WO2023225871A1 - 电池温度检测电路、方法、电池保护板、电池及移动终端 - Google Patents

电池温度检测电路、方法、电池保护板、电池及移动终端 Download PDF

Info

Publication number
WO2023225871A1
WO2023225871A1 PCT/CN2022/094795 CN2022094795W WO2023225871A1 WO 2023225871 A1 WO2023225871 A1 WO 2023225871A1 CN 2022094795 W CN2022094795 W CN 2022094795W WO 2023225871 A1 WO2023225871 A1 WO 2023225871A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
battery
gain
battery core
sub
Prior art date
Application number
PCT/CN2022/094795
Other languages
English (en)
French (fr)
Inventor
田富涛
叶力力
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/094795 priority Critical patent/WO2023225871A1/zh
Priority to CN202280004131.XA priority patent/CN117460961A/zh
Publication of WO2023225871A1 publication Critical patent/WO2023225871A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing

Definitions

  • the present disclosure relates to the technical field of battery temperature detection, and in particular to battery temperature detection circuits, methods, battery protection boards, batteries and mobile terminals.
  • the battery is a key component for the normal operation of electronic equipment.
  • the temperature of the battery not only affects the service life of the battery, but also affects the safe use of the electronic equipment. Excessive temperature of the battery may cause the equipment to become hot, which not only affects the use, but may also cause other components to work. Abnormal temperatures may cause equipment failure or even explosion.
  • the temperature of the battery core is collected by attaching a leaded thermistor on the surface of the battery cell.
  • This method not only limits the layout of the protection board, but also has higher requirements for the location of the thermistor. If the thermistor is If the mounting position is deviated, there will be a large deviation in the collected temperature.
  • the central processing unit CPU can obtain the battery temperature by fitting the protection board temperature collected by the thermistor and the device temperature collected by the CPU. This method not only increases the central processing There is a burden on the processor CPU, and there are also large errors.
  • the present disclosure provides a battery temperature detection circuit, method, battery protection board, battery and mobile terminal.
  • a battery temperature detection circuit including:
  • the battery core temperature collection sub-circuit is configured to collect the battery core temperatures at multiple different parts of the battery core, and determine the battery core collection temperature based on the multiple battery core temperatures;
  • the gain subcircuit is configured to collect the protection plate temperature of the battery protection plate and the processor temperature of the central processor, and determine the impact of the protection plate temperature and the processor temperature on the battery based on the preset gain parameters.
  • Gain temperature of core temperature
  • the correction sub-circuit is configured to determine the target detection temperature of the battery based on the gain temperature and the cell collection temperature based on a preset correction parameter, the preset correction parameter being determined by the correction sub-circuit. Determined by the inverting adjustment resistor of the adder in the circuit.
  • the gain subcircuit includes a protection board temperature collection subcircuit, a processor temperature collection subcircuit and a gain calculation subcircuit;
  • the protection plate temperature acquisition sub-circuit is configured to collect the protection plate temperature of the battery protection plate, and determine the protection plate gain of the protection plate temperature to the battery core temperature based on the preset protection plate gain sub-parameter. temperature;
  • the processor temperature acquisition sub-circuit is configured to collect the processor temperature of the central processor, and determine the processor gain of the processor temperature to the battery core temperature based on the preset processor gain sub-parameter. temperature;
  • the gain calculation sub-circuit is configured to determine the gain temperature of the protection plate gain temperature and the gain temperature of the processor gain temperature to the battery core temperature based on the preset gain adjustment sub-parameter;
  • the gain parameters include the protection board gain sub-parameter, the processor gain sub-parameter and the gain adjustment sub-parameter.
  • the inverting access terminal of the adder in the battery core temperature acquisition subcircuit is configured with an inverting adjustment resistor
  • the battery core temperature acquisition sub-circuit is configured to determine the battery core acquisition temperature according to a plurality of the battery core temperatures based on the battery core temperature parameter, and the battery core temperature parameter is determined by an adder in the battery core temperature acquisition sub-circuit. Determined by the inverting adjustment resistor.
  • the battery core temperature collection sub-circuit is configured to collect the first battery core temperature of the battery core through a thermistor provided on the first surface of the battery protection plate, and collect the first battery core temperature through a thermistor provided on the first surface of the battery protection plate.
  • the thermistor on the second side of the battery protection plate collects the second cell temperature of the cell;
  • first surface and the second surface are oppositely arranged protective plate surfaces.
  • the preset correction parameters are determined by the inverting adjustment resistance of the adder in the correction sub-circuit;
  • the correction subcircuit is configured as:
  • the target detection temperature of the battery is determined according to the preset correction parameters and the collected temperature of the battery core after degaining.
  • a battery temperature detection method is provided, which is applied to a battery protection board.
  • the battery protection board includes the battery temperature detection circuit described in the first aspect, and the method includes:
  • the target detection temperature of the battery is determined according to the gain temperature and the cell collection temperature.
  • the correction parameters are determined by the inverting adjustment resistance of the adder in the correction subcircuit.
  • the gain parameters include a protection board gain sub-parameter, a processor gain sub-parameter and a gain adjustment sub-parameter, and based on the preset gain parameters, the influence of the protection board temperature and the processor temperature on the Gain temperature of cell temperature, including:
  • the gain temperature of the protection plate gain temperature and the gain temperature of the processor gain temperature relative to the battery core temperature are determined.
  • determining the battery core collection temperature based on multiple battery core temperatures includes:
  • the battery core acquisition temperature is determined according to multiple battery core temperatures.
  • the battery core temperature parameter is determined by the inverting adjustment resistance of the adder in the battery core temperature acquisition subcircuit.
  • the battery core temperature parameter, the protection plate gain sub-parameter, the processor gain sub-parameter, the gain adjustment sub-parameter and the correction parameter are determined in the following manner:
  • the battery core is discharged with a preset discharge current, and the discharge protection plate temperature of the battery protection plate, the discharge processor temperature of the central processor, and the discharge current of multiple different parts of the battery core are collected. core temperature, and obtaining the discharge battery temperature output by the battery temperature detection circuit;
  • multiple discharge plans are determined respectively based on the discharge battery temperature, the discharge protection plate temperature, the discharge processor temperature and a plurality of discharge cell temperatures under multiple preset temperature conditions.
  • the battery core temperature parameter, the protection plate gain sub-parameter, the processor gain sub-parameter, the gain adjustment are obtained by fitting calculation sub-parameters and the correction parameters.
  • determining the target detection temperature of the battery based on the gain temperature and the cell collection temperature based on preset correction parameters includes:
  • the target detection temperature of the battery is determined according to the preset correction parameters and the collected temperature of the battery core after degaining.
  • a battery protection board including: the battery temperature detection circuit described in any one of the first aspects.
  • the battery protection board also includes:
  • a power supply circuit configured to convert the voltage of the power provided by the battery cell into the voltage required by the battery temperature detection circuit, and provide the converted power to the battery temperature detection circuit as operating power
  • a fuel gauge is configured to convert the voltage-type target detection temperature output by the battery temperature detection circuit into a digital-type target detection temperature.
  • a battery including: the battery protection plate described in the third aspect.
  • a mobile terminal including: the battery described in the fourth aspect.
  • the battery core temperature acquisition sub-circuit collects the battery core temperatures at multiple different parts of the battery core, and determines the battery core acquisition temperature based on the multiple battery core temperatures;
  • the gain sub-circuit collects the temperature of the battery protection plate and The processor temperature of the central processor, and based on the preset gain parameters, determines the protection plate temperature and the gain temperature of the processor temperature to the battery core temperature;
  • the correction subcircuit is based on the preset correction parameters, according to The gain temperature and the cell collection temperature determine the target detection temperature of the battery, and the correction parameter is determined by the inverting adjustment resistance of the adder in the correction subcircuit.
  • FIG. 1 is a circuit diagram of a battery temperature detection circuit according to an exemplary embodiment.
  • FIG. 2 is an overall schematic diagram of battery temperature detection according to an exemplary embodiment.
  • FIG. 3 is a schematic diagram of a packaged battery temperature detection circuit according to an exemplary embodiment.
  • Figure 4 is a flow chart of a battery temperature detection method according to an exemplary embodiment.
  • FIG. 5 is a circuit diagram of a power supply circuit according to an exemplary embodiment.
  • Figure 6 is a schematic structural diagram of a fuel gauge according to an exemplary embodiment.
  • FIG. 7 is a block diagram of a device applying a battery temperature detection method according to an exemplary embodiment.
  • the interference of the protection plate heat and CPU heat on the collection of battery core temperature can be minimized, so that the temperature of the battery core can be collected with high accuracy, and the battery can be accurately determined. temperature, but it is more troublesome to operate in the production process of electronic equipment.
  • the placement position accuracy of the leaded thermistor is required to be high, which affects production efficiency.
  • the present disclosure proposes a battery temperature detection method, which can not only reduce the impact of heat generated by other equipment components on battery temperature collection, improve the accuracy of the collected battery temperature, but also reduce the operating burden of the system.
  • FIG. 1 is a circuit diagram of a battery temperature detection circuit according to an exemplary embodiment.
  • the circuit can be applied to a battery PCM (Protection circuit module) board, hereinafter referred to as the battery protection board.
  • the battery protection board can be applied For batteries, batteries can be used in mobile phones such as mobile phones, digital broadcast terminals, messaging devices, game consoles, tablet devices, medical equipment, fitness equipment, personal digital assistants, wearable devices, PCs (Personal Computers), etc. in the terminal.
  • batteries can be used in mobile phones such as mobile phones, digital broadcast terminals, messaging devices, game consoles, tablet devices, medical equipment, fitness equipment, personal digital assistants, wearable devices, PCs (Personal Computers), etc. in the terminal.
  • the battery temperature detection circuit 100 includes: a correction subcircuit 101 , a cell temperature acquisition subcircuit 102 and a gain subcircuit 103 that are both connected to the correction subcircuit 101 .
  • the battery core temperature acquisition sub-circuit 102 is configured to collect battery core temperatures at multiple different locations of the battery core, and determine the battery core collection temperature based on the multiple battery core temperatures.
  • the plurality of different locations may be cell locations on the battery that generate different amounts of heat.
  • the temperature of the cell can be collected by configuring thermistors on the cell parts of the battery that generate different amounts of heat.
  • the different parts can be the front side of the battery and the back side of the battery.
  • the front side of the battery refers to the side of the battery close to the display screen of the mobile terminal
  • the back side of the battery refers to the side of the battery close to the back shell of the mobile terminal.
  • the heat generated on the front of the battery is different from the heat generated on the back of the battery, which can avoid temperature detection errors caused by inconsistent heat levels on the front and back of the battery. Compared with collecting the cell temperature from a single part, it improves the reliability and accuracy of battery temperature detection. Spend.
  • the plurality of different parts may be the battery end and the battery tail, where the battery end refers to the charging and discharging end of the battery, and the battery tail refers to the other end of the battery opposite to the charging and discharging end. Because the end of the battery, as the charging and discharging end, generates higher heat than the tail of the battery, this can also avoid temperature detection errors caused by inconsistent heat in different parts of the battery.
  • the gain subcircuit 103 is configured to collect the protection plate temperature of the battery protection plate and the processor temperature of the central processor, and determine the effect of the protection plate temperature and the processor temperature on the Gain temperature of cell temperature.
  • the heating of the heating device of the protection plate has a greater impact on the temperature detection of the battery core. Therefore, the temperature of the heating device of the protection plate can be used as the temperature of the protection plate.
  • a thermal sensor can be configured on the heating device of the protection plate. resistance, thereby collecting the temperature of the heating device of the protection board through the thermistor to obtain the temperature of the protection board.
  • the heating devices on the battery protection board can include MOS tubes, precision resistors, etc.
  • the heating of the central processing unit CPU also has a greater impact on the battery core temperature detection. Therefore, the thermistor can be configured on the central processing unit CPU, so that the temperature of the central processing unit CPU can be collected through the thermistor and processed. device temperature.
  • the correction sub-circuit 101 is configured to determine the target detection temperature of the battery based on the gain temperature and the cell collection temperature based on a preset correction parameter, which is determined by the correction parameter. Determined by the inverting adjustment resistor of the adder in the subcircuit.
  • the voltage across the thermistor NTC can be used to represent the collected temperature, so that the voltage-type target detection temperature can be directly obtained.
  • the temperature of the corresponding component can be collected through the thermistor provided at the corresponding position.
  • the temperature of the battery core in different parts is collected through the thermistor NTC1 and thermistor NTC2 which are set on the protection plate and away from the heating device of the protection plate; the temperature of the cell is collected through the thermistor NTC3 which is set on the heating device of the protection plate.
  • the temperature of the battery protection board; the processor temperature of the central processor is collected through the thermistor NTC4 set on the central processor.
  • the components of the battery temperature detection circuit except the thermistor are packaged together to obtain the computing module.
  • the cell temperature acquisition subcircuit includes two thermistors NTC1 and NTC2
  • the computing modules are connected to thermistors NTC1-NTC4 respectively.
  • the overall gain (gain temperature) of the protective plate temperature and the processor temperature on the battery core collected temperature can be determined by setting the corresponding gain parameters. .
  • the obtained gain temperature and cell acquisition temperature are attenuated and interfered with. Therefore, the attenuation and interference need to be eliminated through preset correction parameters to obtain the final target detection temperature.
  • the above circuit collects the cell temperature of multiple different parts of the cell of the battery through the cell temperature acquisition sub-circuit, and determines the cell collection temperature based on the plurality of cell temperatures;
  • the gain sub-circuit collects the protection plate of the battery protection plate temperature and the processor temperature of the central processor, and based on the preset gain parameters, determine the gain temperature of the protection plate temperature and the processor temperature to the battery core temperature;
  • the correction subcircuit is based on the preset correction parameters , determine the target detection temperature of the battery according to the gain temperature and the battery cell collection temperature, and the correction parameter is determined by the inverting adjustment resistance of the adder in the correction sub-circuit.
  • the gain subcircuit 103 includes a protection plate temperature collection subcircuit 1031, a processor temperature collection subcircuit 1032 and a gain calculation subcircuit 1033;
  • the protection plate temperature acquisition sub-circuit 1031 is configured to collect the protection plate temperature of the battery protection plate, and determine the relationship between the protection plate temperature and the battery core temperature based on the preset protection plate gain sub-parameter. gain temperature.
  • the protection plate temperature acquisition sub-circuit 1031 includes an adder U2, a resistor R8 and a resistor R12 whose first terminals are both connected to the positive-phase access terminal of the adder U2.
  • the resistor R5 and thermistor NTC3 have one end connected to the second end of the resistor R8, and the resistor R6 and the resistor R14 have the first end connected to the inverting input end of the adder U2.
  • the second end of the thermistor NTC3 is connected to the ground
  • the second end of the resistor R5 is connected to the power supply
  • the second end of the resistor R6 and the second end of the resistor R12 are both connected to ground
  • the second end of the resistor R14 is connected to the output end of the adder U2 connect.
  • resistors R8 and R12 with different resistance values are configured to determine the gain sub-parameters of the protection board.
  • the drift caused by different temperatures can be reduced by configuring resistors R6 and R14 with different resistance values.
  • the protection board temperature acquisition sub-circuit 1031 collects the protection board temperature of the heating device of the protection board based on the power transmitted through the resistor R5, and calculates the product of the protection board temperature and the protection board gain sub-parameter to obtain the protection board gain temperature. .
  • the processor temperature acquisition sub-circuit 1032 is configured to collect the processor temperature of the central processor, and determine the processor temperature relative to the battery core temperature based on the preset processor gain sub-parameter. gain temperature.
  • the processor temperature acquisition sub-circuit 1032 includes an adder U3, a resistor R9 and a resistor R10 whose first terminals are both connected to the positive phase input terminal of the adder U3.
  • the second end of the resistor R9 is connected to the resistor R7 and the thermistor NTC4, and the first end is connected to the inverting input end of the adder U2, the resistor R11 and the resistor R13.
  • the second end of the resistor R7 is connected to the power supply
  • the second end of the resistor R11, the second end of the resistor R10 and the second end of the thermistor NTC4 are all connected to ground
  • the second end of the resistor R13 is connected to the output end of the adder U3 .
  • the drift caused by different temperatures can be reduced by configuring resistors R11 and R13 with different resistance values.
  • the processor temperature acquisition sub-circuit 1032 collects the processor temperature of the central processing unit CPU based on the power transmitted through the resistor R7, and calculates the product of the processor temperature and the processor gain sub-parameter to obtain the processor gain temperature.
  • the gain calculation sub-circuit 1033 is configured to determine the gain temperature of the protection plate gain temperature and the processor gain temperature to the battery core temperature based on the preset gain adjustment sub-parameter;
  • the gain parameters include the protection board gain sub-parameter, the processor gain sub-parameter and the gain adjustment sub-parameter.
  • the gain calculation sub-circuit 1033 includes an adder U4, resistors R15 and R16 whose first terminals are both connected to the positive input terminal of the adder U4, and whose first terminals are connected to the inverted terminal of the adder U4.
  • the access terminal is connected to resistor R17 and resistor R18.
  • the second end of the resistor R15 is connected to the output end of the protection board temperature acquisition sub-circuit 1031
  • the second end of the resistor R16 is connected to the output end of the processor temperature acquisition sub-circuit 1032
  • the second terminals of the resistor R17 are both connected to ground
  • the second terminal of the resistor R18 is connected to the output terminal of the adder U4.
  • the gain calculation subcircuit 1033 receives the temperature signals output by the protection plate temperature acquisition subcircuit 1031 and the processor temperature acquisition subcircuit 1032, calculates the gain temperature sum of the processor gain temperature and the protection plate temperature, and calculates the gain adjustment.
  • the product of the sub-parameter and the gain temperature sum value yields the final gain temperature.
  • the gain of the protection board's heating device on the battery temperature and the gain of the processor's heat on the battery temperature are calculated respectively through the protection board gain sub-parameter and the processor gain sub-parameter, eliminating the two internal problems of the mobile terminal.
  • the maximum heating interference source affects battery temperature detection, thereby improving the accuracy of battery temperature detection.
  • the inverting access terminal of the adder in the cell temperature acquisition sub-circuit 102 is configured with an inverting adjustment resistor.
  • the inverting access terminal of the adder in the cell temperature acquisition sub-circuit 102 is configured with inverting adjustment resistors R19 and R20.
  • the inverting adjustment resistor R19 By configuring the inverting adjustment resistor R19 with different resistance values during factory settings, and R20, which can determine the size of the battery core temperature parameters.
  • the battery core temperature acquisition sub-circuit 102 is configured to determine the battery core acquisition temperature according to a plurality of the battery core temperatures based on the battery core temperature parameters.
  • the battery core temperature parameters are added by the battery core temperature acquisition sub-circuit. Determined by the inverting adjustment resistor of the device.
  • the cell temperature acquisition sub-circuit 102 includes an adder U1, a resistor R2 whose first end is connected to the positive phase input end of the adder U1, and a first end connected to the resistor R2.
  • the second end of the resistor R1 and the thermistor NTC1 are connected, the first end of the resistor R4 is connected to the positive input end of the adder U1, the first end of the resistor R3 is connected to the second end of the resistor R4 and the thermistor NTC1.
  • the first end of resistor NTC2 is connected to the inverting access end of adder U1, and the inverting adjustment resistors R19 and R20 are connected.
  • the second terminal of the resistor R1 is connected to the power supply
  • the second terminal of the thermistor NTC1 is connected to the ground
  • the second terminal of the resistor R3 is connected to the power supply
  • the second terminal of the thermistor NTC2 is connected to the ground.
  • the second end of the inverting adjusting resistor R19 is connected to the ground
  • the second end of the inverting adjusting resistor R20 is connected to the output end of the adder U1
  • the positive-phase access end of the adder U1 is connected to the ground.
  • the cell temperature acquisition sub-circuit 102 collects the cell temperature of the battery through the thermistor NTC1 and thermistor NTC2 based on the power transmitted through the resistor R1 and the resistor R3 respectively. After the addition operation of the adder U1, Calculate the sum of the battery core temperatures, and calculate the product of the sum of the battery core temperatures and the battery core temperature parameters to obtain the battery core collection temperature.
  • the battery core temperature collection sub-circuit is configured to collect the first battery core temperature of the battery core through a thermistor provided on the first surface of the battery protection plate, and collect the first battery core temperature through a thermistor provided on the first surface of the battery protection plate.
  • the thermistor on the second side of the battery protection plate collects the second cell temperature of the cell;
  • first surface and the second surface are oppositely arranged protective plate surfaces.
  • thermistors there may be one or more thermistors disposed on the first side of the battery protection plate. Similarly, there may be one or more thermistors disposed on the second side of the battery protection plate. When there are multiple thermistors installed at the same location, the average value of the collected cell temperatures can be used as the final cell temperature.
  • the preset correction parameters are determined by the inverting adjustment resistance of the adder in the correction sub-circuit 101;
  • the correction subcircuit is configured as:
  • the target detection temperature of the battery is determined according to the preset correction parameters and the collected temperature of the battery core after degaining.
  • the correction subcircuit 101 includes an adder U5, resistors R21 and R22 whose first terminals are both connected to the positive phase input terminal of the adder U5, and whose first terminals are connected to the inverse phase of the adder U5.
  • the input terminal is connected to the inverting adjustment resistor R23 and the inverting adjustment resistor R24.
  • the inverting adjustment resistor R23 and the inverting adjusting resistor R24 with different resistance values are configured to determine the size of the correction parameters.
  • the second end of the resistor R21 is connected to the output end of the cell temperature acquisition sub-circuit 102
  • the second end of the inverting adjustment resistor R23 is connected to the output end of the gain sub-circuit 103
  • the second end of the inverting adjustment resistor R24 is connected to the output end of the gain sub-circuit 103.
  • the output terminal of adder U5 is connected, and the second terminal of resistor R22 is connected to ground.
  • the correction subcircuit 101 receives the temperature signals of the gain subcircuit 103 and the cell temperature acquisition subcircuit 102, and calculates the difference between the cell acquisition temperature and the gain temperature, and calculates the preset correction parameter and the The product of the differences yields the target detection temperature of the battery.
  • the target detection temperature V can be calculated by the following formula:
  • V d ⁇ [a ⁇ (V1+V2+...Vn)/n-e ⁇ (b ⁇ V3+c ⁇ V4)] (1)
  • d is the preset correction parameter
  • a is the cell temperature parameter
  • b is the protection board gain sub-parameter
  • c is the processor gain sub-parameter
  • e is the gain adjustment sub-parameter, where, in some optional implementations e can be 1.
  • V1, V2 to Vn are cell temperatures at multiple different locations, and n is the number of cell temperatures. For example, in some embodiments, only the cell temperatures on the front and back of the battery are collected, and the value of n is 2.
  • the battery core temperature only includes V1 and V2
  • V3 is the protection board temperature
  • V4 is the processor temperature.
  • the target detection temperature V is a voltage type target detection temperature.
  • FIG 4 is a flow chart of a battery temperature detection method according to an exemplary embodiment, which can be applied to a battery protection board.
  • the battery protection board includes the aforementioned battery temperature detection circuit. As shown in Figure 4, the method include the following steps.
  • step S41 collect the protection plate temperature of the battery protection plate and the processor temperature of the central processor, and collect the cell temperatures of multiple different parts of the battery cell;
  • step S42 determine the battery core collection temperature according to multiple battery core temperatures, and determine the gain temperature of the protection plate temperature and the processor temperature to the battery core temperature based on a preset gain parameter;
  • step S43 the target detection temperature of the battery is determined based on the gain temperature and the cell collection temperature based on the preset correction parameters.
  • the correction parameters are adjusted by the inverting resistance of the adder in the correction subcircuit. Decide.
  • the gain parameters include protection board gain sub-parameters, processor gain sub-parameters and gain adjustment sub-parameters.
  • the protection board temperature and the processing are determined based on the preset gain parameters.
  • the gain temperature between the device temperature and the battery core temperature includes:
  • the gain temperature of the protection plate gain temperature and the gain temperature of the processor gain temperature relative to the battery core temperature are determined.
  • step S42 determining the battery core collection temperature based on multiple battery core temperatures includes:
  • the battery core acquisition temperature is determined according to multiple battery core temperatures.
  • the battery core temperature parameter is determined by the inverting adjustment resistance of the adder in the battery core temperature acquisition subcircuit.
  • the battery core temperature parameter, the protection plate gain sub-parameter, the processor gain sub-parameter, the gain adjustment sub-parameter and the correction parameter are determined in the following manner:
  • the battery core is discharged with a preset discharge current, and the discharge protection plate temperature of the battery protection plate, the discharge processor temperature of the central processor, and the discharge current of multiple different parts of the battery core are collected. core temperature, and obtaining the discharge battery temperature output by the battery temperature detection circuit;
  • multiple discharge plans are determined respectively based on the discharge battery temperature, the discharge protection plate temperature, the discharge processor temperature and a plurality of discharge cell temperatures under multiple preset temperature conditions.
  • the battery core temperature parameter, the protection plate gain sub-parameter, the processor gain sub-parameter, the gain adjustment are obtained by fitting calculation sub-parameters and the correction parameters.
  • the resting cell temperature, resting protection plate temperature and resting processor temperature of the parts are determined, and the resting battery temperature output by the battery temperature detection circuit at the current temperature is determined, and then substituted into the aforementioned formula (1) to obtain the initial fitting, etc. Mode.
  • the battery core is charged with the maximum charging current, and the temperature of the charging protection plate, the charging processor temperature and the plurality of charging battery core temperatures are also obtained through the thermistor charging.
  • the rechargeable battery temperature output by the battery temperature detection circuit is substituted into the aforementioned formula (1) to obtain the charging fitting equation.
  • the battery core is discharged with a preset discharge current of 2.5A and a constant current, and the discharge protection plate temperature of the battery protection plate, the discharge processor temperature of the central processor, and the battery are collected.
  • the discharge cell temperatures at multiple different parts of the core and the discharge battery temperature obtained from the battery temperature detection circuit output are substituted into the aforementioned formula (1) to obtain the first discharge fitting equation.
  • the battery core is discharged with a preset discharge current of 2.5A and a constant current, and the temperature of the discharge protection plate of the battery protection board, the temperature of the discharge processor of the central processor, and the temperature of the battery core are collected.
  • the temperatures of the discharged cells at different locations and the temperature of the discharged battery obtained from the output of the battery temperature detection circuit are substituted into the aforementioned formula (1) to obtain the second discharge fitting equation.
  • the battery core is discharged with a preset discharge current of 2.5A and a constant current, and the temperature of the discharge protection plate of the battery protection board, the temperature of the discharge processor of the central processor, and multiple battery cells are collected.
  • the temperatures of the discharged cells at different locations and the temperature of the discharged battery obtained from the output of the battery temperature detection circuit are substituted into the aforementioned formula (1) to obtain the third discharge fitting equation.
  • the battery core temperature parameter is obtained by fitting calculation , the protection board gain sub-parameter, the processor gain sub-parameter, the gain adjustment sub-parameter and the correction parameter.
  • step S43 determining the target detection temperature of the battery based on the gain temperature and the cell collection temperature based on the preset correction parameters includes:
  • the target detection temperature of the battery is determined according to the preset correction parameters and the collected temperature of the battery core after degaining.
  • An embodiment of the present disclosure also provides a battery protection board.
  • the battery protection board includes:
  • the battery temperature detection circuit 100 described in any of the aforementioned embodiments.
  • the battery protection board also includes: a power supply circuit 200 and a fuel gauge 300 both connected to the battery temperature detection circuit 100;
  • the power supply circuit 200 is configured to convert the voltage of the power provided by the battery cell into the voltage required by the battery temperature detection circuit 100, and provide the converted power to the battery temperature detection circuit 100 as operating power;
  • the fuel gauge 300 is configured to convert the voltage-type target detection temperature output by the battery temperature detection circuit 100 into a digital-type target detection temperature.
  • the fuel gauge 300 can convert the voltage representing the target detection temperature into the cell temperature, and transmit the temperature to the mainboard through the integrated circuit bus IIC. In this way, the two ends of the thermistor NTC can be collected through the computing module.
  • the voltage Vi is calculated and passed to the fuel gauge 300.
  • the fuel gauge 300 converts the voltage representing the target detection temperature into the battery core temperature T and transmits it to the motherboard, thereby reducing the burden on the central processing unit CPU.
  • the fuel gauge 300 can be connected to the power supply circuit 200 to provide working power to the fuel gauge 300 through the power supply circuit 200.
  • the fuel gauge 300 can also be directly connected to the battery to directly provide working power to the fuel gauge 300 through the battery.
  • the power supply circuit 200 boosts the power with a voltage of 4.2V provided by the battery to 5V, and then provides it to the battery temperature detection circuit 100 .
  • the chip in the power supply circuit 200 may be a PW5300.
  • the voltage input terminal VIN of the chip PW5300 is connected to the positive electrode of the battery
  • the ground terminal of the chip PW5300 is connected to the ground
  • the enable terminal EN of the chip PW5300 is connected to the voltage output terminal LX of the chip PW5300 through the resistor L1
  • the voltage output terminal LX is connected to the voltage output terminal LX of the chip PW5300 through the diode D2.
  • the battery temperature detection circuit is connected, the voltage output terminal LX is connected to the anode of diode D2, the battery temperature detection circuit is connected to the cathode of diode D2, and the cathode of diode D2 is grounded through two parallel capacitors C3 and C4.
  • the current limiting terminal OCP of the chip PW5300 is connected to the ground through the resistor R101
  • the voltage input terminal VIN of the chip PW5300 is connected to the ground through two parallel capacitors C1 and C2
  • the current feedback terminal FB of the chip PW5300 is connected to the cathode of the diode D2 through the resistor R102.
  • the chip The current feedback terminal FB of PW5300 is connected to ground through resistor R103.
  • the Vbat+ and GND of the chip of the fuel gauge 300 are connected to the positive and negative poles of the battery respectively, the pin TH of the chip is connected to the output terminal TS of the battery temperature detection circuit, and the pins SCL and SDA of the chip are connected to the motherboard respectively.
  • the fuel gauge 300 can protect the charging and discharging of the battery cell, and can also convert the voltage-type target detection temperature output by the battery temperature detection circuit into a digital-type target detection temperature.
  • the power supply circuit 200 can provide power to the battery temperature detection circuit 100, and the power supply voltage is stable and reliable. Compared with directly using the battery core to supply power, the impact of voltage rise and fall on the measurement accuracy during battery charging and discharging can be reduced, thereby improving the measurement accuracy.
  • the above technical solution uses multiple chip thermistors to collect the cell temperature in multiple parts of the cell. It has diversity in circuit layout. For different layouts, the coefficients in the corresponding formulas are changed. Can detect battery temperature. In the production process, the production steps of the PCM (Protection Circuit Module) board of the chip thermistor are significantly less than that of the lead NTC, saving costs. Moreover, after encapsulating the computing module, the operation is more stable, faster, more accurate, and has strong anti-interference ability.
  • PCM Protection Circuit Module
  • An embodiment of the present disclosure also provides a battery, including: the battery protection plate described in any of the preceding embodiments.
  • the battery provided by the embodiment of the present disclosure also includes a battery core, and the battery core is electrically connected to the battery protection plate.
  • An embodiment of the present disclosure also provides a mobile terminal, including the battery described in any embodiment.
  • the mobile terminal can be a mobile phone, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, a wearable device, a PC (Personal Computer), etc.
  • FIG. 7 is a block diagram of a device 700 using a battery temperature detection method according to an exemplary embodiment.
  • the device 700 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant and other mobile terminals.
  • apparatus 700 may include one or more of the following components: processing component 702 , memory 704 , power component 706 , multimedia component 708 , audio component 710 , input/output interface 712 , sensor component 714 , and communication component 716 .
  • Processing component 702 generally controls the overall operations of device 700, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 702 may include one or more processors 720 to execute instructions to complete all or part of the steps of the battery temperature detection method described above.
  • processing component 702 may include one or more modules that facilitate interaction between processing component 702 and other components.
  • processing component 702 may include a multimedia module to facilitate interaction between multimedia component 708 and processing component 702.
  • Memory 704 is configured to store various types of data to support operations at device 700 . Examples of such data include instructions for any application or method operating on device 700, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 704 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power component 706 provides power to various components of device 700.
  • Power components 706 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 700 .
  • Multimedia component 708 includes a screen that provides an output interface between the device 700 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure associated with the touch or slide action.
  • multimedia component 708 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 710 is configured to output and/or input audio signals.
  • audio component 710 includes a microphone (MIC) configured to receive external audio signals when device 700 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signal may be further stored in memory 704 or sent via communication component 716 .
  • audio component 710 also includes a speaker for outputting audio signals.
  • the input/output interface 712 provides an interface between the processing component 702 and a peripheral interface module, which may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 714 includes one or more sensors that provide various aspects of status assessment for device 700 .
  • sensor component 714 can detect the open/closed state of device 700, the relative positioning of components, such as the display and keypad of device 700, and sensor component 714 can also detect a change in position of device 700 or a component of device 700. , the presence or absence of user contact with device 700 , device 700 orientation or acceleration/deceleration and temperature changes of device 700 .
  • Sensor assembly 714 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 714 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 714 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 716 is configured to facilitate wired or wireless communication between apparatus 700 and other devices.
  • Device 700 may access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • communication component 716 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 716 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 700 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented for executing the above battery temperature detection method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented for executing the above battery temperature detection method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 704 including instructions, which can be executed by the processor 720 of the device 700 to complete the above battery temperature detection method is also provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

本公开涉及一种电池温度检测电路、方法、电池保护板、电池及移动终端,电池温度检测电路包括:修正子电路、均与修正子电路连接的电芯温度采集子电路和增益子电路;电芯温度采集子电路被配置为采集所述电池的电芯多个不同部位的电芯温度,并根据多个电芯温度确定电芯采集温度;增益子电路被配置为采集电池保护板的保护板温度以及中央处理器的处理器温度,并基于预设的增益参数,确定保护板温度以及处理器温度对电芯温度的增益温度;修正子电路被配置为基于预设的修正参数,根据增益温度以及电芯采集温度,确定电池的目标检测温度,预设的修正参数由修正子电路中加法器的反相调节电阻决定。本公开提高了电池温度检测的准确性和精确度。

Description

电池温度检测电路、方法、电池保护板、电池及移动终端 技术领域
本公开涉及电池温度检测技术领域,尤其涉及电池温度检测电路、方法、电池保护板、电池及移动终端。
背景技术
电池是电子设备正常运行的关键部件,电池的温度不仅影响电池的使用寿命,而且影响电子设备的安全使用,电池的温度过高可能导致设备发烫,不仅影响使用,还可能使得其他元器件工作在非正常温度,导致设备发生故障,甚至发生爆炸。
相关场景中,通过在电池的电芯表面贴设引线式热敏电阻采集电芯温度,这种方式不仅限制了保护板的布局,并且对热敏电阻的位置要求较高,若热敏电阻的贴设位置有偏差,采集到的温度会存在很大的偏差。或者,通过在保护板上贴设贴片式热敏电阻,中央处理器CPU根据热敏电阻采集的保护板温度和CPU采集到的设备温度,拟合得到电池温度,该方法不仅增加了中央处理器CPU的负担,而且同样存在较大的误差。
发明内容
为克服相关技术中存在的问题,本公开提供一种电池温度检测电路、方法、电池保护板、电池及移动终端。
根据本公开实施例的第一方面,提供一种电池温度检测电路,包括:
修正子电路、均与所述修正子电路连接的电芯温度采集子电路和增益子电路;
所述电芯温度采集子电路被配置为,采集所述电池的电芯多个不同部位的电芯温度,并根据多个所述电芯温度确定电芯采集温度;
所述增益子电路被配置为,采集电池保护板的保护板温度以及中央处理器的处理器温度,并基于预设的增益参数,确定所述保护板温度以及所述处理器温度对所述电芯温度的增益温度;
所述修正子电路被配置为,基于预设的修正参数,根据所述增益温度以及所述电芯采集温度,确定所述电池的目标检测温度,所述预设的修正参数由所述修正子电路中加法器的反相调节电阻决定。
可选地,所述增益子电路包括保护板温度采集子电路、处理器温度采集子电路和增 益计算子电路;
所述保护板温度采集子电路被配置为,采集所述电池保护板的保护板温度,并基于预设的保护板增益子参数,确定所述保护板温度对所述电芯温度的保护板增益温度;
所述处理器温度采集子电路被配置为,采集所述中央处理器的处理器温度,并基于预设的处理器增益子参数,确定所述处理器温度对所述电芯温度的处理器增益温度;
所述增益计算子电路被配置为,基于预设的增益调整子参数,确定所述保护板增益温度以及所述处理器增益温度对所述电芯温度的增益温度;
所述增益参数包括所述保护板增益子参数、所述处理器增益子参数和所述增益调整子参数。
可选地,所述电芯温度采集子电路中加法器的反相接入端配置有反相调节电阻;
所述电芯温度采集子电路被配置为,基于电芯温度参数,根据多个所述电芯温度确定电芯采集温度,所述电芯温度参数由所述电芯温度采集子电路中加法器的反相调节电阻决定。
可选地,所述电芯温度采集子电路被配置为,通过设置于所述电池保护板的第一面的热敏电阻采集所述电芯的第一电芯温度,并通过设置于所述电池保护板的第二面的热敏电阻采集所述电芯的第二电芯温度;
其中,所述第一面与所述第二面为相对设置的保护板表面。
可选地,所述预设的修正参数由所述修正子电路中加法器的反相调节电阻决定;
所述修正子电路被配置为:
根据所述增益温度对所述电芯采集温度进行去增益,得到去增益后的电芯采集温度;并,
根据所述预设的修正参数以及所述去增益后的电芯采集温度,确定所述电池的目标检测温度。
根据本公开实施例的第二方面,提供一种电池温度检测方法,应用于电池保护板,所述电池保护板包括第一方面所述的电池温度检测电路,所述方法包括:
采集所述电池保护板的保护板温度和中央处理器的处理器温度,以及采集电池的电芯多个不同部位的电芯温度;
根据多个所述电芯温度确定电芯采集温度,并基于预设的增益参数,确定所述保护板温度以及所述处理器温度对所述电芯温度的增益温度;
基于预设的修正参数,根据所述增益温度以及所述电芯采集温度,确定所述电池的目标检测温度,所述修正参数由修正子电路中加法器的反相调节电阻决定。
可选地,所述增益参数包括保护板增益子参数、处理器增益子参数和增益调整子参数,所述基于预设的增益参数,确定所述保护板温度以及所述处理器温度对所述电芯温度的增益温度,包括:
基于所述保护板增益子参数,确定所述保护板温度对所述电芯温度的保护板增益温度;
基于所述处理器增益子参数,确定所述处理器温度对所述电芯温度的处理器增益温度;
基于所述增益调整子参数,确定所述保护板增益温度以及所述处理器增益温度对所述电芯温度的增益温度。
可选地,所述根据多个所述电芯温度确定电芯采集温度,包括:
基于电芯温度参数,根据多个所述电芯温度确定电芯采集温度,所述电芯温度参数由电芯温度采集子电路中加法器的反相调节电阻决定。
可选地,所述电芯温度参数、所述保护板增益子参数、所述处理器增益子参数、所述增益调整子参数以及所述修正参数是通过如下方式确定的:
对电芯进行预设时长的静置,并在静置结束后,采集电池保护板的静置保护板温度、中央处理器的静置处理器温度、电芯多个不同部位的静置电芯温度、以及获取所述电池温度检测电路输出的静置电池温度;
在以最大充电电流对电芯进行充电的情况下,采集电池保护板的充电保护板温度、中央处理器的充电处理器温度、电芯多个不同部位的充电电芯温度、以及获取所述电池温度检测电路输出的充电电池温度;
在多个预设温度条件下,以预设放电电流对所述电芯进行放电,采集电池保护板的放电保护板温度、中央处理器的放电处理器温度、电芯多个不同部位的放电电芯温度、以及获取所述电池温度检测电路输出的放电电池温度;
基于预设的计算公式,根据所述静置电池温度、所述静置保护板温度、所述静置处理器温度以及多个所述静置电芯温度,确定初始拟合等式;
基于所述计算公式,根据所述充电电池温度、所述充电保护板温度、所述充电处理器温度以及多个所述充电电芯温度,确定充电拟合等式;
基于所述计算公式,根据多个预设温度条件下的所述放电电池温度、所述放电保护板温度、所述放电处理器温度以及多个所述放电电芯温度,分别确定多个放电拟合等式;
根据所述充电拟合等式以及所述多个放电拟合等式,拟合计算得到所述电芯温度参数、所述保护板增益子参数、所述处理器增益子参数、所述增益调整子参数以及所述修正参数。
可选地,所述基于预设的修正参数,根据所述增益温度以及所述电芯采集温度,确定所述电池的目标检测温度,包括:
根据所述增益温度对所述电芯采集温度进行去增益,得到去增益后的电芯采集温度;
根据所述预设的修正参数以及所述去增益后的电芯采集温度,确定所述电池的目标检测温度。
根据本公开实施例的第三方面,提供一种电池保护板,包括:第一方面中任一项所述的电池温度检测电路。
可选地,所述电池保护板还包括:
电力供给电路,被配置为将电芯提供电力的电压转换为所述电池温度检测电路所需的电压,并将转化后的电力提供给所述电池温度检测电路作为工作电力;
电量计,被配置为将所述电池温度检测电路输出的电压型目标检测温度,转换成数字型的目标检测温度。
根据本公开实施例的第四方面,提供一种电池,包括:第三方面所述的电池保护板。
根据本公开实施例的第五方面,提供一种移动终端,包括:第四方面所述的电池。
本公开的实施例提供的技术方案可以包括以下有益效果:
通过电芯温度采集子电路采集所述电池的电芯多个不同部位的电芯温度,并根据多个所述电芯温度确定电芯采集温度;增益子电路采集电池保护板的保护板温度以及中央处理器的处理器温度,并基于预设的增益参数,确定所述保护板温度以及所述处理器温度对所述电芯温度的增益温度;修正子电路被基于预设的修正参数,根据所述增益温度以及所述电芯采集温度,确定所述电池的目标检测温度,所述修正参数由所述修正子电路中加法器的反相调节电阻决定。不仅可以根据多个不同部位的电芯温度,确定电池的目标检测温度,避免电芯不同部位温度不一致,导致的温度估算误差,相比于单个部分采集电芯温度提高了电池温度检测的可信性和精确度,而且将对电池温度采集最大的两个干扰源的温度去除,减少保护板发热和中央处理器发热对电池温度的影响,进一步提 高了电池温度检测的精确度。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种电池温度检测电路的电路图。
图2是根据一示例性实施例示出的一种电池温度检测的整体示意图。
图3是根据一示例性实施例示出的一种封装后的电池温度检测电路的示意图。
图4是根据一示例性实施例示出的一种电池温度检测方法的流程图。
图5是根据一示例性实施例示出的一种电力供给电路的电路图。
图6是根据一示例性实施例示出的一种电量计的结构示意图。
图7是根据一示例性实施例示出的一种应用电池温度检测方法的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
需要说明的是,本申请中所有获取信号、信息或数据的动作都是在遵照所在地国家相应的数据保护法规政策的前提下,并获得由相应装置所有者给予授权的情况下进行的。
相关技术中,通过在电芯上贴设引线式热敏电阻,可以尽量减少保护板发热、CPU发热对采集电芯温度的干扰,使得采集电芯的温度精确度较高,能够准确地确定电池温度,但是在电子设备生产过程操作较为麻烦,对引线式热敏电阻的贴设位置精度要求高,影响生产效率。而通过在保护板上贴设贴片式热敏电阻,虽然生产过程中操作简单,但是采集的温度受保护板发热和CPU发热的影响,导致采集到的温度精确度较低,并且通过CPU拟合,增加了系统运行负担。
为此,本公开提出一种电池温度检测方法,不仅可以降低设备其他元器件发热对电池温度采集的影响,提高采集到的电池温度的准确性,还可以降低系统的运行负担。
图1是根据一示例性实施例示出的一种电池温度检测电路的电路图,该电路可以应用于电池PCM(Protection circuit module,保护电路模块)板,以下简称电池保护板,该电池保护板可以应用于电池,电池可以应用于例如移动电话,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理、可穿戴设备、PC(Personal Computer,个人计算机)等移动终端中。
如图1所示,所述电池温度检测电路100包括:修正子电路101、均与所述修正子电路101连接的电芯温度采集子电路102和增益子电路103。
所述电芯温度采集子电路102被配置为,采集所述电池的电芯多个不同部位的电芯温度,并根据多个所述电芯温度确定电芯采集温度。
在一种实施方式中,多个不同部位可以为电池上发热量不同的电芯部位。例如,可以通过在电池上发热量不同的电芯部位配置热敏电阻采集电芯温度。
以移动电话为例进行说明,多个不同部位可以是电池正面和电池反面,其中,电池正面是指电池靠近移动终端的显示屏的一面,电池反面是指电池靠近移动终端后壳的一面。电池正面的发热量和电池反面的发热量不同,可以避免电池正反方面的发热量不一致,导致的温度检测误差,相比于单个部分采集电芯温度提高了电池温度检测的可信性和精确度。
又一示例,多个不同部位可以是电池端部和电池尾部,其中,电池端部是指电池充放电的一端,电池尾部是指电池上与充放电一端相对的另一端。因为电池端部作为充放电的一端其发热量高于电池尾部,这样也可以避免电池不同部位的发热量不一致,导致的温度检测误差。
所述增益子电路103被配置为,采集电池保护板的保护板温度以及中央处理器的处理器温度,并基于预设的增益参数,确定所述保护板温度以及所述处理器温度对所述电芯温度的增益温度。
本公开实施例中,保护板的发热器件的发热对电芯温度检测的影响较大,因此可以将保护板的发热器件的温度作为保护板温度,例如可以通过在保护板的发热器件配置热敏电阻,从而通过该热敏电阻采集保护板的发热器件的温度,得到保护板温度。电池保护板上的发热器件可以包括MOS管、精密电阻等。
同理,中央处理器CPU的发热对电芯温度检测的影响也较大,因此可以通过在中央处理器CPU上配置热敏电阻,从而通过该热敏电阻采集中央处理器CPU的温度,得到 处理器温度。
所述修正子电路101被配置为,基于预设的修正参数,根据所述增益温度以及所述电芯采集温度,确定所述电池的目标检测温度,所述预设的修正参数由所述修正子电路中加法器的反相调节电阻决定。
其中,可以将热敏电阻NTC两端的电压表征采集到的温度,这样,可以直接得到电压型目标检测温度。
本公开实施例中,参见图1和2所示,可以通过设置在相应位置的热敏电阻,采集对应部件的温度。例如,通过设置在保护板上、且远离保护板的发热器件的热敏电阻NTC1和热敏电阻NTC2分别采集不同部位的电芯温度;通过设置在保护板的发热器件上的热敏电阻NTC3采集电池保护板的保护板温度;通过设置在中央处理器上的热敏电阻NTC4采集中央处理器的处理器温度。
参见图3所示,在将电池温度检测电路除热敏电阻外的元器件封装在一起,得到运算模块,例如,在电芯温度采集子电路包括两个热敏电阻NTC1和NTC2的情况下,运算模块分别与热敏电阻NTC1-NTC4连接。
进一步地,由于保护板温度和处理器温度对电芯采集温度的增益程度不同,因此可以通过设置相应的增益参数,确定保护板温度和处理器温度对电芯采集温度的整体增益(增益温度)。
进一步地,得到的增益温度和电芯采集温度是经过衰减和存在干扰的,因此,需要通过预设的修正参数将衰减和干扰进行剔除,得到最终的目标检测温度。
上述电路通过电芯温度采集子电路采集所述电池的电芯多个不同部位的电芯温度,并根据多个所述电芯温度确定电芯采集温度;增益子电路采集电池保护板的保护板温度以及中央处理器的处理器温度,并基于预设的增益参数,确定所述保护板温度以及所述处理器温度对所述电芯温度的增益温度;修正子电路被基于预设的修正参数,根据所述增益温度以及所述电芯采集温度,确定所述电池的目标检测温度,所述修正参数由所述修正子电路中加法器的反相调节电阻决定。不仅可以根据多个不同部位的电芯温度,确定电池的目标检测温度,避免电芯不同部位温度不一致,导致的温度估算误差,相比于单个部分采集电芯温度提高了电池温度检测的可信性和精确度,而且将对电池温度采集最大的两个干扰源的温度去除,减少保护板发热和中央处理器发热对电池温度的影响,进一步提高了电池温度检测的精确度。
在一种实施方式中,参见图1所示,所述增益子电路103包括保护板温度采集子电路1031、处理器温度采集子电路1032和增益计算子电路1033;
所述保护板温度采集子电路1031被配置为,采集所述电池保护板的保护板温度,并基于预设的保护板增益子参数,确定所述保护板温度对所述电芯温度的保护板增益温度。
本公开实施例中,如图1所示,保护板温度采集子电路1031中包括加法器U2、第一端均与所述加法器U2的正相接入端连接的电阻R8和电阻R12、第一端均与所述电阻R8的第二端连接的电阻R5和热敏电阻NTC3、第一端均与加法器U2的反相接入端连接的电阻R6和电阻R14。
其中,热敏电阻NTC3的第二端接地,电阻R5的第二端接电源,电阻R6的第二端以及电阻R12的第二端均接地,电阻R14的第二端与加法器U2的输出端连接。其中,在出厂设置时,配置不同阻值大小的电阻R8和电阻R12,可以确定保护板增益子参数的大小。
其中,可以通过配置不同阻值大小的电阻R6和R14,以降低不同温度下带来的漂移。
在驱动过程中,保护板温度采集子电路1031基于经电阻R5传输的电力,采集保护板的发热器件的保护板温度,并计算保护板温度与保护板增益子参数的乘积,得到保护板增益温度。
所述处理器温度采集子电路1032被配置为,采集所述中央处理器的处理器温度,并基于预设的处理器增益子参数,确定所述处理器温度对所述电芯温度的处理器增益温度。
如图1所示,处理器温度采集子电路1032中包括加法器U3、第一端均与所述加法器U3的正相接入端连接的电阻R9和电阻R10、第一端均与所述电阻R9的第二端连接的电阻R7和热敏电阻NTC4、第一端均与加法器U2的反相接入端连接的电阻R11和电阻R13。
其中,电阻R7的第二端接电源,电阻R11的第二端、电阻R10的第二端以及热敏电阻NTC4的第二端均接地,电阻R13的第二端与加法器U3的输出端连接。同理,在出厂设置时,配置不同阻值大小的电阻R9和电阻R10,可以确定处理器增益子参数的大小。
其中,可以通过配置不同阻值大小的电阻R11和R13,以降低不同温度下带来的漂移。
在驱动过程中,处理器温度采集子电路1032基于经电阻R7传输的电力,采集中央 处理器CPU的处理器温度,并计算处理器温度与处理器增益子参数的乘积,得到处理器增益温度。
所述增益计算子电路1033被配置为,基于预设的增益调整子参数,确定所述保护板增益温度以及所述处理器增益温度对所述电芯温度的增益温度;
所述增益参数包括所述保护板增益子参数、所述处理器增益子参数和所述增益调整子参数。
继续参见图1所示,增益计算子电路1033包括加法器U4、第一端均与加法器U4的正相接入端连接的电阻R15和电阻R16、第一端均与加法器U4的反相接入端连接的电阻R17和电阻R18。
其中,电阻R15的第二端与保护板温度采集子电路1031的输出端连接,电阻R16的第二端与处理器温度采集子电路1032的输出端连接,加法器U4的正相接入端和电阻R17的第二端均接地,电阻R18的第二端与加法器U4的输出端连接。
在驱动过程中,增益计算子电路1033接收保护板温度采集子电路1031和处理器温度采集子电路1032输出的温度信号,计算处理器增益温度和保护板温度的增益温度和值,并计算增益调整子参数与该增益温度和值的乘积,得到最终的增益温度。
上述技术方案,在电池温度检测过程中,通过保护板增益子参数和处理器增益子参数分别计算保护板的发热器件对电池温度的增益和处理器发热对电池温度的增益,排除移动终端内部两个最大发热干扰源对电池温度检测的影响,从而提高了电池温度检测的精确度。
在一种实施方式中,参见图1所示,所述电芯温度采集子电路102中加法器的反相接入端配置有反相调节电阻。
本公开实施例中,在电芯温度采集子电路102中加法器的反相接入端配置有反相调节电阻R19和R20,通过在出厂设置时,配置不同阻值大小的反相调节电阻R19和R20,可以确定电芯温度参数的大小。
所述电芯温度采集子电路102被配置为,基于电芯温度参数,根据多个所述电芯温度确定电芯采集温度,所述电芯温度参数由所述电芯温度采集子电路中加法器的反相调节电阻决定。
本公开实施例中,如图1所示,电芯温度采集子电路102中包括加法器U1、第一端与加法器U1的正相接入端连接的电阻R2、第一端均与电阻R2的第二端连接的电阻R1 和热敏电阻NTC1、第一端与加法器U1的正相接入端连接的电阻R4、第一端均与电阻R4的第二端连接的电阻R3和热敏电阻NTC2、第一端均与加法器U1反相接入端连接的反相调节电阻R19和R20。
其中,电阻R1的第二端接电源,热敏电阻NTC1的第二端接地,电阻R3的第二端接电源,热敏电阻NTC2的第二端接地。反相调节电阻R19的第二端接地,反相调节电阻R20的第二端与加法器U1的输出端连接,加法器U1的正相接入端接地。
在驱动过程中,电芯温度采集子电路102基于分别经电阻R1和电阻R3传输的电力,通过热敏电阻NTC1和热敏电阻NTC2分别采集电池的电芯温度,经过加法器U1的加法运算,计算得到电芯温度的和值,并且计算电芯温度的和值与电芯温度参数的乘积,得到电芯采集温度。
可选地,所述电芯温度采集子电路被配置为,通过设置于所述电池保护板的第一面的热敏电阻采集所述电芯的第一电芯温度,并通过设置于所述电池保护板的第二面的热敏电阻采集所述电芯的第二电芯温度;
其中,所述第一面与所述第二面为相对设置的保护板表面。
在本公开实施例中,设置于电池保护板的第一面的热敏电阻可以为一个或者多个,同理设置于电池保护板的第二面的热敏电阻也可以为一个或者多个。在同一部位设置的热敏电阻的数量为多个的情况下,可以将采集到的多个电芯温度的平均值作为最终的电芯温度。
在一种实施方式中,所述预设的修正参数由所述修正子电路101中加法器的反相调节电阻决定;
所述修正子电路被配置为:
根据所述增益温度对所述电芯采集温度进行去增益,得到去增益后的电芯采集温度;并,
根据所述预设的修正参数以及所述去增益后的电芯采集温度,确定所述电池的目标检测温度。
继续参见图1所示,修正子电路101包括加法器U5、第一端均与加法器U5的正相接入端连接的电阻R21和电阻R22、第一端均与加法器U5的反相接入端连接的反相调节电阻R23和反相调节电阻R24。在出厂设置时,配置不同阻值大小的反相调节电阻R23和反相调节电阻R24,可以确定修正参数的大小。
其中,电阻R21的第二端与电芯温度采集子电路102的输出端连接,反相调节电阻R23的第二端与增益子电路103的输出端连接,反相调节电阻R24的第二端与加法器U5的输出端连接,电阻R22的第二端接地。
在驱动过程中,修正子电路101接收增益子电路103和电芯温度采集子电路102的温度信号,并计算电芯采集温度与增益温度之间的差值,并计算预设的修正参数与该差值的乘积,得到电池的目标检测温度。
在本公开实施例中,可以通过如下公式计算目标检测温度V:
V=d×[a×(V1+V2+...Vn)/n-e×(b×V3+c×V4)]   (1)
其中,d为预设的修正参数,a为电芯温度参数,b为保护板增益子参数,c为处理器增益子参数,e为增益调整子参数,其中,在部分可选的实施方式中e可以为1。V1、V2到Vn分别为多个不同部位的电芯温度,n为电芯温度的数量,例如,在部分实施例中,只采集电池正面和电池反面的电芯温度,n的取值为2,电芯温度仅包括V1和V2,V3为保护板温度,V4为处理器温度。
其中,目标检测温度V为电压型目标检测温度。
图4是根据一示例性实施例示出的一种电池温度检测方法的流程图,可以应用于电池保护板,所述电池保护板包括前述的电池温度检测电路,如图4所示,所述方法包括以下步骤。
在步骤S41中,采集所述电池保护板的保护板温度和中央处理器的处理器温度,以及采集电池的电芯多个不同部位的电芯温度;
在步骤S42中,根据多个所述电芯温度确定电芯采集温度,并基于预设的增益参数,确定所述保护板温度以及所述处理器温度对所述电芯温度的增益温度;
在步骤S43中,基于预设的修正参数,根据所述增益温度以及所述电芯采集温度,确定所述电池的目标检测温度,所述修正参数由修正子电路中加法器的反相调节电阻决定。
可选地,所述增益参数包括保护板增益子参数、处理器增益子参数和增益调整子参数,在步骤S42中,所述基于预设的增益参数,确定所述保护板温度以及所述处理器温度对所述电芯温度的增益温度,包括:
基于所述保护板增益子参数,确定所述保护板温度对所述电芯温度的保护板增益温度;
基于所述处理器增益子参数,确定所述处理器温度对所述电芯温度的处理器增益温度;
基于所述增益调整子参数,确定所述保护板增益温度以及所述处理器增益温度对所述电芯温度的增益温度。
可选地,在步骤S42中,所述根据多个所述电芯温度确定电芯采集温度,包括:
基于电芯温度参数,根据多个所述电芯温度确定电芯采集温度,所述电芯温度参数由电芯温度采集子电路中加法器的反相调节电阻决定。
可选地,所述电芯温度参数、所述保护板增益子参数、所述处理器增益子参数、所述增益调整子参数以及所述修正参数是通过如下方式确定的:
在以最大充电电流对电芯进行充电的情况下,采集电池保护板的充电保护板温度、中央处理器的充电处理器温度、电芯多个不同部位的充电电芯温度、以及获取所述电池温度检测电路输出的充电电池温度;
在多个预设温度条件下,以预设放电电流对所述电芯进行放电,采集电池保护板的放电保护板温度、中央处理器的放电处理器温度、电芯多个不同部位的放电电芯温度、以及获取所述电池温度检测电路输出的放电电池温度;
基于预设的计算公式,根据所述充电电池温度、所述充电保护板温度、所述充电处理器温度以及多个所述充电电芯温度,确定充电拟合等式;
基于所述计算公式,根据多个预设温度条件下的所述放电电池温度、所述放电保护板温度、所述放电处理器温度以及多个所述放电电芯温度,分别确定多个放电拟合等式;
根据所述充电拟合等式以及所述多个放电拟合等式,拟合计算得到所述电芯温度参数、所述保护板增益子参数、所述处理器增益子参数、所述增益调整子参数以及所述修正参数。
在本公开一些可选的实施例中,首先在室温(25摄氏度)的条件下,按照预设时长静置,通过设置在电芯、保护板和中央处理器的热敏电阻分别采集多个不同部位的静置电芯温度、静置保护板温度和静置处理器温度,并确定电池温度检测电路当前温度下输出的静置电池温度,进而代入前述公式(1)中,得到初始拟合等式。
进一步地,在室温(25摄氏度)的条件下,以最大充电电流对电芯进行充电,并同样通过热敏电阻充电保护板温度、充电处理器温度以及多个所述充电电芯温度,以及获取电池温度检测电路输出的充电电池温度,代入前述公式(1)中得到充电拟合等式。
进一步地,在室温(25摄氏度)的条件下,以预设放电电流为2.5A,恒流对电芯进行放电,采集电池保护板的放电保护板温度、中央处理器的放电处理器温度、电芯多个不同部位的放电电芯温度、以及获取电池温度检测电路输出的放电电池温度,代入前述公式(1)中得到第一放电拟合等式。
进一步地,在-15摄氏度的条件下,以预设放电电流为2.5A,恒流对电芯进行放电,采集电池保护板的放电保护板温度、中央处理器的放电处理器温度、电芯多个不同部位的放电电芯温度、以及获取电池温度检测电路输出的放电电池温度,代入前述公式(1)中得到第二放电拟合等式。
进一步地,在45摄氏度的条件下,以预设放电电流为2.5A,恒流对电芯进行放电,采集电池保护板的放电保护板温度、中央处理器的放电处理器温度、电芯多个不同部位的放电电芯温度、以及获取电池温度检测电路输出的放电电池温度,代入前述公式(1)中得到第三放电拟合等式。
进一步地,根据初始拟合等式、充电拟合等式、第一放电拟合等式、第二放电拟合等式和第三放电拟合等式,拟合计算得到所述电芯温度参数、所述保护板增益子参数、所述处理器增益子参数、所述增益调整子参数以及所述修正参数。
可选地,在步骤S43中,所述基于预设的修正参数,根据所述增益温度以及所述电芯采集温度,确定所述电池的目标检测温度,包括:
根据所述增益温度对所述电芯采集温度进行去增益,得到去增益后的电芯采集温度;
根据所述预设的修正参数以及所述去增益后的电芯采集温度,确定所述电池的目标检测温度。
本公开实施例还提供一种电池保护板,参见图2所示,电池保护板包括:
前述任一实施方式所述的电池温度检测电路100。
可选地,所述电池保护板还包括:均与所述电池温度检测电路100连接的电力供给电路200和电量计300;
所述电力供给电路200,被配置为将电芯提供电力的电压转换为所述电池温度检测电路100所需的电压,并将转化后的电力提供给所述电池温度检测电路100作为工作电力;
电量计300,被配置为将所述电池温度检测电路100输出的电压型目标检测温度,转换成数字型的目标检测温度。
本公开实施例中,电量计300可以将表征目标检测温度的电压转换成电芯温度,并 将该温度通过集成电路总线IIC传输到主板,这样,可以通过运算模块采集热敏电阻NTC的两端电压Vi,并将电压Vi进行运算后传递给电量计300,电量计300将表征目标检测温度的电压转换成电芯温度T,并传输到主板,减少了中央处理器CPU的负担。
其中,电量计300可以与电力供给电路200连接,以通过电力供给电路200向电量计300提供工作电力,电量计300也可以直接与电池连接,以通过电池直接向电量计300提供工作电力。
在本公开实施例中,电力供给电路200将电池提供的电压为4.2V的电力经过升压到5V后,提供给电池温度检测电路100。
在本公开实施例中,参见图5所示,电力供给电路200中芯片可以为PW5300。其中,芯片PW5300的电压输入端VIN与电池的正极连接,芯片PW5300的接地端接地,芯片PW5300的使能端EN通过电阻L1与芯片PW5300的电压输出端LX连接,电压输出端LX经二极管D2与电池温度检测电路连接,电压输出端LX与二极管D2的阳极连接,电池温度检测电路与二极管D2的阴极连接,二极管D2的阴极通过两个并联电容C3和C4接地。
其中,芯片PW5300的电流限制端OCP经电阻R101后接地,芯片PW5300的电压输入端VIN通过两个并联电容C1和C2接地,芯片PW5300的电流反馈端FB经电阻R102与二极管D2的阴极连接,芯片PW5300的电流反馈端FB经电阻R103后接地。从而将升压后的电压为5V的电力提供给电池温度检测电路。
参见图6所示,电量计300的芯片的Vbat+和GND分别与电池的正负极连接,芯片的针脚TH与电池温度检测电路的输出端TS连接,芯片的针脚SCL和针脚SDA分别与主板连接。电量计300可以对电池的电芯充放电进行保护,也可以将电池温度检测电路输出的电压型目标检测温度转换成数字型的目标检测温度。
这样,电力供给电路200可以向电池温度检测电路100提供电力,供电电压稳定可靠,与直接用电芯供电相比,可以降低电池充放电时电压升降对测量精度的影响,从而提高了测量精度。
上述技术方案相比引线式热敏电阻,采用多个贴片式热敏电阻采集电芯多个部位的电芯温度,在电路布局上具有多样性,针对不同的布局,改变相应公式中的系数可以检测电池温度。在生产过程中,贴片式热敏电阻的PCM(Protection Circuit Module,保护电路模块)板生产步骤明显少于引线式NTC,节约了成本。并且,封装运算模块后,运 行更加稳定,速度更快,精度更高,抗干扰能力强。
本公开实施例还提供一种电池,包括:前述任一实施方式所述的电池保护板。
本公开实施例提供的电池,还包括电芯,电芯与电池保护板电连接。
本公开实施例还提供一种移动终端,包括任一实施方式所述的电池。
可选的,移动终端可以为移动电话,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理、可穿戴设备、PC(Personal Computer,个人计算机)等。
图7是根据一示例性实施例示出的一种应用电池温度检测方法的装置700的框图。例如,该装置700可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等移动终端。
参照图7,装置700可以包括以下一个或多个组件:处理组件702,存储器704,电力组件706,多媒体组件708,音频组件710,输入/输出接口712,传感器组件714,以及通信组件716。
处理组件702通常控制装置700的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件702可以包括一个或多个处理器720来执行指令,以完成上述的电池温度检测方法的全部或部分步骤。此外,处理组件702可以包括一个或多个模块,便于处理组件702和其他组件之间的交互。例如,处理组件702可以包括多媒体模块,以方便多媒体组件708和处理组件702之间的交互。
存储器704被配置为存储各种类型的数据以支持在装置700的操作。这些数据的示例包括用于在装置700上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件706为装置700的各种组件提供电力。电力组件706可以包括电源管理系统,一个或多个电源,及其他与为装置700生成、管理和分配电力相关联的组件。
多媒体组件708包括在所述装置700和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多 个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件708包括一个前置摄像头和/或后置摄像头。当装置700处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件710被配置为输出和/或输入音频信号。例如,音频组件710包括一个麦克风(MIC),当装置700处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器704或经由通信组件716发送。在一些实施例中,音频组件710还包括一个扬声器,用于输出音频信号。
输入/输出接口712为处理组件702和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件714包括一个或多个传感器,用于为装置700提供各个方面的状态评估。例如,传感器组件714可以检测到装置700的打开/关闭状态,组件的相对定位,例如所述组件为装置700的显示器和小键盘,传感器组件714还可以检测装置700或装置700一个组件的位置改变,用户与装置700接触的存在或不存在,装置700方位或加速/减速和装置700的温度变化。传感器组件714可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件714还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件714还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件716被配置为便于装置700和其他设备之间有线或无线方式的通信。装置700可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件716经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件716还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置700可以被一个或多个应用专用集成电路(ASIC)、数字 信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述电池温度检测方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器704,上述指令可由装置700的处理器720执行以完成上述电池温度检测方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践本公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (14)

  1. 一种电池温度检测电路,其特征在于,包括:
    修正子电路、均与所述修正子电路连接的电芯温度采集子电路和增益子电路;
    所述电芯温度采集子电路被配置为,采集所述电池的电芯多个不同部位的电芯温度,并根据多个所述电芯温度确定电芯采集温度;
    所述增益子电路被配置为,采集电池保护板的保护板温度以及中央处理器的处理器温度,并基于预设的增益参数,确定所述保护板温度以及所述处理器温度对所述电芯温度的增益温度;
    所述修正子电路被配置为,基于预设的修正参数,根据所述增益温度以及所述电芯采集温度,确定所述电池的目标检测温度,所述预设的修正参数由所述修正子电路中加法器的反相调节电阻决定。
  2. 根据权利要求1所述的电路,其特征在于,所述增益子电路包括保护板温度采集子电路、处理器温度采集子电路和增益计算子电路;
    所述保护板温度采集子电路被配置为,采集所述电池保护板的保护板温度,并基于预设的保护板增益子参数,确定所述保护板温度对所述电芯温度的保护板增益温度;
    所述处理器温度采集子电路被配置为,采集所述中央处理器的处理器温度,并基于预设的处理器增益子参数,确定所述处理器温度对所述电芯温度的处理器增益温度;
    所述增益计算子电路被配置为,基于预设的增益调整子参数,确定所述保护板增益温度以及所述处理器增益温度对所述电芯温度的增益温度;
    所述增益参数包括所述保护板增益子参数、所述处理器增益子参数和所述增益调整子参数。
  3. 根据权利要求1所述的电路,其特征在于,所述电芯温度采集子电路中加法器的反相接入端配置有反相调节电阻;
    所述电芯温度采集子电路被配置为,基于电芯温度参数,根据多个所述电芯温度确定电芯采集温度,所述电芯温度参数由所述电芯温度采集子电路中加法器的反相调节电阻决定。
  4. 根据权利要求1所述的电路,其特征在于,所述电芯温度采集子电路被配置为,通过设置于所述电池保护板的第一面的热敏电阻采集所述电芯的第一电芯温度,并通过设置于所述电池保护板的第二面的热敏电阻采集所述电芯的第二电芯温度;
    其中,所述第一面与所述第二面为相对设置的保护板表面。
  5. 根据权利要求1-4中任一项所述的电路,其特征在于,所述修正子电路被配置为:
    根据所述增益温度对所述电芯采集温度进行去增益,得到去增益后的电芯采集温度;并,
    根据所述预设的修正参数以及所述去增益后的电芯采集温度,确定所述电池的目标检测温度。
  6. 一种电池温度检测方法,其特征在于,应用于电池保护板,所述电池保护板包括权利要求1-5所述的电池温度检测电路,所述方法包括:
    采集所述电池保护板的保护板温度和中央处理器的处理器温度,以及采集电池的电芯多个不同部位的电芯温度;
    根据多个所述电芯温度确定电芯采集温度,并基于预设的增益参数,确定所述保护板温度以及所述处理器温度对所述电芯温度的增益温度;
    基于预设的修正参数,根据所述增益温度以及所述电芯采集温度,确定所述电池的目标检测温度,所述修正参数由修正子电路中加法器的反相调节电阻决定。
  7. 根据权利要求6所述的方法,其特征在于,所述增益参数包括保护板增益子参数、处理器增益子参数和增益调整子参数,所述基于预设的增益参数,确定所述保护板温度以及所述处理器温度对所述电芯温度的增益温度,包括:
    基于所述保护板增益子参数,确定所述保护板温度对所述电芯温度的保护板增益温度;
    基于所述处理器增益子参数,确定所述处理器温度对所述电芯温度的处理器增益温度;
    基于所述增益调整子参数,确定所述保护板增益温度以及所述处理器增益温度对所述电芯温度的增益温度。
  8. 根据权利要求7所述的方法,其特征在于,所述根据多个所述电芯温度确定电芯采集温度,包括:
    基于电芯温度参数,根据多个所述电芯温度确定电芯采集温度,所述电芯温度参数由电芯温度采集子电路中加法器的反相调节电阻决定。
  9. 根据权利要求8所述的方法,其特征在于,所述电芯温度参数、所述保护板增益子参数、所述处理器增益子参数、所述增益调整子参数以及所述修正参数是通过如下方 式确定的:
    对电芯进行预设时长的静置,并在静置结束后,采集电池保护板的静置保护板温度、中央处理器的静置处理器温度、电芯多个不同部位的静置电芯温度、以及获取所述电池温度检测电路输出的静置电池温度;
    在以最大充电电流对电芯进行充电的情况下,采集电池保护板的充电保护板温度、中央处理器的充电处理器温度、电芯多个不同部位的充电电芯温度、以及获取所述电池温度检测电路输出的充电电池温度;
    在多个预设温度条件下,以预设放电电流对所述电芯进行放电,采集电池保护板的放电保护板温度、中央处理器的放电处理器温度、电芯多个不同部位的放电电芯温度、以及获取所述电池温度检测电路输出的放电电池温度;
    基于预设的计算公式,根据所述静置电池温度、所述静置保护板温度、所述静置处理器温度以及多个所述静置电芯温度,确定初始拟合等式;
    基于所述计算公式,根据所述充电电池温度、所述充电保护板温度、所述充电处理器温度以及多个所述充电电芯温度,确定充电拟合等式;
    基于所述计算公式,根据多个预设温度条件下的所述放电电池温度、所述放电保护板温度、所述放电处理器温度以及多个所述放电电芯温度,分别确定多个放电拟合等式;
    根据所述充电拟合等式以及所述多个放电拟合等式,拟合计算得到所述电芯温度参数、所述保护板增益子参数、所述处理器增益子参数、所述增益调整子参数以及所述修正参数。
  10. 根据权利要求6-9中任一项所述的方法,其特征在于,所述基于预设的修正参数,根据所述增益温度以及所述电芯采集温度,确定所述电池的目标检测温度,包括:
    根据所述增益温度对所述电芯采集温度进行去增益,得到去增益后的电芯采集温度;
    根据所述预设的修正参数以及所述去增益后的电芯采集温度,确定所述电池的目标检测温度。
  11. 一种电池保护板,其特征在于,包括:
    权利要求1-5中任一项所述的电池温度检测电路。
  12. 根据权利要求11所述的电池保护板,其特征在于,所述电池保护板还包括:
    电力供给电路,被配置为将电芯提供电力的电压转换为所述电池温度检测电路所需的电压,并将转化后的电力提供给所述电池温度检测电路作为工作电力;
    电量计,被配置为将所述电池温度检测电路输出的电压型目标检测温度,转换成数字型的目标检测温度。
  13. 一种电池,其特征在于,包括:
    权利要求11或者12所述的电池保护板。
  14. 一种移动终端,其特征在于,包括权利要求13所述的电池。
PCT/CN2022/094795 2022-05-24 2022-05-24 电池温度检测电路、方法、电池保护板、电池及移动终端 WO2023225871A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/094795 WO2023225871A1 (zh) 2022-05-24 2022-05-24 电池温度检测电路、方法、电池保护板、电池及移动终端
CN202280004131.XA CN117460961A (zh) 2022-05-24 2022-05-24 电池温度检测电路、方法、电池保护板、电池及移动终端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/094795 WO2023225871A1 (zh) 2022-05-24 2022-05-24 电池温度检测电路、方法、电池保护板、电池及移动终端

Publications (1)

Publication Number Publication Date
WO2023225871A1 true WO2023225871A1 (zh) 2023-11-30

Family

ID=88918258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094795 WO2023225871A1 (zh) 2022-05-24 2022-05-24 电池温度检测电路、方法、电池保护板、电池及移动终端

Country Status (2)

Country Link
CN (1) CN117460961A (zh)
WO (1) WO2023225871A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117723162A (zh) * 2024-02-07 2024-03-19 荣耀终端有限公司 电池温度检测电路、电子设备和电池温度检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105633498A (zh) * 2016-03-15 2016-06-01 北京小米移动软件有限公司 电池温度检测方法及装置
CN107402081A (zh) * 2016-05-18 2017-11-28 中兴通讯股份有限公司 移动终端、电池温度的确定方法及装置
WO2017201739A1 (zh) * 2016-05-27 2017-11-30 广东欧珀移动通信有限公司 电池保护板、电池和移动终端
CN112713322A (zh) * 2019-10-24 2021-04-27 北京小米移动软件有限公司 电池温度确定方法、电池温度确定装置及存储介质
CN114199394A (zh) * 2021-12-09 2022-03-18 深圳绿米联创科技有限公司 温度测量方法、装置以及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105633498A (zh) * 2016-03-15 2016-06-01 北京小米移动软件有限公司 电池温度检测方法及装置
CN107402081A (zh) * 2016-05-18 2017-11-28 中兴通讯股份有限公司 移动终端、电池温度的确定方法及装置
WO2017201739A1 (zh) * 2016-05-27 2017-11-30 广东欧珀移动通信有限公司 电池保护板、电池和移动终端
CN112713322A (zh) * 2019-10-24 2021-04-27 北京小米移动软件有限公司 电池温度确定方法、电池温度确定装置及存储介质
CN114199394A (zh) * 2021-12-09 2022-03-18 深圳绿米联创科技有限公司 温度测量方法、装置以及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117723162A (zh) * 2024-02-07 2024-03-19 荣耀终端有限公司 电池温度检测电路、电子设备和电池温度检测方法

Also Published As

Publication number Publication date
CN117460961A (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
CN105633498B (zh) 电池温度检测方法及装置
TW201834309A (zh) 用於改進電池組之溫度管理之方法
TW201406004A (zh) 電池開路電壓補償系統及方法
JP2022068168A (ja) 逆方向充電装置、逆方向充電電流調整方法及び装置
EP3657144B1 (en) Circuitry and method for detecting temperature of wireless charging coil, and storage medium
WO2023225871A1 (zh) 电池温度检测电路、方法、电池保护板、电池及移动终端
CN108474823B (zh) 一种估算温度的方法及装置
US11205906B2 (en) Charging processing method, terminal device and storage medium
CN113889680A (zh) 电池的充电方法及装置、存储介质
CN113725954A (zh) 充电方法、装置、设备及存储介质
US20230261497A1 (en) Charging method, electronic equipment, non-transitory readable storage medium
CN112986879B (zh) 电量计校正方法和装置、电子设备、存储介质
WO2023240637A1 (zh) 电池温度检测方法、电池温度检测电路及装置
CN116679220A (zh) 一种电子设备、电池控制方法及装置、存储介质
CN116359734A (zh) 电池荷电状态的校正方法、装置、电子设备及存储介质
CN115173495A (zh) 充电控制方法、装置以及存储介质
US20220302770A1 (en) Wireless charging transmitter, wireless charging control method, apparatus and system
CN219535677U (zh) 充电电路及终端设备
CN116545081B (zh) 充电控制方法、装置、设备及存储介质
CN113253141B (zh) 电池电量计量方法、电子设备及存储介质
CN114814587A (zh) 电池温度检测方法、电池温度检测装置及存储介质
US11846676B2 (en) Method and apparatus for predicting remaining charging time and storage medium
CN111864857B (zh) 电池充电方法、装置及介质
RU2739448C1 (ru) Способ и устройство зарядки для мобильного терминала, терминал и носитель данных
CN115706426A (zh) 电池保护板电路、电池控制方法、电池控制装置及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943077

Country of ref document: EP

Kind code of ref document: A1