WO2023226582A1 - 圆形盾构隧道衬砌结构变形矫正研究试验装置及试验方法 - Google Patents
圆形盾构隧道衬砌结构变形矫正研究试验装置及试验方法 Download PDFInfo
- Publication number
- WO2023226582A1 WO2023226582A1 PCT/CN2023/084220 CN2023084220W WO2023226582A1 WO 2023226582 A1 WO2023226582 A1 WO 2023226582A1 CN 2023084220 W CN2023084220 W CN 2023084220W WO 2023226582 A1 WO2023226582 A1 WO 2023226582A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- test
- test segment
- deformation correction
- shield tunnel
- wall
- Prior art date
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 116
- 238000012937 correction Methods 0.000 title claims abstract description 75
- 238000011160 research Methods 0.000 title claims abstract description 22
- 238000010998 test method Methods 0.000 title claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims abstract description 59
- 238000005259 measurement Methods 0.000 claims abstract description 28
- 230000007246 mechanism Effects 0.000 claims abstract description 18
- 230000015572 biosynthetic process Effects 0.000 claims description 22
- 230000000694 effects Effects 0.000 claims description 6
- 238000006073 displacement reaction Methods 0.000 claims description 5
- 238000004088 simulation Methods 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
- G01N3/10—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces generated by pneumatic or hydraulic pressure
- G01N3/12—Pressure testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/16—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
- G01N2203/0016—Tensile or compressive
- G01N2203/0019—Compressive
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- shield tunnel construction has been widely used in the construction of urban subway tunnels, underwater tunnels and highway tunnels due to its high cost-effectiveness and small disturbance to the surrounding soil.
- the problem of stacking in the upper part of the shield tunnel often occurs, resulting in excessive deformation of the tunnel structure. Therefore, it is crucial to study the deformation correction of shield tunnel segment structures, and it is necessary to propose a test device for deformation correction of shield tunnel structures.
- the present invention discloses a circular shield tunnel lining structure deformation correction research test device and test method, which can perform ballast simulation and can correct the deformed shield while maintaining the test load on the test segment. Deformation correction of tunnel structure.
- a circular shield tunnel lining structure deformation correction research test device which includes a reaction frame, a load application component, a ground spring unit, a structural deformation correction component and a deformation measurement mechanism.
- the assembled cylindrical test segment is located in the reaction force In the frame, the formation spring unit is located between the outer wall of the test segment and the inner wall of the reaction frame; the structural deformation correction component is located inside the test segment assembled into a cylindrical shape and is connected with the test segment.
- the inner wall of the segment is in contact, and the test segment is provided with a measuring mechanism; the inner wall of the top of the reaction frame is connected to the top of the outer wall of the test segment through a load application assembly;
- the deformation measurement mechanism includes a global measurement camera located on one side of the test segment;
- the measurement mechanism includes a strain gauge, a displacement meter, and a seam meter.
- the arc-shaped loading beam acts on the surface of the test segment through a rubber pad.
- the circular angle of the arc-shaped loading beam is 90°.
- the elastic member is a spring.
- a plurality of formation spring units are arranged on the periphery of the test segment.
- the directions of the formation spring units all point to the center of the circle.
- the arrangement range is the surface of the test segment excluding the range covered by the arc-shaped loading beam.
- the formation spring unit includes a support, a spring and a housing.
- the structural deformation correction component includes a rotatable reaction force support, a jacking head and an arc-shaped top lifting support.
- the reaction force support is connected to the arc-shaped top lifting support through the jacking head.
- the arc-shaped lifting support is in contact with the inner wall of the test tube segments assembled into a cylindrical shape.
- the structural deformation correction component includes a motor connected to the terminal, the motor is connected to the rotation axis, and the terminal controls the motor to drive the reaction support to rotate.
- the rotatable reaction force support includes a rotation axis and a rotation reaction force support.
- the rotation axis is connected to the rotation reaction support.
- the reaction frame includes an outer reaction frame and an arc-shaped inner reaction wall.
- the inner reaction wall is located in the outer reaction frame, and the inner reaction wall is provided with an opening. The opening is used to provide a load application assembly.
- the invention also discloses a research and test method for deformation correction of circular shield tunnel lining structure, which adopts the above-mentioned circular shield tunnel lining structure deformation correction research test device to conduct the test, and the global measurement camera globally measures the deformation of the test segment. Deformation conditions and feedback to the control terminal;
- the control terminal controls the force exerted by the servo hydraulic jack to simulate the specified ground stacking conditions. After the load is stabilized, the range of the servo hydraulic jack is locked and the operation of the servo hydraulic system is maintained;
- the deformation of the test segment is corrected by controlling the force exerted by the terminal adjustment structural deformation correction component and the lift angle. After completing the lift correction, the deformation of the test segment is re-determined; cycle In this operation step, the deformation correction of the test segment is repeated until the expected correction effect is achieved, and the deformation correction of the circular shield tunnel structure is completed.
- the ballast of the test segment can be simulated through the load application component.
- the formation spring module can simulate the formation boundary conditions of the test segment, and can simulate different formation resistances by changing the stiffness of the spring; Under the condition that the component is applied to maintain ballast, the deformation of the test segment is corrected through the structural deformation correction component.
- the structural deformation correction component can adjust the lifting angle of the top by rotating the reaction support, and adjust the strength of the lifting by the jack.
- the device is simple. The method is easy.
- Figure 1 is a schematic diagram of the overall structure of a circular shield tunnel lining structure deformation correction research test device according to an embodiment of the present invention.
- Figure 2 is a schematic structural diagram of a formation spring unit according to an embodiment of the present invention.
- Figure 4 is a schematic structural diagram of a structural deformation correction component according to an embodiment of the present invention. (a) is a front view and (b) is a side view.
- Figure 5 is a structural view of the deformation measuring mechanism according to the embodiment of the present invention.
- a circular shield tunnel lining structural deformation correction research test device includes a reaction frame, a load application component, a ground spring unit 4 and a structural deformation correction component 7.
- the assembled circular test The segment 3 is located in the reaction frame, and the formation spring unit 4 is located between the outer wall of the test segment 3 and the inner wall of the reaction frame; the structural deformation correction component 7 is located inside the test segment 3 and is connected with the test segment.
- the inner wall of the segment 3 is in contact, and the test segment 3 is provided with measuring mechanisms such as strain gauges, displacement meters, and seam gauges; the inner wall of one side of the reaction frame is in contact with the outer wall of the test segment 3 through a load application assembly.
- the deformation measurement mechanism includes a global measurement camera 20, a hanger 22, and a rotating ball 21.
- the hanger 22 is connected to the global measurement camera 20 through the rotating ball 21.
- the global measurement camera 20 is located on one side of the test segment 3. , used to globally monitor the deformation of test segment 3.
- the formation spring unit 4 includes a formation spring unit support 8 , a formation spring and a formation spring unit housing 10 . Different formation resistance effects can be simulated by changing the stiffness of the spring.
- the load application assembly includes a servo hydraulic jack 6 and a combined loading beam 5.
- One end of the servo hydraulic jack 6 is connected to the reaction frame, and the other end is in contact with the outer wall of the test segment 3 through the combined loading beam 5.
- the combined loading beam 5 includes a loading pad 11 and a concave arc-shaped loading beam 13.
- the other end of the servo hydraulic jack 6 is connected to the loading pad 11.
- the loading pad 11 passes
- the spring 12 is connected to a concave arc-shaped loading beam 13, which acts on the surface of the test segment 3 through the first flexible rubber pad 14. Further preferably, the curvature of the concave arc-shaped loading beam 13 is the same as the curvature of the test segment 3 .
- the circular angle of the concave arc-shaped loading beam 13 is 90°.
- the combined loading beam 5 can convert the concentrated load of the servo hydraulic jack 6 into a uniform load acting on the surface of the test segment 3.
- the spring 12 between the loading pad 11 and the concave arc loading beam 13 can maintain the servo hydraulic pressure.
- the test segment 3 can be loaded in the direction of lift correction.
- the structural deformation correction component 7 includes a rotatable reaction force support, a jacking head 17 and an arc-shaped lifting support 18.
- the reaction force support is connected through the jacking head 17 and the arc-shaped lifting support.
- the arc-shaped lifting support 18 is convex and contacts the inner wall of the test segment 3 assembled into a cylindrical shape.
- the rotatable reaction force support The seat includes a rotation axis 15 and a rotation reaction support 16 connected thereto.
- the structural deformation correction component 7 can adjust the position of the lifting force through the rotating reaction support.
- the arc-shaped lifting support 18 is equipped with a second flexible rubber pad 19 at one end, which can evenly distribute the lifting load on the surface of the test segment 3.
- the global measurement camera 20 the servo hydraulic jack 6, the jack 17, strain gauges, displacement meters, seam meters and other measuring mechanisms are electrically connected to the control terminal.
- the invention also discloses a research and test method for deformation correction of circular shield tunnel lining structure, which adopts the above-mentioned circular shield tunnel lining structure deformation correction research test device to conduct the test, and the global measurement camera globally measures the deformation of the test segment. Deformation conditions and feedback to the control terminal;
- the deformation of the test segment is corrected by controlling the force exerted by the terminal adjustment structural deformation correction component and the lift angle. After completing the lift correction, the deformation of the test segment is re-determined; cycle In this operation step, the deformation correction of the test segment is repeated until the expected correction effect is achieved, and the deformation correction of the circular shield tunnel structure is completed.
- the deformation of the test segment is corrected by controlling the force exerted by the terminal adjustment structural deformation correction component and the lift angle. After completing the lift correction, the deformation of the test segment is re-determined; cycle In this operation step, the deformation correction of the test segment is repeated until the expected correction effect is achieved, and the deformation correction of the circular shield tunnel structure is completed.
- the structural deformation correction component includes a terminal connected to the terminal.
- the motor is connected to the rotation axis, and the motor is controlled through the terminal to drive the reaction support to rotate.
- S11 loop the operation steps of S10, repeatedly perform deformation correction of the test segment until the expected correction effect is achieved, and the deformation correction of the circular shield tunnel structure is completed.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
- Lining And Supports For Tunnels (AREA)
Abstract
本发明提供了一种圆形盾构隧道衬砌结构变形矫正研究试验装置及试验方法,该试验装置包括反力架、荷载施加组件、地层弹簧单元、结构变形矫正组件和变形测量机构,拼装的圆形试验管片位于反力架内,所述地层弹簧单元设于所述试验管片的外壁与反力架的内壁之间;所述结构变形矫正组件位于所述试验管片的内部,并与所述试验管片的内壁接触,所述试验管片上设有测量机构;所述反力架的内壁通过荷载施加组件与试验管片的外壁接触;所述变形测量机构包括全局测量摄影机,所述全局测量摄影机位于所述试验管片的一侧。采用本发明的技术方案,可以进行压载模拟,并可以在维持压载的条件下进行试验管片的变形矫正。
Description
本发明属于盾构隧道技术领域,尤其涉及一种圆形盾构隧道衬砌结构变形矫正研究试验装置及试验方法。
近年来,由于盾构法施工隧道具有成本效益高和对周围土体扰动小的特点,被广泛应用在城市地铁隧道、水下隧道和公路隧道的建设中。在长期的运行中,受到邻近工程施工的影响,经常出现盾构隧道上部的堆载的问题,导致隧道结构变形过大。因此,对于盾构隧道管片结构变形矫正的研究至关重要,有必要提出一种盾构隧道结构变形矫正的试验装置。
在现有的盾构管片试验装置及方法中,主要采用千斤项及弹簧模拟荷载工况及地层土体的抗力,主要集中研究不同荷载工况下盾构管片的受力和变形特性。目前尚未详细提出一种专门用于研究盾构管片变形矫正的试验装置及方法。
发明内容
针对以上技术问题,本发明公开了一种圆形盾构隧道衬砌结构变形矫正研究试验装置及试验方法,可以进行压载模拟,并可以在维持对试验管片试验荷载的情况下对变形的盾构隧道结构进行变形矫正。
对此,本发明采用的技术方案为:
一种圆形盾构隧道衬砌结构变形矫正研究试验装置,其包括反力架、荷载施加组件、地层弹簧单元、结构变形矫正组件和变形测量机构,拼装成的圆柱形的试验管片位于反力架内,所述地层弹簧单元设于所述试验管片的外壁与反力架的内壁之间;所述结构变形矫正组件位于拼装成圆柱形所述试验管片的内部,并与所述试验管片的内壁接触,所述试验管片上设有测量机构;所述反力架的项部内壁通过荷载施加组件与所述试验管片的外壁接触项部连接;
所述变形测量机构包括全局测量摄影机,所述全局测量摄影机位于试验管片的一侧;
所述全局测量摄影机、荷载施加组件、结构变形矫正组件、测量机构与控制终端
电连接。采用此技术方案,通过荷载施加组件施加载荷,获得试验管片的承载能力,其中地层弹簧模块可模拟试验管片的地层边界条件,可通过改变弹簧的刚度来模拟不同的地层抗力。另外,可以通过结构变形矫正组件进行矫正,实现维持对试验管片试验施加荷载的情况下对变形的盾构隧道结构进行变形矫正,装置和方法简单易行。
作为本发明的进一步改进,所述测量机构包括应变片、位移计、测缝计。
作为本发明的进一步改进,所述荷载施加组件包括伺服液压千斤项和组合加载梁,所述伺服液压千斤项的一端与反力架连接,另一端通过组合加载梁与试验管片的外壁接触。
作为本发明的进一步改进,所述组合加载梁包括加载垫板和弧形加载梁,所述伺服液压千斤项的另一端与加载垫板连接,所述加载垫板通过弹性构件与弧形加载梁连接,所述弧形加载梁作用在试验管片的表面。进一步优选的,所述弧形加载梁的弧度与试验管片的弧度相同。
作为本发明的进一步改进,所述弧形加载梁通过橡胶垫作用在试验管片的表面。
作为本发明的进一步改进,所述弧形加载梁的圆形角为90°。
作为本发明的进一步改进,所述弹性构件为弹簧。
作为本发明的进一步改进,所述试验管片的外围设置多个地层弹簧单元,所述地层弹簧单元的方向均指向圆心,布置范围为试验管片的表面除去弧形加载梁覆盖的范围。
作为本发明的进一步改进,所述地层弹簧单元包括支座、弹簧和外壳。
作为本发明的进一步改进,所述结构变形矫正组件包括可旋转的反力支座、千斤项和弧形项升支座,所述反力支座通过千斤项与弧形项升支座连接,所述弧形项升支座与拼装成圆柱形的试验管片的内壁接触。进一步的,所述结构变形矫正组件包括与终端连接的电机,电机与旋转轴心连接,通过终端控制电机带动反力支座旋转。
进一步优选的,所述可旋转的反力支座包括旋转轴心和旋转反力支座。所述旋转轴心和旋转反力支座连接。
作为本发明的进一步改进,所述反力架包括外反力支架和圆弧形的内反力墙,所述内反力墙位于外反力支架内,所述内反力墙设有开口,所述开口用于设置荷载施加组件。
本发明还公开了一种圆形盾构隧道衬砌结构变形矫正研究试验方法,其采用如上所述的圆形盾构隧道衬砌结构变形矫正研究试验装置进行试验,全局测量摄影机全局测量试验管片的变形情况,并反馈给控制终端;
所述控制终端控制控制伺服液压千斤项施加的力来模拟制定的地面堆载工况,待荷载施加稳定后,锁定伺服液压千斤项的量程,并维持伺服液压系统的运作;
根据试验管片的变形情况,通过控制终端调整结构变形矫正组件施加的力和项升角度来进行试验管片变形的矫正,完成一次项升矫正后,再重新确定试验管片的变形情况;循环此操作步骤,反复进行试验管片的变形矫正,直至达到预期的矫正效果,完成圆形盾构隧道结构变形矫正。
与现有技术相比,本发明的有益效果为:
采用本发明的技术方案,可以通过荷载施加组件对试验管片进行压载模拟,地层弹簧模块可模拟试验管片的地层边界条件,可通过改变弹簧的刚度来模拟不同的地层抗力;可以在荷载施加组件维持压载的条件下,通过结构变形矫正组件进行试验管片的变形矫正,结构变形矫正组件可通过旋转反力支座调节项升角度,通过千斤项调整项升的力度,装置简单,方法易行。
图1为本发明实施例一种圆形盾构隧道衬砌结构变形矫正研究试验装置的整体结构示意图。
图2为本发明实施例的地层弹簧单元的结构示意图。
图3为本发明实施例的组合加载梁的示意图;其中(a)为正视图,(b)为侧面图。
图4为本发明实施例的结构变形矫正组件的结构示意图;其中(a)为正视图,(b)为侧面图。
图5为本发明实施例的变形测量机构的结构视图。
其中附图标记包括:
1-内反力墙;2-外反力支架;3-试验管片;4-地层弹簧单元;5-组合加载梁;6-伺
服液压千斤项;7-结构变形矫正组件;8-地层弹簧单元支座;9-地层弹簧;10-地层弹簧单元外壳;11-加载垫板;12-弹簧;13-凹形弧形加载梁;14-第一柔性橡胶垫;15-旋转轴心;16-旋转反力支座;17-千斤项;18-弧形项升支座;19-第二柔性橡胶垫;20-全局 测量摄影机;21-旋转滚珠;22-吊架。
1-内反力墙;2-外反力支架;3-试验管片;4-地层弹簧单元;5-组合加载梁;6-伺
服液压千斤项;7-结构变形矫正组件;8-地层弹簧单元支座;9-地层弹簧;10-地层弹簧单元外壳;11-加载垫板;12-弹簧;13-凹形弧形加载梁;14-第一柔性橡胶垫;15-旋转轴心;16-旋转反力支座;17-千斤项;18-弧形项升支座;19-第二柔性橡胶垫;20-全局 测量摄影机;21-旋转滚珠;22-吊架。
下面对本发明的较优的实施例作进一步的详细说明。
如图1~图5所示,一种圆形盾构隧道衬砌结构变形矫正研究试验装置,其包括反力架、荷载施加组件、地层弹簧单元4以及结构变形矫正组件7,拼装的圆形试验管片3位于反力架内,所述地层弹簧单元4设于试验管片3的外壁与反力架的内壁之间;所述结构变形矫正组件7位于试验管片3的内部,并与试验管片3的内壁接触,所述试验管片3上设有应变片、位移计、测缝计等测量机构;所述反力架的一侧内壁通过荷载施加组件与试验管片3的外壁接触;所述变形测量机构包括全局测量摄影机20、吊架22、旋转滚珠21,所述吊架22通过旋转滚珠21与全局测量摄影机20连接,所述全局测量摄影机20位于试验管片3的一侧,用于全局监测试验管片3的变形情况。
具体而言,所述试验管片3的外围设置多个地层弹簧单元4,所述地层弹簧单元4的方向均指向圆心,布置范围为试验管片3的表面除去弧形加载梁覆盖的范围。如图2所示,所述地层弹簧单元4包括地层弹簧单元支座8、地层弹簧和地层弹簧单元外壳10。可通过改变弹簧的刚度来模拟不同的地层抗力效果。
所述荷载施加组件包括伺服液压千斤项6和组合加载梁5,所述伺服液压千斤项6的一端与反力架连接,另一端通过组合加载梁5与试验管片3的外壁接触。如图3所示,所述组合加载梁5包括加载垫板11和凹形弧形加载梁13,所述伺服液压千斤项6的另一端与加载垫板11连接,所述加载垫板11通过弹簧12与凹形弧形加载梁13连接,所述凹形弧形加载梁13通过第一柔性橡胶垫14作用在试验管片3的表面。进一步优选的,所述凹形弧形加载梁13的弧度与试验管片3的弧度相同。所述凹形弧形加载梁13的圆形角为90°。组合加载梁5可将伺服液压千斤项6的集中荷载转化为均布荷载作用在试验管片3表面,加载垫板11和凹形弧形加载梁13之间的弹簧12,能够在维持伺服液压千斤项6施加荷载的情况下能够对试验管片3进行项升矫正的方向加载。
如图4所示,所述结构变形矫正组件7包括可旋转的反力支座、千斤项17和弧形项升支座18,所述反力支座通过千斤项17与弧形项升支座18连接,所述弧形项升支座18为凸形,与拼装成圆柱形的试验管片3的内壁接触。其中,所述可旋转的反力支
座包括旋转轴心15和与之连接的旋转反力支座16。结构变形矫正组件7可通过旋转的反力支座调整项升的位置,弧形项升支座18一端装有第二柔性橡胶垫19,可将项升荷载均匀分布在试验管片3表面。
进一步的,所述反力架包括外反力支架2和圆弧形的内反力墙1,所述内反力墙1位于外反力支架2内,所述内反力墙1设有开口,所述开口用于设置荷载施加组件;
所述全局测量摄影机20、伺服液压千斤项6、千斤项17、应变片、位移计、测缝计等测量机构与控制终端电连接。
本发明还公开了一种圆形盾构隧道衬砌结构变形矫正研究试验方法,其采用如上所述的圆形盾构隧道衬砌结构变形矫正研究试验装置进行试验,全局测量摄影机全局测量试验管片的变形情况,并反馈给控制终端;
所述控制终端控制控制伺服液压千斤项施加的力来模拟制定的地面堆载工况,待荷载施加稳定后,锁定伺服液压千斤项的量程,并维持伺服液压系统的运作;
根据试验管片的变形情况,通过控制终端调整结构变形矫正组件施加的力和项升角度来进行试验管片变形的矫正,完成一次项升矫正后,再重新确定试验管片的变形情况;循环此操作步骤,反复进行试验管片的变形矫正,直至达到预期的矫正效果,完成圆形盾构隧道结构变形矫正。
根据试验管片的变形情况,通过控制终端调整结构变形矫正组件施加的力和项升角度来进行试验管片变形的矫正,完成一次项升矫正后,再重新确定试验管片的变形情况;循环此操作步骤,反复进行试验管片的变形矫正,直至达到预期的矫正效果,完成圆形盾构隧道结构变形矫正。
具体安装实施步骤如下:
S1、进行圆形试验管片的拼装;
S2、进行反力架的安装;
S3、在试验管片上布置应变片、位移计、测缝计等测量装置,连接智能终端控制系统;
S4、在反力架确定的点位上安装地层弹簧单元,完成地层弹簧模块的安装;
S5、进行荷载施加装置的安装,首先在反力架确定点位上安装伺服液压千斤项,在千斤项的另一端安装加载垫板,然后安装弧形加载梁,最后在加载板和弧形加载梁
之间安装弹簧,且然伺服液压千斤项连接控制终端;
S6、进行变形测量机构的安装,依次安装吊架、旋转滚珠和全局测量摄影机,并连接控制终端,确保全局测量摄影机能全局测量试验管片,连接控制终端;
S7、通过控制终端控制伺服液压千斤项施加的力来模拟制定的地面堆载工况,待荷载施加稳定后,锁定伺服液压千斤项的量程,并维持伺服液压系统的运作;
S8、进行隧道结构变形矫正组件的安装,首先安装旋转轴心和可旋转反力支座,然后安装千斤项,最后安装弧形加载梁;进一步的,所述结构变形矫正组件包括与终端连接的电机,电机与旋转轴心连接,通过终端控制电机带动反力支座旋转。
S9、在进行隧道结构变形矫正项升前,先利用全局测量摄影机确定试验管片的最终变形情况,并保存实时监测试验管片的变形;
S10、根据试验管片的变形情况,通过控制终端调整千斤项施加的力和弧形项升支座的项升角度来进行试验管片变形的矫正,完成一次项升矫正后,再重新确定试验管片的变形情况;
S11、循环S10的操作步骤,反复进行试验管片的变形矫正,直至达到预期的矫正效果,完成圆形盾构隧道结构变形矫正。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
Claims (10)
- 圆形盾构隧道衬砌结构变形矫正研究试验装置,其特征在于:其包括反力架、荷载施加组件、地层弹簧单元、结构变形矫正组件和变形测量机构,拼装的圆形试验管片位于反力架内,所述地层弹簧单元设于所述试验管片的外壁与反力架的内壁之间;所述结构变形矫正组件位于所述试验管片的内部,并与所述试验管片的内壁接触,所述试验管片上设有测量机构;所述反力架的内壁通过荷载施加组件与所述试验管片的外壁接触;所述变形测量机构包括全局测量摄影机,所述全局测量摄影机位于试验管片的一侧;所述全局测量摄影机、荷载施加组件、结构变形矫正组件、测量机构与控制终端电连接。
- 根据权利要求1所述的圆形盾构隧道衬砌结构变形矫正研究试验装置,其特征在于:所述荷载施加组件包括伺服液压千斤顶和组合加载梁,所述伺服液压千斤顶的一端与反力架连接,另一端通过组合加载梁与试验管片的外壁接触。
- 根据权利要求2所述的圆形盾构隧道衬砌结构变形矫正研究试验装置,其特征在于:所述测量机构包括应变片、位移计、测缝计。
- 根据权利要求3所述的圆形盾构隧道衬砌结构变形矫正研究试验装置,其特征在于:所述组合加载梁包括加载垫板和弧形加载梁,所述伺服液压千斤顶的另一端与加载垫板连接,所述加载垫板通过弹性构件与弧形加载梁连接,所述弧形加载梁作用在试验管片的表面。
- 根据权利要求4所述的圆形盾构隧道衬砌结构变形矫正研究试验装置,其特征在于:所述弧形加载梁通过橡胶垫作用在试验管片的表面。
- 根据权利要求4所述的圆形盾构隧道衬砌结构变形矫正研究试验装置,其特征在于: 所述弧形加载梁的圆形角为90°。
- 根据权利要求6所述的圆形盾构隧道衬砌结构变形矫正研究试验装置,其特征在于:所述试验管片的外围设置多个地层弹簧单元,所述地层弹簧单元的方向均指向圆心,布置范围为试验管片的表面除去弧形加载梁覆盖的范围。
- 根据权利要求4所述的圆形盾构隧道衬砌结构变形矫正研究试验装置,其特征在于:所述结构变形矫正组件包括可旋转的反力支座、千斤顶和弧形顶升支座,所述反力支座通过千斤顶与弧形顶升支座连接,所述弧形顶升支座与拼装的圆形试验管片的内壁接触。
- 根据权利要求8所述的圆形盾构隧道衬砌结构变形矫正研究试验装置,其特征在于:所述反力架包括外反力支架和圆弧形的内反力墙,所述内反力墙位于外反力支架内,所述内反力墙设有开口,所述开口用于设置荷载施加组件。
- 圆形盾构隧道衬砌结构变形矫正研究试验方法,其特征在于:其采用如权利要求8或9所述的圆形盾构隧道衬砌结构变形矫正研究试验装置进行试验,其包括如下步骤:全局测量摄影机全局测量试验管片的变形情况,并反馈给控制终端;所述控制终端控制控制伺服液压千斤顶施加的力来模拟制定的地面堆载工况,待荷载施加稳定后,锁定伺服液压千斤顶的量程,并维持伺服液压系统的运作;控制终端根据试验管片的变形情况,调整结构变形矫正组件施加的力和顶升角度来进行试验管片变形的矫正,完成一次顶升矫正后,再重新确定试验管片的变形情况;循环此操作步骤,反复进行试验管片的变形矫正,直至达到预期的矫正效果,完成圆形盾构隧道结构变形矫正。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210567674.4A CN114858609A (zh) | 2022-05-24 | 2022-05-24 | 圆形盾构隧道衬砌结构变形矫正研究试验装置及试验方法 |
CN202210567674.4 | 2022-05-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023226582A1 true WO2023226582A1 (zh) | 2023-11-30 |
Family
ID=82639076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/084220 WO2023226582A1 (zh) | 2022-05-24 | 2023-03-28 | 圆形盾构隧道衬砌结构变形矫正研究试验装置及试验方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114858609A (zh) |
WO (1) | WO2023226582A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117907109A (zh) * | 2023-12-27 | 2024-04-19 | 山东大学 | 一种自适应环向力学加载系统 |
CN118583760A (zh) * | 2024-07-31 | 2024-09-03 | 西南交通大学 | 一种海底盾构隧道原型管片结构的腐蚀试验装置及方法 |
CN118624422A (zh) * | 2024-08-15 | 2024-09-10 | 中铁十四局集团房桥有限公司 | 一种盾构隧道衬砌管片抗弯试验用加载设备 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114858609A (zh) * | 2022-05-24 | 2022-08-05 | 深圳大学 | 圆形盾构隧道衬砌结构变形矫正研究试验装置及试验方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100729994B1 (ko) * | 2005-12-20 | 2007-06-20 | 한국건설기술연구원 | 터널 라이닝에 대한 섹션 시험장치 및 시험방법 |
CN108344638A (zh) * | 2018-01-24 | 2018-07-31 | 浙江大学城市学院 | 一种复合灰浆加固既有地铁隧道结构效果的室内测试方法 |
JP2018124144A (ja) * | 2017-01-31 | 2018-08-09 | 株式会社ケー・エフ・シー | ロックボルト載荷試験装置 |
CN109269900A (zh) * | 2018-09-05 | 2019-01-25 | 同济大学 | 一种用于多环盾构隧道结构的地层模拟及加载试验装置 |
CN109556965A (zh) * | 2018-11-26 | 2019-04-02 | 上海市基础工程集团有限公司 | 盾构管片力学性能模拟试验装置 |
CN114858609A (zh) * | 2022-05-24 | 2022-08-05 | 深圳大学 | 圆形盾构隧道衬砌结构变形矫正研究试验装置及试验方法 |
-
2022
- 2022-05-24 CN CN202210567674.4A patent/CN114858609A/zh active Pending
-
2023
- 2023-03-28 WO PCT/CN2023/084220 patent/WO2023226582A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100729994B1 (ko) * | 2005-12-20 | 2007-06-20 | 한국건설기술연구원 | 터널 라이닝에 대한 섹션 시험장치 및 시험방법 |
JP2018124144A (ja) * | 2017-01-31 | 2018-08-09 | 株式会社ケー・エフ・シー | ロックボルト載荷試験装置 |
CN108344638A (zh) * | 2018-01-24 | 2018-07-31 | 浙江大学城市学院 | 一种复合灰浆加固既有地铁隧道结构效果的室内测试方法 |
CN109269900A (zh) * | 2018-09-05 | 2019-01-25 | 同济大学 | 一种用于多环盾构隧道结构的地层模拟及加载试验装置 |
CN109556965A (zh) * | 2018-11-26 | 2019-04-02 | 上海市基础工程集团有限公司 | 盾构管片力学性能模拟试验装置 |
CN114858609A (zh) * | 2022-05-24 | 2022-08-05 | 深圳大学 | 圆形盾构隧道衬砌结构变形矫正研究试验装置及试验方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117907109A (zh) * | 2023-12-27 | 2024-04-19 | 山东大学 | 一种自适应环向力学加载系统 |
CN118583760A (zh) * | 2024-07-31 | 2024-09-03 | 西南交通大学 | 一种海底盾构隧道原型管片结构的腐蚀试验装置及方法 |
CN118624422A (zh) * | 2024-08-15 | 2024-09-10 | 中铁十四局集团房桥有限公司 | 一种盾构隧道衬砌管片抗弯试验用加载设备 |
Also Published As
Publication number | Publication date |
---|---|
CN114858609A (zh) | 2022-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023226582A1 (zh) | 圆形盾构隧道衬砌结构变形矫正研究试验装置及试验方法 | |
US8800346B2 (en) | Wind tunnel balance calibrator | |
CN110450922B (zh) | 一种船体支撑装置及胎架 | |
CN105842096A (zh) | 一种风电导电滑环电接触磨损实验单元 | |
CN106596289A (zh) | 一种金属管纯弯曲变形试验装置及其实验方法 | |
CN107386664A (zh) | 倾斜钢柱对接微调装置及倾斜钢柱对接施工方法 | |
CN218813932U (zh) | 一种组合式结构的桩基抗拔检测装置 | |
CN105421589B (zh) | 一种用于低矮建筑屋盖风压实测研究的房屋 | |
CN217520925U (zh) | 一种用于圆形盾构隧道真圆度矫正研究的试验装置 | |
CN110219249A (zh) | 一种用于单肢斜钢塔的单向竖转装置及其安装方法 | |
CN110939460B (zh) | 一种试验用管片拼装系统 | |
CN115596977B (zh) | 一种用于地质勘探的方位探测装置 | |
CN105951837A (zh) | 适用于水上管桩安装的浮式导向定位装置及其使用方法 | |
CN115506352B (zh) | 一种静压桩垂直度控制装置及其使用方法 | |
CN109537641A (zh) | 锚杆荷载检测装置及使用该装置检测的方法 | |
CN217443059U (zh) | 用于圆形盾构隧道衬砌结构变形矫正研究的试验装置 | |
CN207092161U (zh) | 一种基桩竖向抗压静载试验装置 | |
CN113959622A (zh) | 一种五分量测量固体火箭发动机多分力的试验装置 | |
CN212159332U (zh) | 一种锚杆拉拔试验调平辅助装置 | |
CN207620347U (zh) | 一种爬升式脚手架防坠装置 | |
CN110424478A (zh) | 一种抗浮桩变直径竖向载荷检测方法及装置 | |
CN107015574B (zh) | 多绳牵拉式太阳跟踪系统驱动机构及其设计方法 | |
CN218444394U (zh) | 一种鞭打测试用假人 | |
CN217174399U (zh) | 一种拱肋侧向平衡转体系统 | |
CN116973071A (zh) | 一种风洞模型支撑机构弹性角自动校准装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23810657 Country of ref document: EP Kind code of ref document: A1 |