WO2023226085A1 - 一种齿形流道的磁流变阻尼器 - Google Patents

一种齿形流道的磁流变阻尼器 Download PDF

Info

Publication number
WO2023226085A1
WO2023226085A1 PCT/CN2022/097542 CN2022097542W WO2023226085A1 WO 2023226085 A1 WO2023226085 A1 WO 2023226085A1 CN 2022097542 W CN2022097542 W CN 2022097542W WO 2023226085 A1 WO2023226085 A1 WO 2023226085A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
toothed
damper
magnetorheological
piston cylinder
Prior art date
Application number
PCT/CN2022/097542
Other languages
English (en)
French (fr)
Inventor
徐涵欧
李延成
Original Assignee
深圳市朝上科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市朝上科技有限责任公司 filed Critical 深圳市朝上科技有限责任公司
Publication of WO2023226085A1 publication Critical patent/WO2023226085A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/53Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
    • F16F9/535Magnetorheological [MR] fluid dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/3207Constructional features
    • F16F9/3214Constructional features of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/12Fluid damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/04Fluids
    • F16F2224/045Fluids magnetorheological

Definitions

  • the invention relates to the technical field of new energy automobile accessories, and in particular to a magnetorheological damper with toothed flow channels.
  • magnetorheological fluid's fluidity and viscosity are affected by magnetic fields and can show different flow properties. And it can form a corresponding relationship with the magnetic field, and can be controlled by changing the current and then changing the magnetic field. This control and change in fluid properties can be reversible and achieve millisecond-level response.
  • the magnetorheological damper designed using the above properties of magnetorheological fluid has a simple structure, faster response, and superior damping performance.
  • the output value of the maximum damping force in a limited space and the damping force threshold should usually be considered.
  • the main focus is on the optimized design of the piston damping channel and the magnetic circuit.
  • the damping channel is often designed as an annular channel, and the coil is usually directly wrapped around the piston, which makes its effective damping length only exist near the coil, and is not very good for the settlement of magnetorheological fluid materials. preventive effect. Therefore, there is still room for improvement in the design of damping flow channels and coils and the improvement of anti-settling performance. Therefore, existing dampers have problems such as the settlement of magnetorheological fluid affecting performance and the short length of the effective damping channel, which limits the output of damping force.
  • the purpose of the present invention is to provide a magnetorheological damper with a toothed flow channel, which aims to make the magnetorheological damper have better anti-settling performance by introducing the toothed channel.
  • the inverted triangle optimization design of the coil optimizes the damping channel and magnetic circuit of the magnetorheological fluid, thereby increasing the effective working length of the magnetorheological damper.
  • the invention proposes a magnetorheological damper with toothed flow channels, which includes a left fork-shaped fixed lifting ring, a left end cover of the damper, screws, a first sealing ring, a piston cylinder body, a second sealing ring, and a floating piston.
  • the left end of the left end cap of the damper is connected to the left fork-shaped fixed lifting ring through a threaded hole, and the right end of the left end cap of the damper is connected to the piston cylinder block through screws;
  • the right annular fixed lifting ring is connected to the right side of the piston rod through threads;
  • the left fork-shaped fixed lifting ring and the right annular fixed lifting ring are used for connection with other components of the vehicle body;
  • the piston cylinder block has a double-layer structure, the outer layer is an integrated structure, and the inner layer is evenly wound with three Set the excitation coil;
  • the outer right side of the piston cylinder is provided with a through hole, so that the piston rod passes through the through hole and is installed in the inner cavity of the piston cylinder for reciprocating motion;
  • the left side of the toothed piston It is fixed to the middle part of the piston rod through a fixed circlip, a piston rod shoulder on the right side, and a flat key in the circumferential direction;
  • the excitation coil is wound with copper wire, and the inner layer of the piston cylinder is made of magnetically conductive material.
  • the excitation coil in the inner layer of the piston cylinder has an inverted triangle-shaped structure to optimize the magnetic field path, so that the length of the generated magnetic induction line vertically passing through the working gap of the magnetorheological fluid is increased, thereby making the magnetic induction line vertical.
  • the effective length passing through the magnetorheological damping flow channel is increased to ensure the output of effective damping force, thereby achieving the purpose of increasing damping performance.
  • the toothed piston adopts a structure imitating a gear shape; the inner layer of the piston cylinder and the toothed piston together form a working damping gap for the magnetorheological fluid, which is filled in the inner cavity of the inner layer of the piston cylinder.
  • the magnetorheological fluid flows between the teeth of the toothed piston in a magnetic field-free state.
  • the inner layer of the piston cylinder and the floating piston are sealed by a first sealing ring and a second sealing ring; the outer layer of the piston cylinder and the piston rod are sealed by a second sealing ring.
  • the left end cover of the damper and the outer layer of the piston cylinder are sealed by a first sealing ring to prevent the magnetorheological fluid from overflowing from the piston cylinder cavity.
  • the toothed piston drives the magnetorheological fluid in the inner chamber of the corresponding piston cylinder to rotate to prevent the magnetorheological fluid material from settling; in the working state, the magnetorheological damper will transform into a direct-acting mode, the piston rod will drive the toothed piston to make reciprocating linear motion in the inner cavity of the piston cylinder.
  • an induced magnetic field will be generated.
  • the magnetorheological fluid in the inner cavity of the piston cylinder is affected by the magnetic field, and the viscosity increases and forms a solid-like property.
  • Shear flow will occur in the working gap of the magnetorheological fluid formed between the inner layer of the piston cylinder and the toothed piston, thereby providing damping.
  • the shear force will also increase.
  • the damping force provided will also increase.
  • the left end cavity of the floating piston is filled with inert gas to compensate for the pressure difference in the cavity.
  • the magnetic field path is optimized, so that the effective number of magnetic induction lines perpendicularly passing through the magnetorheological effective shear damping flow channels is increased, ensuring effective The output of the damping force thereby increases the damping performance.
  • the effective damping length of the magnetorheological damper is increased, making up for the excessive effective damping length in the traditional damper that installs the coil on the piston and uses an annular flow channel. Short problems to improve damping force and achieve a wider range of damping force output;
  • the magnetorheological damper can improve the problem caused by the settlement of the magnetorheological fluid material itself in traditional magnetorheological dampers when rotating. performance degradation problem;
  • the structure of the present invention is simple and convenient to assemble, and is suitable for the field of automobile vibration reduction.
  • Figure 1 is a schematic assembly diagram of the magnetorheological damper of the toothed flow channel of the present invention
  • Figure 2 is a schematic diagram of the magnetic induction lines that generate the magnetic field around the excitation coil
  • Figure 3 is a cross-sectional view of the toothed piston.
  • the present invention provides a magnetorheological damper with a toothed flow channel, including a left end cover 2 of the damper.
  • a left fork-shaped fixed lifting ring 1 is provided on the left end of the left end cover 2 of the damper and connected through a threaded hole.
  • the piston cylinder block 5 is arranged on the right end of the left end cover 2 of the damper and is connected to the piston cylinder block 5 through screws 3;
  • the piston cylinder block 5 adopts a double-layer structure, in which the outer layer has a whole appearance, and the inner layer is evenly wound with three sets of excitation coils 9;
  • the piston cylinder block 5 The right side of the outer layer of the cylinder block 5 is designed with a through hole, and the piston rod 8 passes through it and is installed in the inner cavity of the piston cylinder block 5 for reciprocating motion;
  • a toothed piston 11 is provided in the middle of the piston rod 8, and a floating piston 7 is provided in The left side of the piston rod 8;
  • the left side of the toothed piston 11 is provided with a fixed circlip 10;
  • the right annular fixed lifting ring 12 is connected to the right side of the piston rod 8 through threads.
  • the two sides of the excitation coil 9 are designed with rounded corners, so that the overall shape of the excitation coil 9 is an inverted triangle to optimize the magnetic field path, so that the magnetic induction lines pass through the magnetic flow perpendicularly.
  • the effective length of the variable damping flow channel is increased.
  • the inner layer of the piston cylinder 5 and the floating piston 7 are sealed by the first sealing ring 4 and the second sealing ring 6
  • the outer layer of the piston cylinder 5 and the piston rod 8 are sealed by the second sealing ring 6
  • Sealing treatment to prevent the magnetorheological fluid from overflowing from the piston cylinder body 5 cavity the left fork-shaped fixed lifting ring 1 and the right annular fixed lifting ring 12 are used to connect with other parts of the car body;
  • the toothed piston 11 passes through the flat
  • the key and the piston rod 8 are circumferentially fixed and connected, the right side of the toothed piston 11 is fixed and positioned by the right shoulder of the piston rod 8, and the left side is fixed by the fixed circlip 9.
  • the toothed piston 11 adopts a gear-shaped design.
  • the magnetorheological fluid filled in the inner cavity of the inner layer of the piston cylinder 5 flows between the teeth in the absence of a magnetic field; the inner layer of the piston cylinder 5 and the toothed piston 11 together constitute the working gap of the magnetorheological fluid.
  • the flow characteristics of the magnetorheological fluid will change, and shear flow will occur in the working gap to provide damping.
  • the toothed piston can rotate. In this mode, shortcomings such as the settlement of the magnetorheological fluid will be effectively improved.
  • the piston cylinder body 5 has a double-layer design, in which three sets of excitation coils 9 are evenly wound on the inner layer.
  • the excitation coils 9 are designed in an inverted triangle shape to optimize the magnetic field path so that the magnetic induction lines pass vertically through the magnetorheological damping flow channel. The effective length is increased. This achieves the purpose of increasing damping performance.
  • Two working modes can be performed through the connection between the lifting rings on both sides and the car body.
  • the toothed piston 11 will drive the magnetorheological fluid in the inner cavity of the piston cylinder 5 to rotate, so as to improve the settling and other performance shortcomings of the magnetorheological fluid; after being powered on, the magnetorheological fluid will rotate.
  • the damper will transform into a direct-acting mode, and the piston rod 8 will drive the toothed piston 11 to make a reciprocating linear motion in the inner cavity of the piston cylinder block 5;
  • the piston rod 8 drives the toothed piston 11 to move from right to left.
  • the excitation coil 9 is energized, which will generate an induced magnetic field.
  • the schematic diagram of the magnetic induction line of the induced magnetic field is shown in Figure 2; cavity
  • the flow characteristics of the magnetorheological fluid in the body will change when a magnetic field exists, and the viscosity increases to form a solid-like property; at this time, the magnetorheological fluid jointly formed between the inner layer of the piston cylinder body 5 and the toothed piston 11 Shear flow will occur at the working gap, thereby providing damping.
  • the shear force will also increase, and the damping force provided will also increase.
  • the inverted triangle design of the excitation coil 9 can increase the length of the generated magnetic induction line vertically passing through the magnetorheological fluid working gap; ensuring the output of effective damping force; the left end cavity of the floating piston 7 is filled with inert gas to compensate for the cavity in the return stroke mode, the excitation coil 9 loses power and the magnetic field disappears. Due to the hysteresis phenomenon of the magnetorheological fluid, the piston rod 8 drives the toothed piston 11 to move from left to right, and the damping force will decrease until it disappears. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

本发明公开了一种齿形流道的磁流变阻尼器,涉及器件减振领域,包括固定吊环、端盖、双层式活塞缸缸体、浮动活塞、活塞杆、倒三角形励磁线圈、齿形活塞等组成,励磁线圈均布三组缠绕在活塞缸缸体的内层,增大磁通利用率;齿形活塞采用仿齿轮的设计,在未通电状态下,齿形活塞转动将带动内腔中磁流变液发生运动,从而改善磁流变液的沉降性等缺点,保证在通电工作时,磁流变液具有更好的性能。本发明将磁流变液阻尼器与齿形活塞相结合,使得阻尼器可进行阻尼改变以及自动调节的同时保证了材料的优良特性,在减振领域有望得到进一步应用。

Description

一种齿形流道的磁流变阻尼器 技术领域
本发明涉及新能源汽车配件技术领域,尤其涉及一种齿形流道的磁流变阻尼器。
背景技术
磁流变液作为新型智能材料中的一种,其流动性,粘度受磁场影响,可表现出不同的流动性质。且能与磁场形成对应关系,可以利用改变电流,进而改变磁场的方法对其进行控制。这种控制及流体性质的转变能实现可逆化且能达到毫秒级响应。利用磁流变液的以上性质设计的磁流变阻尼器,结构简单,响应更快,实现的阻尼性能更优越。
在阻尼器的设计中,通常应考虑有限空间内最大阻尼力的输出值以及阻尼力阈值。在结构设计中,主要集中在活塞阻尼通道以及磁路的优化设计。在大部分传统阻尼器的设计中,阻尼通道常设计成环形通道,线圈通常直接缠绕在活塞上,这使得其有效阻尼长度仅存在于线圈附近,而且对于磁流变液材料的沉降没有很好的防范作用。因此在阻尼流道和线圈的设计以及防沉降性能的改善中还留有改进的空间。因此,现有阻尼器存在磁流变液的沉降影响性能以及阻尼有效通道长度较短而限制了阻尼力输出的问题。
发明内容
本发明的目的是提供一种齿形流道的磁流变阻尼器,旨在通过引入齿形通道,使得磁流变阻尼器具有更好的防沉降性能,此外,通过齿形通道的设计以及将线圈的倒三角优化设计使得磁流变液的阻尼 通道以及磁路得到优化,进而使得磁流变阻尼器的有效工作长度得以增大。通过上述改进,可以使得磁流变阻尼器的最大阻尼力以及自适应调节能力得到提升。
本发明提出的一种齿形流道的磁流变阻尼器,包括左侧叉形固定吊环、阻尼器左端盖、螺钉、第一密封圈、活塞缸缸体、第二密封圈、浮动活塞、活塞杆、励磁线圈、固定卡簧、齿形活塞、右侧环形固定吊环,其中,
所述阻尼器左端盖左端通过螺纹孔连接左侧叉形固定吊环,所述阻尼器左端盖右端通过螺钉连接活塞缸缸体;所述右侧环形固定吊环则通过螺纹连接在活塞杆右侧;所述左侧叉形固定吊环和所述右侧环形固定吊环用于与车体其他部件的连接;所述活塞缸缸体为双层结构,外层为一体式结构,内层均布缠绕有三组励磁线圈;所述活塞缸缸体外层右侧设有通孔,使所述活塞杆穿过所述通孔并安装于活塞缸缸体内腔作往复运动;所述齿形活塞左侧通过固定卡簧、右侧通过活塞杆轴肩、圆周方向通过平键连接固定于活塞杆中部;所述浮动活塞左侧位于所述活塞杆的左侧。
优选地,所述励磁线圈采用铜线绕制,所述活塞缸缸体内层采用导磁材料。
优选地,所述活塞缸缸体内层的励磁线圈通过倒三角形状的结构,用于优化磁场路径,使得产生的磁感应线垂直通过磁流变液工作间隙的长度得以增加,进而使得磁感应线垂直穿过磁流变阻尼流道的有效长度得以增加,保证有效阻尼力的输出,从而达到增大阻尼性能 的目的。
优选地,所述齿形活塞采用仿齿轮形状的结构;所述活塞缸缸体内层与齿形活塞共同构成磁流变液的工作阻尼间隙,填充于活塞缸缸体内层内腔中的磁流变液在无磁场状态下在所述齿形活塞的齿间流动。
优选地,所述活塞缸缸体内层与浮动活塞通过第一密封圈和第二密封圈进行密封处理;所述活塞缸缸体外层与活塞杆通过第二密封圈进行密封处理,所述阻尼器左端盖和活塞缸缸体外层之间通过第一密封圈进行密封处理,防止磁流变液从所述活塞缸缸体腔体中溢出。
优选地,所述齿形活塞带动所属活塞缸缸体内层腔体中的磁流变液发生转动,防止磁流变液材料沉降;在工作状态下,磁流变阻尼器将转变成直动模式,所述活塞杆将带动齿形活塞在活塞缸缸体内层腔体中作往复直线运动。
优选地,在工作状态下,所述励磁线圈得电,将产生感应磁场,此时活塞缸缸体内层腔体中的磁流变液受磁场的影响,粘度增大并形成类固体性质,所述活塞缸缸体内层与齿形活塞之间共同构成的磁流变液工作间隙处将发生剪切流动,从而提供阻尼,随着磁场的增大,剪切力也将随之增大,提供的阻尼力也将增大。
优选地,所述浮动活塞的左端空腔中填充有惰性气体,用于弥补腔体中的压力差。
本发明的有益效果:
(1)通过采用多级倒三角形状缠绕而成的励磁线圈的布置,对 磁场路径进行了优化,使得磁感应线垂直穿过磁流变有效剪切阻尼流道的有效数量得以增加,保证了有效阻尼力的输出,从而增大阻尼性能,磁流变阻尼器的有效阻尼长度得到了增大,弥补了传统的将线圈安装于活塞上并采用环形流道的阻尼器中存在的有效阻尼长度过短的问题,以提升阻尼力并实现更大范围的阻尼力输出;
(2)通过在磁流变阻尼器中将活塞设计成齿形形状,将使得磁流变阻尼器在转动时能够改善了传统磁流变阻尼器中因磁流变液材料本身的沉降而引发的性能降低的问题;
(3)本发明结构装配简单便捷,适用于汽车减振领域。
附图说明
图1为本发明的齿形流道的磁流变阻尼器装配简图;
图2为励磁线圈周围产生磁场的磁感应线示意图;
图3为齿形活塞的截面图。
1-左侧叉形固定吊环,2-阻尼器左端盖,3-螺钉,4-第一密封圈,5-活塞缸缸体,6-第二密封圈,7-浮动活塞,8-活塞杆,9-励磁线圈,10-固定卡簧,11-齿形活塞,12-右侧环形固定吊环。
具体实施方式
下面结合具体实施例对本发明作进一步解说。
如图1所示,本发明提供的一种齿形流道的磁流变阻尼器,包括阻尼器左端盖2,设置于阻尼器左端盖2左端通过螺纹孔连接有左侧叉形固定吊环1,设置于阻尼器左端盖2右端通过螺钉3连接有活塞缸缸体5;活塞缸缸体5采用双层结构,其中外层为整体的外观,内层均布 缠绕有三组励磁线圈9;活塞缸缸体5外层右侧做通孔设计,活塞杆8穿过其中并安装于活塞缸缸体5内腔作往复运动;设置于活塞杆8中部有齿形活塞11、浮动活塞7设置于活塞杆8左侧;齿形活塞11左侧设置有固定卡簧10;右侧环形固定吊环12通过螺纹连接在活塞杆8右侧。
如图2所示,本实施例中,励磁线圈9下发的两侧设计有圆角结构,使励磁线圈9的整体形状呈倒三角形状,以优化磁场路径,使得磁感应线垂直穿过磁流变阻尼流道的有效长度得以增加。
在本实例中,活塞缸缸体5内层与浮动活塞7通过第一密封圈4、第二密封圈6进行密封处理,活塞缸缸体5外层与活塞杆8通过第二密封圈6进行密封处理,以防止磁流变液从活塞缸缸体5腔体中溢出;左侧叉形固定吊环1以及右侧环形固定吊环12用于与车体其他部件的连接;齿形活塞11通过平键与活塞杆8实现周向的固定与连接、齿形活塞11右侧通过活塞杆8右侧轴肩实现固定与定位、其左侧通过固定式卡簧9实现固定。
如图3所示,在本实例中,齿形活塞11采用齿轮形状的设计。填充于活塞缸缸体5内层内腔中的磁流变液在无磁场状态下在齿间流动;活塞缸缸体5内层与齿形活塞11共同构成磁流变液的工作间隙,在施加磁场状态下,磁流变液流动特性将发生改变,工作间隙中将发生剪切流动,提供阻尼。在磁流变阻尼器未工作期间,齿形活塞可进行转动,在此模式下,将有效改善磁流变液的沉降等缺点。所述活塞缸缸体5做双层设计,其中内层均布缠绕有三组励磁线圈9,励磁线圈9通过倒三角形状设计,以优化磁场路径,使得磁感应线垂直穿过磁 流变阻尼流道的有效长度得以增加。从而得到增大阻尼性能的目的。
在本实例中,磁流变阻尼器具体的工作原理如下:
可通过两侧的吊环与车体的连接进行两种工作模式,
1、转动模式,齿形活塞11将带动所属活塞缸缸体5内层腔体中的磁流变液发生转动,以改善磁流变液的沉降等性能缺点;在通电后,此磁流变阻尼器将转变成直动模式,活塞杆8将带动齿形活塞11在活塞缸缸体5内层腔体中作往复直线运动;
2、提供阻尼的工作模式,活塞杆8带动齿形活塞11从右向左运动,与此同时,励磁线圈9得电,将产生感应磁场,感应磁场的磁感应线示意图如图2所示;腔体中的磁流变液的流动特性在存在磁场时将发生改变,粘度增大形成类固体性质;此时,活塞缸缸体5内层与齿形活塞11之间共同构成的磁流变液工作间隙处将发生剪切流动,从而提供阻尼,随着磁场的增大,剪切力也将随之增大,提供的阻尼力也将增大。励磁线圈9的倒三角设计能使得产生的磁感应线垂直通过磁流变液工作间隙的长度得以增加;保证有效阻尼力的输出;浮动活塞7的左端空腔中填充有惰性气体,以弥补腔体中的压力差;在回程模式下,励磁线圈9失电,磁场消失,因磁流变液的磁滞现象,活塞杆8带动齿形活塞11从左向右运动,阻尼力将减小直至消失。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (8)

  1. 一种齿形流道的磁流变阻尼器,其特征在于,包括左侧叉形固定吊环(1)、阻尼器左端盖(2)、螺钉(3)、第一密封圈(4)、活塞缸缸体(5)、第二密封圈(6)、浮动活塞(7)、活塞杆(8)、励磁线圈(9)、固定卡簧(10)、齿形活塞(11)、右侧环形固定吊环(12),其中,
    所述阻尼器左端盖(2)左端通过螺纹孔连接左侧叉形固定吊环(1),所述阻尼器左端盖(2)右端通过螺钉(3)连接活塞缸缸体(5);所述右侧环形固定吊环(12)则通过螺纹连接在活塞杆(8)右侧;所述左侧叉形固定吊环(1)和所述右侧环形固定吊环(12)用于与车体其他部件的连接;所述活塞缸缸体(5)为双层结构,外层为一体式结构,内层均布缠绕有三组励磁线圈(9);所述活塞缸缸体(5)外层右侧设有通孔,使所述活塞杆(8)穿过所述通孔并安装于活塞缸缸体(5)内腔作往复运动;所述齿形活塞(11)左侧通过固定卡簧(10)、右侧通过活塞杆(8)轴肩、圆周方向通过平键连接固定于活塞杆(8)中部;所述浮动活塞(7)左侧位于所述活塞杆(8)的左侧。
  2. 根据权利要求1所述的一种齿形流道的磁流变阻尼器,其特征在于,所述励磁线圈(9)采用铜线绕制,所述活塞缸缸体(5)内层采用导磁材料。
  3. 根据权利要求1或2所述的一种齿形流道的磁流变阻尼器,其特征在于,所述活塞缸缸体(5)内层的励磁线圈(9)通过倒三角形状的结构。
  4. 根据权利要求1或2所述的一种齿形流道的磁流变阻尼器,其特征在于,所述齿形活塞(11)采用仿齿轮形状的结构;所述活塞缸缸体(5)内层与齿形活塞(11)共同构成磁流变液的工作阻尼间隙,填充于活塞缸缸体(5)内层内腔中的磁流变液在无磁场状态下在所述齿形活塞(11)的齿间流动。
  5. 根据权利要求4所述的一种齿形流道的磁流变阻尼器,其特征在于,所述活塞缸缸体(5)内层与浮动活塞(7)通过第一密封圈(4)和第二密封圈(6)进行密封处理;所述活塞缸缸体(5)外层与活塞杆(8)通过第二密封圈(6)进行密封处理,所述阻尼器左端盖(2)和活塞缸缸体(5)外层之间通过第一密封圈(4)进行密封处理,防止磁流变液从所述活塞缸缸体(5)腔体中溢出。
  6. 根据权利要求4所述的一种齿形流道的磁流变阻尼器,其特征在于,所述齿形活塞(11)带动所属活塞缸缸体(5)内层腔体中的磁流变液发生转动,防止磁流变液材料沉降;在工作状态下,磁流变阻尼器将转变成直动模式,所述活塞杆(8)将带动齿形活塞(11)在活塞缸缸体(5)内层腔体中作往复直线运动。
  7. 根据权利要求6所述的一种齿形流道的磁流变阻尼器,其特征在于,在工作状态下,所述励磁线圈(9)得电,将产生感应磁场,此时活塞缸缸体(5)内层腔体中的磁流变液受磁场的影响,粘度增大并形成类固体性质,所述活塞缸缸体(5)内层与齿形活塞(11)之间共同构成的磁流变液工作间隙处将发生剪切流动。
  8. 根据权利要求1所述的一种齿形流道的磁流变阻尼器,其特征 在于,所述浮动活塞(7)的左端空腔中填充有惰性气体,用于弥补腔体中的压力差。
PCT/CN2022/097542 2022-05-27 2022-06-08 一种齿形流道的磁流变阻尼器 WO2023226085A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210597196.1 2022-05-27
CN202210597196.1A CN115289168A (zh) 2022-05-27 2022-05-27 一种齿形流道的磁流变阻尼器

Publications (1)

Publication Number Publication Date
WO2023226085A1 true WO2023226085A1 (zh) 2023-11-30

Family

ID=83820257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097542 WO2023226085A1 (zh) 2022-05-27 2022-06-08 一种齿形流道的磁流变阻尼器

Country Status (2)

Country Link
CN (1) CN115289168A (zh)
WO (1) WO2023226085A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102374255A (zh) * 2010-08-05 2012-03-14 香港中文大学 自供电、自传感的磁流变体阻尼器
CN102606670A (zh) * 2012-03-23 2012-07-25 华东交通大学 差动传感式磁流变阻尼器
JP2014045955A (ja) * 2012-08-31 2014-03-17 Toshiba Corp 洗濯機用のダンパ
CN105003589A (zh) * 2015-08-06 2015-10-28 华东交通大学 一种内置磁流变阀进行阻尼性能控制的磁流变阻尼器
CN105485236A (zh) * 2016-01-04 2016-04-13 重庆大学 磁流变缓冲装置
CN208381187U (zh) * 2018-07-10 2019-01-15 华东交通大学 一种具有多段有效阻尼长度的并联式磁流变阻尼器
CN208474391U (zh) * 2018-04-17 2019-02-05 包头市欢宇新材料科技有限公司 一种缸筒定位的外绕式磁流变阻尼器
CN113007261A (zh) * 2021-02-06 2021-06-22 广西科技大学 一种齿形磁流变阻尼器
CN113606276A (zh) * 2021-08-12 2021-11-05 重庆大学 圆周阵列螺旋槽活塞防沉降磁流变阻尼器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6279701B1 (en) * 1999-09-13 2001-08-28 Delphi Technologies, Inc. Magnetorheological fluid damper with multiple annular flow gaps
CN103062146B (zh) * 2013-01-20 2015-04-22 华东交通大学 一种阻尼间隙机械可调式双线圈磁流变阀
CN104500787B (zh) * 2015-01-02 2016-10-26 华东交通大学 一种混合流动式磁流变阀
CN205118105U (zh) * 2015-11-09 2016-03-30 华东交通大学 一种具有并联式液流通道的磁流变阻尼器
CN205260715U (zh) * 2016-01-03 2016-05-25 华东交通大学 采用环形永磁体和励磁线圈进行复合控制的磁流变阻尼器
CN108087482A (zh) * 2018-01-24 2018-05-29 华东交通大学 一种外置多线圈激励的蜿蜒式磁流变阻尼器
CN208619582U (zh) * 2018-07-24 2019-03-19 华东交通大学 采用双磁场作用的带锯齿形液流通道的磁流变阻尼器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102374255A (zh) * 2010-08-05 2012-03-14 香港中文大学 自供电、自传感的磁流变体阻尼器
CN102606670A (zh) * 2012-03-23 2012-07-25 华东交通大学 差动传感式磁流变阻尼器
JP2014045955A (ja) * 2012-08-31 2014-03-17 Toshiba Corp 洗濯機用のダンパ
CN105003589A (zh) * 2015-08-06 2015-10-28 华东交通大学 一种内置磁流变阀进行阻尼性能控制的磁流变阻尼器
CN105485236A (zh) * 2016-01-04 2016-04-13 重庆大学 磁流变缓冲装置
CN208474391U (zh) * 2018-04-17 2019-02-05 包头市欢宇新材料科技有限公司 一种缸筒定位的外绕式磁流变阻尼器
CN208381187U (zh) * 2018-07-10 2019-01-15 华东交通大学 一种具有多段有效阻尼长度的并联式磁流变阻尼器
CN113007261A (zh) * 2021-02-06 2021-06-22 广西科技大学 一种齿形磁流变阻尼器
CN113606276A (zh) * 2021-08-12 2021-11-05 重庆大学 圆周阵列螺旋槽活塞防沉降磁流变阻尼器

Also Published As

Publication number Publication date
CN115289168A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
CN105003589B (zh) 一种内置磁流变阀进行阻尼性能控制的磁流变阻尼器
CN207333558U (zh) 磁流变阻尼器和电涡流阻尼器组合而成的混合式阻尼器
CN207848292U (zh) 一种具有凹型槽活塞杆的双液流通道磁流变阻尼器
CN107606041A (zh) 磁流变阻尼器和电涡流阻尼器组合而成的混合式阻尼器
CN204784405U (zh) 一种具有混合流动式液流通道的磁流变阻尼器
CN205315604U (zh) 内置磁流变阀进行阻尼性能控制的磁流变阻尼器
CN108302152B (zh) 一种具有复杂液流通道结构的磁流变阻尼器
CN109404476A (zh) 一种内嵌多路旁通流道磁流变阻尼器
CN208519105U (zh) 一种延长阻尼通道长度的双出杆式磁流变阻尼器
CN108302149A (zh) 采用外置线圈与永磁铁共同作用的双筒式磁流变减振器
CN108071712A (zh) 一种采用永磁体和励磁线圈激励的触觉装置用磁流变制动器
CN108180250A (zh) 一种内置磁阀改善阻尼性能的双线圈型磁流变阻尼器
CN108506376A (zh) 一种新型旋转式磁流变制动器
CN208719183U (zh) 一种采用双磁场作用的具有蛇形液流通道的磁流变离合器
CN109236936B (zh) 一种采用弹性金属波纹管进行密封的磁流变阻尼器
WO2023226085A1 (zh) 一种齿形流道的磁流变阻尼器
CN208331046U (zh) 一种新型旋转式磁流变制动器
CN208619582U (zh) 采用双磁场作用的带锯齿形液流通道的磁流变阻尼器
CN212672298U (zh) 一种具有全液流通道结构的磁流变阻尼器
CN104763825A (zh) 一种采用永久磁铁和双线圈进行复合控制的磁流变阀
CN207750432U (zh) 一种外置冷却装置的双线圈型磁流变阻尼器
CN106884925B (zh) 一种齿条传动式碟形磁流变阻尼器
CN208764185U (zh) 一种具有多液流通道的旋转式磁流变制动器
CN110878807B (zh) 内置型混合模式的磁流变阻尼器
CN205260716U (zh) 一种具有两级阻尼力输出控制的磁流变阻尼器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943281

Country of ref document: EP

Kind code of ref document: A1