WO2023226443A1 - 服务小区负荷均衡方法、基站和存储介质 - Google Patents

服务小区负荷均衡方法、基站和存储介质 Download PDF

Info

Publication number
WO2023226443A1
WO2023226443A1 PCT/CN2023/070511 CN2023070511W WO2023226443A1 WO 2023226443 A1 WO2023226443 A1 WO 2023226443A1 CN 2023070511 W CN2023070511 W CN 2023070511W WO 2023226443 A1 WO2023226443 A1 WO 2023226443A1
Authority
WO
WIPO (PCT)
Prior art keywords
serving cell
load
user terminals
cell
neighboring
Prior art date
Application number
PCT/CN2023/070511
Other languages
English (en)
French (fr)
Inventor
周茂惠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023226443A1 publication Critical patent/WO2023226443A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a serving cell load balancing method, a base station and a storage medium.
  • the load on the community will gradually increase; when the system load exceeds the load threshold, the performance of the system will deteriorate sharply or even cause the system to collapse. Therefore, it is particularly important to perform wireless load balancing on the cells.
  • the traditional load balancing method is to trigger the load balancing migration user terminal (User Equipment, UE) process when the serving cell is in a high load state and there are neighboring cells in a low load state.
  • UE User Equipment
  • the loads of the neighboring cells are usually sorted from low to high, and then the specific UE is migrated to the neighboring cell with the lowest load through the load balancing strategy.
  • the main purpose of the embodiments of the present disclosure is to provide a serving cell load balancing method, a base station and a storage medium.
  • embodiments of the present disclosure provide a serving cell load balancing method, which includes: when detecting that any serving cell in the system currently meets the load balancing processing conditions, determining to be migrated based on the load information of the serving cell. a target number of user terminals leaving the serving cell; and moving the target number of user terminals from the serving cell to at least one neighboring cell of the serving cell that is not currently overloaded.
  • embodiments of the present disclosure further provide a base station, which includes a processor, a memory, a computer program stored on the memory and executable by the processor, and a computer program for implementing the processor and the A data bus for connection and communication between the memories, wherein when the computer program is executed by the processor, the above-mentioned serving cell load balancing method is implemented.
  • embodiments of the present disclosure also provide a storage medium for computer-readable storage, wherein the storage medium stores one or more programs, and the one or more programs can be processed by one or more The server executes the steps of any serving cell load balancing method as provided in this disclosure.
  • Figure 1 is a schematic structural block diagram of a base station provided by an embodiment of the present disclosure
  • Figure 2 is a schematic flow chart of a serving cell load balancing method provided by an embodiment of the present disclosure
  • Figure 3 is a schematic diagram of serving cell load balancing provided by an embodiment of the present disclosure
  • Figure 4 is a schematic flow chart of sub-steps for determining a target quantity provided by an embodiment of the present disclosure
  • Figure 5 is a schematic flow chart of sub-steps of migrating user terminals provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic flowchart of another sub-step of migrating a user terminal provided by an embodiment of the present disclosure.
  • the traditional load balancing method cannot quickly reduce the load of the serving cell, and will increase the risk of sudden load increase in neighboring cells, which will lead to frequent balancing and frequent switching of UEs between cells, increasing the entire load balancing processing time.
  • FIG. 1 is a schematic structural block diagram of a base station provided by an embodiment of the present disclosure.
  • the base station 1000 may include a processor 1001 and a memory 1002, where the processor 1001 and the memory 1002 may be connected through a bus, such as an I2C (Inter-integrated Circuit) bus or any other suitable bus.
  • I2C Inter-integrated Circuit
  • the memory 1002 may include non-volatile storage media and internal memory.
  • Non-volatile storage media stores operating systems and computer programs.
  • the computer program includes program instructions, which when executed, can cause the processor 1001 to perform any serving cell load balancing method.
  • the processor 1001 is used to provide computing and control capabilities to support the operation of the entire base station 1000.
  • the processor 1001 is used to run a computer program stored in the memory 1002, and implement the following steps when executing the computer program: when it is detected that any serving cell in the system currently meets the load balancing processing conditions, according to the service
  • the load information of the cell determines the target number of user terminals to be moved out of the serving cell; and moves the target number of user terminals from the serving cell to at least one neighboring cell of the serving cell that is not currently overloaded.
  • the processor 1001 when determining the target number of user terminals to be moved out of the serving cell based on the load information of the serving cell, is configured to: calculate the difference between the load value of the serving cell and the first load threshold value. The target quantity is determined based on the ratio between the load difference and the preset load factor.
  • the processor 1001 when determining the target number based on the ratio between the load difference and the preset load factor, is configured to: determine the upper limit of migration of user terminals corresponding to each neighboring cell. ; Determine the sum of the upper limit of migration corresponding to each neighboring cell as the upper limit of migration corresponding to the service cell; and if the upper limit of migration is less than the ratio, determine the upper limit of migration as the target quantity.
  • the processor 1001 when moving a target number of user terminals from the serving cell to at least one neighboring cell of the serving cell that is not currently overloaded, is configured to: determine the number of user terminals corresponding to each neighboring cell. An upper limit of migration; and based on the upper limit of migration of user terminals corresponding to the neighboring cells, a target number of user terminals are moved from the serving cell to at least one neighboring cell.
  • the load information includes a load value corresponding to at least one load attribute; when the processor 1001 determines the upper limit of migration of user terminals corresponding to each neighboring cell based on the load information of each neighboring cell, Used to achieve: determine the number of immigrants corresponding to each load attribute of each neighbor based on the load value corresponding to each load attribute of each neighbor; and determine the number of immigrants corresponding to all load attributes of each neighbor. The minimum value in is determined as the upper limit of immigration for each neighboring area.
  • the processor 1001 when the processor 1001 moves a target number of user terminals from the serving cell to at least one neighboring cell based on the upper limit of migration of the user terminals corresponding to the neighboring cells, the processor 1001 is configured to: obtain the number of user terminals in the serving cell.
  • the location information of each user terminal based on the location information of each user terminal, the user terminal located in the overlapping coverage area corresponding to the neighboring cell is determined as the candidate user terminal of the corresponding neighboring cell; for each neighboring cell Candidate user terminals are screened to obtain a set of target user terminals corresponding to each neighboring cell, where the number of user terminals in the target user terminal set is not greater than the upper limit of migration of the corresponding neighboring cell; and the number of user terminals corresponding to at least one neighboring cell is The target user terminal set obtains a target number of target user terminals, and migrates the target user terminals to the corresponding neighboring cells.
  • the processor 1001 when the processor 1001 filters candidate user terminals in each neighboring cell and obtains a set of target user terminals corresponding to each neighboring cell, the processor 1001 is configured to: filter the candidate user terminals corresponding to each neighboring cell.
  • the historical migration user terminals and edge user terminals in are eliminated to obtain the target terminal set corresponding to each neighboring cell; among them, the historical migration user terminals are user terminals that migrated from other cells to the serving cell, and the edge user terminals are those whose reference signal received power is less than User terminals with a preset reception power threshold, and/or user terminals with a signal-to-noise ratio smaller than the preset signal-to-noise ratio threshold.
  • the processor 1001 can be a central processing unit (Central Processing Unit, CPU), which can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), or application specific integrated circuits (ASIC). , Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • FIG 2 is a schematic flow chart of a serving cell load balancing method provided by an embodiment of the present disclosure.
  • the serving cell load balancing method can be applied to base stations by determining the target number of user terminals to be moved out of the serving cell based on the load information of the serving cell, and moving the target number of user terminals to at least one neighboring cell that is not overloaded. Achieving precise control of the migration of user terminals to neighboring cells not only improves the efficiency of cell load balancing, but also reduces the risk of sudden load increase in neighboring cells.
  • the serving cell load balancing method includes step S10 and step S20.
  • Step S10 When it is detected that any serving cell in the system currently meets the load balancing processing conditions, determine the target number of user terminals to be moved out of the serving cell based on the load information of the serving cell.
  • Figure 3 is a schematic diagram of serving cell load balancing provided by an embodiment of the present disclosure.
  • the base station determines where to wait based on the load information of the serving cell.
  • the target number of user terminals that move out of the serving cell while ensuring that neighboring cells A and B are not overloaded, the base station can migrate user terminals in the overlapping coverage area of the serving cell and neighboring cell A to neighboring cell A, and Migrate user terminals in the overlapping coverage area of the serving cell and neighboring cell B to neighboring cell B. Therefore, it is possible to accurately control the migration of user terminals to neighboring cells, which not only improves the efficiency of cell load balancing, but also reduces the risk of sudden load increase in neighboring cells.
  • the target number of user terminals to be moved out of the serving cell is determined based on the load information of the serving cell.
  • the load information includes load values.
  • the load information may include a load value corresponding to at least one load attribute.
  • the load value of the load attribute may include but is not limited to the number of radio resource control (Radio Resource Control, RRC) connected users, physical resource block (Physical Resource Block, PRB) utilization, physical downlink control channel (Physical Downlink Control Channel, PDCCH) )'s control channel element (Control Channel Element, CCE) utilization and so on.
  • RRC Radio Resource Control
  • PRB Physical Resource Block
  • PDCCH Physical Downlink Control Channel
  • CCE Control Channel Element
  • the current conditions for load balancing processing of the serving cell include: the load value of the serving cell is greater than the preset first load threshold, and the load value of at least one neighbor cell of the serving cell is less than the preset second load threshold. limit.
  • the first load threshold and the second load threshold can be set according to actual needs, and the values are not limited here.
  • a neighboring cell whose load value is less than the preset second load threshold value is an overloaded neighboring cell.
  • a neighboring cell refers to a cell that is not overloaded and has an overlapping coverage area with the serving cell.
  • Figure 4 is a schematic flowchart of sub-steps for determining a target quantity provided by an embodiment of the present disclosure, which may include steps S101 to S102.
  • Step S101 Calculate the load difference between the load value of the serving cell and the first load threshold value.
  • the load difference between the load value and the first load threshold value is calculated.
  • the load difference between the load value corresponding to each load attribute and the corresponding first load threshold value is calculated.
  • the first load threshold value corresponding to each load attribute is different.
  • Step S102 Determine the target quantity according to the ratio between the load difference and the preset load factor.
  • the conversion formula between the change value of the number of user terminals in the cell and the load change value of the cell is:
  • N UE represents the number of user terminals
  • LB RT represents the load value of the cell
  • LB Thrd represents the load threshold value
  • represents the load factor; among them, the load factor ⁇ can be set according to the actual situation, and the value is not limited here.
  • N UE is defined as the number of user terminals in the cell that decreases or increases when the load value of the cell decreases or increases from LB RT to LB Thrd . Therefore, through the above conversion formula, the load value can be converted into the number of user terminals.
  • the load value of the serving cell can be expressed as LB Rtime_S
  • the first load threshold value can be expressed as LB Thrd_S .
  • the move-out quantity corresponding to each load attribute is calculated separately; the maximum move-out quantity is used as the target quantity.
  • the load value of the load information includes the number of RRC connected users and the PRB utilization
  • it can be calculated when the number of RRC connected users is greater than the corresponding connected user threshold and the PRB utilization is greater than the corresponding utilization threshold.
  • the number of move-outs N UE_S_1 that needs to be moved out when the number of RRC connection users is reduced to the connection user threshold, and the number of move-outs N UE_S_2 that needs to be moved out when the PRB utilization is reduced to the utilization threshold is calculated; then, the move-out will be
  • the maximum value of the number N UE_S_1 and the moving-out number N UE_S_2 is used as the target number of user terminals to be moved out of the serving cell.
  • the connection user threshold value and the utilization threshold value that is, the above-mentioned first threshold value, can be set according to the actual situation, and the value is not limited here.
  • the load information includes load values corresponding to multiple load attributes
  • the number of out-migration corresponding to each load attribute is calculated separately, and the maximum number of out-migration is used as the target number, which can quickly reduce the load of the serving cell and improve the load. Balanced efficiency.
  • the target number of user terminals to be moved out of the serving cell in addition to considering whether the load information includes load values corresponding to multiple load attributes, it is also necessary to consider whether the target number is greater than the serving
  • the upper limit of immigration for all neighboring areas of the community The upper limit of migration refers to the maximum number of user terminals that can migrate to neighboring cells.
  • determining the target number based on the ratio between the load difference and the preset load factor may also include: determining the upper limit of migration of user terminals corresponding to each neighboring cell; The sum of the upper limit of move-in is determined as the upper limit of move-out corresponding to the service area; if the upper limit of move-out is less than the ratio, the upper limit of move-out is determined as the target quantity.
  • determining the upper limit of migration of user terminals corresponding to each neighboring cell may include: calculating the number of migrations corresponding to each load attribute of each neighboring cell, where the number of migrations is The number of user terminals; determine the minimum value of the number of move-ins corresponding to all load attributes of each neighboring cell as the upper limit of move-in for each neighboring cell.
  • the number of immigrants corresponding to each load attribute of the neighboring area can be calculated using the above conversion formula.
  • the calculation process is not limited here.
  • the upper limit of migration corresponding to each neighboring cell of the serving cell can be expressed as ⁇ N UE_N_1 , N UE_N_2 ,...,N UE_N_n ⁇ , where N UE_N_n represents the upper limit of migration of the nth neighboring cell.
  • the sum of the moving-in upper limit values corresponding to each neighboring cell can be determined as the moving-out upper limit value corresponding to the serving cell.
  • the upper limit of migration is compared with the ratio corresponding to the above-mentioned service cell; when the upper limit of migration is less than the ratio, the upper limit of migration is determined as the target quantity.
  • the target quantity can be determined to be 800; if the upper limit of migration is 1,050, the target quantity can be determined to be 1,000.
  • the upper limit of migration is determined as the target quantity, you can This ensures that the relocation of user terminals will not overload neighboring cells, avoid sudden load increases on neighboring cells, and ensure the stability of the system.
  • Step S20 Move the target number of user terminals from the serving cell to at least one neighboring cell of the serving cell that is not currently overloaded.
  • Figure 5 is a schematic flow chart of sub-steps of migrating a user terminal provided by an embodiment of the present disclosure, which may include step S201 and step S202.
  • Step S201 Determine the upper limit of migration of user terminals corresponding to each neighboring cell.
  • the upper limit of migration reported by the base station corresponding to each neighboring cell can be directly obtained, or the migration upper limit value corresponding to each neighboring cell can be calculated based on the load information reported by the base station corresponding to each neighboring cell.
  • Upper limit The embodiment of this disclosure will explain in detail how to calculate the upper limit of migration based on the load information of each neighboring cell.
  • the base station can send a Resource Status Request message (Resource Status Request) to all neighboring cells through the XN link to instruct the neighboring cells to start the cycle of collecting load information and reporting load status information.
  • the neighboring cell can return the load status information through the XN link after receiving the resource status request message.
  • the load status information may include whether the neighboring cell is overloaded, a load value corresponding to at least one load attribute, and an upper limit of migration.
  • the neighboring cells can also periodically send resource status update information (Resource Status Update) to the base station through the XN link.
  • the resource status update information can include information such as the upper limit of migration and the geographical location of the neighboring cells. The geographical location of the neighboring cell is used to determine whether there is an overlapping coverage area between the neighboring cell and the serving cell.
  • determining the upper limit of migration of user terminals corresponding to each neighboring cell based on the load information of each neighboring cell includes: determining the upper limit of migration of user terminals corresponding to each neighboring cell based on the load value corresponding to each load attribute of each neighboring cell.
  • the number of immigrants corresponding to each load attribute of each neighboring cell; the minimum value of the number of immigrants corresponding to all load attributes corresponding to each neighboring cell is determined as the upper limit of immigrants for each neighboring cell.
  • the number of immigrants corresponding to each load attribute of the neighboring area can be calculated using the above conversion formula.
  • the calculation process is not limited here. It is understandable that in order to avoid overloading the neighboring cells after moving in user terminals, the minimum number of moving in users needs to be used as the upper limit of moving in the neighboring cells.
  • the load value corresponding to the load attribute corresponding to neighboring cell A includes the number of connected users of RRC and the utilization rate of PRB
  • N UE_N_1 is calculated.
  • N UE_N_2 is calculated when the utilization rate of the PRB rises to the utilization threshold value.
  • N UE_N_1 the number of user terminals that can be moved in, N UE_N_1 , and the number of user terminals that can be moved in are calculated.
  • the minimum value among the numbers N UE_N_2 is used as the upper limit of migration to neighboring cell A.
  • Step S202 Based on the upper limit of migration of user terminals corresponding to the neighboring cells, move a target number of user terminals from the serving cell to at least one neighboring cell.
  • Figure 6 is a schematic flowchart of another sub-step of migrating a user terminal provided by an embodiment of the present disclosure, which may include steps S2021 to S2024.
  • Step S2021 Obtain the location information of each user terminal in the serving cell.
  • a location report request message (location report request) can be sent to all user terminals in the serving cell to instruct the user terminals to report location information and perform neighbor cell measurements.
  • the user terminal collects location information according to the location report request message and performs neighbor cell measurements; then, reports the location information and measured neighbor cell measurement information to the base station.
  • the location information may include the latitude and longitude of the user terminal.
  • Neighboring cell measurement information may include Reference Signal Receiving Power (RSRP) and Signal to Interference plus Noise Ratio (SINR). It should be noted that the reference signal received power and signal-to-noise ratio are used to determine whether the user terminal is an edge user terminal.
  • RSRP Reference Signal Receiving Power
  • SINR Signal to Interference plus Noise Ratio
  • candidate user terminals in neighboring cells can be subsequently determined based on the location information of the user terminal.
  • Step S2022 Based on the location information of each user terminal, determine the user terminal located in the overlapping coverage area corresponding to the neighboring cell as the candidate user terminal of the corresponding neighboring cell.
  • user terminals located in the overlapping coverage area corresponding to neighboring cell A may be determined as candidate user terminals of neighboring cell A.
  • user terminals located in the overlapping coverage area corresponding to neighboring cell B may be determined as candidate user terminals of neighboring cell B.
  • Step S2023 Screen candidate user terminals in each neighboring cell to obtain a target user terminal set corresponding to each neighboring cell, where the number of user terminals in the target user terminal set is not greater than the upper limit of relocation of the corresponding neighboring cell.
  • the migration conditions include user terminals that are not migrating from other neighboring cells to the serving cell.
  • UE group_n represents the number of user terminals in the target user terminal set corresponding to the n-th neighboring cell, and UE group_n must be less than or equal to the upper limit of relocation of the neighboring cell, N UE_N_n .
  • filtering candidate user terminals in each neighboring cell to obtain a set of target user terminals corresponding to each neighboring cell may include: migrating the historical migration user terminals in the candidate user terminals corresponding to each neighboring cell and Edge user terminals are eliminated to obtain the target terminal set corresponding to each neighboring cell; among them, historical migration user terminals are user terminals that migrated from other cells to the serving cell, and edge user terminals are those whose reference signal received power is less than the preset received power threshold. User terminals, and/or user terminals whose signal-to-noise ratio is less than the preset signal-to-noise ratio threshold.
  • the preset receiving power threshold and the preset signal-to-noise ratio threshold can be set according to actual conditions, and the values are not limited here.
  • edge user terminals refer to user terminals located at the edge of the overlapping coverage area between the serving cell and neighboring cells. User terminals located at edge locations receive poor signal quality, which can be measured by reference signal received power and/or signal-to-noise ratio. It is understandable that if a user terminal in an edge location is moved to a neighboring area, due to poor signal quality received by the user terminal, it is easy to fail to move out, causing the user to drop the network and reducing the user experience. Spend.
  • Step S2024 Obtain a target number of target user terminals from a set of target user terminals corresponding to at least one neighboring cell, and migrate the target user terminals to the corresponding neighboring cell.
  • the load value of the serving cell includes the number of connected users of RRC, and the first load threshold is 60%.
  • the proportion of the number of connected users is 20%; when the number of user terminals connected to the serving cell is 2800, the proportion of connected users is 65%.
  • the target number N UE_S of user terminals to be moved out of the serving cell can be calculated:
  • neighbor cell A can be calculated , the upper limit of migration to neighboring area B and neighboring area C is:
  • the target number N UE_S of user terminals to be moved out of the serving cell is 285
  • the number of user terminals that need to move into neighboring cell A, neighboring cell B and neighboring cell C is 285, where, neighboring cell A
  • the immigration upper limits of neighboring area B and neighboring area C are 124, 105, and 68 respectively.
  • the number of user terminals in the target user terminal set of neighboring cell A, neighboring cell B and neighboring cell C is 117, 107 and 68 respectively.
  • 117 user terminals in the target user terminal set of neighboring cell A can be determined as the target user terminals
  • the 117 user terminals in the target user terminal set of neighboring cell B can be determined as the target user terminals.
  • 105 user terminals in the target user terminal set are determined as target user terminals
  • 63 user terminals in the target user terminal set in neighboring cell C are determined as target user terminals.
  • 117 user terminals in the target user terminal set of neighboring cell A can also be determined as target user terminals
  • 100 user terminals in the target user terminal set of neighboring cell B can be determined as target user terminals.
  • the 68 user terminals in the target user terminal set are determined as target user terminals.
  • the migration method of migrating the target user terminal to the corresponding neighboring cell is not limited here.
  • a load balancing (Load Balance, LB) measurement instruction can be sent to the target user terminal.
  • the target user terminal uploads the measurement report data (Measurement Report, MR) to the base station according to the LB measurement instruction.
  • the base station initiates an initiation to the corresponding neighboring cell based on the measurement report data.
  • Handover request to migrate the target user terminal to a neighboring cell For another example, a cell switching instruction is sent to the target user terminal, and the target user terminal switches to a corresponding neighboring cell according to the cell switching instruction.
  • the migration of user terminals to neighboring cells can be accurately controlled, which can avoid moving too many user terminals into neighboring cells. It improves the efficiency of cell load balancing and reduces the risk of sudden load increase in neighboring cells.
  • the serving cell load balancing method, base station and storage medium provided by the above embodiments determine the location of the user terminal to be moved out of the serving cell based on the load information of the serving cell when it is detected that any serving cell in the system currently meets the load balancing processing conditions.
  • the target number can be accurately converted to the target number of user terminals that can move out of the service cell based on the load information when the serving cell is overloaded, thereby quickly reducing the load of the serving cell; by including the load information corresponding to multiple load attributes When the load value is calculated, the number of out-migration corresponding to each load attribute is calculated separately, and the maximum number of out-migration is used as the target number, which can quickly reduce the load of the serving cell and improve the efficiency of load balancing; by determining each neighboring cell
  • the corresponding upper limit of relocation of user terminals can prevent the number of user terminals moving into neighboring cells from exceeding the upper limit of relocation and causing a sudden increase in load on neighboring cells; by dividing the number of candidate user terminals corresponding to each neighboring cell Removing historical migration user terminals and edge user terminals can reduce the failure of user terminals that do not meet the requirements during migration, effectively improving the success rate of migration; by moving the target number of user terminals from the serving cell to at least one current location in the serving cell Neigh
  • Embodiments of the present disclosure also provide a storage medium for computer-readable storage.
  • the storage medium stores one or more programs.
  • the one or more programs can be executed by one or more processors to implement the embodiments of the present disclosure.
  • the program is loaded by the processor and can perform the following steps: when it is detected that any serving cell in the system currently meets the load balancing processing conditions, determine the target number of user terminals to be moved out of the serving cell based on the load information of the serving cell. ;Move the target number of user terminals from the serving cell to at least one neighboring cell of the serving cell that is not currently overloaded.
  • the storage medium may be an internal storage unit of the base station in the aforementioned embodiment, such as a hard disk or memory of the base station.
  • the storage medium can also be an external storage device of the base station, such as a plug-in hard drive equipped on the base station, a Smart Media Card (SMC), a Secure Digital (SD) card, a Flash Card, etc.
  • SMC Smart Media Card
  • SD Secure Digital
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes volatile and nonvolatile media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. removable, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other magnetic storage devices, or may Any other medium used to store the desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .
  • Embodiments of the present disclosure provide a serving cell load balancing method, a base station and a storage medium.
  • the user to be moved out of the serving cell is determined based on the load information of the serving cell.
  • the target number of terminals can be accurately converted to the target number of user terminals that can move out of the service cell based on the load information when the serving cell is overloaded, thereby quickly reducing the load of the serving cell; by moving the target number of user terminals from The serving cell is moved to at least one neighboring cell of the serving cell that is not currently overloaded, so as to accurately control the migration of user terminals to neighboring cells. This can avoid moving too many user terminals into neighboring cells, which not only improves the efficiency of cell load balancing, but also It also reduces the risk of sudden load increases in neighboring areas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种服务小区负荷均衡方法、基站和存储介质,属于通信技术领域。该方法包括:在检测到系统中任一服务小区当前符合负荷均衡处理条件的情况下,根据服务小区的负荷信息,确定待迁出服务小区的用户终端的目标数量;将目标数量的用户终端从服务小区迁至服务小区的至少一个当前未超负荷的邻区。

Description

服务小区负荷均衡方法、基站和存储介质
相关申请的交叉引用
本公开要求享有2022年05月27日提交的名称为“服务小区负荷均衡方法、基站和存储介质”的中国专利申请CN202210590904.9的优先权,其全部内容通过引用并入本公开中。
技术领域
本公开涉及通信技术领域,尤其涉及一种服务小区负荷均衡方法、基站和存储介质。
背景技术
随着小区的用户数、业务数目的增加,小区的负荷会逐渐增加;当系统的负荷超过负荷门限值后,会导致系统的性能急剧变差甚至引起系统崩溃。因此,对小区进行无线负荷均衡尤为重要。
传统的负荷均衡方式是在服务小区处于高负荷状态且存在低负荷状态的邻区时,触发负荷均衡迁移用户终端(User Equipment,UE)流程。其中,在选择与服务小区进行负荷均衡的邻区时,通常将邻区的负荷由低到高进行排序,然后通过负荷均衡策略将特定UE迁移至负荷最低的邻区。
发明内容
本公开实施例的主要目的在于提供一种服务小区负荷均衡方法、基站和存储介质。
第一方面,本公开实施例提供一种服务小区负荷均衡方法,包括:在检测到系统中任一服务小区当前符合负荷均衡处理条件的情况下,根据所述服务小区的负荷信息,确定待迁出所述服务小区的用户终端的目标数量;将所述目标数量的用户终端从所述服务小区迁至所述服务小区的至少一个当前未超负荷的邻区。
第二方面,本公开实施例还提供一种基站,所述基站包括处理器、存储器、存储在所述存储器上并可被所述处理器执行的计算机程序以及用于实现所述处理器和所述存储器之间的连接通信的数据总线,其中,所述计算机程序被所述处理器执行时实现如上述的服务小区负荷均衡方法。
第三方面,本公开实施例还提供一种存储介质,用于计算机可读存储,其中,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如本公开说明书提供的任一项服务小区负荷均衡方法的步骤。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限 制本公开。
附图说明
为了更清楚地说明本公开实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种基站的结构示意性框图;
图2是本公开实施例提供的一种服务小区负荷均衡方法的示意性流程图;
图3是本公开实施例提供的一种服务小区负荷均衡的示意图;
图4是本公开实施例提供的一种确定目标数量的子步骤的示意性流程图;
图5是本公开实施例提供的一种迁移用户终端的子步骤的示意性流程图;以及
图6是本公开实施例提供的另一种迁移用户终端的子步骤的示意性流程图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
应当理解,在此本公开说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本公开。如在本公开说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
传统的负荷均衡方式无法实现快速降低服务小区的负荷,并且会增加邻区负荷突增的风险,进而会导致UE在小区间频繁均衡、频繁切换,增加了整个负荷均衡处理时长。
因此,如何提高服务小区负荷均衡的效率和降低邻区负荷突增的风险成为亟需解决的问题。
请参阅图1,图1是本公开实施例提供的一种基站的结构示意性框图。如图1所示,基站1000可以包括处理器1001和存储器1002,其中,处理器1001以及存储器1002可以通过总线连接,该总线比如为I2C(Inter-integrated Circuit)总线等任意适用的总线。
其中,存储器1002可以包括非易失性存储介质和内存储器。非易失性存储介质可存储 操作系统和计算机程序。该计算机程序包括程序指令,该程序指令被执行时,可使得处理器1001执行任意一种服务小区负荷均衡方法。
其中,处理器1001用于提供计算和控制能力,支撑整个基站1000的运行。
在一些实施例中,处理器1001用于运行存储在存储器1002中的计算机程序,并在执行计算机程序时实现如下步骤:当检测到系统中任一服务小区当前符合负荷均衡处理条件时,根据服务小区的负荷信息,确定待迁出服务小区的用户终端的目标数量;以及将目标数量的用户终端从服务小区迁至服务小区的至少一个当前未超负荷的邻区。
在一些实施例中,处理器1001在实现根据服务小区的负荷信息,确定待迁出服务小区的用户终端的目标数量时,用于实现:计算服务小区的负荷值与第一负荷门限值之间的负荷差值;根据负荷差值与预设的负荷因子之间的比值,确定目标数量。
在一些实施例中,处理器1001在实现根据负荷差值与预设的负荷因子之间的比值,确定目标数量时,用于实现:确定每个邻区对应的用户终端的迁入上限值;将各个邻区对应的迁入上限值之和,确定为服务小区对应的迁出上限值;以及若迁出上限值小于比值,则将迁出上限值确定为目标数量。
在一些实施例中,处理器1001在实现将目标数量的用户终端从服务小区迁至服务小区的至少一个当前未超负荷的邻区时,用于实现:确定每个邻区对应的用户终端的迁入上限值;以及基于邻区对应的用户终端的迁入上限值,将目标数量的用户终端从服务小区迁至至少一个邻区。
在一些实施例中,负荷信息包括至少一种负荷属性对应的负荷值;处理器1001在实现根据每个邻区的负荷信息,确定每个邻区对应的用户终端的迁入上限值时,用于实现:根据每个邻区的每种负荷属性对应的负荷值,确定每个邻区的每种负荷属性对应的迁入数量;以及将每个邻区对应的全部负荷属性的迁入数量中的最小值,确定为每个邻区的迁入上限值。
在一些实施例中,处理器1001在实现基于邻区对应的用户终端的迁入上限值,将目标数量的用户终端从服务小区迁至至少一个邻区时,用于实现:获取服务小区中的每个用户终端的位置信息;基于每个用户终端的位置信息,将位于邻区对应的交叠覆盖区域内的用户终端,确定为对应的邻区的候选用户终端;对每个邻区的候选用户终端进行筛选,获得每个邻区对应的目标用户终端集合,其中,目标用户终端集合中的用户终端数量不大于对应的邻区的迁入上限值;以及从至少一个邻区对应的目标用户终端集合获取目标数量的目标用户终端,并将目标用户终端迁移至对应的邻区。
在一些实施例中,处理器1001在实现对每个邻区的候选用户终端进行筛选,获得每个邻区对应的目标用户终端集合时,用于实现:将每个邻区对应的候选用户终端中的历史迁 移用户终端以及边缘用户终端剔除,获得每个邻区对应的目标终端集合;其中,历史迁移用户终端是从其它小区迁移至服务小区的用户终端,边缘用户终端为参考信号接收功率小于预设的接收功率阈值的用户终端,和/或信噪比小于预设的信噪比阈值的用户终端。
处理器1001可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
下面结合附图,对本公开的一些实施例作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图2,图2是本公开实施例提供的一种服务小区负荷均衡方法的示意性流程图。该服务小区负荷均衡方法可应用于基站中,通过根据服务小区的负荷信息确定待迁出服务小区的用户终端的目标数量,并将目标数量的用户终端迁至至少一个未超负荷的邻区,实现精准地控制用户终端迁移至邻区,不仅提高了小区负荷均衡的效率,而且还降低了邻区负荷突增的风险。该服务小区负荷均衡方法包括步骤S10和步骤S20。
步骤S10、当检测到系统中任一服务小区当前符合负荷均衡处理条件时,根据服务小区的负荷信息,确定待迁出服务小区的用户终端的目标数量。
请参见图3,图3是本公开实施例提供的一种服务小区负荷均衡的示意图。如图3所示,服务小区与邻区A之间存在交叠覆盖区域,服务小区与邻区B之间存在交叠覆盖区域;当服务小区超负荷时,基站根据服务小区的负荷信息确定待迁出服务小区的用户终端的目标数量;在保证邻区A和B不超负荷的情况下,基站可以将服务小区与邻区A存在交叠覆盖区域内的用户终端迁移至邻区A,以及将服务小区与邻区B存在交叠覆盖区域内的用户终端迁移至邻区B。从而,可以实现精准地控制用户终端迁移至邻区,不仅提高了小区负荷均衡的效率,而且还降低了邻区负荷突增的风险。
示例性的,当检测到通信网络系统中有服务小区符合负荷均衡处理条件时,根据该服务小区的负荷信息,确定待迁出该服务小区的用户终端的目标数量。其中,负荷信息包括负荷值。
需要说明的是,在本公开实施例中,负荷信息可以包括至少一个负荷属性对应的负荷值。其中,负荷属性的负荷值可以包括但不限于无线资源控制(Radio Resource Control,RRC)连接用户数、物理资源块(Physical Resource Block,PRB)利用率、物理下行控制信道(Physical Downlink Control Channel,PDCCH)的控制信道元(Control Channl Element,CCE)利用率等等。例如,可以将RRC连接用户数作为服务小区的负荷值,也可以将RRC 连接用户数和PRB利用率作为服务小区的负荷值。
在一些实施例中,服务小区当前符合负荷均衡处理条件包括:服务小区的负荷值大于预设的第一负荷门限值,且服务小区至少一个邻区的负荷值小于预设的第二负荷门限值。其中,第一负荷门限值、第二负荷门限值可以根据实际需求设定,数值在此不作限定。负荷值小于预设的第二负荷门限值的邻区,即为超负荷的邻区。
需要说明的是,邻区是指未超负荷且与服务小区存在交叠覆盖区域的小区。
通过当检测到系统中任一服务小区当前符合负荷均衡处理条件时,根据服务小区的负荷信息确定待迁出服务小区的用户终端的目标数量,可以实现在服务小区超负荷时,根据负荷信息精准地换算为能迁出服务小区的用户终端的目标数量,进而可以快速降低服务小区的负荷;
请参阅图4,图4是本公开实施例提供的一种确定目标数量的子步骤的示意性流程图,可以包括步骤S101至步骤S102。
步骤S101、计算服务小区的负荷值与第一负荷门限值之间的负荷差值。
示例性的,当服务小区的负荷信息包括一种负荷属性对应的负荷值时,计算该负荷值与第一负荷门限值之间的负荷差值。当服务小区的负荷信息包括多种负荷属性对应的负荷值时,计算每种负荷属性对应的负荷值与对应的第一负荷门限值之间的负荷差值。
需要说明的是,当有多种负荷属性时,每个负荷属性对应的第一负荷门限值是不同的。
步骤S102、根据负荷差值与预设的负荷因子之间的比值,确定目标数量。
在本公开实施例中,小区中用户终端的数量变化值与小区的负荷变化值之间的转换公式为:
Figure PCTCN2023070511-appb-000001
式中,N UE表示用户终端的数量;LB RT表示小区的负荷值;LB Thrd表示负荷门限值;τ表示负荷因子;其中,负荷因子τ可以根据实际情况设定,数值在此不作限定。需要说明的是,N UE定义为小区的负荷值由LB RT下降或上升至LB Thrd时,小区内用户终端减少或增加的数量。因此,通过上述转换公式,可以实现将负荷值转换为用户终端的数量。
示例性的,服务小区的负荷值可以表示为LB Rtime_S,第一负荷门限值可以表示为LB Thrd_S,通过上述转换公式,可以计算出服务小区的目标数量N UE_S
在另一些实施例中,在确定目标数量时,若负荷信息包括多种负荷属性对应的负荷值,则分别计算每个负荷属性对应的迁出数量;将最大的迁出数量作为目标数量。
示例性的,当负荷信息的负荷值包括RRC连接用户数和PRB利用率时,可以在RRC连接用户数大于对应的连接用户门限值和PRB利用率大于对应的利用率门限值时,计算RRC连接用户数降低至连接用户门限值时需要迁出的迁出数量N UE_S_1,以及计算PRB利 用率降低至利用率门限值时需要迁出的迁出数量N UE_S_2;然后,将迁出数量N UE_S_1和迁出数量N UE_S_2中的最大值作为待迁出服务小区的用户终端的目标数量。其中,连接用户门限值与利用率门限值,即上述的第一门限值,可以根据实际情况设置,数值在此不作限定。
通过在负荷信息包括多种负荷属性对应的负荷值时,分别计算每个负荷属性对应的迁出数量,并将最大的迁出数量作为目标数量,可以实现快速降低服务小区的负荷,提高了负荷均衡的效率。
需要说明的是,在本公开实施例中,在确定待迁出服务小区的用户终端的目标数量时,除了考虑负荷信息是否包括多种负荷属性对应的负荷值,还需要考虑目标数量是否大于服务小区的全部邻区的迁入上限值。其中,迁入上限值是指能迁入邻区的用户终端的最大值。
在一些实施例中,根据负荷差值与预设的负荷因子之间的比值,确定目标数量,还可以包括:确定每个邻区对应的用户终端的迁入上限值;将各个邻区对应的迁入上限值之和,确定为服务小区对应的迁出上限值;若迁出上限值小于比值,则将迁出上限值确定为目标数量。
示例性的,确定每个邻区对应的用户终端的迁入上限值,可以包括:计算每个邻区的每种负荷属性对应的迁入数量,其中,迁入数量为迁入邻区的用户终端的数量;将每个邻区的全部负荷属性对应的迁入数量中的最小值,确定为每个邻区的迁入上限值。
其中,计算邻区的每种负荷属性对应的迁入数量,可以采用上述的转换公式进行计算,计算过程,在此不作限定。
可以理解的是,为了避免邻区在迁入用户终端后超负荷,因此需要将最小的迁入数量作为邻区的迁入上限值。
示例性的,服务小区的各个邻区对应的迁入上限值可以表示为{N UE_N_1,N UE_N_2,…,N UE_N_n},其中,N UE_N_n表示第n个邻区的迁入上限值。可以将各个邻区对应的迁入上限值的总和,确定为服务小区对应的迁出上限值。然后,将迁出上限值和上述服务小区对应的比值进行比对;当迁出上限值小于比值时,则将迁出上限值确定为目标数量。
例如,当比值为1000时,若迁出上限值为800,则可以确定目标数量为800;若迁出上限值为1050,则可以确定目标数量为1000。
通过将各个邻区对应的迁入上限值之和,确定为服务小区对应的迁出上限值,并在迁出上限值小于比值时,将迁出上限值确定为目标数量,可以确保迁入用户终端后不会使得邻区超负荷,避免对邻区造成负荷突增,保证了系统的稳定性。
步骤S20、将目标数量的用户终端从服务小区迁至服务小区的至少一个当前未超负荷的邻区。
请参阅图5,图5是本公开实施例提供的一种迁移用户终端的子步骤的示意性流程图,可以包括步骤S201和步骤S202。
步骤S201、确定每个邻区对应的用户终端的迁入上限值。
在本公开实施例中,可以直接获取每个邻区对应的基站上报的迁入上限值,也可以根据每个邻区对应的基站上报的负荷信息,计算得到每个邻区对应的迁入上限值。本公开实施例将对如何根据每个邻区的负荷信息计算迁入上限值进行详细说明。
需要说明的是,基站可以通过XN链路向所有邻区发送资源状态请求消息(Resource Status Request),以指示邻区启动采集负荷信息和报告负荷状态信息的周期。邻区可以在接收到资源状态请求消息之后,通过XN链路返回负荷状态信息。其中,负荷状态信息可以包括邻区是否超负荷、至少一种负荷属性对应的负荷值以及迁入上限值。此外,邻区还可以通过XN链路周期性地向基站发送资源状态更新信息(Resource Status Update),其中,资源状态更新信息可以包括迁入上限值和邻区的地理位置等信息。邻区的地理位置用于确定邻区是否与服务小区存在交叠覆盖区域。
在一些实施例中,根据每个邻区的负荷信息,确定每个邻区对应的用户终端的迁入上限值,包括:根据每个邻区的每种负荷属性对应的负荷值,确定每个邻区的每种负荷属性对应的迁入数量;将每个邻区对应的全部负荷属性的迁入数量中的最小值,确定为每个邻区的迁入上限值。
其中,计算邻区的每种负荷属性对应的迁入数量,可以采用上述的转换公式进行计算,计算过程,在此不作限定。可以理解的是,为了避免邻区在迁入用户终端后超负荷,因此需要将最小的迁入数量作为邻区的迁入上限值。
例如,对于邻区A,当邻区A对应的负荷属性对应的负荷值包括RRC的连接用户数和PRB的利用率时,可以计算RRC的连接用户数升高至连接用户数门限值时能迁入的用户终端的迁入数量N UE_N_1,计算PRB的利用率升高至利用率门限值时能迁入的用户终端的迁入数量N UE_N_2;然后,将迁入数量N UE_N_1和迁入数量N UE_N_2中的最小值作为邻区A的迁入上限值。
通过确定每个邻区对应的用户终端的迁入上限值,可以防止迁入邻区的用户终端的数量超过迁入上限值,对邻区造成负荷突增。
步骤S202、基于邻区对应的用户终端的迁入上限值,将目标数量的用户终端从服务小区迁至至少一个邻区。
请参阅图6,图6是本公开实施例提供的另一种迁移用户终端的子步骤的示意性流程图,可以包括步骤S2021至步骤S2024。
步骤S2021、获取服务小区中的每个用户终端的位置信息。
示例性的,可以向服务小区中的所有用户终端发送位置报告请求消息(location report request),以指示用户终端上报位置信息和进行邻区测量。用户终端根据位置报告请求消息采集位置信息,并进行邻区测量;然后,将位置信息和测量得到的邻区测量信息上报至基站。
其中,位置信息可以包括用户终端的经纬度。邻区测量信息可以包括参考信号接收功率(Reference Signal Receiving Power,RSRP)和信噪比(Signal to Interference plus Noise Ratio,SINR)。需要说明的是,参考信号接收功率和信噪比用于确定用户终端是否为边缘用户终端。
通过获取服务小区中的每个用户终端的位置信息,后续可以根据用户终端的位置信息,确定邻区的候选用户终端。
步骤S2022、基于每个用户终端的位置信息,将位于邻区对应的交叠覆盖区域内的用户终端,确定为对应的邻区的候选用户终端。
示例性的,对于邻区A,可以将位于邻区A对应的交叠覆盖区域内的用户终端,确定为邻区A的候选用户终端。
示例性的,对于邻区B,可以将位于邻区B对应的交叠覆盖区域内的用户终端,确定为邻区B的候选用户终端。
步骤S2023、对每个邻区的候选用户终端进行筛选,获得每个邻区对应的目标用户终端集合,其中,目标用户终端集合中的用户终端数量不大于对应的邻区的迁入上限值。
需要说明的是,在将候选用户终端迁移至对应的邻区之前,需要将其中的不满足迁移条件的用户终端以及信号较差的用户终端剔除。其中,迁移条件包括不是从其它邻区迁移至服务小区的用户终端。
示例性的,在筛选用户终端时,需要确保目标用户终端集合中的用户终端数量不大于对应的邻区的迁入上限值,即需要满足如下条件:
{UE group_1,UE group_2,…,UE group_n|UE group_n≤N UE_N_n}
其中,UE group_n表示第n个邻区对应的目标用户终端集合中的用户终端的数量,UE group_n必须小于等于该邻区迁入上限值N UE_N_n
在一些实施例中,对每个邻区的候选用户终端进行筛选,获得每个邻区对应的目标用户终端集合,可以包括:将每个邻区对应的候选用户终端中的历史迁移用户终端以及边缘用户终端剔除,获得每个邻区对应的目标终端集合;其中,历史迁移用户终端是从其它小区迁移至服务小区的用户终端,边缘用户终端为参考信号接收功率小于预设的接收功率阈值的用户终端,和/或信噪比小于预设的信噪比阈值的用户终端。
示例性的,预设的接收功率阈值、预设的信噪比阈值可以根据实际情况设置,数值在 此不作限定。需要说明的是,边缘用户终端是指位于服务小区与邻区之间的交叠覆盖区域的边缘位置的用户终端。位于边缘位置的用户终端接收到的信号质量较差,可以用参考信号接收功率和/或信噪比来衡量。可以理解的是,若将边缘位置的用户终端迁移至邻区,则由于用户终端接收到的信号质量较差,在迁出时很容易出现迁出失败,导致用户掉网,降低了用户的体验度。
通过将每个邻区对应的候选用户终端中的历史迁移用户终端以及边缘用户终端剔除,可以减少不符合要求的用户终端在迁移时出现失败,有效提高了迁移的成功率。
步骤S2024、从至少一个邻区对应的目标用户终端集合获取目标数量的目标用户终端,并将目标用户终端迁移至对应的邻区。
需要说明的是,在本公开实施例中,在将邻区对应的目标用户终端集合获取目标数量的目标用户终端时,可以采用多种方式实现,在此不作限定。
在一些实施方式中,对于服务小区的负荷值包括RRC的连接用户数、第一负荷门限值为60%,当服务小区接入的用户终端的数量为240时,连接用户数的占比为20%;当服务小区接入的用户终端的数量为2800时,连接用户数的占比为65%。此时,可以根据上述的转换公式:
Figure PCTCN2023070511-appb-000002
可以计算待迁出服务小区的用户终端的目标数量N UE_S
N UE_S=(65%-60%)×(2800-240)÷(65%-20%)=285
式中,(65%-20%)÷(2800-240)作为转换公式中的负荷因子τ。
若检测邻区A、邻区B和邻区C的用户终端的数量分别为330、470、400,连接用户数的占比分别为40%、45%、47%,则可以计算出邻区A、邻区B和邻区C的迁入上限值为:
N UE_N1=330×(55%-40%)÷40%=124
N UE_N2=470×(55%-45%)÷45%=105
N UE_N3=400×(55%-47%)÷47%=68
示例性的,当待迁出服务小区的用户终端的目标数量N UE_S为285时,需要迁入邻区A、邻区B和邻区C的用户终端的数量为285,其中,邻区A、邻区B和邻区C的迁入上限值分别为124、105、68。
示例性的,当对邻区A、邻区B和邻区C的候选用户终端进行筛选时,若邻区A对应的候选用户终端中剔除历史迁移用户终端以及边缘用户终端后得到的117个用户终端,则可以确定邻区A、邻区B和邻区C的目标用户终端集合中的用户终端的数量分别为117、 107、68。
示例性的,在从邻区对应的目标用户终端集合获取目标数量的目标用户终端时,可以将邻区A的目标用户终端集合中的117个用户终端确定为目标用户终端,将邻区B的目标用户终端集合中的105个用户终端确定为目标用户终端,邻区C的目标用户终端集合中的63个用户终端确定为目标用户终端。当然,还可以将邻区A的目标用户终端集合中的117个用户终端确定为目标用户终端,将邻区B的目标用户终端集合中的100个用户终端确定为目标用户终端,邻区C的目标用户终端集合中的68个用户终端确定为目标用户终端。
在本公开实施例中,将目标用户终端迁移至对应的邻区的迁移方式,在此不作限定。例如,可以发送负荷均衡(Load Balance,LB)测量指令至目标用户终端,目标用户终端根据LB测量指令上传测量报告数据(Measurement Report,MR)至基站,基站根据测量报告数据向对应的邻区发起切换请求,以将目标用户终端迁移至邻区。又例如,下发小区切换指令至目标用户终端,由目标用户终端根据小区切换指令切换至对应的邻区中。
通过将目标数量的用户终端从服务小区迁至服务小区的至少一个当前未超负荷的邻区,实现精准地控制用户终端迁移至邻区,可以避免将过多的用户终端迁入邻区,不仅提高了小区负荷均衡的效率,而且还降低了邻区负荷突增的风险。
上述实施例提供的服务小区负荷均衡方法、基站和存储介质,通过当检测到系统中任一服务小区当前符合负荷均衡处理条件时,根据服务小区的负荷信息确定待迁出服务小区的用户终端的目标数量,可以实现在服务小区超负荷时,根据负荷信息精准地换算为能迁出服务小区的用户终端的目标数量,进而可以快速降低服务小区的负荷;通过在负荷信息包括多种负荷属性对应的负荷值时,分别计算每个负荷属性对应的迁出数量,并将最大的迁出数量作为目标数量,可以实现快速降低服务小区的负荷,提高了负荷均衡的效率;通过确定每个邻区对应的用户终端的迁入上限值,可以防止迁入邻区的用户终端的数量超过迁入上限值,对邻区造成负荷突增;通过将每个邻区对应的候选用户终端中的历史迁移用户终端以及边缘用户终端剔除,可以减少不符合要求的用户终端在迁移时出现失败,有效提高了迁移的成功率;通过将目标数量的用户终端从服务小区迁至服务小区的至少一个当前未超负荷的邻区,实现精准地控制用户终端迁移至邻区,可以避免将过多的用户终端迁入邻区,不仅提高了小区负荷均衡的效率,而且还降低了邻区负荷突增的风险。
本公开实施例还提供一种存储介质,用于计算机可读存储,存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,以实现如本公开实施例说明书提供的任一项服务小区负荷均衡方法的步骤。
例如,该程序被处理器加载,可以执行如下步骤:当检测到系统中任一服务小区当前符合负荷均衡处理条件时,根据服务小区的负荷信息,确定待迁出服务小区的用户终端的 目标数量;将目标数量的用户终端从服务小区迁至服务小区的至少一个当前未超负荷的邻区。
其中,存储介质可以是前述实施例的基站的内部存储单元,例如基站的硬盘或内存。存储介质也可以是基站的外部存储设备,例如基站上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施例中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
本公开实施例提供一种服务小区负荷均衡方法、基站和存储介质,通过当检测到系统中任一服务小区当前符合负荷均衡处理条件时,根据服务小区的负荷信息确定待迁出服务小区的用户终端的目标数量,可以实现在服务小区超负荷时,根据负荷信息精准地换算为能迁出服务小区的用户终端的目标数量,进而可以快速降低服务小区的负荷;通过将目标数量的用户终端从服务小区迁至服务小区的至少一个当前未超负荷的邻区,实现精准地控制用户终端迁移至邻区,可以避免将过多的用户终端迁入邻区,不仅提高了小区负荷均衡的效率,而且还降低了邻区负荷突增的风险。
应当理解,在本公开说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多 限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。以上所述,仅为本公开的具体实施例,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种服务小区负荷均衡方法,包括:
    在检测到系统中任一服务小区当前符合负荷均衡处理条件的情况下,根据所述服务小区的负荷信息,确定待迁出所述服务小区的用户终端的目标数量;以及
    将所述目标数量的用户终端从所述服务小区迁至所述服务小区的至少一个当前未超负荷的邻区。
  2. 根据权利要求1所述的服务小区负荷均衡方法,其中,所述负荷信息包括负荷值;服务小区当前符合负荷均衡处理条件包括:所述服务小区的负荷值大于预设的第一负荷门限值,且所述服务小区至少一个邻区的负荷值小于预设的第二负荷门限值。
  3. 根据权利要求2所述的服务小区负荷均衡方法,其中,所述根据所述服务小区的负荷信息,确定待迁出所述服务小区的用户终端的目标数量,包括:
    计算所述服务小区的负荷值与所述第一负荷门限值之间的负荷差值;以及
    根据所述负荷差值与预设的负荷因子之间的比值,确定所述目标数量。
  4. 根据权利要求3所述的服务小区负荷均衡方法,其中,所述根据所述负荷差值与预设的负荷因子之间的比值,确定所述目标数量,包括:
    确定每个所述邻区对应的用户终端的迁入上限值;
    将各个所述邻区对应的所述迁入上限值之和,确定为所述服务小区对应的迁出上限值;
    在所述迁出上限值小于所述比值的情况下,则将所述迁出上限值确定为所述目标数量。
  5. 根据权利要求1所述的服务小区负荷均衡方法,其中,所述将所述目标数量的用户终端从所述服务小区迁至所述服务小区的至少一个当前未超负荷的邻区,包括:
    确定每个所述邻区对应的用户终端的迁入上限值;以及
    基于邻区对应的用户终端的迁入上限值,将所述目标数量的用户终端从所述服务小区迁至至少一个邻区。
  6. 根据权利要求5所述的服务小区负荷均衡方法,其中,所述负荷信息包括至少一种负荷属性对应的负荷值;所述根据每个所述邻区的负荷信息,确定每个所述邻区对应的用户终端的迁入上限值,包括:
    根据每个所述邻区的每种负荷属性对应的负荷值,确定每个所述邻区的每种负荷属性对应的迁入数量;以及
    将每个所述邻区对应的全部负荷属性的迁入数量中的最小值,确定为每个所述邻区的迁入上限值。
  7. 根据权利要求5所述的服务小区负荷均衡方法,其中,所述邻区为与所述服务小区存在交叠覆盖区域的小区;所述基于邻区对应的用户终端的迁入上限值,将所述目标数量的用户终端从所述服务小区迁至至少一个邻区,包括:
    获取所述服务小区中的每个用户终端的位置信息;
    基于每个用户终端的位置信息,将位于邻区对应的交叠覆盖区域内的用户终端,确定为对应的所述邻区的候选用户终端;
    对每个所述邻区的候选用户终端进行筛选,获得每个所述邻区对应的目标用户终端集合,其中,所述目标用户终端集合中的用户终端数量不大于对应的邻区的迁入上限值;以及
    从至少一个邻区对应的目标用户终端集合获取所述目标数量的目标用户终端,并将所述目标用户终端迁移至对应的邻区。
  8. 根据权利要求7所述的服务小区负荷均衡方法,其中,所述对每个所述邻区的候选用户终端进行筛选,获得每个所述邻区对应的目标用户终端集合,包括:
    将每个所述邻区对应的候选用户终端中的历史迁移用户终端以及边缘用户终端剔除,获得每个所述邻区对应的目标终端集合;
    其中,所述历史迁移用户终端是从其它小区迁移至所述服务小区的用户终端,所述边缘用户终端为参考信号接收功率小于预设的接收功率阈值的用户终端,和/或信噪比小于预设的信噪比阈值的用户终端。
  9. 一种基站,所述基站包括处理器、存储器、存储在所述存储器上并可被所述处理器执行的计算机程序以及用于实现所述处理器和所述存储器之间的连接通信的数据总线,其中,所述计算机程序被所述处理器执行时实现如权利要求1至8中任一项所述的服务小区负荷均衡方法。
  10. 一种存储介质,用于可读存储,其中,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求1至8中任一项所述的服务小区负荷均衡方法。
PCT/CN2023/070511 2022-05-27 2023-01-04 服务小区负荷均衡方法、基站和存储介质 WO2023226443A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210590904.9A CN117202267A (zh) 2022-05-27 2022-05-27 服务小区负荷均衡方法、基站和存储介质
CN202210590904.9 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023226443A1 true WO2023226443A1 (zh) 2023-11-30

Family

ID=88918343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070511 WO2023226443A1 (zh) 2022-05-27 2023-01-04 服务小区负荷均衡方法、基站和存储介质

Country Status (2)

Country Link
CN (1) CN117202267A (zh)
WO (1) WO2023226443A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103686857A (zh) * 2013-12-30 2014-03-26 大唐移动通信设备有限公司 一种负荷均衡方法及基站
US20140099954A1 (en) * 2012-10-09 2014-04-10 Samsung Electronics Co., Ltd. Method and apparatus for balancing cell load in wireless communication system
CN110972190A (zh) * 2018-09-30 2020-04-07 大唐移动通信设备有限公司 一种负载均衡优化方法及装置
CN111225417A (zh) * 2018-11-23 2020-06-02 中兴通讯股份有限公司 实现负载均衡的方法、装置和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140099954A1 (en) * 2012-10-09 2014-04-10 Samsung Electronics Co., Ltd. Method and apparatus for balancing cell load in wireless communication system
CN103686857A (zh) * 2013-12-30 2014-03-26 大唐移动通信设备有限公司 一种负荷均衡方法及基站
CN110972190A (zh) * 2018-09-30 2020-04-07 大唐移动通信设备有限公司 一种负载均衡优化方法及装置
CN111225417A (zh) * 2018-11-23 2020-06-02 中兴通讯股份有限公司 实现负载均衡的方法、装置和存储介质

Also Published As

Publication number Publication date
CN117202267A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
US20190373520A1 (en) Method and apparatus for complementary and equivalent network slice deployment in a network environment
EP2938121B1 (en) Shunting processing method, and control unit and system
JP6692336B2 (ja) 管理装置及びその制御方法、並びにプログラム
CN112383952B (zh) 一种载波确定方法及装置
CN112469075B (zh) 节能小区的业务预测方法和装置
US20230276431A1 (en) Method and apparatus for cooperative scheduling in a mobile communication system
US10237876B2 (en) Method and device for controlling access of terminal for efficient use of resources in mobile communication system
CN112291796B (zh) 小区网络扩容方法、装置、设备及可存储介质
CN112996047A (zh) 一种迁移方法和设备
EP3930381B1 (en) System and method for using mobility information in heterogeneous networks
WO2023226342A1 (zh) 小区重选方法、装置、电子设备及存储介质
CN110784894A (zh) Lte系统负载均衡方法和装置
EP2871889B1 (en) Terminal selection method, network entity, and system based on self-organizing networks
WO2023226443A1 (zh) 服务小区负荷均衡方法、基站和存储介质
CN110876167A (zh) 异频负载均衡门限的确定方法、装置、设备和介质
TWI620450B (zh) 針對功率及效能最佳化裝置中的應用程式行為
CN112434885A (zh) 节能小区的业务预测方法和装置
EP4171120A1 (en) Migration method under hybrid networking, storage medium, and electronic device
US20210410026A1 (en) Handover Control Method, and Network-Side Device and System
CN106888480B (zh) 一种基站资源调配方法及装置
CN114363952B (zh) 移动通信网络资源配置方法、装置及可读存储介质
US20240007921A1 (en) Method and electronic device for controlling scaling of virtual radio access network
CN113504976B (zh) 软件定义网络架构调度方法、系统、终端设备及存储介质
WO2023000820A1 (zh) 小区选择方法、装置及系统
US20240121846A1 (en) Selective fine timing measurement of access points

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810520

Country of ref document: EP

Kind code of ref document: A1