WO2023226711A1 - 微型投射模组及头戴显示设备 - Google Patents

微型投射模组及头戴显示设备 Download PDF

Info

Publication number
WO2023226711A1
WO2023226711A1 PCT/CN2023/092261 CN2023092261W WO2023226711A1 WO 2023226711 A1 WO2023226711 A1 WO 2023226711A1 CN 2023092261 W CN2023092261 W CN 2023092261W WO 2023226711 A1 WO2023226711 A1 WO 2023226711A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
lens
light
polarized
sub
Prior art date
Application number
PCT/CN2023/092261
Other languages
English (en)
French (fr)
Inventor
刘冰玉
杜佳玮
李潍
李泓
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Publication of WO2023226711A1 publication Critical patent/WO2023226711A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention relates to the field of optical imaging technology, and in particular to a micro-projection module and a head-mounted display device including the micro-projection module.
  • Augmented Reality (AR) technology is a new technology that "seamlessly" integrates real-world information and virtual-world information. It integrates physical information that is difficult to experience within a certain time and space in the real world. , through computer and other science and technology, simulation and then superposition, so that people can obtain a sensory experience that transcends reality. Due to the feature of augmented reality technology, which superimposes virtual objects or images in the real environment, it has shown great application potential in many fields.
  • the projection module that is, the optical machine, is a key device in augmented reality technology. Its imaging quality and size directly determine the quality of the user experience. How to find a balance between good imaging quality and compact size has always been a major concern. One of the key points that manufacturers pay attention to.
  • micro-projection display chips include TFT-LCD, LCoS, DMD and MicroLED chips.
  • Monochromatic MicroLED light engines have become the darling of the market due to their lightweight characteristics.
  • full-color AR products are still an industry trend.
  • MicroLED chips are limited by material technology and quantum dot conversion technology bottlenecks, and cannot solve the problem of red chip luminous efficiency in the short term.
  • full-color AR light machines based on MicroLED chips cannot be implemented, and RGB full-color MicroLED chips cannot be launched in the short term. product.
  • TFT-LCD chips have the disadvantages of low contrast, low light energy utilization, low brightness and low resolution.
  • the best technical solutions for full-color AR products can only choose LCoS or DLP solutions based on DMD chips. .
  • the two are comparable, and the DMD chip is slightly better than the LCoS chip.
  • LCoS optical machines have higher costs.
  • LCoS optical machines usually set the lighting system and projection system on both sides of the PBS prism. Due to the optical focal length limitation, the lighting, relay and projection systems have a limit length. The overall optical machine has a linear structure, which is difficult to reduce in size and cannot be used. To meet the trend of near-eye display devices becoming increasingly smaller and lighter, a small-sized, lightweight micro-projection module and a head-mounted display device compatible with the micro-projection module are needed to meet market demand.
  • the purpose of the present invention is to provide a micro projection module and a head-mounted display device that can meet the market trend of miniaturization and lightweight.
  • a micro projection module which is characterized in that it includes:
  • a lighting assembly configured to provide a polarized illumination light
  • a display chip configured to modulate the polarized illumination light into a polarized image light
  • a relay component configured to transmit the polarized illumination light to the display chip and transmit the polarized image light to the projection component, the relay component including a polarization light splitting component;
  • a projection component configured to project the polarized image light into an image.
  • the projection component includes a first projection sub-lens and a second projection sub-lens, wherein the first projection sub-lens is disposed on the polarization splitter.
  • the optical path between the component and the display chip is configured to provide a transmission path for the polarized illumination light and the polarized image light and perform optical path correction.
  • the second projection sub-lens and the first projection sub-lens Lenses are disposed on two opposite sides of the polarizing beam splitting component, and the optical axes of the second projection sub-lens and the first projection sub-lens are located on the same straight line.
  • the number of lenses of the first projection sub-lens is 2 times or more than the number of lenses of the second projection sub-lens.
  • the lighting assembly includes: an illumination light source configured to emit multiple channels of monochromatic illumination light; a collimation device; a color combination device; and a light uniformity device; and a polarizing device, wherein the collimating device and the color combining device are disposed in the light path between the illuminating light source and the polarizing device, and are configured to collimate the multiple channels of monochromatic illuminating light.
  • a path of combined color illumination light is synthesized, the optical path of the combined color illumination light is perpendicular to the optical axis of the first projection sub-lens, and the polarizing device is configured to polarize the combined color illumination light into the polarization illuminating light.
  • the polarizing device is a first polarizing plate, and the first polarizing plate is configured to pass polarized light with a first polarization state and block polarized light with a second polarization state.
  • the polarization splitting component is configured to reflect the polarized light with the first polarization state and transmit the polarized light with the second polarization state, wherein the first polarization state is the same as the second polarization state.
  • the polarization directions of the polarization states are perpendicular to each other.
  • the first projection sub-lens and the second projection sub-lens jointly meet the projection requirements of the optical system.
  • the display chip is an LCoS chip.
  • a head-mounted display device which is characterized in that it includes:
  • At least one of the micro-projection modules At least one of the micro-projection modules.
  • the optical axis of the first projection sub-lens is consistent with the extension direction of the temple.
  • the at least one lens unit is an optical waveguide and includes a coupling-in region and a coupling-out region.
  • the optical axis of the second projection sub-lens is aligned with the center of the coupling area.
  • Figure 1 is a schematic three-dimensional structural diagram of a micro projection module optical system according to some embodiments of the present invention.
  • Figure 2A is a plan front view of a micro projection module optical system according to some embodiments of the present invention.
  • Figure 2B is a plan left view of the portion within the dotted box in Figure 2A;
  • Figure 3A is a schematic three-dimensional structural diagram of AR glasses according to some embodiments of the present invention.
  • Figure 3B is a plan front view of AR glasses according to some embodiments of the invention.
  • Figure 3C is a planar right side view of AR glasses according to some embodiments of the invention.
  • the terms “setting”, “installation”, “connecting” and “connecting” should be understood in a broad sense.
  • it can be a fixed connection, It can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, a contact connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • Configured as various units, circuits, or other components may be described or recited as being “configured to” perform one or more tasks.
  • “configured to” is used to imply structure by indicating that the unit/circuit/component includes structure (eg, circuitry) that performs the task or tasks during operation.
  • “configured to” may include general-purpose structures (eg, general-purpose circuitry) manipulated by software and/or firmware to operate in a manner capable of performing the task or tasks to be solved.
  • Configured to may also include adapting a manufacturing process (e.g., a semiconductor fabrication facility) to manufacture products suitable for accomplishing or performing one or more tasks devices (e.g., integrated circuits).
  • the term “if” may be interpreted to mean “when” or “in response to” or “in response to determining” or “in response to detecting”, depending on the context.
  • the phrase “if it is determined" or “if [the stated condition or event] is detected” may be interpreted to mean “when it is determined" or “in response to the determination... ” or “on detection of [stated condition or event]” or “in response to detection of [stated condition or event].”
  • the micro-projection module includes a lighting component 10, a relay component 20, a display chip 30 and a projection component 40.
  • the lighting component 10 is used to provide polarized illumination light with the same polarization state.
  • the relay component 20 is used to transmit at least part of the polarized illumination light from the lighting component 10 to the display chip 30 .
  • the display chip 30 is used to modulate the polarized illumination light into polarized image light carrying image information, and transmit the polarized image light to the projection component 40 through the relay component 20 again.
  • the projection component 40 is used to project the modulated polarized image light to other optical components of the head-mounted display device, such as optical waveguides.
  • R represents red light
  • G represents green light
  • B represents blue light
  • W represents white light.
  • the polarized illumination light in this application uses the S-polarized light/P-polarized light table.
  • the polarized image light is represented by S' polarized light/P' polarized light.
  • the solid line in the figure represents the illumination light path
  • the dotted line represents the projection light path.
  • the illumination light path and the optical elements it passes through constitute an illumination system
  • the projection light path and the optical elements it passes through form a projection system, which will not be described again below.
  • Figure 2A is a plan front view of the optical system of the micro-projection module
  • Figure 2B is a plan left view of the portion within the dotted line frame in Figure 2A.
  • the lighting assembly 10 includes an illumination light source 11 , a collimating device 12 , a color combining device 13 , a uniform light device 14 and a polarizing device 15 .
  • the lighting assembly 10 is configured to provide polarized illumination light having the same polarization state.
  • the illumination light source 11 may further include a first light source 111 , a second light source 112 and a third light source 113 .
  • the first light source 111 is a red light source
  • the second light source 112 is a green light source
  • the third light source 113 is a blue light source.
  • the light-emitting surfaces of the first light source 111 and the third light source 113 can be disposed on the same plane, and they are disposed closely adjacent to each other. It can be understood that the color, type, quantity and combination of the illumination light sources may also have other conditions, and are not limited in the present invention.
  • the collimating device 12 includes a first collimating lens group 121 and a second collimating lens group 122.
  • Each of the first collimating lens group 121 and the second collimating lens group 122 includes at least one optical lens.
  • It is an optical lens set composed of a spherical mirror and a cylindrical mirror, or it can be an optical lens set composed of two same types of lenses among spherical mirrors, cylindrical mirrors, and aspherical mirrors, or any combination of two types of lenses, that is That is, the surface shape of the optical lenses that make up the collimating lens group is not limited in this application.
  • the color combination device 13 includes a first selective reflection film 131 , a second selective reflection film 132 and a wedge prism 133 .
  • the wedge prism 133 has two opposite surfaces, and an included angle between them is not zero.
  • the first selective reflection film 131 and the second selective reflection film 132 are respectively disposed on two opposite surfaces of the wedge prism 133 .
  • the first collimating lens group 121 is used to converge, collimate and transmit the light emitted by the second light source 112 to the first selective reflection film 131
  • the second collimating lens group 122 is used to connect the first light source 111 to the first selective reflection film 131 .
  • the light emitted by the third light source 113 is condensed, collimated, and transmitted to the second selective reflection film 132 .
  • the first selective reflection film 131 is used to reflect blue light and transmit green light
  • the second selective reflection film 132 is used to reflect red light and transmit green light and blue light.
  • the first selective reflective film 131 is provided on the lower surface of the wedge-shaped prism 133, opposite to the second light source 112.
  • the second selective reflection film 132 is provided on the upper surface of the wedge-shaped prism 133, opposite to the first light source 111 and the third light source 113.
  • the green light emitted by the second light source 112 is collimated by the first collimating lens group 121 and then passes through the first selective reflection film 131, the wedge prism 133 and the second selective reflection film 132 in sequence; the red light emitted by the first light source 111 passes through The second collimating lens group 122 collimates and is reflected by the second selective reflective film 132; the blue light emitted from the third light source 113 is collimated by the second collimating lens group 122 and then passes through the second selective reflective film 132 and the wedge prism in sequence.
  • the uniform light device 14 can be a fly-eye lens or other common light uniform components, used to obtain uniform illumination distribution.
  • the uniform illumination light obtained after passing through the uniform light device 14 passes through the polarizing device 15 and becomes polarized illumination light having a first polarization state.
  • the polarizing device 15 may be a first polarizing plate configured to only pass polarized light with a first polarization state and block polarized light with a second polarization state.
  • the polarizing device 15 may also be a first polarization multiplexing element, configured to pass only polarized light with a first polarization state and convert polarized light with a second polarization state into polarized light with a first polarization state.
  • the polarization directions of the polarized light with the first polarization state and the polarized light with the second polarization state are perpendicular to each other.
  • the polarized light with the first polarization state may be S light in linearly polarized light
  • the polarized light with the third polarization state may be linearly polarized light
  • the polarized light in the two polarization states may be P light in linearly polarized light.
  • the relay component 20 includes a relay lens 21 and a polarization splitter component 22 .
  • the relay component 20 is configured to transmit polarized illumination light from the lighting component 10 to the display chip 30 .
  • the relay lens 21 is disposed between the uniform light device 14 and the polarizing device 15.
  • the uniform illumination light from the uniform light device 14 is transmitted through the relay lens 21 and then converted into polarized illumination through the polarizing device 15.
  • the polarization beam splitting component 22 further includes a first right-angle prism 221, a second right-angle prism 222, and a polarization beam splitter element 223.
  • the first right-angle prism 221 and the second right-angle prism 222 are both isosceles right-angle prisms.
  • the first right-angle prism 221 includes a first inclined surface 2211, a first side surface 2212, and a first bottom surface 2213.
  • the second right-angle prism 222 includes a second inclined surface 2221, a second side surface 2222, and a second bottom surface 2223.
  • the first inclined surface 2211 and the second inclined surface 2221 are arranged oppositely, and the polarization splitting element 223 is arranged between the first inclined surface 2211 and the second inclined surface 2221.
  • the polarizing beam splitting element 223 can be a polarizing beam splitting film, in which case the polarizing beam splitting component 22 is a PBS prism.
  • a polarizing dichroic film can be coated on the first inclined surface 2211 and then the first right-angled prism 221 and the second inclined surface 2221 of the second right-angled prism 222 can be glued; or the second inclined surface 2221 can be glued together.
  • the polarizing beam splitter is coated and the second right-angle prism 222 and the first bevel 2211 of the first right-angle prism 221 are glued together.
  • the second bottom surface 2223 can provide an installation reference for the polarizing device 15.
  • the polarizing device 15 can be attached to the second bottom surface 2223, and then provide an installation reference for the relay lens 21 through the polarizing device 15.
  • the lens 21 can be attached to the surface of the polarizing device 15 .
  • the polarizing light splitting component 22 includes a first side surface 2212, a first bottom surface 2213, a second side surface 2222 and a second bottom surface 2223.
  • the first side 2212 is opposite and parallel to the second side 2222
  • the first bottom surface 2213 is opposite and parallel to the second bottom surface 2223
  • the first side 2212 connects the first bottom surface 2213 and the second bottom surface 2223, And perpendicular to both.
  • the second bottom surface 2223 is used to receive the polarized illumination light from the lighting component 10.
  • the polarized illumination light is reflected at the polarization splitting element 223 and then turns 90° through the second side surface 2222 to reach the display chip 30. It is modulated by the display chip 30 and then converted.
  • the polarized image light with the polarization direction reversely passes through the second side 2222 again, is transmitted from the polarization splitting element 223, and then exits through the first side 2212.
  • the polarization splitting element 223 is used to reflect polarized light with a first polarization state and transmit polarized light with a second polarization state.
  • the polarization directions of the first polarization state and the second polarization state are perpendicular to each other.
  • the display chip 30 is configured to modulate the polarized illumination light into polarized image light carrying image information and change its polarization state, for example, convert the polarized light with the first polarization state into the polarization with the second polarization state. For light, the polarization directions of the first polarization state and the second polarization state are perpendicular to each other.
  • the display chip 30 is preferably an LCoS chip. Due to the characteristics of the LCoS chip, the S-polarized light incident on the chip surface is modulated into P'-polarized light carrying image information. It can be understood that since the LCoS chip itself is a polarized light modulation device, there is no need to add additional polarized light modulation devices. If other types of display chips are used, for display chips without polarized light modulation functions, it is necessary to chip surface A polarized light modulation device is additionally provided to modulate the polarization state of the polarized image light.
  • the projection assembly 40 includes a projection lens 41 .
  • the projection lens 41 further includes a first projection sub-lens 411 and a second projection sub-lens 412 .
  • the projection component 40 is configured to project the modulated polarized image light to other optical components of the head-mounted display device, such as optical waveguides.
  • the polarization splitting element 223 transmits P-polarized light while reflecting S-polarized light.
  • the polarizing device 15 is an S-polarizing plate.
  • the uniform illumination light that passes through the uniform light device 14 passes through the polarizing device 15 and becomes An S-polarized light is incident perpendicularly to the second bottom surface 2223, enters the second right-angled prism 222, enters the polarizing beam splitting component 22 and is reflected at the polarizing beam splitting element 223.
  • the S-polarized light after turning 90° is perpendicular to the second right-angled prism 222. It emerges from the second side 2222 and is transmitted to the surface of the display chip 30 through the first projection sub-lens 411.
  • the display chip 30 It is modulated into P' polarized light by the display chip 30, and then reversely passes through the first projection sub-lens 411 and then enters the polarization splitter component 22.
  • the polarization beam splitting element 223 is transmitted and emitted from the first side 2212 of the polarization beam splitting component 22.
  • the P' polarized light is modulated by the second projection sub-lens 412 and emitted to form an image.
  • the first projection sub-lens 411 is an optical path correction device, that is, a transmissive element with an optical path correction function.
  • the optical path correction function refers to the shaping function of the light source, such as convergence, and in the projection system, it refers to the balancing function of object-image relationship and aberration.
  • the first projection sub-lens 411 is a lens group composed of at least two optical lenses, and the first projection sub-lens 411 is disposed in the optical path between the polarization beam splitting component 22 and the display chip 30 .
  • the first projection sub-lens 411 is disposed outside the second side 2222, and the optical axis is perpendicular to the second side 2222.
  • the first projection sub-lens 411 is used to converge and maintain the S-polarized light emitted from the polarization splitting component 22 within a specific range, and transmit it to the display chip 30 , that is, at this time, the first projection sub-lens 411 The light passing through it is part of the lighting path.
  • the polarized image light with image information modulated by the display chip 30, in an optional embodiment, that is, the P' polarized light passes through the first projection sub-lens 411 again and is incident perpendicularly to the second side 2222 of the second right-angle prism 222. It enters the second right-angle prism 222, is transmitted at the polarization splitting element 223, enters the first right-angle prism 221, and then exits perpendicular to the first side surface 2212 of the first right-angle prism 221. It can be understood that at this time, the light passing through the first projection sub-lens 411 is part of the projection light path.
  • the first projection sub-lens 411 realizes the correction function for the illumination light path and the projection light path at the same time. Some light paths in the relay system are reused by the illumination system and the projection system, making the overall micro-projection module more accurate. Meet the conditions for miniaturization.
  • the second projection sub-lens 412 is disposed outside the first side 2212, and the optical axis is perpendicular to the first side 2212. That is, the second projection sub-lens 412 and the first projection sub-lens 411 are disposed on two opposite sides of the polarization beam splitting component 22, and their optical axes are located on the same straight line. It can be understood that the second projection sub-lens 412 is also an optical path correction device.
  • the second projection sub-lens 412 includes at least one optical lens. Neither the first projection sub-lens 411 nor the second projection sub-lens 412 alone can meet the optical requirements of the projection system of the micro-projection module.
  • the first projection sub-lens 411 and the second projection sub-lens 412 have a common optical path. Calibration makes the projection light path meet the effective focal length requirements of the overall system. It can be understood that the first projection sub-lens 411 must cooperate with the second projection sub-lens 412 to meet the optical parameter requirements of the projection system and the optical parameter requirements of the lighting system, so that the light path inside the first projection sub-lens 411 Reused by lighting systems and projection systems.
  • the combined color illumination light emitted from the color combining device 13 sequentially passes through the uniform light device 14 and the polarizing device 15 along the first direction and is converted into polarized illuminating light S.
  • the polarized illuminating light S is transmitted through the polarization splitting component 22 It turns 90° in the middle and reaches the display chip 30 along the second direction. It is modulated by the display chip 30 into polarized image light P' and is turned back 180° along the third direction and modulated by the first projection sub-lens 411 to reach the polarization splitting component 22 again.
  • the first projection sub-lens 411 and the second projection sub-lens 412 are finally jointly modulated into projection light and projected from the micro-projection module, forming a complete illumination light path and projection light path.
  • the first direction and the second direction are perpendicular to each other, the second direction and the third direction are parallel and opposite to each other, and the micro projection module has an L-shaped structure as a whole.
  • the complete projection lens is composed of two projection sub-lenses, at least one projection sub-lens is disposed between the polarization beam splitting component 22 and the display chip 30, and at least one other projection lens
  • the sub-lens is arranged on the other side of the polarizing beam splitting component 22.
  • the first projection sub-lens 411 is used not only for the illumination light path, condensing the light, but also for the projection light path.
  • the micro projection module While satisfying the object-image relationship and image quality balance, it reduces the size requirements of the PBS prism and effectively utilizes the internal space of the optical machine.
  • the optical path In the internal space, the optical path is folded while meeting the total optical path requirements, reducing the overall volume; the second projection sub-lens 412 is used to balance the image quality and expand the light, so that the chip target image is projected out of the light machine without loss. That is, the first projection sub-lens 41 and the second projection sub-lens 412 jointly meet the projection requirements of the optical system and complete the projection.
  • the micro projection module provided by this application has obvious miniaturization advantages.
  • the number and location of the projection sub-lenses are not limited by the present invention.
  • the projection lens is divided into different numbers of projection sub-lenses according to the optical design requirements of the projection system and lighting system. Arrangement at different locations is easily imaginable by those skilled in the art.
  • the micro-projection module further includes a power supply unit, a housing, structural connectors between optical elements, and a heat dissipation unit.
  • the present invention also proposes a head-mounted display device, which includes at least one micro-projection module as described above, at least one lens unit, and a frame for installing the lens unit and the micro-projection module.
  • a head-mounted display device which includes at least one micro-projection module as described above, at least one lens unit, and a frame for installing the lens unit and the micro-projection module.
  • the micro-projection module outputs images according to instructions issued by the computing unit.
  • a head-mounted display device including the micro-projection module will be described in detail below.
  • AR glasses include a micro projection module 1, a frame 2 for installing a lens unit, a left lens unit 3, a right lens unit 4, a computing unit 5, and temples 6 for wearing.
  • the left lens unit 3 and the right lens unit 4 are fixedly installed in the frame 2, and the temples 6 can be connected to the frame 2 in any way, such as in a flexible way, or in a folding form, or in a fixed way, Or in a detachable manner, forming the main part of AR glasses.
  • the electronic components of the AR glasses can be selectively installed on the temples 6 and/or the frame 2, or embedded/buried in their materials.
  • the electronic components include but are not limited to the computing unit 5 for processing data and image information, eye trackers, depth sensors, spatial sensors, position sensors and their combinations.
  • the number of the micro-projection modules 1 is two, and the micro-projection modules are respectively installed on the left and right temples 6 close to the mirror frame 2.
  • the micro-projection modules Is mounted on the inside of the temple.
  • the optical axis of the second projection sub-lens 412 is arranged along the extension direction of the temple 6, so that the optical axis of the second projection sub-lens 412 is substantially perpendicular to the lens unit.
  • the left lens unit 3 includes a coupling-in area 31 and a coupling-out area 32.
  • the coupling area 31 is disposed at the upper left corner of the left lens unit 3.
  • the optical axis of the second projection sub-lens 412 of the micro-projection module 1 is connected to the coupling-in area 31.
  • the center of the area 31 is aligned;
  • the right lens unit 4 includes a coupling area 41 and a coupling area 42.
  • the coupling area 41 is located at the upper right corner of the right lens unit 4.
  • the second projection sub-lens of the micro projection module 1 The optical axis of 412 is aligned with the center of coupling region 41 .
  • the image light projected by the micro projection module 1 is coupled into the optical waveguide from the coupling area, is coupled out from the coupling area after turning and pupil expansion, and is finally received by the user's eyes.
  • the number of lenses of the first projection sub-lens 411 may be 3 to 6, and the number of lenses 412 of the second projection sub-lens may be 1 to 3.
  • the number of lenses of the first projection sub-lens is preferably 3 to 6 of the lenses of the second projection sub-lens. 2 times or more of the number of lenses, so that the second projection sub-lens 412 does not protrude too much from the micro-projection module after assembly is completed.
  • the micro-projection module 1 as a whole is close to an L-shaped structure, and the long side of L corresponds to In the first projection sub-lens part, the short side of L corresponds to the illumination light source part.
  • the temple legs 6 and the frame 2 of the AR glasses also form an L-shaped structure.
  • the long side of L corresponds to the temple leg 6 and the short side of L corresponds to the frame 2.
  • the shape of the micro projection module 1 is the same as the shape of the AR glasses. When the micro-projection module is installed on the temples in the above manner, it will not occupy too much other space in the AR glasses, giving users a more comfortable wearing experience.
  • the shape of other lens units, the location of the coupling area, and the location of the micro-projection module can also be considered.
  • the present invention does not impose any restrictions on this.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种微型投射模组,包括:照明组件(10),被配置为提供一偏振照明光;显示芯片(30),被配置为将偏振照明光调制成一偏振图像光;中继组件(20),被配置为将偏振照明光传输至显示芯片(30),以及将偏振图像光传输至投影组件(40),中继组件(20)包括一偏振分光组件(22);以及投影组件(40),被配置为将偏振图像光投射成像,投影组件(40)包括一第一投影子镜头(411)与一第二投影子镜头(412),第一投影子镜头(411)被设置于偏振分光组件(22)与显示芯片(30)之间的光路中,第二投影子镜头(412)与第一投影子镜头(411)被设置偏振分光组件(22)的两相对侧,且该第二投影子镜头(412)与该第一投影子镜头(411)的光轴位于同一直线。

Description

微型投射模组及头戴显示设备 技术领域
本发明涉及光学成像技术领域,尤其涉及一种微型投射模组以及包括微型投射模组的头戴显示设备。
背景技术
增强现实(Augmented Reality,简称AR)技术,是一种将真实世界信息与虚拟世界信息“无缝”集成的新技术,是把原本在现实世界的一定时间空间范围内很难体验到的实体信息,通过电脑等科学技术,模拟仿真后再叠加,从而使人们获得超越现实的感官体验。由于增强现实技术在真实的环境中叠加虚拟的物体或者画面这一特性,使其在众多领域表现出了巨大的应用潜力。
投射模组,即光机,作为增强现实技术中的关键器件,其成像质量与体积大小直接决定了用户体验的好坏,如何在良好的成像质量与小巧的体积之间寻求平衡一直是各大厂商所关注的重点之一。
近年来,随着微型显示芯片技术的发展,目前主流的微投显示芯片有TFT-LCD、LCoS、DMD以及MicroLED芯片。单色MicroLED光机凭借其轻便的特性成为市场的宠儿。然而,由于单色AR产品存在较大的应用限制,也无法满足已经习惯绚丽画面的消费者对AR产品的期待,全彩AR产品依旧是行业趋势。而MicroLED芯片受限于材料技术和量子点转换技术瓶颈,短期内无法解决红色芯片发光效率的问题,导致基于MicroLED芯片的全彩AR光机无法落地,RGB全彩MicroLED芯片也无法在短期内推出产品。而TFT-LCD芯片具有对比度较低、光能利用率低、亮度较低以及分辨率较低的劣势,目前来看全彩AR产品的最优技术方案只能选择LCoS或基于DMD芯片的DLP方案。从分辨率、亮度、对比度和光能利用率上来说二者不相上下,DMD芯片略优于LCoS芯片。但是由于DMD芯片为全球独供,LCoS芯片的量产供应商选择更多,所以成本上LCoS光机具有更 显著的优势。
现有的LCoS光机通常将照明系统和投影系统设置在PBS棱镜的两侧,受光学焦距限制,照明、中继和投影系统存在极限长度,光机整体成直线型结构,体积难以缩减,无法满足近眼显示设备日趋小型化与轻量化的趋势,因此需要一种小尺寸、轻便的微型投射模组以及与该微型投射模组相适配的头戴显示设备以满足市场需求。
发明内容
本发明的目的在于,提供一种微型投射模组与头戴显示设备,其能够满足小型化与轻量化的市场趋势。
为了实现上述发明目的,根据本申请的第一方面,提供了一种微型投射模组,其特征在于,包括:
照明组件,被配置为提供一偏振照明光;以及,
显示芯片,被配置为将所述偏振照明光调制成一偏振图像光;以及
中继组件,被配置为将所述偏振照明光传输至所述显示芯片,以及将所述偏振图像光传输至所述投影组件,所述中继组件包括一偏振分光组件;以及
投影组件,被配置为将所述偏振图像光投射成像,所述投影组件包括一第一投影子镜头与一第二投影子镜头,其中,所述第一投影子镜头被设置于所述偏振分光组件与所述显示芯片之间的光路中,被配置为为所述偏振照明光与所述偏振图像光提供一传输通路并进行光路校正,所述第二投影子镜头与所述第一投影子镜头被设置于所述偏振分光组件的两相对侧,且所述第二投影子镜头与所述第一投影子镜头的光轴位于同一直线。
根据本申请的第一方面的一实施例,其中,所述第一投影子镜头的镜片数量为所述第二投影子镜头的镜片数量的2倍及以上。
根据本申请的第一方面的一实施例,其中,所述照明组件包括:照明光源,所述照明光源被配置为发射多路单色照明光;准直器件;合色器件;匀光器件;以及起偏器件,其中所述准直器件与所述合色器件被设置于所述照明光源和所述起偏器件之间的光路中,被配置为将所述多路单色照明光准直合成一路合色照明光,所述合色照明光的光路与所述第一投影子镜头的光轴相互垂直,所述起偏器件被配置为将所述合色照明光起偏成所述偏振照明光。
根据本申请的第一方面的一实施例,其中,所述起偏器件为一第一偏振片,所述第一偏振片被配置为通过具有第一偏振状态的偏振光并阻挡具有第二偏振状态的偏振光,所述偏振分光组件被配置为反射具有所述第一偏振状态的偏振光并透射具有所述第二偏振状态的偏振光,其中,所述第一偏振状态与所述第二偏振状态的偏振方向相互垂直。
根据本申请的第一方面的一实施例,其中,所述第一投影子镜头与所述第二投影子镜头共同满足光学系统的投影要求。
根据本申请的第一方面的一实施例,其中,所述显示芯片为一LCoS芯片。
根据本申请的第二方面,提供了一种头戴显示设备,其特征在于,包括:
至少一个所述的微型投影模组;以及,
至少一镜片单元、一镜框、二镜腿,以及一计算单元;所述微型投射模组被设置于所述镜腿靠近于所述镜框的区域。根据本申请的第二方面的一实施例,其中,所述第一投影子镜头的光轴与所述镜腿的延伸方向一致。
根据本申请的第二方面的一实施例,其中,所述至少一镜片单元为光波导,包括一耦入区域与一耦出区域。
根据本申请的第二方面的一实施例,其中,所述第二投影子镜头的光轴与所述耦入区域的中心对准。
在以下描述中部分地阐述了另外的实施方案和特征,并且本领域技术人员在审阅说明书之后将明白或者通过所公开的主题的实践来学习这些实施方案和特征。可通过参考构成本申请的一部分的说明书和附图的其余部分来实现本公开的特点和优点的进一步理解。
附图说明
以下将结合附图和实施例来对本发明的技术方案作进一步的详细描述。在附图中,除非另有说明,相同的附图标记用于表示相同的部件。其中:
图1是根据本发明的一些实施例的微型投射模组光学系统的立体结构示意图;
图2A是根据本发明的一些实施例的微型投射模组光学系统的平面主视图;
图2B是图2A中虚线框内部分的平面左视图;
图3A是根据本发明的一些实施例的AR眼镜的立体结构示意图;
图3B是根据本发明的一些实施例的AR眼镜的平面主视图;
图3C是根据本发明的一些实施例的AR眼镜的平面右视图。
具体实施方式
下面参照具体实施例,对本发明的构思进一步详细说明。需要指出,这里列举的实施例仅仅用于清楚地阐述本发明的发明构思,而不应理解成对本发明的限制。在此涉及的微型投射模组以及头戴显示设备的技术特征,只要没有违背自然规律或者技术规范,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。
在本申请的描述中,需要说明的是,对于方位词,如有术语“中心”、“横 向”、“纵向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示方位和位置关系为基于附图所示的方位或位置关系,仅是为了便于叙述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定方位构造和操作,不能理解为限制本申请的具体保护范围。
需要说明的是,本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请的说明书和权利要求书中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要说明的是,如在本申请中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以是接触连接或通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
“被配置为”,各种单元、电路或其他部件可被描述为或叙述为“被配置为”执行一项或多项任务。在此类上下文中,“被配置为”用于通过指示单元/电路/部件包括在操作期间执行这一项或多项任务的结构(例如,电路)来暗指该结构。此外,“被配置为”可包括由软件和/或固件操纵的通用结构(例如,通用电路)以能够执行待解决的一项或多项任务的方式操作。“被配置为”还可包括调整制造过程(例如,半导体制作设施),以制造适用于实现或执行一项或多项任务 的设备(例如,集成电路)。
在本文描述中所使用的术语只是为了描述特定实施方案,而并非旨在进行限制。如说明书和所附权利要求中所使用的那样,单数形式的“一个”、“一种”和“该”旨在也涵盖复数形式,除非上下文以其他方式明确地指示。还将理解的是,本文中所使用的术语“和/或”是指并且涵盖相关联地列出的项目中的一个或多个项目的任何和全部可能的组合。还将理解的是,术语“包括”和/或“包含”在本说明书中使用时是指定存在所陈述的特征、整数、步骤、操作、元件和/或部件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、部件和/或其分组。
如本文中所用,根据上下文,术语“如果”可以被解释为意思是“当...时”或“在...时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定...”或“如果检测到[所陈述的条件或事件]”可被解释为是指“在确定...时”或“响应于确定...”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
需要指出,附图示出的实施例仅作为示例用于具体和形象地解释和说明本发明的构思,其在尺寸结构方面既不必然按照比例绘制,也不构成对本发明构思的限制。
图1是根据本发明一实施例的一种微型投射模组光学系统的立体结构示意图,该微型投射模组包括一照明组件10、一中继组件20、一显示芯片30以及一投影组件40。该照明组件10用于提供具有同一偏振状态的偏振照明光。该中继组件20用于将来自照明组件10的至少一部分偏振照明光传输至显示芯片30。该显示芯片30用于将该偏振照明光调制成带有图像信息的偏振图像光,并再次通过中继组件20将该偏振图像光传输至投影组件40。该投影组件40用于将调制后的偏振图像光投射成像,至头戴显示设备的其他光学部件,如光波导。
如图1所示,R代表红光,G代表绿光,B代表蓝光,W代表白光。为了区分偏振照明光和偏振图像光,本申请中的偏振照明光用S偏振光/P偏振光表 示,偏振图像光用S’偏振光/P’偏振光表示。图中实线代表照明光路,虚线代表投影光路,相对应的,照明光路与其所经过的光学元件构成照明系统,投影光路与其所经过的光学元件构成投影系统,下文不再赘述。
具体地,如图2A-2B所示,图2A为该微型投射模组光学系统的平面主视图,图2B为图2A中虚线框内部分的平面左视图。照明组件10包括一照明光源11、一准直器件12、一合色器件13、一匀光器件14以及一起偏器件15。该照明组件10被配置为提供具有同一偏振状态的偏振照明光。
照明光源11可以进一步包括一第一光源111,一第二光源112与一第三光源113。可选的,该第一光源111为一红光光源,该第二光源112为一绿光光源,该第三光源113为一蓝光光源。该第一光源111与该第三光源113的发光面可设置于同一平面,且二者紧邻地设置。可以理解的是,照明光源的颜色、类型、数量与组合方式也可以有其他情况,在本发明中不做限制。
准直器件12包括一第一准直透镜组121与一第二准直透镜组122,该第一准直透镜组121和该第二准直透镜122组各自均包括至少一光学镜片,可选的为一球面镜与一柱面镜组成的光学镜片组,也可以是球面镜、柱面镜、非球面镜中的两相同类型的镜片组成的光学镜片组或其中两种类型镜片的任意组合,也就是说,组成准直透镜组的光学镜片面型在本申请中不受限制。
合色器件13包括一第一选择性反射膜131,一第二选择性反射膜132以及一楔形棱镜133。该楔形棱镜133具有两个相对设置的表面,相互之间具有一不为0的夹角。该第一选择性反射膜131与该第二选择性反射膜132分别设置于该楔形棱镜133的两个相对表面。第一准直透镜组121用于将第二光源112发出的光线进行收束、准直并传输至该第一选择性反射膜131,第二准直透镜组122用于将第一光源111与第三光源113发出的光线进行收束、准直并传输至该第二选择性反射膜132。
在本可选实施例中,第一选择性反射膜131用于反射蓝光并透射绿光,第二选择性反射膜132用于反射红光并透射绿光、蓝光。该第一选择性反射膜 131被设置于楔形棱镜133的下表面,与第二光源112相对,该第二选择性反射膜132被设置于楔形棱镜133的上表面,与第一光源111和第三光源113相对。第二光源112出射的绿光经第一准直透镜组121准直后依次通过第一选择性反射膜131、楔形棱镜133和第二选择性反射膜132;第一光源111出射的红光经第二准直透镜组122准直后被第二选择性反射膜132反射;第三光源113出射的蓝光经第二准直透镜组122准直后依次通过第二选择性反射膜132和楔形棱镜133,被第一选择性反射膜131反射,再次通过楔形棱镜133和第二选择性反射膜132之后,与前述的红光、绿光合成一束白光,通过匀光器件14,成为一均匀照明光。上述选择性反射膜的材质和透反比例等性质均针对照明光源的具体颜色与类型进行选择,并不局限于以上所描述的选择性透反性质。匀光器件14可以是一复眼透镜或其他常用匀光元件,用于获得均匀的照明分布。
通过匀光器件14后获得的该均匀照明光通过起偏器件15,成为具有第一偏振状态的偏振照明光。该起偏器件15可以是一第一偏振片,被配置为仅通过具有第一偏振状态的偏振光,并阻挡具有第二偏振状态的偏振光。起偏器件15也可以是一第一偏振复用元件,用于仅通过具有第一偏振状态的偏振光,并将具有第二偏振状态的偏振光也转化为具有第一偏振状态的偏振光。其中,具有第一偏振状态的偏振光与具有第二偏振状态的偏振光二者的偏振方向相互垂直,比如,该具有第一偏振状态的偏振光可以是线偏振光中的S光,该具有第二偏振状态的偏振光可以是线偏振光中的P光。
中继组件20包括一中继透镜21与一偏振分光组件22。该中继组件20被配置为将来自照明组件10的偏振照明光传输至显示芯片30。
可选的,该中继透镜21设置于匀光器件14与起偏器件15之间,来自匀光器件14的均匀照明光经该中继透镜21传输后通过该起偏器件15转化为偏振照明光,进入偏振分光组件22。
该偏振分光组件22进一步包括一第一直角棱镜221,一第二直角棱镜222,以及一偏振分光元件223。该第一直角棱镜221与该第二直角棱镜222均为等腰直角棱镜,该第一直角棱镜221包括一第一斜面2211,一第一侧面2212,以及 一第一底面2213。该第二直角棱镜222包括一第二斜面2221,一第二侧面2222,以及一第二底面2223。该第一斜面2211与该第二斜面2221相对设置,该偏振分光元件223被设置于该第一斜面2211与该第二斜面2221之间。该偏振分光元件223可以是一偏振分光膜,此时该偏振分光组件22即为一PBS棱镜。示例性地,在组装过程中,可以在该第一斜面2211上镀偏振分光膜再将第一直角棱镜221与第二直角棱镜222的第二斜面2221胶合;也可以在该第二斜面2221上镀偏振分光膜再将第二直角棱镜222与第一直角棱镜221的第一斜面2211胶合。第二底面2223可以为起偏器件15提供一安装基准,该起偏器件15可以被贴附于该第二底面2223,再通过起偏器件15为中继透镜21提供一安装基准,该中继透镜21可以被贴附于该起偏器件15的表面。
可以理解的是,该偏振分光组件22包括一第一侧面2212,一第一底面2213,一第二侧面2222以及一第二底面2223。该第一侧面2212与该第二侧面2222相对且平行设置,该第一底面2213与该第二底面2223相对且平行设置,该第一侧面2212连接该第一底面2213与该第二底面2223,且与二者均垂直。其中,第二底面2223用于接收来自照明组件10的偏振照明光,该偏振照明光在偏振分光元件223处反射后转折90°通过第二侧面2222到达显示芯片30,经显示芯片30调制后变换了偏振方向的偏振图像光再次反向通过第二侧面2222,并从偏振分光元件223处透射后再通过第一侧面2212出射。
该偏振分光元件223用于反射具有第一偏振状态的偏振光并透射具有第二偏振状态的偏振光。该第一偏振状态与该第二偏振状态的偏振方向相互垂直。
显示芯片30被配置为将该偏振照明光调制成带有图像信息的偏振图像光,并改变其偏振状态,示例性的,将具有第一偏振状态的偏振光转化为具有第二偏振状态的偏振光,该第一偏振状态与该第二偏振状态的偏振方向相互垂直。该显示芯片30优选为一LCoS芯片,由于LCoS芯片的特性,入射到芯片表面的S偏振光经调制后成为带图像信息的P’偏振光。可以理解的是,由于LCoS芯片本身就是偏振光调制器件,因此不再需要增加额外的偏振光调制器件,若采用其他类型的显示芯片,对于不带偏振光调制功能的显示芯片,则需在显示芯片表面 额外设置一偏振光调制器件以对偏振图像光的偏振状态进行调制。
投影组件40包括一投影镜头41。该投影镜头41进一步包括一第一投影子镜头411与一第二投影子镜头412。该投影组件40被配置为将调制后的偏振图像光投射成像,至头戴显示设备的其他光学部件,如光波导。
在一可选实施例中,偏振分光元件223在反射S偏振光的同时透射P偏振光,起偏器件15为一S偏振片,经过匀光器件14的均匀照明光通过起偏器件15后成为一S偏振光,垂直于第二底面2223入射,进入第二直角棱镜222中,进入偏振分光组件22后在偏振分光元件223处反射,转折90°后的S偏振光垂直于第二直角棱镜222的第二侧面2222出射,通过第一投影子镜头411传输至显示芯片30表面,经显示芯片30调制为P’偏振光,再次反向通过第一投影子镜头411后进入偏振分光组件22,在偏振分光元件223处透射,从偏振分光组件22的第一侧面2212出射,最后P’偏振光经第二投影子镜头412调制出射形成图像。
该第一投影子镜头411为一光路校正器件,也就是带有光路校正功能的透射式元件。所述的光路校正功能在照明系统中是指光源的整形功能,如收束,在投影系统中是指物像关系与像差的平衡功能。优选的,该第一投影子镜头411为由至少二光学镜片组成的一镜片组,第一投影子镜头411被设置于偏振分光组件22与显示芯片30之间的光路中。该第一投影子镜头411被设置于第二侧面2222的外侧,且光轴与该第二侧面2222垂直。在一可选实施例中,第一投影子镜头411用于将从偏振分光组件22出射的S偏振光会聚并保持在特定范围内,传输至显示芯片30,即此时第一投影子镜头411中通过的光线为照明光路的一部分。
经显示芯片30调制后带有图像信息的偏振图像光,在一可选实施例中即P’偏振光再次经过第一投影子镜头411,垂直于第二直角棱镜222的第二侧面2222入射,进入第二直角棱镜222中,再在偏振分光元件223处发生透射,进入第一直角棱镜221,之后垂直于第一直角棱镜221的第一侧面2212出射。可以理解的是,此时第一投影子镜头411中通过的光线为投影光路的一部分。即对 整个光学系统来说,该第一投影子镜头411对照明光路和投影光路同时实现了校正功能,中继系统中有部分光路为照明系统和投影系统所复用,使该微型投射模组整体更符合小型化条件。
第二投影子镜头412设置于第一侧面2212的外侧,且光轴与第一侧面2212垂直。即第二投影子镜头412与第一投影子镜头411被设置于该偏振分光组件22的两相对侧,且二者的光轴位于同一直线上。可以理解的是,该第二投影子镜头412也为一光路校正器件。该第二投影子镜头412包括至少一光学镜片。第一投影子镜头411与第二投影子镜头412中的任何一个均不能单独满足该微型投射模组的投影系统光学要求,该第一投影子镜头411与第二投影子镜头412对光路的共同校正使投影光路满足系统整体的有效焦距要求。可以理解的是,其中,第一投影子镜头411既要配合第二投影子镜头412满足投影系统的光学参数需求,还要满足照明系统的光学参数需求,使第一投影子镜头411内部的光路为照明系统和投影系统所复用。
如图1所示,从合色器件13出射的合色照明光沿第一方向依次通过匀光器件14与起偏器件15后转变为偏振照明光S,该偏振照明光S在偏振分光组件22中转折90°沿第二方向到达显示芯片30,经显示芯片30调制为偏振图像光P’折返180°沿第三方向经过第一投影子镜头411调制再次到达偏振分光组件22,发生透射后继续沿第三方向进入第二投影子镜头412,最终经第一投影子镜头411与第二投影子镜头412共同调制成投影出射光从微型投射模组投出,形成完整的照明光路与投影光路,其中,第一方向与第二方向相互垂直,第二方向与第三方向相互平行且反向,该微型投射模组整体呈一L型结构。
可以理解的是,在一可选实施例中,完整的投影镜头由两个投影子镜头共同组成,至少有一个投影子镜头被设置于偏振分光组件22与显示芯片30之间,至少一其他投影子镜头被设置于偏振分光组件22的另一侧,相比于将完整的投影镜头布置于偏振分光组件同一侧的方案,大大减小了光机整体长度方向的尺寸。其中,第一投影子镜头411既用于照明光路,对光线进行收束,又用于投影光路,在满足物像关系和像质平衡的同时,降低PBS棱镜尺寸需求,有效利用了光机内 部空间,在满足总光程要求的前提下将光路进行了折叠,减小了整体体积;第二投影子镜头412用于平衡像质并扩展光线,使得芯片目标图像无损失地投射出光机,即该第一投影子镜头41与该第二投影子镜头412共同满足光学系统的投影要求,完成投影。本申请提供的微型投射模组相比于传统微型投射模组的体积,具有明显的小型化优势。
值得一提的是,在本申请中,投影子镜头的数量和设置位置并不为本发明所限制,根据投影系统和照明系统的光学设计要求将投影镜头拆分为不同数量的投影子镜头并设置在不同的位置为本领域技术人员容易想到的。
除了上述微型投射模组光学系统,该微型投射模组还进一步包括一供电单元,一外壳,各光学元件之间的结构连接件,以及散热单元等。
本发明还提出一种头戴显示设备,所述头戴显示设备包括至少一如前所述的微型投射模组,至少一镜片单元,一用于安装镜片单元和微型投射模组的框架,用于佩戴的镜腿,以及用于处理数据和图像信息的计算单元,其中微型投射模组根据计算单元发出的指令输出图像。下面以AR眼镜为例,对包括所述微型投射模组的头戴显示设备进行示例性的详细说明。
如图3A-3C所示,AR眼镜包括微型投射模组1,用于安装镜片单元的镜框2,左镜片单元3,右镜片单元4,计算单元5,用于佩戴的镜腿6。在此,左镜片单元3与右镜片单元4固定安装于镜框2内,镜腿6可以以任意方式与镜框2连接,例如以柔性的方式,或者以折页的形式,或者以固定的方式,又或者以可拆卸的方式,从而形成AR眼镜的主体部分。AR眼镜的电子元器件可以选择性地安装在镜腿6和/或镜框2上,或者嵌入/埋入其材料中。所述电子元器件包括但不限于用于处理数据和图像信息的计算单元5、眼球追踪器、深度传感器、空间传感器、位置传感器及它们的组合等。
在一可选实施例中,该微型投射模组1的数量为二,该微型投射模组分别被安装于左右两个镜腿6靠近于镜框2的位置,可选的,该微型投射模组被安装于该镜腿的内侧。微型投射模组1被安装于镜腿6时,第一投影子镜头411 的光轴沿镜腿6的延伸方向设置,使得第二投影子镜头412的光轴与镜片单元大致垂直。左镜片单元3包括一耦入区域31与一耦出区域32,该耦入区域31设置于左镜片单元3的左上角,微型投射模组1的第二投影子镜头412的光轴与耦入区域31的中心对准;右镜片单元4包括一耦入区域41与一耦出区域42,该耦入区域41设置于右镜片单元4的右上角,微型投射模组1的第二投影子镜头412的光轴与耦入区域41的中心对准。微型投射模组1投射出的图像光线由耦入区域耦入光波导中,经转折、扩瞳后从耦出区域耦出,最终被用户眼睛接收。该第一投影子镜头411的镜片数量可以为3~6片,该第二投影子镜头的镜片412数量可以为1~3片,第一投影子镜头的镜片数量优选为第二投影子镜头的镜片数量的2倍及以上,使得组装完成后该第二投影子镜头412不过多地凸出于该微型投射模组,该微型投射模组1整体接近于一L型结构,L的长边对应于第一投影子镜头部分,L的短边对应于照明光源部分。从侧面看,AR眼镜的镜腿6与镜框2也成一L型结构,L的长边对应于镜腿6,L的短边对应于镜框2,该微型投射模组1的外形与AR眼镜外形相适配,当微型投射模组按上述方式安装于镜腿时不会过多占用AR眼镜的其他空间,给用户更舒适的佩戴体验。
类似地,结合头戴显示设备的具体外形和空间结构,也可以考虑其他镜片单元的形状,耦入区域的设置位置,以及微型投射模组的设置位置等,本发明对此不做任何限制。
以上描述了本申请的基本原理、主要特征和本申请的优点。本行业的技术人员应该了解,本申请不受上述实施例的限制,上述实施例和说明书中描述的只是本申请的原理,在不脱离本申请精神和范围的前提下本申请还会有各种变化和改进,这些变化和改进都落入要求保护的本申请的范围内。本申请要求的保护范围由所附的权利要求书及其等同物界定。

Claims (9)

  1. 一种微型投射模组,其特征在于,包括:
    照明组件,被配置为提供一偏振照明光;以及,
    显示芯片,被配置为将所述偏振照明光调制成一偏振图像光;以及
    中继组件,被配置为将所述偏振照明光传输至所述显示芯片,以及将所述偏振图像光传输至所述投影组件,所述中继组件包括一偏振分光组件;以及
    投影组件,被配置为将所述偏振图像光投射成像,所述投影组件包括一第一投影子镜头与一第二投影子镜头,其中,所述第一投影子镜头被设置于所述偏振分光组件与所述显示芯片之间的光路中,被配置为为所述偏振照明光与所述偏振图像光提供一传输通路并进行光路校正,所述第二投影子镜头与所述第一投影子镜头被设置于所述偏振分光组件的两相对侧,且所述第二投影子镜头与所述第一投影子镜头的光轴位于同一直线。
  2. 根据权利要求1所述的微型投射模组,其中,所述第一投影子镜头的镜片数量为所述第二投影子镜头的镜片数量的2倍及以上。
  3. 根据权利要求1所述的微型投射模组,其中,所述照明组件包括:照明光源,所述照明光源被配置为发射多路单色照明光;准直器件;合色器件;匀光器件;以及起偏器件,其中所述准直器件与所述合色器件被设置于所述照明光源和所述起偏器件之间的光路中,被配置为将所述多路单色照明光准直合成一路合色照明光,所述合色照明光的光路与所述第一投影子镜头的光轴相互垂直,所述起偏器件被配置为将所述合色照明光起偏成所述偏振照明光。
  4. 根据权利要求3所述的微型投射模组,其中,所述起偏器件为一第一偏振片,所述第一偏振片被配置为通过具有第一偏振状态的偏振光并阻挡具有第二偏振状态的偏振光,所述偏振分光组件被配置为反射具有所述第一偏振状态的偏振光并透射具有所述第二偏振状态的偏振光,其中,所述第一偏振状态与所述第二偏振状态的偏振方向相互垂直。
  5. 根据权利要求1所述的微型投射模组,其中,所述第一投影子镜头与所述第二投影子镜头共同满足光学系统的投影要求。
  6. 根据权利要求1所述的所述的微型投射模组,其中,所述显示芯片为一LCoS芯片。
  7. 一种头戴显示设备,其特征在于,包括:
    至少一个根据权利要求1到6中任一项所述的微型投影模组;以及,
    至少一镜片单元、一镜框、二镜腿,以及一计算单元;所述微型投射模组被设置于所述镜腿靠近于所述镜框的区域。8.根据权利要求7所述的头戴显示设备,其中,所述第一投影子镜头的光轴与所述镜腿的延伸方向一致。
  8. 根据权利要求7所述的头戴显示设备,其中,所述至少一镜片单元为光波导,包括一耦入区域与一耦出区域。
  9. 根据权利要求9所述的头戴显示设备,其中,所述第二投影子镜头的光轴与所述耦入区域的中心对准。
PCT/CN2023/092261 2022-05-26 2023-05-05 微型投射模组及头戴显示设备 WO2023226711A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210589708.XA CN117170166A (zh) 2022-05-26 2022-05-26 微型投射模组及头戴显示设备
CN202210589708.X 2022-05-26

Publications (1)

Publication Number Publication Date
WO2023226711A1 true WO2023226711A1 (zh) 2023-11-30

Family

ID=88918366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092261 WO2023226711A1 (zh) 2022-05-26 2023-05-05 微型投射模组及头戴显示设备

Country Status (2)

Country Link
CN (1) CN117170166A (zh)
WO (1) WO2023226711A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101614946A (zh) * 2009-07-13 2009-12-30 杭州晶景光电有限公司 基于微显示芯片的紧凑型光学引擎系统
US20180084232A1 (en) * 2015-07-13 2018-03-22 Michael Belenkii Optical See-Through Head Worn Display
CN109283774A (zh) * 2018-11-09 2019-01-29 广景视睿科技(深圳)有限公司 一种投影镜头及投影系统
CN111435215A (zh) * 2019-01-11 2020-07-21 舜宇光学(浙江)研究院有限公司 一种紧凑的微型投影光引擎
CN112987473A (zh) * 2021-04-13 2021-06-18 杭州灵伴科技有限公司 一种微型投影显示装置以及具有它的ar显示系统
CN113009759A (zh) * 2021-05-10 2021-06-22 杭州灵伴科技有限公司 一种微型投影显示装置及ar显示系统
CN214795441U (zh) * 2021-04-30 2021-11-19 舜宇光学(浙江)研究院有限公司 微型投影光引擎和穿戴式显示设备
CN114063373A (zh) * 2020-08-04 2022-02-18 舜宇光学(浙江)研究院有限公司 微型投影光引擎和穿戴式显示设备及其方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101614946A (zh) * 2009-07-13 2009-12-30 杭州晶景光电有限公司 基于微显示芯片的紧凑型光学引擎系统
US20180084232A1 (en) * 2015-07-13 2018-03-22 Michael Belenkii Optical See-Through Head Worn Display
CN109283774A (zh) * 2018-11-09 2019-01-29 广景视睿科技(深圳)有限公司 一种投影镜头及投影系统
CN111435215A (zh) * 2019-01-11 2020-07-21 舜宇光学(浙江)研究院有限公司 一种紧凑的微型投影光引擎
CN114063373A (zh) * 2020-08-04 2022-02-18 舜宇光学(浙江)研究院有限公司 微型投影光引擎和穿戴式显示设备及其方法
CN112987473A (zh) * 2021-04-13 2021-06-18 杭州灵伴科技有限公司 一种微型投影显示装置以及具有它的ar显示系统
CN214795441U (zh) * 2021-04-30 2021-11-19 舜宇光学(浙江)研究院有限公司 微型投影光引擎和穿戴式显示设备
CN113009759A (zh) * 2021-05-10 2021-06-22 杭州灵伴科技有限公司 一种微型投影显示装置及ar显示系统

Also Published As

Publication number Publication date
CN117170166A (zh) 2023-12-05

Similar Documents

Publication Publication Date Title
JP7161934B2 (ja) 映像表示装置及び映像表示システム
WO2020244621A1 (en) Beam modulation apparatus and projection system
WO2013053171A1 (zh) Dlp微型投影机及其投影方法
US8845105B2 (en) Image projector having two opposing linearly polarized optical systems
TW557402B (en) Optical unit and the projection type projector device using the same
US20030043348A1 (en) Illumination optical system and projector
US20090051878A1 (en) Stereo projection optical system
WO2017101460A1 (zh) 一种合光系统及其投影照明光路
US11333963B2 (en) Illumination system and projection device
US8888290B2 (en) Polarization beam splitters for image projection apparatus
JPH11281930A (ja) 投写型表示装置
US11789282B2 (en) Projection apparatus
US20200033622A1 (en) Projection device
WO2023226711A1 (zh) 微型投射模组及头戴显示设备
CN115996284B (zh) 一种高对比度无热失焦的lcos投影光机
WO2023207954A1 (zh) 微型投射模组及头戴显示设备
CN210465965U (zh) 一种基于pbs分合光的两片式lcd投影机
WO2019024090A1 (zh) 光学成像系统和头戴设备
JPH08220475A (ja) 偏光照明装置およびそれを用いた投写型表示装置
JP2006126787A (ja) 画像表示装置
CN116755255B (zh) 投影显示系统以及投影设备
US20020075454A1 (en) Optical path design of a reflecting liquid crystal projector
JP2024030405A (ja) プロジェクター
JP2024030407A (ja) プロジェクター
JP2024030409A (ja) プロジェクター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810784

Country of ref document: EP

Kind code of ref document: A1