WO2023226405A1 - 一种磁悬浮轴承、压缩机和空调器 - Google Patents

一种磁悬浮轴承、压缩机和空调器 Download PDF

Info

Publication number
WO2023226405A1
WO2023226405A1 PCT/CN2022/140866 CN2022140866W WO2023226405A1 WO 2023226405 A1 WO2023226405 A1 WO 2023226405A1 CN 2022140866 W CN2022140866 W CN 2022140866W WO 2023226405 A1 WO2023226405 A1 WO 2023226405A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial
magnetic
iron core
radial
permanent magnet
Prior art date
Application number
PCT/CN2022/140866
Other languages
English (en)
French (fr)
Inventor
龚高
王飞
吴瑞
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2023226405A1 publication Critical patent/WO2023226405A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0451Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit

Definitions

  • the present disclosure relates to the field of magnetic levitation technology, and specifically to a magnetic levitation bearing, a compressor and an air conditioner.
  • Magnetic bearings have a series of excellent qualities such as non-contact, no wear, high speed, high precision, and no need for lubrication and sealing. They are high-tech products integrating electromagnetics, electronic technology, control engineering, signal processing, and mechanics.
  • Magnetic bearings are divided into three types: active, passive, and hybrid.
  • Active magnetic bearings have high stiffness and can be precisely controlled, but require a large volume and power consumption to generate unit bearing capacity; passive magnetic bearings utilize the attraction between magnetic materials. Or repulsive force achieves the suspension of the rotor, with relatively low stiffness and damping; hybrid magnetic bearings use permanent magnets to provide a bias magnetic field to replace the static bias magnetic field generated by electromagnets in active magnetic bearings, reducing the number of ampere-turns of the control winding and shrinking the bearing Volume, improve bearing carrying capacity, etc.; hybrid magnetic bearings have irreplaceable advantages in areas with strict volume and power consumption requirements. Magnetic bearings are mainly used in high-speed and ultra-high-speed applications. Therefore, the integration and miniaturization of the magnetic levitation system and improving the stability and reliability of the control system will be key research directions.
  • FIG. 1 The structure of a three-degree-of-freedom magnetic suspension bearing in related technology is shown in Figure 1.
  • the permanent magnet 2 generates a radial-axial bias magnetic field 3.
  • the radial iron core 10 and the bearing rotor 11 A bias magnetic flux is formed into the air gap.
  • the axial control winding 6 is supplied with a control current to generate an axial control magnetic field 4, which adjusts the bias magnetic field in the axial air gap to achieve axial suspension control of the rotating shaft;
  • the radial control winding 8 is supplied with a control current to generate radial control Magnetic field 9 adjusts the bias in the radial air gap to achieve radial suspension control of the rotating shaft, thereby achieving three-degree-of-freedom suspension of the rotating shaft.
  • the three-degree-of-freedom magnetic suspension bearing structure of related technologies has the following technical status: 1 Axial control winding 6 and The radial control windings 8 are all assembled on the radial iron core 10, which makes it difficult to install the windings; 2 The radial control windings 8 and the axial control windings 6 are arranged centrally, and the winding wire package is too large, leaving axial space for the three-degree-of-freedom magnetic bearing. becomes larger, the rotating shaft becomes longer, and the limit speed is low; 3 The magnetic field generated by the permanent magnet 2 and the axial control winding 6 is easily caused by magnetic leakage between the magnetic ring 7 and the axial iron core 5 and the axial bias magnetic field is uneven. , making the bearing output limited and unstable.
  • the technical problem to be solved by the present disclosure is to overcome the defect of the magnetic levitation bearing in the related art that the axial bias magnetic field generated by the permanent magnet is uneven from left to right, thereby providing a magnetic levitation bearing, a compressor and an air conditioner.
  • a magnetic suspension bearing which includes:
  • the permanent magnet includes a first permanent magnet located on one axial side of the magnetic conductive ring and a first permanent magnet located on the other axial end of the magnetic conductive ring. a second permanent magnet, the first permanent magnet is located between the magnetic conductive ring and the axial iron core and is connected to the two respectively, and the second permanent magnet is located between the magnetic conductive ring and the axial iron core.
  • the axial iron cores are connected to each other respectively; the magnetic steel fixing frame can fix and support the radial inner side of the permanent magnet.
  • the magnetic steel fixing bracket includes a first magnetic steel fixing bracket and a second magnetic steel fixing bracket, and the first magnetic steel fixing bracket can cooperate with the first permanent magnet to fix the first magnetic steel fixing bracket.
  • the radially inner side of the permanent magnet is fixed and supported, and the second magnetic steel fixing frame can cooperate with the second permanent magnet to fix and support the radially inner side of the second permanent magnet.
  • the magnetic steel fixing frame includes an annular body and a protruding portion.
  • the protruding portion is provided on the radial outer periphery of the annular body and protrudes toward the radially outer side.
  • the protruding portion is composed of multiple A plurality of protrusions are arranged at intervals along the circumferential direction of the annular body, and a receiving space is formed between two adjacent protrusions.
  • a fixing bracket mounting hole is provided on the protruding portion along the axial direction of the annular body and penetrating both axial ends of the protruding portion, through which the fixing bracket mounting holes can Secure the protrusion to the magnetic ring.
  • the magnetic suspension bearing also includes a bearing rotor and a radial iron core.
  • the axial iron core is in a "concave" shape
  • the radial iron core, the permanent magnet and the The magnetic permeable rings are located in the space surrounded by the axial iron core
  • the bearing rotor is located at the radially inner notch of the axial iron core
  • the radial iron core is located on the radial side of the bearing rotor.
  • the magnetic conductive ring is located radially outside the radial iron core.
  • the magnetic suspension bearing further includes a radial control winding and an axial control winding.
  • the radial control winding is wound on the radial iron core, and the axial control winding is located on the magnetic ring. Radially outside.
  • the magnetic suspension bearing further includes an axial winding skeleton, the axial winding skeleton is arranged on the radial outer periphery of the magnetic conductive ring, and the axial winding skeleton is an annular structure, and its radial outer periphery is provided with The annular groove opens toward the radially outer side, and the axial control winding is disposed in the annular groove.
  • the magnetic suspension bearing further includes an axial skeleton support ring, the axial skeleton support ring is disposed on the radial outer circumference of the magnetic conductive ring, and the axial winding skeleton includes a first axial winding skeleton and a third axial winding skeleton.
  • Two axial winding bobbins the first axial winding bobbin is connected to one axial end of the axial bobbin support ring, and the second axial winding bobbin is connected to the other axial end of the axial bobbin support ring.
  • the first axial winding skeleton and the second axial winding skeleton are respectively wound with There are axial control windings.
  • the axial skeleton support ring is provided with axial skeleton mounting holes in the form of penetrating both axial end surfaces of the axial skeleton support ring
  • the first axial winding skeleton is provided with a first protrusion
  • the A second protrusion is provided on the second axial winding frame.
  • the first protrusion is opposite to the axial frame mounting hole and can be inserted into the axial frame mounting hole.
  • the second protrusion It is opposite to the axial frame mounting hole and can be inserted into the axial frame mounting hole.
  • the top of the first protrusion is provided with a countersunk hole in a direction away from the second protrusion, and the second protrusion also has a countersunk hole after being inserted into the axial frame mounting hole. Can be inserted into said counterbore.
  • an annular protrusion is provided on the outer peripheral surface of the magnetic conductive ring.
  • One axial end of the annular protrusion forms a first step, and the other axial end forms a second step.
  • the axial skeleton supports The radial inner circumference of the ring also protrudes toward the radially inward direction to form a third step.
  • the third step can snap fit with the second step, and the first axial winding skeleton can engage with the axial skeleton.
  • An axial end of the support ring is in contact with and/or in contact with the first step, and the second axial winding skeleton can be in contact with the other axial end of the axial skeleton support ring.
  • the axial iron core includes a first axial iron core and a second axial iron core, and the first axial iron core and the second axial iron core are along the axis of the bearing rotor. Axially distributed and butt-jointed, the first axial iron core has a first cavity inside, the second axial iron core has a second cavity inside, the first axial iron core and the third axial iron core After the two axial iron cores are butted together, the first cavity and the second cavity are connected to form an accommodation cavity.
  • the permanent magnet, the magnetic conductive ring, the magnetic steel fixing frame, the bearing rotor and The radial iron cores are all located in the accommodation cavity.
  • the present disclosure also provides a compressor, which includes the magnetic suspension bearing described in the preceding item.
  • the present disclosure also provides an air conditioner, which includes the aforementioned compressor.
  • the magnetic suspension bearing, compressor and air conditioner provided by the present disclosure have the following beneficial effects:
  • the present disclosure forms a segmented permanent magnet structural design by arranging the permanent magnets of the magnetic suspension bearing to include a first permanent magnet located on one axial side of the magnetic permeable ring and a second permanent magnet located on the other axial side.
  • the bias magnetic field on one side of the axial direction is provided by the first permanent magnet, and the bias magnetic field on the other axial side is provided by the second permanent magnet, so that the bias magnetic field on both sides of the axial direction is provided by two independent permanent magnets.
  • the bias magnetic field will not fluctuate due to the reduction of the gap, thereby making the bias magnetic field on both sides of the axis more uniform.
  • Figure 1 is a radial cross-sectional view of a three-degree-of-freedom magnetic suspension bearing in the related art
  • Figure 1a is an axial cross-sectional view of Figure 1;
  • Figure 2 is a radial cross-sectional view of the three-degree-of-freedom magnetic suspension bearing of the present disclosure
  • Figure 2a is an axial cross-sectional view of Figure 2;
  • Figure 3 is a partial cross-sectional view of the axial winding skeleton and the axial skeleton support ring of the magnetic suspension bearing of the present disclosure
  • Figure 3a is a three-dimensional structural view of the axial skeleton support ring in Figure 3;
  • Figure 3b is a three-dimensional structural view of the axial winding skeleton in Figure 3;
  • Figure 4 is a partial structural view of the permanent magnet and magnetic steel holder of the magnetic suspension bearing of the present disclosure
  • Figure 4a is a three-dimensional structural view of the magnetic steel fixing frame in Figure 4;
  • Figure 5 is a schematic diagram of the exploded structure of the magnetic suspension bearing of the present disclosure.
  • Figure 5a is a cross-sectional structural view of each component of Figure 5;
  • Figure 6 is a control logic diagram of the three-degree-of-freedom magnetic suspension bearing of the present disclosure.
  • Axial skeleton support ring 2. Permanent magnet; 21. First permanent magnet; 22. Second permanent magnet; 3. Radial-axial bias magnetic field; 4. Axial control magnetic field; 5. Axial iron Core; 51. First axial iron core; 52. Second axial iron core; 6. Axial control winding; 7. Magnetic conductive ring; 71. Annular protrusion; 72. First step; 73. Second step ; 8. Radial control winding; 9. Radial control magnetic field; 10. Radial iron core; 11. Bearing rotor; 12. Magnetic steel fixing frame; 121. First magnetic steel fixing frame; 122. Second magnetic steel fixing frame 123. Ring-shaped main body; 124. Protruding portion; 125. Fixing frame mounting hole; 13. Axial winding skeleton; 131.
  • a magnetic suspension bearing which includes:
  • the permanent magnet 2 includes a first permanent magnet 21 located on the axial side of the magnetic conductive ring 7 and a first permanent magnet 21 located on the axial side of the magnetic conductive ring 7.
  • the second permanent magnet 22 at the other axial end of the magnetic ring 7, the first permanent magnet 21 is located between the magnetic permeable ring 7 and the axial iron core 5 and is connected to the two respectively.
  • Two permanent magnets 22 are located between the magnetic conductive ring 7 and the axial iron core 5 and are connected to the two respectively; the magnetic steel fixing frame 12 can fix and fix the radial inner side of the permanent magnet 2 support.
  • the present disclosure forms a segmented permanent magnet structural design by arranging the permanent magnets of the magnetic suspension bearing to include a first permanent magnet located on one axial side of the magnetic permeable ring and a second permanent magnet located on the other axial side.
  • the bias magnetic field on one side of the axial direction is provided by the first permanent magnet, and the bias magnetic field on the other axial side is provided by the second permanent magnet, so that the bias magnetic field on both sides of the axial direction is provided by two independent permanent magnets.
  • the bias magnetic field will not fluctuate due to the reduction of the gap, so that the bias magnetic field on both sides of the axis is more uniform; the radial inner side of the segmented permanent magnet can also be fixed and supported through the magnetic steel fixing frame.
  • the bias magnetic field can be further stabilized, the distribution of the bias magnetic field is more uniform, and the output load of the axial magnetic bearing is stable; and the first permanent magnet and the The second permanent magnet is connected to the magnetic ring and the axial iron core respectively, so that the permanent magnet is installed between the magnetic ring 7 and the iron core, so that the bias magnetic field directly passes through the permanent magnet to form a backflow, preventing the permanent magnet from contacting the shaft.
  • the phenomenon of magnetic leakage occurs due to the existence of the gap between the cores, which can isolate the bias magnetic field and the axial control magnetic field from the magnetic leakage, the axial bias magnetic field is uneven, and the bearing output is unstable.
  • this disclosure proposes a new three-degree-of-freedom magnetic suspension bearing structure:
  • the permanent magnets on the left and right sides generate a radial-axial bias magnetic field 3 between the axial iron core 5, the radial iron core 10 and the bearing rotor 11.
  • a bias magnetic field is generated in the air gap.
  • the axial control winding 6 passes the control current to generate the axial control magnetic field 4, adjusts the bias magnetic flux in the axial air gap, and realizes the axial suspension control of the rotating shaft;
  • the radial control winding 8 passes the control current to generate the radial control magnetic field. 9. Adjust the bias magnetic flux in the radial air gap to achieve radial suspension control of the rotating shaft.
  • the axial control winding 6 and the radial control winding 8 are assembled separately, which can effectively solve the problem of difficult installation of the axial control winding and the radial control winding due to the excessive winding volume, and the large axial space occupied by the three-degree-of-freedom magnetic suspension bearing.
  • the axial skeleton support ring 1 assists the installation and fixation of the axial control winding 6. It adopts non-magnetic conductive materials and is designed with block permanent magnets, which can solve the problem of the axial control magnetic field generated by the permanent magnet 2 and the axial control winding 6 in the magnetic conductive ring 7.
  • the left and right bias magnetic fields are uneven, the axial control magnetic field leaks between the magnetic ring and the axial iron core, and the bearing output is limited and unstable;
  • the axial control winding and the radial control winding are integrated, the winding volume is large, and the installation of the axial control winding and the radial control winding is difficult;
  • the three-degree-of-freedom magnetic bearing takes up a large space in the axial direction, has a long shaft length, and has a low limit speed.
  • the structural design of the axial skeleton support ring 1 and the magnetic steel fixing frame 12 of the magnetic suspension bearing as shown in Figures 2 to 5 realizes the permanent magnet 2-block design.
  • the magnet 2 is installed in a block structure.
  • the axial skeleton support ring 1 is made of non-magnetic material.
  • the permanent magnet 1 block can provide axial bias magnetic fields to the front and rear axial bearings respectively, and jointly provide radial bias to the radial bearings.
  • the magnetic field can isolate the bias magnetic field from the axial control magnetic field, magnetic leakage, uneven axial bias magnetic field, and unstable bearing output;
  • a three-degree-of-freedom magnetic levitation bearing structural design The axial bias magnetic field generated by the permanent magnets is evenly distributed. The output load of the axial magnetic bearing is stable. The radial and axial control windings are easy to install. The suspension system axially takes up space. Small, the length of the rotating shaft is short, and the limit speed is high;
  • the structural design of the magnetic steel fixed frame and the non-magnetic conductive design of the axial skeleton support ring, and the permanent magnets are divided into blocks, which can effectively solve the problem of magnetic leakage and axial magnetic flux leakage between the bias magnetic field and the axial control magnetic field between the magnetic conductive ring and the axial iron core.
  • the bias magnetic field is uneven and the bearing output is unstable;
  • the structural design of the axial winding skeleton and the magnetically isolated axial skeleton support ring separates the axial control winding and the radial control winding, which can effectively solve the problem of excessive axial volume at the installation winding, axial control winding and radial control winding.
  • the control winding is difficult to install, the three-degree-of-freedom magnetic bearing structure occupies a large axial space, the length of the rotating shaft is long, and the limit speed is low.
  • the magnetic steel fixing bracket 12 includes a first magnetic steel fixing bracket 121 and a second magnetic steel fixing bracket 122.
  • the first magnetic steel fixing bracket 121 can cooperate with the first permanent magnet 21 to The radial inner side of the first permanent magnet 21 is fixed and supported.
  • the second magnetic steel fixing bracket 122 can cooperate with the second permanent magnet 22 to fix the radial inner side of the second permanent magnet 22 .
  • the magnetic steel holder includes a first magnet steel holder that cooperates with the first permanent magnet on one side of the axial direction, and a second magnet steel holder that cooperates with the second permanent magnet on the other axial side, and can respectively fix the first magnet steel holder. Both the permanent magnets and the second permanent magnet play the role of positioning and fixed support, further stabilizing the bias magnetic field, making the magnetic field distribution more uniform, and the axial magnetic bearing output load more stable.
  • the magnetic steel fixing bracket 12 includes an annular body 123 and a protruding portion 124.
  • the protruding portion 124 is provided on the radial outer periphery of the annular body 123 and protrudes toward the radially outer side.
  • the plurality of protruding parts 124 are spaced apart along the circumferential direction of the annular body 123, and an accommodation space is formed between two adjacent protruding parts 124.
  • the permanent magnet 2 is A plurality of permanent magnets are arranged at intervals along the circumferential direction, and the permanent magnets are locked in one-to-one correspondence with the accommodation space.
  • the annular body can support the inner circumference of the permanent magnet through the outer circumference of the annular body, and the arrangement of the protruding portion can form a receiving space to clamp the circumferential sides of the permanent magnet, thereby further fixing the permanent magnet. Effective effect, improve the stabilization effect on the permanent magnet, further improve the stability of the bias magnetic field, and make the bias magnetic field distribution more uniform.
  • a fixing bracket mounting hole 125 is provided on the protruding portion 124 along the axial direction of the annular body 123 and penetrating both axial ends of the protruding portion 124 .
  • the rack mounting hole 125 can fix the protruding portion 124 to the magnetic conductive ring 7 .
  • the present disclosure also allows the magnetic steel fixing bracket to be fixed to the magnetic conductive ring through the fixing bracket mounting holes provided on the protruding portion, such as screws and other fasteners, so that the permanent magnet is firmly fixed through the magnetic steel fixing bracket.
  • the fixing and limiting functions ensure the stability and uniformity of the bias magnetic field.
  • the magnetic suspension bearing also includes a bearing rotor 11 and a radial iron core 10.
  • the axial iron core 5 is in a "concave" shape (C shape)
  • the radial iron core 10 , the permanent magnet 2 and the magnetic conductive ring 7 are located in the space surrounded by the axial iron core 5, and the bearing rotor 11 is located at the radially inner notch of the axial iron core 5,
  • the radial iron core 10 is located radially outside the bearing rotor 11
  • the magnetic conductive ring 7 is located radially outside the radial iron core 10 .
  • the axial core encloses a space that accommodates structures such as the radial core, bearing rotor, etc.
  • the magnetic suspension bearing also includes a radial control winding 8 and an axial control winding 6.
  • the radial control winding 8 is wound on the radial iron core 10, and the axial control winding 6 is located at The radial outer side of the magnetic permeable ring 7.
  • the present disclosure can effectively reduce the energy consumption compared to the related art in which both the radial control winding and the axial control winding are arranged on the radial core.
  • the occupation of axial space effectively reduces the space in the axial direction, making the structure more compact.
  • the magnetic suspension bearing further includes an axial winding bobbin 13 , which is disposed on the radial outer circumference of the magnetically permeable ring 7 , and the axial winding bobbin 13 is an annular structure with a radial diameter.
  • An annular groove 131 with an opening facing radially outward is provided on the outer periphery, and the axial control winding 6 is disposed in the annular groove 131 .
  • the present disclosure can effectively support the axial control winding through the arrangement of the axial winding skeleton, and effectively ensure that the axial control winding and the radial control winding are respectively located on the radial outer circumference and radial inner side of the magnetic ring, effectively Reduce space occupation and reduce space occupancy rate.
  • the magnetic suspension bearing further includes an axial skeleton support ring 1 , which is disposed on the radial outer circumference of the magnetic conductive ring 7 , and the axial winding skeleton 13 includes a first axial skeleton support ring 1 .
  • Winding bobbin 132 and second axial winding bobbin 133 the first axial winding bobbin 132 is connected to the axial end of the axial bobbin support ring 1, the second axial winding bobbin 133 is connected to the shaft to the other axial end of the skeleton support ring 1 to support the first axial winding skeleton 132 and the second axial winding skeleton 133 through the axial skeleton support ring 1;
  • Axial control windings 6 are wound around the winding bobbin 132 and the second axial winding bobbin 133 respectively.
  • the present disclosure can realize the separation design of the axial control winding and the radial control winding, so that the axial control winding and the radial control winding do not have to be located in the radial core
  • the two axial control windings are installed on one side of the magnetic ring and the space is very narrow.
  • the axial span/space of the magnetic bearing is made large and the volume is large; the axial control of the present disclosure
  • the winding is located on the radial outside of the magnetic ring, and the radial control winding is located on the radial inside of the magnetic ring, which can reduce the axial length and reduce the volume of the magnetic bearing.
  • the radial and axial control windings are easy to install and the suspension system
  • the axial space occupied is small, the length of the rotating shaft is short, and the limit speed is high.
  • the axial skeleton support ring 1 is provided with axial skeleton mounting holes 14 in the form of penetrating both axial end surfaces thereof, and the first axial winding skeleton 132 is provided with a first protrusion. 132a.
  • the second axial winding bobbin 133 is provided with a second protrusion 133a.
  • the first protrusion 132a is opposite to the axial bobbin mounting hole 14 and can be inserted into the axial bobbin mounting hole 14.
  • the second protrusion 133a is opposite to the axial frame mounting hole 14 and can be inserted into the axial frame mounting hole 14 .
  • the present disclosure also uses the axial frame mounting hole, the first protrusion and the second protrusion, so that both protrusions can be inserted into the axial frame mounting hole, and the axial frame support ring serves to support the two axial frames.
  • a counterbore 132b is opened at the top of the first protrusion 132a in a direction away from the second protrusion 133a.
  • the second protrusion 133a is inserted into the axial frame for installation. After being inserted into the hole 14, it can also be inserted into the counterbore 132b.
  • the present disclosure also uses the counterbore opened on the first protrusion, so that the second protrusion can be further inserted into the counterbore after being inserted into the axial frame mounting hole (preferably interference fit), which can further enhance the connection between the two protrusions.
  • the fixed effect of the axial winding skeleton is opened at the top of the first protrusion 132a in a direction away from the second protrusion 133a.
  • the second protrusion 133a is inserted into the axial frame for installation. After being inserted into the hole 14, it can also be inserted into the counterbore 132b.
  • the present disclosure also uses the counterbore opened on the first protrusion, so
  • annular protrusion 71 is provided on the outer circumferential surface of the magnetic conductive ring 7.
  • a first step 72 is formed at one axial end of the annular protrusion 71, and a second step 73 is formed at the other axial end.
  • the radial inner circumference of the axial skeleton support ring 1 also protrudes toward the radially inward direction to form a third step 15.
  • the third step 15 can engage with the second step 73.
  • the first axial step 15 can engage with the second step 73.
  • the winding bobbin 132 can be in contact with one axial end of the axial bobbin support ring 1 and/or the first step 72 , and the second axial winding bobbin 133 can be in contact with the axial bobbin support ring 1
  • the axis of 1 is in contact with the other end.
  • the present disclosure also uses annular protrusions on the magnetic conductive ring to form first and second steps, and the axial inner circumference of the frame support ring protrudes to form a third step, so that the third step and the second step are locked.
  • the second step can play an axial limiting role on the axial skeleton support ring, and then the first and second axial winding skeletons are in contact with the end faces of the axial skeleton support ring respectively, finally forming a pair of two The function and effect of the axial limiting and positioning of the axial winding skeleton.
  • the axial iron core 5 includes a first axial iron core 51 and a second axial iron core 52.
  • the first axial iron core 51 and the second axial iron core 52 are along
  • the bearing rotor 11 is axially distributed and connected, the first axial iron core 51 has a first cavity inside, the second axial iron core 52 has a second cavity inside, and the first axial iron core 52 has a second cavity inside.
  • the first cavity and the second cavity are connected to form an accommodation cavity.
  • the magnetic steel fixing frame 12, the bearing rotor 11 and the radial iron core 10 are all located in the accommodation cavity.
  • the present disclosure enables all components to be assembled inside the accommodation cavity surrounded by the two axial iron cores, forming a complete magnetic suspension bearing product structure that can be applied to different rotating shafts.
  • the magnetic levitation support function is performed on it.
  • the radial control winding 8 is embedded in the radial iron core 10.
  • the radial control winding 8 is fixedly installed through shaping and impregnation to form a radial bearing assembly.
  • the radial bearing assembly is thermally sleeved in the magnetic conductive ring 7 and closely fits the boss on the inner wall of the magnetic conductive ring 7. After the magnetic conductive ring 7 is cooled, the radial bearing assembly is fixedly installed.
  • the magnetic steel fixing frame 12 is installed on the guide through screws. On both sides of the magnetic ring 7, the permanent magnets 2 are adhered to both sides of the magnetic ring 7 through strong adhesive.
  • the magnetic steel fixing bracket 12 assists in the fixed installation of the magnetic ring 7, forming a total radial bearing assembly.
  • the axial control winding 6 is wound around the inside of the axial winding frame 13 to form front and rear axial winding assemblies.
  • the front and rear axial winding components are installed on both sides of the axial skeleton support ring 1 respectively. Through the boss buckling and paint dipping process on the axial winding skeleton 13, the front and rear axial winding components and the axial skeleton support ring are realized. 1 is integrated to form the total axial winding.
  • the front axial iron core i.e., the first axial iron core 51
  • the total axial winding and the total radial bearing assembly are inserted in sequence.
  • the total radial bearing assembly is closely fitted with the step, and fixed installation is achieved through screw locking, forming a three-degree-of-freedom front bearing assembly, which is assembled inside the compressor in sequence.
  • the front bearing assembly, the bearing rotor assembly, and the rear axial iron core ie, the second axial iron core 52
  • control logic of the three-degree-of-freedom magnetic suspension bearing of the present disclosure is the control logic of the three-degree-of-freedom magnetic suspension bearing of the present disclosure:
  • the permanent magnet generates an axial-radial bias magnetic field, which forms the bias magnetic field intensity in the radial and axial air gaps respectively.
  • the magnetic field intensity in the symmetrical radial and axial air gaps of the magnetic bearing is the same.
  • the rotating shaft is stably suspended.
  • the magnetic field intensity of the symmetrical radial air gap of the magnetic bearing is different, and the rotating shaft continues to radially shift until it becomes unstable. It is necessary to use the radial control winding to generate a radial control magnetic field to adjust the radial diameter.
  • the magnetic field strength toward the air gap causes the rotating shaft to deflect in the opposite direction to the center, achieving stable levitation in the radial direction.
  • the axial control logic is the same, achieving stable levitation of the three-degree-of-freedom magnetic suspension bearing.
  • the present disclosure also provides a compressor, which includes the aforementioned magnetic suspension bearing.
  • the present disclosure also provides an air conditioner, which includes the aforementioned compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

一种磁悬浮轴承、压缩机和空调器。磁悬浮轴承,其包括:轴向铁芯(5)、永磁体(2)、导磁环(7)和磁钢固定架(12),永磁体(2)包括位于导磁环(7)的轴向一侧的第一永磁体(21)和位于导磁环(7)的轴向另一端的第二永磁体(22),第一永磁体(21)位于导磁环(7)和轴向铁芯(5)之间且分别与二者相接,第二永磁体(22)位于导磁环(7)和轴向铁芯(5)之间且分别与二者相接。磁钢固定架(12)能够对永磁体(2)的径向内侧进行固定和支撑。该磁悬浮轴承、压缩机和空调器能够使得轴向两侧的偏置磁场更为均匀,并且提高对分块永磁体的支撑固定和定位作用,因此能够进一步地使得偏置磁场更为稳定,使得偏置磁场的分布更加均匀,轴向磁轴承出力负载稳定。

Description

一种磁悬浮轴承、压缩机和空调器
相关申请的交叉引用
本公开是以申请号为202210582036.X,申请日为2022年5月26日,发明名称为“一种磁悬浮轴承、压缩机和空调器”的中国专利申请为基础,并主张其优先权,该中国专利申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及磁悬浮技术领域,具体涉及一种磁悬浮轴承、压缩机和空调器。
背景技术
磁悬浮轴承具有无接触、无磨损、高转速、高精度、不需要润滑和密封等一系列优良品质,是集电磁学、电子技术、控制工程、信号处理、机械学一体的高新技术产物。
磁力轴承分为主动式、被动式、混合式三种类型,主动式磁力轴承刚度大,可以精密控制,但产生单位承载力所需体积和功耗较大;被动式磁力轴承利用磁性材料之间的吸力或斥力实现转子的悬浮,刚度和阻尼都比较低;混合式磁力轴承运用永磁体提供偏置磁场取代主动式磁轴承中电磁铁产生的静态偏置磁场,减少控制绕组的安匝数,缩小轴承体积,提高轴承承载能力等;混合式磁力轴承对体积和功耗有严格要求的领域有着不可替代的优势,磁力轴承又主要应用于高速、超高速场合。因此,磁悬浮系统的集成化、微型化和提高控制系统的稳定性与可靠性将是重点研究方向。
相关技术的三自由度磁悬浮轴承结构如图1所示,永磁体2产生径向-轴向偏置磁场3,在轴向铁芯5、径向铁芯10与轴承转子11的轴向与径向气隙中形成偏置磁通。轴向控制绕组6通入控制电流,产生轴向控制磁场4,调节轴向气隙中的偏置磁场,实现转轴的轴向悬浮控制;径向控制绕组8通入控制电流,产生径向控制磁场9,调节径向气隙中的偏置,实现转轴的径向悬浮控制,从而实现转轴三自由度悬浮,相关技术的三自由度磁悬浮轴承结构存在如下技术现状:①轴向控制绕组6与径向控制绕组8均装配在径向铁芯10上,存在绕组安装困难;②径向控制绕组8与轴向控制绕组6集中排布,绕组线包过大,三自由度磁悬浮轴承轴向空间变大,转轴变长,极限转速低;③永磁体2、轴向控制绕组6产生的磁场易由从导磁环7与轴向铁芯5之间 漏磁及轴向偏置磁场左右不均,使轴承出力受限与不稳。
发明内容
因此,本公开要解决的技术问题在于克服相关技术中的磁悬浮轴承存在永磁体产生的轴向偏置磁场左右不均的缺陷,从而提供一种磁悬浮轴承、压缩机和空调器。
为了解决上述问题,本公开提供一种磁悬浮轴承,其包括:
轴向铁芯、永磁体、导磁环和磁钢固定架,所述永磁体包括位于所述导磁环的轴向一侧的第一永磁体和位于所述导磁环的轴向另一端的第二永磁体,所述第一永磁体位于所述导磁环和所述轴向铁芯之间且分别与二者相接,所述第二永磁体位于所述导磁环和所述轴向铁芯之间且分别与二者相接;所述磁钢固定架能够对所述永磁体的径向内侧进行固定和支撑。
在一些实施方式中,所述磁钢固定架包括第一磁钢固定架和第二磁钢固定架,所述第一磁钢固定架能够与所述第一永磁体配合以对所述第一永磁体的径向内侧进行固定和支撑,所述第二磁钢固定架能够与所述第二永磁体配合以对所述第二永磁体的径向内侧进行固定和支撑。
在一些实施方式中,所述磁钢固定架包括环形主体和凸出部,所述凸出部设置在所述环形主体的径向外周且朝径向外侧凸出,所述凸出部为多个,多个所述凸出部沿所述环形主体的周向方向间隔设置,且相邻两个凸出部之间形成容纳空间,所述永磁体为多个且沿圆周方向间隔设置,所述永磁体与所述容纳空间一一对应卡设。
在一些实施方式中,沿所述环形主体的轴向方向以贯穿所述凸出部的轴向两端的方式在所述凸出部上设置有固定架安装孔,通过所述固定架安装孔能够将所述凸出部固定到所述导磁环上。
在一些实施方式中,磁悬浮轴承还包括轴承转子和径向铁芯,在径向截面内,所述轴向铁芯成“凹”状,所述径向铁芯、所述永磁体和所述导磁环均位于所述轴向铁芯围成的空间内,所述轴承转子位于所述轴向铁芯的径向内侧的凹口处,所述径向铁芯位于所述轴承转子的径向外侧,所述导磁环位于所述径向铁芯的径向外侧。
在一些实施方式中,磁悬浮轴承还包括径向控制绕组和轴向控制绕组,所述径向控制绕组绕设在所述径向铁芯上,所述轴向控制绕组位于所述导磁环的径向外侧。
在一些实施方式中,磁悬浮轴承还包括轴向绕组骨架,所述轴向绕组骨架设置在所述导磁环的径向外周,且所述轴向绕组骨架为环形结构,其径向外周设置有开口朝 向径向外侧的环形槽,所述轴向控制绕组设置于所述环形槽内。
在一些实施方式中,磁悬浮轴承还包括轴向骨架支撑环,所述轴向骨架支撑环设置在所述导磁环的径向外周,所述轴向绕组骨架包括第一轴向绕组骨架和第二轴向绕组骨架,所述第一轴向绕组骨架连接在所述轴向骨架支撑环的轴向一端,所述第二轴向绕组骨架连接在所述轴向骨架支撑环的轴向另一端,以通过所述轴向骨架支撑环对所述第一轴向绕组骨架和所述第二轴向绕组骨架进行支撑;所述第一轴向绕组骨架和第二轴向绕组骨架上分别绕设有轴向控制绕组。
在一些实施方式中,所述轴向骨架支撑环上以贯穿其轴向两侧端面的形式设置有轴向骨架安装孔,所述第一轴向绕组骨架上设置有第一凸起,所述第二轴向绕组骨架上设置有第二凸起,所述第一凸起与所述轴向骨架安装孔相对且能插设进入所述轴向骨架安装孔中,同时所述第二凸起与所述轴向骨架安装孔相对且能插设进入所述轴向骨架安装孔中。
在一些实施方式中,所述第一凸起的顶端以朝远离所述第二凸起的方向开设有沉孔,所述第二凸起在插设进入所述轴向骨架安装孔中后还能插设进入所述沉孔中。
在一些实施方式中,所述导磁环的外周面上设置有环形凸起,所述环形凸起的轴向一端形成第一台阶,轴向另一端形成第二台阶,所述轴向骨架支撑环的径向内周还朝径向内侧方向凸出形成第三台阶,所述第三台阶能与所述第二台阶卡接配合,所述第一轴向绕组骨架能与所述轴向骨架支撑环的轴向一端抵接和/或与所述第一台阶抵接,所述第二轴向绕组骨架能与所述轴向骨架支撑环的轴向另一端抵接。
在一些实施方式中,所述轴向铁芯包括第一轴向铁芯和第二轴向铁芯,所述第一轴向铁芯和所述第二轴向铁芯沿所述轴承转子的轴向分布且对接,所述第一轴向铁芯的内部具有第一空腔,所述第二轴向铁芯的内部具有第二空腔,所述第一轴向铁芯与所述第二轴向铁芯对接后使得所述第一空腔与所述第二空腔相对接形成容纳腔,所述永磁体、所述导磁环、所述磁钢固定架、所述轴承转子和所述径向铁芯均位于所述容纳腔中。
本公开还提供一种压缩机,其包括前任一项所述的磁悬浮轴承。
本公开还提供一种空调器,其包括前述的压缩机。
本公开提供的一种磁悬浮轴承、压缩机和空调器具有如下有益效果:
本公开通过将磁悬浮轴承的永磁体设置为包括位于导磁环的轴向一侧的第一永磁体和位于轴向另一侧的第二永磁体,使得形成分块的永磁体结构设计,使得轴向一 侧的偏置磁场由第一永磁体提供,轴向另一侧的偏置磁场由第二永磁体提供,使得轴向两边的偏置磁场分别由独立的两个永磁体分别提供,使得偏置磁场不会因为间隙的减小而发生波动,从而使得轴向两侧的偏置磁场更为均匀。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为相关技术的三自由度磁悬浮轴承的径向剖视图;
图1a为图1的轴向剖视图;
图2为本公开的三自由度磁悬浮轴承的径向剖视图;
图2a为图2的轴向剖视图;
图3为本公开的磁悬浮轴承的轴向绕组骨架和轴向骨架支撑环的局部剖视图;
图3a为图3中的轴向骨架支撑环的立体结构图;
图3b为图3中的轴向绕组骨架的立体结构图;
图4为本公开的磁悬浮轴承的永磁体和磁钢固定架的局部结构图;
图4a为图4中的磁钢固定架的立体结构图;
图5为本公开的磁悬浮轴承的爆炸结构示意图;
图5a为图5的各部件的剖视结构图;
图6为本公开的三自由度磁悬浮轴承的控制逻辑图。
附图标记表示为:
1、轴向骨架支撑环;2、永磁体;21、第一永磁体;22、第二永磁体;3、径向-轴向偏置磁场;4、轴向控制磁场;5、轴向铁芯;51、第一轴向铁芯;52、第二轴向铁芯;6、轴向控制绕组;7、导磁环;71、环形凸起;72、第一台阶;73、第二台阶;8、径向控制绕组;9、径向控制磁场;10、径向铁芯;11、轴承转子;12、磁钢固定架;121、第一磁钢固定架;122、第二磁钢固定架;123、环形主体;124、凸出部;125、固定架安装孔;13、轴向绕组骨架;131、环形槽;132、第一轴向绕组骨架;132a、第一凸起;132b、沉孔;133、第二轴向绕组骨架;133a、第二凸起;14、轴向骨架安装孔;15、第三台阶;16、轴向绕组过线孔。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合本公开具体实施例及相应的附图对本公开技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开结合图2-6所示,本公开提供一种磁悬浮轴承,其包括:
轴向铁芯5、永磁体2、导磁环7和磁钢固定架12,所述永磁体2包括位于所述导磁环7的轴向一侧的第一永磁体21和位于所述导磁环7的轴向另一端的第二永磁体22,所述第一永磁体21位于所述导磁环7和所述轴向铁芯5之间且分别与二者相接,所述第二永磁体22位于所述导磁环7和所述轴向铁芯5之间且分别与二者相接;所述磁钢固定架12能够对所述永磁体2的径向内侧进行固定和支撑。
本公开通过将磁悬浮轴承的永磁体设置为包括位于导磁环的轴向一侧的第一永磁体和位于轴向另一侧的第二永磁体,使得形成分块的永磁体结构设计,使得轴向一侧的偏置磁场由第一永磁体提供,轴向另一侧的偏置磁场由第二永磁体提供,使得轴向两边的偏置磁场分别由独立的两个永磁体分别提供,使得偏置磁场不会因为间隙的减小而发生波动,从而使得轴向两侧的偏置磁场更为均匀;通过磁钢固定架还能对分块永磁体的径向内侧进行固定和支撑,从而提高对分块永磁体的支撑固定和定位作用,因此能够进一步地使得偏置磁场更为稳定,使得偏置磁场的分布更加均匀,轴向磁轴承出力负载稳定;并且将第一永磁体和第二永磁体分别与导磁环和轴向铁芯相接,使得永磁体安装在导磁环7和铁芯之间,使得偏置磁场直接通过永磁体处而形成回流,防止永磁体与轴向铁芯之间的间隙存在而形成漏磁的现象发生,可隔绝偏置磁场与轴向控制磁场漏磁、轴向偏置磁场不均,轴承出力不稳的情况。
为解决相关技术的三自由度磁悬浮轴承径向与轴向控制绕组安装困难、轴向占用空间大、磁场漏磁、磁场不均的现象,本公开提出一种新型三自由度磁悬浮轴承结构:
如图2至图5所示的三自由度磁悬浮轴承,左、右两侧的永磁体产生径向-轴向偏置磁场3在轴向铁芯5、径向铁芯10与轴承转子11的气隙中产生偏置磁场。轴向控制绕组6通入控制电流产生轴向控制磁场4,调节轴向气隙中的偏置磁通,实现转轴的轴向悬浮控制;径向控制绕组8通入控制电流产生径向控制磁场9,调节径向气隙中的偏置磁通,实现转轴的径向悬浮控制。轴向控制绕组6与径向控制绕组8分开装 配,可有效解决绕组由于绕线体积过大,轴向控制绕组与径向控制绕组安装困难的问题与三自由度磁悬浮轴承轴向占用空间大,转轴长度长,极限转速低的现状。轴向骨架支撑环1辅助轴向控制绕组6安装固定,采用不导磁材料,及分块永磁体设计,可解决永磁体2、轴向控制绕组6产生的轴向控制磁场在导磁环7与轴向铁芯5之间漏磁及轴向偏置磁场左右不均的现象。
本公开提出一种的三自由度磁悬浮轴承,解决技术问题:
1.左、右偏置磁场不均、轴向控制磁场于导磁环与轴向铁芯之间漏磁,轴承出力受限与不稳;
2.轴向控制绕组与径向控制绕组集成,绕线体积大,轴向控制绕组与径向控制绕组安装困难;
3.三自由度磁悬浮轴承轴向占用空间大,转轴长度长,极限转速低。
有益效果:
1.如图2至5所示的磁悬浮轴承的轴向骨架支撑环1与磁钢固定架12的结构设计,实现永磁体2分块设计,有益效果:磁钢固定架12结构设计,辅助永磁体2分块结构安装,轴向骨架支撑环1为不导磁材料,永磁体1分块可分别对前、后轴向轴承提供轴向偏置磁场,共同给径向轴承提供径向偏置磁场,可隔绝偏置磁场与轴向控制磁场漏磁、轴向偏置磁场不均,轴承出力不稳的情况;
2.如图2至5所示的磁悬浮轴承的轴向绕组骨架13与轴向骨架支撑环1的结构设计,实现轴向控制绕组6与径向控制绕组8分离设计,有益效果:轴向单独依靠隔磁的轴向骨架支撑环1与轴向铁芯5上的轴向绕组过线孔16引线,轴向绕组骨架固定在支撑环的轴向骨架安装孔14上,使轴向控制绕组6与径向控制绕组8安装便利,绕线体积减小,三自由度磁悬浮轴承轴向占用空间小,转轴长度短,极限转速高。
本公开提供的三自由度磁悬浮轴承中:
1.一种三自由度磁悬浮轴承结构设计,永磁体分块产生的轴向偏置磁场分布均匀,轴向磁轴承出力负载稳定,径向与轴向控制绕组安装便捷,悬浮系统轴向占用空间小,转轴长度短,极限转速高;
2.磁钢固定架结构设计与轴向骨架支撑环不导磁设计,永磁体分块,可有效解决偏置磁场与轴向控制磁场在导磁环与轴向铁芯之间漏磁、轴向偏置磁场不均,轴承出力不稳的现状;
3.轴向绕组骨架与隔磁的轴向骨架支撑环结构设计,使轴向控制绕组与径向控制 绕组分离设计,可有效解决安装绕组处轴向体积过大,轴向控制绕组与径向控制绕组安装困难、三自由度磁悬浮轴承结构轴向占用空间大、转轴长度长,极限转速低的现状。
在一些实施方式中,所述磁钢固定架12包括第一磁钢固定架121和第二磁钢固定架122,所述第一磁钢固定架121能够与所述第一永磁体21配合以对所述第一永磁体21的径向内侧进行固定和支撑,所述第二磁钢固定架122能够与所述第二永磁体22配合以对所述第二永磁体22的径向内侧进行固定和支撑。磁钢固定架包括与轴向一侧的第一永磁体配合的第一磁钢固定架,以及与轴向另一侧的第二永磁体配合的第二磁钢固定架,能够分别对第一和第二两个永磁体均起到定位和固定支撑的作用,进一步稳定偏置磁场,使得磁场分布更加均匀,轴向磁轴承出力负载更加稳定。
在一些实施方式中,所述磁钢固定架12包括环形主体123和凸出部124,所述凸出部124设置在所述环形主体123的径向外周且朝径向外侧凸出,所述凸出部124为多个,多个所述凸出部124沿所述环形主体123的周向方向间隔设置,且相邻两个凸出部124之间形成容纳空间,所述永磁体2为多个且沿圆周方向间隔设置,所述永磁体与所述容纳空间一一对应卡设。通过环形主体能够通过环形主体的外周对永磁体的内周进行支撑,通过凸出部的设置能够形成容纳空间,以对永磁体的周向两侧进行卡设,从而进一步起到固定永磁体的有效作用,提高对永磁体的稳固作用,进一步提高偏置磁场的稳定性,使得偏置磁场分布更加均匀。
在一些实施方式中,沿所述环形主体123的轴向方向以贯穿所述凸出部124的轴向两端的方式在所述凸出部124上设置有固定架安装孔125,通过所述固定架安装孔125能够将所述凸出部124固定到所述导磁环7上。本公开还通过凸出部上设置的固定架安装孔能够通过其中穿设比如螺钉等紧固件将磁钢固定架固定到导磁环上,从而再通过磁钢固定架对永磁体起到牢固的固定和限位的作用,保证偏置磁场的稳定性和均匀性。
在一些实施方式中,磁悬浮轴承还包括轴承转子11和径向铁芯10,在径向截面内,所述轴向铁芯5成“凹”状(C形),所述径向铁芯10、所述永磁体2和所述导磁环7均位于所述轴向铁芯5围成的空间内,所述轴承转子11位于所述轴向铁芯5的径向内侧的凹口处,所述径向铁芯10位于所述轴承转子11的径向外侧,所述导磁环7位于所述径向铁芯10的径向外侧。轴向铁芯围成容纳比如径向铁芯、轴承转子等结构的空间。
在一些实施方式中,磁悬浮轴承还包括径向控制绕组8和轴向控制绕组6,所述径向控制绕组8绕设在所述径向铁芯10上,所述轴向控制绕组6位于所述导磁环7的径向外侧。本公开通过径向控制绕组和轴向控制绕组设置在不同的位置,能够使得相对于相关技术的将径向控制绕组和轴向控制绕组均设置在径向铁芯上而言,能够有效减小对轴向空间的占用,从而有效地减小轴向方向的空间,使得结构更为紧凑。
在一些实施方式中,磁悬浮轴承还包括轴向绕组骨架13,所述轴向绕组骨架13设置在所述导磁环7的径向外周,且所述轴向绕组骨架13为环形结构,其径向外周设置有开口朝向径向外侧的环形槽131,所述轴向控制绕组6设置于所述环形槽131内。本公开通过轴向绕组骨架的设置能够对轴向控制绕组起到有效的支撑作用,并且有效保证轴向控制绕组和径向控制绕组分别位于导磁环的径向外周和径向内侧,有效地减小了空间的占用,减小了空间占用率。
在一些实施方式中,磁悬浮轴承还包括轴向骨架支撑环1,所述轴向骨架支撑环1设置在所述导磁环7的径向外周,所述轴向绕组骨架13包括第一轴向绕组骨架132和第二轴向绕组骨架133,所述第一轴向绕组骨架132连接在所述轴向骨架支撑环1的轴向一端,所述第二轴向绕组骨架133连接在所述轴向骨架支撑环1的轴向另一端,以通过所述轴向骨架支撑环1对所述第一轴向绕组骨架132和所述第二轴向绕组骨架133进行支撑;所述第一轴向绕组骨架132和第二轴向绕组骨架133上分别绕设有轴向控制绕组6。
本公开通过轴向绕组骨架与轴向骨架支撑环的结构设计,能够实现轴向控制绕组与径向控制绕组的分离设计,使得轴向控制绕组与径向控制绕组不必都设在径向铁芯上而导致使得两个轴向控制绕组被安装在导磁环的一侧以及使得空间很狭小、将磁轴承的轴向跨距/空间做的很大,体积很大;本公开的轴向控制绕组设在导磁环的径向外侧、径向控制绕组设在导磁环的径向内侧,能够使得轴向长度缩小,减小磁轴承体积,径向与轴向控制绕组安装便捷,悬浮系统轴向空间占用空间小,转轴长度短,极限转速高。
在一些实施方式中,所述轴向骨架支撑环1上以贯穿其轴向两侧端面的形式设置有轴向骨架安装孔14,所述第一轴向绕组骨架132上设置有第一凸起132a,所述第二轴向绕组骨架133上设置有第二凸起133a,所述第一凸起132a与所述轴向骨架安装孔14相对且能插设进入所述轴向骨架安装孔14中,同时所述第二凸起133a与所述轴向骨架安装孔14相对且能插设进入所述轴向骨架安装孔14中。本公开还通过轴 向骨架安装孔,第一凸起和第二凸起,使得两个凸起均能插设进入轴向骨架安装孔内,通过轴向骨架支撑环起到对两个轴向绕组骨架的有效固定和支撑的作用。
在一些实施方式中,所述第一凸起132a的顶端以朝远离所述第二凸起133a的方向开设有沉孔132b,所述第二凸起133a在插设进入所述轴向骨架安装孔14中后还能插设进入所述沉孔132b中。本公开还通过第一凸起上开设的沉孔,使得第二凸起在插设进入轴向骨架安装孔后再能进一步插设进入沉孔中(优选过盈配合),能够进一步增强对两个轴向绕组骨架的固定效果。
在一些实施方式中,所述导磁环7的外周面上设置有环形凸起71,所述环形凸起71的轴向一端形成第一台阶72,轴向另一端形成第二台阶73,所述轴向骨架支撑环1的径向内周还朝径向内侧方向凸出形成第三台阶15,所述第三台阶15能与所述第二台阶73卡接配合,所述第一轴向绕组骨架132能与所述轴向骨架支撑环1的轴向一端抵接和/或与所述第一台阶72抵接,所述第二轴向绕组骨架133能与所述轴向骨架支撑环1的轴向另一端抵接。本公开还通过导磁环上开设的环形凸起,从而形成第一和第二台阶,轴向骨架支撑环的径向内周凸出形成第三台阶,使得第三台阶与第二台阶卡设,从而能够通过第二台阶对轴向骨架支撑环起到轴向限位的作用,再通过第一和第二轴向绕组骨架分别与轴向骨架支撑环的端面抵接,最终形成对两个轴向绕组骨架的轴向限位和定位的作用和效果。
在一些实施方式中,所述轴向铁芯5包括第一轴向铁芯51和第二轴向铁芯52,所述第一轴向铁芯51和所述第二轴向铁芯52沿所述轴承转子11的轴向分布且对接,所述第一轴向铁芯51的内部具有第一空腔,所述第二轴向铁芯52的内部具有第二空腔,所述第一轴向铁芯51与所述第二轴向铁芯52对接后使得所述第一空腔与所述第二空腔相对接形成容纳腔,所述永磁体2、所述导磁环7、所述磁钢固定架12、所述轴承转子11和所述径向铁芯10均位于所述容纳腔中。本公开通过轴向铁芯的分体式设计,能够使得将所有的部件被组装在两个轴向铁芯围成的容纳腔内部,形成一个完整的磁悬浮轴承的产品结构,能够应用于不同的转轴上进行磁悬浮支撑作用。
如图5所示,径向控制绕组8嵌入径向铁芯10,通过整形与浸漆实现径向控制绕组8固定安装,构成径向轴承组件。径向轴承组件热套于导磁环7内,与导磁环7内壁凸台紧密贴合,导磁环7冷却后,实现径向轴承组件固定安装,磁钢固定架12通过螺钉安装在导磁环7两侧,永磁体2通过强胶粘粘于导磁环7两侧,磁钢固定架12辅助导磁环7固定安装,构成总径向轴承组件。轴向控制绕组6缠绕于轴向绕组骨架 13内侧构成前、后轴向绕组组件。前、后轴向绕组组件分别安装于轴向骨架支撑环1两侧,通过轴向绕组骨架13上的凸台卡扣、浸漆工艺,实现前、后轴向绕组组件与轴向骨架支撑环1一体化,构成总轴向绕组。加热前轴向铁芯(即第一轴向铁芯51),依次套入总轴向绕组、总径向轴承组件,前轴向铁芯内侧存在台阶定位,总轴向绕组与台阶紧密贴合,实现固定安装,轴向骨架支撑环内侧存在台阶定位,总径向轴承组件与台阶紧密贴合,通过螺钉锁紧实现固定安装,构成三自由度前轴承组件,依次向压缩机内部装配三自由度前轴承组件、轴承转子组件、后轴向铁芯(即第二轴向铁芯52),构成三自由度磁悬浮轴承,实现对转轴三自由度的悬浮控制。
如图6所示,本公开的三自由度磁悬浮轴承的控制逻辑:
其中,永磁体产生轴向-径向偏置磁场,分别于径向与轴向气隙中形成偏置磁场强度,转轴位于中心时,磁轴承对称径向与轴向气隙中的磁场强度相同,转轴稳定悬浮,转轴径向偏移中心时,磁轴承对称径向气隙的磁场强度不同,转轴持续径向偏移,直至失稳,需通过径向控制绕组,产生径向控制磁场调节径向气隙的磁场强度,使转轴反向偏移,直至中心,实现径向稳定悬浮,轴向控制逻辑相同,实现三自由度磁悬浮轴承的稳定悬浮。
本公开还提供一种压缩机,其包括前述的磁悬浮轴承。
本公开还提供一种空调器,其包括前述的压缩机。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。以上所述仅是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本公开的保护范围。

Claims (14)

  1. 一种磁悬浮轴承,包括:
    轴向铁芯(5)、永磁体(2)、导磁环(7)和磁钢固定架(12),所述永磁体(2)包括位于所述导磁环(7)的轴向一侧的第一永磁体(21)和位于所述导磁环(7)的轴向另一端的第二永磁体(22),所述第一永磁体(21)位于所述导磁环(7)和所述轴向铁芯(5)之间且分别与二者相接,所述第二永磁体(22)位于所述导磁环(7)和所述轴向铁芯(5)之间且分别与二者相接;所述磁钢固定架(12)能够对所述永磁体(2)的径向内侧进行固定和支撑。
  2. 根据权利要求1所述的磁悬浮轴承,其中,
    所述磁钢固定架(12)包括第一磁钢固定架(121)和第二磁钢固定架(122),所述第一磁钢固定架(121)能够与所述第一永磁体(21)配合以对所述第一永磁体(21)的径向内侧进行固定和支撑,所述第二磁钢固定架(122)能够与所述第二永磁体(22)配合以对所述第二永磁体(22)的径向内侧进行固定和支撑。
  3. 根据权利要求1或2所述的磁悬浮轴承,其中,
    所述磁钢固定架(12)包括环形主体(123)和凸出部(124),所述凸出部(124)设置在所述环形主体(123)的径向外周且朝径向外侧凸出,所述凸出部(124)为多个,多个所述凸出部(124)沿所述环形主体(123)的周向方向间隔设置,且相邻两个凸出部(124)之间形成容纳空间,所述永磁体(2)为多个且沿圆周方向间隔设置,所述永磁体与所述容纳空间一一对应卡设。
  4. 根据权利要求3所述的磁悬浮轴承,其中,
    沿所述环形主体(123)的轴向方向以贯穿所述凸出部(124)的轴向两端的方式在所述凸出部(124)上设置有固定架安装孔(125),通过所述固定架安装孔(125)能够将所述凸出部(124)固定到所述导磁环(7)上。
  5. 根据权利要求1-4中任一项所述的磁悬浮轴承,
    还包括轴承转子(11)和径向铁芯(10),在径向截面内,所述轴向铁芯(5) 成“凹”状,所述径向铁芯(10)、所述永磁体(2)和所述导磁环(7)均位于所述轴向铁芯(5)围成的空间内,所述轴承转子(11)位于所述轴向铁芯(5)的径向内侧的凹口处,所述径向铁芯(10)位于所述轴承转子(11)的径向外侧,所述导磁环(7)位于所述径向铁芯(10)的径向外侧。
  6. 根据权利要求5所述的磁悬浮轴承,
    还包括径向控制绕组(8)和轴向控制绕组(6),所述径向控制绕组(8)绕设在所述径向铁芯(10)上,所述轴向控制绕组(6)位于所述导磁环(7)的径向外侧。
  7. 根据权利要求6所述的磁悬浮轴承,
    还包括轴向绕组骨架(13),所述轴向绕组骨架(13)设置在所述导磁环(7)的径向外周,且所述轴向绕组骨架(13)为环形结构,其径向外周设置有开口朝向径向外侧的环形槽(131),所述轴向控制绕组(6)设置于所述环形槽(131)内。
  8. 根据权利要求7所述的磁悬浮轴承,
    还包括轴向骨架支撑环(1),所述轴向骨架支撑环(1)设置在所述导磁环(7)的径向外周,所述轴向绕组骨架(13)包括第一轴向绕组骨架(132)和第二轴向绕组骨架(133),所述第一轴向绕组骨架(132)连接在所述轴向骨架支撑环(1)的轴向一端,所述第二轴向绕组骨架(133)连接在所述轴向骨架支撑环(1)的轴向另一端,以通过所述轴向骨架支撑环(1)对所述第一轴向绕组骨架(132)和所述第二轴向绕组骨架(133)进行支撑;所述第一轴向绕组骨架(132)和第二轴向绕组骨架(133)上分别绕设有轴向控制绕组(6)。
  9. 根据权利要求8所述的磁悬浮轴承,其中,
    所述轴向骨架支撑环(1)上以贯穿其轴向两侧端面的形式设置有轴向骨架安装孔(14),所述第一轴向绕组骨架(132)上设置有第一凸起(132a),所述第二轴向绕组骨架(133)上设置有第二凸起(133a),所述第一凸起(132a)与所述轴向骨架安装孔(14)相对且能插设进入所述轴向骨架安装孔(14)中,同时所述第二凸起(133a)与所述轴向骨架安装孔(14)相对且能插设进入所述轴向骨架安装孔(14)中。
  10. 根据权利要求9所述的磁悬浮轴承,其中,
    所述第一凸起(132a)的顶端以朝远离所述第二凸起(133a)的方向开设有沉孔(132b),所述第二凸起(133a)在插设进入所述轴向骨架安装孔(14)中后还能插设进入所述沉孔(132b)中。
  11. 根据权利要求8-10中任一项所述的磁悬浮轴承,其中,
    所述导磁环(7)的外周面上设置有环形凸起(71),所述环形凸起(71)的轴向一端形成第一台阶(72),轴向另一端形成第二台阶(73),所述轴向骨架支撑环(1)的径向内周还朝径向内侧方向凸出形成第三台阶(15),所述第三台阶(15)能与所述第二台阶(73)卡接配合,所述第一轴向绕组骨架(132)能与所述轴向骨架支撑环(1)的轴向一端抵接和/或与所述第一台阶(72)抵接,所述第二轴向绕组骨架(133)能与所述轴向骨架支撑环(1)的轴向另一端抵接。
  12. 根据权利要求5至11中任一项所述的磁悬浮轴承,其中,
    所述轴向铁芯(5)包括第一轴向铁芯(51)和第二轴向铁芯(52),所述第一轴向铁芯(51)和所述第二轴向铁芯(52)沿所述轴承转子(11)的轴向分布且对接,所述第一轴向铁芯(51)的内部具有第一空腔,所述第二轴向铁芯(52)的内部具有第二空腔,所述第一轴向铁芯(51)与所述第二轴向铁芯(52)对接后使得所述第一空腔与所述第二空腔相对接形成容纳腔,所述永磁体(2)、所述导磁环(7)、所述磁钢固定架(12)、所述轴承转子(11)和所述径向铁芯(10)均位于所述容纳腔中。
  13. 一种压缩机,包括权利要求1-12中任一项所述的磁悬浮轴承。
  14. 一种空调器,包括权利要求13所述的压缩机。
PCT/CN2022/140866 2022-05-26 2022-12-22 一种磁悬浮轴承、压缩机和空调器 WO2023226405A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210582036.XA CN115045913A (zh) 2022-05-26 2022-05-26 一种磁悬浮轴承、压缩机和空调器
CN202210582036.X 2022-05-26

Publications (1)

Publication Number Publication Date
WO2023226405A1 true WO2023226405A1 (zh) 2023-11-30

Family

ID=83158872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140866 WO2023226405A1 (zh) 2022-05-26 2022-12-22 一种磁悬浮轴承、压缩机和空调器

Country Status (2)

Country Link
CN (1) CN115045913A (zh)
WO (1) WO2023226405A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115045913A (zh) * 2022-05-26 2022-09-13 珠海格力电器股份有限公司 一种磁悬浮轴承、压缩机和空调器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040075355A1 (en) * 2000-09-26 2004-04-22 Gunter Ries Magnetic bearing
JP2007056892A (ja) * 2005-08-22 2007-03-08 Iwaki Co Ltd 磁気軸受
CN102900761A (zh) * 2012-09-06 2013-01-30 江苏大学 一种永磁偏磁轴向混合磁轴承
CN103939465A (zh) * 2014-04-10 2014-07-23 江苏大学 一种单自由度磁轴承
CN108644230A (zh) * 2018-06-27 2018-10-12 珠海格力电器股份有限公司 混合式轴向轴承
CN110864043A (zh) * 2019-10-08 2020-03-06 珠海格力电器股份有限公司 一种磁悬浮径向轴承及其装配方法
CN113503317A (zh) * 2021-08-09 2021-10-15 珠海格力电器股份有限公司 磁悬浮轴承、压缩机和空调器
CN113586609A (zh) * 2021-08-30 2021-11-02 珠海格力电器股份有限公司 磁悬浮轴承、电机、压缩机和空调器
CN217381308U (zh) * 2022-05-26 2022-09-06 珠海格力电器股份有限公司 一种磁悬浮轴承、压缩机和空调器
CN115045913A (zh) * 2022-05-26 2022-09-13 珠海格力电器股份有限公司 一种磁悬浮轴承、压缩机和空调器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040075355A1 (en) * 2000-09-26 2004-04-22 Gunter Ries Magnetic bearing
JP2007056892A (ja) * 2005-08-22 2007-03-08 Iwaki Co Ltd 磁気軸受
CN102900761A (zh) * 2012-09-06 2013-01-30 江苏大学 一种永磁偏磁轴向混合磁轴承
CN103939465A (zh) * 2014-04-10 2014-07-23 江苏大学 一种单自由度磁轴承
CN108644230A (zh) * 2018-06-27 2018-10-12 珠海格力电器股份有限公司 混合式轴向轴承
CN110864043A (zh) * 2019-10-08 2020-03-06 珠海格力电器股份有限公司 一种磁悬浮径向轴承及其装配方法
CN113503317A (zh) * 2021-08-09 2021-10-15 珠海格力电器股份有限公司 磁悬浮轴承、压缩机和空调器
CN113586609A (zh) * 2021-08-30 2021-11-02 珠海格力电器股份有限公司 磁悬浮轴承、电机、压缩机和空调器
CN217381308U (zh) * 2022-05-26 2022-09-06 珠海格力电器股份有限公司 一种磁悬浮轴承、压缩机和空调器
CN115045913A (zh) * 2022-05-26 2022-09-13 珠海格力电器股份有限公司 一种磁悬浮轴承、压缩机和空调器

Also Published As

Publication number Publication date
CN115045913A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
CN108591257B (zh) 具有径向被动悬浮力的永磁偏置轴向磁悬浮轴承
WO2023226405A1 (zh) 一种磁悬浮轴承、压缩机和空调器
CN109026999B (zh) 轴向磁悬浮轴承
CN111181307A (zh) 一种气流纺高速电机
WO2023226418A1 (zh) 磁悬浮轴承、压缩机
WO2023029538A1 (zh) 磁悬浮轴承、电机、压缩机和空调器
CA2151687A1 (en) Hybrid magnetic/foil gas bearings
CN211183688U (zh) 一种气流纺高速电机
CN217381308U (zh) 一种磁悬浮轴承、压缩机和空调器
WO2021143766A1 (zh) 新结构交叉齿四极混合磁轴承
CN112065856B (zh) 四极内外双转子混合磁轴承
CN213575191U (zh) 径向混合式磁悬浮轴承组件及具有其的电机
CN211623964U (zh) 永磁偏置型磁悬浮轴承
CN111173838B (zh) 径向无耦合三自由度直流混合磁轴承
CN211449394U (zh) 永磁偏置磁悬浮轴承、电机、压缩机和空调器
WO2023226404A1 (zh) 一种磁悬浮轴承、压缩机
CN211574040U (zh) 径向无耦合三自由度直流混合磁轴承
CN209762004U (zh) 一种低功耗大承载力的永磁偏置式止推磁悬浮轴承
WO2023226401A1 (zh) 磁悬浮轴承、压缩机
CN111102293A (zh) 主被动磁气混合轴承
CN217481771U (zh) 磁悬浮轴承、压缩机
CN109681525A (zh) 磁悬浮轴承及电机
CN110985544A (zh) 永磁偏置磁悬浮轴承、电机、压缩机和空调器
CN111594547A (zh) 一种低功耗大承载力的永磁偏置式止推磁悬浮轴承
CN213575192U (zh) 径向混合式磁悬浮轴承组件及具有其的压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943592

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022943592

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022943592

Country of ref document: EP

Effective date: 20240830