WO2023225973A1 - 数据处理方法、装置、系统、安全终端、船舶及监控装置 - Google Patents

数据处理方法、装置、系统、安全终端、船舶及监控装置 Download PDF

Info

Publication number
WO2023225973A1
WO2023225973A1 PCT/CN2022/095394 CN2022095394W WO2023225973A1 WO 2023225973 A1 WO2023225973 A1 WO 2023225973A1 CN 2022095394 W CN2022095394 W CN 2022095394W WO 2023225973 A1 WO2023225973 A1 WO 2023225973A1
Authority
WO
WIPO (PCT)
Prior art keywords
ship
data
monitoring device
frequency
processing unit
Prior art date
Application number
PCT/CN2022/095394
Other languages
English (en)
French (fr)
Inventor
汤志宏
梁海欣
Original Assignee
广东逸动科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东逸动科技有限公司 filed Critical 广东逸动科技有限公司
Priority to CN202280001470.2A priority Critical patent/CN115136612A/zh
Priority to PCT/CN2022/095394 priority patent/WO2023225973A1/zh
Publication of WO2023225973A1 publication Critical patent/WO2023225973A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/82Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/82Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data
    • H04Q2209/823Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data where the data is sent when the measured values exceed a threshold, e.g. sending an alarm

Definitions

  • This application relates to the field of data processing technology, and in particular to data processing methods, data processing devices, ship monitoring systems, security terminals, ships, monitoring devices, computer program products and computer-readable storage media.
  • Boats and ships are a general term for various vessels, which are vehicles that can sail or be anchored in waters for transportation or operations. Ships are usually equipped with sensors to monitor the safety status of the ship. The ship data collected by the sensors can be sent to the monitoring device for users to view. In related technologies, the transmission method of ship data lacks flexibility and fails to meet the viewing needs of users, making it difficult to guarantee the safety status of the ship.
  • This application provides data processing methods, data processing devices, ship monitoring systems, security terminals, ships, monitoring devices, computer program products and computer-readable storage media to improve the flexibility of ship data transmission methods.
  • a data processing method is provided, which is applied to a processing unit that is communicatively connected to a monitoring device and a sensor mounted on a ship; the method includes: When the monitoring device sends the ship data collected by the sensor, it monitors trigger information, and the trigger information is used to trigger a change in the data sending frequency; when the trigger information is monitored, the monitoring device sends data to the monitoring device at a second sending frequency.
  • the device sends the ship data; the first sending frequency is less than the second sending frequency; the sent ship data is used for the user to view through the monitoring device; wherein the trigger information is viewed by the user.
  • the ship data is sent by the monitoring device and/or is generated when the ship data indicates that the ship is in a dangerous state.
  • a data processing method is provided, which is applied to a monitoring device; the monitoring device is communicatively connected to a processing unit; the processing unit is also communicatively connected to a sensor mounted on a ship; the method includes: receiving The processing unit sends the ship data collected by the sensor at the first transmission frequency; the ship data is used for the user to view through the monitoring device; if it is detected that the user views the ship data, the ship data is sent to the processing unit Trigger information; the trigger information is used to trigger a change in the data transmission frequency; receiving the ship data sent by the processing unit at the second transmission frequency when the trigger information is detected; wherein the first transmission frequency Less than the second sending frequency; the trigger information is sent by the monitoring device, and/or is generated when ship data indicates that the ship is in a dangerous state.
  • a data processing method is provided, which is applied to a ship monitoring system;
  • the ship monitoring system includes a processing unit and a monitoring device that are communicatively connected;
  • the processing unit is also communicatively connected with sensors mounted on the ship;
  • the method includes: when the processing unit sends the ship data collected by the sensor to the monitoring device at the first sending frequency, monitor trigger information, and the trigger information is used to trigger a change in the data sending frequency; if the monitoring The device detects that the user views the ship data and sends trigger information to the processing unit; if the ship data indicates that the ship is in a dangerous state, the processing unit generates the trigger information; after detecting the trigger information In this case, the processing unit sends the ship data to the monitoring device at a second sending frequency; wherein the first sending frequency is less than the second sending frequency; the sent ship data is used for users to pass Check the monitoring device.
  • a data processing device includes: a processor; a memory for storing executable instructions by the processor; wherein when the processor calls the executable instructions, The operation of any method described in the first aspect above.
  • a security terminal which security terminal includes: the data processing device as described in the fourth aspect; a device communicatively connected to the data processing device for collecting the ship data. sensor.
  • a ship includes: a hull; and the safety terminal as described in the fifth aspect, and the safety terminal is loaded on the hull.
  • a monitoring device includes: a processor; a memory for storing executable instructions by the processor; wherein when the processor calls the executable instructions, the above-mentioned third step is implemented. The operation of the method described in the second aspect.
  • a ship monitoring system includes a processing unit and a monitoring device that are communicatively connected; the processing unit is also communicatively connected with sensors mounted on the ship; the processing unit is used for: When sending the ship data collected by the sensor to the monitoring device at the first sending frequency, monitor trigger information, and the trigger information is used to trigger a change in the data sending frequency; the monitoring device is used to: if it is detected that the user views The ship data sends trigger information to the processing unit; the processing unit is also used to: if the ship data indicates that the ship is in a dangerous state, generate the trigger information; and when the trigger information is detected, In this case, the ship data is sent to the monitoring device at a second sending frequency; wherein the first sending frequency is less than the second sending frequency; the sent ship data is used for the user to view through the monitoring device .
  • a computer program product including a computer program that, when executed by a processor, implements the steps of the method described in any one of the above-mentioned first aspect, second aspect, and third aspect. .
  • a computer-readable storage medium is provided.
  • Several computer instructions are stored on the computer-readable storage medium.
  • the above-mentioned first aspect, second aspect, and third aspect are executed.
  • This application provides a data processing method, a data processing device, a ship monitoring system, a safety terminal, a ship, a monitoring device, a computer program product and a computer-readable storage medium.
  • the processing unit will send ship data with a smaller first sending frequency.
  • the monitoring device When the user views the ship data collected by the sensor, the monitoring device will send trigger information to the processing unit; or when the ship data indicates that the ship is in a dangerous state, trigger information will be generated.
  • the processing unit detects the trigger information, it will increase the sending frequency of the ship data and send the ship data with a larger second sending frequency. In this way, when the ship meets different conditions, the appropriate transmission frequency can be flexibly used to send ship data to the monitoring device, which can not only meet the user's viewing needs, but also ensure the safety status of the ship.
  • FIG. 1A is a schematic diagram of a data processing system according to an embodiment of the present application.
  • FIG. 1B is a schematic diagram of a data processing system according to another embodiment of the present application.
  • FIG. 1C is a schematic diagram of a data processing system according to another embodiment of the present application.
  • Figure 2 is a flow chart of a data processing method according to an embodiment of the present application.
  • Figure 3 is a flow chart of a data processing method according to another embodiment of the present application.
  • Figure 4 is a flow chart of a data processing method according to another embodiment of the present application.
  • Figure 5 is a flow chart of a data processing method according to another embodiment of the present application.
  • Figure 6 is a schematic diagram of a liquid level sensor according to an embodiment of the present application.
  • Figure 7 is a flow chart of a data processing method according to another embodiment of the present application.
  • Figure 8 is a flow chart of a data processing method according to another embodiment of the present application.
  • Figure 9 is a hardware structure diagram of a data processing device according to an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a security terminal according to an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a ship according to an embodiment of the present application.
  • Figure 12 is a hardware structure diagram of a monitoring device according to an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a ship monitoring system according to an embodiment of the present application.
  • first, second, third, etc. may be used in this application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining.”
  • Ship is a general term for various types of vessels, which are vehicles that can sail or be anchored in waters for transportation or operations. Ships are usually equipped with sensors to monitor the safety status of the ship. The ship data collected by the sensors can be sent to the monitoring device for users to view. In related technologies, ship data is often sent to the monitoring device at a fixed data transmission frequency. The transmission method lacks flexibility and fails to meet the user's viewing needs, making it difficult to guarantee the safety of the ship.
  • this application proposes a data processing method, which is applied to a processing unit, such as the data processing system 100 shown in Figures 1A-1C, which includes a ship 110, a processing unit 120 and a monitoring device 130.
  • the ship 110 is equipped with a sensor 111, which can be used to collect ship data.
  • the processing unit 120 is communicatively connected with the sensor 111 and the monitoring device 130 respectively.
  • the communication connection may include, but is not limited to, a wired connection and/or a wireless connection; the wireless connection may include, but is not limited to, a Bluetooth connection, WiFi, 4G, or 5G connection.
  • communication connections can be directly established between the processing unit 120 and the sensor 111, and between the processing unit 120 and the monitoring device 130.
  • the data processing system 100 may also include a server 150 , and the server 150 may be communicatively connected to the processing unit 120 and the monitoring device 130 respectively. In this way, the processing unit 120 and the monitoring device 130 can perform data exchange through the server 150 .
  • data processing system 100 may also include a storage unit 140.
  • the storage unit 140 may be communicatively connected with the processing unit 120 and with the sensor 111 .
  • the ship data collected by the sensor 111 may be stored in the storage unit 140 .
  • the data processing system 100 may also include the storage unit 140 and the server 150 at the same time. This application is not limited here.
  • the ship 110 may be an unmanned ship that operates automatically, or it may be a manned ship that requires personnel to drive. This application is not limited here.
  • the processing unit 120 may be a processor of the ship 110 , that is, the processing unit 120 is mounted on the ship 110 .
  • the processing unit 120 can also execute other operating instructions of the ship 110, such as navigation instructions, berthing instructions, etc.
  • the processing unit 120 may be a separate hardware device from the vessel 110 .
  • the processing unit 120 may be mounted on the ship 110, or may be separated from the ship 110, such as being installed on land.
  • the processing unit 120 executes a data processing method provided by this application, and the processor of the ship executes the operation instructions of the ship 110, such as navigation instructions, berthing instructions, etc.
  • monitoring device 130 may include, but is not limited to, a computer, laptop, cell phone, camera phone, smart phone, personal digital assistant, or server or other device with data processing capabilities.
  • a data processing method provided by this application may include the steps shown in Figure 2:
  • Step 210 Monitor the trigger information when sending the ship data collected by the sensor to the monitoring device at the first sending frequency
  • the sent ship data is used for users to view through the monitoring device; the trigger information is used to trigger a change in the frequency of data transmission; the trigger information is sent by the monitoring device when the user views the ship data, and/or when the ship data indicates that the ship is in danger status is generated.
  • Step 220 When trigger information is detected, send ship data to the monitoring device at a second sending frequency; the first sending frequency is less than the second sending frequency.
  • the processing unit 120 can directly read the collected ship information from the sensor 111 and then send it to the monitoring device 130 .
  • the processing unit 120 can adjust the data collection frequency of the sensor 111 so that the data collection frequency matches the data transmission frequency.
  • the matching of the data collection frequency and the data transmission frequency may include: the data collection frequency is the same as the data transmission frequency, or the data collection frequency is higher than the data transmission frequency.
  • the processing unit 120 can read the ship data from the storage unit 140 and send the ship data to the monitoring device 130 .
  • the data collection frequency of the sensor 111 can be adjusted by the processing unit 120 to match the data transmission frequency.
  • the matching of the data collection frequency and the data transmission frequency may include: the data collection frequency is the same as the data transmission frequency, or the data collection frequency is higher than the data transmission frequency.
  • the sensor 111 can also collect data at a fixed data collection frequency, but the data collection frequency should be greater than or equal to the second transmission frequency.
  • a communication connection is directly established between the processing unit 120 and the monitoring device 130 , and the ship data can be directly sent to the monitoring device 130 through the communication connection.
  • the processing unit 120 may send the ship data to the monitoring device 130 through the server 150 .
  • the server 150 can process the ship data received within a preset time period to obtain a processing result.
  • the above processing may include but is not limited to summary processing, analysis processing, etc.
  • the ship data within a preset time period are summarized and processed to obtain a data change trend graph; another example is to analyze the ship data within a preset time period to obtain the data change speed, etc., to indicate the urgency of data changes.
  • the server 150 may send the ship data and processing results to the monitoring device 130 for review by the user.
  • This application provides a data processing method.
  • the processing unit can send the ship data to the monitoring device at a smaller first transmission frequency. Users can view ship data through the monitoring device, so the monitoring device can detect whether ship data viewing behavior occurs.
  • the monitoring device monitors that the user views ship data, it can send trigger information to the processing unit, so that the processing unit increases the data sending frequency to the second sending frequency.
  • trigger information can be generated to cause the processing unit to increase the data transmission frequency to the second transmission frequency.
  • Whether the ship data indicates that the ship is in a dangerous state can be determined by the sensor and/or the processing unit, or by other equipment.
  • the processing unit is mounted on the ship, including the case where the processing unit is the ship's processor, and the case where the processing unit is independent of the ship, that is, the processing unit belongs to the equipment on the ship.
  • the monitoring device detects that the user is viewing ship data, it then reports to the processing unit
  • the ship will passively increase the frequency of sending ship data in a timely manner to meet the user's viewing needs.
  • the sensor and/or processing unit determines that the ship data indicates that the ship is in a dangerous state and then generates trigger information
  • the ship actively increases the frequency of sending ship data to allow users to grasp the state of the ship in real time. In this way, when the ship meets different conditions, it can flexibly use the appropriate transmission frequency to send ship data to the monitoring device. It has the function of actively and passively adjusting the data transmission frequency, which can not only meet the user's viewing needs, but also improve the safety status of the ship. Be protected.
  • the working mode of the ship can be divided into low power consumption mode and normal mode.
  • the first transmission frequency may be a data transmission frequency in a low power consumption mode; and the second transmission frequency may be a data transmission frequency in a normal mode.
  • the ship can enter the low power consumption mode and send ship data to the monitoring device with a smaller first transmission frequency.
  • the ship can also enter the low power consumption mode and send the ship data to the monitoring device with a smaller first transmission frequency.
  • the processing unit can send data at the first transmission frequency.
  • the low-power mode power consumption during data transmission can be saved to extend the ship's endurance.
  • the processing unit When the processing unit detects the trigger information, it increases the sending frequency of the ship data from the first sending frequency to the second sending frequency. In some embodiments, if the user stops viewing ship data, and/or the ship data indicates that the ship is in a safe state, the processing unit can restore the sending frequency of the ship data to the first sending frequency to save power consumption and extend the endurance of the ship. time.
  • Ship data can include multiple categories, including but not limited to ship temperature data, ship water level data, ship humidity data, ship position data, ship sway data, ship video data, etc.
  • the processing unit sends the ship data to the monitoring device at the first sending frequency, which may include the steps shown in Figure 3:
  • Step 310 Determine the first category of ship data from multiple categories of ship data based on the environmental information of the environment where the ship is located;
  • Step 320 Send the first category of ship data to the monitoring device at the first sending frequency.
  • environmental information can be obtained through sensors mounted on the outside of the ship, or it can be sent to the ship through other devices such as servers through the Internet. This application is not limited here.
  • the first category of ship data includes ship temperature data.
  • the environment in which the ship is located may be too hot or too cold.
  • Ambient temperatures that are too high or too low may cause damage to ship parts.
  • the water surface may freeze. If the ship is anchored or operating in the water, the ice on the water surface may cause damage to the ship. Therefore, when the ambient temperature exceeds the ambient temperature range, the ship temperature data can be sent to the monitoring device at the first sending frequency.
  • the first category of ship data includes ship water level data.
  • Ships can be connected to the Internet to obtain weather information for their area. When weather information indicates rainy weather in the area where the ship is located, the rain may form water in the cabin or on the deck. Accumulation of water may cause water to enter the ship parts, directly causing serious damage to circuits and electrical parts. When the water reaches a certain weight, it may even cause the ship to sink. Therefore, when the environmental information indicates that the ship is in a rainy environment, the ship's water level data can be sent to the monitoring device at the first transmission frequency.
  • the first category of ship data includes ship humidity data.
  • the ambient humidity is too high, water droplets may adhere to ship parts. Especially when water droplets appear at the contact points of electrical devices, it will cause oxidation and corrosion of the parts in a short period of time, leading to damage to the ship parts. Therefore, when the environmental information indicates that the environmental humidity is too high, the ship humidity data can be sent to the monitoring device at the first sending frequency.
  • the first category of ship data includes ship position data.
  • the ship can obtain the ship's position data through the onboard positioning module and send the ship's position data to the monitoring device at the first transmission frequency.
  • the first category of ship data includes ship rolling data.
  • the waters where the ship is located may generate larger waves. Waves will cause the ship to rock. When the waves are too large, it may even cause the ship to capsize and cause damage to the ship. Therefore, in order to prevent the ship from capsizing, when the ambient wind speed is too high, the ship can obtain inertial data as ship sway data through the onboard inertial measurement unit (IMU) to characterize the degree of ship sway and transmit it at the first transmission frequency Send ship sway data to the monitoring device.
  • IMU onboard inertial measurement unit
  • the ship can be equipped with a camera device to take pictures at night and send the ship video data to the monitoring device at the first transmission frequency.
  • the shooting device may include but is not limited to an infrared shooting device suitable for night shooting; the ship video data may include but is not limited to infrared video data.
  • other ship data may not be sent to the monitoring device.
  • other ship data may be sent to the monitoring device at a third sending frequency that is smaller than the first sending frequency.
  • This embodiment determines the first category of ship data based on the environmental information of the environment in which the ship is located, and sends the first category of ship data to the monitoring device at the first transmission frequency.
  • ship data that may have an impact on ship safety can be selectively selected from a variety of ship data and sent, so that users can understand the status of the ship.
  • the environment in which the ship is located may cause damage to the ship, it does not mean that the ship is about to be damaged.
  • the ship may be equipped with devices to cope with harsh environments, including but not limited to water outfalls and pumps. Wet devices, cooling devices, etc. Feeding back ship data to users with a lower first transmission frequency allows users to grasp the status of the ship without consuming too much power.
  • the monitoring device can send trigger information to the processing unit to increase the frequency of sending ship data.
  • the monitoring device may then send trigger information to the processing unit. If the user's viewing frequency of ship data is small, the first sending frequency can meet the user's viewing needs; but when the viewing frequency exceeds the threshold, the first sending frequency cannot meet the user's viewing needs, and the data sending frequency can be increased to Second sending frequency.
  • the monitoring device may include at least one display interface, and the display interface may be used to display ship data.
  • the user's viewing frequency of viewing ship data is higher than a preset viewing frequency threshold, which may include:
  • the refresh frequency of ship data is greater than the preset refresh frequency threshold.
  • the refresh frequency of ship data in the display interface can represent the user's viewing frequency of ship data.
  • the display interface may include a refresh frequency adjustment control. Users can adjust the refresh frequency of ship data by adjusting the controls.
  • the refresh frequency of ship data may be a first fixed frequency.
  • the viewing frequency of the user's ship data is higher than the preset viewing frequency threshold, and then the refresh frequency of the ship data can be changed from One fixed frequency is adjusted up to a second fixed frequency.
  • the data transmission frequency is also adjusted upward from the first transmission frequency to the second transmission frequency.
  • the monitoring device can send trigger information to the processing unit according to the refresh frequency of the ship data on the display interface to adjust the sending frequency of the ship data, so that the ship can increase the sending frequency of the ship data in a timely manner to meet the user's viewing requirements. need.
  • ship data may include multiple categories
  • the monitoring device may display multiple categories of ship data through one or more display interfaces, and each display interface may display part or all of the ship data categories.
  • the trigger information sent by the monitoring device to the processing unit may carry category information corresponding to the ship data displayed on the current display interface. In this way, when the trigger information is detected, the above step 220 sends the ship data to the monitoring device at the second sending frequency, which may include the steps shown in Figure 4:
  • Step 221 When trigger information is detected, determine the second category of ship data from multiple categories of ship data based on the category information carried by the trigger information;
  • Step 222 Send the second category of ship data to the monitoring device at the second sending frequency.
  • the processing unit may determine the second category of ship data based on the category information carried by the trigger information.
  • the second category of ship data may be the ship data displayed in the current display interface.
  • the ship data of the second category is sent to the monitoring device at the second sending frequency, and other ship data except the ship data of the second category may be sent to the monitoring device at the first sending frequency, or may not be sent to the monitoring device.
  • the processing unit sends the second category of ship data to the monitoring device at the second sending frequency, and increases the sending frequency of the ship data that the user needs to view in a targeted manner, saving the overhead of transmitting other ship data. It achieves meeting the viewing needs of users with smaller resources.
  • the ship data indicates that the ship is in a dangerous state
  • trigger information can be generated to increase the frequency of sending ship data.
  • the ship data may include but is not limited to ship temperature data, ship water level data, ship humidity data, ship position data, ship sway data, ship video data, etc.
  • Ship data indicates that the ship is in a dangerous state, including one or more of the following conditions:
  • Ship temperature data indicates that the ship temperature exceeds a preset temperature range.
  • the ship temperature may be too high or too low. Too high or too low ship temperature may cause ship parts to operate at inappropriate operating temperatures, resulting in damage to ship parts. If a ship's parts are damaged, it could put the ship in a dangerous condition. Therefore, when the ship temperature data indicates that the ship temperature exceeds the preset temperature range, the ship may be in a dangerous state.
  • Ship water level data indicates that the ship water level is higher than the preset high water level threshold.
  • water may enter the ship parts, directly causing serious damage to the circuits and electrical parts.
  • the ship may even cause the ship to sink. Therefore, when the ship's water level data indicates that the ship's water level is higher than the preset high water level threshold, the ship may be in a dangerous state.
  • the ship humidity data indicates that the ship humidity is greater than the preset humidity threshold.
  • the ship's humidity is too high, water droplets may adhere to the ship's parts. Especially when water droplets appear at the contact points of electrical devices, it will cause oxidation and corrosion of the parts in a short period of time, leading to damage to the ship's parts. Therefore, when the ship's humidity data indicates that the ship's humidity is greater than the preset humidity threshold, the ship may be in a dangerous state.
  • Ship weight data indicates that the ship weight is greater than the preset overweight threshold. When a ship is overloaded and overweight, it may lead to shipwreck. Therefore, when the ship weight data indicates that the ship weight is greater than the preset overweight threshold, the ship may be in a dangerous state.
  • the ship position data indicates that the ship's displacement is greater than a preset distance threshold.
  • a preset distance threshold When the ship is berthed, it can be anchored by anchors or other floating tools on the water to prevent the ship from moving with the current.
  • the ship can obtain the ship's position data through the onboard positioning module.
  • the ship's displacement is greater than the preset distance threshold, it indicates that the ship has moved a long distance. If not processed in time, the ship may be lost. Therefore, when the ship's position data indicates that the ship's displacement is greater than the preset distance threshold, the ship may be in a dangerous state.
  • Ship sway data indicates that the attitude angle of the ship is greater than the preset angle threshold.
  • the ship can obtain inertial data as ship sway data through the mounted IMU.
  • Ship sway data can represent the attitude angle of the ship around at least one rotation axis. If the attitude angle is greater than the preset angle threshold, the ship may be at risk of capsizing. Therefore, when the ship's sway data indicates that the attitude angle of the ship is greater than the preset angle threshold, the ship may be in a dangerous state.
  • Ship video data indicates that the ship has been invaded by illegal users.
  • the ship can be equipped with a camera device, which can be a visible light camera device or an infrared camera device.
  • the ship video data can be video data collected by any of the above-mentioned shooting devices. Face recognition technology can be used to identify whether the person in the video is a legitimate user. If not, it is determined that the task in the video screen is an illegal user.
  • the ship When ship video data indicates that the ship has been invaded by illegal users, the ship may be at risk of being stolen and the ship may be in a dangerous state.
  • the second transmission frequency may be positively correlated with the change amplitude of the ship data within the preset time period.
  • the second sending frequency can be reduced accordingly. If the ship water level data increases significantly within the preset time period, that is, the growth rate is fast, the second sending frequency can be increased accordingly, so that the user can grasp the changing process of the ship data in real time.
  • the processing unit in addition to sending ship data to the monitoring device when the ship data indicates that the ship is in a dangerous state, can also control the monitoring device to send out alarm data to remind the user that the ship is in a dangerous state.
  • shipboard sensors may include liquid level sensors.
  • the liquid level sensor can be set on the ship at a preset height on the side plate connected to the deck.
  • the ship data may include water level height data collected by the liquid level sensor and used to characterize the water accumulation height on the deck of the ship.
  • the liquid level sensor may include an infrared liquid level sensor.
  • An infrared liquid level sensor may include a light emitter and a light receiver. The infrared light emitted by the light transmitter can be received by the light receiver.
  • the infrared liquid level sensor will be immersed in the water. Before and after the infrared liquid level sensor is immersed in water, the optical path of the infrared light will change due to the refraction of water. In this way, the process of determining the water level height of accumulated water can include the steps shown in Figure 5:
  • Step 510 If the light intensity of the light received by the light receiver is greater than the preset light intensity threshold, determine that the water level of the accumulated water has not reached the preset height;
  • Step 520 If the light intensity of the light received by the light receiver is not greater than the light intensity threshold, determine that the water level of the accumulated water reaches the preset height.
  • the light received by the above-mentioned light receiver is emitted by the light emitter.
  • the infrared liquid level sensor When the water level of the accumulated water does not reach the preset height of the infrared liquid level sensor set on the side plate, the infrared liquid level sensor is above the water surface of the accumulated water, and the infrared light emitted by the light transmitter can be received by the light receiver, so the light The intensity of light received by the receiver is greater.
  • the infrared liquid level sensor will be immersed in the water. The refraction of water changes the optical path of infrared light, causing the infrared light to fail to reach the light receiver. In this way, the light receiver cannot receive the infrared light emitted by the light transmitter, resulting in weak infrared light intensity detected by the light receiver.
  • an appropriate intensity can be selected as the threshold according to actual needs.
  • the intensity of the infrared light received by the light receiver is different from the difference between the light emitter and the light receiver.
  • the distance between them is negatively correlated. That is, the greater the distance between the light transmitter and the light receiver, the weaker the infrared light intensity received by the light receiver. Therefore, the above-mentioned light intensity threshold can be set according to the distance between the transmitter and the light receiver. For example, the light intensity threshold is negatively correlated with the distance.
  • the light intensity threshold may be determined based on the ambient light intensity of the environment in which the ship is located. Since the ambient light includes infrared light, in order to avoid the infrared light in the ambient light from interfering with the water level detection, the light intensity threshold can be set based on the infrared light intensity of the ambient light to offset the impact of the infrared light of the ambient light on the detection.
  • liquid level sensors also include float-type liquid level sensors, float-type liquid level sensors, hydrostatic liquid level sensors and other sensors that measure liquid level through buoyancy or hydrostatic pressure.
  • the liquid level sensor may include multiple (FIG. 6 shows 3 as an example). Multiple liquid level sensors may be disposed at different heights of the side plate 610 respectively. As shown in FIG. 6 , the liquid level sensors 611 - 613 are respectively arranged at different heights of the side plate 610 from low to high.
  • different setting heights correspond to different levels of dangerous water levels. For example, when the water level of the accumulated water reaches the height where the liquid level sensor 611 is located, the risk level at this water level is low. However, when the water level of the accumulated water reaches the height where the liquid level sensor 613 is located, the risk level at this water level is relatively high.
  • the monitoring device outputs different levels of alarm information. For example, alarm information with a lower degree of danger can be output in the form of a pop-up window, and alarm information with a higher degree of danger can be output in the form of sound or flash.
  • the water level height data collected by liquid level sensors installed at different heights are sent at different frequencies.
  • the frequency of sending water level height data corresponding to each liquid level sensor can be determined based on the current water level height of the accumulated water.
  • a sending strategy for water level height data may be stored in advance, and based on the water level height of the accumulated water, the water level height data of the accumulated water corresponding to multiple liquid level sensors may be sent according to the preset sending strategy.
  • the sending strategy may include: the sending frequency of the water level height data corresponding to the first liquid level sensor is greater than the sending frequency of the water level height data corresponding to the second liquid level sensor; and/or the sending frequency of the water level height data corresponding to the first liquid level sensor.
  • the sending frequency is greater than the sending frequency of the water level height data corresponding to the third liquid level sensor.
  • the installation height of the first liquid level sensor and the second liquid level sensor is higher than the water level of the accumulated water, and the first liquid level sensor is closer to the water level of the accumulated water than the second liquid level sensor; the arrangement of the third sensor The height is lower than the water level of the accumulated water; the number of the first liquid level sensor, the second liquid level sensor or the third liquid level sensor may be one or more.
  • the sending strategy is applicable to the scenario where the processing unit sends ship data to the monitoring device at the first sending frequency or the second sending frequency.
  • the water level height data corresponding to the first liquid level sensor can be sent to the monitoring device at the first transmission frequency
  • the water level height data corresponding to the second liquid level sensor and/or the third liquid level sensor can be sent to the monitoring device at the third transmission frequency.
  • the third transmission frequency is smaller than the first transmission frequency.
  • the water level height data corresponding to the first liquid level sensor can be sent to the monitoring device at the second sending frequency, and the second liquid level sensor and/or the third level sensor can be sent to the monitoring device at the first sending frequency. Water level height data corresponding to the liquid level sensor.
  • each liquid level sensor may also transmit data according to other transmission frequencies.
  • the data transmission frequencies of the second liquid level sensor and the third liquid level sensor may be the same or different. As long as the data transmission frequencies of the first liquid level sensor, the second liquid level sensor and the third liquid level sensor satisfy the size relationship in the transmission strategy.
  • the installation height of the liquid level sensor 611 is lower than the water level of the accumulated water, and the installation height of the liquid level sensors 612-613 is higher than the water level of the accumulated water, and The liquid level sensor 612 is closer to the water level of the accumulated water than the liquid level sensor 613 .
  • the liquid level sensor 611 is the third sensor; the liquid level sensor 612 is the first liquid level sensor; and the liquid level sensor 613 is the second liquid level sensor.
  • the transmission frequency of the water level height data corresponding to the liquid level sensor 612 is greater than the transmission frequency of the water level height data corresponding to the liquid level sensor 611 and the liquid level sensor 613 .
  • the sending frequencies of the water level data corresponding to the liquid level sensor 611 and the liquid level sensor 613 may be the same or different.
  • the installation height of the liquid level sensors 611-612 is lower than the water level of the accumulated water, and the installation height of the liquid level sensor 613 is higher than the water level of the accumulated water.
  • the liquid level sensors 611-612 are the third sensors; the liquid level sensor 613 is the first liquid level sensor.
  • the sending frequency of the water level height data corresponding to the liquid level sensor 613 is greater than the sending frequency of the water level height data corresponding to the liquid level sensors 611-612.
  • the sending frequencies of the water level data corresponding to the liquid level sensor 611 and the liquid level sensor 612 may be the same or different.
  • the sending frequency of the water level height data corresponding to each liquid level sensor is determined based on the relationship between the water level height of the accumulated water and the installation height of each liquid level sensor. .
  • the frequency of data transmission is relatively high, allowing users to pay attention to changes in the water level in a timely manner.
  • their water level height data has less reference value for changes in the ponding water level, so the frequency of data transmission is smaller. This saves the cost of data transmission and extends the ship's endurance.
  • this application also provides a data processing method, which is applied to the monitoring device 130 shown in Figure 1A- Figure 1C.
  • the monitoring device 130 is communicatively connected with the processing unit 120, and the processing unit 120 is also communicatively connected with the sensor 111 mounted on the ship 110.
  • the above method includes the steps shown in Figure 7:
  • Step 710 Receive the ship data collected by the sensor sent by the processing unit at the first transmission frequency
  • ship data is used for users to view through monitoring devices.
  • Step 720 If it is detected that the user views ship data, send trigger information to the processing unit;
  • the trigger information is used to trigger changes in data transmission frequency
  • Step 730 Receive the ship data sent by the processing unit at the second sending frequency when the trigger information is detected
  • the first sending frequency is less than the second sending frequency; the trigger information is sent by the monitoring device, and/or is generated when the ship data indicates that the ship is in a dangerous state.
  • this application also provides a data processing method applied to ship monitoring systems.
  • the ship monitoring system includes a processing unit 120 and a monitoring device 130 connected by communication.
  • the processing unit 120 is also communicatively connected with the sensors mounted on the ship. The above method includes the steps shown in Figure 8:
  • Step 810 The processing unit 120 sends the ship data collected by the sensor to the monitoring device 130 at the first sending frequency, and monitors the trigger information at the same time;
  • the trigger information is used to trigger changes in the data sending frequency.
  • Step 821 The monitoring device 130 detects that the user views ship data
  • Step 822 Send trigger information to the processing unit 120;
  • Step 831 The processing unit 120 determines that the ship data indicates that the ship is in a dangerous state.
  • Step 832 The processing unit 120 generates trigger information
  • Step 840 When the processing unit 120 detects the trigger information, it sends the ship data to the monitoring device 130 at the second sending frequency.
  • this application also provides a hardware structure diagram of a data processing device as shown in Figure 9.
  • the data processing device includes a processor, an internal bus, a network interface, memory and non-volatile storage, and of course may also include other hardware required by the business.
  • the processor reads the corresponding computer program from the non-volatile memory into the memory and then runs it to implement a data processing method described in any of the above embodiments except the embodiments described in Figures 7-8.
  • the security terminal includes a data processing device as shown in Figure 9, and a sensor that is communicatively connected to the data processing device and used to collect ship data.
  • the data processing device includes a processor, an internal bus, a network interface, memory and non-volatile storage, and of course may also include other hardware required by the business.
  • the processor reads the corresponding computer program from the non-volatile memory into the memory and then runs it to implement a data processing method described in any of the above embodiments except the embodiments described in Figures 7-8.
  • this application also provides a ship as shown in Figure 11.
  • the ship includes a hull and a safety terminal as shown in Figure 10.
  • the safety terminal is loaded on the hull.
  • the safety terminal includes a data processing device and a sensor that is communicatively connected to the data processing device and used to collect ship data.
  • the data processing device includes a processor, internal bus, network interface, memory and non-volatile memory, and of course may also include other hardware required by the business.
  • the processor reads the corresponding computer program from the non-volatile memory into the memory and then runs it to implement a data processing method described in any of the above embodiments except the embodiments described in Figures 7-8.
  • this application also provides a hardware structure diagram of a monitoring device as shown in Figure 12.
  • the monitoring device includes a processor, internal bus, network interface, memory and non-volatile memory, and of course may also include other hardware required by the business.
  • the processor reads the corresponding computer program from the non-volatile memory into the memory and then runs it to implement a data processing method as shown in Figure 7.
  • this application also provides a ship monitoring system as shown in Figure 13.
  • the ship monitoring system includes a processing unit and a monitoring device that are connected by communication; the processing unit is also connected by communication with the sensors mounted on the ship;
  • the processing unit is configured to: monitor trigger information when sending the ship data collected by the sensor to the monitoring device at the first sending frequency, and the trigger information is used to trigger a change in the data sending frequency;
  • the monitoring device is used to: if a user is detected viewing ship data, send trigger information to the processing unit;
  • the processing unit is also used to: generate trigger information if the ship data indicates that the ship is in a dangerous state;
  • ship data is sent to the monitoring device at the second sending frequency
  • the first sending frequency is smaller than the second sending frequency; the sent ship data is used for users to view through the monitoring device.
  • this application also provides a computer program product, including a computer program.
  • the computer program When the computer program is executed by a processor, it can be used to perform a data processing method described in any of the above embodiments.
  • this application also provides a computer storage medium.
  • the storage medium stores a computer program.
  • the computer program When the computer program is executed by the processor, it can be used to execute a method described in any of the above embodiments. Data processing methods.
  • the device embodiment since it basically corresponds to the method embodiment, please refer to the partial description of the method embodiment for relevant details.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Alarm Systems (AREA)

Abstract

一种数据处理方法、装置、系统、安全终端、船舶及监控装置,处理单元(120)会以较小的第一发送频率发送船舶(110)数据。当用户查看传感器(111)采集的船舶(110)数据时,监控装置(130)会向处理单元(120)发送触发信息;或者当船舶(110)数据表征船舶(110)处于危险状态时,会生成触发信息。当处理单元(120)监测到触发信息时,会提高船舶(110)数据的发送频率,以较大的第二发送频率发送船舶(110)数据。如此,在船舶(110)满足不同的条件下灵活地采用合适的发送频率向监控装置(130)发送船舶(110)数据,既能满足用户的查看需求,同时船舶(110)的安全状态也得到保障。

Description

数据处理方法、装置、系统、安全终端、船舶及监控装置 技术领域
本申请涉及数据处理技术领域,尤其涉及数据处理方法、数据处理装置、船舶监控系统、安全终端、船舶、监控装置、计算机程序产品及计算机可读存储介质。
背景技术
船舶(boats and ships)是各种船只的总称,是能航行或停泊在水域进行运输或作业的交通工具。船舶上通常搭载有传感器以监测船舶的安全状态,传感器采集的船舶数据可以发送至监控装置以供用户查看。在相关技术中,船舶数据的传输方式缺乏灵活性,未能满足用户的查看需求,船舶的安全状态难以得到保障。
发明内容
本申请提供了数据处理方法、数据处理装置、船舶监控系统、安全终端、船舶、监控装置、计算机程序产品及计算机可读存储介质,以提高船舶数据传输方式的灵活性。
根据本申请的第一方面,提供一种数据处理方法,应用于处理单元,所述处理单元分别与监控装置以及船舶上搭载的传感器通信连接;所述方法包括:在以第一发送频率向所述监控装置发送所述传感器采集的船舶数据时,监测触发信息,所述触发信息用于触发数据发送频率的改变;在监测到所述触发信息的情况下,以第二发送频率向所述监控装置发送所述船舶数据;所述第一发送频率小于所述第二发送频率;发送的所述船舶数据用于供用户通过所述监控装置进行查看;其中,所述触发信息在所述用户查看所述船舶数据时由所述监控装置发送,和/或在船舶数据表征所述船舶处于危险状态时生成。
根据本申请的第二方面,提供一种数据处理方法,应用于监控装置;所述监控装置与处理单元通信连接;所述处理单元还与船舶搭载的传感器通信连接;所述方法包括:接收所述处理单元以第一发送频率发送的所述 传感器采集的船舶数据;所述船舶数据用于供用户通过监控装置进行查看;若监测到所述用户查看所述船舶数据,向所述处理单元发送触发信息;所述触发信息用于触发数据发送频率的改变;接收所述处理单元在监测到触发信息的情况下,以第二发送频率发送的所述船舶数据;其中,所述第一发送频率小于所述第二发送频率;所述触发信息由所述监控装置发送,和/或在船舶数据表征所述船舶处于危险状态时生成。
根据本申请的第三方面,提供一种数据处理方法,应用于船舶监控系统;所述船舶监控系统包括通信连接的处理单元和监控装置;所述处理单元还与船舶搭载的传感器通信连接;所述方法包括:所述处理单元在以第一发送频率向所述监控装置发送所述传感器采集的船舶数据时,监测触发信息,所述触发信息用于触发数据发送频率的改变;若所述监控装置监测到用户查看所述船舶数据,向所述处理单元发送触发信息;若所述船舶数据表征所述船舶处于危险状态,所述处理单元生成所述触发信息;在监测到所述触发信息的情况下,所述处理单元以第二发送频率向所述监控装置发送所述船舶数据;其中,所述第一发送频率小于所述第二发送频率;发送的所述船舶数据用于供用户通过监控装置进行查看。
根据本申请的第四方面,提供一种数据处理装置,所述数据处理装置包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器调用所述可执行指令时实现上述第一方面任一所述方法的操作。
根据本申请的第五方面,提供一种安全终端,所述安全终端包括:如上述第四方面所述的数据处理装置;与所述数据处理装置通信连接的,用于采集所述船舶数据的传感器。
根据本申请的第六方面,提供一种船舶,所述船舶包括:船体;如上述第五方面所述的安全终端,所述安全终端装载于所述船体上。
根据本申请的第七方面,提供一种监控装置,所述监控装置包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器调用所述可执行指令时实现上述第二方面所述方法的操作。
根据本申请的第八方面,提供一种船舶监控系统,所述船舶监控系统包括通信连接的处理单元和监控装置;所述处理单元还与船舶搭载的传感器通信连接;所述处理单元用于:在以第一发送频率向所述监控装置发送所述传感器采集的船舶数据时,监测触发信息,所述触发信息用于触发 数据发送频率的改变;所述监控装置用于:若监测到用户查看所述船舶数据,向所述处理单元发送触发信息;所述处理单元还用于:若所述船舶数据表征所述船舶处于危险状态,生成所述触发信息;以及在监测到所述触发信息的情况下,以第二发送频率向所述监控装置发送所述船舶数据;其中,所述第一发送频率小于所述第二发送频率;发送的所述船舶数据用于供用户通过监控装置进行查看。
根据本申请的第九方面,提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如上述第一方面、第二方面、第三方面任一项所述方法的步骤。
根据本申请的第十方面,提供一种计算机可读存储介质,所述计算机可读存储介质上存储有若干计算机指令,所述计算机指令被执行时执行上述第一方面、第二方面、第三方面任一项所述的方法。
本申请的实施例提供的技术方案可以包括以下有益效果:
本申请提供了数据处理方法、数据处理装置、船舶监控系统、安全终端、船舶、监控装置、计算机程序产品及计算机可读存储介质,处理单元会以较小的第一发送频率发送船舶数据。当用户查看传感器采集的船舶数据时,监控装置会向处理单元发送触发信息;或者当船舶数据表征船舶处于危险状态时,会生成触发信息。当处理单元监测到触发信息时,会提高船舶数据的发送频率,以较大的第二发送频率发送船舶数据。如此,在船舶满足不同的条件下灵活地采用合适的发送频率向监控装置发送船舶数据,既能满足用户的查看需求,同时船舶的安全状态也得到保障。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为此处的附图被并入说明书中并构成本申请的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1A是本申请根据一实施例示出的数据处理系统的示意图。
图1B是本申请根据另一实施例示出的数据处理系统的示意图。
图1C是本申请根据另一实施例示出的数据处理系统的示意图。
图2是本申请根据一实施例示出的一种数据处理方法的流程图。
图3是本申请根据另一实施例示出的一种数据处理方法的流程图。
图4是本申请根据另一实施例示出的一种数据处理方法的流程图。
图5是本申请根据另一实施例示出的一种数据处理方法的流程图。
图6是本申请根据一实施例示出的液位传感器的示意图。
图7是本申请根据另一实施例示出的一种数据处理方法的流程图。
图8是本申请根据另一实施例示出的一种数据处理方法的流程图。
图9是本申请根据一实施例示出的一种数据处理装置的硬件结构图。
图10是本申请根据一实施例示出的一种安全终端的结构示意图。
图11是本申请根据一实施例示出的一种船舶的结构示意图。
图12是本申请根据一实施例示出的一种监控装置的硬件结构图。
图13是本申请根据一实施例示出的一种船舶监控系统的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
船舶是各种船只的总称,是能航行或停泊在水域进行运输或作业的交通工具。船舶上通常搭载有传感器以监测船舶的安全状态,传感器采集的船舶数据可以发送至监控装置以供用户查看。在相关技术中,船舶数据往往以一固定的数据发送频率发送至监控装置,传输方式缺乏灵活性,未能满足用户的查看需求,船舶的安全状态难以得到保障。
为此,本申请提出了一种数据处理方法,应用于处理单元,如图1A-图1C所示的数据处理系统100,包括船舶110、处理单元120以及监控装置130。其中,船舶110搭载有传感器111,可以用于采集船舶数据。处理单元120分别与传感器111和监控装置130通信连接。其中,通信连接可以包括但不限于有线连接和/或无线连接;无线连接可以包括但不限于蓝牙连接、WiFi、4G、5G连接。此外,如图1A所示,处理单元120与传感器111,以及处理单元120与监控装置130之间可以直接建立通信连接。又或者,如图1C所示,数据处理系统100还可以包括服务器150,服务器150可以分别与处理单元120以及监控装置130通信连接。如此,处理单元120与监控装置130可以通过服务器150进行数据交互。
如图1B所示,数据处理系统100还可以包括存储单元140。存储单元140可以与处理单元120通信连接,以及与传感器111通信连接。传感器111采集的船舶数据可以存储在存储单元140中。
当然,数据处理系统100还可以同时包括存储单元140以及服务器150。本申请在此不做限定。
在一些实施例中,船舶110可以是自动作业的无人船,也可以是需要人员驾驶的有人船。本申请在此不做限制。
在一些实施例中,处理单元120可以是船舶110的处理器,也即处理单元120搭载在船舶110上。处理单元120除了执行本申请提供的一种数据处理方法以外,还可以执行船舶110的其他操作指令,如航行指令、停泊指令等。
在另一些实施例中,处理单元120可以是独立于船舶110的硬件设备。处理单元120可以搭载在船舶110上,也可以分离于船舶110,例如设置在陆地。处理单元120执行本申请提供的一种数据处理方法,而船舶的处理器则执行船舶110的操作指令,如航行指令、停泊指令等。
在一些实施例中,监控装置130可以包括但不限于计算机、膝上型 计算机、蜂窝电话、相机电话、智能电话、个人数字助理或者服务器等具有数据处理能力的设备。
本申请提供的一种数据处理方法,可以包括如图2所示的步骤:
步骤210:在以第一发送频率向监控装置发送传感器采集的船舶数据时,监测触发信息;
其中,发送的船舶数据用于供用户通过监控装置进行查看;触发信息用于触发数据发送频率的改变;触发信息在用户查看船舶数据时由监控装置发送,和/或在船舶数据表征船舶处于危险状态时生成。
步骤220:在监测到触发信息的情况下,以第二发送频率向监控装置发送船舶数据;第一发送频率小于第二发送频率。
关于处理单元向监控装置发送船舶数据的过程,在一些实施例中,如图1A所示,处理单元120可以直接从传感器111中读取所采集的船舶信息,然后发送至监控装置130。其中,处理单元120可以调控传感器111的数据采集频率,以使数据采集频率与数据发送频率匹配。数据采集频率与数据发送频率匹配可以包括:数据采集频率与数据发送频率相同,或者数据采集频率高于数据发送频率。
在另一些实施例中,如图1B所示,处理单元120可以从存储单元140中读取船舶数据,并将船舶数据发送至监控装置130。其中,传感器111的数据采集频率可以由处理单元120调控至与数据发送频率匹配。数据采集频率与数据发送频率匹配可以包括:数据采集频率与数据发送频率相同,或者数据采集频率高于数据发送频率。传感器111也可以以固定的数据采集频率进行数据采集,但该数据采集频率应大于或等于第二发送频率。
此外,在一些实施例中,如图1A所示,处理单元120与监控装置130之间直接建立通信连接,船舶数据可以通过该通信连接直接发送至监控装置130。
在另一些实施例中,如图1C所示,处理单元120可以通过服务器150将船舶数据发送至监控装置130。在该实施例中,处理单元120向服务器150发送船舶数据后,服务器150可以对预设时间段内接收的船舶数据进行处理,得到处理结果。上述处理可以包括但不限于汇总处理、分析处理等。例如将预设时间段内的船舶数据进行汇总处理,得到数据变化趋势 图;又例如对预设时间段内的船舶数据进行分析,得到数据的变化速度等,以指示数据变化的缓急。随后,服务器150可以将船舶数据以及处理结果发送至监控装置130,以供用户查阅。
本申请提供的一种数据处理方法,传感器采集船舶数据后,处理单元可以以较小的第一发送频率向监控装置发送船舶数据。用户可以通过监控装置查看船舶数据,因此监控装置可以监测到是否发生了船舶数据查看行为。当监控装置监控到用户查看船舶数据,可以向处理单元发送触发信息,以使处理单元将数据发送频率上调至第二发送频率。
此外,当船舶数据表征船舶处于危险状态时,可以生成触发信息,以使处理单元将数据发送频率上调至第二发送频率。其中,可以由传感器和/或处理单元判断船舶数据是否表征船舶处于危险状态,也可以由其他设备进行判断。
若处理单元搭载在船舶上,包括处理单元为船舶的处理器的情况,以及处理单元独立于船舶的情况,也即处理单元属于船上设备,在监控设备监测到用户查看船舶数据,继而向处理单元发送触发信息时,船舶适时地被动提高船舶数据的发送频率,以满足用户的查看需求。在传感器和/或处理单元判断船舶数据表征船舶处于危险状态,继而生成触发信息时,船舶主动地提高船舶数据的发送频率,以让用户实时掌握船舶所处的状态。如此,在船舶满足不同的条件下灵活地采用合适的发送频率向监控装置发送船舶数据,兼具主动式与被动式调整数据发送频率的功能,既能满足用户的查看需求,同时船舶的安全状态也得到保障。
船舶的工作模式可以分为低功耗模式与正常模式。在一些实施例中,第一发送频率可以是低功耗模式下的数据发送频率;而第二发送频率可以是正常模式下的数据发送频率。相较于船舶处于航行状态,当船舶处于停泊状态时,船舶自身以及周围环境变化较小,因此,船舶可以进入低功耗模式,以较小的第一发送频率向监控装置发送船舶数据。此外,当船舶的电量低于预设的电量阈值时,船舶同样可以进入低功耗模式,以较小的第一发送频率向监控装置发送船舶数据。也即,当船舶处于停泊状态;和/或船舶的电量低于预设的电量阈值时,处理单元可以以第一发送频率发送数据。通过触发低功耗模式,可以节约在数据发送环节的电量消耗,以延长船舶的续航时间。
处理单元在监测到触发信息时,将船舶数据的发送频率从第一发送频率上调至第二发送频率。在一些实施例中,若用户停止查看船舶数据,和/或船舶数据表征船舶处于安全状态,则处理单元可以将船舶数据的发送频率恢复至第一发送频率,以节省电量消耗,延长船舶的续航时间。
船舶数据可以包括多个类别,包括但不限于船舶温度数据、船舶水位数据、船舶湿度数据、船舶位置数据、船舶晃动数据、船舶视频数据等。在一些实施例中,处理单元以第一发送频率向监控装置发送船舶数据,可以包括如图3所示的步骤:
步骤310:基于船舶所处环境的环境信息从多个类别的船舶数据中确定第一类别的船舶数据;
步骤320:以第一发送频率向监控装置发送第一类别的船舶数据。
其中,环境信息可以通过船舶在外部搭载的传感器获取,也可以通过联网由如服务器等其他设备向船舶发送。本申请在此不做限制。
作为例子,若环境信息表征环境温度超出预设的环境温度范围,确定第一类别的船舶数据包括船舶温度数据。当环境温度超出环境温度范围,船舶所处的环境可能温度过高或温度过低。环境温度过高或过低都可能会导致船舶零件的损坏。甚至在环境温度过低的情况下,水面可能会结冰,若船舶在水中停泊或作业,水面结冰可能会导致船舶损坏。因此,当环境温度超出环境温度范围时,可以以第一发送频率向监控装置发送船舶温度数据。
作为例子,若环境信息表征船舶处于下雨环境,确定第一类别的船舶数据包括船舶水位数据。船舶可以联网以获取所在区域的天气信息。当天气信息指示船舶所在区域为下雨天气,雨水可能会在船舱中或甲板上形成积水。积水可能会导致船舶零件进水,直接造成电路以及电气机件严重损坏。当积水到达一定的重量甚至可能导致沉船。因此当环境信息表征船舶处于下雨环境,可以以第一发送频率向监控装置发送船舶水位数据。
作为例子,若环境信息表征环境湿度高于预设的环境湿度阈值,确定第一类别的船舶数据包括船舶湿度数据。当环境湿度过高,船舶零件可能会附着有水珠,尤其是当电器件的接触点出现水珠时,会在短时间内造成零件氧化以及腐蚀等情况,导致船舶零件损坏。因此当环境信息表征环境湿度过高时,可以以第一发送频率向监控装置发送船舶湿度数据。
作为例子,若环境信息表征船舶所在水域的水流速度大于预设的速度阈值,确定第一类别的船舶数据包括船舶位置数据。当船舶所在水域的水流速度过大时,那么不管船舶处于工作状态还是停泊状态,都可能导致船舶跟随水流的移动而移动,导致丢船。因为,为了防止丢船,当水流速度过大时,船舶可以通过搭载的定位模块获取船舶位置数据,并以第一发送频率向监控装置发送船舶位置数据。
作为例子,若环境信息表征环境风速大于预设的风速阈值,确定第一类别的船舶数据包括船舶晃动数据。当环境风速过大时,船舶所在水域可能会产生较大的海浪。海浪会使船舶摇晃,当海浪过大时,甚至可能导致船舶翻覆,造成船舶损坏。因此,为了防止船舶翻覆,当环境风速过大时,船舶可以通过搭载的惯性测量单元(Inertial Measurement Unit,IMU)获取惯性数据作为船舶晃动数据,以表征船舶的晃动程度,并以第一发送频率向监控装置发送船舶晃动数据。
作为例子,若环境信息表征船舶处于夜晚,确定第一类别的船舶数据包括船舶视频数据。在处于夜晚时,可能会发生船舶偷盗行为,因此,船舶可以搭载有摄像装置,以在夜间进行拍摄,并以第一发送频率向监控装置发送船舶视频数据。其中,拍摄装置可以包括但不限于适用于夜间拍摄的红外拍摄装置;船舶视频数据可以包括但不限于红外视频数据。
针对除第一类别的船舶数据以外的其他船舶数据,在一些实施例中,可以不向监控装置发送其他船舶数据。在另一些实施例中,可以以相较于第一发送频率更小的第三发送频率,向监控装置发送其他船舶数据。
本实施例根据船舶所处环境的环境信息,确定第一类别的船舶数据,并以第一发送频率向监控装置发送第一类别的船舶数据。一方面,可以有针对性地从多种船舶数据中选出可能对船只安全造成影响的船舶数据进行发送,以供用户掌握船舶所处状态。另一方面,虽然船舶所处的环境虽然可能会导致船舶损坏,但这并不意味这船舶即将受到损坏,例如船舶上可能搭载有应付恶劣环境的装置,包括但不限于积水排水口、抽湿装置、降温装置等等。以较低的第一发送频率向用户反馈船舶数据,可以让用户掌握船舶所处状态的同时又不会消耗过多的电能。
如上,当监测到用户查看船舶数据时,监控装置可以向处理单元发送触发信息,以提高船舶数据的发送频率。在一些实施例中,可以在检测 到用户查看船舶数据的查看频率高于预设的查看频率阈值时,监控装置再向处理单元发送触发信息。若用户查看船舶数据的查看频率较小,第一发送频率可以满足用户的查看需求;但当查看频率超出阈值时,第一发送频率已无法满足用户的查看需求,则可以将数据发送频率上调至第二发送频率。
在一些实施例中,监控装置可以包括至少一个显示界面,显示界面可以用于展示船舶数据,如此,上述用户查看船舶数据的查看频率高于预设的查看频率阈值,可以包括:显示界面展示的船舶数据的刷新频率大于预设的刷新频率阈值。显示界面中船舶数据的刷新频率可以表征用户查看船舶数据的查看频率。作为例子,显示界面可以包括刷新频率的调整控件。用户通过调整控件调整船舶数据的刷新频率。作为另一个例子,船舶数据的刷新频率可以是第一固定频率。当显示界面的显示时长,或者用户停留在显示界面的时长超过预设的时长阈值,则认为用户查看船舶数据的查看频率高于预设的查看频率阈值,继而可以将船舶数据的刷新频率从第一固定频率上调至第二固定频率。相应地,数据发送频率也从第一发送频率上调至第二发送频率。
在本实施例中,监控装置可以根据船舶数据在显示界面的刷新频率向处理单元发送触发信息,以调整船舶数据的发送频率,使得船舶可以适时地提高船舶数据的发送频率,以满足用户的查看需求。
如上,船舶数据可以包括多个类别,那么监控装置可以通过一个或多个显示界面显示多个类别的船舶数据,每个显示界面可以显示部分或全部类别的船舶数据。在一些实施例中,监控装置向处理单元发送的触发信息中,可以携带有当前显示界面所展示的船舶数据对应的类别信息。如此,上述步骤220在监测到触发信息的情况下,以第二发送频率向监控装置发送船舶数据,可以包括如图4所示的步骤:
步骤221:在监测到触发信息的情况下,基于触发信息携带的类别信息从多个类别的船舶数据中确定第二类别的船舶数据;
步骤222:以第二发送频率向监控装置发送第二类别的船舶数据。
处理单元可以根据触发信息所携带的类别信息确定出第二类别的船舶数据,第二类别的船舶数据可以是当前显示界面中所展示的船舶数据。第二类别的船舶数据以第二发送频率向监控装置发送,而除第二类别的船 舶数据以外的其他船舶数据可以保持以第一发送频率向监控装置发送,也可以不向监控装置发送。
在本实施例中,处理单元以第二发送频率向监控装置发送第二类别的船舶数据,有针对性地对用户需要查看的船舶数据进行发送频率的上调,节省了其他船舶数据传输的开销,实现了以较小的资源满足用户的查看需求。
如上,当船舶数据表征船舶处于危险状态时,可以生成触发信息以提高船舶数据的发送频率。其中,船舶数据可以包括但不限于船舶温度数据、船舶水位数据、船舶湿度数据、船舶位置数据、船舶晃动数据、船舶视频数据等。船舶数据表征船舶处于危险状态,包括以下一种或多种情况:
船舶温度数据表征船舶温度超出预设的温度范围。当船舶温度超出预设的温度范围时,船舶温度可能过高或过低。船舶温度的过高或过低都可能导致船舶零件在不适宜的工作温度下工作,导致船舶零件损坏。若船舶零件损坏,则可能会导致船舶处于危险状态。因此当船舶温度数据表征船舶温度超出预设的温度范围时,船舶可能处于危险状态。
船舶水位数据表征船舶水位高于预设的高水位阈值。当船舱内或甲板上的积水过多时,可能会导致船舶零件进水,直接造成电路以及电气机件严重损坏。当积水到达一定的重量甚至可能导致沉船。因此当船舶水位数据表征船舶水位高于预设的高水位阈值时,船舶可能处于危险状态。
船舶湿度数据表征船舶湿度大于预设的湿度阈值。当船舶湿度过高时,船舶零件可能会附着有水珠,尤其是当电器件的接触点出现水珠时,会在短时间内造成零件氧化以及腐蚀等情况,导致船舶零件损坏。因此当船舶湿度数据表征船舶湿度大于预设的湿度阈值时,船舶可能处于危险状态。
船舶重量数据表征船舶重量大于预设的超重阈值。当船舶超载过重时,可能会导致沉船,因此当船舶重量数据表征船舶重量大于预设的超重阈值,船舶可能处于危险状态。
船舶位置数据表征船舶的位移大于预设的距离阈值。当船舶停泊时,可以通过锚或其他水上浮动工具进行泊定,以防船舶跟随水流移动。船舶可以通过搭载的定位模块获取船舶位置数据,当船舶的位移大于预设的距离阈值时,表明船舶已移动了一段较远的距离,若不及时处理,可能会导 致丢船。因此当船舶位置数据表征船舶的位移大于预设的距离阈值,船舶可能处于危险状态。
船舶晃动数据表征船舶的姿态角大于预设的角度阈值。船舶可以通过搭载的IMU获取惯性数据作为船舶晃动数据。船舶晃动数据可以表征船舶绕至少一个转动轴的姿态角。若姿态角大于预设的角度阈值,则船舶可能会有翻覆的风险,因此当船舶晃动数据表征船舶的姿态角大于预设的角度阈值,船舶可能处于危险状态。
船舶视频数据表征船舶有非法用户入侵。船舶可以搭载有摄像装置,摄像装置可以是可见光摄像装置,也可以是红外摄像装置。船舶视频数据可以是上述任一拍摄装置采集的视频数据。可以通过人像识别技术识别视频画面中的人物是否合法用户。若否,则判断视频画面中的任务为非法用户。当船舶视频数据表征船舶有非法用户入侵时,船舶可能有被偷盗的风险,船舶可能处于危险状态。
在一些实施例中,第二发送频率可以与船舶数据在预设时间段内的变化幅度正相关。以船舶水位数据为例,若在预设时间段内船舶水位数据的增长幅度较小,也即增长速度较慢,则第二发送频率可以相应地降低。若在预设时间段内船舶水位数据的增长幅度较大,也即增长速度较快,则第二发送频率可以相应地提高,以使用户可以实时掌握到船舶数据的变化过程。
在一些实施例中,处理单元除了在船舶数据表征船舶处于危险状态下,向监控装置发送船舶数据以外,还可以控制监控装置发出告警数据,以提示用户船舶处于危险状态。
在一些实施例中,船舶搭载的传感器可以包括液位传感器。液位传感器可以设置在船舶上与甲板连接的侧板的预设高度上。如此,船舶数据可以包括由液位传感器采集的,用于表征船舶的甲板上积水高度的水位高度数据。
其中,液位传感器可以包括红外液位传感器。红外液位传感器可以包括光发射器和光接收器。光发射器发射的红外光可以由光接收器接收。当积水的水位高度达到红外液位传感器设置在侧板上的预设高度时,红外液位传感器会浸入水中。红外液位传感器在浸入水中前后,由于水的折射,红外光的光路会发生变化。如此,积水的水位高度的确定过程可以包括如 图5所示的步骤:
步骤510:若光接收器接收到的光线的光强大于预设的光强阈值,确定积水的水位高度未达到预设高度;
步骤520:若光接收器接收到的光线的光强不大于光强阈值,确定积水的水位高度达到预设高度。
其中,上述光接收器所接收的光线是由光发射器发射的。当积水的水位高度未达到红外液位传感器设置在侧板上的预设高度时,红外液位传感器在积水的水面以上,光发射器发射的红外光可以被光接收器接收,因此光接收器接收到的光线强度较大。反之,当积水的水位高度达到预设高度时,红外液位传感器会浸入水中。水的折射作用改变了红外光的光路,导致红外光无法到达光接收器。如此,光接收器无法接收到光发射器所发射的红外光,导致光接收器检测到的红外光光强较弱。
此外,上述光强阈值可以根据实际需要选择合适的强度作为阈值。作为例子,若光发射器与光接收器相对地设置在两个侧板的同一高度时,由于大气对光线的散射作用,光接收器接收到的红外光光强与光发射器和光接收器之间的距离为负相关。也即光发射器与光接收器之间的距离越大,光接收器接收到的红外光强就越弱。因此,上述光强阈值可以根据发射器和光接收器之间的距离设置,例如,光强阈值与距离为负相关。
作为另一个例子,光强阈值可以基于船舶所处环境的环境光强确定。由于环境光包括红外光,为了避免环境光中的红外光对水位检测造成干扰,光强阈值可以基于环境光的红外光强设置,以抵消环境光的红外光对检测的影响。
当然,液位传感器除了包括上述的红外液位传感器以外,还包括浮筒式液位传感器、浮球式液位传感器、静压式液位传感器等通过浮力或液体静压力进行液位测量的传感器。在一些实施例中,如图6所示,液位传感器可以包括多个(图6示出3个以作示例)。多个液位传感器可以分别设置在侧板610的不同高度上。如图6所示,液位传感器611-613分别从低到高设置在侧板610的不同高度上。
作为例子,不同的设置高度对应于不同危险程度的积水水位高度。例如,当积水的水位高度到达液位传感器611所在的高度,该水位高度下的危险程度较低。但当积水的水位高度到达液位传感器613所在的高度, 该水位高度下的危险程度较高。针对不同的危险程度,监控装置输出不同等级的告警信息。例如危险程度较低的告警信息可以以弹窗的形式输出,危险程度较高的告警信息可以以声音、闪光的形式输出。
作为例子,设置在不同高度的液位传感器所采集的水位高度数据的发送频率也不相同。每个液位传感器对应的水位高度数据的发送频率可以根据当前积水的水位高度确定。例如,可以预先存有水位高度数据的发送策略,基于积水的水位高度,按照预设的发送策略来发送多个液位传感器对应的积水的水位高度数据。其中,发送策略可以包括:第一液位传感器对应的水位高度数据的发送频率,大于第二液位传感器对应的水位高度数据的发送频率;和/或第一液位传感器对应的水位高度数据的发送频率,大于第三液位传感器对应的水位高度数据的发送频率。其中,第一液位传感器与第二液位传感器的设置高度高于积水的水位高度,且第一液位传感器相较于第二液位传感器更靠近积水的水位;第三传感器的设置高度低于积水的水位高度;第一液位传感器、第二液位传感器或第三液位传感器的数量可以是一个或多个。
其中,该发送策略适用于处理单元以第一发送频率或第二发送频率向监控装置发送船舶数据的场景。
例如,可以以第一发送频率向监控装置发送第一液位传感器对应的水位高度数据,以第三发送频率向监控装置发送第二液位传感器和/或第三液位传感器对应的水位高度数据。其中,第三发送频率小于第一发送频率。
又例如,当监测到触发信息时,可以以第二发送频率向监控装置发送第一液位传感器对应的水位高度数据,以第一发送频率向监控装置发送第二液位传感器和/或第三液位传感器对应的水位高度数据。
当然,在包括多个液位传感器的情况下,各个液位传感器对应的水位高度数据的发送频率不限于以上列举的两种情况。各个液位传感器还可以按照其他的发送频率进行数据发送,第二液位传感器与第三液位传感器的数据发送频率可以相同,也可以不相同。只要第一液位传感器、第二液位传感器以及第三液位传感器的数据发送频率满足发送策略中的大小关系即可。
以图6为例,当积水的水位高度在液位传感器611所在的高度以下,则液位传感器611-613的设置高度高于积水的水位高度,且液位传感器611 相较于液位传感器612-613更靠近积水的水位。如此,可以确定液位传感器611为第一液位传感器;液位传感器612-613为第二液位传感器。根据发送策略,可知液位传感器611对应的水位高度数据的发送频率大于液位传感器612-613对应的水位高度数据的发送频率。
当积水的水位高度达到液位传感器611所在的高度以上,则液位传感器611的设置高度低于积水的水位高度,液位传感器612-613的设置高度高于积水的水位高度,且液位传感器612相较于液位传感器613更靠近积水的水位。如此,可以确定液位传感器611为第三传感器;液位传感器612为第一液位传感器;液位传感器613为第二液位传感器。根据发送策略,可知液位传感器612对应的水位高度数据的发送频率大于液位传感器611以及液位传感器613对应的水位高度数据的发送频率。其中,液位传感器611以及液位传感器613对应的水位高度数据的发送频率可以相同,也可以不相同。
当积水的水位高度达到液位传感器612所在的高度以上,则液位传感器611-612的设置高度低于积水的水位高度,液位传感器613的设置高度高于积水的水位高度。如此,可以确定液位传感器611-612为第三传感器;液位传感器613为第一液位传感器。根据发送策略,可知液位传感器613对应的水位高度数据的发送频率大于液位传感器611-612对应的水位高度数据的发送频率。其中,液位传感器611以及液位传感器612对应的水位高度数据的发送频率可以相同,也可以不相同。
在本实施例中,针对船舶包括多个液位传感器的情况下,根据积水的水位高度与每个液位传感器的设置高度的关系,确定每个液位传感器对应的水位高度数据的发送频率。对于在积水水位以上且更靠近积水水位的液位传感器,其数据发送频率较大,使得用户能及时关注到积水水位的变化情况。而对于已在积水水位以下,以及在积水水位以上但更远离积水水位的液位传感器,他们的水位高度数据对积水水位的变化情况参考价值较小,因此数据发送频率较小,从而节约在数据传输上的开销,延长船舶的续航时间。
此外,本申请还提供了一种数据处理方法,应用于如图1A-图1C所示的监控装置130。如图1A-图1C所示,监控装置130与处理单元120通信连接,处理单元120还与船舶110搭载的传感器111通信连接,上述方 法包括如图7所示的步骤:
步骤710:接收处理单元以第一发送频率发送的传感器采集的船舶数据;
其中,船舶数据用于供用户通过监控装置进行查看。
步骤720:若监测到用户查看船舶数据,向处理单元发送触发信息;
其中,触发信息用于触发数据发送频率的改变;
步骤730:接收处理单元在监测到触发信息的情况下,以第二发送频率发送的船舶数据;
其中,第一发送频率小于第二发送频率;触发信息由监控装置发送,和/或在船舶数据表征船舶处于危险状态时生成。
上述各步骤的实现过程具体详见上述方法中对应步骤的实现过程,在此不再赘述。
此外,本申请还提供了一种数据处理方法,应用于船舶监控系统。如图8所示,船舶监控系统包括通信连接的处理单元120和监控装置130。处理单元120还与船舶搭载的传感器通信连接,上述方法包括如图8所示的步骤:
步骤810:处理单元120以第一发送频率向监控装置130发送传感器采集的船舶数据,并同时监测触发信息;
其中,触发信息用于触发数据发送频率的改变
步骤821:监控装置130监测到用户查看船舶数据;
步骤822:向处理单元120发送触发信息;
步骤831:处理单元120判断船舶数据表征船舶处于危险状态
步骤832:处理单元120生成触发信息;
步骤840:处理单元120在监测到触发信息时,以第二发送频率向监控装置130发送船舶数据。
上述各步骤的实现过程具体详见上述方法中对应步骤的实现过程,在此不再赘述。
此外,本申请还提供了如图9所示的一种数据处理装置的硬件结构图。如图9,在硬件层面,该数据处理装置包括处理器、内部总线、网络接口、内存以及非易失性存储器,当然还可能包括其他业务所需要的硬件。处理器从非易失性存储器中读取对应的计算机程序到内存中然后运行,以 实现上述除图7-图8记载的实施例以外的任意实施例所述的一种数据处理方法。
此外,本申请还提供了如图10所示的一种安全终端。如图10,该安全终端包括如图9所示的数据处理装置,以及与数据处理装置通信连接的,用于采集船舶数据的传感器。如图9,在硬件层面,该数据处理装置包括处理器、内部总线、网络接口、内存以及非易失性存储器,当然还可能包括其他业务所需要的硬件。处理器从非易失性存储器中读取对应的计算机程序到内存中然后运行,以实现上述除图7-图8记载的实施例以外的任意实施例所述的一种数据处理方法。
此外,本申请还提供了如图11所示的一种船舶。如图11,该船舶包括船体以及如图10所示的安全终端。其中,该安全终端装载于船体上。安全终端包括数据处理装置,以及与数据处理装置通信连接的,用于采集船舶数据的传感器。在硬件层面,该数据处理装置包括处理器、内部总线、网络接口、内存以及非易失性存储器,当然还可能包括其他业务所需要的硬件。处理器从非易失性存储器中读取对应的计算机程序到内存中然后运行,以实现上述除图7-图8记载的实施例以外的任意实施例所述的一种数据处理方法。
基于如图7所示一种数据处理方法,本申请还提供了如图12所示的一种监控装置的硬件结构图。如图12,在硬件层面,该监控装置包括处理器、内部总线、网络接口、内存以及非易失性存储器,当然还可能包括其他业务所需要的硬件。处理器从非易失性存储器中读取对应的计算机程序到内存中然后运行,以实现如图7所示的一种数据处理方法。
基于如图8所示一种数据处理方法,本申请还提供了如图13所示的一种船舶监控系统。如图13,船舶监控系统包括通信连接的处理单元和监控装置;处理单元还与船舶搭载的传感器通信连接;
处理单元用于:在以第一发送频率向监控装置发送传感器采集的船舶数据时,监测触发信息,触发信息用于触发数据发送频率的改变;
监控装置用于:若监测到用户查看船舶数据,向处理单元发送触发信息;
处理单元还用于:若船舶数据表征船舶处于危险状态,生成触发信息;以及
在监测到触发信息的情况下,以第二发送频率向监控装置发送船舶数据;
其中,第一发送频率小于第二发送频率;发送的船舶数据用于供用户通过监控装置进行查看。
上述装置中各个模块的功能和作用的实现过程具体详见上述方法中对应步骤的实现过程,在此不再赘述。
基于上述任意实施例所述的方法,本申请还提供了一种计算机程序产品,包括计算机程序,计算机程序被处理器执行时可用于执行上述任意实施例所述的一种数据处理方法。
基于上述任意实施例所述的一种数据处理,本申请还提供了一种计算机存储介质,存储介质存储有计算机程序,计算机程序被处理器执行时可用于执行上述任意实施例所述的一种数据处理方法。
上述对本申请特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
本领域技术人员在考虑说明书及实践这里申请的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未申请的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (27)

  1. 一种数据处理方法,其特征在于,应用于处理单元,所述处理单元分别与监控装置以及船舶上搭载的传感器通信连接;所述方法包括:
    在以第一发送频率向所述监控装置发送所述传感器采集的船舶数据时,监测触发信息,所述触发信息用于触发数据发送频率的改变;
    在监测到所述触发信息的情况下,以第二发送频率向所述监控装置发送所述船舶数据;所述第一发送频率小于所述第二发送频率;发送的所述船舶数据用于供用户通过所述监控装置进行查看;
    其中,所述触发信息在所述用户查看所述船舶数据时由所述监控装置发送,和/或在船舶数据表征所述船舶处于危险状态时生成。
  2. 根据权利要求1所述的方法,其特征在于,所述处理单元还与存储单元通信连接,所述存储单元与所述传感器通信连接;所述船舶数据由所述传感器采集后存储至所述存储单元中;所述船舶数据发送至所述监控装置的步骤包括:
    从所述存储单元中读取所述船舶数据,并发送所述船舶数据至所述监控装置。
  3. 根据权利要求1所述的方法,其特征在于,所述船舶在满足以下条件下时以第一发送频率发送数据:
    所述船舶处于停泊状态;和/或
    所述船舶的电量低于预设的电量阈值。
  4. 根据权利要求1所述的方法,其特征在于,所述船舶数据包括多个类别的船舶数据;所述以第一发送频率向所述监控装置发送所述传感器采集的船舶数据,包括:
    基于所述船舶所处环境的环境信息从所述多个类别的船舶数据中确定第一类别的船舶数据;
    以第一发送频率向所述监控装置发送所述第一类别的船舶数据。
  5. 根据权利要求4所述的方法,其特征在于,所述基于所述船舶所处环境的环境信息从所述多个类别的船舶数据中确定第一船舶数据,包括以下一种或多种:
    若所述环境信息表征环境温度超出预设的环境温度范围,确定所述第一类别的船舶数据包括船舶温度数据;
    若所述环境信息表征所述船舶处于下雨环境,确定所述第一类别的船舶数据包括船舶水位数据;
    若所述环境信息表征环境湿度高于预设的环境湿度阈值,确定所述第一类别的船舶数据包括船舶湿度数据;
    若所述环境信息表征所述船舶所在水域的水流速度大于预设的速度阈值,确定所述第一类别的船舶数据包括船舶位置数据;
    若所述环境信息表征环境风速大于预设的风速阈值,确定所述第一类别的船舶数据包括船舶晃动数据;
    若所述环境信息表征所述环境为夜晚,确定所述第一类别的船舶数据包括船舶视频数据。
  6. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    以第三发送频率向所述监控装置发送除所述第一类别的船舶数据以外的其他船舶数据;其中,所述第三发送频率小于所述第一发送频率。
  7. 根据权利要求1所述的方法,其特征在于,所述用户查看所述船舶数据,包括:
    所述用户查看所述船舶数据的查看频率高于预设的查看频率阈值。
  8. 根据权利要求7所述的方法,其特征在于,所述监控装置包括至少一个显示界面,所述显示界面用于展示所述船舶数据;所述用户查看所述船舶数据的查看频率高于预设的查看频率阈值,包括:
    所述显示界面展示的船舶数据的刷新频率大于预设的刷新频率阈值。
  9. 根据权利要求1所述的方法,其特征在于,所述船舶数据包括多个类别的船舶数据,所述监控装置包括至少一个显示界面,所述显示界面用于展示至少部分类别的船舶数据;当触发信息在所述用户查看所述船舶数据时由所述监控装置发送的情况下,所述触发信息携带当前显示界面所展示的船舶数据对应的类别信息;所述在监测到所述触发信息的情况下,以第二发送频率向所述监控装置发送所述船舶数据,包括:
    在监测到所述触发信息的情况下,基于所述触发信息携带的类别信息从所述多个类别的船舶数据中确定第二类别的船舶数据;
    以所述第二发送频率向所述监控装置发送所述第二类别的船舶数据。
  10. 根据权利要求1所述的方法,其特征在于,所述船舶数据表征所述船舶处于危险状态,包括以下一种或多种:
    船舶温度数据表征船舶温度超出预设的温度范围;
    船舶水位数据表征船舶水位高于预设的高水位阈值;
    船舶湿度数据表征船舶湿度大于预设的湿度阈值;
    船舶重量数据表征船舶重量大于预设的超重阈值;
    船舶位置数据表征所述船舶的位移大于预设的距离阈值;
    船舶晃动数据表征所述船舶的姿态角大于预设的角度阈值;
    船舶视频数据表征所述船舶有非法用户入侵。
  11. 根据权利要求1所述的方法,其特征在于,当所述触发信息在船舶数据表征所述船舶处于危险状态时生成的情况下,所述第二发送频率与所述船舶数据在预设时间段内的变化幅度正相关。
  12. 根据权利要求1所述的方法,其特征在于,所述传感器包括液位传感器,设置在所述船舶上与甲板连接的侧板的预设高度上;所述船舶数据包括所述船舶的甲板上积水的水位高度数据。
  13. 根据权利要求12所述的方法,其特征在于,液位传感器包括红外液位传感器,所述红外液位传感器包括光发射器和光接收器;当积水的水位高度达到所述预设高度时,所述红外液位传感器浸入水中;所述积水的水位高度的确定步骤包括:
    若所述光接收器接收到的光线的光强大于预设的光强阈值,确定所述积水的水位高度未达到所述预设高度;
    若所述光接收器接收到的光线的光强不大于所述光强阈值,确定所述积水的水位高度达到所述预设高度;所述光线由所述光发射器发射。
  14. 根据权利要求13所述的方法,其特征在于,所述光强阈值基于所述光发射器和所述光接收器之间的距离,和/或基于所述船舶所处环境的环境光强确定。
  15. 根据权利要求12所述的方法,其特征在于,所述液位传感器包括多个,多个所述液位传感器分别设置在不同的预设高度上;所述积水的水位高度数据发送至所述监控装置的步骤包括:
    基于积水的水位高度,按照预设的发送策略发送多个所述液位传感器对应的积水的水位高度数据;其中,所述发送策略包括:
    第一液位传感器对应的水位高度数据的发送频率,大于第二液位传感器对应的水位高度数据的发送频率;和/或
    所述第一液位传感器对应的水位高度数据的发送频率,大于第三液位传感器对应的水位高度数据的发送频率;
    其中,所述第一液位传感器与所述第二液位传感器的设置高度高于所述积水的水位高度,且所述第一液位传感器相较于所述第二液位传感器更靠近积水的水位;所述第三传感器的设置高度低于所述积水的水位高度。
  16. 根据权利要求1所述的方法,其特征在于,所述方法还包括:若所述用户停止查看所述船舶数据,和/或若所述船舶数据表征所述船舶处于安全状态,恢复以所述第一发送频率发送数据。
  17. 根据权利要求1所述的方法,其特征在于,所述处理单元还与服务器通信连接,所述服务器与所述监控装置通信连接;所述船舶数据向所述监控装置的发送步骤包括:
    向所述服务器发送所述船舶数据,以使所述服务器对预设时间段内接收的船舶数据进行处理,得到处理结果,并将所述船舶数据以及所述处理结果发送至所述监控装置。
  18. 根据权利要求1所述的方法,其特征在于,当所述触发信息在船舶数据表征所述船舶处于危险状态时生成的情况下,在所述以第二发送频率向所述监控装置发送所述船舶数据后,还包括:
    控制所述监控装置发出告警数据,以提示用户所述船舶处于危险状态。
  19. 一种数据处理方法,其特征在于,应用于监控装置;所述监控装置与处理单元通信连接;所述处理单元还与船舶搭载的传感器通信连接;所述方法包括:
    接收所述处理单元以第一发送频率发送的所述传感器采集的船舶数据;所述船舶数据用于供用户通过监控装置进行查看;
    若监测到所述用户查看所述船舶数据,向所述处理单元发送触发信息;所述触发信息用于触发数据发送频率的改变;
    接收所述处理单元在监测到触发信息的情况下,以第二发送频率发送的所述船舶数据;其中,所述第一发送频率小于所述第二发送频率;所述触发信息由所述监控装置发送,和/或在船舶数据表征所述船舶处于危险状态时生成。
  20. 一种数据处理方法,其特征在于,应用于船舶监控系统;所述船舶监控系统包括通信连接的处理单元和监控装置;所述处理单元还与船舶 搭载的传感器通信连接;所述方法包括:
    所述处理单元在以第一发送频率向所述监控装置发送所述传感器采集的船舶数据时,监测触发信息,所述触发信息用于触发数据发送频率的改变;
    若所述监控装置监测到用户查看所述船舶数据,向所述处理单元发送触发信息;
    若所述船舶数据表征所述船舶处于危险状态,所述处理单元生成所述触发信息;
    在监测到所述触发信息的情况下,所述处理单元以第二发送频率向所述监控装置发送所述船舶数据;
    其中,所述第一发送频率小于所述第二发送频率;发送的所述船舶数据用于供用户通过监控装置进行查看。
  21. 一种数据处理装置,其特征在于,所述数据处理装置包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器调用所述可执行指令时实现权利要求1-18任一所述方法的操作。
  22. 一种安全终端,其特征在于,所述安全终端包括:
    如权利要求21所述的数据处理装置;
    与所述数据处理装置通信连接的,用于采集所述船舶数据的传感器。
  23. 一种船舶,其特征在于,所述船舶包括:
    船体;
    如权利要求22所述的安全终端,所述安全终端装载于所述船体上。
  24. 一种监控装置,其特征在于,所述监控装置包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器调用所述可执行指令时实现权利要求19所述方法的操作。
  25. 一种船舶监控系统,其特征在于,所述船舶监控系统包括通信连接的处理单元和监控装置;所述处理单元还与船舶搭载的传感器通信连接;
    所述处理单元用于:在以第一发送频率向所述监控装置发送所述传感 器采集的船舶数据时,监测触发信息,所述触发信息用于触发数据发送频率的改变;
    所述监控装置用于:若监测到用户查看所述船舶数据,向所述处理单元发送触发信息;
    所述处理单元还用于:若所述船舶数据表征所述船舶处于危险状态,生成所述触发信息;以及
    在监测到所述触发信息的情况下,以第二发送频率向所述监控装置发送所述船舶数据;
    其中,所述第一发送频率小于所述第二发送频率;发送的所述船舶数据用于供用户通过监控装置进行查看。
  26. 一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时实现如权利要求1-20任一项所述方法的步骤。
  27. 一种计算机可读存储介质,所述计算机可读存储介质上存储有若干计算机指令,所述计算机指令被执行时执行权利要求1-20任一项所述的方法。
PCT/CN2022/095394 2022-05-26 2022-05-26 数据处理方法、装置、系统、安全终端、船舶及监控装置 WO2023225973A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001470.2A CN115136612A (zh) 2022-05-26 2022-05-26 数据处理方法、装置、系统、安全终端、船舶及监控装置
PCT/CN2022/095394 WO2023225973A1 (zh) 2022-05-26 2022-05-26 数据处理方法、装置、系统、安全终端、船舶及监控装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/095394 WO2023225973A1 (zh) 2022-05-26 2022-05-26 数据处理方法、装置、系统、安全终端、船舶及监控装置

Publications (1)

Publication Number Publication Date
WO2023225973A1 true WO2023225973A1 (zh) 2023-11-30

Family

ID=83388000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095394 WO2023225973A1 (zh) 2022-05-26 2022-05-26 数据处理方法、装置、系统、安全终端、船舶及监控装置

Country Status (2)

Country Link
CN (1) CN115136612A (zh)
WO (1) WO2023225973A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117688498A (zh) * 2024-01-30 2024-03-12 广州中海电信有限公司 基于船岸协同的船舶综合安全状态监控系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104021700A (zh) * 2014-06-16 2014-09-03 交通运输部天津水运工程科学研究所 一种基于tetra数字集群系统的船舶安全报警装置及方法
CN110085006A (zh) * 2019-03-13 2019-08-02 中交广州航道局有限公司 船舶监测方法、装置、系统和存储介质
US20190311553A1 (en) * 2018-04-04 2019-10-10 Yamaha Hatsudoki Kabushiki Kaisha Watercraft, watercraft information system, and information communication method of watercraft
US20200255102A1 (en) * 2019-02-12 2020-08-13 Nauti-Tech Inc. Devices, Systems and Methods for Monitoring, Recording and Communication of Vessel Information
CN111899461A (zh) * 2020-08-24 2020-11-06 广州海事科技有限公司 一种船舶航行监测系统
CN113191657A (zh) * 2021-05-14 2021-07-30 宝能(广州)汽车研究院有限公司 一种传感器数据的上传方法和装置
CN113347279A (zh) * 2021-08-09 2021-09-03 天津所托瑞安汽车科技有限公司 车辆行驶数据的传输方法和系统
CN113870621A (zh) * 2021-10-21 2021-12-31 遨海科技有限公司 一种ais报告频率自动管理方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2945511B1 (fr) * 2009-05-14 2011-07-22 Saipem Sa Navire ou support flottant equipe d'un dispositif de detection des mouvements de carenes liquides
CN104112190B (zh) * 2014-07-23 2018-07-31 清华大学 海关在途监管系统和方法
CN106448200B (zh) * 2016-09-29 2019-06-14 哈尔滨工程大学 基于4g网络的防雷击隧道积水警示系统及方法
CN106842049A (zh) * 2017-01-26 2017-06-13 重庆长安汽车股份有限公司 一种汽车暗电流的测试装置及方法
CN108874812B (zh) * 2017-05-10 2021-12-10 腾讯科技(北京)有限公司 一种数据处理方法及服务器、计算机存储介质
KR102044868B1 (ko) * 2018-06-29 2019-11-14 김창영 로라 무선 통신 기반의 선박 모니터링 방법 및 시스템
CN110160596A (zh) * 2019-06-27 2019-08-23 广州小鹏汽车科技有限公司 一种车辆的积水报警系统和装置
CN110389555B (zh) * 2019-08-16 2022-05-31 山东省金曼克电气集团股份有限公司 一种船用变压器的监控系统及监控方法
CN110650243B (zh) * 2019-09-12 2021-06-18 宇龙计算机通信科技(深圳)有限公司 一种报警方法、装置、存储介质以及终端
CN113395382B (zh) * 2020-02-27 2023-08-22 华为技术有限公司 一种设备间数据交互的方法及相关设备
CN216527522U (zh) * 2021-12-23 2022-05-13 珠海市世源光电科技有限公司 一种城市内涝监测装置
CN114509128A (zh) * 2021-12-31 2022-05-17 遵义市华颖泰科科技有限责任公司 一种城市内涝积水监测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104021700A (zh) * 2014-06-16 2014-09-03 交通运输部天津水运工程科学研究所 一种基于tetra数字集群系统的船舶安全报警装置及方法
US20190311553A1 (en) * 2018-04-04 2019-10-10 Yamaha Hatsudoki Kabushiki Kaisha Watercraft, watercraft information system, and information communication method of watercraft
US20200255102A1 (en) * 2019-02-12 2020-08-13 Nauti-Tech Inc. Devices, Systems and Methods for Monitoring, Recording and Communication of Vessel Information
CN110085006A (zh) * 2019-03-13 2019-08-02 中交广州航道局有限公司 船舶监测方法、装置、系统和存储介质
CN111899461A (zh) * 2020-08-24 2020-11-06 广州海事科技有限公司 一种船舶航行监测系统
CN113191657A (zh) * 2021-05-14 2021-07-30 宝能(广州)汽车研究院有限公司 一种传感器数据的上传方法和装置
CN113347279A (zh) * 2021-08-09 2021-09-03 天津所托瑞安汽车科技有限公司 车辆行驶数据的传输方法和系统
CN113870621A (zh) * 2021-10-21 2021-12-31 遨海科技有限公司 一种ais报告频率自动管理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117688498A (zh) * 2024-01-30 2024-03-12 广州中海电信有限公司 基于船岸协同的船舶综合安全状态监控系统
CN117688498B (zh) * 2024-01-30 2024-05-03 广州中海电信有限公司 基于船岸协同的船舶综合安全状态监控系统

Also Published As

Publication number Publication date
CN115136612A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
US9208673B2 (en) Monitoring system, monitoring module apparatus and method of monitoring a volume
US8531316B2 (en) Nautic alert apparatus, system and method
KR101911756B1 (ko) 해상 부이의 실시간 원격 모니터링 시스템
CN104269075B (zh) 基于多种传感器的航标碰撞监测系统
US20140266793A1 (en) Nautic alert apparatus, system, and method
WO2023225973A1 (zh) 数据处理方法、装置、系统、安全终端、船舶及监控装置
CN112394349B (zh) 海洋浮标智能安防监控方法、装置、系统及存储介质
CN113361942A (zh) 海上船舶指挥调度方法、系统、计算机设备及存储介质
KR101686043B1 (ko) 해양 구조물의 선박 충돌 모니터링 시스템
CN106997691A (zh) 一种船舶水上安全系统及其数据采集计算方法
KR102296978B1 (ko) 어업 도구의 유실 모니터링 시스템 및 그 방법
US8994562B1 (en) Boat monitoring systems and methods
CN110807903A (zh) 一种集装箱船坠箱预警系统及方法
CN208284101U (zh) 一种用于船舶靠泊管理的航拍测距系统
KR101756871B1 (ko) 선박 내 cctv 영상 관제 시스템
KR20220125398A (ko) 중소형 선박용 사고 감지 및 원인분석이 가능한 ai기반의 안전 관리 시스템
KR20170062155A (ko) 소형 선박을 위한 화재 및 침수 대응 시스템 및 방법
CN115258078B (zh) 一种船舶应急管理的方法、系统、装置和存储介质
CN215117822U (zh) 水上船舶指挥调度装置
KR102210019B1 (ko) 수상드론을 이용한 양식장 감시 방법
KR102515838B1 (ko) IoT와 드론 기반의 항만 통제 방법, 디바이스 및 플랫폼
CN115496803A (zh) 一种海上浮标碰撞告警和取证系统及方法
WO2007020523A1 (en) Boat monitoring device and method
CN116772852A (zh) 无人艇安全防护感知系统及判断方法
KR102233167B1 (ko) 자세 안정성을 갖는 수상 드론

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943173

Country of ref document: EP

Kind code of ref document: A1