WO2023226316A1 - 一种自适应距离保护方法及系统 - Google Patents

一种自适应距离保护方法及系统 Download PDF

Info

Publication number
WO2023226316A1
WO2023226316A1 PCT/CN2022/131274 CN2022131274W WO2023226316A1 WO 2023226316 A1 WO2023226316 A1 WO 2023226316A1 CN 2022131274 W CN2022131274 W CN 2022131274W WO 2023226316 A1 WO2023226316 A1 WO 2023226316A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
distance protection
protection
time domain
domain information
Prior art date
Application number
PCT/CN2022/131274
Other languages
English (en)
French (fr)
Inventor
郑玉平
吴通华
洪丰
孙志攀
姚刚
王小红
戴魏
李新东
江源
郑小江
陈国洲
Original Assignee
国电南瑞科技股份有限公司
国电南瑞南京控制系统有限公司
南瑞集团有限公司
国家电网有限公司
国网江苏省电力有限公司电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国电南瑞科技股份有限公司, 国电南瑞南京控制系统有限公司, 南瑞集团有限公司, 国家电网有限公司, 国网江苏省电力有限公司电力科学研究院 filed Critical 国电南瑞科技股份有限公司
Publication of WO2023226316A1 publication Critical patent/WO2023226316A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/261Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations
    • H02H7/263Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations involving transmissions of measured values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead

Definitions

  • the invention relates to an adaptive distance protection method and system, belonging to the technical field of power system relay protection.
  • Distance protection is a kind of protection that operates by measuring the ratio of the voltage at the beginning of the protected line and the line current. It reflects the impedance (length of distance) between the short circuit point and the protection installation. Distance protection is less affected by the system operation mode. , has been widely used in power grids.
  • the impedance relay is the core of the distance protection function. Its action equations are mainly divided into two categories: amplitude comparison action equation and phase comparison action equation.
  • the phase-comparison directional impedance relay with memory function and the positive sequence voltage as the polarization voltage combines with the distribution law of the positive sequence voltage in the system to solve the problem of symmetry or inconsistency at the traditional line outlet.
  • the problem of incorrect phase comparison of polarization voltages during symmetrical short-circuit faults is widely used in distance protection.
  • the electrical characteristics of traditional power sources have changed.
  • the fault current generated by the control strategy of the power electronic device is limited and the phase is controlled.
  • the positive sequence voltage cannot represent the power supply voltage that provides the short-circuit current.
  • the positive sequence voltage is the phase-ratio directional impedance of the polarization voltage.
  • the relay has lost directionality. Therefore, the selectivity and reliability of distance protection are reduced, and the probability of malfunction and rejection increases.
  • the technical problem to be solved by the present invention is to overcome the defects of the existing technology and provide an adaptive distance protection method and system.
  • an adaptive distance protection method including:
  • the transient time domain information of electrical quantities is used to determine the fault direction characteristics.
  • the distance protection action range is expanded; when the reverse direction is determined, the distance protection action range is reduced.
  • the extraction of transient time domain information of electrical quantities at the protection installation includes:
  • ⁇ u m(k) is the transient time domain information of voltage
  • u m(k) is the voltage sampling value of the protection device at the current moment
  • u m(kN) is the voltage sampling value of the protection device at the moment before one cycle
  • N is the number of sampling points of a cycle
  • m represents the a, b, c phases or the ab, bc, ca phases;
  • ⁇ im (k) is the transient time domain information of the current amount
  • im (k) is the current sampling value of the protection device at the current moment
  • i m(kN) is the current sampling value of the protection device at the moment before one cycle.
  • the criterion for the positive direction is:
  • the criterion for the reverse direction is:
  • S m(k) is the energy direction expression of the structure.
  • the expanded distance protection action range includes:
  • the reduction of distance protection action range includes:
  • the angle range is reduced, taking 15 to 20°, and the polarization voltage Take the positive sequence voltage at the protection installation location
  • Operating Voltage It is the vector of voltage and current at the protection installation location, and Z set is the distance protection setting value.
  • An adaptive distance protection system including:
  • Extraction module used to extract transient time domain information of electrical quantities at the protection installation location
  • the processing module is used to use the transient time domain information of electrical quantities to determine the fault direction characteristics.
  • the distance protection action range is expanded; when the reverse direction is determined, the distance protection action range is reduced.
  • the extraction module is used to extract the extraction module.
  • ⁇ u m(k) is the transient time domain information of voltage
  • u m(k) is the voltage sampling value of the protection device at the current moment
  • u m(kN) is the voltage sampling value of the protection device at the moment before one cycle
  • N is the number of sampling points of a cycle
  • m represents the a, b, c phases or the ab, bc, ca phases;
  • ⁇ im (k) is the transient time domain information of the current amount
  • im (k) is the current sampling value of the protection device at the current moment
  • i m(kN) is the current sampling value of the protection device at the moment before one cycle.
  • processing module the processing module
  • S m(k) is the energy direction expression of the structure.
  • processing module is used to expand the action range of mho distance protection based on positive sequence voltage polarization to the range of the following formula,
  • processing module is used to reduce the action range of mho distance protection based on positive sequence voltage polarization to the range of the following formula,
  • the angle range is reduced, taking 15 to 20°, and the polarization voltage Take the positive sequence voltage at the protection installation location
  • Operating Voltage It is the vector of voltage and current at the protection installation location, and Z set is the distance protection setting value.
  • a computer-readable storage medium storing one or more programs, the one or more programs including instructions that, when executed by a computing device, cause the computing device to perform any of the methods described .
  • a computing device including,
  • processors one or more processors, memory, and one or more programs, wherein one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including Instructions for performing any of the methods described.
  • This invention aims at the problem of abnormal distance protection action in new energy stations or flexible transmission lines. It uses the transient time domain information of the electrical quantity at the protection installation location to determine the direction of the fault, and adaptively adopts distance protection elements with different protection ranges to ensure correct distance protection. action.
  • Figure 1 is a schematic flow diagram of the present invention
  • Figure 2 is a schematic diagram of the additional status of the forward direction fault
  • Figure 3 is a schematic diagram of the additional status of a reverse direction fault
  • Figure 4 is a distance relay based on positive sequence voltage polarization
  • Figure 5 is the action range of fault distance protection in the forward direction
  • Figure 6 shows the action range of reverse direction fault distance protection
  • Figure 7 is a schematic diagram of the simulation system
  • Figure 8 shows the near-end phase fault in the positive direction of the flexural side, and the distance protection refuses to operate
  • Figure 9 shows the positive direction based on transient time domain information
  • Figure 10 shows the correct action of distance protection after expanding the action range
  • Figure 11 shows a phase-to-phase fault on the system side busbar, causing the distance protection to malfunction
  • Figure 12 shows the reverse direction based on transient time domain information
  • Figure 13 shows that the distance protection with narrowed operating range does not operate accurately.
  • an adaptive distance protection method includes the following steps:
  • Step 1 Extract the transient time domain information of electrical quantities at the protection installation location.
  • ⁇ u m(k) is the transient time domain information of voltage
  • u m(k) is the voltage sampling value of the protection device at the current moment
  • u m(kN) is the voltage sampling value of the protection device at the moment before one cycle
  • N The number of sampling points for one cycle.
  • m is a, b, c phase or ab, bc, ca phase.
  • ⁇ i m(k) is the transient time domain information of the current amount
  • i m(k) is the current sampling value of the protection device at the current moment
  • i m(kN) is the current sampling value of the protection device at the moment before one cycle
  • N is The number of points sampled in one cycle.
  • m is a, b, c phase or ab, bc, ca phase.
  • Step 2 Use the transient time domain information of electrical quantities to determine the fault direction characteristics.
  • Step 3 When the positive direction is determined, expand the action range of the distance protection, and expand the action range of the traditional mho distance protection based on positive sequence voltage polarization to:
  • the polarization voltage Take the positive sequence voltage Operating Voltage It is the vector of voltage and current at the protection installation location, and Z set is the distance protection setting value. Generally, it is 15° ⁇ 20°.
  • the distance protection action range corresponding to the above formula is shown in Figure 5. Compared with the traditional mho distance protection based on positive sequence voltage polarization shown in Figure 4, the upper and lower boundaries of the action range have increased. Distance relay exhibits apple-shaped characteristics.
  • Step 4 When the reverse direction is determined, reduce the action range of the distance protection, and reduce the action range of the traditional mho distance protection based on positive sequence voltage polarization to:
  • the polarization voltage Take the positive sequence voltage Operating Voltage It is the vector of voltage and current at the protection installation location, and Z set is the distance protection setting value. Generally, it is 15° ⁇ 20°.
  • the distance protection action range corresponding to the above formula is shown in Figure 6. Compared with the traditional mho distance protection based on positive sequence voltage polarization shown in Figure 4, the upper and lower boundaries of the action range are each reduced. A distance relay exhibiting lens-type characteristics.
  • a 500kV voltage level line model for the wind farm's flexible direct transmission was built in RTDS.
  • a total of 5 fault points, F1 to F5 were set up in the model, both inside and outside the area.
  • the system and line parameters on both sides of the line are shown in Table 1. Both sides of the line are connected to line protection device A equipped with traditional mho distance protection based on positive sequence voltage polarization, and then connected to line protection device B using this patented improved distance protection.
  • an adaptive distance protection system including:
  • Extraction module used to extract transient time domain information of electrical quantities at the protection installation location
  • the processing module is used to use the transient time domain information of electrical quantities to determine the fault direction characteristics.
  • the distance protection action range is expanded; when the reverse direction is determined, the distance protection action range is reduced.
  • the extraction module is used to extract
  • ⁇ u m(k) is the transient time domain information of voltage
  • u m(k) is the voltage sampling value of the protection device at the current moment
  • u m(kN) is the voltage sampling value of the protection device at the moment before one cycle
  • N is the number of sampling points of a cycle
  • m represents the a, b, c phases or the ab, bc, ca phases;
  • ⁇ im (k) is the transient time domain information of the current amount
  • im (k) is the current sampling value of the protection device at the current moment
  • i m(kN) is the current sampling value of the protection device at the moment before one cycle.
  • the processing module includes
  • S m(k) is the energy direction expression of the structure.
  • the processing module is used to expand the action range of mho type distance protection based on positive sequence voltage polarization to the range of the following formula,
  • the processing module is used to reduce the action range of mho distance protection based on positive sequence voltage polarization to the range of the following formula,
  • the angle range is reduced, taking 15 to 20°, and the polarization voltage Take the positive sequence voltage at the protection installation location
  • Operating Voltage It is the vector of voltage and current at the protection installation location, and Z set is the distance protection setting value.
  • the present invention also provides a computer-readable storage medium that stores one or more programs.
  • the one or more programs include instructions that, when executed by a computing device, cause the computing device to execute the described any of the methods.
  • the present invention also provides a computing device, including:
  • processors one or more processors, memory, and one or more programs, wherein one or more programs are stored in the memory and configured to be executed by the one or more processors, the one or more programs including Instructions for performing any of the methods described.
  • embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

本发明公开了一种自适应距离保护方法及系统,包括:提取保护安装处电气量暂态时域信息;利用电气量暂态时域信息判断故障方向特性,判断出正方向时,扩大距离保护动作范围;判断出反方向时,缩小距离保护动作范围。优点:本发明针对新能源场站或柔直送出线路距离保护动作异常问题,利用保护安装处电气量暂态时域信息判断故障方向,并自适应的采用保护范围不同的距离保护元件,保证距离保护正确动作。

Description

一种自适应距离保护方法及系统 技术领域
本发明涉及一种自适应距离保护方法及系统,属于电力系统继电保护技术领域。
背景技术
距离保护是通过测量被保护线路始端电压和线路电流的比值而动作的一种保护,反映了短路点到保护安装处之间阻抗的大小(距离的长短),距离保护受系统运行方式影响较小,已在电网中大量应用。
阻抗继电器是距离保护功能实现的核心,其动作方程主要分为两大类:幅值比较动作方程和相位比较动作方程。在基于相位比较动作方程的阻抗继电器中,带记忆功能的以正序电压为极化电压的比相式方向阻抗继电器结合正序电压在系统中的分布规律,解决了传统线路出口发生对称或不对称短路故障时极化电压无法正确比相的问题,在距离保护中应用广泛。
随着越来越多新能源发电装置以及柔直输电等多种形式电源并网,传统电源的电气特性发生改变。线路故障时,由电力电子器件的控制策略作用产生的故障电流受限、相位受控,导致正序电压不能表征提供短路电流的电源电压,以正序电压为极化电压的比相式方向阻抗继电器失去方向性。因此,距离保护选择性和可靠性降低,误动拒动概率增加。
发明内容
本发明所要解决的技术问题是克服现有技术的缺陷,提供一种自适应距离保护方法及系统。
为解决上述技术问题,本发明提供一种自适应距离保护方法,包括:
提取保护安装处电气量暂态时域信息;
利用电气量暂态时域信息判断故障方向特性,判断出正方向时,扩大距离保护动作范围;判断出反方向时,缩小距离保护动作范围。
进一步的,所述提取保护安装处电气量暂态时域信息,包括:
利用式(1)计算电压量暂态时域信息,
Δu m(k)=u m(k)-u m(k-N)  (1)
其中,△u m(k)为电压量暂态时域信息,u m(k)为保护装置当前时刻的电压采样值,u m(k-N)为保护装置一个周波前时刻的电压采样值,N为一个周波采样的点数,m表示a、b、c相或ab、bc、ca相间;
利用式(2)计算电流量暂态时域信息,
Δi m(k)=i m(k)-i m(k-N)  (2)
其中,Δi m(k)为电流量暂态时域信息,i m(k)为保护装置当前时刻的电流采样值,i m(k-N)为保护装置一个周波前时刻的电流采样值。
进一步的,
所述正方向的判据为:
S m(k)=Δu m(k)Δi m(k)<0
所述反方向的判据为:
S m(k)=Δu m(k)Δi m(k)>0
其中,S m(k)为构造的能量方向表达式。
进一步的,所述扩大距离保护动作范围,包括:
将基于正序电压极化的姆欧型距离保护的动作范围扩大至下式的范围,
Figure PCTCN2022131274-appb-000001
其中,
Figure PCTCN2022131274-appb-000002
为比相式距离保护动作扩大的角度范围,取15~20°,极化电压
Figure PCTCN2022131274-appb-000003
取保护安装处的正序电压
Figure PCTCN2022131274-appb-000004
工作电压
Figure PCTCN2022131274-appb-000005
为保护安装处电压、电流的向量,Z set为距离保护整定值。
进一步的,所述缩小距离保护动作范围,包括:
将基于正序电压极化的姆欧型距离保护的动作范围缩小至下式的范围,
Figure PCTCN2022131274-appb-000006
其中,
Figure PCTCN2022131274-appb-000007
比相式距离保护动作缩小的角度范围,取15~20°,极化电压
Figure PCTCN2022131274-appb-000008
取保护安装处的正序电压
Figure PCTCN2022131274-appb-000009
工作电压
Figure PCTCN2022131274-appb-000010
为保护安装处电压、电流的向量,Z set为距离保护整定值。
一种自适应距离保护系统,包括:
提取模块,用于提取保护安装处电气量暂态时域信息;
处理模块,用于利用电气量暂态时域信息判断故障方向特性,判断出正方向时,扩大距离保护动作范围;判断出反方向时,缩小距离保护动作范围。
进一步的,所述提取模块,用于
利用式(1)计算电压量暂态时域信息,
Δu m(k)=u m(k)-u m(k-N)  (1)
其中,△u m(k)为电压量暂态时域信息,u m(k)为保护装置当前时刻的电压采样值,u m(k-N)为保护装置一个周波前时刻的电压采样值,N为一个周波采样的点数,m表示a、b、c相或ab、bc、ca相间;
利用式(2)计算电流量暂态时域信息,
Δi m(k)=i m(k)-i m(k-N)  (2)
其中,Δi m(k)为电流量暂态时域信息,i m(k)为保护装置当前时刻的电流采样值,i m(k-N)为保护装置一个周波前时刻的电流采样值。
进一步的,所述处理模块,
用于根据下式的判据确定故障方向为正方向;
S m(k)=Δu m(k)Δi m(k)<0
用于根据下式的判据确定故障方向为正方向;
S m(k)=Δu m(k)Δi m(k)>0
其中,S m(k)为构造的能量方向表达式。
进一步的,所述处理模块,用于将基于正序电压极化的姆欧型距离保护的动作范围扩大至下式的范围,
Figure PCTCN2022131274-appb-000011
其中,
Figure PCTCN2022131274-appb-000012
为比相式距离保护动作扩大的角度范围,取15~20°,极化电压
Figure PCTCN2022131274-appb-000013
取保护安装处的正序电压
Figure PCTCN2022131274-appb-000014
工作电压
Figure PCTCN2022131274-appb-000015
为保护安装处电压、电流的向量,Z set为距离保护整定值。
进一步的,所述处理模块,用于将基于正序电压极化的姆欧型距离保护的动作范围缩小至下式的范围,
Figure PCTCN2022131274-appb-000016
其中,
Figure PCTCN2022131274-appb-000017
比相式距离保护动作缩小的角度范围,取15~20°,极化电压
Figure PCTCN2022131274-appb-000018
取保护安装处的正序电压
Figure PCTCN2022131274-appb-000019
工作电压
Figure PCTCN2022131274-appb-000020
为保护安装处电压、电流的向量,Z set为距离保护整定值。
一种存储一个或多个程序的计算机可读存储介质,所述一个或多个程序包括指令,所述指令当由计算设备执行时,使得所述计算设备执行所述的方法中的任一方法。
一种计算设备,包括,
一个或多个处理器、存储器以及一个或多个程序,其中一个或多个程序存储在所述存储器中并被配置为由所述一个或多个处理器执行,所述一个或多个程序包括用于执行所述的方法中的任一方法的指令。
本发明所达到的有益效果:
本发明针对新能源场站或柔直送出线路距离保护动作异常问题,利用保护安装处电气量暂态时域信息判断故障方向,并自适应的采用保护范围不同的距 离保护元件,保证距离保护正确动作。
附图说明
图1是本发明的流程示意图;
图2是正方向故障附加状态示意图;
图3是反方向故障附加状态示意图;
图4是基于正序电压极化的距离继电器;
图5是正方向故障距离保护动作范围;
图6是反方向故障距离保护动作范围;
图7是仿真系统示意图;
图8是柔直侧正方向近端相间故障,距离保护拒动;
图9是基于暂态时域信息判出正方向;
图10是扩大动作范围后的距离保护正确动作;
图11是系统侧母线相间故障,距离保护误动;
图12是基于暂态时域信息判出反方向;
图13是缩小动作范围的距离保护准确不动作。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
如图1所示,一种自适应距离保护方法,包括以下步骤:
步骤1:提取保护安装处电气量暂态时域信息。
电压量暂态时域信息获取:
Δu m(k)=u m(k)-u m(k-N)
其中,△u m(k)为电压量暂态时域信息,u m(k)为保护装置当前时刻的电压采样值,u m(k-N)为保护装置一个周波前时刻的电压采样值,N为一个周波采样的点数。m为a、b、c相或ab、bc、ca相间。
同样的,电流采样点变化量为:
Δi m(k)=i m(k)-i m(k-N)
其中,Δi m(k)为电流量暂态时域信息,i m(k)为保护装置当前时刻的电流采样值,i m(k-N)为保护装置一个周波前时刻的电流采样值,N为一个周波采样的点数。m为a、b、c相或ab、bc、ca相间。
步骤2:利用电气量暂态时域信息判断故障方向特性。
对于图2所示的正方向故障,在故障附加状态中,有:
Δu m(k)=-Δi m(k)Z s
所以:
S m(k)=Δu m(k)Δi m(k)=-Δi 2 m(k)Z S<0
即,正方向判据:
S m(k)=Δu m(k)Δi m(k)<0
对于图3所示的反方向故障,在故障附加状态中,有:
Δu m(k)=Δi m(k)Z R>0
所以:
S m(k)=Δu m(k)Δi m(k)=Δi 2 m(k)Z R>0
即,反方向判据:
S m(k)=Δu m(k)Δi m(k)>0
步骤3:判断出正方向时,扩大距离保护动作范围,将传统基于正序电压极化的姆欧型距离保护的动作范围扩大至:
Figure PCTCN2022131274-appb-000021
其中,极化电压
Figure PCTCN2022131274-appb-000022
取正序电压
Figure PCTCN2022131274-appb-000023
工作电压
Figure PCTCN2022131274-appb-000024
为保护安装处电压、电流的向量,Z set为距离保护整定值。
Figure PCTCN2022131274-appb-000025
一般取15°~20°。
上式对应的距离保护动作范围如图5所示,与图4所示的传统基于正序电压极化的姆欧型距离保护相比,动作范围上、下边界各增加了
Figure PCTCN2022131274-appb-000026
呈现苹果型特性距离继电器。
步骤4:判断出反方向时,缩小距离保护动作范围,将传统基于正序电压极化的姆欧型距离保护的动作范围缩小至:
Figure PCTCN2022131274-appb-000027
其中,极化电压
Figure PCTCN2022131274-appb-000028
取正序电压
Figure PCTCN2022131274-appb-000029
工作电压
Figure PCTCN2022131274-appb-000030
为保护安装处电压、电流的向量,Z set为距离保护整定值。
Figure PCTCN2022131274-appb-000031
一般取15°~20°。
上式对应的距离保护动作范围如图6所示,与图4所示的传统基于正序电压极化的姆欧型距离保护相比,动作范围上、下边界各减少了
Figure PCTCN2022131274-appb-000032
呈现透镜型特性距离继电器。
结合上述方法的内容,对于某一风电经柔直输电系统模型提供以下仿真实施例:
如图7所示,在RTDS中搭建风电场经柔直送出500kV电压等级线路模型,模型中设置了F1~F5,共5个区内、外的故障点。线路两侧系统及线路参数如表1所示。线路两侧分别接入配置传统基于正序电压极化的姆欧型距离保护的线路保护装置A,再接入采用本专利改进距离保护的线路保护装置B。
表1系统阻抗和线路参数
项目 参数 单位
正序电阻 0.028 ohm/km
正序感抗 0.275 ohm/km
正序并联容抗 0.225 Mohm*km
零序电阻 0.094 ohm/km
零序感抗 0.674 ohm/km
零序并联容抗 0.313 Mohm*km
线路长度 20 km
M系统等值阻抗 10∠85° ohm
N系统等值阻抗 20∠85° ohm
对上述故障点进行各种故障类型的测试,得出距离保护动作结果如表2所示。
表2距离保护动作情况
Figure PCTCN2022131274-appb-000033
Figure PCTCN2022131274-appb-000034
从表2距离保护动作情况来看,保护装置A在M侧柔直系统正方向出口处发生相间故障时,距离保护有拒动的情况;在N侧系统侧母线故障时距离保护有误动的情况,但是保护装置B均动作正常。
进一步分析,对于区内、外单相接地或相间接地故障,因零序网络相对独立,零序分量不受电源影响,且零序电流方向满足正方向条件,所以装置A、B距离保护能正确动作。
在F2点柔直系统正方向出口处相间故障时,由柔直系统的控制策略作用引起的故障电流受限、相位受控导致装置A距离继电器拒动(图8)。装置B暂态时域信息正方向判据满足条件(图9),扩大动作范围的距离保护能够正确动作,切除故障(图10)。
在F5点系统侧后背母线处相间故障时,故障电流仍为柔直侧提供,而由柔直系统的控制策略作用引起的故障电流受限、相位受控导致装置A距离继电器误动(图11)。装置B暂态时域信息反方向判据满足条件(图12),缩小动作范围的距离保护准确不动作(图13)。
相应的本发明还提供一种自适应距离保护系统,包括:
提取模块,用于提取保护安装处电气量暂态时域信息;
处理模块,用于利用电气量暂态时域信息判断故障方向特性,判断出正方 向时,扩大距离保护动作范围;判断出反方向时,缩小距离保护动作范围。
所述提取模块,用于
利用式(1)计算电压量暂态时域信息,
Δu m(k)=u m(k)-u m(k-N)  (1)
其中,△u m(k)为电压量暂态时域信息,u m(k)为保护装置当前时刻的电压采样值,u m(k-N)为保护装置一个周波前时刻的电压采样值,N为一个周波采样的点数,m表示a、b、c相或ab、bc、ca相间;
利用式(2)计算电流量暂态时域信息,
Δi m(k)=i m(k)-i m(k-N)  (2)
其中,Δi m(k)为电流量暂态时域信息,i m(k)为保护装置当前时刻的电流采样值,i m(k-N)为保护装置一个周波前时刻的电流采样值。
所述处理模块,
用于根据下式的判据确定故障方向为正方向;
S m(k)=Δu m(k)Δi m(k)<0
用于根据下式的判据确定故障方向为正方向;
S m(k)=Δu m(k)Δi m(k)>0
其中,S m(k)为构造的能量方向表达式。
所述处理模块,用于将基于正序电压极化的姆欧型距离保护的动作范围扩大至下式的范围,
Figure PCTCN2022131274-appb-000035
其中,
Figure PCTCN2022131274-appb-000036
为比相式距离保护动作扩大的角度范围,取15~20°,极化电压
Figure PCTCN2022131274-appb-000037
取保护安装处的正序电压
Figure PCTCN2022131274-appb-000038
工作电压
Figure PCTCN2022131274-appb-000039
为保护安装处电压、电流的向量,Z set为距离保护整定值。
所述处理模块,用于将基于正序电压极化的姆欧型距离保护的动作范围缩小至下式的范围,
Figure PCTCN2022131274-appb-000040
其中,
Figure PCTCN2022131274-appb-000041
比相式距离保护动作缩小的角度范围,取15~20°,极化电压
Figure PCTCN2022131274-appb-000042
取保护安装处的正序电压
Figure PCTCN2022131274-appb-000043
工作电压
Figure PCTCN2022131274-appb-000044
为保护安装处电压、电流的向量,Z set为距离保护整定值。
相应的本发明还提供一种存储一个或多个程序的计算机可读存储介质,所述一个或多个程序包括指令,所述指令当由计算设备执行时,使得所述计算设备执行所述的方法中的任一方法。
相应的本发明还提供一种计算设备,包括,
一个或多个处理器、存储器以及一个或多个程序,其中一个或多个程序存储在所述存储器中并被配置为由所述一个或多个处理器执行,所述一个或多个程序包括用于执行所述的方法中的任一方法的指令。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机 或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (12)

  1. 一种自适应距离保护方法,其特征在于,包括:
    提取保护安装处电气量暂态时域信息;
    利用电气量暂态时域信息判断故障方向特性,判断出正方向时,扩大距离保护动作范围;判断出反方向时,缩小距离保护动作范围。
  2. 根据权利要求1所述的自适应距离保护方法,其特征在于,所述提取保护安装处电气量暂态时域信息,包括:
    利用式(1)计算电压量暂态时域信息,
    Δu m(k)=u m(k)-u m(k-N)    (1)
    其中,△u m(k)为电压量暂态时域信息,u m(k)为保护装置当前时刻的电压采样值,u m(k-N)为保护装置一个周波前时刻的电压采样值,N为一个周波采样的点数,m表示a、b、c相或ab、bc、ca相间;
    利用式(2)计算电流量暂态时域信息,
    Δi m(k)=i m(k)-i m(k-N)    (2)
    其中,Δi m(k)为电流量暂态时域信息,i m(k)为保护装置当前时刻的电流采样值,i m(k-N)为保护装置一个周波前时刻的电流采样值。
  3. 根据权利要求2所述的自适应距离保护方法,其特征在于,
    所述正方向的判据为:
    S m(k)=Δu m(k)Δi m(k)<0
    所述反方向的判据为:
    S m(k)=Δu m(k)Δi m(k)>0
    其中,S m(k)为构造的能量方向表达式。
  4. 根据权利要求1所述的自适应距离保护方法,其特征在于,所述扩大距离保护动作范围,包括:
    将基于正序电压极化的姆欧型距离保护的动作范围扩大至下式的范围,
    Figure PCTCN2022131274-appb-100001
    其中,
    Figure PCTCN2022131274-appb-100002
    为比相式距离保护动作扩大的角度范围,取15~20°,极化电压
    Figure PCTCN2022131274-appb-100003
    取保护安装处的正序电压
    Figure PCTCN2022131274-appb-100004
    工作电压
    Figure PCTCN2022131274-appb-100005
    为保护安装处电压、电流的向量,Z set为距离保护整定值。
  5. 根据权利要求1所述的自适应距离保护方法,其特征在于,所述缩小距离保护动作范围,包括:
    将基于正序电压极化的姆欧型距离保护的动作范围缩小至下式的范围,
    Figure PCTCN2022131274-appb-100006
    其中,
    Figure PCTCN2022131274-appb-100007
    比相式距离保护动作缩小的角度范围,取15~20°,极化电压
    Figure PCTCN2022131274-appb-100008
    取保护安装处的正序电压
    Figure PCTCN2022131274-appb-100009
    工作电压
    Figure PCTCN2022131274-appb-100010
    为保护安装处电压、电流的向量,Z set为距离保护整定值。
  6. 一种自适应距离保护系统,其特征在于,包括:
    提取模块,用于提取保护安装处电气量暂态时域信息;
    处理模块,用于利用电气量暂态时域信息判断故障方向特性,判断出正方向时,扩大距离保护动作范围;判断出反方向时,缩小距离保护动作范围。
  7. 根据权利要求6所述的自适应距离保护系统,其特征在于,所述提取模块,用于
    利用式(1)计算电压量暂态时域信息,
    Δu m(k)=u m(k)-u m(k-N)  (1)
    其中,△u m(k)为电压量暂态时域信息,u m(k)为保护装置当前时刻的电压采样值,u m(k-N)为保护装置一个周波前时刻的电压采样值,N为一个周波采样的点数,m表示a、b、c相或ab、bc、ca相间;
    利用式(2)计算电流量暂态时域信息,
    Δi m(k)=i m(k)-i m(k-N)    (2)
    其中,Δi m(k)为电流量暂态时域信息,i m(k)为保护装置当前时刻的电流采样值,i m(k-N)为保护装置一个周波前时刻的电流采样值。
  8. 根据权利要求7所述的自适应距离保护系统,其特征在于,所述处理模块,
    用于根据下式的判据确定故障方向为正方向;
    S m(k)=Δu m(k)Δi m(k)<0
    用于根据下式的判据确定故障方向为正方向;
    S m(k)=Δu m(k)Δi m(k)>0
    其中,S m(k)为构造的能量方向表达式。
  9. 根据权利要求6所述的自适应距离保护系统,其特征在于,所述处理模块,用于将基于正序电压极化的姆欧型距离保护的动作范围扩大至下式的范围,
    Figure PCTCN2022131274-appb-100011
    其中,
    Figure PCTCN2022131274-appb-100012
    为比相式距离保护动作扩大的角度范围,取15~20°,极化电压
    Figure PCTCN2022131274-appb-100013
    取保护安装处的正序电压
    Figure PCTCN2022131274-appb-100014
    工作电压
    Figure PCTCN2022131274-appb-100015
    为保护安装处电压、电流的向量,Z set为距离保护整定值。
  10. 根据权利要求6所述的自适应距离保护系统,其特征在于,所述处理模块,用于将基于正序电压极化的姆欧型距离保护的动作范围缩小至下式的范围,
    Figure PCTCN2022131274-appb-100016
    其中,
    Figure PCTCN2022131274-appb-100017
    比相式距离保护动作缩小的角度范围,取15~20°,极化电压
    Figure PCTCN2022131274-appb-100018
    取保护安装处的正序电压
    Figure PCTCN2022131274-appb-100019
    工作电压
    Figure PCTCN2022131274-appb-100020
    为保护安装处电压、电流的向量,Z set为距离保护整定值。
  11. 一种存储一个或多个程序的计算机可读存储介质,其特征在于,所述一个或多个程序包括指令,所述指令当由计算设备执行时,使得所述计算设备执行根据权利要求1至5所述的方法中的任一方法。
  12. 一种计算设备,其特征在于,包括,
    一个或多个处理器、存储器以及一个或多个程序,其中一个或多个程序存储在所述存储器中并被配置为由所述一个或多个处理器执行,所述一个或多个程序包括用于执行根据权利要求1至5所述的方法中的任一方法的指令。
PCT/CN2022/131274 2022-05-26 2022-11-11 一种自适应距离保护方法及系统 WO2023226316A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210581361.4 2022-05-26
CN202210581361.4A CN115036892A (zh) 2022-05-26 2022-05-26 一种自适应距离保护方法及系统

Publications (1)

Publication Number Publication Date
WO2023226316A1 true WO2023226316A1 (zh) 2023-11-30

Family

ID=83120182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131274 WO2023226316A1 (zh) 2022-05-26 2022-11-11 一种自适应距离保护方法及系统

Country Status (2)

Country Link
CN (1) CN115036892A (zh)
WO (1) WO2023226316A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115036892A (zh) * 2022-05-26 2022-09-09 国电南瑞科技股份有限公司 一种自适应距离保护方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262170A (ja) * 1998-03-13 1999-09-24 Fuji Electric Co Ltd 電力系統事故区間判定方法
CN103532110A (zh) * 2013-08-15 2014-01-22 国家电网公司 用“暂态方向”辨识系统间歇性高阻接地故障的检测方法
CN104967104A (zh) * 2015-06-30 2015-10-07 昆明理工大学 一种带统一潮流控制器的输电线路的暂态能量保护方法
CN109066620A (zh) * 2018-10-31 2018-12-21 华北电力大学 一种基于单端暂态量的高压直流输电线路保护装置
CN115036892A (zh) * 2022-05-26 2022-09-09 国电南瑞科技股份有限公司 一种自适应距离保护方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262170A (ja) * 1998-03-13 1999-09-24 Fuji Electric Co Ltd 電力系統事故区間判定方法
CN103532110A (zh) * 2013-08-15 2014-01-22 国家电网公司 用“暂态方向”辨识系统间歇性高阻接地故障的检测方法
CN104967104A (zh) * 2015-06-30 2015-10-07 昆明理工大学 一种带统一潮流控制器的输电线路的暂态能量保护方法
CN109066620A (zh) * 2018-10-31 2018-12-21 华北电力大学 一种基于单端暂态量的高压直流输电线路保护装置
CN115036892A (zh) * 2022-05-26 2022-09-09 国电南瑞科技股份有限公司 一种自适应距离保护方法及系统

Also Published As

Publication number Publication date
CN115036892A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
CN106646140B (zh) 基于测量波阻抗的高压直流输电线路区内外故障识别方法
CN104242267B (zh) 一种风力发电送出输电线路距离保护方法
WO2023226316A1 (zh) 一种自适应距离保护方法及系统
CN102403720A (zh) 一种基于暂态电压安全裕度的超实时重合时序整定方法
CN109286202B (zh) 大规模逆变型电源并网联络线电流差动保护方法、装置和系统
CN107677931A (zh) 一种基于直流电流波形曲率变化差异的故障快速识别方法
CN103296650A (zh) 基于突变量差动系数矩阵特高压输电线路继电保护方法
CN106655121A (zh) 一种微电网母线低阻抗自适应保护方法
CN104865498A (zh) 基于参数辨识的消弧线圈接地系统单相接地故障测距技术
CN112731047A (zh) 一种适用于灵活接地系统的故障选线方法
CN106451369A (zh) 一种失灵保护中的截断电流互感器拖尾电流方法
CN111650422B (zh) 高压直流系统的同步触发方法、系统及存储介质
Liang et al. Internal fault probability-based time domain differential protection applied to transmission lines connecting battery energy storage stations
CN113437732B (zh) 一种光伏发电并网联络线纵联保护方法及系统
Zhang et al. Active phase control to enhance distance relay in converter-interfaced renewable energy systems
CN107276048A (zh) 含分布式电源配电网故障方向识别方法
CN113900046A (zh) 基于故障前后录波数据的线路零序参数辨识方法及装置
CN107968387B (zh) 基于阻抗平面分析正序极化电压的继电器控制方法
CN113659546B (zh) 一种用于双回线供电系统的零序方向元件补偿方法及系统
CN110323725A (zh) 一种直流线路采样电流修正方法、差动保护方法及系统
Chatterjee Identification of faults during power swing: a PMU based scheme
CN110957744A (zh) 一种频率和电压安全稳定紧急调控在线预决策方法
CN117293767A (zh) 海上风电柔直送出系统母线保护方法、系统及存储介质
CN113852046B (zh) 一种防止线路电抗器采用母线pt时匝间保护误动的方法及系统
Akter et al. Impedance based directional relaying for smart power networks integrating with converter interfaced photovoltaic plants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943503

Country of ref document: EP

Kind code of ref document: A1