tail gas condensation device and the refrigeration component in the above-mentioned condensation water separation device form two parts.
  • the effect of secondary condensation effectively separates the gas and liquid in the exhaust gas, and discharges the condensed water in the third connecting pipe above the second channel and in the exhaust unit through the second channel and the one-way drainage structure, making it difficult to enter It is difficult for the first channel to flow back into the pressure control valve group.
  • Figure 1 shows a schematic structural diagram of a zigzag gas channel according to an embodiment of the present invention.
  • Figure 2 shows a schematic structural diagram of a condensed water separation device according to an embodiment of the present invention.
  • Figure 3 shows a schematic structural diagram of a one-way drainage structure of a condensed water separation device according to an embodiment of the present invention.
  • FIG. 4 shows a schematic structural diagram of the cross-sectional view along the A direction of FIG. 3 .
  • Figure 5 shows a schematic structural diagram of a gas exhaust system according to an embodiment of the present invention.
  • Fourth Connecting pipe 25. Temperature sensor; 26. Water inlet pipe; 27. Water outlet pipe; 28. Exhaust gas condensation device; 29. Gas-liquid separation device; 30. Condensate water discharge device; 31. First pipeline; 32. Second pipe 33. Third pipeline; 34. Reaction chamber; 35. Fourth pipeline.
  • the invention provides a condensate water separation device, which is used in a gas discharge system of semiconductor process equipment.
  • the gas discharge system includes an exhaust pipeline, and a pressure control valve group is provided on the exhaust pipeline.
  • the condensate water separation device includes:
  • the device body 1 is provided with a zigzag-shaped gas channel inside the device body 1.
  • the gas channel includes a plurality of channels connected in sequence along the gas flow direction.
  • the gas channel shown in Figure 1 includes four channels, along the gas flow direction.
  • the flow direction is sequentially the upstream channel 1a, the first intermediate channel 1b, the second intermediate channel 1c and the downstream channel 1d.
  • the air inlet end A1 of the upstream channel 1a is used as an air inlet for control.
  • the outlet end of the pressure valve group is connected; the air outlet A4 of the most downstream channel 1d is used as an air outlet and is higher than the air inlet end A3 of the channel; the air outlet end of each of the remaining two channels is lower than the air inlet end, that is, the air outlet end A2 of the first intermediate channel 1b is lower than its air inlet end; the air outlet end A3 of the second intermediate channel 1c is lower than its air inlet end.
  • One-way drainage structure 7 the connection between the one-way drainage structure 7 and the channel with the air outlet end lower than the air inlet end (for example, the air outlet end A3 of the second intermediate channel 1c) and the downstream channel (ie, the most downstream channel 1d) Connection to drain the condensate flowing through.
  • the gas flow direction is shown by the solid arrow in Figure 1, and the condensed water flow direction is shown by the dotted arrow in Figure 1.
  • the gas enters from the air inlet (i.e., the air inlet end A1 of the most upstream channel 1a), passes through the zigzag gas channel, and is discharged from the air outlet (i.e., the air outlet end A4 of the most downstream channel 1d).
  • the air outlet end of the channel (that is, the first intermediate channel 1b and the second intermediate channel 1c) is lower than the air inlet end, which makes it difficult for the backflow condensed water to flow into the upstream channel again after entering the channel, and can be discharged through one-way The liquid structure 7 is discharged, which can prevent the backflow of condensed water from entering the pressure control valve group.
  • first intermediate channel 1b and the second intermediate channel 1c are connected between the upstream channel 1a and the downstream channel 1d.
  • the embodiment of the present invention It is not limited to this. In practical applications, one channel, or more than three channels can also be connected.
  • the air outlet ends of the first intermediate channel 1b and the second intermediate channel 1c are both lower than the air inlet end.
  • the embodiment of the present invention is not limited to this. In practical applications, there may be only one intermediate channel. The outlet end of the channel is lower than the inlet end.
  • the one-way drainage structure 7 is connected to the connection between the air outlet end A3 of the second intermediate channel 1c and the downstream channel (ie, the most downstream channel 1d), but the embodiment of the present invention is not limited thereto. , in practical applications, the one-way drainage structure 7 can also be connected to the connection between the air outlet end A2 of the first intermediate channel 1b and the downstream channel (ie, the second intermediate channel 1c), or the one-way drainage structure 7 There are two, and they are respectively connected to the connection between the air outlet end A3 of the second intermediate channel 1c and the downstream channel, and the connection between the air outlet end A2 of the first intermediate channel 1b and the downstream channel.
  • each channel 1a and the most downstream channel 1d are both straight channels arranged vertically, and the first intermediate channel 1b and the second intermediate channel 1c are both arc-shaped channels.
  • each channel can be set to any shape according to specific needs.
  • the plurality of channels include a first channel 2, a second channel 3 and a third channel 4.
  • the lower end of the first channel 2 is open and forms the above-mentioned air inlet.
  • the air port is used to connect with the outlet end of the pressure control valve group 5.
  • the upper end of the first channel 2 is connected to the air inlet end of the second channel 3 through the downwardly inclined third channel 4.
  • the upper end of the second channel 3 is open and formed The above-mentioned air outlet; the air inlet end of the second channel 3 is lower than its upper end.
  • One end of the one-way drain structure 7 is connected to the lower end of the second channel 3, and the other end of the one-way drain structure 7 forms a drain port.
  • the condensed water separation device is arranged downstream of the pressure control valve group 5 of the gas discharge system of the semiconductor equipment.
  • the first channel 2 and the second channel 3 are independent of each other and connected by an inclined third channel 4 to form a zigzag-shaped gas. channel, the gas enters from the air inlet and is discharged from the air outlet after passing through the zigzag gas channel. After the backflow condensed water enters the second channel 3, it is difficult to flow into the first channel 2 again, and it can pass through the one-way drainage structure 7 Drainage can prevent the backflow of condensed water from entering the pressure control valve group 5.
  • the factory system includes an exhaust unit 6 and a drainage unit 9.
  • the air outlet is connected to the exhaust unit 6, and the liquid outlet is connected to the drainage unit 9.
  • the first channel 2 and the second channel 3 are independent of each other and are connected by an inclined third channel.
  • the three channels 4 are connected to form a zigzag gas channel. The gas enters from the air inlet and is discharged from the gas outlet into the exhaust unit 6 after passing through the zigzag gas channel.
  • the condensed water in the exhaust unit 6 enters the second channel 3 and is difficult to Then flows into the first channel 2 and can be discharged to the drainage unit 9 through the one-way drainage structure 7, which can prevent the condensed water flowing back in the exhaust unit 6 from entering the pressure control valve group 5; in this way, the drainage is effectively blocked Condensate water in the unit 9 and corrosive by-products of the reaction chamber 34 adversely affect the control valve block.
  • both the first channel 2 and the second channel 3 are arranged vertically and parallel, the upper end of the third channel 4 is connected to the upper end of the first channel 2, and the lower end of the third channel 4 is connected to the lower end of the third channel 4 close to the lower end of the second channel 3.
  • the side walls of the second channel 3 are connected; in this way, a storage space capable of storing a certain amount of liquid is formed in the lower part of the second channel 3, which facilitates regular or quantitative discharge of the liquid in the storage space.
  • the air inlet is connected to a second connecting pipe 10, and the outer periphery of the second connecting pipe 10 is provided with a Hot parts11.
  • the second connecting pipe 10 can be threadedly connected to the pipeline between the air inlet and the outlet end of the pressure control valve group 5 to form a detachable connection, which is convenient for repair, maintenance and replacement; the second connecting pipe 10 and the second connecting pipe 10 can be connected through the heating component 11.
  • the heating effect of the internal gas increases the gas temperature to 100°C, thereby preventing the condensed water in this section of the pipeline from flowing back into the control valve group.
  • a third connecting pipe 12 is connected to the air outlet, and a refrigeration component 13 is provided on the outer periphery of the third connecting pipe 12 .
  • the third connecting pipe 12 can be threadedly connected to the pipeline between the air outlet and the inlet end of the exhaust unit 6 to form a detachable connection to facilitate repair, maintenance and replacement; the third connecting pipe 12 and its interior are connected through the refrigeration component 13
  • the cooling effect of the gas promotes the condensation of water vapor in the third connecting pipe 12, and then flows back into the second channel 3, and can be discharged through the one-way drainage structure 7, thereby avoiding leakage in the third connecting pipe 12 and the exhaust unit 6.
  • the condensed liquid flows back into the control valve block.
  • the second channel 3 includes a first sub-channel 14 and an inclined second sub-channel 15.
  • the first sub-channel 14 is provided on one side of the first channel 2, and the axis of the first sub-channel 14 is aligned with the first channel 2.
  • the axes of the first sub-channel 14 are parallel, the first sub-channel 14 has an air inlet end of the second channel 3, and is connected to the upper end of the first channel 2 through the third channel 4, and the lower end of the first sub-channel 14 is connected to the one-way drainage structure 7 One end is connected; the first sub-channel 14 also has an air outlet end connected to the lower end of the second sub-channel 15, which is higher than the air inlet end of the second channel 3; the upper end of the second sub-channel 15 is formed on the device body 1 The air outlet is coaxially arranged with the air inlet.
  • the inclined second sub-channel 15 is arranged so that the position of the air outlet corresponds to the position of the air inlet, and the air outlet and the air inlet are coaxially arranged.
  • the detachable connection facilitates the installation of the condensate separation device on the existing straight pipeline between the pressure control valve group 5 and the exhaust unit 6, and facilitates improvements to the existing gas exhaust system.
  • the one-way drainage structure 7 includes:
  • the valve body 16 has a valve cavity inside the valve body 16.
  • the valve cavity includes a first straight cylinder section 17, which are connected in sequence.
  • An end of the second straight section 19 away from the tapered section 18 is formed with a liquid inlet on the valve body 16.
  • the liquid inlet is connected to a channel with each air outlet end lower than the air inlet end. (for example, the third channel 4) is connected to the junction of the downstream channel (for example, the second channel 3);
  • the partition 20 is arranged in the first straight cylinder section 17.
  • the partition 20 is provided with a plurality of through holes 21 connecting both sides of the partition 20.
  • the partition 20 is provided with a sphere 22 on one side close to the tapered section 18. 22 is in sliding fit with the first straight cylinder section 17.
  • An elastic component 23 is provided between the sphere 22 and the partition 20. The elastic force of the elastic component 23 can exert an elastic force on the sphere 22 in the direction of the tapered section 18, so that the sphere 22 and the tapered section
  • the inner wall of the valve body 18 contacts and blocks the valve cavity.
  • the first straight cylindrical section 17 forms a drain port on the valve body 16 on the side of the partition plate 20 away from the tapered section 18 .
  • the one-way drainage structure 7 also includes:
  • the first connecting pipe 8 the liquid inlet is connected to the connection between each channel whose air outlet end is lower than the air inlet end (for example, the third channel 4) and the downstream channel (that is, the second channel 3); valve
  • the body 16 is detachably connected to the first connecting pipe 8;
  • the fourth connecting pipe 24 is detachably connected to the valve body 16 and communicates with the drain port.
  • the first connecting pipe 8 connects the one-way drainage structure 7 to the lower end of the second channel 3 through a threaded connection for draining the condensed water in the second channel 3; the middle part of the partition 20 is connected to the spring to provide the spring with Support, the spring is connected to the ball 22, and the spring is in a pre-compressed state between the ball 22 and the partition 20.
  • the elastic force of the spring can exert an elastic force on the ball 22 in the direction of the tapered section 18, so that the ball 22 and the inner wall of the tapered section 18 Contact and seal the valve cavity, so that the ball 22 is attached to the tapered side wall of the tapered section 18 of the one-way drainage structure 7 through the pre-tightening force of the spring.
  • the device is turned on, affecting the pressure of
  • a temperature sensor 25 is provided in the second channel 3 .
  • the temperature detector is connected to the side wall of the second channel 3 through threads.
  • the probe extends into the inside of the second channel 3 and can detect the temperature of the air flow inside the second channel 3. If the temperature is too low, the control system can adjust the heating.
  • the power of component 11 increases the temperature of the air flow in the second connecting pipe 10 and prevents the backflow of condensed water in the second connecting pipe 10 and controls the valve group; the first connecting pipe 8 connects the second channel 3 and the one-way The drain structure 7 is connected, and the condensed water that flows back from the exhaust unit 6 and the third connecting pipe 12 is stored in the lower part of the second channel 3.
  • the physical principle that the condensed water is denser than the gas is used to separate water and gas, and The water is stored in the second channel 3 and will not flow back into the first channel 2, thereby also preventing the condensed water and by-products in the drainage unit 9 from flowing back into the control valve group.
  • the heating component 11 includes a heating wire spirally wound around the outer circumference of the second connecting tube 10 .
  • the heating wire is used to energize and heat the second connecting pipe 10 and the gas inside it.
  • the heating wire is spirally wound around the outer periphery of the second connecting pipe 10. The structure is simple, the cost is low, and the heating wire is easily heated by the temperature sensor 25. Power is controlled.
  • the refrigeration component 13 includes a cooling jacket, a cooling cavity is provided inside the cooling jacket, and a water inlet pipe 26 and a water outlet pipe 27 connected to the cooling cavity are provided outside the cooling jacket.
  • the water inlet pipe 26 and the water outlet pipe 27 are used for cooling water to enter and discharge from the cooling cavity respectively.
  • the cooling water is used to cool the third connecting pipe 12 and the gas inside it to promote the condensation effect and try to make the third connecting pipe 12
  • the water vapor is condensed here and flows back into the second channel 3 and then is discharged through the one-way drainage structure 7 to prevent water vapor from entering the exhaust unit 6.
  • the present invention also provides a semiconductor process equipment.
  • the semiconductor process equipment includes a reaction chamber 34 and a gas exhaust system.
  • the gas exhaust system includes:
  • the exhaust pipeline is connected to the reaction chamber 34;
  • the pressure control valve group 5 is set on the exhaust pipeline
  • the air inlet of the condensation water separation device and the outlet end of the pressure control valve group 5 are detachably connected.
  • the condensed water separation device is arranged between the pressure control valve group 5 of the gas discharge system and the exhaust unit 6 of the plant service system.
  • the first channel 2 and the second channel 3 are independent of each other and are connected by an inclined third channel 4
  • the connection forms a zigzag-shaped gas channel.
  • the gas enters from the air inlet and is discharged from the gas outlet into the exhaust unit 6 after passing through the zigzag-shaped gas channel.
  • a channel 2 and can be discharged to the drainage unit 9 through the one-way drainage structure 7, it can prevent the condensed water that flows back in the exhaust unit 6 from entering the pressure control valve group 5.
  • the semiconductor processing equipment is a diffusion furnace.
  • the gas discharge system is the gas discharge system of the diffusion furnace.
  • the gas-liquid separation device 29 is connected to the reaction chamber 34 through a first pipeline 31.
  • a tail gas condensation device 28 is provided on the first pipeline 31.
  • the liquid outlet and gas outlet of the gas-liquid separation device 29 pass through the second pipeline 32 respectively.
  • the third pipeline 33 is connected to the condensate discharge device 30 and the pressure control valve group 5;
  • the air outlet of the condensate separation device is used to connect to the exhaust unit 6 of the plant service system
  • the liquid drain port is used to connect to the drainage unit 9 of the plant service system
  • the condensate water discharge device 30 is connected to the drainage unit 9 through the fourth pipeline 35 connect.
  • the unreacted process gas or by-products generated during the process in the reaction chamber 34 are connected to the gas discharge system through the first pipeline 31.
  • One end of the reaction chamber 34 and the first pipeline 31 passes through the method.
  • the other end of the first pipeline 31 is connected to the exhaust gas condensation device 28.
  • the water vapor in the first pipeline 31 can be condensed through the cooling effect of the exhaust gas condensation device 28, and is condensed in the gas-liquid separation device 29.
  • the separation of water and gas is formed, and the separated water and gas are transported to the condensed water discharge device 30 through the second pipeline 32, and then discharged to the drainage through the fourth pipeline 35.
  • the third pipeline 33 is connected to the inlet end of the pressure control valve group 5, and controls the amount of gas discharged from the reaction chamber 34 into the gas discharge system through the pressure control valve group 5, thereby controlling the chamber.
  • Indoor pressure the outlet end of the pressure control valve group 5 is threadedly connected to the air inlet of the above-mentioned condensate water separation device, and the air outlet of the condensation water separation device is threadedly connected to the drainage unit 9 of the plant service system; from the front end of the tail gas condensation device 28
  • the water vapor is condensed again under the action of the cooling component to separate water and gas, and then is discharged to the pipes and pipes of the exhaust unit 6 respectively. in the pipe of the drainage unit 9.
  • the gas exhaust system of the semiconductor process equipment is provided with the above-mentioned condensed water separation device between the outlet end of the pressure control valve group 5 and the exhaust unit 6.
  • the gas in the reaction chamber 34 passes through the tail gas condensation device 28 and then enters the gas-liquid separation device 29. Then the liquid passes through the liquid outlet end of the gas-liquid separation device 29 and enters the second pipeline 32 and the condensed water discharge device 30.
  • the condensed water discharge device 30 The condensed water can be discharged to the drainage unit 9, and the gas enters the third pipeline 33 and the pressure control valve group 5 through the outlet end of the gas-liquid separation device 29, and then passes through the above-mentioned condensed water separation device and then enters the exhaust unit 6; in the above-mentioned condensation In the water separation device, the gas passes through the second connecting pipe 10, the first channel 2, the third channel 4, the second channel 3, the fourth channel and the third connecting pipe 12 in sequence.
  • the second connecting pipe 10 and The internal gas is heated to raise the gas temperature to 100°C, thereby preventing condensed water from flowing back into the control valve group in this section of the pipeline; since the first channel 2 and the second channel 3 are independent of each other and connected by an inclined third
  • the channels 4 are connected to form a zigzag-shaped gas channel.
  • the gas enters from the air inlet. After passing through the zigzag-shaped gas channel, it is discharged from the gas outlet into the exhaust unit 6. The condensed water in the exhaust unit 6 enters the second channel 3 and is difficult to reflow.
  • the gas discharge system adds the above-mentioned condensate water separation device at the rear end of the control valve group. On the one hand, it can separate the process exhaust condensate water at the rear end of the control valve group and prevent the condensate water from flowing back into the control valve group and affecting the pressure control accuracy. On the other hand, It can prevent the condensed water and by-products in the drainage unit 9 from flowing back into the control valve group and avoid corrosion of the pressure control valve group 5. It not only improves the stability of the pressure control of the reaction chamber 34, but also prolongs the pressure control valve group 5. service life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Drying Of Gases (AREA)

Abstract

一种冷凝水分离装置,用于半导体工艺设备的气体排放系统,气体排放系统包括排气管线,排气管线上设置有控压阀组(5),冷凝水分离装置包括:装置本体(1),装置本体(1)的内部设置有折线形的气体通道,气体通道包括沿气体流动方向依次连通的多个通道,最上游的通道(1a)的进气端(A1)用作进气口,用于与控压阀组(5)的出口端连接;最下游的通道(1d)的出气端(A4)用作出气口,且高于该通道的进气端;其余的通道中有至少一者的出气端低于进气端;单向排液结构(7),单向排液结构(7)与出气端低于进气端的通道和下游的通道的连接处连接,用于排出流经的冷凝水。一种半导体工艺设备,包括反应腔室(34)和气体排放系统,气体排放系统包括:排气管线,与反应腔室(34)连接;控压阀组(5),设置在排气管线上;冷凝水分离装置,冷凝水分离装置的进气口与控压阀组(5)的出口端连接。

Description

冷凝水分离装置及半导体工艺设备 技术领域
本发明属于半导体工艺设备技术领域,更具体地,涉及一种冷凝水分离装置及半导体工艺设备。
背景技术
在半导体工艺设备中,比如:扩散炉,扩散炉是集成电路生产线前工序的重要工艺设备之一,它的主要用途是对半导体进行掺杂。虽然某些工艺可以使用离子注入的方法进行掺杂,但是热扩散仍是最主要、最普遍的掺杂方法。硅的热氧化作用是使硅片表面在高温下与氧化剂发生反应,生长一层二氧化硅膜,氧化方法有干氧氧化和湿氧氧化两种。氧化膜厚度、均匀性以及颗粒含量是评价立式炉设备的关键指标,这些指标的影响因素很多,其中一个重要因素是腔室压力的稳定性。
扩散炉一般包含五个基本组件:控制系统、工艺炉管、气体输送系统、气体排放系统和装载系统。气体排放系统与包含厂务排气单元和厂务排水单元的厂务系统连接,用于排放工艺中的副产物和没有用到的原材料气体,同时还用于控制腔室内的压力在一定范围内波动。气体排放系统中的控压阀组是实现腔室控压稳定的关键部件,影响控压稳定性的因素有很多,其中工艺废气温度、冷凝水含量以及杂质含量是主要影响因素。
现有的半导体工艺设备的气体排放系统中,控压阀组容易受厂务排气单元中反流的冷凝水影响,造成控压阀组控压效果不稳定,甚至阀体损坏。
发明内容
本发明的目的是针对现有技术中存在的不足,提供一种冷凝水分离装置 及半导体工艺设备,该冷凝水分离装置设置在气体排放系统的控压阀组的出口端,能够防止反流的冷凝水进入控压阀组。
为了实现上述目的,本发明提供一种冷凝水分离装置,所述冷凝水分离装置用于半导体工艺设备的气体排放系统,所述气体排放系统包括排气管线,所述排气管线上设置有控压阀组,所述冷凝水分离装置包括:
装置本体,所述装置本体的内部设置有折线形的气体通道,所述气体通道包括沿气体流动方向依次连通的多个通道,最上游的通道的进气端用作进气口,用于与所述控压阀组的出口端连接;最下游的通道的出气端用作出气口,且高于该通道的进气端;其余的通道中有至少一者的出气端低于进气端;
单向排液结构,所述单向排液结构与出气端低于进气端的所述通道和下游的通道的连接处连接,用于排出流经的冷凝水。
可选地,多个所述通道包括第一通道、第二通道和第三通道,其中,所述第一通道的下端开放并形成所述进气口,所述第一通道的上端通过向下倾斜的所述第三通道与所述第二通道的进气端连接,所述第二通道的上端开放并形成所述出气口;所述第二通道的进气端低于其上端;
所述单向排液结构的一端与所述第二通道的下端连接,所述单向排液结构的另一端形成排液口。
可选地,所述第二通道包括第一子通道和倾斜的第二子通道,所述第一子通道的轴线与所述第一通道的轴线平行,所述第一子通道具有所述第二通道的进气端,且通过所述第三通道与所述第一通道的上端连接,并且所述第一子通道的下端与所述单向排液结构的一端连接;所述第一子通道还具有与所述第二子通道的下端连接的出气端,该出气端高于所述第二通道的进气端;
所述第二子通道的上端在所述装置本体上形成所述出气口,所述出气口与所述进气口同轴设置。
可选的,所述单向排液结构包括:
阀体,所述阀体内部设置有阀腔,所述阀腔包括依次连接的第一直筒段、渐缩段和第二直筒段,所述第二直筒段的远离所述渐缩段的一端在所述阀体上形成有进液口,所述进液口与每个出气端低于进气端的通道和下游的通道的连接处连接;
隔板,设置在所述第一直筒段内,所述隔板上开设有多个连通所述隔板两侧的通孔,所述隔板靠近所述渐缩段的一侧设置有球体,所述球体与所述第一直筒段滑动配合,所述球体与所述隔板之间设置有弹性部件,所述弹性部件的弹力能够对所述球体施加朝向所述渐缩段方向的弹力,使所述球体与所述渐缩段的内壁接触并封堵所述阀腔,所述第一直筒段在所述隔板远离所述渐缩段的一侧在所述阀体上形成有所述排液口。
可选的,所述单向排液结构还包括:
第一连接管,所述进液口通过所述第一连接管与每个出气端低于进气端的通道和下游的通道的连接处连接;所述阀体与所述第一连接管可拆卸连接;
第四连接管,其与所述阀体可拆卸连接,且与所述排液口连通。
可选地,所述进气口连接有第二连接管,所述第二连接管的外周设置有加热部件。
可选的,所述加热部件包括螺旋缠绕在所述第二连接管的外周的加热丝。
可选地,所述出气口连接有第三连接管,所述第三连接管的外周设置有制冷部件。
可选地,所述制冷部件包括冷却套,所述冷却套内部设置有冷却腔,所述冷却套的外侧设置有与所述冷却腔连通的进水管和出水管。
可选地,所述第二通道内设置有温度传感器。
本发明还提供一种半导体工艺设备,所述半导体工艺设备包括反应腔室和气体排放系统,所述气体排放系统包括:
排气管线,与所述反应腔室连接;
控压阀组,设置在所述排气管线上;
上述的冷凝水分离装置,所述冷凝水分离装置的进气口与所述控压阀组的出口端可拆卸连接。
可选地,还包括:
尾气冷凝装置、气液分离装置和冷凝水排放装置;
所述气液分离装置通过第一管路与所述反应腔室连接,所述第一管路上设置有尾气冷凝装置,所述气液分离装置的出液端和出气端分别通过第二管路和第三管路与所述冷凝水排放装置和所述控压阀组连接;
所述冷凝水分离装置的所述出气口用于与厂务系统的排气单元连接,所述排液口用于与所述厂务系统的排水单元连接,所述冷凝水排放装置通过第四管路与所述排水单元连接。
本发明提供一种冷凝水分离装置,其有益效果在于:
1、该冷凝水分离装置设置在半导体工艺设备的气体排放系统的控压阀组的出口端,其装置本体的内部设置有折线形的气体通道,该气体通道包括沿气体流动方向依次连通的多个通道,最上游的通道的进气端用作进气口,用于与控压阀组的出口端连接;最下游的通道的出气端用作出气口,且高于该通道的进气端;其余的通道中有至少一者的出气端低于进气端。气体从进气口进入,经过折线形的气体通道后从出气口排出,通过使至少一个通道的出气端低于进气端,可以使反流的冷凝水进入该通道后难以再流入上游的通道中,并且能够通过单向排液结构排出,能够防止反流的冷凝水进入控压阀组;
2、该冷凝水分离装置分别通过第二连接管和第三连接管与厂务系统的排气单元和厂务系统的排水单元连接,并且第二连接管和第三连接管外周分别设置有加热部件和制冷部件,加热部件能够对进入第一通道的气体加热从 而避免第一通道内有冷凝水反流至控制阀组,制冷部件促进第二通道上部的第三连接管处的冷凝效果,并使得该处的冷凝水流入第二通道下端进而通过单向排液结构排出,进一步避免冷凝水反流进入控制阀组;
3、该半导体工艺设备的气体排放系统在控压阀组的出口端与厂务系统的排气单元之间设置上述冷凝水分离装置,尾气冷凝装置与上述冷凝水分离装置中的制冷部件形成两次冷凝的效果,有效分离尾气中的气和液,并将处于第二通道上方的第三连接管内和排气单元中的冷凝水通过第二通道和单向排液结构排出,使其难以进入第一通道进而难以反流至控压阀组内。
本发明的其它特征和优点将在随后具体实施方式部分予以详细说明。
附图说明
通过结合附图对本发明示例性实施方式进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显,其中,在本发明示例性实施方式中,相同的参考标号通常代表相同部件。
图1示出了根据本发明的一个实施例的一种折线形的气体通道的结构示意图。
图2示出了根据本发明的一个实施例的一种冷凝水分离装置的结构示意图。
图3示出了根据本发明的一个实施例的一种冷凝水分离装置的单向排液结构的结构示意图。
图4示出了图3的A向剖视结构示意图。
图5示出了根据本发明的一个实施例的一种气体排放系统的结构示意图。
附图标记说明:
1、装置本体;1a、最上游的通道;1b、第一中间通道;1c、第二中间通道;1d、最下游的通道;A1、进气口;A2、第一中间通道的出气端;A3、 第二中间通道的出气端;A4、出气口;2、第一通道;3、第二通道;4、第三通道;5、控压阀组;6、排气单元;7、单向排液结构;8、第一连接管;9、排水单元;10、第二连接管;11、加热部件;12、第三连接管;13、制冷部件;14、第一子通道;15、第二子通道;16、阀体;17、第一直筒段;18、渐缩段;19、第二直筒段;20、隔板;21、通孔;22、球体;23、弹性部件;24、第四连接管;25、温度传感器;26、进水管;27、出水管;28、尾气冷凝装置;29、气液分离装置;30、冷凝水排放装置;31、第一管路;32、第二管路;33、第三管路;34、反应腔室;35、第四管路。
具体实施方式
下面将更详细地描述本发明的优选实施方式。虽然以下描述了本发明的优选实施方式,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了使本发明更加透彻和完整,并且能够将本发明的范围完整地传达给本领域的技术人员。
实施例
本发明提供一种冷凝水分离装置,该冷凝水分离装置用于半导体工艺设备的气体排放系统,气体排放系统包括排气管线,排气管线上设置有控压阀组,冷凝水分离装置包括:
装置本体1,装置本体1的内部设置有折线形的气体通道,该气体通道包括沿气体流动方向依次连通的多个通道,例如,图1示出的气体通道,其包括四个通道,沿气体流动方向依次为最上游的通道1a、第一中间通道1b、第二中间通道1c和最下游的通道1d,其中,最上游的通道1a的进气端A1用作进气口,用于与控压阀组的出口端连接;最下游的通道1d的出气端A4用作出气口,且高于该通道的进气端A3;其余的两个通道中的每一者的出气端均低于进气端,即,第一中间通道1b的出气端A2低于其进气端;第二中间通道1c的出气端A3低于其进气端。
单向排液结构7,单向排液结构7与出气端低于进气端的通道(例如,第二中间通道1c的出气端A3)和下游的通道(即最下游的通道1d)的连接处连接,用于排出流经的冷凝水。
气体流动方向如图1中的实线箭头所示,冷凝水流动方向如图1中的虚线箭头所示。气体从进气口(即,最上游的通道1a的进气端A1)进入,经过折线形的气体通道后从出气口(即,最下游的通道1d的出气端A4)排出,通过使至少一个通道(即,第一中间通道1b和第二中间通道1c)的出气端低于进气端,可以使反流的冷凝水进入该通道后难以再流入上游的通道中,并且能够通过单向排液结构7排出,能够防止反流的冷凝水进入控压阀组。
需要说明的是,在图1中,最上游的通道1a与最下游的通道1d之间连接有两个通道(即,第一中间通道1b和第二中间通道1c),但是,本发明实施例并不局限于此,在实际应用中,也可以连接有一个通道,或者三个以上的通道。并且,在图1中,第一中间通道1b和第二中间通道1c的出气端均低于进气端,但是,本发明实施例并不局限于此,在实际应用中,也可以只有一个中间通道的出气端低于进气端。此外,在图1中,单向排液结构7与第二中间通道1c的出气端A3和下游的通道(即最下游的通道1d)的连接处连接,但是本发明实施例并不局限于此,在实际应用中,单向排液结构7也可以与第一中间通道1b的出气端A2和下游的通道(即,第二中间通道1c)的连接处连接,或者,单向排液结构7为两个,且分别与第二中间通道1c的出气端A3和下游的通道的连接处,和第一中间通道1b的出气端A2和下游的通道的连接处连接。
还需要说明的是,在图1中,最上游的通道1a与最下游的通道1d均为竖直设置的直通道,第一中间通道1b和第二中间通道1c均为弧形通道,但是,本发明实施例并不局限于此,在实际应用中,各个通道可以根据具体需要设置为任意形状。
作为一个优选的实施例,如图2至图5所示,多个通道包括第一通道2、第二通道3和第三通道4,第一通道2的下端开放并形成上述进气口,进气口用于与控压阀组5的出口端连接,第一通道2的上端通过向下倾斜的第三通道4与第二通道3的进气端连接,第二通道3的上端开放并形成上述出气口;第二通道3的进气端低于其上端。
单向排液结构7,单向排液结构7的一端与第二通道3的下端连接,单向排液结构7的另一端形成排液口。
具体的,该冷凝水分离装置设置在半导体设备的气体排放系统的控压阀组5的下游,第一通道2和第二通道3相互独立并由倾斜的第三通道4连接形成折线形的气体通道,气体从进气口进入,经过折线形的气体通道后从出气口排出,反流的冷凝水进入第二通道3后难以再流入第一通道2中,并且能够通过单向排液结构7排出,能够防止反流的冷凝水进入控压阀组5。
进一步的,厂务系统包括排气单元6和排水单元9,出气口与排气单元6连接,排液口与排水单元9连接;第一通道2和第二通道3相互独立并由倾斜的第三通道4连接形成折线形的气体通道,气体从进气口进入,经过折线形的气体通道后从出气口排入排气单元6,排气单元6中的冷凝水进入第二通道3后难以再流入第一通道2中,并且能够通过单向排液结构7排至排水单元9,能够防止排气单元6中反流的冷凝水进入控压阀组5;这样,就有效阻断了排水单元9中的冷凝水和带有腐蚀性的反应腔室34的副产物对控制阀组的不利影响。
可选地,第一通道2和第二通道3均竖向设置,二者平行,第三通道4的上端与第一通道2的上端连接,第三通道4的下端与靠近第二通道3下端的第二通道3侧壁连接;这样,在第二通道3的下部就行了一个能够存储一定量的液体的存储空间,便于定期或定量排放该存储空间内的液体。
可选地,进气口连接有第二连接管10,第二连接管10的外周设置有加 热部件11。
具体的,第二连接管10可以螺纹连接在进气口和控压阀组5的出口端的管路上,形成可拆卸连接,便于维修、维护和更换;通过加热部件11对第二连接管10及其内部气体的加热作用,将气体温度升高至100℃,从而避免此段管道内有冷凝水反流到控制阀组内。
可选地,出气口连接有第三连接管12,第三连接管12的外周设置有制冷部件13。
具体的,第三连接管12可以螺纹连接在出气口和排气单元6的入口端的管路上,形成可拆卸连接,便于维修、维护和更换;通过制冷部件13对第三连接管12及其内部气体的冷却作用,促进水蒸汽在第三连接管12内冷凝,然后回流到第二通道3内,并可以通过单向排液结构7排出,避免第三连接管12和排气单元6中的冷凝液体反流到控制阀组内。
可选地,第二通道3包括第一子通道14和倾斜的第二子通道15,第一子通道14设置在第一通道2的一侧,第一子通道14的轴线与第一通道2的轴线平行,第一子通道14具有第二通道3的进气端,且通过第三通道4与第一通道2的上端连接,并且第一子通道14的下端与单向排液结构7的一端连接;第一子通道14还具有与第二子通道15的下端连接的出气端,该出气端高于第二通道3的进气端;第二子通道15的上端在装置本体1上形成出气口,该出气口与进气口同轴设置。
具体的,倾斜的第二子通道15的设置使得出气口的位置与进气口的位置相对应,实现出气口与进气口同轴设置,这样通过第二连接管10和第三连接管12的可拆卸连接,便于该冷凝水分离装置在现有的处于控压阀组5与排气单元6之间的直管路上的安装,便于与现有的气体排放系统进行改进。
可选地,单向排液结构7包括:
阀体16,阀体16内部设置有阀腔,阀腔包括依次连接的第一直筒段17、 渐缩段18和第二直筒段19,第二直筒段19的远离渐缩段18的一端在阀体16上形成有进液口,该进液口与每个出气端低于进气端的通道(例如第三通道4)和下游的通道(即第二通道3)的连接处连接;
隔板20,设置在第一直筒段17内,隔板20上开设有多个连通该隔板20两侧的通孔21,隔板20靠近渐缩段18的一侧设置有球体22,球体22与第一直筒段17滑动配合,球体22与隔板20之间设置有弹性部件23,弹性部件23的弹力能够对球体22施加朝向渐缩段18方向的弹力,使球体22与渐缩段18的内壁接触并封堵阀腔,第一直筒段17在隔板20远离渐缩段18的一侧在阀体16上形成有排液口。
进一步可选的,单向排液结构7还包括:
第一连接管8,进液口通过第一连接管8与每个出气端低于进气端的通道(例如第三通道4)和下游的通道(即第二通道3)的连接处连接;阀体16与第一连接管8可拆卸连接;
第四连接管24,其与阀体16可拆卸连接,且与排液口连通。
具体的,第一连接管8通过螺纹连接将单向排液结构7与第二通道3的下端连接,用于排出第二通道3内的冷凝水;隔板20中部与弹簧连接,给弹簧提供支撑,弹簧与球体22连接,弹簧在球体22与隔板20之间处于预压缩状态,弹簧的弹力能够对球体22施加朝向渐缩段18方向的弹力,使球体22与渐缩段18的内壁接触并封堵阀腔,这样通过弹簧的预紧力将球体22与单向排液结构7的渐缩段18的锥面侧壁贴合,在厂务系统中的排水单元9的负压和弹簧作用力共同作用下,实现球体22对阀腔的关断,避免排水单元9的负压从单向排液结构7泄漏;当积存在第二通道3内的冷凝水量较多时,水压克服弹簧力的作用,使球体22与单向排液结构7的渐缩段18的锥面侧壁脱离产生间隙,冷凝水通过此间隙流入第四连接管24内;第四连接管24通过螺纹连接将单向排液结构7与排水单元9的厂务冷凝水管道连接,将冷 凝水排入厂务冷凝水管道中;单向排液结构7的主要作用是排放冷凝水分离装置中的冷凝水至厂务冷凝水管道中,同时防止排水单元9的负压与冷凝水分离装置导通,影响排气单元6的压力。
可选地,第二通道3内设置有温度传感器25。
具体的,温度探测器通过螺纹连接到第二通道3的侧壁上,探头伸入到第二通道3内部,可以探测第二通道3内部气流的温度,如果温度太低,控制系统能够调节加热部件11的功率,提高第二连接管10内气流的温度,防止第二连接管10内产生冷凝水返流会控制阀组内;第一连接管8通过螺纹连接将第二通道3和单向排液结构7连接,排气单元6和第三连接管12反流回的冷凝水,存储在第二通道3的下部,利用冷凝水的密度比气体大的物理原理,将水和气分离,且水被存储在第二通道3内,不会反流至第一通道2内,从而也避免排水单元9内的冷凝水和副产物反流到控制阀组内。
可选地,加热部件11包括螺旋缠绕在第二连接管10的外周的加热丝。
具体的,采用加热丝通电发热对第二连接管10及其内部气体进行加热,加热丝螺旋缠绕在第二连接管10的外周,结构简单,成本低廉,易于通过温度传感器25对加热丝的加热功率进行控制。
可选地,制冷部件13包括冷却套,冷却套内部设置有冷却腔,冷却套的外侧设置有与冷却腔连通的进水管26和出水管27。
具体的,进水管26和出水管27分别用于冷却水进入和排出冷却腔,利用冷却水对第三连接管12及其内部的气体进行冷却,促进冷凝效果,尽量使得第三连接管12内的水蒸汽在此处冷凝并回流至第二通道3内再由单向排液结构7排出,避免水蒸汽进入排气单元6。
如图5所示,本发明还提供一种半导体工艺设备,半导体工艺设备包括反应腔室34和气体排放系统,气体排放系统包括:
排气管线,与反应腔室34连接;
控压阀组5,设置在排气管线上;
上述的冷凝水分离装置,冷凝水分离装置的进气口与控压阀组5的出口端可拆卸连接。
具体的,该冷凝水分离装置设置在气体排放系统的控压阀组5与厂务系统的排气单元6之间,第一通道2和第二通道3相互独立并由倾斜的第三通道4连接形成折线形的气体通道,气体从进气口进入,经过折线形的气体通道后从出气口排入排气单元6,排气单元6中的冷凝水进入第二通道3后难以再流入第一通道2中,并且能够通过单向排液结构7排至排水单元9,能够防止排气单元6中反流的冷凝水进入控压阀组5。
在一个示例中,半导体工艺设备为扩散炉。
具体的,气体排放系统为扩散炉的气体排放系统。
可选地,还包括:
尾气冷凝装置28、气液分离装置29和冷凝水排放装置30;
气液分离装置29通过第一管路31与反应腔室34连接,第一管路31上设置有尾气冷凝装置28,气液分离装置29的出液端和出气端分别通过第二管路32和第三管路33与冷凝水排放装置30和控压阀组5连接;
冷凝水分离装置的出气口用于与厂务系统的排气单元6连接,排液口用于与厂务系统的排水单元9连接,冷凝水排放装置30通过第四管路35与排水单元9连接。
具体的,反应腔室34中未参加反应的工艺气体或者工艺过程中产生的副产物通过第一管路31与该气体排放系统进行连接,反应腔室34与第一管路31的一端通过法兰连接,第一管路31的另一端与尾气冷凝装置28连接,第一管路31中的水蒸汽可以通过尾气冷凝装置28的冷却作用,将水蒸汽中冷凝,并在气液分离装置29中形成水与气的分离,分离后的水和气,通过第二管路32将水输送到冷凝水排放装置30中,再通过第四管路35排放到排水 单元9的厂务冷凝水管道中;第三管路33与控压阀组5的进口端连接,通过控压阀组5控制反应腔室34排放到气体排放系统中气体的量,从而控制腔室内的压力;控压阀组5的出口端与上述冷凝水分离装置的进气口通过螺纹连接,冷凝水分离装置的出气口与厂务系统的排水单元9通过螺纹连接;从前端尾气冷凝装置28分离后的气体流经控压阀组5后进入冷凝水分离装置中后,在冷却部件的作用下再次进行水蒸汽冷凝,进行水、气分离,然后分别排放到排气单元6的管道和排水单元9的管道中。
综上,以半导体工艺设备为扩散炉为例,本发明提供的半导体工艺设备的气体排放系统在控压阀组5的出口端与排气单元6之间设置上述冷凝水分离装置,使用时:反应腔室34内的气体经过尾气冷凝装置28后进入气液分离装置29,之后液体通过气液分离装置29的出液端进入第二管路32和冷凝水排放装置30,冷凝水排放装置30能够将冷凝水排放至排水单元9,气体通过气液分离装置29的出气端进入第三管路33和控压阀组5,再经过上述冷凝水分离装置后进入排气单元6;在上述冷凝水分离装置中,气体依次经过第二连接管10、第一通道2、第三通道4、第二通道3、第四通道、第三连接管12,加热丝通电后对第二连接管10及其内部气体进行加热,将气体温度升高至100℃,从而避免此段管道内有冷凝水反流到控制阀组内;由于第一通道2和第二通道3相互独立并由倾斜的第三通道4连接形成折线形的气体通道,气体从进气口进入,经过折线形的气体通道后从出气口排入排气单元6,排气单元6中的冷凝水进入第二通道3后难以再流入第一通道2中,并且能够通过单向排液结构7排至排水单元9,能够防止排气单元6中反流的冷凝水进入控压阀组5;冷却部件中通入冷却水,能够对第三连接管12内的气体进行进一步的冷凝,使得该处的冷凝水流入第二通道3下端进而通过单向排液结构7排出至排水单元9,进一步避免冷凝水反流进入控制阀组;排水单元9中的冷凝水或带有腐蚀性的产物也流经第三连接管12后进入第二通道 3,然后经过单向排液结构7进入排水单元9中。该气体排放系统在控制阀组后端增加了上述冷凝水分离装置,一方面可以分离控制阀组后端的工艺尾气冷凝水,避免冷凝水反流到控制阀组内影响控压精度,另一方面可以防止排水单元9内的冷凝水和副产物反流到控制阀组内,避免腐蚀控压阀组5,不仅提高了反应腔室34控压的稳定性,同时还延长了控压阀组5的使用寿命。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (12)

  1. 一种冷凝水分离装置,其特征在于,所述冷凝水分离装置用于半导体工艺设备的气体排放系统,所述气体排放系统包括排气管线,所述排气管线上设置有控压阀组,所述冷凝水分离装置包括:
    装置本体,所述装置本体的内部设置有折线形的气体通道,所述气体通道包括沿气体流动方向依次连通的多个通道,最上游的通道的进气端用作进气口,用于与所述控压阀组的出口端连接;最下游的通道的出气端用作出气口,且高于该通道的进气端;其余的通道中有至少一者的出气端低于进气端;
    单向排液结构,所述单向排液结构与出气端低于进气端的所述通道和下游的通道的连接处连接,用于排出流经的冷凝水。
  2. 根据权利要求1所述的冷凝水分离装置,其特征在于,多个所述通道包括第一通道、第二通道和第三通道,其中,所述第一通道的下端开放并形成所述进气口,所述第一通道的上端通过向下倾斜的所述第三通道与所述第二通道的进气端连接,所述第二通道的上端开放并形成所述出气口;所述第二通道的进气端低于其上端;
    所述单向排液结构的一端与所述第二通道的下端连接,所述单向排液结构的另一端形成排液口。
  3. 根据权利要求2所述的冷凝水分离装置,其特征在于,所述第二通道包括第一子通道和倾斜的第二子通道,所述第一子通道的轴线与所述第一通道的轴线平行,所述第一子通道具有所述第二通道的进气端,且通过所述第三通道与所述第一通道的上端连接,并且所述第一子通道的下端与所述单向排液结构的一端连接;所述第一子通道还具有与所述第二子通道的下端连接的出气端,该出气端高于所述第二通道的进气端;
    所述第二子通道的上端在所述装置本体上形成所述出气口,所述出气口 与所述进气口同轴设置。
  4. 根据权利要求1所述的冷凝水分离装置,其特征在于,所述单向排液结构包括:
    阀体,所述阀体内部设置有阀腔,所述阀腔包括依次连接的第一直筒段、渐缩段和第二直筒段,所述第二直筒段的远离所述渐缩段的一端在所述阀体上形成有进液口,所述进液口与每个出气端低于进气端的通道和下游的通道的连接处连接;
    隔板,设置在所述第一直筒段内,所述隔板上开设有多个连通所述隔板两侧的通孔,所述隔板靠近所述渐缩段的一侧设置有球体,所述球体与所述第一直筒段滑动配合,所述球体与所述隔板之间设置有弹性部件,所述弹性部件的弹力能够对所述球体施加朝向所述渐缩段方向的弹力,使所述球体与所述渐缩段的内壁接触并封堵所述阀腔,所述第一直筒段在所述隔板远离所述渐缩段的一侧在所述阀体上形成有所述排液口。
  5. 根据权利要求4所述的冷凝水分离装置,其特征在于,所述单向排液结构还包括:
    第一连接管,所述进液口通过所述第一连接管与每个出气端低于进气端的通道和下游的通道的连接处连接;所述阀体与所述第一连接管可拆卸连接;
    第四连接管,其与所述阀体可拆卸连接,且与所述排液口连通。
  6. 根据权利要求2-5中任意一项所述的冷凝水分离装置,其特征在于,所述进气口连接有第二连接管,所述第二连接管的外周设置有加热部件。
  7. 根据权利要求6所述的冷凝水分离装置,其特征在于,所述加热部件包括螺旋缠绕在所述第二连接管的外周的加热丝。
  8. 根据权利要求2-5中任意一项所述的冷凝水分离装置,其特征在于,所述出气口连接有第三连接管,所述第三连接管的外周设置有制冷部件。
  9. 根据权利要求8所述的冷凝水分离装置,其特征在于,所述制冷部件包括冷却套,所述冷却套内部设置有冷却腔,所述冷却套的外侧设置有与所述冷却腔连通的进水管和出水管。
  10. 根据权利要求1-5中任意一项所述的冷凝水分离装置,其特征在于,所述最下游的通道内设置有温度传感器。
  11. 一种半导体工艺设备,其特征在于,所述半导体工艺设备包括反应腔室和气体排放系统,所述气体排放系统包括:
    排气管线,与所述反应腔室连接;
    控压阀组,设置在所述排气管线上;
    根据权利要求1-10任一项所述的冷凝水分离装置,所述冷凝水分离装置的进气口与所述控压阀组的出口端连接。
  12. 根据权利要求11所述的半导体工艺设备,其特征在于,还包括:
    尾气冷凝装置、气液分离装置和冷凝水排放装置;
    所述气液分离装置通过第一管路与所述反应腔室连接,所述第一管路上设置有尾气冷凝装置,所述气液分离装置的出液端和出气端分别通过第二管路和第三管路与所述冷凝水排放装置和所述控压阀组连接;
    所述冷凝水分离装置的所述出气口用于与厂务系统的排气单元连接,所述排液口用于与所述厂务系统的排水单元连接,所述冷凝水排放装置通过第四管路与所述排水单元连接。
PCT/CN2023/095512 2022-05-23 2023-05-22 冷凝水分离装置及半导体工艺设备 WO2023226929A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210565094.1 2022-05-23
CN202210565094.1A CN114733270B (zh) 2022-05-23 2022-05-23 一种反流冷凝水分离装置及半导体工艺设备

Publications (1)

Publication Number Publication Date
WO2023226929A1 true WO2023226929A1 (zh) 2023-11-30

Family

ID=82287881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095512 WO2023226929A1 (zh) 2022-05-23 2023-05-22 冷凝水分离装置及半导体工艺设备

Country Status (3)

Country Link
CN (1) CN114733270B (zh)
TW (1) TW202345957A (zh)
WO (1) WO2023226929A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114733270B (zh) * 2022-05-23 2024-02-27 北京北方华创微电子装备有限公司 一种反流冷凝水分离装置及半导体工艺设备
CN116212420B (zh) * 2022-12-28 2023-10-20 扬州永锋工业设备安装有限公司 一种蒸汽循环使用的多效蒸发器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120762A (ja) * 2008-11-20 2010-06-03 Kumakura Industry Co Ltd 空気輸送システム
CN204307505U (zh) * 2014-12-13 2015-05-06 崔学军 天然气仪表导压管排液器
CN207034282U (zh) * 2017-06-07 2018-02-23 盐城市大丰洪联铸钢有限责任公司 一种单向阀
CN208554193U (zh) * 2018-07-03 2019-03-01 丽珠集团福州福兴医药有限公司 一种具有排气功能的反应罐
CN211752618U (zh) * 2019-12-31 2020-10-27 江阴加华新材料资源有限公司 一种防回流的浓缩结晶系统
CN113760020A (zh) * 2021-09-26 2021-12-07 北京北方华创微电子装备有限公司 半导体设备的压力控制装置及半导体设备
CN114733270A (zh) * 2022-05-23 2022-07-12 北京北方华创微电子装备有限公司 一种反流冷凝水分离装置及半导体工艺设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11186171A (ja) * 1997-12-24 1999-07-09 Sony Corp 半導体製造装置
CN106838623B (zh) * 2017-01-06 2019-01-08 中冶华天工程技术有限公司 带弹簧密封球的煤气排水系统
CN211935652U (zh) * 2019-12-23 2020-11-17 重庆苏试四达试验设备有限公司 防止冷凝液体回流的装置
CN215506087U (zh) * 2021-04-25 2022-01-14 华虹半导体(无锡)有限公司 一种用于常压外延工艺的尾气处理结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120762A (ja) * 2008-11-20 2010-06-03 Kumakura Industry Co Ltd 空気輸送システム
CN204307505U (zh) * 2014-12-13 2015-05-06 崔学军 天然气仪表导压管排液器
CN207034282U (zh) * 2017-06-07 2018-02-23 盐城市大丰洪联铸钢有限责任公司 一种单向阀
CN208554193U (zh) * 2018-07-03 2019-03-01 丽珠集团福州福兴医药有限公司 一种具有排气功能的反应罐
CN211752618U (zh) * 2019-12-31 2020-10-27 江阴加华新材料资源有限公司 一种防回流的浓缩结晶系统
CN113760020A (zh) * 2021-09-26 2021-12-07 北京北方华创微电子装备有限公司 半导体设备的压力控制装置及半导体设备
CN114733270A (zh) * 2022-05-23 2022-07-12 北京北方华创微电子装备有限公司 一种反流冷凝水分离装置及半导体工艺设备

Also Published As

Publication number Publication date
CN114733270A (zh) 2022-07-12
CN114733270B (zh) 2024-02-27
TW202345957A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2023226929A1 (zh) 冷凝水分离装置及半导体工艺设备
KR0147044B1 (ko) 배기 시스템을 가지는 열처리장치
CN113130357B (zh) 一种晶圆干燥系统及晶圆干燥方法
CN112781970A (zh) 气体稀释装置与方法
CN110357046A (zh) 一种氮气循环纯化装置、氮气循环纯化系统和方法
CN110970638B (zh) 一种燃料电池热平衡“气-气-气”三相热交换系统
KR100325197B1 (ko) 가스 스크러버
CN216711885U (zh) 一种带自动喷淋结构圆盘式干化机
CN217464498U (zh) 一种电站直流锅炉原煤仓加热装置及原煤仓
US20140328581A1 (en) Heater and heating method for wet extraction tank
CN202420945U (zh) 一种气体的预处理装置
WO2022160667A1 (zh) 一种零汽耗除氧系统
JP2008070089A (ja) 空気加熱装置
CN109289229B (zh) 一种开放式冷凝回流装置
CN114323904B (zh) 一种用于可燃气燃烧实验的气体预热与添加剂汽化装置
CN218239288U (zh) 除菌过滤器完整性测试装置
CN205295263U (zh) 闪蒸气处理装置
CN219160398U (zh) 具有热量回收的燃气锅炉
KR200447890Y1 (ko) 폐가스 처리용 가열 장치
CN212941531U (zh) 一种合成减水剂冷凝装置
CN214513678U (zh) 一种一体式低露点吸附式干燥机
CN219956012U (zh) 一种晾干槽
CN115823562B (zh) 无疏水阀蒸汽冷凝水余热回收装置
CN215463067U (zh) 一种基于半导体除湿器的冷凝座
CN215489672U (zh) 一种检测锅炉氧含量的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811000

Country of ref document: EP

Kind code of ref document: A1