WO2023223723A1 - 通信制御システム、装置及び方法 - Google Patents

通信制御システム、装置及び方法 Download PDF

Info

Publication number
WO2023223723A1
WO2023223723A1 PCT/JP2023/014814 JP2023014814W WO2023223723A1 WO 2023223723 A1 WO2023223723 A1 WO 2023223723A1 JP 2023014814 W JP2023014814 W JP 2023014814W WO 2023223723 A1 WO2023223723 A1 WO 2023223723A1
Authority
WO
WIPO (PCT)
Prior art keywords
terrestrial
communication
node group
orchestrator
network
Prior art date
Application number
PCT/JP2023/014814
Other languages
English (en)
French (fr)
Inventor
侑真 阿部
真理子 関口
周 三浦
Original Assignee
国立研究開発法人情報通信研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人情報通信研究機構 filed Critical 国立研究開発法人情報通信研究機構
Publication of WO2023223723A1 publication Critical patent/WO2023223723A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present invention relates to a communication control system, device, and method between resources and networks in a satellite-to-ground connection system.
  • NTN Non-terrestrial network
  • 5G 5th generation mobile communication systems
  • HAPS 5th generation mobile communication systems
  • the non-terrestrial network can support communication networks that cannot be used by ground-based carriers, such as mobile communications for aircraft and ships, and emergency communications.
  • 3GPP Third Generation Partnership Project
  • 3GPP TR22.822 describes use cases such as roaming between terrestrial networks and non-terrestrial networks and continuous cross-border services.
  • the satellite terrestrial connection system that interconnects the non-terrestrial network and the terrestrial network will be able to expand the wireless communication network in three dimensions with global coverage.
  • the use cases and usage scenarios of non-terrestrial networks will expand, and services will diversify, not only from conventional broadband communication services, mobile communication services, and emergency communication services, but also to financial and medical services.
  • the number of users who require services from non-terrestrial networks will also increase. Therefore, in order to meet this need, a system such as that disclosed in Patent Document 1, for example, is attracting attention.
  • Patent Document 1 discloses that if a non-terrestrial signal receiver receives a data packet from a non-terrestrial node with sufficient accuracy, it generates an acknowledgment command and the non-terrestrial signal receiver receives a data packet from the non-terrestrial node inaccurately.
  • a system is disclosed that can reduce the load on a busy ground base station by generating a negative acknowledgment command when the base station receives a negative acknowledgment command.
  • Patent Document 1 does not assume that a plurality of non-terrestrial operators and a plurality of terrestrial operators are interconnected in a satellite-to-ground connection system. For this reason, the technique disclosed in Patent Document 1 has the problem of low efficiency, as it is necessary to adjust for each non-terrestrial operator how much user-requested traffic should be sent to each non-terrestrial operator, for example. .
  • An object of the present invention is to provide a system, apparatus, and method for controlling communication between resources and networks in a satellite-ground connection system.
  • the communication control system provides a non-terrestrial link control means for controlling non-terrestrial communication between a non-terrestrial node group including a non-terrestrial communication station and a terrestrial node group including a terrestrial communication station. and terrestrial resource control means for controlling terrestrial communication between the terrestrial node group and one or more communication terminals, and the non-terrestrial link control means is configured to control terrestrial communication between the terrestrial node group and the one or more communication terminals.
  • the non-terrestrial link control means calculates the non-terrestrial line parameters based on request information regarding a communication request and the monitoring information.
  • the non-terrestrial link control means determines a priority order for controlling communication of the communication terminal based on the request information, and the determined priority order and the monitoring information, the non-terrestrial line parameters are calculated.
  • the communication control system is the communication control system according to any one of the first to third aspects, further comprising non-terrestrial network control means for controlling non-terrestrial network communication between the non-terrestrial node group, and
  • the non-terrestrial network control means calculates network line parameters for controlling non-terrestrial network communication based on the monitoring information
  • the non-terrestrial link control means calculates network line parameters for controlling non-terrestrial network communication based on the monitoring information and the non-terrestrial network.
  • the method is characterized in that the non-terrestrial line parameters are calculated based on the network line parameters calculated by the control means.
  • a communication control device is a non-terrestrial link control unit that controls non-terrestrial communication between a non-terrestrial node group including a non-terrestrial communication station and a terrestrial node group including a terrestrial communication station.
  • the non-terrestrial link control unit is configured to control terrestrial communication between the terrestrial node group and one or more communication terminals, and the Calculating non-terrestrial line parameters for controlling the non-terrestrial communication based on monitoring information regarding the communication environment of at least one of the terrestrial node group and the communication terminal, and the terrestrial resource control unit , calculating terrestrial line parameters for controlling the terrestrial communication based on the monitoring information and the non-terrestrial line parameters calculated by the non-terrestrial link control unit.
  • the communication control method includes a non-terrestrial link control step for controlling non-terrestrial communication between a non-terrestrial node group including a non-terrestrial communication entity and a terrestrial node group including a terrestrial communication entity. and a terrestrial resource control step for controlling terrestrial communication between the terrestrial node group and one or more communication terminals, and the non-terrestrial link control step includes controlling the non-terrestrial node non-terrestrial line parameters for controlling the non-terrestrial communication based on monitoring information regarding the communication environment of at least one of the terrestrial node group, the terrestrial node group, and the communication terminal;
  • the control step is characterized by calculating terrestrial line parameters for controlling the terrestrial communication based on the monitoring information and the non-terrestrial line parameters calculated by the non-terrestrial link control step. .
  • the non-terrestrial link control means calculates the non-terrestrial line parameters based on the monitoring information
  • the terrestrial resource control means calculates the non-terrestrial line parameters based on the monitoring information and the non-terrestrial line parameters. Based on this, the terrestrial line parameters are calculated. Therefore, even if there are multiple non-terrestrial carriers and terrestrial carriers, roaming is possible regardless of the non-terrestrial network or the terrestrial network. Furthermore, even if there is a difference in coverage or capacity between individual non-terrestrial carriers and terrestrial carriers, it is possible to calculate appropriate line parameters according to this difference. This makes it possible to construct and optimize flexible and global communication networks according to user requests.
  • the non-terrestrial link control means calculates the non-terrestrial line parameters based on the request information and the monitoring information. Therefore, it is possible to calculate appropriate line parameters depending on the characteristics of the user and use case. This makes it possible to construct and optimize a more flexible and global communication network in response to user requests.
  • the non-terrestrial link control means determines the priority order based on the request information, and calculates the non-terrestrial link parameter based on the determined priority order and the monitoring information. Therefore, it is possible to calculate more appropriate line parameters depending on the characteristics of the user and use case. This makes it possible to construct and optimize a more flexible and global communication network in response to user requests.
  • the non-terrestrial network control means calculates network line parameters for controlling non-terrestrial network communication based on the monitoring information
  • the non-terrestrial link control means calculates network line parameters based on the monitoring information.
  • the non-terrestrial line parameters are calculated based on the network line parameters calculated by the non-terrestrial network control means. Therefore, it is possible to calculate line parameters that take into account the line conditions of each of the non-terrestrial carriers and the terrestrial carriers. This makes it possible to construct and optimize a more flexible and global communication network in response to user requests.
  • FIG. 1 is a diagram showing the overall configuration of a hierarchical communication control system to which the present invention is applied.
  • FIG. 2 is a diagram showing the structure of a management station and a feeder link earth station.
  • FIG. 3 is a diagram showing the configuration of a terrestrial communication station such as a terrestrial node group.
  • FIG. 4 is a diagram showing the configuration of the orchestrator.
  • FIG. 5 is a diagram showing the operation flow of the hierarchical communication control system.
  • FIG. 6 is a diagram showing the flow of operations of the orchestrator.
  • FIG. 7 is a diagram showing the flow of operations of the management station.
  • FIG. 8 is a diagram showing a flow of operations of a terrestrial operator such as a terrestrial base station.
  • FIG. 1 is a diagram showing the overall configuration of a hierarchical communication control system to which the present invention is applied.
  • FIG. 2 is a diagram showing the structure of a management station and a feeder link earth station.
  • FIG. 3 is a diagram showing the configuration
  • FIG. 9(a) is a diagram showing the configuration of a hierarchical communication control system using a C-plane (control plane).
  • FIG. 9(b) is a diagram showing the configuration of a hierarchical communication control system using an M-plane (management plane).
  • FIG. 10 is a diagram showing the configuration of a hierarchical communication control system using a U-plane (user plane).
  • FIG. 1 shows the overall configuration of a hierarchical communication control system 100 to which the present invention is applied.
  • the hierarchical communication control system 100 includes a non-terrestrial node group 1, a terrestrial node group 2 connected to the non-terrestrial node group 1, and a terrestrial node group 2 connected to the non-terrestrial node group 1.
  • the ground system core 6 is connected to the ground system core 6, and the data network 7 is connected to the feeder link earth station 4 and the ground system core 6.
  • the hierarchical communication control system 100 is not limited to the form shown in FIG. 5, the terrestrial core 6, and the data network 7 may be arbitrarily connected.
  • the hierarchical communication control system 100 also includes a plurality of non-terrestrial node groups 1 (1A to 1C), a plurality of management stations 3 (3A to 3C), and a plurality of feeder link earth stations, each managed by a different operator. 4 (4A to 4C) and ground system core 6 (6A to 6C).
  • the non-terrestrial node group 1 is a node group consisting of non-terrestrial nodes including non-terrestrial communication stations.
  • the non-terrestrial node group 1 includes geostationary earth orbit (GEO) satellites 11, non-geostationary orbit (NGSO) satellites 12, high-altitude communication platforms 13 (HAPS), This is a node group consisting of non-terrestrial nodes including non-terrestrial communication stations such as unmanned aircraft such as the drone 14 that exist in arbitrary orbits and at altitudes.
  • GEO geostationary earth orbit
  • NGSO non-geostationary orbit
  • HAPS high-altitude communication platforms 13
  • This is a node group consisting of non-terrestrial nodes including non-terrestrial communication stations such as unmanned aircraft such as the drone 14 that exist in arbitrary orbits and at altitudes.
  • the non-terrestrial node group 1 (1A, 1B) may be managed by different non-terrestrial operators.
  • the non-terrestrial node group 1 includes, for example, a plurality of geostationary orbit satellites 11, a plurality of non-geostationary orbit satellites 12 (12A to 12C), a plurality of high altitude communication platforms 13 (13A, 13B), and a plurality of drones 14 (14A, 14B). ) may include non-terrestrial nodes managed by multiple non-terrestrial operators such as
  • the non-terrestrial node group 1 performs non-terrestrial communication with the terrestrial node group 2. Further, the non-terrestrial node group 1 performs non-terrestrial network communication between non-terrestrial systems, which are systems consisting of parts managed by non-terrestrial operators. Further, the non-terrestrial node group 1 may perform non-terrestrial network communication with non-terrestrial node groups 1 (1A, 1B) managed by different non-terrestrial operators.
  • the non-terrestrial system is a system consisting of parts managed by a non-terrestrial operator, and includes a non-terrestrial node group 1, non-terrestrial users, a feeder link earth station 4, a management station 3, etc.
  • Non-terrestrial users are fixed stations and mobile stations that directly communicate with the non-terrestrial node group 1 and receive communication services, and mobile stations include flying objects (aircraft 22, drone 14, HAPS 13, UAV (Unmanned Aerial Vehicle), etc.) ), mobile objects on the sea, under the sea, on water, underwater (vessels 24, UAVs, USVs (Unmanned Surface Vehicles), etc.), and mobile objects on land (automobiles 23, trains, etc.).
  • the communication payload possessed by the non-terrestrial node group 1 is a bent pipe type (transparent type) payload that performs frequency conversion and amplification on the received signal and then transmits it to other nodes (including the feeder link earth station 4). But that's fine.
  • the communication payload possessed by the non-terrestrial node group 1 is sent to other nodes after demodulating, decoding, calculating, frequency converting, modulating, encoding, and amplifying the received signal using the on-board processor. It may also be a regenerative payload that is transmitted to (including the feeling earth station 4).
  • the communication payload of the non-terrestrial network 1 may include a flexible payload such as a digital channelizer or a digital beam former.
  • the terrestrial node group 2 is a node group that includes terrestrial communication stations such as the terrestrial base station 21 and the communication terminal 211.
  • the terrestrial node group 2 may be a node group managed by a terrestrial operator.
  • the terrestrial node group 2 may include a plurality of terrestrial base stations 21 (21A to 21C) and a plurality of communication terminals 211 (211A to 211E).
  • the terrestrial node group 2 is not limited to the generation of mobile communication systems it targets, and targets include 5G, 4G/LTE, 3G, and future generations of mobile communication systems that will be newly standardized (Beyond 5G/6G). Good too.
  • the terrestrial node group 2 may have the functions of the communication terminal 211, the terrestrial base station 21, the terrestrial core 6, and their interface functions, depending on the generation of the target mobile communication system.
  • the terrestrial node group 2 performs terrestrial communication between terrestrial systems, which is a system consisting of parts managed by terrestrial operators.
  • the terrestrial system is a system consisting of parts managed by a terrestrial operator, and includes a communication terminal 211, a terrestrial base station 21, a terrestrial core 6, and the like.
  • the management station 3 instructs the non-terrestrial node group 1, the terrestrial node group 2, the feeling ground station 4, the orchestrator 5, etc., and controls non-terrestrial communication and terrestrial communication.
  • the management station 3 is a non-terrestrial system for controlling non-terrestrial communication based on monitoring information regarding the communication environment of at least one of the non-terrestrial node group 1, the terrestrial node group 2, and the communication terminal 211, for example. Calculate line parameters.
  • the feeder link earth station 4 is an earth station that accommodates a communication line between the non-terrestrial node group 1 and the communication terminal 211, and is connected to a data network (DN: Data Network) such as the Internet.
  • DN Data Network
  • the feeder link earth station 4 also serves as a relay point with the terrestrial operator and the terrestrial core 6 when the non-terrestrial system is used as a backhaul for the terrestrial system.
  • the feeder link earth station 4 may be provided for each non-terrestrial operator. Further, the feeding earth station 4 may be used by a non-terrestrial operator different from the non-terrestrial operator provided therewith.
  • the orchestrator 5 centrally manages the entire network of the hierarchical communication control system 100.
  • the orchestrator 5 calculates network line parameters for controlling non-terrestrial network communications, for example, based on monitoring information.
  • the terrestrial core 6 has the functions of registering the communication terminal 211, authenticating it, establishing a session, etc.
  • the ground system core 6 may have a function of adjusting ground system requests and determining resource allocation to each communication terminal 211.
  • the terrestrial core 6 may be provided for each terrestrial operator, or may be used by a different terrestrial operator than the provided terrestrial operator.
  • the data network 7 is any network such as the Internet. Furthermore, the data network 7 may be a cloud or the like in which various information is stored.
  • the communication terminal 211 is a terminal that receives terrestrial communication services, and may communicate via the terrestrial base station 21, or if it is a terminal that has an interface with the non-terrestrial node group 1, it can be used as a non-terrestrial node. It may also communicate directly with Group 1.
  • FIG. 2 is a diagram showing the structure of the management station 3 and the feeder link earth station 4.
  • the management station 3 includes a non-terrestrial NOC (Network Operations Center) 32, a non-terrestrial SOC (Satellite Operations Center) 31 connected to the non-terrestrial NOC 32, and a non-terrestrial NOC 32 and non-terrestrial NOC 32.
  • the NOC database unit 33 is connected to the ground system SOC 31.
  • these structures may be arranged by arbitrary connections.
  • the non-terrestrial NOC 32 calculates non-terrestrial line parameters for controlling non-terrestrial communications, for example, based on monitoring information. Further, the non-terrestrial NOC 32 may calculate network line parameters for controlling non-terrestrial network communication, for example, based on monitoring information. The non-terrestrial NOC 32 may be provided for each non-terrestrial operator. In such a case, the non-terrestrial NOC 32 may calculate terrestrial line parameters for controlling terrestrial communication of a non-terrestrial carrier different from the provided non-terrestrial carrier.
  • the non-terrestrial NOC 32 includes an NOC processing unit 321 connected to the non-terrestrial SOC 31, an NOC control unit 322 connected to the NOC processing unit 321 and the NOC database unit 33, and the NOC processing unit 321 and the orchestrator 5.
  • the NOC orchestrator interface section 325 is connected to the NOC orchestrator interface section 325.
  • the NOC orchestrator interface unit 325 has an interface function with the orchestrator 5.
  • the NOC orchestrator interface unit 325 acquires request information regarding communication requests from the orchestrator 5, and notifies the orchestrator 5 of various line parameters and the like determined by the NOC control unit 322.
  • the NOC processing unit 321 determines the functions to be used by the NOC control unit 322 based on the information received from the NOC orchestrator interface unit 325 and the non-terrestrial node communication unit 41.
  • the NOC processing unit 321 may obtain request information such as self-location coordinates, communication destination, QoS parameters, and requested bandwidth of the non-terrestrial user. Furthermore, based on the information determined by the NOC control unit 322, the content of notification to the NOC orchestrator interface unit 325, command creation unit 313, and non-terrestrial node communication unit 41 is determined.
  • the NOC control unit 322 includes an NOC non-terrestrial network control calculation unit 323 and an NOC non-terrestrial link control calculation unit 324.
  • the NOC control unit 322 performs parameter calculations using the NOC non-terrestrial network control calculation unit 323 and the NOC non-terrestrial link control calculation unit 324, depending on the role of the non-terrestrial operator.
  • the NOC control unit 322 reads data from the NOC database unit 33 during calculation.
  • the NOC control unit 322 updates the NOC database unit 33 when the calculation is completed and the command transmission to the non-terrestrial node is completed. Further, the NOC control unit 322 does not need to include the NOC non-terrestrial network control calculation unit 324 when the orchestrator 5 controls the non-terrestrial network.
  • the NOC non-terrestrial network control calculation unit 323 calculates network line parameters for controlling non-terrestrial network communication based on the monitoring information.
  • the NOC non-terrestrial network control calculation unit 323 determines the beam used for communication (in the case of a multi-beam satellite that uses radio waves), frequency/wavelength, output power, and band allocation (digital channelizer) according to the calculated network line parameters. (for on-board satellites), beam irradiation area (for digital beamformer-equipped satellites), modulation method, error correction code type and coding rate, and whether or not to use encryption.
  • the NOC non-terrestrial link control calculation unit 324 calculates non-terrestrial line parameters for controlling non-terrestrial communication based on the monitoring information.
  • the NOC database unit 33 includes an NOC line monitoring database DB1 that stores monitoring information, an NOC non-terrestrial node trajectory database DB2 that stores information regarding the trajectory of non-terrestrial nodes, and an NOC user request database DB3 that stores request information. Equipped with.
  • the NOC database unit 33 is connected to a cloud server, and when the functional units of non-terrestrial operators are distributed, information is shared via the cloud server.
  • the non-terrestrial SOC 31 creates commands from various line parameters transmitted from the non-terrestrial NOC 32.
  • the non-terrestrial SOC 31 may be provided for each non-terrestrial operator. In such a case, the non-terrestrial SOC 31 creates a command from the terrestrial line parameters calculated by the non-terrestrial NOC 32 to control terrestrial communication of a non-terrestrial carrier different from the provided non-terrestrial carrier. do.
  • the non-terrestrial SOC 31 includes a command creation unit 313 that creates a command based on the information output from the NOC processing unit 321, a command transmission unit 311 that sends the command created by the command creation unit 313, and a command transmission unit 311 that sends the received information. It also includes a telemetry receiving section 312 that outputs to the NOC database section 33.
  • the non-terrestrial SOC 31 is responsible for sending commands to non-terrestrial operators and receiving telemetry from each non-terrestrial operator.
  • the NOC database unit 33 includes an NOC line monitoring database DB1 that stores monitoring information, an NOC non-terrestrial node trajectory database DB2 that stores information regarding the trajectory of non-terrestrial nodes, and an NOC user request database DB3 that stores request information. Equipped with.
  • the feeding earth station 4 includes a non-terrestrial node communication section 41 for communicating with the non-terrestrial node group 1 and an earth station terrestrial operator interface section 42 for communicating with the terrestrial node group 2.
  • the non-terrestrial node communication unit 41 communicates with the non-terrestrial node group 1.
  • the non-terrestrial node communication unit 41 is connected to the data network 7, and exchanges signals with non-terrestrial users when using a U-plane, which will be described later.
  • the non-terrestrial node communication unit 41 sends the obtained various information to the NOC database unit 33.
  • the non-terrestrial node communication unit 41 notifies the NOC processing unit 321 of the request information of the non-terrestrial user.
  • the earth station terrestrial operator interface unit 42 is connected to a plurality of terrestrial operators, and exchanges signals with terrestrial users when using U-plane or C-plane, which will be described later.
  • the terrestrial base station 21 is a ground station that accommodates traffic from the communication terminal 211, and has a communication interface with the non-terrestrial node group 1.
  • the terrestrial base station 21 does not have a communication interface with the non-terrestrial node group 1, and network nodes such as part of the terrestrial core 6 and routers connected to the terrestrial base station 21 are connected to the non-terrestrial node group 1. It may have a communication interface with.
  • the terrestrial base station 21 may be treated as a non-terrestrial user when communicating with the non-terrestrial node group 1.
  • the terrestrial base station 21 may handle multiple non-terrestrial users as long as multiple slices are defined.
  • the terrestrial base station 21 has an interface with the terrestrial system, and may communicate directly with the terrestrial core 6.
  • the terrestrial base station 21 may be provided for each terrestrial operator, or may be used by a different terrestrial operator than the provided terrestrial operator.
  • a slice is a group of multiple terrestrial users with specific QoS parameters. It may be the terrestrial core 6 or the terrestrial base station 21 of the terrestrial operator, or the orchestrator 5 that configures slices according to the QoS parameters and use cases of each user. If the users accommodated by a certain terrestrial base station 21 span multiple slices, it may be assumed that there are as many non-terrestrial users as there are slices.
  • the orchestrator 5 and the non-terrestrial node group 1 may have the function of generating slices. QoS parameters may be redefined for each slice.
  • FIG. 3 is a diagram showing the configuration of a terrestrial communication station such as the terrestrial node group 2.
  • the terrestrial base station 21 includes a terrestrial processing unit 214, a terrestrial control unit 216 connected to the terrestrial processing unit 214, and a terrestrial database unit connected to the terrestrial control unit 216. 219, a terrestrial core unit 213 connected to the terrestrial processing unit 214, the terrestrial database unit 218, and the terrestrial core 6; It includes a network operator interface section 212 and an orchestrator interface section 215 connected to the orchestrator 5 and the ground system processing section 214.
  • the orchestrator interface unit 215 has an interface function with the orchestrator 5.
  • the orchestrator interface unit 215 notifies the orchestrator 5 of request information regarding communication requests from the communication terminal 211 and the like, and receives calculation results, allocation results, and the like.
  • the terrestrial non-terrestrial operator interface unit 212 is connected to a plurality of non-terrestrial operators, and exchanges signals with terrestrial users when using a U-plane or C-plane, which will be described later.
  • the terrestrial core unit 213 exchanges signals with terrestrial users when using C-plane, which will be described later.
  • the ground system core unit 213 issues a resource control request to the ground system processing unit 214.
  • the terrestrial core section 213 is also connected to the data network 7, and when using a U-plane, which will be described later, signals from terrestrial users pass through.
  • the ground system processing unit 214 determines the functions to be used by the ground system control unit 216 based on the information received from the orchestrator interface unit 215 and the ground system core unit 213.
  • the terrestrial processing unit 214 may obtain request information such as self-location coordinates, communication destination, QoS parameters, and requested bandwidth of the non-terrestrial user.
  • the ground system processing unit 214 determines the content of the notification to the orchestrator interface unit 215 and the ground system core unit 213 based on the information determined by the ground system control unit 216.
  • the ground system control unit 216 includes a ground system resource control unit 217 and a ground system communication request adjustment calculation unit 218.
  • the ground system control unit 216 reads data from the ground system database unit 219 during calculation, and updates the data in the ground system database unit 219 after calculation.
  • the terrestrial resource control unit 217 calculates terrestrial line parameters for controlling terrestrial communication based on the monitoring information and the non-terrestrial line parameters calculated by the non-terrestrial NOC 32 and the like.
  • the terrestrial communication request adjustment calculation unit 218 adjusts terrestrial communication based on the monitoring information.
  • the terrestrial system database unit 219 includes a terrestrial line monitoring database DB4 that stores monitoring information and a terrestrial user request database DB5 that stores request information.
  • the terrestrial database unit 219 is connected to a cloud server, and when the functional units of the terrestrial operator are distributed, information is shared via the cloud server.
  • FIG. 4 is a diagram showing the configuration of the orchestrator 5.
  • the orchestrator 5 includes an orchestrator system processing section 52, an orchestrator control section 54 connected to the orchestrator system processing section 52, and an orchestrator database connected to the orchestrator system processing section 52 and the orchestrator control section 54. 57 , a non-terrestrial operator interface unit 51 connected to the orchestrator system processing unit 52 and the orchestrator database unit 57 , and a terrestrial system connected to the orchestrator system processing unit 52 and the orchestrator database unit 57 and a business operator interface section 53. Moreover, these structures may be arranged by arbitrary connections.
  • the non-terrestrial operator interface unit 51 is connected to a plurality of non-terrestrial operators, and notifies the non-terrestrial operators of request information and various calculation results calculated by the orchestrator processing unit 52. Receive calculation results, allocation results, monitoring information, etc. from terrestrial operators.
  • the orchestrator processing unit 52 reads out information regarding the trajectory of the non-terrestrial node, monitoring information, etc. from the orchestrator database unit 57, and cooperates with the orchestrator control unit 54 to determine future throughput, delay, link survival probability, etc. predictions and optimization calculations for frequency resources to be used in the future.
  • the orchestrator processing unit 52 determines the functions to be used by the orchestrator control unit 54 based on the information received by the non-terrestrial operator interface unit 51 and the terrestrial operator interface unit 53. Further, the orchestrator processing unit 52 determines the content of the notification to each business operator based on the information determined by the orchestrator control unit 54.
  • the terrestrial operator interface unit 53 is connected to a plurality of terrestrial operators, and notifies request information from the terrestrial operators and various calculation results calculated by the orchestrator processing unit 52 to the non-terrestrial operators. Receive calculation results, allocation results, monitoring information, etc. from
  • the orchestrator control unit 54 includes an orchestrator non-terrestrial network control calculation unit 55 and an orchestrator terrestrial communication request adjustment calculation unit 56.
  • the orchestrator control unit 54 calculates each parameter according to the role of the orchestrator 5.
  • the orchestrator control unit 54 reads data from the orchestrator database unit 57 as necessary.
  • the orchestrator non-terrestrial network control calculation unit 55 calculates non-terrestrial line parameters for controlling non-terrestrial communication based on the monitoring information. Furthermore, the orchestrator non-terrestrial network control calculation unit 55 calculates network line parameters for controlling non-terrestrial network communication between the non-terrestrial node group 1 based on the monitoring information.
  • the orchestrator terrestrial communication request adjustment calculation unit 56 calculates adjustment of terrestrial communication requests.
  • the orchestrator database unit 57 includes a line monitoring database DB6 that stores monitoring information, a non-terrestrial node trajectory database DB7 that stores information regarding the trajectory of non-terrestrial nodes, and a user request database DB8 that stores request information. .
  • FIG. 5 shows the flow of operation of the hierarchical communication control system 100.
  • the operation of the hierarchical communication control system 100 is divided into three types of control functions: non-terrestrial network communication control, non-terrestrial link control, and terrestrial resource control. In order to handle the different characteristics of the system and the ground system, they are implemented hierarchically as shown in FIG.
  • the non-terrestrial network communication is communication between the non-terrestrial node group 1. Further, the non-terrestrial network communication may be communication between a plurality of non-terrestrial node groups 1 managed by different non-terrestrial operators. Further, the non-terrestrial network communication may be communication between non-terrestrial networks.
  • Non-terrestrial link control is control of non-terrestrial communication between non-terrestrial node group 1 and terrestrial node group 2. Further, the non-terrestrial link control may be control of communication between the non-terrestrial system and the terrestrial system. Further, the non-terrestrial link control may be control of communication on a link to which the non-terrestrial node group 1 is related.
  • the links related to non-terrestrial node group 1 are between non-terrestrial users and non-terrestrial node group 1, between non-terrestrial node group 1, and between non-terrestrial node group 1 and feeder link earth station 4. Either.
  • Ground resource control is control of ground communication between the ground node group 2 and one or more communication terminals 211. Furthermore, the terrestrial resource control may be control of communication between the terrestrial node group 2 and terrestrial users. Furthermore, ground system resource control may be control of communication between ground systems.
  • step S1 the hierarchical communication control system 100 starts controlling non-terrestrial network communication.
  • the orchestrator 5 calculates network line parameters for controlling non-terrestrial network communication based on the monitoring information, and controls non-terrestrial network communication based on the calculated network line parameters.
  • the management station 3 calculates network line parameters for controlling non-terrestrial network communication based on the monitoring information, and based on the calculated network line parameters, Control of terrestrial network communication may also be started.
  • the monitoring information is information regarding the communication environment of at least one of the non-terrestrial node group 1, the terrestrial node group 2, and the communication terminal 211.
  • the monitoring information includes, for example, the throughput and delay of the non-terrestrial node group 1, the terrestrial node group 2, or the communication terminal 211, the number of communicable terrestrial and non-terrestrial users, the number of handovers, and the number of non-terrestrial nodes used. , is an evaluation index such as the number of terrestrial and non-terrestrial operators through which communication signals pass.
  • monitoring information includes received power, received C/ N0 (carrier power to noise power density ratio), center frequency, bandwidth, throughput, bit error rate (BER), packet loss rate, and rainfall attenuation. etc. may be used.
  • the monitoring information includes information regarding the non-terrestrial communication environment.
  • Information regarding the non-terrestrial communication environment includes specifications such as the number, orbit, position, coverage, bandwidth, and maximum power of the non-terrestrial communication stations and feeder link earth stations 4 included in the non-terrestrial node group 1;
  • the information may be information regarding the number of non-terrestrial users, the resource usage status of the non-terrestrial node group 1, or link status such as throughput, propagation delay, jitter, packet loss, atmospheric propagation, and Doppler shift.
  • the line parameters are parameters related to the network configuration such as the non-terrestrial node group 1 used for communication, the feeder link earth station 4 used, the transmission route, and the topology. Further, the line parameters may be parameters related to band allocation. Further, the line parameters may include transmission power, carrier frequency, bandwidth, modulation method, type of error correction code and its coding rate, multiplexing method, number of carriers, and the like.
  • the network line parameters are line parameters for controlling non-terrestrial network communication
  • the orchestrator 5 may calculate the topology and usage band of the non-terrestrial network communication based only on the information regarding the non-terrestrial communication environment included in the monitoring information.
  • step S1 for example, the orchestrator 5 based on request information regarding a communication request from at least one of the non-terrestrial node group 1, the terrestrial node group 2, and the communication terminal 211, and monitoring information.
  • network line parameters may be calculated.
  • the requested information includes, for example, the self-location coordinates (latitude, longitude, altitude) of the terrestrial user and non-terrestrial user requesting communication, the communication destination (another user or data network 7), QoS (Quality of Service) parameters, etc. There may be.
  • the QoS parameters include, for example, resource type, priority, allowable delay, and security level.
  • the QoS parameters may include a guaranteed bandwidth when the resource type is GBR.
  • the QoS parameters may use the 3GPP standard 5QI (5G QoS Identifier), or may be newly defined.
  • the priority and security level may be set according to the use case, the user's billing amount, and the communication plan.
  • step S1 the orchestrator 5 determines priorities for controlling communication from each of the plurality of communication terminals 211 based on the request information, and based on the determined priorities and monitoring information, Network line parameters may also be calculated. Orchestrator 5 may determine the priority order based on the priority of each communication terminal 211, for example.
  • the orchestrator 5 may determine the bandwidth allocation used for communication on a per carrier basis. In such a case, for example, the orchestrator 5 allocates a bandwidth of 50 MHz to the GEO of the operator A and 50 MHz to the LEO, 50 MHz to the GEO of the operator B, and 50 MHz to the LEO. Further, in step S1, for example, the orchestrator 5 may assign a total bandwidth of 100 MHz to carrier A and a total bandwidth of 100 MHz to carrier B, respectively.
  • step S2 the management station 3 controls the topology of the non-terrestrial network.
  • the orchestrator 5 controls the topology of the non-terrestrial network based on the network line parameters calculated in step S1.
  • Topology is the structure of a network, such as communication routes and line shapes.
  • step S3 the management station 3 performs non-terrestrial beam control.
  • the orchestrator 5 allocates bandwidth to each node and each beam of each node based on the request amount of each non-terrestrial user including the terrestrial base station 21 and slices based on the network line parameters calculated in step S1. Control. Further, in step S3, the management station 3 may control the frequency flexibility function and the area flexibility function.
  • step S4 the management station 3 performs non-terrestrial link control.
  • the management station 3 calculates non-terrestrial line parameters for controlling non-terrestrial communication based on the network line parameters calculated in step S1 and the monitoring information, and controls the non-terrestrial communication.
  • the management station 3 determines whether the non-terrestrial node group 1 including the terrestrial base station 21 is related based on the monitoring information indicating the communication environment of the terrestrial node group 2 and the network line parameters calculated in step S1. Frequency bands are allocated to non-terrestrial communication, which is a link for communication.
  • the management station 3 determines the frequency channel when using radio waves, and the optical multiplexing level when using light.
  • the management station 3 also determines the output power, modulation/encoding method, etc. of each non-terrestrial link based on the network line parameters calculated in step S1. Furthermore, in the case of a multi-beam non-terrestrial node, the beam used by each non-terrestrial link may be used.
  • the management station 3 may calculate non-terrestrial line parameters based on the request information and monitoring information. Further, in step S4, for example, the management station 3 assigns a frequency to terrestrial communication based on the information regarding the terrestrial communication environment included in the monitoring information and the topology and usage band of the non-terrestrial network communication calculated in step S1. Bandwidth may be allocated.
  • the management station 3 may calculate non-terrestrial line parameters based on the monitoring information without using the network line parameters calculated in step S1.
  • step S5 the hierarchical communication control system 100 controls terrestrial communication resources.
  • the terrestrial base station 21 calculates terrestrial line parameters for controlling terrestrial communication based on the non-terrestrial line parameters and monitoring information calculated in step S4, and Controls terrestrial communications based on system line parameters.
  • the terrestrial base station 21 allocates a communication band between the terrestrial user and the terrestrial base station 21 based on the non-terrestrial line parameters and monitoring information calculated in step S4, for example.
  • the terrestrial base station 21 may calculate terrestrial line parameters based on the request information and the monitoring information. Further, in step S5, for example, the terrestrial base station 21 connects the terrestrial user to the terrestrial base station 21 based on the information regarding the communication environment of the communication terminal 211 included in the monitoring information and the frequency band allocated in step S4. You may also allocate a bandwidth for communication between the
  • FIG. 6 shows the flow of the operation of the orchestrator 5.
  • Orchestrator 5 first sets time point t to 0 in step S100.
  • the orchestrator 5 receives monitoring information in step S101.
  • the orchestrator 5 includes the NOC database section 33, the orchestrator database section 57, the terrestrial database section 219, etc. of the terrestrial communication stations and non-terrestrial communication stations managed by the terrestrial carrier and the non-terrestrial carrier. Receive various information from.
  • step S102 the orchestrator 5 determines the control cycle of the non-terrestrial network communication. If the control period of the non-terrestrial network communication applies to the orchestrator 5, the orchestrator 5 moves to step S103. If the control cycle of the non-terrestrial network communication does not apply to the orchestrator 5, the orchestrator 5 moves to step S117.
  • the control period for controlling non-terrestrial network communication requires that the orchestrator 5 collect the status of the non-terrestrial node group 1 from multiple non-terrestrial operators and make adjustments between the non-terrestrial and terrestrial operators. There is.
  • Non-terrestrial link control can be executed more frequently than non-terrestrial network communication control because the non-terrestrial NOC 32 manages its own system. Therefore, the control period for controlling non-terrestrial network communication requires a longer time than the control period for non-terrestrial link control.
  • the terrestrial operator performs terrestrial resource control at a period of about milliseconds to seconds.
  • the control period of non-terrestrial link control is longer than that of terrestrial resource control, so the allocated bandwidth cannot be changed frequently, and within the control period of non-terrestrial link control, system users share the same total bandwidth.
  • the orchestrator 5 starts controlling non-terrestrial network communication in step S103.
  • the orchestrator 5 receives the request information in step S104.
  • the orchestrator 5 receives request information indicating a request for communication from a terrestrial user or a non-terrestrial user, for example from a terrestrial operator or a non-terrestrial operator.
  • step S105 the orchestrator 5 adjusts the demands of the ground-based operator.
  • step S106 the orchestrator 5 determines whether the orchestrator 5 controls non-terrestrial network communication. When the orchestrator 5 controls non-terrestrial network communication, the orchestrator 5 moves to step S107. If the orchestrator 5 does not control non-terrestrial network communication, the orchestrator 5 moves to step S111.
  • the orchestrator 5 is responsible for controlling the non-terrestrial topology, collecting requests from the non-terrestrial and terrestrial operators, and negotiating between the operators.
  • Each terrestrial operator may be in charge of non-terrestrial beam control and non-terrestrial link control related to the nodes it owns, and each terrestrial operator may be in charge of terrestrial resource control.
  • the object of non-terrestrial topology control is the non-terrestrial system managed by the non-terrestrial operator, and since the non-terrestrial operator can perform non-terrestrial topology control himself, the orchestrator The controller 5 does not have to perform non-terrestrial topology control.
  • step S107 the orchestrator 5 determines the non-terrestrial node, feeder link earth station 4, etc. to be used.
  • the orchestrator 5 determines the topology of the non-terrestrial network based on the network line parameters calculated in step S1, for example, and determines the non-terrestrial nodes to be used, the feeder link earth station 4, etc. based on the determined topology. You may.
  • step S108 the orchestrator 5 notifies the ground system node and feeder link earth station 4 to be used determined in step S107.
  • step S109 the orchestrator 5 determines whether approval has been obtained from the ground system node and feeder link earth station 4 notified in step S108. If approval is obtained, the orchestrator 5 moves to step S116. When the orchestrator 5 cannot obtain approval, the process moves to step S110.
  • the orchestrator 5 ends the control of the non-terrestrial network in step S116.
  • step S110 the orchestrator 5 makes adjustments with the non-terrestrial operator and the terrestrial operator, and proceeds to step S107 again.
  • step S111 the orchestrator 5 notifies the non-terrestrial operator of the request information received in step S104.
  • the orchestrator 5 does not need to notify the non-terrestrial operator of the request information from the terrestrial user as it is, but based on the non-terrestrial monitoring information and the prediction of the request from the terrestrial user.
  • the total requested bandwidth requested from non-terrestrial carriers may be increased or decreased.
  • step S112 the orchestrator 5 receives the determined network topology from the non-terrestrial operator notified in step S111.
  • step S113 the orchestrator 5 notifies the non-terrestrial operators and terrestrial operators used for the network topology received in step S112.
  • step S114 the orchestrator 5 determines whether approval has been obtained from the non-terrestrial operator and the terrestrial operator notified in step S113. When the orchestrator 5 obtains approval, the orchestrator 5 moves to step S116. If the orchestrator 5 cannot obtain approval, the orchestrator 5 moves to step S115.
  • step S115 the orchestrator 5 makes adjustments with the non-terrestrial operator and the terrestrial operator, and then proceeds to step S111 again.
  • step S117 determines whether to end the operation in step S117.
  • the operation of the orchestrator 5 is terminated. If the operation does not end, the process moves to step S118.
  • FIG. 7 is a diagram showing the flow of operations of the management station.
  • the management station 3 first sets time t to 0 in step S200.
  • the management station 3 receives the request information and monitoring information in step S201.
  • the management station 3 stores the request information and monitoring information in the database in step S202.
  • the management station 3 stores the request information and monitoring information in the NOC database unit 33, for example. Furthermore, the management station 3 may save the network line parameters calculated in step S107.
  • step S203 the management station 3 determines the control cycle of the non-terrestrial link that controls non-terrestrial communication. If the control period of the non-terrestrial link applies, the management station 3 moves to step S204. If the control period does not apply to the non-terrestrial link, the management station 3 moves to step S227.
  • the management station 3 starts controlling the non-terrestrial link in step S204.
  • the management station 3 reads the NOC database section 33 in step S205.
  • the management station 3 may read out the network line parameters, request information, and monitoring information saved in step S202.
  • step S206 the management station 3 performs processing for determining band allocation to non-terrestrial nodes, frequency channels, used beams, output power, modulation/encoding methods, etc.
  • the management station 3 may calculate non-terrestrial line parameters based on the monitoring information and request information read in step S205, and perform processing according to the calculated line parameters. Furthermore, the management station 3 may calculate non-terrestrial line parameters based on the monitoring information and network line parameters.
  • step S207 the management station 3 creates and sends a command to the non-terrestrial node.
  • the management station 3 creates and transmits commands for performing the various processes determined in step S206.
  • the management station 3 notifies the feeding earth station 4 of the information in step S208.
  • step S209 the management station 3 stores the various information determined in step S206 in the database.
  • the management station 3 ends the non-terrestrial link control in step S210.
  • step S211 the management station 3 determines the period of control of the non-terrestrial network communication. If the control period of the non-terrestrial network communication applies, the management station 3 moves to step S212. If the control period does not apply to the non-terrestrial network communication, the management station 3 moves to step S227.
  • the management station 3 starts controlling non-terrestrial network communication in step S212.
  • the management station 3 reads the non-terrestrial node database in step S213. In such a case, the management station 3 reads out the request information, monitoring information, and various information saved in steps S202 and S213.
  • step S214 the management station 3 notifies the orchestrator 5 of the information read out in step S213.
  • the information that the management station 3 reports to the orchestrator 5 may be a predetermined minimum amount of information, or may be information that is more than the minimum amount of information.
  • step S215 the management station 3 determines whether the orchestrator 5 controls non-terrestrial network communication. If the orchestrator 5 controls non-terrestrial network communication, the management station 3 moves to step S216. If the orchestrator 5 does not control non-terrestrial network communication, the management station 3 moves to step S219.
  • step S216 the management station 3 receives the network topology notified from the orchestrator 5 in step S108.
  • step S217 the management station 3 determines whether approval has been obtained from other non-terrestrial operators and terrestrial operators. If approval is obtained, the management station 3 moves to step S223. If approval is not obtained, the management station 3 moves to step S218.
  • the management station 3 makes adjustments with the orchestrator 5 in step S218, and proceeds to step S216.
  • step S219 the management station 3 determines the non-terrestrial node and feeder link earth station 4 to be used.
  • the management station 3 calculates network line parameters based on, for example, monitoring information, and determines the non-terrestrial node and feeder link earth station 4 to be used from the calculated network line parameters.
  • the management station 3 notifies the orchestrator 5 in step S220.
  • step S221 the management station 3 determines whether approval has been obtained from other non-terrestrial operators and terrestrial operators. If approval is obtained, the management station 3 moves to step S223. If approval is not obtained, the management station 3 moves to step S222.
  • the management station 3 makes adjustments with the orchestrator 5 in step S222, and proceeds to step S219.
  • step S223 the management station 3 creates and sends a command to the non-terrestrial node.
  • the management station 3 notifies the feeding earth station 4 of the information in step S224.
  • the management station 3 stores the determined information in the NOC database section 33 in step S225.
  • the management station 3 ends the control of the non-terrestrial network in step S226.
  • the management station 3 determines whether to end the operation in step S227. When terminating the operation, the operation of the management station 3 is terminated. If the operation does not end, the process moves to step S228.
  • step S228, the management station 3 sets time t t+1, and moves to step S201 again.
  • FIG. 8 is a diagram showing a flow of operations of a terrestrial operator such as a terrestrial base station.
  • the terrestrial base station 21 first sets time t to 0 in step S300.
  • the terrestrial base station 21 receives request information and monitoring information in step S301.
  • the terrestrial base station 21 stores the request information and monitoring information in a database in step S302.
  • the terrestrial base station 21 stores the request information and monitoring information in the terrestrial database unit 219, for example.
  • the terrestrial base station 21 may save the non-terrestrial line parameters calculated in step S206.
  • step S303 the terrestrial base station 21 determines the control cycle of terrestrial resources that control terrestrial communication. If the terrestrial base station 21 matches the control period of the terrestrial resource, the process moves to step S304. If the terrestrial base station 21 does not match the control period of the terrestrial resources, the process proceeds to step S323.
  • the control period for terrestrial resources may be set shorter than the control period for non-terrestrial link control.
  • the terrestrial base station 21 starts controlling terrestrial resources in step S304.
  • the terrestrial base station 21 allocates bands to each terrestrial user and determines frequency channels.
  • the terrestrial base station 21 calculates terrestrial line parameters based on the non-terrestrial line parameters calculated in step S206 and the request information and monitoring information stored in step S302, and uses the calculated terrestrial line parameters.
  • Band allocation to each communication terminal and frequency channel may be determined according to system line parameters.
  • the terrestrial base station 21 ends the control of the terrestrial resources in step S306.
  • step S307 the terrestrial base station 21 determines the control cycle of the non-terrestrial link. If the control cycle of the non-terrestrial link is applicable, the terrestrial base station 21 moves to step S308. If the control cycle of the non-terrestrial link does not apply, the terrestrial base station 21 moves to step S323.
  • the terrestrial base station 21 starts controlling the non-terrestrial link in step S308.
  • the terrestrial base station 21 adjusts the requests from the communication terminals in step S309.
  • the terrestrial base station 21 notifies the orchestrator 5 of request information and monitoring information in step S310.
  • the information that the terrestrial base station 21 reports to the orchestrator 5 may be the minimum information determined in advance, or may be information that is more than the minimum information.
  • step S311 the terrestrial base station 21 receives the link assignment determined by the management station 3 in S206 via the orchestrator 5.
  • step S312 the terrestrial base station 21 determines whether to approve the link assignment received in step S311. If the terrestrial base station 21 approves the link allocation, the process moves to step S314. If the terrestrial base station 21 does not approve the link assignment, the process moves to step S313.
  • the terrestrial base station 21 notifies the orchestrator 5 in step S313, and proceeds to step S311.
  • the terrestrial base station 21 ends the non-terrestrial link control in step S314.
  • step S315 the terrestrial base station 21 determines the control period for controlling the non-terrestrial network. If the control period of the non-terrestrial network applies, the terrestrial base station 21 moves to step S316. If the control period does not apply to the non-terrestrial network, the terrestrial base station 21 moves to step S323.
  • the terrestrial base station 21 starts controlling non-terrestrial network communication in step S316.
  • the terrestrial base station 21 adjusts the terrestrial user's request in step S317.
  • the terrestrial base station 21 notifies the orchestrator 5 of the request information and monitoring information in step S318.
  • step S319 the terrestrial base station 21 receives, via the orchestrator 5, the network structure or topology determined by the orchestrator 5 in step S107 or the management station 3 in S219.
  • step S320 the terrestrial base station 21 determines whether to approve the network topology received in step S319. If the terrestrial base station 21 approves the topology, the process moves to step S322. If the terrestrial base station 21 does not approve of the network structure, the process moves to step S321.
  • the terrestrial base station 21 notifies the orchestrator 5 in step S321, and proceeds to step S319.
  • the terrestrial base station 21 ends the control of the non-terrestrial network in step S322.
  • the terrestrial base station 21 determines whether to end the operation in step S323. When the operation is to be terminated, the operation of the terrestrial base station 21 is terminated. If the operation does not end, the process moves to step S324.
  • FIG. 9(a) is a diagram showing the configuration of a hierarchical communication control system 100 using a C-plane (control plane). Further, FIGS. 9A, 9B, and 10 show examples in which a non-terrestrial system functions as a backhaul for a terrestrial system.
  • the hierarchical communication control system 100 includes a non-terrestrial node group 1, a terrestrial base station 21 connected to the non-terrestrial node group 1, a non-terrestrial user such as an aircraft 22, a ship 24, and a feeder link earth station 4. , a communication terminal 211 connected to a terrestrial base station 21, a terrestrial core 6 connected to a feeder link earth station 4, and a non-terrestrial NOC 32.
  • the hierarchical communication control system 100 sends and processes messages such as registration and session establishment requests to the terrestrial core 6 for the communication terminals 211, and requests bandwidth for non-terrestrial users.
  • the message for this purpose is transferred to the non-terrestrial NOC 32 for processing.
  • the communication terminal 211 first connects to a terrestrial base station 21 that interfaces with the communication terminal 211, and this terrestrial base station 21 operates together with the communication terminal 211 as a non-terrestrial user. Messages from the terrestrial base station 21 reach the terrestrial core 6 via the non-terrestrial node group 1 and the feeder link earth station 4.
  • the feeder link earth station 4 accommodates links for non-terrestrial users and acts as a relay point.
  • non-terrestrial users are directly connected to the non-terrestrial node group 1, and their request messages reach the non-terrestrial NOC 32 through the feeder link earth station 4.
  • links may also be established between non-terrestrial node groups 1 between different carriers.
  • FIG. 9(b) is a diagram showing the configuration of a hierarchical communication control system 100 using an M-plane (management plane).
  • the hierarchical communication control system 100 includes a non-terrestrial node group 1, a feeder link earth station 4 connected to the non-terrestrial node group 1, a non-terrestrial SOC 31, and a terrestrial core connected to the feeder link earth station 4. 6, a non-terrestrial NOC 32 connected to the feeder link earth station 4 and the non-terrestrial SOC 31, and an orchestrator 5 connected to the terrestrial core 6 and the non-terrestrial NOC 32.
  • the hierarchical communication control system 100 processes signals between the orchestrator 5, the non-terrestrial NOC 32, and the terrestrial core 6.
  • the orchestrator 5 has an interface with the non-terrestrial NOC 32 and the terrestrial core 6, and coordinates these multiple operators.
  • the non-terrestrial SOC 21 transmits commands for controlling the non-terrestrial node group 1 based on decisions made by a management function such as the orchestrator 5.
  • FIG. 10 is a diagram showing the configuration of a hierarchical communication control system 100 using a U-plane (user plane).
  • the hierarchical communication control system 100 includes a non-terrestrial node group 1, a terrestrial base station 21 connected to the non-terrestrial node group 1, non-terrestrial users such as an aircraft 22 and a ship 24, and a feeder link earth station 4. , a communication terminal 211 connected to a terrestrial base station 21, a terrestrial core 6 connected to a feeder link earth station 4, and a data network 7 connected to the terrestrial core 6.
  • data of terrestrial and non-terrestrial users reaches communication destinations such as other users and the data network 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】ユーザの要求に応じて、柔軟かつグローバルな通信ネットワークの構築や最適化が可能となる、衛星地上連接システムにおけるリソースとネットワークとの通信制御システム、装置及び方法を提供する。 【解決手段】通信制御システムは、非地上系通信局を含む非地上系ノード群と地上系通信局を含む地上系ノード群との間の非地上系通信を制御する非地上系リンク制御手段と、前記地上系ノード群と1以上の通信端末との間の地上系通信を制御する地上系リソース制御手段と、を備え、前記非地上系リンク制御手段は、モニタリング情報に基づいて、前記非地上系通信を制御するための非地上系回線パラメータを算出し、前記地上系リソース制御手段は、前記モニタリング情報と前記非地上系回線パラメータとに基づいて、前記地上系通信を制御するための地上系回線パラメータを算出することを特徴とする。

Description

通信制御システム、装置及び方法
 本発明は、衛星地上連接システムにおけるリソースとネットワークとの通信制御システム、装置及び方法に関するものである。
 第5世代移動通信システム(5G)等を用いた、複数の地上系事業者を繋ぐ地上系ネットワークの通信領域を拡大することが可能な非地上系事業者を繋ぐ非地上系ネットワーク(NTN:Non-Terrestrial Networks)のニーズが徐々に高まっている。この非地上系ネットワークを用いたサービスとして、NGSO衛星を中心に多数の衛星によるコンステレーションによるサービスが始まっており、HAPSを用いた通信サービスも計画されている。また、非地上系ネットワークは、航空機や船舶の移動通信や緊急通信等の地上系事業者が利用できない通信ネットワークにも対応できる。
 これらのことから、3GPP(Third Generation Partnership Project)は、既に非地上系ネットワークの標準化を開始している。例えば、3GPP TR22.822には、地上系ネットワークと非地上系ネットワークとの間のローミングや継続的なクロスボーダーサービス等のユースケースが記載されている。
 これにより、非地上系ネットワークと地上系ネットワークとを相互接続した衛星地上連接システムは、グローバルなカバレッジにより無線通信ネットワークを3次元方向に拡大することが可能となる。このため、非地上系ネットワークのユースケースや利用シナリオが拡大し、従来のブロードバンド通信サービス、移動通信サービス、緊急通信サービス等に限らず、金融や医療など、サービスが多種多様化する。また、非地上系ネットワークによるサービスを必要とするユーザも増加する。したがって、このニーズに対応するために例えば特許文献1に開示されているようなシステムが注目されている。
 特許文献1には、非地上信号受信機が非地上ノードからデータパケットを十分に正確に受信した場合は、肯定応答コマンドを生成し、非地上信号受信機が非地上ノードからデータパケットを不正確に受信した場合は、否定応答コマンドを生成することでビジー状態の地上基地局の負荷を軽減することが可能なシステムが開示されている。
特表2020-535770号公報
 しかしながら、特許文献1の開示技術は、衛星地上連接システムにおいて、複数の非地上系事業者と複数の地上系事業者とが相互接続されていることを想定していない。このため、特許文献1の開示技術では、例えばユーザの要求トラヒックをどの非地上系事業者にどれだけ流すかを個々の事業者毎に調整する必要があり、効率が低いという問題点があった。
 そこで、本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、ユーザの要求に応じて、柔軟かつグローバルな通信ネットワークの構築や最適化が可能となる、衛星地上連接システムにおけるリソースとネットワークとの通信制御システム、装置及び方法を提供することにある。
 第1発明に係る通信制御システムは、非地上系通信局を含む非地上系ノード群と地上系通信局を含む地上系ノード群との間の非地上系通信を制御する非地上系リンク制御手段と、前記地上系ノード群と1以上の通信端末との間の地上系通信を制御する地上系リソース制御手段と、を備え、前記非地上系リンク制御手段は、前記非地上系ノード群と前記地上系ノード群と前記通信端末とのうちの少なくとも1の通信環境に関するモニタリング情報に基づいて、前記非地上系通信を制御するための非地上系回線パラメータを算出し、前記地上系リソース制御手段は、前記モニタリング情報と前記非地上系リンク制御手段により算出された非地上系回線パラメータとに基づいて、前記地上系通信を制御するための地上系回線パラメータを算出することを特徴とする。
 第2発明に係る通信制御システムは、第1発明において前記非地上系リンク制御手段は、通信の要求に関する要求情報と、前記モニタリング情報とに基づいて、前記非地上系回線パラメータを算出することを特徴とする。
 第3発明に係る通信制御システムは、第1発明において、前記非地上系リンク制御手段は、前記要求情報に基づいて、前記通信端末の通信を制御する優先順位を決定し、決定した前記優先順位と、前記モニタリング情報とに基づいて、前記非地上系回線パラメータを算出することを特徴とする。
 第4発明に係る通信制御システムは、第1発明~第3発明の何れかにおいて、前記非地上系ノード群の間の非地上系ネットワーク通信を制御する非地上系ネットワーク制御手段をさらに備え、前記非地上系ネットワーク制御手段は、前記モニタリング情報に基づいて、非地上系ネットワーク通信を制御するためのネットワーク回線パラメータを算出し、前記非地上系リンク制御手段は、前記モニタリング情報と前記非地上系ネットワーク制御手段により算出されたネットワーク回線パラメータとに基づいて、前記非地上系回線パラメータを算出すること、を特徴とする。
 第5発明に係る通信制御装置は、非地上系通信局を含む非地上系ノード群と地上系通信局を含む地上系ノード群との間の非地上系通信を制御する非地上系リンク制御部と、前記地上系ノード群と1以上の通信端末との間の地上系通信を制御する地上系リソース制御部と、を備え、前記非地上系リンク制御部は、前記非地上系ノード群と前記地上系ノード群と前記通信端末とのうちの少なくとも1の通信環境に関するモニタリング情報に基づいて、前記非地上系通信を制御するための非地上系回線パラメータを算出し、前記地上系リソース制御部は、前記モニタリング情報と前記非地上系リンク制御部により算出された非地上系回線パラメータとに基づいて、前記地上系通信を制御するための地上系回線パラメータを算出することを特徴とする。
 第6発明に係る通信制御方法は、非地上系通信体を含む非地上系ノード群と地上系通信体を含む地上系ノード群との間の非地上系通信を制御する非地上系リンク制御ステップと、前記地上系ノード群と1以上の通信端末との間の地上系通信を制御する地上系リソース制御ステップと、をコンピュータに実行させ、前記非地上系リンク制御ステップは、前記非地上系ノード群と前記地上系ノード群と前記通信端末とのうちの少なくとも1の通信環境に関するモニタリング情報に基づいて、前記非地上系通信を制御するための非地上系回線パラメータを算出し、前記地上系リソース制御ステップは、前記モニタリング情報と前記非地上系リンク制御ステップにより算出された非地上系回線パラメータとに基づいて、前記地上系通信を制御するための地上系回線パラメータを算出することを特徴とする。
 第1発明~第6発明によると、非地上系リンク制御手段は、モニタリング情報に基づいて、非地上系回線パラメータを算出し、地上系リソース制御手段は、モニタリング情報と非地上系回線パラメータとに基づいて、地上系回線パラメータを算出する。このため、複数の非地上系事業者及び地上系事業者が存在する場合においても、非地上系ネットワーク及び地上系ネットワークを問わないローミングが可能となる。また、個々の非地上系事業者と地上系事業者とのカバレッジや容量に差異があったとしても、この差異に応じて、適切な回線パラメータを算出することが可能となる。これにより、ユーザの要求に応じて、柔軟かつグローバルな通信ネットワークの構築や最適化が可能となる。
 特に、第2発明によると、非地上系リンク制御手段は、要求情報と、モニタリング情報とに基づいて、非地上系回線パラメータを算出する。このため、ユーザやユースケースの特徴に応じて、適切な回線パラメータを算出することが可能となる。これにより、ユーザの要求に応じ、より柔軟かつグローバルな通信ネットワークの構築や最適化が可能となる。
 特に、第3発明によると、非地上系リンク制御手段は、要求情報に基づいて、優先順位を決定し、決定した優先順位と、モニタリング情報とに基づいて、非地上系回線パラメータを算出する。このため、ユーザやユースケースの特徴に応じて、より適切な回線パラメータを算出することが可能となる。これにより、ユーザの要求に応じ、より柔軟かつグローバルな通信ネットワークの構築や最適化が可能となる。
 特に、第4発明によると、非地上系ネットワーク制御手段は、モニタリング情報に基づいて、非地上系ネットワーク通信を制御するためのネットワーク回線パラメータを算出し、非地上系リンク制御手段は、モニタリング情報と非地上系ネットワーク制御手段により算出されたネットワーク回線パラメータとに基づいて、非地上系回線パラメータを算出する。このため、非地上系事業者及び地上系事業者のそれぞれの回線状態を考慮した回線パラメータを算出することが可能となる。これにより、ユーザの要求に応じて、より柔軟かつグローバルな通信ネットワークの構築や最適化が可能となる。
図1は、本発明を適用した階層的通信制御システムの全体構成を示す図である。 図2は、管理局とフィーダリンク地球局との構造を示す図である。 図3は、地上系ノード群等の地上系通信局の構成を示す図である。 図4は、オーケストレータの構成を示す図である。 図5は、階層的通信制御システムの動作のフローを示す図である。 図6は、オーケストレータの動作のフローを示す図である。 図7は、管理局の動作のフローを示す図である。 図8は、地上系基地局等の地上系事業者の動作のフローを示す図である。 図9(a)は、C-plane(control plane)を用いた階層的通信制御システムの構成を示す図である。図9(b)は、M-plane(management plane)を用いた階層的通信制御システムの構成を示す図である。 図10は、U-plane(user plane)を用いた階層的通信制御システムの構成を示す図である。
 以下、本発明を適用した階層的通信制御システムについて、図面を参照しながら詳細に説明をする。
 図1は、本発明を適用した階層的通信制御システム100の全体構成を示している。階層的通信制御システム100は、非地上系ノード群1と、非地上系ノード群1と接続される地上系ノード群2と、非地上系ノード群1と地上系ノード群2とに接続される管理局3と、非地上系ノード群1と管理局3とに接続されるフィーダリンク地球局4と、管理局3に接続されるオーケストレータ5と、フィーダリンク地球局4とオーケストレータ5とに接続される地上系コア6と、フィーダリンク地球局4と地上系コア6とに接続されるデータネットワーク7とを備える。また、階層的通信制御システム100は、図1に示すような形態に限らず、非地上系ノード群1と、地上系ノード群2と、管理局3と、フィーダリンク地球局4と、オーケストレータ5と、地上系コア6と、データネットワーク7とが任意に接続されてもよい。
 また、階層的通信制御システム100は、それぞれ異なる事業者により管理されている複数の非地上系ノード群1(1A~1C)、複数の管理局3(3A~3C)、複数のフィーダリンク地球局4(4A~4C)、地上系コア6(6A~6C)を備えてもよい。
 非地上系ノード群1は、非地上系通信局を含む非地上系ノードからなるノード群である。非地上系ノード群1は、静止軌道(GEO:Geostationary Earth Orbit)衛星11や、非静止軌道(NGSO:Non-Geostationary Orbit)衛星12、高高度通信プラットフォーム13(HAPS:High-Altitude Platform Stations)、ドローン14等の無人航空機等の任意の軌道及び高度に存在する非地上系通信局を含む非地上系ノードからなるノード群である。非地上系ノード群1(1A、1B)は、それぞれ異なる非地上系事業者により管理されてもよい。非地上系ノード群1は、例えば複数の静止軌道衛星11、複数の非静止軌道衛星12(12A~12C)、複数の高高度通信プラットフォーム13(13A、13B)、複数のドローン14(14A、14B)等の複数の非地上系事業者により管理される非地上系ノードが含まれてもよい。
 非地上系ノード群1は、地上系ノード群2との間で非地上系通信を行う。また、非地上系ノード群1は、非地上系事業者が管理する部分からなる系である非地上系の間で非地上系ネットワーク通信を行う。また、非地上系ノード群1は、それぞれ異なる非地上系事業者により管理される非地上系ノード群1(1A、1B)との間で非地上系ネットワーク通信を行ってもよい。
 非地上系は、非地上系事業者が管理する部分からなる系であり、非地上系ノード群1、非地上系ユーザ、フィーダリンク地球局4、及び管理局3等が含まれる。非地上系ユーザは、非地上系ノード群1と直接通信し、通信サービスを受ける固定局及び移動局であり、移動局は飛翔体(航空機22、ドローン14、HAPS13、UAV(Unmanned Aerial Vehicle)等)、海上・海中・水上・水中の移動体(船舶24、UAV、USV(Unmanned Surface Vehicles)等)、地上の移動体(自動車23、列車等)でもよい。
 非地上系ノード群1が有する通信ペイロードは、受信した信号に対して周波数変換、増幅を行った後に他のノード(フィーダリンク地球局4を含む)に向け送信するベントパイプ型(Transparent型)ペイロードでもよい。また、非地上系ノード群1が有する通信ペイロードは、受信した信号に対して搭載されたプロセッサを用いて復調、復号、計算処理、周波数変換、変調、符号化、増幅を行った後に他のノード(フィーリング地球局4を含む)に向け送信する再生型(Regenerative型)ペイロードでもよい。非地上系ネットワーク1が有する通信ペイロードは、デジタルチャネライザやデジタルビームフォーマなどフレキシブルペイロードが搭載されていてもよい。
 地上系ノード群2は、地上系基地局21、通信端末211等の地上系通信局が含まれるノード群である。地上系ノード群2は、地上系事業者により管理されるノード群であってもよい。また、地上系ノード群2は、複数の地上系基地局21(21A~21C)、複数の通信端末211(211A~211E)を備えてもよい。
 地上系ノード群2は、対象とする移動通信システムの世代が限定されておらず、5G、4G/LTE、3G、今後新たに標準化される世代の移動通信システム(Beyond5G/6G)等を対象としてもよい。地上系ノード群2は、対象とする移動通信システムの世代に応じて適当な通信端末211、地上系基地局21、地上系コア6の機能及びそれらのインタフェース機能を有してもよい。
 地上系ノード群2は、地上系事業者が管理する部分から成る系である地上系の間で地上系通信を行う。地上系は、地上系事業者が管理する部分から成る系であり、通信端末211、地上系基地局21、及び地上系コア6等が含まれる。
 管理局3は、非地上系ノード群1、地上系ノード群2、フィーリング地上局4、オーケストレータ5等に指示を行い、非地上系通信及び地上系通信の制御を行う。管理局3は、例えば非地上系ノード群1と地上系ノード群2と通信端末211とのうちの少なくとも1の通信環境に関するモニタリング情報に基づいて、非地上系通信を制御するための非地上系回線パラメータを算出する。
 フィーダリンク地球局4は、非地上系ノード群1と通信端末211との間の通信回線を収容する地球局であり、インターネットなどデータネットワーク(DN:Data Network)に接続されている。フィーダリンク地球局4は、非地上系を地上系のバックホールとして利用する場合、地上系事業者及び地上系コア6との中継点にもなる。フィーダリンク地球局4は、非地上系事業者毎に設けられてもよい。また、フィーダリング地球局4は、設けられた非地上系事業者とは異なる非地上系事業者に利用されてもよい。
 オーケストレータ5は、階層的通信制御システム100のネットワーク全体を統括して管理する。オーケストレータ5は、例えばモニタリング情報に基づいて、非地上系ネットワーク通信を制御するためのネットワーク回線パラメータを算出する。
 地上系コア6は、通信端末211の登録、認証、セッション確立などを行う機能を有する。地上系コア6は、地上系の要求調整や各通信端末211へのリソース配分を決定する機能を持っていてもよい。地上系コア6は、地上系事業者毎に設けられてもよいし、設けられた地上系事業者とは異なる事業者により、利用されてもよい。
 データネットワーク7は、インターネット等の任意のネットワークである。また、データネットワーク7は、各種情報が保存されたクラウド等であってもよい。
 通信端末211は、地上系通信のサービスを受ける端末であり、地上系基地局21を介して通信してもよいし、非地上系ノード群1とのインタフェースを有する端末であれば非地上系ノード群1と直接通信してもよい。
 次に、図2を用いて管理局3の機能について説明する。図2は、管理局3とフィーダリンク地球局4との構造を示す図である。
 管理局3は、図2に示すように、非地上系NOC(Network Operations Center)32と、非地上系NOC32に接続される非地上系SOC(Satellite Operations Center)31と、非地上系NOC32と非地上系SOC31とに接続されるNOCデータベース部33とを備える。また、これらの構成は任意の接続により配置されてもよい。
 非地上系NOC32は、例えばモニタリング情報に基づいて、非地上系通信を制御するための非地上系回線パラメータを算出する。また、非地上系NOC32は、例えばモニタリング情報に基づいて、非地上系ネットワーク通信を制御するためのネットワーク回線パラメータを算出してもよい。非地上系NOC32は、非地上系事業者毎に設けられてもよい。かかる場合、非地上系NOC32は、設けられた非地上系事業者とは異なる非地上系事業者の地上系通信を制御するための地上系回線パラメータを算出してもよい。
 非地上系NOC32は、非地上系SOC31に接続されるNOC処理部321と、NOC処理部321とNOCデータベース部33とに接続されるNOC制御部322と、NOC処理部321とオーケストレータ5とに接続されるNOCオーケストレータインタフェース部325とを備える。
 NOCオーケストレータインタフェース部325は、オーケストレータ5とのインタフェース機能を有する。NOCオーケストレータインタフェース部325は、オーケストレータ5から通信の要求に関する要求情報を取得し、NOC制御部322で決定した各種回線パラメータ等をオーケストレータ5に通知する。
 NOC処理部321は、NOCオーケストレータインタフェース部325及び非地上系ノード通信部41から受領した情報を元にNOC制御部322の利用する機能を決定する。NOC処理部321は、非地上系ユーザの自己位置座標、通信先、QoSパラメータ、要求帯域等の要求情報を取得してもよい。また、NOC制御部322で決定された情報に基づき、NOCオーケストレータインタフェース部325、コマンド作成部313、非地上系ノード通信部41に対する通知内容を決定する。
 NOC制御部322は、NOC非地上系ネットワーク制御計算部323とNOC非地上系リンク制御計算部324とを備える。NOC制御部322は、非地上系事業者の役割に応じて、NOC非地上系ネットワーク制御計算部323とNOC非地上系リンク制御計算部324とでパラメータ計算を行う。NOC制御部322は、計算の際にはNOCデータベース部33からデータを読み出す。NOC制御部322は、計算が終了し、非地上系ノードへのコマンド送信が完了した時点で、NOCデータベース部33の更新を行う。また、NOC制御部322は、オーケストレータ5が非地上系ネットワークの制御を行う場合、NOC非地上系ネットワーク制御計算部324を備えていなくてもよい。
 NOC非地上系ネットワーク制御計算部323は、モニタリング情報に基づいて、非地上系ネットワーク通信を制御するためのネットワーク回線パラメータを算出する。NOC非地上系ネットワーク制御計算部323は、算出したネットワーク回線パラメータに応じて、通信に利用するビーム(電波を利用するマルチビーム衛星の場合)、周波数/波長、出力パワー、帯域割当て(デジタルチャネライザ搭載衛星の場合)、ビーム照射領域(デジタルビームフォーマ搭載衛星の場合)、変調方式、誤り訂正符号の種類と符号化率、暗号化の有無を決定する。
 NOC非地上系リンク制御計算部324は、モニタリング情報に基づいて、非地上系通信を制御するための非地上系回線パラメータを算出する。
 NOCデータベース部33は、モニタリング情報を保存するNOC回線モニタリングデータベースDB1と非地上系ノードの軌道の関する情報を保存するNOC非地上系ノード軌道データベースDB2と、要求情報を保存するNOCユーザ要求データベースDB3とを備える。NOCデータベース部33は、クラウドサーバに接続されており、非地上系事業者が有する機能部が分散配置されている場合、クラウドサーバを介して、情報を共有する。
 非地上系SOC31は、非地上系NOC32から伝達された各種回線パラメータからコマンドを作成する。非地上系SOC31は、非地上系事業者毎に設けられてもよい。かかる場合、非地上系SOC31は、非地上系NOC32により算出された設けられた非地上系事業者とは異なる非地上系事業者の地上系通信を制御するための地上系回線パラメータからコマンドを作成する。
 非地上系SOC31は、NOC処理部321から出力された情報に基づいてコマンドを作成するコマンド作成部313と、コマンド作成部313により作成されたコマンドを送信するコマンド送信部311と、受信した情報をNOCデータベース部33に出力するテレメトリ受信部312とを備える。非地上系SOC31は、非地上系事業者へのコマンド送信と各非地上系事業者からのテレメトリ受信を担う。
 NOCデータベース部33は、モニタリング情報を保存するNOC回線モニタリングデータベースDB1と非地上系ノードの軌道の関する情報を保存するNOC非地上系ノード軌道データベースDB2と、要求情報を保存するNOCユーザ要求データベースDB3とを備える。
 フィーダリング地球局4は、非地上系ノード群1と通信するための非地上系ノード通信部41と、地上系ノード群2と通信するための地球局地上系事業者インタフェース部42とを備える。
 非地上系ノード通信部41は、非地上系ノード群1との通信を行う。非地上系ノード通信部41は、データネットワーク7に接続されており、後述するU-planeを用いる場合、非地上系ユーザと信号をやり取りする。非地上系ノード通信部41は、得られた各種情報をNOCデータベース部33に送る。非地上系ノード通信部41は、NOC処理部321に対して、非地上系ユーザの要求情報を通知する。
 地球局地上系事業者インタフェース部42は、複数の地上系事業者と接続されており、後述するU-plane又はC-planeを用いる場合、地上系ユーザと信号をやり取りする。
 地上系基地局21は、通信端末211のトラヒックを収容する地上局であり、非地上系ノード群1との通信インタフェースを有する。地上系基地局21は、非地上系ノード群1との通信インタフェースを持たず、地上系基地局21に接続された地上系コア6の一部やルータ等のネットワークノードが非地上系ノード群1との通信インタフェースを持っていてもよい。地上系基地局21は、非地上系ノード群1と通信する際には非地上系ユーザとして取り扱われてもよい。地上系基地局21は、複数のスライスが定義されていれば、複数の非地上系ユーザとして取り扱ってもよい。地上系基地局21は、地上系とのインタフェースを有し、地上系コア6と直接通信してもよい。地上系基地局21は、地上系事業者毎に設けられてもよいし、設けられた地上系事業者とは異なる事業者により、利用されてもよい。スライスは、特定のQoSパラメータを持つ複数の地上系ユーザのまとまりである。各ユーザのQoSパラメータやユースケースに応じてスライスを構成するのは地上系事業者の地上系コア6または地上系基地局21でもよいしオーケストレータ5でもよい。ある地上系基地局21が収容するユーザが複数スライスにまたがる場合、そのスライスの数だけ非地上系ユーザが存在するとして取り扱ってもよい。スライスを生成する機能をオーケストータ5、非地上系ノード群1が持っていてもよい。QoSパラメータは、スライスごとに再度定義してもよい。
 次に、地上系ノード群2等の地上系通信局の構成について説明する。図3は、地上系ノード群2等の地上系通信局の構成を示す図である。
 地上系基地局21は、図3に示すように、地上系処理部214と、地上系処理部214と接続される地上系制御部216と、地上系制御部216と接続される地上系データベース部219と、地上系処理部214と地上系データベース部218と地上系コア6とに接続される地上系コア部213と、地上系コア部213と非地上系事業者と接続される地上系非地上系事業者インタフェース部212と、オーケストレータ5と地上系処理部214とに接続されるオーケストレータインタフェース部215とを備える。
 オーケストレータインタフェース部215は、オーケストレータ5とのインタフェース機能を有する。オーケストレータインタフェース部215は、オーケストレータ5に通信端末211等からの通信の要求に関する要求情報を通知し、計算結果や割当結果等を受領する。
 地上系非地上系事業者インタフェース部212は、複数の非地上系事業者と接続されており、後述するU-plane又はC-planeを用いる場合、地上系ユーザと信号をやり取りする。
 地上系コア部213は、後述するC-planeを用いる場合、地上系ユーザと信号をやり取りする。地上系コア部213は、リソース管理が必要な場合、地上系処理部214に対してリソース制御要求を出す。地上系コア部213は、データネットワーク7とも接続されており、後述するU-planeを用いる場合、地上系ユーザの信号が通る。
 地上系処理部214は、オーケストレータインタフェース部215及び地上系コア部213から受領した情報を元に地上系制御部216の利用する機能を決定する。地上系処理部214は、非地上系ユーザの自己位置座標、通信先、QoSパラメータ、要求帯域等の要求情報を取得してもよい。地上系処理部214は、地上系制御部216で決定された情報に基づき、オーケストレータインタフェース部215、地上系コア部213に対する通知内容を決定する。
 地上系制御部216は、地上系リソース制御部217と地上系通信要求調整計算部218とを備える。地上系制御部216は、計算の際には地上系データベース部219からデータを読み出し、計算後には地上系データベース部219のデータを更新する。
 地上系リソース制御部217は、モニタリング情報と非地上系NOC32等により算出された非地上系回線パラメータとに基づいて地上系通信を制御するための地上系回線パラメータを算出する。
 地上系通信要求調整計算部218は、モニタリング情報に基づいて、地上系通信の調整を行う。
 地上系データベース部219は、モニタリング情報を保存する地上系回線モニタリングデータベースDB4と要求情報を保存する地上系ユーザ要求データベースDB5とを備える。地上系データベース部219は、クラウドサーバに接続されており、地上系事業者が有する機能部が分散配置されている場合、クラウドサーバを介して、情報を共有する。
 図4は、オーケストレータ5の構成を示す図である。オーケストレータ5は、オーケストレータ系処理部52と、オーケストレータ系処理部52と接続されるオーケストレータ制御部54と、オーケストレータ系処理部52とオーケストレータ制御部54とに接続されるオーケストレータデータベース部57と、オーケストレータ系処理部52とオーケストレータデータベース部57とに接続される非地上系事業者インタフェース部51と、オーケストレータ系処理部52とオーケストレータデータベース部57とに接続される地上系事業者インタフェース部53とを備える。また、これらの構成は任意の接続により配置されてもよい。
 非地上系事業者インタフェース部51は、複数の非地上系事業者と接続されており、非地上系事業者に要求情報とオーケストレータ系処理部52で算出した各種の計算結果を通知し、非地上系事業者から計算結果、割当結果、モニタリング情報等を受信する。
 オーケストレータ処理部52は、オーケストレータデータベース部57から非地上系ノードの軌道の関する情報やモニタリング情報等を読み出し、オーケストレータ制御部54と連携しながら、将来のスループット、遅延、リンクの生存確率等の予測や将来利用する周波数リソースの最適化計算を行う。オーケストレータ処理部52は、非地上系事業者インタフェース部51及び地上系事業者インタフェース部53で受領した情報を元にオーケストレータ制御部54の利用する機能を決定する。また、オーケストレータ処理部52は、オーケストレータ制御部54で決定された情報に基づき、各事業者に対する通知内容を決定する。
 地上系事業者インタフェース部53は、複数の地上系事業者と接続されており、地上系事業者から要求情報とオーケストレータ処理部52で算出した各種の計算結果を通知し、非地上系事業者から計算結果、割当結果、モニタリング情報等を受信する。
 オーケストレータ制御部54は、オーケストレータ非地上系ネットワーク制御計算部55とオーケストレータ地上系通信要求調整計算部56とを備える。オーケストレータ制御部54は、オーケストレータ5の役割に応じて各パラメータ計算を行う。オーケストレータ制御部54は、必要に応じてオーケストレータデータベース部57からデータを読み出す。
 オーケストレータ非地上系ネットワーク制御計算部55は、モニタリング情報に基づいて、非地上系通信を制御するための非地上系回線パラメータを算出する。また、オーケストレータ非地上系ネットワーク制御計算部55は、モニタリング情報に基づいて、非地上系ノード群1の間の非地上系ネットワーク通信を制御するためのネットワーク回線パラメータを算出する。
 オーケストレータ地上系通信要求調整計算部56は、地上系通信の要求の調整を計算する。
 オーケストレータデータベース部57は、モニタリング情報を保存する回線モニタリングデータベースDB6と非地上系ノードの軌道の関する情報を保存する非地上系ノード軌道データベースDB7と、要求情報を保存するユーザ要求データベースDB8とを備える。
 次に階層的通信制御システム100の動作を説明する。図5は、階層的通信制御システム100の動作のフローを示している。階層的通信制御システム100の動作は、非地上系ネットワーク通信制御、非地上系リンク制御、地上系リソース制御の3種類の制御機能に分割されており、通信要求とリンク状態の時間変動と非地上系と地上系の異なる特性を扱うために、これらは図5に示すように階層的に実装される。
 非地上系ネットワーク通信は、非地上系ノード群1の間の通信である。また、非地上系ネットワーク通信は、それぞれ異なる非地上系事業者が管理する複数の非地上系ノード群1の間の通信でもよい。また、非地上系ネットワーク通信は、非地上系の間の通信でもよい。
 非地上系リンク制御は、非地上系ノード群1と地上系ノード群2との間の非地上系通信の制御である。また、非地上系リンク制御は、非地上系と地上系との間の通信の制御でもよい。また、非地上系リンク制御は、非地上系ノード群1が関係するリンクの通信の制御であってもよい。非地上系ノード群1が関係するリンクは、非地上系ユーザと非地上系ノード群1との間、非地上系ノード群1間、非地上系ノード群1とフィーダリンク地球局4との間の何れかである。
 地上系リソース制御は、地上系ノード群2と1以上の通信端末211との間の地上系通信の制御である。また、地上系リソース制御は、地上系ノード群2と地上系ユーザとの間の通信の制御であってもよい。また、地上系リソース制御は、地上系の間の通信の制御であってもよい。
 まず、ステップS1において、階層的通信制御システム100は、非地上系ネットワーク通信の制御を開始する。ステップS1において、例えばオーケストレータ5は、モニタリング情報に基づいて、非地上系ネットワーク通信を制御するためのネットワーク回線パラメータを算出し、算出したネットワーク回線パラメータに基づいて、非地上系ネットワーク通信の制御を開始する。また、ステップS1において、例えばオーケストレータ5の代わりに管理局3がモニタリング情報に基づいて、非地上系ネットワーク通信を制御するためのネットワーク回線パラメータを算出し、算出したネットワーク回線パラメータに基づいて、非地上系ネットワーク通信の制御を開始してもよい。
 モニタリング情報は、非地上系ノード群1と地上系ノード群2と通信端末211とのうちの少なくとも1の通信環境に関する情報である。モニタリング情報は、例えば非地上系ノード群1、地上系ノード群2又は通信端末211等のスループット、遅延、通信可能な地上系及び非地上系のユーザ数、ハンドオーバ数、利用する非地上系ノード数、通信の信号が通過する地上系及び非地上系の事業者の数等の評価指標である。また、モニタリング情報は、受信パワー、受信C/N(搬送波電力対雑音電力密度比)、中心周波数、帯域幅、スループット、ビットエラー率(BER:Bit Error Rate)、パケットロス率、降雨減衰量等であってもよい。また、モニタリング情報は、非地上系の通信環境に関する情報を含む。非地上系の通信環境に関する情報は、非地上系ノード群1に含まれる非地上系通信局とフィーダリンク地球局4の数、軌道、位置、カバレージ、帯域幅、及び最大電力等の仕様と、非地上系ユーザの数と、非地上系ノード群1のリソース利用状態、又はスループット、伝搬遅延、ジッタ、パケット損失、大気伝搬、及びドップラーシフト等のリンク状態等に関する情報であってもよい。回線パラメータは、通信に利用する非地上系ノード群1、利用するフィーダリンク地球局4、伝送経路、トポロジ等のネットワーク構成に関するパラメータである。また、回線パラメータは、帯域割当てに関するパラメータであってもよい。また、回線パラメータは、送信パワー、キャリア周波数、帯域幅、変調方式、誤り訂正符号の種類やその符号化率、多重化方式、キャリア数等であってもよい。ネットワーク回線パラメータは、非地上系ネットワーク通信を制御するための回線パラメータである。
 また、ステップS1において、例えばオーケストレータ5は、モニタリング情報に含まれる非地上系の通信環境に関する情報のみに基づいて、非地上系ネットワーク通信のトポロジと利用帯域を算出してもよい。
 また、ステップS1において、例えばオーケストレータ5は、非地上系ノード群1と地上系ノード群2と通信端末211とのうちの少なくとも1からの通信の要求に関する要求情報と、モニタリング情報とに基づいて、ネットワーク回線パラメータを算出してもよい。要求情報は、例えば通信を要求する地上系ユーザ及び非地上系ユーザの自己位置座標(緯度、経度、高度)、通信先(他のユーザまたはデータネットワーク7)、QoS(Quality of Service)パラメータ等であってもよい。
 QoSパラメータは、例えばリソース種別、優先度、許容遅延、セキュリティ度を含める。QoSパラメータは、リソース種別がGBRの場合には保証帯域を含めてもよい。QoSパラメータは、5Gの場合、3GPP標準の5QI(5G QoS Identifier)を用いてもよいし、新たに定義してもよい。優先度及びセキュリティ度は、ユースケースまたはユーザの課金額、通信プランに応じて設定されていてもよい。
 また、ステップS1において、例えばオーケストレータ5は、要求情報に基づいて、通信を制御する優先順位を、複数の通信端末211から、それぞれ決定し、決定した優先順位と、モニタリング情報とに基づいて、ネットワーク回線パラメータを算出してもよい。オーケストレータ5は、例えばそれぞれの通信端末211の優先度に基づいて、優先順位を決定してもよい。
 また、ステップS1において、例えばオーケストレータ5は、各事業者単位で通信に用いる帯域幅割当てを決定してもよい。かかる場合、例えばオーケストレータ5は、事業者AのGEOは50MHz、LEOは50MHz、事業者BのGEOは50MHz、LEOは50MHzの帯域幅を割り当てる。また、ステップS1において、例えばオーケストレータ5は、事業者Aの合計帯域幅を100MHz、事業者Bの合計帯域幅を100MHzとしてそれぞれ割り当ててもよい。
 次に、ステップS2において、管理局3は、非地上系ネットワークのトポロジを制御する。ステップS2において、例えばオーケストレータ5は、ステップS1により算出したネットワーク回線パラメータに基づいて、非地上系ネットワークのトポロジを制御する。トポロジは、ネットワークの構造であり、通信経路や回線の形状等である。
 次にステップS3において、管理局3は、非地上系ビーム制御を行う。例えばオーケストレータ5は、ステップS1により算出したネットワーク回線パラメータに基づいて、地上系基地局21及びスライスを含む各非地上系ユーザの要求量を踏まえて各ノードや各ノードの各ビームに対する帯域割当てを制御する。また、ステップS3において、管理局3は、周波数フレキシビリティ機能やエリアフレキシビリティ機能の制御を行ってもよい。
 次にステップS4において、管理局3は、非地上系リンク制御を行う。例えば管理局3は、ステップS1により算出したネットワーク回線パラメータとモニタリング情報とに基づいて、非地上系通信を制御するための非地上系回線パラメータを算出し、非地上系通信を制御する。ステップS4において、例えば管理局3は、地上系ノード群2の通信環境を示すモニタリング情報とステップS1により算出したネットワーク回線パラメータに基づいて、地上系基地局21を含む非地上系ノード群1が関係するリンクである非地上系通信に周波数の帯域を割り当てる。また、管理局3は、電波を利用する場合には周波数チャネル、光を利用する場合には光多重度などを決定する。また、ステップS4において、例えば管理局3は、ステップS1により算出したネットワーク回線パラメータに基づいて、各非地上系リンクの出力電力、変調/符号化方式等も決定する。また、マルチビーム非地上系ノードの場合は、各非地上系リンクの使用ビームであってもよい。
 また、ステップS4において、管理局3は、要求情報と、モニタリング情報とに基づいて、非地上系回線パラメータを算出してもよい。また、ステップS4において、例えば管理局3は、モニタリング情報に含まれる地上系の通信環境に関する情報とステップS1により算出した非地上系ネットワーク通信のトポロジと利用帯域とに基づいて地上系通信に周波数の帯域を割り当ててもよい。
 また、ステップS4において、管理局3は、ステップS1により算出したネットワーク回線パラメータを用いることなく、モニタリング情報に基づいて、非地上系回線パラメータを算出してもよい。
 次にステップS5において、階層的通信制御システム100は、地上系通信のリソースの制御を行う。ステップS5において、例えば地上系基地局21は、例えばステップS4により算出した非地上系回線パラメータとモニタリング情報とに基づいて、地上系通信を制御するための地上系回線パラメータを算出し、算出した地上系回線パラメータに基づいて、地上系通信を制御する。ステップS5において、例えば地上系基地局21は、例えばステップS4により算出した非地上系回線パラメータとモニタリング情報とに基づいて、地上系ユーザと地上系基地局21との間の通信の帯域を割り当てる。
 また、ステップS5において、地上系基地局21は、要求情報と、モニタリング情報とに基づいて、地上系回線パラメータを算出してもよい。また、ステップS5において、例えば地上系基地局21は、モニタリング情報に含まれる通信端末211の通信環境に関する情報とステップS4により割り当てた周波数の帯域とに基づいて、地上系ユーザと地上系基地局21との間の通信の帯域を割り当ててもよい。
 次に、階層的通信制御システム100におけるオーケストレータ5と、管理局3と、地上系基地局21とのそれぞれの動作について説明する。
 図6は、オーケストレータ5の動作のフローを示す。オーケストレータ5は、まずステップS100において、時点tを0とする。
 次に、オーケストレータ5は、ステップS101において、モニタリング情報を受信する。かかる場合、オーケストレータ5は、地上系事業者及び非地上系事業者が管理する地上系通信局及び非地上系通信局のNOCデータベース部33、オーケストレータデータベース部57、及び地上系データベース部219等から各種情報を受信する。
 次に、オーケストレータ5は、ステップS102において、非地上系ネットワーク通信の制御周期を判断する。オーケストレータ5は、非地上系ネットワーク通信の制御周期に当てはまっている場合、オーケストレータ5は、ステップS103に移行する。オーケストレータ5は、非地上系ネットワーク通信の制御周期に当てはまっていない場合、オーケストレータ5は、ステップS117に移行する。
 非地上系ネットワーク通信の制御の制御周期は、オーケストレータ5が複数の非地上系事業者から非地上系ノード群1の状態を収集し、非地上系と地上系事業者間で調整を行う必要がある。非地上系リンク制御は、非地上系NOC32が自身のシステムを管理しているため、非地上系ネットワーク通信の制御よりも頻繁に実行できる。このため、非地上系ネットワーク通信の制御の制御周期は、非地上系リンク制御の制御周期よりも長い時間を要する。また、地上系事業者は、地上系リソース制御を、ミリ秒~秒程の周期で行う。また、地上系では、非地上系リンク制御の制御周期が地上系リソース制御の制御周期よりも長いため、割当帯域を頻繁に変更することができず、非地上系リンク制御の制御周期内では地上系ユーザが同じ総帯域を共有する。
 次に、オーケストレータ5は、ステップS103において、非地上系ネットワーク通信の制御を開始する。
 次に、オーケストレータ5は、ステップS104において、要求情報を受信する。かかる場合、オーケストレータ5は、例えば地上系事業者、又は非地上系事業者から、地上系ユーザ又は非地上系ユーザからの通信の要求を示す要求情報を受信する。
 次に、オーケストレータ5は、ステップS105において、地上系事業者の要求調整を行う。
 次に、オーケストレータ5は、ステップS106において、オーケストレータ5が非地上系ネットワーク通信の制御を行うかを判断する。オーケストレータ5は、非地上系ネットワーク通信の制御を実施する場合、オーケストレータ5は、ステップS107に移行する。オーケストレータ5は、非地上系ネットワーク通信の制御を行わない場合、オーケストレータ5は、ステップS111に移行する。
 複数の非地上系事業者が存在する場合、オーケストレータ5は、非地上系トポロジ制御、非地上系及び地上系事業者からの要求収集、事業者間の交渉を担当し、各非地上系事業者は自身が有するノードに関係する非地上系ビーム制御と非地上系リンク制御を担当し、各地上系事業者は地上系リソース制御を担当してもよい。
 非地上系事業者が1つしか存在しない場合、非地上系トポロジ制御となる対象は当該非地上系事業者が管理する非地上系であり、自身で非地上系トポロジ制御を実行できるため、オーケストレータ5は非地上系トポロジ制御を実行しなくてもよい。
 次に、オーケストレータ5は、ステップS107において、利用する非地上系ノード及びフィーダリンク地球局4等を決定する。オーケストレータ5は、例えばステップS1により算出したネットワーク回線パラメータに基づいて、非地上系ネットワークのトポロジを決定し、決定したトポロジに基づいて、利用する非地上系ノード及びフィーダリンク地球局4等を決定してもよい。
 次に、オーケストレータ5は、ステップS108において、ステップS107により決定した利用する地上系ノード及びフィーダリンク地球局4に通知を行う。
 次に、オーケストレータ5は、ステップS109において、ステップS108により通知した地上系ノード及びフィーダリンク地球局4から了承が得られたかを判断する。オーケストレータ5は、了承が得られた場合、ステップS116に移行する。オーケストレータ5は、了承が得られない場合、ステップS110に移行する。
 次に、オーケストレータ5は、ステップS116において、非地上系ネットワークの制御を終了する。
 オーケストレータ5は、ステップS110において、非地上系事業者及び地上系事業者との調整を行い、再びステップS107に移行する。
 オーケストレータ5は、ステップS111において、ステップS104により受信した要求情報を非地上系事業者に通知する。オーケストレータ5は、地上系ユーザからの要求情報を元の値のまま非地上系事業者に通知する必要はなく、非地上系のモニタリング情報と、地上系ユーザからの要求の予測に基づいて、非地上系事業者に要求する要求帯域幅の合計を増減してもよい。
 次に、オーケストレータ5は、ステップS112において、ステップS111により通知した非地上系事業者から決定したネットワークのトポロジを受信する。
 次に、オーケストレータ5は、ステップS113において、ステップS112により受信したネットワークのトポロジに用いられる非地上系事業者及び地上系事業者に通知を行う。
 次に、オーケストレータ5は、ステップS114において、ステップS113により通知した非地上系事業者及び地上系事業者から了承が得られたかを判断する。オーケストレータ5は、了承が得られた場合、オーケストレータ5は、ステップS116に移行する。オーケストレータ5は、了承が得られない場合、オーケストレータ5は、ステップS115に移行する。
 オーケストレータ5は、ステップS115において、非地上系事業者及び地上系事業者との調整を行い、再びステップS111に移行する。
 次に、オーケストレータ5は、ステップS117において、運用を終了するかを判断する。運用を終了する場合、オーケストレータ5の動作を終了する。運用を終了しない場合、ステップS118に移行する。
 次に、オーケストレータ5は、ステップS118において、時点t=t+1として、再びステップS101に移行する。
 次に、管理局3の動作について、図7を用いて説明する。図7は、管理局の動作のフローを示す図である。管理局3は、まずステップS200において、時点tを0とする。
 次に、管理局3は、ステップS201において、要求情報とモニタリング情報とを受信する。
 次に、管理局3は、ステップS202において、要求情報とモニタリング情報とをデータベースに保存する。ステップS202において、管理局3は、例えばNOCデータベース部33に要求情報とモニタリング情報とを保存する。また、管理局3は、ステップS107により算出されたネットワーク回線パラメータを保存してもよい。
 次に、管理局3は、ステップS203において、非地上系通信を制御する非地上系リンクの制御周期を判断する。管理局3は、非地上系リンクの制御周期に当てはまっている場合、ステップS204に移行する。管理局3は、非地上系リンクの制御周期に当てはまっていない場合、ステップS227に移行する。
 次に、管理局3は、ステップS204において、非地上系リンクの制御を開始する。
 次に、管理局3は、ステップS205において、NOCデータベース部33の読み出しを行う。かかる場合、例えば管理局3は、ステップS202により保存したネットワーク回線パラメータ、要求情報及びモニタリング情報を読み出してもよい。
 次に、管理局3は、ステップS206において、非地上系ノードへの帯域割当て、周波数チャネル、使用ビーム、出力電力、変調/符号化方式等決定処理を行う。かかる場合、管理局3は、ステップS205により読み出したモニタリング情報及び要求情報に基づいて、非地上系回線パラメータを算出し、算出した回線パラメータに応じて、処理を行ってもよい。また、管理局3は、モニタリング情報とネットワーク回線パラメータとに基づいて非地上系回線パラメータを算出してもよい。
 次に、管理局3は、ステップS207において、非地上系ノードへのコマンドの作成及び送信を行う。かかる場合、管理局3は、ステップS206により決定した各種処理を行うためのコマンドを作成及び送信する。
 次に、管理局3は、ステップS208において、フィーダリング地球局4への情報の通知を行う。
 次に、管理局3は、ステップS209において、ステップS206により決定した各種情報をデータベースに保存する。
 次に、管理局3は、ステップS210において、非地上系リンク制御を終了する。
 次に、管理局3は、ステップS211において、非地上系ネットワーク通信の制御の周期を判断する。管理局3は、非地上系ネットワーク通信の制御周期に当てはまっている場合、ステップS212に移行する。管理局3は、非地上系ネットワーク通信の制御周期に当てはまっていない場合、ステップS227に移行する。
 次に、管理局3は、ステップS212において、非地上系ネットワーク通信の制御を開始する。
 次に、管理局3は、ステップS213において、非地上系ノードデータベースの読出しをする。かかる場合、管理局3は、ステップS202及びステップS213により保存した要求情報、モニタリング情報及び各種情報を読み出す。
 次に、管理局3は、ステップS214において、ステップS213により読み出した情報をオーケストレータ5へ通知する。管理局3がオーケストレータ5へ通知する情報は、事前に決められた最低限の情報でもよいし、最低限以上の情報でもよい。
 次に、管理局3は、ステップS215において、オーケストレータ5が非地上系ネットワーク通信の制御を行うかを判断する。管理局3は、オーケストレータ5が非地上系ネットワーク通信の制御を実施する場合、ステップS216に移行する。管理局3は、オーケストレータ5が非地上系ネットワーク通信の制御を行わない場合、ステップS219に移行する。
 次に、管理局3は、ステップS216において、ステップS108によりオーケストレータ5から通知されたネットワークのトポロジを受領する。
 次に、管理局3は、ステップS217において、他の非地上系事業者及び地上系事業者から了承が得られたかを判断する。管理局3は、了承が得られた場合、ステップS223に移行する。管理局3は、了承が得られない場合、ステップS218に移行する。
 管理局3は、ステップS218において、オーケストレータ5との調整を行い、ステップS216に移行する。
 管理局3は、ステップS219において、利用する非地上系ノード及びフィーダリンク地球局4を決定する。かかる場合、管理局3は、例えばモニタリング情報に基づいてネットワーク回線パラメータを算出し、算出したネットワーク回線パラメータから、利用する非地上系ノード及びフィーダリンク地球局4を決定する。
 管理局3は、ステップS220において、オーケストレータ5への通知を行う。
 次に、管理局3は、ステップS221において、他の非地上系事業者及び地上系事業者から了承が得られたかを判断する。管理局3は、了承が得られた場合、ステップS223に移行する。管理局3は、了承が得られない場合、ステップS222に移行する。
 管理局3は、ステップS222において、オーケストレータ5との調整を行い、ステップS219に移行する。
 管理局3は、ステップS223において、非地上系ノードへのコマンド作成及び送信を行う。
 管理局3は、ステップS224において、フィーダリング地球局4への情報の通知を行う。
 管理局3は、ステップS225において、決定した情報をNOCデータベース部33に保存する。
 管理局3は、ステップS226において、非地上系ネットワークの制御を終了する。
 次に、管理局3は、ステップS227において、運用を終了するかを判断する。運用を終了する場合、管理局3の動作を終了する。運用を終了しない場合、ステップS228に移行する。
 次に、管理局3は、ステップS228において、時点t=t+1として、再びステップS201に移行する。
 次に、地上系基地局21等の地上系事業者の動作について、図8を用いて説明する。図8は、地上系基地局等の地上系事業者の動作のフローを示す図である。地上系基地局21は、まずステップS300において、時点tを0とする。
 次に、地上系基地局21は、ステップS301において、要求情報とモニタリング情報とを受信する。
 次に、地上系基地局21は、ステップS302において、要求情報とモニタリング情報とをデータベースに保存する。ステップS302において、地上系基地局21は、例えば地上系データベース部219に要求情報とモニタリング情報とを保存する。また、地上系基地局21は、ステップS206により算出された非地上系回線パラメータを保存してもよい。
 次に、地上系基地局21は、ステップS303において、地上系通信を制御する地上系リソースの制御周期を判断する。地上系基地局21は、地上系リソースの制御周期に当てはまっている場合、ステップS304に移行する。地上系基地局21は、地上系リソースの制御周期に当てはまっていない場合、ステップS323に移行する。地上系リソースの制御周期は、非地上系リンク制御の制御周期よりも短く設定してもよい。
 次に、地上系基地局21は、ステップS304において、地上系リソースの制御を開始する。
 次に、地上系基地局21は、ステップS305において、各地上系ユーザへの帯域割当て、周波数チャネルの決定を行う。かかる場合、地上系基地局21は、例えばステップS206により算出した非地上系回線パラメータと、ステップS302により保存された要求情報とモニタリング情報とに基づいて、地上系回線パラメータを算出し、算出した地上系回線パラメータに応じて、各通信端末への帯域割当て、周波数チャネルの決定を行ってもよい。
 次に、地上系基地局21は、ステップS306において、地上系リソースの制御を終了する。
 次に、地上系基地局21は、ステップS307において、非地上系リンクの制御の周期を判断する。地上系基地局21は、非地上系リンクの制御周期に当てはまっている場合、ステップS308に移行する。地上系基地局21は、非地上系リンクの制御周期に当てはまっていない場合、ステップS323に移行する。
 次に、地上系基地局21は、ステップS308において、非地上系リンクの制御を開始する。
 次に、地上系基地局21は、ステップS309において、通信端末の要求の調整を行う。
 次に、地上系基地局21は、ステップS310において、オーケストレータ5へ要求情報やモニタリング情報を通知する。地上系基地局21がオーケストレータ5へ通知する情報は、事前に決められた最低限の情報でもよいし、最低限以上の情報でもよい。
 次に、地上系基地局21は、ステップS311において、管理局3がS206により決定したリンク割り当てを、オーケストレータ5を経由して受信する。
 次に、地上系基地局21は、ステップS312において、ステップS311により受信したリンク割り当てを了承するかを判断する。地上系基地局21は、リンク割り当てを了承する場合、ステップS314に移行する。地上系基地局21は、リンク割り当てを了承しない場合、ステップS313に移行する。
 地上系基地局21は、ステップS313において、オーケストレータ5に通知を行い、ステップS311に移行する。
 地上系基地局21は、ステップS314において、非地上系リンク制御を終了する。
 次に、地上系基地局21は、ステップS315において、非地上系ネットワークの制御の制御周期を判断する。地上系基地局21は、非地上系ネットワークの制御の周期に当てはまる場合、ステップS316に移行する。地上系基地局21は、非地上系ネットワークの制御の周期に当てはまらない場合、ステップS323に移行する。
 次に、地上系基地局21は、ステップS316において、非地上系ネットワーク通信の制御を開始する。
 次に、地上系基地局21は、ステップS317において、地上系ユーザの要求調整を行う。
 次に、地上系基地局21は、ステップS318において、オーケストレータ5へ要求情報やモニタリング情報を通知する。
 次に、地上系基地局21は、ステップS319において、オーケストレータ5がステップS107又は管理局3がS219により決定したネットワーク構造又はトポロジをオーケストレータ5を経由して受信する。
 次に、地上系基地局21は、ステップS320において、ステップS319により受信したネットワークのトポロジを了承するかを判断する。地上系基地局21は、トポロジを了承する場合、ステップS322に移行する。地上系基地局21は、ネットワーク構造を了承しない場合、ステップS321に移行する。
 地上系基地局21は、ステップS321において、オーケストレータ5に通知を行い、ステップS319に移行する。
 地上系基地局21は、ステップS322において、非地上系ネットワークの制御を終了する。
 次に、地上系基地局21は、ステップS323において、運用を終了するかを判断する。運用を終了する場合、地上系基地局21の動作を終了する。運用を終了しない場合、ステップS324に移行する。
 次に、地上系基地局21は、ステップS324において、変数t=t+1として、再びステップS301に移行する。
 これにより、オーケストレータ5、管理局3、地上系基地局21のそれぞれの動作が終了する。これにより、複数の非地上系事業者及び地上系事業者が存在する場合においても、非地上系ネットワーク及び地上系ネットワークを問わないローミングが可能となる。また、個々の非地上系事業者と地上系事業者とのカバレッジや容量に差異があったとしても、この差異に応じて、適切な回線パラメータを算出することが可能となる。これにより、ユーザの要求に応じて、柔軟かつグローバルな通信ネットワークの構築や最適化が可能となる。
 次に、階層的通信制御システム100の第2実施形態について説明する。図9(a)は、C-plane(control plane)を用いた階層的通信制御システム100の構成を示す図である。また、図9(a)、図9(b)及び図10は、非地上系システムが地上系システムのバックホールとして機能する場合の例を示している。
 階層的通信制御システム100は、非地上系ノード群1と、非地上系ノード群1と接続される地上系基地局21と航空機22、船舶24等の非地上系ユーザとフィーダリンク地球局4と、地上系基地局21と接続される通信端末211と、フィーダリンク地球局4と接続される地上系コア6と非地上系NOC32とを備える。
 階層的通信制御システム100は、通信端末211に対しては、登録及びセッション確立要求などのメッセージを地上系コア6に送信し処理を行い、非地上系ユーザに対しては、帯域幅を要求するためのメッセージを非地上系NOC32に転送し処理をする。
 通信端末211は、まず、通信端末211とインタフェースする地上系基地局21に接続し、この地上系基地局21は、通信端末211と共に非地上系ユーザとして動作する。地上系基地局21からのメッセージは、非地上系ノード群1とフィーダリンク地球局4とを経由して地上系コア6に到達する。フィーダリンク地球局4は、非地上系ユーザのリンクを収容し中継点として働く。
 一方、非地上系ユーザは、非地上系ノード群1に直接接続され、非地上系ユーザの要求メッセージはフィーダリンク地球局4を通して非地上系NOC32に到達する。かかる場合、異なる事業者間の非地上系ノード群1間のリンクも確立してもよい。
 次に、階層的通信制御システム100の第3実施形態について説明する。図9(b)は、M-plane(management plane)を用いた階層的通信制御システム100の構成を示す図である。
 階層的通信制御システム100は、非地上系ノード群1と、非地上系ノード群1と接続されるフィーダリンク地球局4と非地上系SOC31と、フィーダリンク地球局4と接続される地上系コア6と、フィーダリンク地球局4と非地上系SOC31と接続される非地上系NOC32と、地上系コア6と非地上系NOC32と接続されるオーケストレータ5とを備える。
 階層的通信制御システム100は、オーケストレータ5、非地上系NOC32、及び地上系コア6間の信号を処理する。オーケストレータ5は、非地上系NOC32及び地上系コア6とのインタフェースを持ち、これらの複数のオペレータを調整する。非地上系SOC21は、オーケストレータ5等の管理機能によってなされた決定に基づいて、非地上系ノード群1を制御するためのコマンドを送信する。
 次に、階層的通信制御システム100の第4実施形態について説明する。図10は、U-plane(user plane)を用いた階層的通信制御システム100の構成を示す図である。
 階層的通信制御システム100は、非地上系ノード群1と、非地上系ノード群1と接続される地上系基地局21と航空機22及び船舶24等の非地上系ユーザとフィーダリンク地球局4と、地上系基地局21と接続される通信端末211と、フィーダリンク地球局4と接続される地上系コア6と、地上系コア6と接続されるデータネットワーク7とを備える。
 階層的通信制御システム100は、地上系や非地上系のユーザのデータが、例えば他のユーザやデータネットワーク7等の通信先に到達する。
 本発明の実施形態を説明したが、この実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 非地上系ノード群
2 地上系ノード群
3 管理局
4 フィーダリンク地球局
5 オーケストレータ
6 地上系コア
7 データネットワーク
11 静止軌道衛星
12 非静止軌道衛星
13 高高度通信プラットフォーム
14 ドローン
21 地上系基地局
22 航空機
23 自動車
24 船舶
31 非地上系SOC
32 非地上系NOC
33 NOCデータベース部
41 非地上系ノード通信部
42 地球局地上系事業者インタフェース部
51 非地上系事業者インタフェース部
52 オーケストレータ系処理部
53 地上系事業者インタフェース部
54 オーケストレータ制御部
55 オーケストレータ非地上系ネットワーク制御計算部
56 オーケストレータ地上系通信要求調整計算部
57 データベース部
100 階層的通信制御システム
211 通信端末
212 地上系非地上系事業者インタフェース部
213 地上系コア部
214 地上系処理部
215 地上系オーケストレータインタフェース部
216 地上系制御部
217 地上系リソース制御計算部
218 地上系通信要求調整計算部
219 地上系データベース部
311 コマンド送信部
312 テレメトリ受信部
313 コマンド作成部
321 NOC処理部
322 NOC制御部
323 NOC非地上系ネットワーク制限計算部
324 NOC非地上系リンク制御計算部
325 NOCオーケストレータインタフェース部
DB1 NOC回線モニタリングデータベース
DB2 NOC非地上系ノード軌道データベース
DB3 NOCユーザ要求データベース
DB4 地上系回線モニタリングデータベース
DB5 地上系ユーザ要求データベース
DB6 回線モニタリングデータベース
DB7 非地上系ノード軌道データベース
DB8 ユーザ要求データベース

Claims (6)

  1.  非地上系通信局を含む非地上系ノード群と地上系通信局を含む地上系ノード群との間の非地上系通信を制御する非地上系リンク制御手段と、
     前記地上系ノード群と1以上の通信端末との間の地上系通信を制御する地上系リソース制御手段と、
     を備え、
     前記非地上系リンク制御手段は、前記非地上系ノード群と前記地上系ノード群と前記通信端末とのうちの少なくとも1の通信環境に関するモニタリング情報に基づいて、前記非地上系通信を制御するための非地上系回線パラメータを算出し、
     前記地上系リソース制御手段は、前記モニタリング情報と前記非地上系リンク制御手段により算出された非地上系回線パラメータとに基づいて、前記地上系通信を制御するための地上系回線パラメータを算出すること
     を特徴とする通信制御システム。
  2.  前記非地上系リンク制御手段は、通信の要求に関する要求情報と、前記モニタリング情報とに基づいて、前記非地上系回線パラメータを算出すること
     を特徴とする請求項1に記載の通信制御システム。
  3.  前記非地上系リンク制御手段は、前記要求情報に基づいて、前記通信端末の通信を制御する優先順位を決定し、決定した前記優先順位と、前記モニタリング情報とに基づいて、前記非地上系回線パラメータを算出すること
     を特徴とする請求項2に記載の通信制御システム。
  4.  前記非地上系ノード群の間の非地上系ネットワーク通信を制御する非地上系ネットワーク制御手段をさらに備え、
     前記非地上系ネットワーク制御手段は、前記モニタリング情報に基づいて、非地上系ネットワーク通信を制御するためのネットワーク回線パラメータを算出し、
     前記非地上系リンク制御手段は、前記モニタリング情報と前記非地上系ネットワーク制御手段により算出されたネットワーク回線パラメータとに基づいて、前記非地上系回線パラメータを算出すること、
     を特徴とする請求項1~3の何れか1項に記載の通信制御システム。
  5.  非地上系通信局を含む非地上系ノード群と地上系通信局を含む地上系ノード群との間の非地上系通信を制御する非地上系リンク制御部と、
     前記地上系ノード群と1以上の通信端末との間の地上系通信を制御する地上系リソース制御部と、
     を備え、
     前記非地上系リンク制御部は、前記非地上系ノード群と前記地上系ノード群と前記通信端末とのうちの少なくとも1の通信環境に関するモニタリング情報に基づいて、前記非地上系通信を制御するための非地上系回線パラメータを算出し、
     前記地上系リソース制御部は、前記モニタリング情報と前記非地上系リンク制御部により算出された非地上系回線パラメータとに基づいて、前記地上系通信を制御するための地上系回線パラメータを算出すること
     を特徴とする通信制御装置。
  6.  非地上系通信体を含む非地上系ノード群と地上系通信体を含む地上系ノード群との間の非地上系通信を制御する非地上系リンク制御ステップと、
     前記地上系ノード群と1以上の通信端末との間の地上系通信を制御する地上系リソース制御ステップと、
     をコンピュータに実行させ、
     前記非地上系リンク制御ステップは、前記非地上系ノード群と前記地上系ノード群と前記通信端末とのうちの少なくとも1の通信環境に関するモニタリング情報に基づいて、前記非地上系通信を制御するための非地上系回線パラメータを算出し、
     前記地上系リソース制御ステップは、前記モニタリング情報と前記非地上系リンク制御ステップにより算出された非地上系回線パラメータとに基づいて、前記地上系通信を制御するための地上系回線パラメータを算出すること
     を特徴とする通信制御方法。
PCT/JP2023/014814 2022-05-19 2023-04-12 通信制御システム、装置及び方法 WO2023223723A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-082240 2022-05-19
JP2022082240A JP2023170459A (ja) 2022-05-19 2022-05-19 通信制御システム、装置及び方法

Publications (1)

Publication Number Publication Date
WO2023223723A1 true WO2023223723A1 (ja) 2023-11-23

Family

ID=88835342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014814 WO2023223723A1 (ja) 2022-05-19 2023-04-12 通信制御システム、装置及び方法

Country Status (2)

Country Link
JP (1) JP2023170459A (ja)
WO (1) WO2023223723A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119786A1 (ja) * 2008-03-28 2009-10-01 日本電気株式会社 無線品質推定システム、無線品質推定装置、無線品質推定方法、及び無線品質推定プログラム
JP2010278886A (ja) * 2009-05-29 2010-12-09 National Institute Of Information & Communication Technology 地上/衛星共用携帯電話システムとそのシステム相互干渉軽減方法
JP2014064219A (ja) * 2012-09-22 2014-04-10 Softbank Mobile Corp 移動通信システム及び基地局制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119786A1 (ja) * 2008-03-28 2009-10-01 日本電気株式会社 無線品質推定システム、無線品質推定装置、無線品質推定方法、及び無線品質推定プログラム
JP2010278886A (ja) * 2009-05-29 2010-12-09 National Institute Of Information & Communication Technology 地上/衛星共用携帯電話システムとそのシステム相互干渉軽減方法
JP2014064219A (ja) * 2012-09-22 2014-04-10 Softbank Mobile Corp 移動通信システム及び基地局制御装置

Also Published As

Publication number Publication date
JP2023170459A (ja) 2023-12-01

Similar Documents

Publication Publication Date Title
Baltaci et al. A survey of wireless networks for future aerial communications (FACOM)
EP3676972B1 (en) Satellite-based narrow-band communication
Darwish et al. LEO satellites in 5G and beyond networks: A review from a standardization perspective
Dong et al. An edge computing empowered radio access network with UAV-mounted FSO fronthaul and backhaul: Key challenges and approaches
RU2136108C1 (ru) Загрузка пропускной способности нескольких спутниковых ретрансляторов сигналами с расширенным спектром от нескольких антенн земных станций
CN107070532B (zh) 用于在机载无线蜂窝网络中提供高速通信服务的系统
CN110291727B (zh) 超低延迟电信系统
Elnabty et al. A survey on UAV placement optimization for UAV-assisted communication in 5G and beyond networks
Strinati et al. 6G in the sky: On-demand intelligence at the edge of 3D networks
US11616689B2 (en) Adaptive self-optimizing network using closed-loop feedback
Ansari et al. SoarNet
US11800374B2 (en) Integrated access and backhaul from high altitude platforms
US10771989B2 (en) Adaptive self-optimizing network using closed-loop feedback
WO2014160997A1 (en) Wide area network infrastructure using aircraft
WO2023137276A1 (en) Systems and methods for implementing an air traffic control voice relay for unmanned aircraft systems over an aviation network
Wu et al. A cooperative drone assisted mobile access network for disaster emergency communications
CN113853024B (zh) 一种数据传输方法、系统、装置和存储介质
US20200322045A1 (en) Adaptive self-optimizing network using closed-loop feedback
Pillai et al. Chapter Interoperability Among Heterogeneous Networks for Future Aeronautical Communications
WO2023223723A1 (ja) 通信制御システム、装置及び方法
CN112865854B (zh) 一种基于多波束通信卫星的应急救生通信方法
Murugan et al. Efficient Space Communication and Management (SCOaM) Using Cognitive Radio Networks Based on Deep Learning Techniques: Cognitive Radio in Space Communication
CN113395101A (zh) 空天地融合网络中最小化传输时延的用户接入方法及装置
CN113994728A (zh) 覆盖类型之间的动态频谱共享
KR102180980B1 (ko) 다 계층 네트워크에서 다중 경로 전송을 위한 패킷 분배 시스템 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807336

Country of ref document: EP

Kind code of ref document: A1