WO2023223521A1 - Embedding and fixation composition for improving visibility in observation using electron microscope or the like, and observation method using same - Google Patents

Embedding and fixation composition for improving visibility in observation using electron microscope or the like, and observation method using same Download PDF

Info

Publication number
WO2023223521A1
WO2023223521A1 PCT/JP2022/020896 JP2022020896W WO2023223521A1 WO 2023223521 A1 WO2023223521 A1 WO 2023223521A1 JP 2022020896 W JP2022020896 W JP 2022020896W WO 2023223521 A1 WO2023223521 A1 WO 2023223521A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
embedding
composition
fixing
heavy metal
Prior art date
Application number
PCT/JP2022/020896
Other languages
French (fr)
Japanese (ja)
Inventor
矢矧束穂
Original Assignee
地方独立行政法人神奈川県立産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 地方独立行政法人神奈川県立産業技術総合研究所 filed Critical 地方独立行政法人神奈川県立産業技術総合研究所
Priority to PCT/JP2022/020896 priority Critical patent/WO2023223521A1/en
Priority to JP2023547912A priority patent/JP7445353B1/en
Publication of WO2023223521A1 publication Critical patent/WO2023223521A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support

Definitions

  • the present invention provides an embedding and fixing composition that can clearly visualize the fine structure of a solid material containing light elements as a main component and improve visibility under observation with an electron microscope or an X-ray microscope.
  • the present invention relates to a kit provided with the same, a method for manufacturing the same, and an observation method using the same using an electron microscope or an X-ray microscope.
  • This method has a long history in the field of metallographic observation, and is commonly used in material analysis using various microscopes such as optical microscopy, electron microscopy, and scanning probe microscopy.
  • the contrast obtained strongly depends on the atomic number of the sample.
  • a sample composed of light elements, a polymer material, a biological material, etc. is embedded in resin, even if the handling of the sample is improved and internal observation becomes possible, there is a clear contrast between the embedding resin and the sample. There is a problem in that the visibility of the observed image is poor because the image cannot be obtained.
  • One of the conventional methods is to add heavy metals such as ruthenium tetroxide, osmium tetroxide, and phosphotungstic acid to specific parts of the molecular structure when the sample is a polymeric material, and then embed it in a resin to make it conductive.
  • heavy metals such as ruthenium tetroxide, osmium tetroxide, and phosphotungstic acid
  • Examples include electronic staining, which involves processing and observation. With this method, it is possible to observe the fine structure of a polymeric material whose main component is a light element with improved contrast.
  • the second method is to coat the surface of the sample with a noble metal such as Au, Pt, Pd, Os, etc., embed it in resin, then polish it and observe the cross section.
  • a noble metal such as Au, Pt, Pd, Os, etc.
  • the cross-sectional structure is "resin/noble metal/sample", so even fine uneven structures such as polymer resist on a silicon wafer can be observed with improved contrast.
  • a third method is negative staining, in which an aqueous solution of uranium acetate, gadolinium acetate, phosphotungstic acid, etc. is dropped around the sample, followed by conductive treatment and observation.
  • This method it is possible to observe particle/fibrous samples such as carbon black, graphene, and cellulose nanofibers, as well as the microstructures of biological samples, with improved contrast.
  • a fourth method is to impregnate the microstructure of the sample with a contrast agent such as barium sulfate or organic iodine and then perform X-ray observation. With this method, defects such as minute cracks in concrete can be detected.
  • a contrast agent such as barium sulfate or organic iodine
  • Patent Document 1 discloses a protective agent for electron microscopy, which is characterized by containing a survival environment-imparting component, saccharides, and an electrolyte, and a method for observing a sample using an electron microscope using the same. There is.
  • a biological sample in a water-containing state can be protected and observed in its living state without being deformed even under vacuum.
  • the coating tends to be uneven, and the forms that can be clearly observed are limited. Furthermore, in the case of a sample containing metal, depending on the constituent element species, the contrast may be similar to that of a metal film, which may impede visibility.
  • the third type of negative staining is not suitable for cross-sectioning because the sample cannot be embedded, and the internal morphology cannot be observed. Furthermore, since it cannot fill a large space, it is not suitable for porous bodies, etc., and the materials that can be observed are limited.
  • the liquid contrast agent is only deposited and cannot be solidified, so the sample cannot be embedded and fixed and the internal morphology cannot be observed. Furthermore, it is difficult to handle the sample after it has been impregnated with a contrast medium.
  • the present invention was made in view of the above-mentioned background art and its problems, and it is an object of the present invention to clearly visualize the microstructure of a solid material mainly composed of light elements under observation with an electron microscope or an X-ray microscope.
  • An object of the present invention is to provide an embedding and fixing composition that can improve visibility.
  • Another object of the present invention is to provide an observation method using an electron microscope or an X-ray microscope that allows the microstructure of a solid material to be observed simply and clearly.
  • the present inventors have discovered that by creating an aqueous solution in which a heavy metal salt with high electron density and a water-soluble polymer are dissolved in water, it is suitable for impregnating various forms of solid materials. It is possible to realize a composition for embedding and fixation that can be solidified and embedded and fixed by physical or chemical methods, and that the composition has no structure at the nano level and that allows the microstructure of the solid material to be clearly visualized. I found it. As a result of further research into its composition and observation method, the present invention was completed.
  • the present invention is an aqueous solution containing a water-soluble heavy metal salt and a water-soluble polymer and/or a derivative thereof, in which these water-soluble components are dissolved in water, and a solid material mainly composed of light elements.
  • a composition for use In observation using an electron microscope or an X-ray microscope, the visibility of the observed image can be improved due to the contrast between the heavy metals constituting the water-soluble heavy metal salt and the light elements that are the main components of the solid material. It is a composition for use.
  • an aqueous solution in which a water-soluble heavy metal salt and a water-soluble polymer and/or its derivative are dissolved in water, it can be easily impregnated into various forms of solid materials, and solid materials can be easily impregnated into solid materials by physical or chemical methods. It can be embedded and fixed.
  • the solidified composition has no structure at the nano-level because the heavy metal salt with high electron density is uniformly dispersed in the polymer, and under observation with an electron microscope and The microstructure of solid materials can be clearly visualized with good contrast.
  • the water-soluble heavy metal salt is one or more selected from the group consisting of phosphotungstic acid (PTA), gadolinium acetate, ammonium molybdate, phosphomolybdic acid, potassium ferrocyanate, lead nitrate, and lead acetate, and is highly water-soluble.
  • the above-mentioned embedding/fixing molecule is one or more selected from the group consisting of polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), polyacrylamide (PAM), polyacrylic acid (PAA), and polyethylene oxide (PEO). It is a composition.
  • the water-soluble heavy metal salt is phosphotungstic acid (PTA)
  • the water-soluble polymer is polyvinyl alcohol (PVA).
  • composition for embedding and fixing contains 0.25 to 40% by mass of a water-soluble heavy metal salt and 0.5 to 15% by mass of a water-soluble polymer and/or a derivative thereof, based on the total amount of the composition. It is a thing.
  • the present invention By making the present invention have each of the above compositions, it is possible to further improve the stability and handleability as a reagent, the ability to impregnate the microstructure of the solid material, and the visibility of the observed image after solidification, and to reduce the manufacturing cost. can also be suppressed.
  • the present invention provides two or more types of the embedding and fixing compositions having different contents and/or types of water-soluble heavy metal salts, and by changing the type of the embedding and fixing composition, the contrast of the observed image is improved.
  • This is a kit for observing the embedding and fixing composition, which allows adjusting the embedding and fixing composition.
  • the embedding and fixing composition of the present invention allows the brightness of the background of an observed image to be adjusted by changing the amount and type of the water-soluble heavy metal salt, similar to adjusting the monotone background with black and white paint. Can be done. This makes it possible to change the type of composition used for embedding and optimize the contrast (shading) in accordance with the constituent elements of the solid material to be observed, thereby improving the visibility of the observed image.
  • the present invention comprises the composition for embedding and fixation and a dispersion in which a conductive polymer is dispersed in water, and the dispersion is added to the composition for embedding and fixation to impart conductivity.
  • a kit for observing the embedding and fixing composition is a kit for observing the embedding and fixing composition.
  • the present invention is also a kit for observing the embedding and fixing composition, in which the conductive polymer is a composite of polyethylene dioxythiophene and polystyrene sulfonic acid (PEDOT/PSS).
  • the conductive polymer is a composite of polyethylene dioxythiophene and polystyrene sulfonic acid (PEDOT/PSS).
  • conductive polymers By adding conductive polymers to impart conductivity, charging phenomena (charge-up) can be prevented, and depending on the sample preparation conditions, conductive treatment after embedding and fixation can be omitted or simplified. can do. Furthermore, like conventional carbon pastes and carbon tapes, it can be used in applications where it is made into a sheet and particles or fiber samples are attached or temporarily fixed to the surface of the sheet for easy observation without conductive treatment.
  • the present invention comprises a water-soluble heavy metal salt in the form of a solid or an aqueous solution, and a water-soluble polymer in the form of a solid or an aqueous solution, and the water-soluble heavy metal salt and the water-soluble polymer are added to water.
  • This is a kit for producing an embedding/fixing composition, which allows the embedding/fixing composition to be produced by mixing or mixing with each other and dissolving or mixing.
  • the embedding fixation composition of the present invention By making the embedding fixation composition of the present invention into a two-component mixing kit that can be prepared immediately before use, it is necessary to weigh and mix the two component reagents and dissolve and mix them. Since the fixative composition can be prepared freely, the number of reagents can be reduced and costs can be reduced. Furthermore, by storing the two components separately, stable storage for a longer period of time becomes possible.
  • the present invention provides a method for producing the composition for embedding and fixing, which includes the steps of adding and dissolving a water-soluble polymer in water, and adding and dissolving a water-soluble heavy metal salt to the resulting aqueous solution.
  • the embedding and fixing composition of the present invention can be produced by simply dissolving two water-soluble components in water, resulting in a simple process and low cost. If necessary, it can also be prepared in-house from powdered raw materials.
  • the present invention also provides a step of impregnating a solid material with the embedding and fixing composition, and evaporating the water in the embedding and fixing composition or crosslinking the water-soluble polymer and/or its derivative.
  • This is an observation method using an electron microscope or an X-ray microscope, which includes a step of solidifying the solid material by solidifying the material, and a step of processing the embedded and fixed solid material to expose the observation surface.
  • the observation using the electron microscope or the X-ray microscope includes the step of optimizing the contrast of the observed image by using two or more types of the embedding and fixing compositions having different contents and/or types of water-soluble heavy metal salts. It's a method.
  • the observation method using an electron microscope or an X-ray microscope of the present invention is easy to operate and can be applied to various forms and types of solid materials. It can be clearly observed under a line microscope.
  • the contrast of the observed image can be controlled by pre-treating the sample.
  • the embedding and fixing composition of the present invention and the observation method using the same clearly visualize the fine structure of a solid material mainly composed of light elements under observation using an electron microscope or an X-ray microscope, thereby improving visibility. can be improved. Since the composition for embedding and fixing of the present invention contains a heavy metal salt, the smaller the atomic number of the elements constituting the solid material, the larger the contrast difference becomes, allowing sharp and clear observation.
  • A is an image obtained by observing the sample of Example 1 with a scanning electron microscope (photographing magnification: 5,000 times), and B is a partially enlarged image thereof (photographing magnification: 50,000 times).
  • A is an image obtained by observing the sample of Comparative Example 1 with a scanning electron microscope (photographing magnification: 5,000 times), and B is a partially enlarged image thereof (photographing magnification: 50,000 times).
  • A is an image obtained by observing the sample of Comparative Example 2 with a scanning electron microscope (photographing magnification: 5,000 times), and B is a partially enlarged image thereof (photographing magnification: 50,000 times).
  • a and B are images obtained by observing the sample of Example 2 using a scanning electron microscope (magnifications of 2,500x and 5,000x), and C and D are partially enlarged images thereof (magnifications of 50,000x and 150,000x). times).
  • A is an image taken from directly above the created vertical section.
  • B, C, and D are cross-sectional images.
  • A is an image of the sample of Example 3 observed with a transmission electron microscope (field size 91.51 nm x 91.51 nm)
  • B is a partially enlarged image (field size 10.01 nm x 10.01 nm)
  • C is an electron beam This is an image showing a diffraction pattern.
  • A is the C1s spectrum
  • B is the W4f spectrum.
  • A is an image of the sample of Example 4 observed using a low vacuum scanning electron microscope (250x magnification), and B is a partially enlarged image thereof (1,000x magnification).
  • A is an image obtained by observing the sample of Example 5 using a low vacuum scanning electron microscope (field size: 600 ⁇ m x 90 ⁇ m), and B is an image obtained by observing the sample of Comparative Example 3 under the same conditions.
  • A is an image obtained by observing the sample of Example 6 using an X-ray microscope
  • B is an image obtained by observing the sample of Comparative Example 4 under the same conditions.
  • A is an image of the sample of Example 7 observed with a scanning electron microscope (100x magnification)
  • B is a partially enlarged image thereof (10,000x magnification)
  • C is an external image of the sample of Example 7.
  • XPS X-ray photoelectron spectroscopy
  • A is the C1s spectrum
  • B is the W4f spectrum.
  • a to F are images obtained by observing samples of Comparative Example 5 using a field emission scanning electron microscope, where A is a backscattered electron image and B is a secondary electron image (field size: 6.8 ⁇ m ⁇ 6.6 ⁇ m).
  • a to F are images obtained by observing samples of Example 8 in which the PVA:PTA mixing ratio was varied in the range of 20:1 to 1:10 using a field emission scanning electron microscope (field of view size 6.8 ⁇ m x 7.0 ⁇ m).
  • a to F are images obtained by observing samples of Example 9 in which the type and blending ratio of water-soluble heavy metal salts were changed using a field emission scanning electron microscope (field size: 6.8 ⁇ m ⁇ 7.0 ⁇ m).
  • A is an image obtained by observing the sample of Example 10 using a scanning electron microscope (magnification: 20,000 times), and B is an image obtained by observing the sample of Comparative Example 6 under the same conditions.
  • the embedding and fixing composition of the present invention a kit including the same, a manufacturing method thereof, and an observation method using the same using an electron microscope and an X-ray microscope will be explained in detail. Note that components, manufacturing methods, observation methods, etc. whose explanations are omitted may be the same or substantially the same as those known to those skilled in the art.
  • the embedding and fixing composition of the present invention is an aqueous solution in which a water-soluble heavy metal salt, a water-soluble polymer and/or a water-soluble polymer derivative thereof are dissolved in water.
  • a water-soluble heavy metal salt a water-soluble polymer and/or a water-soluble polymer derivative thereof are dissolved in water.
  • for embedding and fixation refers to the use of embedding and fixing solid materials in observation with electron microscopes and X-ray microscopes, as well as the use of solid materials in the form of particles and fibers on the surface of This shall include use for attachment or temporary fixation.
  • “heavy metal” means a metal whose atomic number is iron (Fe: atomic number 26) or higher.
  • the term “light element” means an element whose atomic number is fluorine (F: atomic number 9) or less.
  • “main component” means that light elements account for 50% by mass or more of all elements constituting the solid material.
  • the light elements constituting the solid material to which the present invention is applicable are mainly carbon (C), hydrogen (H), oxygen (O), nitrogen (N), and boron (B), with particular emphasis on carbon (C ) is assumed.
  • the present invention becomes more effective as the proportion of these light elements in the entire solid material increases, such as 70% by mass or more, 90% by mass or more, and is particularly effective in solid materials composed entirely of light elements.
  • the water-soluble heavy metal salt contained in the present invention exhibits high solubility in water, has a sufficiently larger atomic number than the light elements constituting the solid material, and is a heavy metal salt that provides a large contrast when observed with an electron microscope and an X-ray microscope. and its hydrates are preferred.
  • phosphotungstic acid H 3 [P(W 3 O 10 ) 4 ] ⁇ nH 2 O
  • PTA gadolinium acetate
  • ammonium molybdate (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O)
  • phosphomolybdic acid H 3 (PMo 12 O 40 ) ⁇ nH 2 O
  • potassium ferrocyanate K 4 [Fe(CN) 6 ] ⁇ nH 2 O)
  • lead nitrate Pb(NO 3 ) 2
  • lead acetate Pb(CH 3 COO) 2
  • Two or more types of these heavy metal salts may be contained.
  • Phosphotungstic acid ammonium molybdate, phosphomolybdic acid, gadolinium acetate, and lead acetate are preferred because they have high solubility in water and are easy to handle.
  • Phosphortungstic acid (PTA) is most preferred because it has a large amount of metal per molecule and can provide a large contrast with a small amount added.
  • the water-soluble polymer contained in the present invention is preferably a polymer that exhibits high solubility in water and has excellent stability and handleability.
  • Specific examples include polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), polyacrylamide (PAM), polyacrylic acid (PAA), and polyethylene oxide (PEO). Two or more types of these polymers may be contained.
  • Polyvinyl alcohol (PVA) and carboxymethyl cellulose (CMC) are preferred because they have high solubility in water and are easy to handle. Polyvinyl alcohol (PVA) is most preferred because it contains few impurities such as Na and K that affect observation.
  • the degree of polymerization and degree of saponification in the state dissolved in water before solidification are not particularly limited as long as they can exhibit the predetermined functions of the present invention. In the case of PVA, from the viewpoint of impregnating solid materials with appropriate viscosity and ease of handling, examples include a degree of polymerization in the range of 1500 to 1700 and a degree of saponification in the range of 90 to 100 mol%.
  • the embedding and fixing composition of the present invention also contains this water-soluble polymer derivative. Examples described later suggest hydrolysis of residual acetate groups in PVA by strong acidity and crosslinking between hydroxyl groups in PVA by PTA.
  • the ratio of polymers in the composition that serves as a derivative and the ratio of functional groups in the polymer to be reacted vary depending on the types of water-soluble polymer and water-soluble heavy metal salt and their blending ratio
  • the ratio of polymers in the composition to be a derivative and the ratio of functional groups in the polymer to be reacted vary depending on the types of water-soluble polymer and water-soluble heavy metal salt and their blending ratio. There is no particular limitation as long as it can exhibit the following. It may be part or all.
  • the water-soluble polymer derivative maintains its properties as a water-soluble polymer
  • the formation of the water-soluble polymer derivative can be expected to contribute to the effectiveness of the embedding and fixing composition of the present invention.
  • the solubility of the solid in water after drying and solidification decreases, and the hardness of the solid after crosslinking and hardening increases, resulting in improved handling and processability of the sample after embedding and fixation. is possible.
  • the composition for embedding and fixing of the present invention comprises two components: the water-soluble heavy metal salt and the water-soluble polymer, the water-soluble heavy metal salt and the water-soluble polymer derivative, or the water-soluble heavy metal salt and the water-soluble polymer.
  • It is an aqueous solution in which three components, a molecule and a water-soluble polymer derivative, are dissolved in water. It is preferable that the two or three water-soluble components are completely dissolved, but even if a small amount is not completely dissolved and is dispersed in the form of fine particles, it is possible to completely dissolve the two or three water-soluble components as long as the predetermined function of the present invention can be achieved. It can be equated with the state of being dissolved in.
  • the water is preferably pure water, such as RO water, distilled water, ion-exchanged water, or purified water, which does not contain impurities such as Na or K.
  • a water-soluble polymer and a water-soluble heavy metal salt are mixed in water and dissolved using a combination of stirring and heating.
  • resin powder is mixed with water at room temperature while stirring to disperse it well, and then heated to less than 80 to 100°C and stirred for 30 to 60 minutes to completely dissolve.
  • a water-soluble heavy metal salt is added, but if the aqueous solution is mixed at a high temperature, oxides will be generated and coloration will occur easily, so it is preferable to mix the aqueous solution with stirring after it has cooled down to completely dissolve it.
  • the amount of water-soluble polymer blended is sufficient to include the heavy metal salt in a dispersed state when solidified, and the resulting aqueous solution has a moderately low viscosity and is easy to impregnate into the microstructure of the solid material. It is set taking into account that no undissolved material will be left below the solubility (saturation concentration). For example, in the case of PVA, it is preferably 0.5 to 15% by mass, more preferably 1.0 to 10% by mass, even more preferably 2.0 to 7.5% by mass, based on the entire composition (aqueous solution). % range.
  • the amount of water-soluble heavy metal salt to be mixed must be such that it provides sufficient contrast to the solid material to be embedded, that no undissolved material is left below the solubility (saturation concentration), and that crystals do not precipitate when solidified. It is set taking into account the following.
  • PTA it is preferably 0.25 to 40% by mass, more preferably 0.5 to 35% by mass, even more preferably 2.5 to 20% by mass, based on the total amount of the composition (aqueous solution). range.
  • the blending ratio of the water-soluble polymer and the water-soluble heavy metal salt is similarly set in consideration of obtaining sufficient contrast, not leaving any undissolved material, and not precipitating crystals.
  • the range of water-soluble polymer: water-soluble heavy metal salt is preferably 5:1 to 1:20, more preferably 3:1 to 1:15, even more preferably 2:1 to 1:12.5. .
  • the embedding and fixing composition of the present invention allows the brightness of the background of an observed image to be adjusted by changing the amount and type of the water-soluble heavy metal salt, similar to adjusting the monotone background with black and white paint. Can be done. This makes it possible to optimize the contrast (shading) by changing the type of composition used for embedding in accordance with the constituent elements of the solid material to be observed, thereby improving the visibility of the observed image. Operability and convenience during observation are improved by preparing in advance two or more types of embedding and fixing compositions with varying contents and types of water-soluble heavy metal salts and filling them into a container to form a kit.
  • the embedding and fixing composition of the present invention may further contain a conductive polymer.
  • a conductive polymer By imparting conductivity, it is possible to prevent the charging phenomenon (charge-up) during electron microscopy observation, and depending on the sample preparation conditions, it is possible to omit or simplify the conductive treatment by sputtering or vapor deposition of precious metals. Can be done.
  • sputtering or vapor deposition of precious metals can be done.
  • it can be used in applications where it is made into a sheet and particles or fiber samples are attached or temporarily fixed to the surface of the sheet for easy observation without conductive treatment.
  • the conductive polymer is preferably a polymer that can impart suitable conductivity and has excellent dispersibility in an aqueous solution.
  • Specific examples include a complex of polyethylene dioxythiophene and polystyrene sulfonic acid (PEDOT/PSS), polyaniline, P3HT, PCBM, and the like.
  • PEDOT/PSS is most preferred from the viewpoint of utilizing gelation when mixed with PVA containing a metal salt.
  • Adding a conductive polymer to the embedding and fixing composition may promote gelation of the water-soluble polymer, so instead of adding it to the embedding and fixing composition in advance, fill it in a separate container.
  • it is in the form of a kit, which is prepared in advance and mixed when necessary.
  • the amount of the conductive polymer to be added is determined taking into account that sufficient conductivity can be imparted after solidification, that it is uniformly dispersed in an aqueous solution, and that it does not interfere with the predetermined functions of the present invention.
  • PEDOT/PSS it is preferably 0.1 to 2% by mass, more preferably 0.25 to 1.5% by mass, even more preferably 0.5 to 2% by mass, based on the total amount of the composition (aqueous solution).
  • the range is 1.0% by mass.
  • water-soluble heavy metal salts that are easily dissolved are stored in the form of powder or aqueous solution
  • water-soluble polymers are stored in the form of aqueous solution
  • the necessary amounts of water-soluble heavy metal salts and water-soluble polymers are collected during observation.
  • a composition for embedding and fixing having a desired concentration is prepared by weighing, dissolving and mixing a water-soluble heavy metal salt with a water-soluble polymer.
  • the concentration of the two component aqueous solutions prepared in advance may be one type or two or more types.
  • Examples of containers to be filled with solids such as powders include sealable plastic bags and containers, and examples of containers to be filled with aqueous solutions include glass vials.
  • the embedding and fixing composition of the present invention is an aqueous solution in which the two or three water-soluble components are dissolved in water, or an aqueous solution in which a conductive polymer is dispersed.
  • other components such as surfactants may be added, but if Na or K is mixed in, it may have an adverse effect on observation using an electron microscope or an X-ray microscope, so the interface It is desirable that other components such as the activator do not contain Na, K, etc.
  • the present invention also provides an observation method using an electron microscope or an X-ray microscope, which includes the steps of impregnating an embedding and fixing composition, solidifying the composition, and exposing an observation surface.
  • the microstructure of solid materials can be clearly observed with simple operations.
  • the embedding and fixing composition of the present invention is an aqueous solution of moderate viscosity and has excellent impregnation properties into the microstructure of solid materials. Therefore, the solid material may be immersed in the aqueous solution, the solid material and the aqueous solution may be mixed and stirred, or the aqueous solution may be applied to the surface of the solid material. Further, impregnation treatment such as reduced pressure may be used in combination.
  • the microstructure of the solid material can be solidified by impregnating the aqueous solution into the microstructure of the solid material and solidifying or curing the solution after the voids are filled, thereby embedding and fixing the microstructure of the solid material.
  • Solidification by evaporating water through natural drying is the simplest method and has the least burden on the sample. Decompression and heating may be used together.
  • the composition after being solidified or cured by impregnating, mixing, or coating a solid material may be in any form such as a hard solid, a soft solid, a gel, or a paste.
  • crosslinks may be chemically formed between water-soluble polymers and cured. This makes it possible to impart water resistance to the embedded and fixed sample.
  • a conventional method can be used for chemical crosslinking.
  • crosslinking can be promoted by adding formaldehyde and hydrochloric acid while heating to 80° C. or higher.
  • processing the embedded and fixed solid material By processing the embedded and fixed solid material to expose the observation surface, the internal structure of the solid material can be observed.
  • processing methods include FIB (Focused Ion Beam) processing using a focused ion beam device, CP (Cross Section Polisher) processing using an ion milling device, and physical cutting using a blade.
  • Electron microscopes used in the observation method of the present invention include a scanning electron microscope (SEM), a low-vacuum pressure scanning electron microscope (LVP-SEM), and a focused ion beam device (Focused ion beam device).
  • SEM scanning electron microscope
  • LVP-SEM low-vacuum pressure scanning electron microscope
  • TEM Transmission Electron Microscope
  • Examples of the X-ray microscope (XRM) include a soft X-ray or hard X-ray scanning microscope, and a three-dimensional X-ray microscope (X-Ray Computed Tomography: X-ray CT).
  • Example 1 5 g of polyvinyl alcohol (PVA) (manufactured by Tokyo Kasei Kogyo Co., Ltd., product code P0469) was gradually mixed with 90 g of pure water while stirring at room temperature to sufficiently disperse the mixture. Subsequently, the mixture was heated to 80° C. with stirring, and further heated stepwise to 90, 95, and 98° C., and stirred at each temperature for 30 minutes to completely dissolve. After this solution cooled to room temperature, 5 g of phosphotungstic acid (PTA) (manufactured by TAAB) was gradually mixed and dissolved with stirring to prepare an embedding and fixing composition (aqueous solution) of the present invention. Its pH was 1.40.
  • PTA phosphotungstic acid
  • FIGS. 1A and B are views in FIGS. 1A and B.
  • FIG. 1B is an enlarged observation image of the sample portion in FIG. 1A.
  • Example 1 A sample was prepared in the same manner as in Example 1, except that carbon powder was mixed in an aqueous solution in which only PVA was dissolved without adding PTA, and the sample was embedded and fixed, and its cross section was observed. The observation results are shown in FIGS. 2A and B.
  • Example 2 A sample was prepared in the same manner as in Example 1, and its cross section was observed, except that carbon powder was mixed with a commercially available epoxy embedding resin (manufactured by GATAN, product name: G2 Epoxy) and embedded and fixed. The observation results are shown in FIGS. 3A and B.
  • Example 1 From the results shown in Figures 1A and B, in Example 1, there was a large contrast between the dark color of the light element carbon powder and the light color of the solidified embedding composition containing the heavy metal tungsten, and the visibility of the observed image was improved. It can be seen that this has been improved and it is possible to identify fine structures down to the level of several tens of nanometers.
  • FIGS. 2A and B and FIGS. 3A and B in Comparative Examples 1 and 2, there was almost no contrast between the light element carbon powder and the solidified PVA and hardened epoxy embedding resin, and the observed images It can be seen that the visibility is poor and the microstructure cannot be sufficiently identified.
  • Example 2 Samples were prepared in the same manner as in Example 1, except that boron nitride powder aggregates (BN: atomic numbers 5 and 7) were used instead of carbon powder, and the cross sections were observed. The observation results are shown in FIGS. 4A to 4D.
  • Example 2 From the results shown in FIGS. 4A to 4D, in Example 2, there was a large contrast between the dark color of the light element boron nitride powder and the light color of the solidified embedding composition, which was clearly visualized and the visibility of the observed image was improved. I can see that it is improving. A gap of approximately 10 nm between particles can also be identified from the observed image in FIG. 4D.
  • Example 3 Only the same embedding and fixing composition as in Example 1 was applied onto a silicon wafer and allowed to air dry to solidify. Next, a thin film with a thickness of about 100 nm was prepared using a focused ion beam device (FIB) (manufactured by FEI, model: Scios), and observed with a transmission electron microscope (TEM) (manufactured by Thermo Fisher Scientific, model: Talos). The observation results are shown in FIGS. 5A and B. Furthermore, the observation results of the electron beam diffraction image are shown in FIG. 5C.
  • FIB focused ion beam device
  • TEM transmission electron microscope
  • Test example 1 The surface of the sample (PVA+PTA) obtained by drying and solidifying the embedding and fixing composition of Example 1, PVA and PTA, and vinylon synthesized according to a standard method was measured using an X-ray photoelectron spectroscopy (XPS) measuring device (manufactured by ULVAC-PHI). , Model Quantera SXM). The chemical bonding state of the constituent elements was analyzed using high-resolution analysis (narrow scan analysis). The acquired C1s and W4f spectra are shown in FIGS. 6A and B. The C1s and W4f spectra of a sample (vinylon+PTA) obtained by crosslinking and curing the embedding and fixing composition of Example 7, which will be described later, are also shown.
  • XPS X-ray photoelectron spectroscopy
  • Example 4 A cotton thread taken out from a commercially available garment was immersed in the same embedding and fixing composition as in Example 1, air-dried to solidify, and then embedded and fixed. Impregnation treatment such as reduced pressure was not performed. Next, it was cut with a razor, and its cross section was observed in the low vacuum mode of a scanning electron microscope (SEM) (manufactured by JEOL Ltd., Model JSM-7800F Prime). The observation results are shown in FIGS. 7A and B.
  • SEM scanning electron microscope
  • Example 5 The surface of a commercially available polypropylene clear file was scratched with a cutter, and the same embedding and fixing composition as in Example 1 was applied thereto, followed by natural drying and solidification. Impregnation treatment such as reduced pressure was not performed. Next, it was cut with a razor, and its cross section was observed in the low vacuum mode of the SEM in the same manner as in Example 4. The observation results are shown in FIG. 8A.
  • Example 3 A sample was prepared in the same manner as in Example 5, except that it was embedded using the same aqueous solution in which only PVA was dissolved as in Comparative Example 1, and its cross section was observed. The observation results are shown in FIG. 8B.
  • Example 6 A commercially available polycarbonate washer (inner diameter 3 mm x outer diameter 8 mm x thickness 0.8 mm) was immersed in the same embedding and fixing composition as in Example 1, air-dried, solidified, and embedded. Next, it was observed from above using an X-ray microscope (XRM) (manufactured by Medi-Extech Co., Ltd., model MXT-160UU). The observation results are shown in FIG. 9A.
  • XRM X-ray microscope
  • Example 7 1 g of a mixture of the embedding and fixing composition and carbon powder was prepared under the same conditions as in Example 1, except that 10 g of PVA and 10 g of PTA were mixed and dissolved in 80 g of pure water. Subsequently, 0.08 mL of 13.4 mol/L formaldehyde was added and mixed well, and further 0.12 mL of 12.0 mol/L hydrochloric acid was added dropwise to chemically crosslink the PVA. The resulting gel composition was heated to 80° C. to evaporate water and harden it.
  • This cured composition was embedded and fixed in a commercially available epoxy embedding resin (manufactured by GATAN, product name: G2 Epoxy), and processed with an ion milling device (manufactured by JEOL Ltd., model IB-19520CCP) to cross-section it. was formed.
  • Conductive treatment was performed by coating with C by sputtering, and the cross section was observed using a scanning electron microscope (SEM) (manufactured by JEOL Ltd., Model JSM-7800F Prime).
  • SEM scanning electron microscope
  • FIG. 10B is an enlarged observation image of the sample portion in FIG. 10A.
  • the appearance of the cured composition is shown in FIG. 10C.
  • Test Example 2 The cross section of a sample (vinylon+PTA) obtained by crosslinking and curing the embedding and fixing composition of Example 7 was measured by the same X-ray photoelectron spectroscopy (XPS) as in Test Example 1. The acquired C1s and W4f spectra are shown in FIGS. 6A and B and FIGS. 11A and B. Note that the scale of the peak intensity in FIGS. 11A and 11B has been adjusted for comparison.
  • XPS X-ray photoelectron spectroscopy
  • Six types of embedding and fixing compositions were prepared: 5g), 1:1 (5g:5g), 1:3 (2.5g:7.5g), and 1:10 (1g:10g).
  • the other sample preparation conditions were the same as in Example 1.
  • the surface of the sample was subjected to FIB processing in the same manner as in Comparative Example 5, and the exposed cross section was observed using FE-SEM. Observation results of samples embedded and fixed with each composition are shown in FIGS. 13A to 13F. All observed images were backscattered electron images obtained under constant detector conditions, and the contrast of the silicon wafer portion serving as the sample stage was the same for all samples.
  • Pt/C platinum-supported carbon
  • Mg/C magnesium-supported carbon
  • Water-soluble heavy metal salts include ammonium molybdate ((NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O), gadolinium acetate ((CH 3 COO) 3 Gd ⁇ nH 2 O), and lead acetate (Pb(CH 3 COO)). 2 ) was used.
  • a total of six types of embedding and fixing compositions were prepared with the blending ratios of polyvinyl alcohol (PVA) and water-soluble heavy metal salts being 1:1 (5 g: 5 g) and 1:5 (2 g: 10 g).
  • Other sample preparation conditions and observation conditions were the same as in Example 8. Observation results of samples embedded and fixed with each composition are shown in FIGS. 14A to 14F.
  • Example 10 1.1 mass of a complex of conductive polymer polyethylene dioxythiophene and polystyrene sulfonic acid (PEDOT/PSS) (manufactured by Sigma-Aldrich, product number 739332) was added to the same embedding and fixing composition as in Example 1. % dispersion liquid was added and mixed so as to have the blending ratio shown in Table 1 below.
  • PEDOT/PSS polystyrene sulfonic acid
  • PEDOT/PSS promotes gelation of the composition, so after addition, it was applied in the form of a sheet onto an aluminum sample stand and gelled.
  • Acetylene carbon black (manufactured by STREM CHEMICALS, product number 06-0026) was sprinkled on top of the coating film to adhere and fix it.
  • the particle morphology was observed using a SEM (manufactured by FEI, model Scios) at an accelerating voltage of 1 kV without conducting conductive treatment.
  • SEM manufactured by FEI, model Scios
  • the prepared composition was applied in a linear form (width: approximately 2 mm x thickness: approximately 0.1 mm) onto a slide glass and dried.
  • the resistance value of this dried sample was measured using a tester with an electrode spacing of about 10 mm. The measurement results are also shown in Table 1.
  • Example 6 A sample was prepared in the same manner as in Example 10, except that carbon black was fixed using a commercially available carbon paste (manufactured by TED PELLA, product name: Aquaduck), and carbon black particles on the carbon paste coating were fixed. The morphology was observed using SEM. The observation results are shown in FIG. 15B, and the presence or absence of charge at the time of observation is shown in Table 1. Table 1 also shows the measured resistance values of the coating films.
  • the observation method using the embedding fixation composition of the present invention shows a clear difference in image contrast obtained when observing solid materials with an electron microscope or an X-ray microscope when compared with an observation method using a conventional embedding resin. occurs.
  • the smaller the atomic number of the elements constituting the solid material the greater the contrast difference, allowing clearer observation.
  • it is extremely effective for solid materials composed only of carbon, such as graphite, carbon black, and diamond.
  • the embedding and fixing composition of the present invention and the observation method using the same using an electron microscope etc. are useful for evaluation and analysis of materials such as carbon materials and polymer materials, and polymer electrolyte fuel cells using these materials. It is expected that this technology will be extremely useful in the industry, and it is expected that it will greatly contribute to the development of these industries.
  • FIG. 1A1 Vertical cross section formed by FIB processing, 1A2... Cross section of Example 1 sample in which carbon powder was embedded and fixed, 1A3... Cross section of silicon wafer on sample stage, 1A4... Enlarged observation area of FIG. 1B.
  • 2A1 Vertical cross section formed by FIB processing, 2A2... Cross section of Comparative Example 1 sample in which carbon powder was embedded and fixed, 2A3... Cross section of silicon wafer on sample stage, 2A4... Enlarged observation area of FIG. 2B.
  • 3A1 Vertical cross section formed by FIB processing, 3A2... Cross section of Comparative Example 2 sample in which carbon powder was embedded and fixed, 3A3... Cross section of silicon wafer on sample stage, 3A4... Enlarged observation area of FIG. 3B.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Provided are: an embedding and fixation composition that enables clear visualization of a microstructure of a solid material formed of a light element such as graphite and boron nitride and thereby improving the visibility thereof, in observation using an electron microscope or the like; and an observation method with an electron microscope or the like using the embedding and fixation composition. According to the present invention, a water-soluble polymer such as polyvinyl alcohol and a water-soluble heavy metal salt such as phosphotungstic acid are dissolved in water to obtain a liquid composition. A solid material is impregnated with the liquid composition, which is then solidified, to have a microstructure embedded and fixed. Then, the microstructure is observed using an electron microscope or the like.

Description

電子顕微鏡等の観察において視認性を向上させる包埋固定用組成物、及びそれを用いた観察方法An embedding and fixing composition that improves visibility during observation using an electron microscope, etc., and an observation method using the same
 本発明は、軽元素を主成分とする固体材料の微構造を、電子顕微鏡又はX線顕微鏡の観察下において明瞭に可視化して視認性を向上することができる包埋固定用組成物、それを備えたキット、その製造方法、並びにそれを用いた電子顕微鏡又はX線顕微鏡による観察方法に関する。 The present invention provides an embedding and fixing composition that can clearly visualize the fine structure of a solid material containing light elements as a main component and improve visibility under observation with an electron microscope or an X-ray microscope. The present invention relates to a kit provided with the same, a method for manufacturing the same, and an observation method using the same using an electron microscope or an X-ray microscope.
 電子顕微鏡等による固体材料の形態観察において、試料が多孔質材料、粉体材料、繊維材料、強度が低く変形し易い材料等の場合には、樹脂包埋が行われている。固体材料を樹脂へ包埋することによって、その後の取り扱いが容易となる。樹脂包埋後に研磨等により内部構造を露出させることで、材料内部の形態を観察することもできる。 When observing the morphology of a solid material using an electron microscope or the like, if the sample is a porous material, a powder material, a fibrous material, a material with low strength and easily deformed, etc., embedding in resin is performed. Embedding the solid material in resin facilitates subsequent handling. By exposing the internal structure by polishing or the like after embedding the material in a resin, the internal morphology of the material can also be observed.
 この方法は金属組織観察の分野において歴史が古く、光学顕微鏡観察、電子顕微鏡観察、走査型プローブ顕微鏡観察等の各種顕微鏡を使用した材料解析において一般的に行われている。 This method has a long history in the field of metallographic observation, and is commonly used in material analysis using various microscopes such as optical microscopy, electron microscopy, and scanning probe microscopy.
 電子顕微鏡やX線顕微鏡を使用した観察においては、得られるコントラストは試料の原子番号に強く依存する。軽元素から構成される試料、高分子材料、生体材料等を樹脂包埋した場合、試料のハンドリング性が改善して内部観察が可能となっても、包埋樹脂と試料の間で明瞭なコントラストが得られず観察像の視認性が悪いという問題がある。 In observation using an electron microscope or an X-ray microscope, the contrast obtained strongly depends on the atomic number of the sample. When a sample composed of light elements, a polymer material, a biological material, etc. is embedded in resin, even if the handling of the sample is improved and internal observation becomes possible, there is a clear contrast between the embedding resin and the sample. There is a problem in that the visibility of the observed image is poor because the image cannot be obtained.
 また、樹脂包埋した試料は導電性が低いため、電子顕微鏡のような荷電粒子をプローブとする測定方法では試料の帯電(チャージ)やドリフトが問題となることもある。そのため、従来までは以下の4つの方法等によってこれらの問題を回避していた。 Furthermore, since resin-embedded samples have low conductivity, charging and drifting of the sample may become a problem in measurement methods that use charged particles as probes, such as in electron microscopes. Therefore, conventionally, these problems have been avoided by using the following four methods.
 従来法の一つ目として、試料が高分子材料の場合には、分子構造の特定部位に四酸化ルテニウム、四酸化オスミウム、リンタングステン酸等の重金属を付加させた後で樹脂包埋し、導電処理して観察する電子染色が挙げられる。この方法により、軽元素を主成分とする高分子材料の微構造等でも、コントラストを改善して観察することができる。 One of the conventional methods is to add heavy metals such as ruthenium tetroxide, osmium tetroxide, and phosphotungstic acid to specific parts of the molecular structure when the sample is a polymeric material, and then embed it in a resin to make it conductive. Examples include electronic staining, which involves processing and observation. With this method, it is possible to observe the fine structure of a polymeric material whose main component is a light element with improved contrast.
 二つ目として、試料の表面にAu、Pt、Pd,Os等の貴金属をコーティングした後で樹脂包埋し、次に研磨を行い、断面観察を行う方法が挙げられる。この方法では、断面構造が「樹脂/貴金属/試料」となるため、シリコンウエハ上の高分子レジスト等の微細な凹凸構造も、コントラストを改善して観察することができる。 The second method is to coat the surface of the sample with a noble metal such as Au, Pt, Pd, Os, etc., embed it in resin, then polish it and observe the cross section. In this method, the cross-sectional structure is "resin/noble metal/sample", so even fine uneven structures such as polymer resist on a silicon wafer can be observed with improved contrast.
 三つ目として、試料の周囲に酢酸ウラン、酢酸ガドリニウム、リンタングステン酸等の水溶液を滴下した後で、導電処理して観察するネガティブ染色が挙げられる。この方法により、カーボンブラック、グラフェン、セルロースナノファイバーなどの粒子・繊維状試料や生物試料の微構造等も、コントラストを改善して観察することができる。 A third method is negative staining, in which an aqueous solution of uranium acetate, gadolinium acetate, phosphotungstic acid, etc. is dropped around the sample, followed by conductive treatment and observation. With this method, it is possible to observe particle/fibrous samples such as carbon black, graphene, and cellulose nanofibers, as well as the microstructures of biological samples, with improved contrast.
 四つ目として、試料の微構造へ硫酸バリウムや有機ヨードなどの造影剤を含浸させた後でX線観察する方法が挙げられる。この方法により、コンクリートの微細なひび割れなどの欠陥を検出することができる。 A fourth method is to impregnate the microstructure of the sample with a contrast agent such as barium sulfate or organic iodine and then perform X-ray observation. With this method, defects such as minute cracks in concrete can be detected.
 また、以下の特許文献1には、生存環境付与成分、糖類及び電解質を含有することを特徴とする、電子顕微鏡観察用保護剤とそれを用いた電子顕微鏡による試料の観察方法等が開示されている。この保護剤を用いることにより、真空下においても含水状態の生物試料を変形させずに、生きたままの状態を保護して観察することができる。 Further, the following Patent Document 1 discloses a protective agent for electron microscopy, which is characterized by containing a survival environment-imparting component, saccharides, and an electrolyte, and a method for observing a sample using an electron microscope using the same. There is. By using this protective agent, a biological sample in a water-containing state can be protected and observed in its living state without being deformed even under vacuum.
国際公開第2015/115502号International Publication No. 2015/115502
 樹脂包埋した試料の電子顕微鏡やX線顕微鏡による観察においては、「軽元素から構成される試料では、包埋樹脂と試料の区別が付かない」という問題が存在する。この問題の根本的な要因は、包埋樹脂の主成分がC、H、Oなどの軽元素であるという点である。電子顕微鏡やX線顕微鏡で得られるコントラストは試料の原子番号に強く依存するため、包埋樹脂と構成元素の近い試料の場合、明瞭なコントラストを得ることは原理的に不可能である。 When observing a resin-embedded sample using an electron microscope or an X-ray microscope, there is a problem that ``with a sample composed of light elements, it is impossible to distinguish between the embedding resin and the sample.'' The fundamental cause of this problem is that the main components of the embedding resin are light elements such as C, H, and O. Since the contrast obtained with an electron microscope or an X-ray microscope strongly depends on the atomic number of the sample, it is theoretically impossible to obtain clear contrast in the case of a sample whose constituent elements are similar to those of the embedding resin.
 そこで、観察像のコントラストを改善するため上記の各種方法が試みられているが、必ずしも十分ではない。従来法の一つ目に挙げた電子染色では、無機化合物、フッ素系樹脂、エンジニアリングプラスチックなどの電子染色ができない材料が多数存在するため、観察できる材料が限定されてしまう。また、試料の作製に時間がかかり、試薬の毒性も強い。 Therefore, various methods described above have been attempted to improve the contrast of observed images, but these methods are not always sufficient. With electronic staining, which is one of the conventional methods, there are many materials that cannot be electronically dyed, such as inorganic compounds, fluororesins, and engineering plastics, so the materials that can be observed are limited. In addition, it takes time to prepare the sample, and the reagents are highly toxic.
 二つ目に挙げた金属をコーティングする方法では、試料が多孔体や微細な凹凸の場合にはコーティングが不均一になりやすく、明瞭に観察できる形態が限定されてしまう。また、金属を含む試料の場合、構成元素種によっては金属膜と類似のコントラストとなり、視認性を妨げる要因となってしまう。 In the second method of coating metals, if the sample is porous or has minute irregularities, the coating tends to be uneven, and the forms that can be clearly observed are limited. Furthermore, in the case of a sample containing metal, depending on the constituent element species, the contrast may be similar to that of a metal film, which may impede visibility.
 三つ目に挙げたネガティブ染色では、試料を包埋できないため断面作製には不向きであり、内部形態を観察することができない。また、粗大な空間を埋めることはできないため多孔体等には不向きであり、観察できる材料が限定されてしまう。 The third type of negative staining is not suitable for cross-sectioning because the sample cannot be embedded, and the internal morphology cannot be observed. Furthermore, since it cannot fill a large space, it is not suitable for porous bodies, etc., and the materials that can be observed are limited.
 四つ目に挙げた造影剤を含浸させてX線観察する方法では、液状の造影剤を沈着させるだけで固体化できないため、試料を包埋固定できず内部形態を観察することができない。また、造影剤を含侵させた後の試料の取り扱いが難しい。 In the fourth method of impregnating a contrast agent and performing X-ray observation, the liquid contrast agent is only deposited and cannot be solidified, so the sample cannot be embedded and fixed and the internal morphology cannot be observed. Furthermore, it is difficult to handle the sample after it has been impregnated with a contrast medium.
 また、特許文献1に記載された方法では、試料表面に塗布したゲル状物質を電子線やプラズマで架橋して膜を形成する必要がある。電子線やプラズマが到達しない試料内部では硬化反応が進まないため、試料内部を包埋固定できず内部形態を観察することができない。また、試料の作製に電子線やプラズマの照射が必要であり手間と費用がかかる。 Furthermore, in the method described in Patent Document 1, it is necessary to form a film by crosslinking a gel-like substance applied to the sample surface with an electron beam or plasma. Since the curing reaction does not proceed inside the sample where the electron beam or plasma does not reach, the inside of the sample cannot be embedded and fixed, making it impossible to observe the internal morphology. In addition, preparing the sample requires irradiation with an electron beam or plasma, which is laborious and costly.
 観察する材料の形態や特性によっては従来技術で対応可能な場合もあるが、汎用性、操作性、得られた画像の解釈のしやすさという点において、上記の通り従来技術には技術的課題が複数存在しているのが現状である。 Depending on the form and characteristics of the material to be observed, conventional techniques may be able to handle the problem, but as mentioned above, conventional techniques have technical issues in terms of versatility, operability, and ease of interpretation of the obtained images. The current situation is that there are multiple.
 本発明は、以上の背景技術とその課題を鑑みてなされたものであり、軽元素を主成分とする固体材料の微構造を、電子顕微鏡又はX線顕微鏡の観察下において、明瞭に可視化して視認性を向上できる包埋固定用組成物を提供することを目的とする。また、それを用いた固体材料の微構造を簡単で明瞭に観察できる電子顕微鏡又はX線顕微鏡による観察方法を提供することを目的とする。 The present invention was made in view of the above-mentioned background art and its problems, and it is an object of the present invention to clearly visualize the microstructure of a solid material mainly composed of light elements under observation with an electron microscope or an X-ray microscope. An object of the present invention is to provide an embedding and fixing composition that can improve visibility. Another object of the present invention is to provide an observation method using an electron microscope or an X-ray microscope that allows the microstructure of a solid material to be observed simply and clearly.
 本発明者は、上記課題を解決すべく鋭意研究した結果、電子密度の高い重金属塩と水溶性高分子とを水に溶解した水溶液とすることにより、様々な形態の固体材料の含浸に適し、物理的又は化学的な方法により固体化させ包埋固定することができ、組成物はナノレベルで構造を有さず固体材料の微構造を明瞭に可視化できる包埋固定用組成物を実現できることを見出した。そして、その組成や観察方法についてさらに研究を進めた結果、本発明を完成するに至った。 As a result of intensive research to solve the above problems, the present inventors have discovered that by creating an aqueous solution in which a heavy metal salt with high electron density and a water-soluble polymer are dissolved in water, it is suitable for impregnating various forms of solid materials. It is possible to realize a composition for embedding and fixation that can be solidified and embedded and fixed by physical or chemical methods, and that the composition has no structure at the nano level and that allows the microstructure of the solid material to be clearly visualized. I found it. As a result of further research into its composition and observation method, the present invention was completed.
 すなわち、本発明は、水溶性重金属塩と、水溶性高分子及び/又はその誘導体とを含有し、これらの水溶性成分が水に溶解した水溶液であり、軽元素を主成分とする固体材料の電子顕微鏡又はX線顕微鏡の観察において、前記水溶性重金属塩を構成する重金属と前記固体材料の主成分である軽元素とのコントラストによって、観察像の視認性を向上することができる、包埋固定用組成物である。 That is, the present invention is an aqueous solution containing a water-soluble heavy metal salt and a water-soluble polymer and/or a derivative thereof, in which these water-soluble components are dissolved in water, and a solid material mainly composed of light elements. In observation using an electron microscope or an X-ray microscope, the visibility of the observed image can be improved due to the contrast between the heavy metals constituting the water-soluble heavy metal salt and the light elements that are the main components of the solid material. It is a composition for use.
 水溶性重金属塩と水溶性高分子及び/又はその誘導体とが水に溶解した水溶液とすることにより、様々な形態の固体材料に容易に含浸させることができ、物理的又は化学的な方法により固体化させて包埋固定することができる。また、固体化した組成物は高分子中に電子密度の高い重金属塩が均一に分散してナノレベルで構造を有さず、電子顕微鏡及びX線顕微鏡の観察下において、軽元素を主成分とする固体材料の微構造をコントラストよく明瞭に可視化することができる。 By forming an aqueous solution in which a water-soluble heavy metal salt and a water-soluble polymer and/or its derivative are dissolved in water, it can be easily impregnated into various forms of solid materials, and solid materials can be easily impregnated into solid materials by physical or chemical methods. It can be embedded and fixed. In addition, the solidified composition has no structure at the nano-level because the heavy metal salt with high electron density is uniformly dispersed in the polymer, and under observation with an electron microscope and The microstructure of solid materials can be clearly visualized with good contrast.
 また、水溶性重金属塩がリンタングステン酸(PTA)、酢酸ガドリニウム、モリブデン酸アンモニウム、リンモリブデン酸、フェロシアンカリウム、硝酸鉛及び酢酸鉛からなる群より選択される1種以上であり、水溶性高分子がポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、ポリアクリルアミド(PAM)、ポリアクリル酸(PAA)及びポリエチレンオキシド(PEO)からなる群より選択される1種以上である、前記包埋固定用組成物である。 Further, the water-soluble heavy metal salt is one or more selected from the group consisting of phosphotungstic acid (PTA), gadolinium acetate, ammonium molybdate, phosphomolybdic acid, potassium ferrocyanate, lead nitrate, and lead acetate, and is highly water-soluble. The above-mentioned embedding/fixing molecule is one or more selected from the group consisting of polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), polyacrylamide (PAM), polyacrylic acid (PAA), and polyethylene oxide (PEO). It is a composition.
 さらに、水溶性重金属塩がリンタングステン酸(PTA)であり、水溶性高分子がポリビニルアルコール(PVA)である、前記包埋固定用組成物である。 Furthermore, in the embedding and fixing composition, the water-soluble heavy metal salt is phosphotungstic acid (PTA), and the water-soluble polymer is polyvinyl alcohol (PVA).
 また、組成物全体量に対して、水溶性重金属塩0.25~40質量%と、水溶性高分子及び/又はその誘導体0.5~15質量%とを含有する、前記包埋固定用組成物である。 Further, the composition for embedding and fixing contains 0.25 to 40% by mass of a water-soluble heavy metal salt and 0.5 to 15% by mass of a water-soluble polymer and/or a derivative thereof, based on the total amount of the composition. It is a thing.
 本発明を上記各組成とすることにより、試薬としての安定性や取扱性、固体材料の微構造への含侵性、固体化後の観察像の視認性をさらに向上させることができ、製造コストも抑えることができる。 By making the present invention have each of the above compositions, it is possible to further improve the stability and handleability as a reagent, the ability to impregnate the microstructure of the solid material, and the visibility of the observed image after solidification, and to reduce the manufacturing cost. can also be suppressed.
 また、本発明は、水溶性重金属塩の含有量及び/又は種類が異なる前記包埋固定用組成物を2種類以上備え、該包埋固定用組成物の種類を変更することにより観察像のコントラストを調整することができる、前記包埋固定用組成物の観察用キットである。 Further, the present invention provides two or more types of the embedding and fixing compositions having different contents and/or types of water-soluble heavy metal salts, and by changing the type of the embedding and fixing composition, the contrast of the observed image is improved. This is a kit for observing the embedding and fixing composition, which allows adjusting the embedding and fixing composition.
 本発明の包埋固定用組成物は、水溶性重金属塩の配合量や種類を変えることによって、黒と白の絵の具でモノトーンの背景を調整するように、観察像の背景の明度を調整することができる。これにより、観察する固体材料の構成元素に対応して、包埋に用いる組成物の種類を変更しコントラスト(濃淡)を最適化して、観察像の視認性を向上することができる。 The embedding and fixing composition of the present invention allows the brightness of the background of an observed image to be adjusted by changing the amount and type of the water-soluble heavy metal salt, similar to adjusting the monotone background with black and white paint. Can be done. This makes it possible to change the type of composition used for embedding and optimize the contrast (shading) in accordance with the constituent elements of the solid material to be observed, thereby improving the visibility of the observed image.
 さらに、本発明は、前記包埋固定用組成物と、導電性高分子が水に分散した分散液とを備え、該分散液を前記包埋固定用組成物に添加することにより導電性を付与することができる、前記包埋固定用組成物の観察用キットである。 Furthermore, the present invention comprises the composition for embedding and fixation and a dispersion in which a conductive polymer is dispersed in water, and the dispersion is added to the composition for embedding and fixation to impart conductivity. This is a kit for observing the embedding and fixing composition.
 また、導電性高分子がポリエチレンジオキシチオフェンとポリスチレンスルホン酸との複合体(PEDOT/PSS)である、前記包埋固定用組成物の観察用キットである。 The present invention is also a kit for observing the embedding and fixing composition, in which the conductive polymer is a composite of polyethylene dioxythiophene and polystyrene sulfonic acid (PEDOT/PSS).
 導電性高分子を添加して導電性を付与することにより、帯電現象(チャージアップ)を防止することができ、試料の作製条件にもよるが、包埋固定後の導電処理を省略又は簡略化することができる。また、従来のカーボンペーストやカーボンテープのように、シート状にしてその表面に粒子や繊維状の試料を付着又は仮固定し、導電処理することなく簡便に観察する用途にも使用できる。 By adding conductive polymers to impart conductivity, charging phenomena (charge-up) can be prevented, and depending on the sample preparation conditions, conductive treatment after embedding and fixation can be omitted or simplified. can do. Furthermore, like conventional carbon pastes and carbon tapes, it can be used in applications where it is made into a sheet and particles or fiber samples are attached or temporarily fixed to the surface of the sheet for easy observation without conductive treatment.
 また、本発明は、固体又は水溶液の形態の水溶性重金属塩と、固体又は水溶液の形態の水溶性高分子とを備え、前記水溶性重金属塩と前記水溶性高分子とを、水に加えて混合又は互いに混合して溶解又は混和することにより、前記包埋固定用組成物を製造することができる、包埋固定用組成物の製造用キットである。 Further, the present invention comprises a water-soluble heavy metal salt in the form of a solid or an aqueous solution, and a water-soluble polymer in the form of a solid or an aqueous solution, and the water-soluble heavy metal salt and the water-soluble polymer are added to water. This is a kit for producing an embedding/fixing composition, which allows the embedding/fixing composition to be produced by mixing or mixing with each other and dissolving or mixing.
 本発明の包埋固定用組成物を用時調製できる2成分混合型のキットとすることにより、2成分の試薬を秤量混合して溶解混和する作業が必要となるが、所望の濃度の包埋固定用組成物を自由に調製できるため、試薬数を減らしてコストを削減することができる。また、2成分を別々に収容保管することで、より長期間の安定した保管が可能となる。 By making the embedding fixation composition of the present invention into a two-component mixing kit that can be prepared immediately before use, it is necessary to weigh and mix the two component reagents and dissolve and mix them. Since the fixative composition can be prepared freely, the number of reagents can be reduced and costs can be reduced. Furthermore, by storing the two components separately, stable storage for a longer period of time becomes possible.
 さらに、本発明は、水溶性高分子を水に加えて溶解する工程と、得られた水溶液に水溶性重金属塩を加えて溶解する工程とを含む、前記包埋固定用組成物の製造方法である。 Furthermore, the present invention provides a method for producing the composition for embedding and fixing, which includes the steps of adding and dissolving a water-soluble polymer in water, and adding and dissolving a water-soluble heavy metal salt to the resulting aqueous solution. be.
 本発明の包埋固定用組成物は、水溶性の2成分を水に溶解するだけで製造することができ、工程が単純でコストも低い。必要に応じて、粉末の原材料から自家調製することも可能である。 The embedding and fixing composition of the present invention can be produced by simply dissolving two water-soluble components in water, resulting in a simple process and low cost. If necessary, it can also be prepared in-house from powdered raw materials.
 また、本発明は、前記包埋固定用組成物を固体材料に含侵させる段階と、前記包埋固定用組成物の水を蒸発させること又は水溶性高分子及び/又はその誘導体を架橋させることにより固体化する段階と、該包埋固定した固体材料を加工して観察面を露出させる段階とを含む、電子顕微鏡又はX線顕微鏡による観察方法である。 The present invention also provides a step of impregnating a solid material with the embedding and fixing composition, and evaporating the water in the embedding and fixing composition or crosslinking the water-soluble polymer and/or its derivative. This is an observation method using an electron microscope or an X-ray microscope, which includes a step of solidifying the solid material by solidifying the material, and a step of processing the embedded and fixed solid material to expose the observation surface.
 また、水溶性重金属塩の含有量及び/又は種類が異なる前記包埋固定用組成物を2種類以上用いて、観察像のコントラストを最適化する段階を含む、前記電子顕微鏡又はX線顕微鏡による観察方法である。 Further, the observation using the electron microscope or the X-ray microscope includes the step of optimizing the contrast of the observed image by using two or more types of the embedding and fixing compositions having different contents and/or types of water-soluble heavy metal salts. It's a method.
 本発明の電子顕微鏡又はX線顕微鏡による観察方法は、操作が簡単で様々な形態や種類の固体材料に対応することができ、軽元素を主成分とする固体材料の微構造を電子顕微鏡又はX線顕微鏡の観察下において明瞭に観察することができる。 The observation method using an electron microscope or an X-ray microscope of the present invention is easy to operate and can be applied to various forms and types of solid materials. It can be clearly observed under a line microscope.
 また、用いる包埋固定用組成物の水溶性重金属塩の配合量や種類を変更することにより背景の明度を調整できるため、試料の前処理によって観察像のコントラストを制御することができる。 Furthermore, since the brightness of the background can be adjusted by changing the amount and type of water-soluble heavy metal salt in the embedding and fixing composition used, the contrast of the observed image can be controlled by pre-treating the sample.
 本発明の包埋固定用組成物とそれを用いた観察方法は、軽元素を主成分とする固体材料の微構造を、電子顕微鏡又はX線顕微鏡の観察下において明瞭に可視化して視認性を向上することができる。本発明の包埋固定用組成物は重金属塩を含有しているため、固体材料を構成している元素の原子番号が小さいほどコントラスト差が大きくなり、鮮明で明瞭な観察が可能となる。 The embedding and fixing composition of the present invention and the observation method using the same clearly visualize the fine structure of a solid material mainly composed of light elements under observation using an electron microscope or an X-ray microscope, thereby improving visibility. can be improved. Since the composition for embedding and fixing of the present invention contains a heavy metal salt, the smaller the atomic number of the elements constituting the solid material, the larger the contrast difference becomes, allowing sharp and clear observation.
Aは実施例1の試料を走査型電子顕微鏡により観察した画像(撮影倍率5千倍)、Bはその部分拡大画像である(撮影倍率5万倍)。A is an image obtained by observing the sample of Example 1 with a scanning electron microscope (photographing magnification: 5,000 times), and B is a partially enlarged image thereof (photographing magnification: 50,000 times). Aは比較例1の試料を走査型電子顕微鏡により観察した画像(撮影倍率5千倍)、Bはその部分拡大画像である(撮影倍率5万倍)。A is an image obtained by observing the sample of Comparative Example 1 with a scanning electron microscope (photographing magnification: 5,000 times), and B is a partially enlarged image thereof (photographing magnification: 50,000 times). Aは比較例2の試料を走査型電子顕微鏡により観察した画像(撮影倍率5千倍)、Bはその部分拡大画像である(撮影倍率5万倍)。A is an image obtained by observing the sample of Comparative Example 2 with a scanning electron microscope (photographing magnification: 5,000 times), and B is a partially enlarged image thereof (photographing magnification: 50,000 times). A及びBは実施例2の試料を走査型電子顕微鏡により観察した画像(撮影倍率2千5百倍及び5千倍)、C及びDはその部分拡大画像である(撮影倍率5万倍及び15万倍)。Aは作成した垂直断面を真上から撮影した画像。B、C及びDは断面を撮影した画像である。A and B are images obtained by observing the sample of Example 2 using a scanning electron microscope (magnifications of 2,500x and 5,000x), and C and D are partially enlarged images thereof (magnifications of 50,000x and 150,000x). times). A is an image taken from directly above the created vertical section. B, C, and D are cross-sectional images. Aは実施例3の試料を透過型電子顕微鏡により観察した画像(視野サイズ91.51nm×91.51nm)、Bはその部分拡大画像(視野サイズ10.01nm×10.01nm)、Cは電子線回析図形を示す画像である。A is an image of the sample of Example 3 observed with a transmission electron microscope (field size 91.51 nm x 91.51 nm), B is a partially enlarged image (field size 10.01 nm x 10.01 nm), and C is an electron beam This is an image showing a diffraction pattern. 実施例1及び7の包埋固定用組成物を固体化した試料、ポリビニルアルコール(PVA)、リンタングステン酸(PTA)並びにビニロンをX線光電子分光法(XPS)により測定したスペクトルである。AはC1sスペクトル、BはW4fスペクトルである。This is a spectrum measured by X-ray photoelectron spectroscopy (XPS) of samples obtained by solidifying the embedding and fixing compositions of Examples 1 and 7, polyvinyl alcohol (PVA), phosphotungstic acid (PTA), and vinylon. A is the C1s spectrum, and B is the W4f spectrum. Aは実施例4の試料を低真空走査型電子顕微鏡により観察した画像(撮影倍率250倍)、Bはその部分拡大画像(撮影倍率1千倍)である。A is an image of the sample of Example 4 observed using a low vacuum scanning electron microscope (250x magnification), and B is a partially enlarged image thereof (1,000x magnification). Aは実施例5の試料を低真空走査型電子顕微鏡により観察した画像(視野サイズ600μm×90μm)、Bは比較例3の試料を同一の条件で観察した画像である。A is an image obtained by observing the sample of Example 5 using a low vacuum scanning electron microscope (field size: 600 μm x 90 μm), and B is an image obtained by observing the sample of Comparative Example 3 under the same conditions.
Aは実施例6の試料をX線顕微鏡により観察した画像、Bは比較例4の試料を同一の条件で観察した画像である。A is an image obtained by observing the sample of Example 6 using an X-ray microscope, and B is an image obtained by observing the sample of Comparative Example 4 under the same conditions. Aは実施例7の試料を走査型電子顕微鏡により観察した画像(撮影倍率100倍)、Bはその部分拡大画像(撮影倍率1万倍)、Cは実施例7の試料の外観像である。A is an image of the sample of Example 7 observed with a scanning electron microscope (100x magnification), B is a partially enlarged image thereof (10,000x magnification), and C is an external image of the sample of Example 7. 実施例7の包埋固定用組成物を固体化した試料、リンタングステン酸(PTA)及びビニロンをX線光電子分光法(XPS)により測定したスペクトルである。AはC1sスペクトル、BはW4fスペクトルである。This is a spectrum measured by X-ray photoelectron spectroscopy (XPS) of a sample obtained by solidifying the embedding and fixing composition of Example 7, phosphotungstic acid (PTA), and vinylon. A is the C1s spectrum, and B is the W4f spectrum. 比較例5の試料をフィールドエミッション走査型電子顕微鏡により観察した画像であり、Aは反射電子像、Bは二次電子像である(視野サイズ6.8μm×6.6μm)。These are images obtained by observing the sample of Comparative Example 5 using a field emission scanning electron microscope, where A is a backscattered electron image and B is a secondary electron image (field size: 6.8 μm×6.6 μm). A~Fは実施例8のPVA:PTAの配合比率を20:1~1:10の範囲で変化させた試料を、フィールドエミッション走査型電子顕微鏡により観察した画像である(視野サイズ6.8μm×7.0μm)。A to F are images obtained by observing samples of Example 8 in which the PVA:PTA mixing ratio was varied in the range of 20:1 to 1:10 using a field emission scanning electron microscope (field of view size 6.8 μm x 7.0 μm). A~Fは実施例9の水溶性重金属塩の種類と配合比率を変更した試料を、フィールドエミッション走査型電子顕微鏡により観察した画像である(視野サイズ6.8μm×7.0μm)。A to F are images obtained by observing samples of Example 9 in which the type and blending ratio of water-soluble heavy metal salts were changed using a field emission scanning electron microscope (field size: 6.8 μm×7.0 μm). Aは実施例10の試料を走査型電子顕微鏡により観察した画像(撮影倍率2万倍)、Bは比較例6の試料を同一の条件で観察した画像である。A is an image obtained by observing the sample of Example 10 using a scanning electron microscope (magnification: 20,000 times), and B is an image obtained by observing the sample of Comparative Example 6 under the same conditions.
 以下、本発明の包埋固定用組成物、それを備えたキット、その製造方法、並びにそれを用いた電子顕微鏡及びX線顕微鏡による観察方法について詳細に説明する。なお、説明が省略されている成分、製法、観察法等については、当該技術分野の当業者に知られているものと同一又は実質的に同一のものとすることができる。 Hereinafter, the embedding and fixing composition of the present invention, a kit including the same, a manufacturing method thereof, and an observation method using the same using an electron microscope and an X-ray microscope will be explained in detail. Note that components, manufacturing methods, observation methods, etc. whose explanations are omitted may be the same or substantially the same as those known to those skilled in the art.
 本発明の包埋固定用組成物は、水溶性重金属塩と水溶性高分子及び/又はその水溶性高分子誘導体とが水に溶解した水溶液である。軽元素を主成分とする固体材料の電子顕微鏡又はX線顕微鏡の観察において、重金属塩を構成する重金属を含有する領域と固体材料を構成する軽元素を主成分とする領域とのコントラスト差によって、観察像の視認性を向上することができる。 The embedding and fixing composition of the present invention is an aqueous solution in which a water-soluble heavy metal salt, a water-soluble polymer and/or a water-soluble polymer derivative thereof are dissolved in water. When observing a solid material mainly composed of light elements using an electron microscope or an X-ray microscope, it is possible to detect The visibility of observed images can be improved.
 本発明において「包埋固定用」とは、電子顕微鏡及びX線顕微鏡による観察において、固体材料を包埋及び固定する用途の他に、シート状にしてその表面に粒子・繊維状の固体材料を付着又は仮固定するための用途を含むものとする。 In the present invention, "for embedding and fixation" refers to the use of embedding and fixing solid materials in observation with electron microscopes and X-ray microscopes, as well as the use of solid materials in the form of particles and fibers on the surface of This shall include use for attachment or temporary fixation.
 走査型電子顕微鏡(SEM)の観察像では、固体材料を構成する元素の原子番号が大きいほど二次電子や反射電子が増加して明るくなり、原子番号が小さいほど暗くなる。一方、透過型電子顕微鏡(TEM)やX線顕微鏡(XRM)の観察像では、試料を構成する元素の原子番号が大きいほど透過電子や透過X線強度が減少して暗くなり、原子番号が小さいほど明るくなる。 In a scanning electron microscope (SEM) image, the higher the atomic number of the elements constituting the solid material, the more secondary electrons and reflected electrons increase, making the image brighter, and the lower the atomic number, the darker it becomes. On the other hand, in images observed using a transmission electron microscope (TEM) or X-ray microscope (XRM), the higher the atomic number of the elements constituting the sample, the lower the intensity of transmitted electrons and transmitted X-rays, making them darker; The brighter it becomes.
 本発明において「重金属」とは、原子番号が鉄(Fe:原子番号26)以上の金属を意味する。また「軽元素」とは、原子番号がフッ素(F:原子番号9)以下の元素を意味する。さらに「主成分」とは、軽元素が固体材料を構成する全元素の50質量%以上を占めることを意味する。 In the present invention, "heavy metal" means a metal whose atomic number is iron (Fe: atomic number 26) or higher. Moreover, the term "light element" means an element whose atomic number is fluorine (F: atomic number 9) or less. Furthermore, "main component" means that light elements account for 50% by mass or more of all elements constituting the solid material.
 本発明の適応となる固体材料を構成する軽元素としては、主に炭素(C)、水素(H)、酸素(O)、窒素(N)及びホウ素(B)が想定され、特に炭素(C)が想定される。固体材料全体の中でこれら軽元素の占める割合が、70質量%以上、90質量%以上など高くなるほど本発明が効果的となり、特に全てが軽元素から構成される固体材料において効果的である。 The light elements constituting the solid material to which the present invention is applicable are mainly carbon (C), hydrogen (H), oxygen (O), nitrogen (N), and boron (B), with particular emphasis on carbon (C ) is assumed. The present invention becomes more effective as the proportion of these light elements in the entire solid material increases, such as 70% by mass or more, 90% by mass or more, and is particularly effective in solid materials composed entirely of light elements.
 本発明が含有する水溶性重金属塩は、水に対する大きな溶解度を示し、固体材料を構成する軽元素よりも原子番号が十分に大きく、電子顕微鏡及びX線顕微鏡の観察時に大きなコントラストが得られる重金属塩及びその水和物が好ましい。具体的には、リンタングステン酸(H[P(W10]・nHO)(PTA)、酢酸ガドリニウム((CHCOO)Gd・nHO)、モリブデン酸アンモニウム((NHMo24・4HO)、リンモリブデン酸(H(PMo1240)・nHO)、フェロシアンカリウム(K[Fe(CN)]・nHO)、硝酸鉛(Pb(NO)、酢酸鉛(Pb(CHCOO))等が挙げられる。これらの重金属塩を2種以上含有してもよい。 The water-soluble heavy metal salt contained in the present invention exhibits high solubility in water, has a sufficiently larger atomic number than the light elements constituting the solid material, and is a heavy metal salt that provides a large contrast when observed with an electron microscope and an X-ray microscope. and its hydrates are preferred. Specifically, phosphotungstic acid (H 3 [P(W 3 O 10 ) 4 ]·nH 2 O) (PTA), gadolinium acetate ((CH 3 COO) 3 Gd·nH 2 O), ammonium molybdate ( (NH 4 ) 6 Mo 7 O 24 ·4H 2 O), phosphomolybdic acid (H 3 (PMo 12 O 40 )·nH 2 O), potassium ferrocyanate (K 4 [Fe(CN) 6 ]·nH 2 O) ), lead nitrate (Pb(NO 3 ) 2 ), lead acetate (Pb(CH 3 COO) 2 ), and the like. Two or more types of these heavy metal salts may be contained.
 水への溶解性が高く、取り扱いが容易なことから、リンタングステン酸(PTA)、モリブデン酸アンモニウム、リンモリブデン酸、酢酸ガドリニウム、酢酸鉛が好ましい。1分子当たりの金属量が多く少ない添加量で大きなコントラストが得られることから、リンタングステン酸(PTA)が最も好ましい。 Phosphotungstic acid (PTA), ammonium molybdate, phosphomolybdic acid, gadolinium acetate, and lead acetate are preferred because they have high solubility in water and are easy to handle. Phosphortungstic acid (PTA) is most preferred because it has a large amount of metal per molecule and can provide a large contrast with a small amount added.
 本発明が含有する水溶性高分子は、水に対する大きな溶解度を示し、安定性と取扱性に優れた高分子が好ましい。具体的には、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、ポリアクリルアミド(PAM)、ポリアクリル酸(PAA)、ポリエチレンオキシド(PEO)等が挙げられる。これらの高分子を2種以上含有してもよい。 The water-soluble polymer contained in the present invention is preferably a polymer that exhibits high solubility in water and has excellent stability and handleability. Specific examples include polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), polyacrylamide (PAM), polyacrylic acid (PAA), and polyethylene oxide (PEO). Two or more types of these polymers may be contained.
 水への溶解性が高く、取り扱いが容易なことから、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)が好ましい。Na、K等の観察に影響を与える不純物が少ないことから、ポリビニルアルコール(PVA)が最も好ましい。固体化前の水に溶解した状態の重合度やケン化度は、本発明の所定の機能を発揮できる範囲であれば特に限定されない。適度な粘性による固体材料への含侵性と取扱性の観点から、PVAの場合には重合度1500~1700の範囲、ケン化度90~100mol%の範囲が例示される。 Polyvinyl alcohol (PVA) and carboxymethyl cellulose (CMC) are preferred because they have high solubility in water and are easy to handle. Polyvinyl alcohol (PVA) is most preferred because it contains few impurities such as Na and K that affect observation. The degree of polymerization and degree of saponification in the state dissolved in water before solidification are not particularly limited as long as they can exhibit the predetermined functions of the present invention. In the case of PVA, from the viewpoint of impregnating solid materials with appropriate viscosity and ease of handling, examples include a degree of polymerization in the range of 1500 to 1700 and a degree of saponification in the range of 90 to 100 mol%.
 水に水溶性高分子を溶解して水溶性重金属塩を添加すると、2つの水溶性成分の種類や配合比率にもよるが、水溶性高分子の官能基が反応して水溶性高分子の誘導体が形成される。本発明の包埋固定用組成物はこの水溶性高分子誘導体も含有する。後述する実施例では、強酸性によるPVAの残存酢酸基の加水分解と、PTAによるPVAの水酸基間の架橋が示唆されている。誘導体となる組成物中の高分子の比率や、反応する高分子中の官能基の比率は、水溶性高分子と水溶性重金属塩の種類やそれらの配合率により異なり、本発明の所定の機能を発揮できる範囲であれば特に限定されない。一部又は全部でもよい。 When a water-soluble polymer is dissolved in water and a water-soluble heavy metal salt is added, the functional groups of the water-soluble polymer react to form a derivative of the water-soluble polymer, depending on the type and blending ratio of the two water-soluble components. is formed. The embedding and fixing composition of the present invention also contains this water-soluble polymer derivative. Examples described later suggest hydrolysis of residual acetate groups in PVA by strong acidity and crosslinking between hydroxyl groups in PVA by PTA. The ratio of polymers in the composition that serves as a derivative and the ratio of functional groups in the polymer to be reacted vary depending on the types of water-soluble polymer and water-soluble heavy metal salt and their blending ratio, and the ratio of polymers in the composition to be a derivative and the ratio of functional groups in the polymer to be reacted vary depending on the types of water-soluble polymer and water-soluble heavy metal salt and their blending ratio. There is no particular limitation as long as it can exhibit the following. It may be part or all.
 水溶性高分子誘導体は水溶性高分子としての特性を維持しているが、水溶性高分子誘導体が形成されることにより、本発明の包埋固定用組成物の効果への寄与が期待できる。例えば、水溶液中において重金属塩と高分子との分散性が向上することにより、包埋固定後の試料中においても重金属塩と高分子との分散性が向上することが考えられる。また、乾燥固化後の固体物の水への溶解性が低下することや、架橋硬化後の固体物の硬度が上昇することにより、包埋固定後の試料の取扱性や加工性が向上することが考えられる。 Although the water-soluble polymer derivative maintains its properties as a water-soluble polymer, the formation of the water-soluble polymer derivative can be expected to contribute to the effectiveness of the embedding and fixing composition of the present invention. For example, it is thought that by improving the dispersibility of the heavy metal salt and polymer in an aqueous solution, the dispersibility of the heavy metal salt and polymer also improves in the sample after embedding and fixation. In addition, the solubility of the solid in water after drying and solidification decreases, and the hardness of the solid after crosslinking and hardening increases, resulting in improved handling and processability of the sample after embedding and fixation. is possible.
 本発明の包埋固定用組成物は、上記の水溶性重金属塩及び水溶性高分子の2成分、水溶性重金属塩及び水溶性高分子誘導体の2成分、又は、水溶性重金属塩、水溶性高分子及び水溶性高分子誘導体の3成分が水に溶解した水溶液である。2つ又は3つの水溶性成分は完全に溶解していることが好ましいが、微量が溶けきらずに微粒子の状態で分散していても、本発明の所定の機能を発揮できる範囲であれば、完全に溶解している状態と同一視できるものとする。水はNaやKなどの不純物を含まない、RO水、蒸留水、イオン交換水、精製水等の純水が好ましい。 The composition for embedding and fixing of the present invention comprises two components: the water-soluble heavy metal salt and the water-soluble polymer, the water-soluble heavy metal salt and the water-soluble polymer derivative, or the water-soluble heavy metal salt and the water-soluble polymer. It is an aqueous solution in which three components, a molecule and a water-soluble polymer derivative, are dissolved in water. It is preferable that the two or three water-soluble components are completely dissolved, but even if a small amount is not completely dissolved and is dispersed in the form of fine particles, it is possible to completely dissolve the two or three water-soluble components as long as the predetermined function of the present invention can be achieved. It can be equated with the state of being dissolved in. The water is preferably pure water, such as RO water, distilled water, ion-exchanged water, or purified water, which does not contain impurities such as Na or K.
 常法に従って調製することができ、水溶性高分子と水溶性重金属塩とを水に混合して攪拌と加温を併用して溶解する。例えば、PVAの場合には常温の水に樹脂粉末を攪拌しながら混合してよく分散させ、続いて80~100℃未満に加温して30分~60分攪拌して完全に溶解させる。次に水溶性重金属塩を加えるが、水溶液の温度が高いときに混合すると酸化物が生成して着色しやすいため、水溶液が冷えてから攪拌しながら混合して完全に溶解させるのが好ましい。 It can be prepared according to a conventional method, and a water-soluble polymer and a water-soluble heavy metal salt are mixed in water and dissolved using a combination of stirring and heating. For example, in the case of PVA, resin powder is mixed with water at room temperature while stirring to disperse it well, and then heated to less than 80 to 100°C and stirred for 30 to 60 minutes to completely dissolve. Next, a water-soluble heavy metal salt is added, but if the aqueous solution is mixed at a high temperature, oxides will be generated and coloration will occur easily, so it is preferable to mix the aqueous solution with stirring after it has cooled down to completely dissolve it.
 水溶性高分子の配合量は、固体化した際に重金属塩を分散した状態で包含するために十分な量であること、得られる水溶液の粘度が適度に低く固体材料の微構造に含浸させやすいこと、溶解度(飽和濃度)以下で溶け残しが生じないことなどを考慮して設定される。例えば、PVAの場合には組成物(水溶液)全体量に対して、好ましくは0.5~15質量%、より好ましくは1.0~10質量%、さらに好ましくは2.0~7.5質量%の範囲である。 The amount of water-soluble polymer blended is sufficient to include the heavy metal salt in a dispersed state when solidified, and the resulting aqueous solution has a moderately low viscosity and is easy to impregnate into the microstructure of the solid material. It is set taking into account that no undissolved material will be left below the solubility (saturation concentration). For example, in the case of PVA, it is preferably 0.5 to 15% by mass, more preferably 1.0 to 10% by mass, even more preferably 2.0 to 7.5% by mass, based on the entire composition (aqueous solution). % range.
 水溶性重金属塩の配合量は、包埋する固体材料に対して十分なコントラストが得られること、溶解度(飽和濃度)以下で溶け残しが生じないこと、固体化させたときに結晶が析出しないことなどを考慮して設定される。例えば、PTAの場合には組成物(水溶液)全体量に対して、好ましくは0.25~40質量%、より好ましくは0.5~35質量%、さらに好ましくは2.5~20質量%の範囲である。 The amount of water-soluble heavy metal salt to be mixed must be such that it provides sufficient contrast to the solid material to be embedded, that no undissolved material is left below the solubility (saturation concentration), and that crystals do not precipitate when solidified. It is set taking into account the following. For example, in the case of PTA, it is preferably 0.25 to 40% by mass, more preferably 0.5 to 35% by mass, even more preferably 2.5 to 20% by mass, based on the total amount of the composition (aqueous solution). range.
 水溶性高分子と水溶性重金属塩との配合比率は、同様に十分なコントラストが得られること、溶け残しが生じないこと、結晶が析出しないことなどを考慮して設定される。水溶性高分子:水溶性重金属塩の範囲は、好ましくは5:1~1:20、より好ましくは3:1~1:15、さらに好ましくは2:1~1:12.5の範囲である。 The blending ratio of the water-soluble polymer and the water-soluble heavy metal salt is similarly set in consideration of obtaining sufficient contrast, not leaving any undissolved material, and not precipitating crystals. The range of water-soluble polymer: water-soluble heavy metal salt is preferably 5:1 to 1:20, more preferably 3:1 to 1:15, even more preferably 2:1 to 1:12.5. .
 本発明の包埋固定用組成物は、水溶性重金属塩の配合量や種類を変えることによって、黒と白の絵の具でモノトーンの背景を調整するように、観察像の背景の明度を調整することができる。これにより、観察する固体材料の構成元素に対応して、包埋に用いる組成物の種類を変更してコントラスト(濃淡)を最適化し、観察像の視認性を向上することができる。水溶性重金属塩の含有量や種類を変化させた2種以上の包埋固定用組成物を予め調製して容器に充填しキット化することにより、観察時の操作性や利便性が向上する。 The embedding and fixing composition of the present invention allows the brightness of the background of an observed image to be adjusted by changing the amount and type of the water-soluble heavy metal salt, similar to adjusting the monotone background with black and white paint. Can be done. This makes it possible to optimize the contrast (shading) by changing the type of composition used for embedding in accordance with the constituent elements of the solid material to be observed, thereby improving the visibility of the observed image. Operability and convenience during observation are improved by preparing in advance two or more types of embedding and fixing compositions with varying contents and types of water-soluble heavy metal salts and filling them into a container to form a kit.
 本発明の包埋固定用組成物は、さらに導電性高分子を添加してもよい。導電性を付与することにより、電子顕微鏡観察時の帯電現象(チャージアップ)を防止することができ、試料の作製条件にもよるが、貴金属のスパッタリングや蒸着による導電処理を省略又は簡略化することができる。また、従来のカーボンペーストやカーボンテープのように、シート状にしてその表面に粒子や繊維状の試料を付着又は仮固定し、導電処理することなく簡便に観察する用途にも使用できる。 The embedding and fixing composition of the present invention may further contain a conductive polymer. By imparting conductivity, it is possible to prevent the charging phenomenon (charge-up) during electron microscopy observation, and depending on the sample preparation conditions, it is possible to omit or simplify the conductive treatment by sputtering or vapor deposition of precious metals. Can be done. Furthermore, like conventional carbon pastes and carbon tapes, it can be used in applications where it is made into a sheet and particles or fiber samples are attached or temporarily fixed to the surface of the sheet for easy observation without conductive treatment.
 導電性高分子は、好適な導電性が付与でき水溶液への分散性に優れる高分子が好ましい。具体的には、ポリエチレンジオキシチオフェンとポリスチレンスルホン酸との複合体(PEDOT/PSS)、ポリアニリン、P3HT、PCBMなどが挙げられる。金属塩を含むPVAと混合した際のゲル化を利用するといった観点から、PEDOT/PSSが最も好ましい。導電性高分子を包埋固定用組成物に添加すると水溶性高分子のゲル化が進む可能性があるため、予め包埋固定用組成物に配合しておくのではなく、別容器に充填しておき必要時に混合するキット形態が好ましい。 The conductive polymer is preferably a polymer that can impart suitable conductivity and has excellent dispersibility in an aqueous solution. Specific examples include a complex of polyethylene dioxythiophene and polystyrene sulfonic acid (PEDOT/PSS), polyaniline, P3HT, PCBM, and the like. PEDOT/PSS is most preferred from the viewpoint of utilizing gelation when mixed with PVA containing a metal salt. Adding a conductive polymer to the embedding and fixing composition may promote gelation of the water-soluble polymer, so instead of adding it to the embedding and fixing composition in advance, fill it in a separate container. Preferably, it is in the form of a kit, which is prepared in advance and mixed when necessary.
 導電性高分子の添加量は、固体化後に十分な導電性を付与できること、水溶液に均一に分散して本発明の所定の機能を妨げないことなどを考慮して設定される。例えば、PEDOT/PSSの場合には組成物(水溶液)全体量に対して、好ましくは0.1~2質量%、より好ましくは0.25~1.5質量%、さらに好ましくは0.5~1.0質量%の範囲である。 The amount of the conductive polymer to be added is determined taking into account that sufficient conductivity can be imparted after solidification, that it is uniformly dispersed in an aqueous solution, and that it does not interfere with the predetermined functions of the present invention. For example, in the case of PEDOT/PSS, it is preferably 0.1 to 2% by mass, more preferably 0.25 to 1.5% by mass, even more preferably 0.5 to 2% by mass, based on the total amount of the composition (aqueous solution). The range is 1.0% by mass.
 本発明の含有する水溶性重金属塩及び水溶性高分子を、粉末、顆粒、タブレットなどの固体又は水に溶解した水溶液の形態で、別々に密閉容器に収容保管し、用時調製する2成分混合型のキットとしてもよい。これにより、2成分の試薬から所望の濃度の包埋固定用組成物を自由に調製できるため、濃度別の試薬数を減らして簡素化しコストを削減することができる。また、2成分を別々に収容保管することで、経時変化を抑制してより長期間の安定した保管が可能となる。 A two-component mixture in which the water-soluble heavy metal salt and water-soluble polymer contained in the present invention are stored separately in a closed container in the form of a solid such as powder, granules, tablets, or an aqueous solution dissolved in water, and prepared at the time of use. It can also be used as a mold kit. As a result, it is possible to freely prepare an embedding and fixing composition of a desired concentration from the two-component reagents, thereby reducing the number of reagents for each concentration, simplifying the process, and reducing costs. Furthermore, by storing the two components separately, changes over time can be suppressed and stable storage can be achieved for a longer period of time.
 具体的には、溶解が容易な水溶性重金属塩を粉末又は水溶液の形態で、水溶性高分子を水溶液の形態で収容保管し、観察時に必要量の水溶性重金属塩と水溶性高分子とを秤量して、水溶性重金属塩を水溶性高分子に混合して溶解混和し、所望の濃度の包埋固定用組成物を調製することが例示される。予め備える2成分の水溶液の濃度は1種類でも2種類以上でもよい。粉末等の固体を充填する容器としてはプラスチック製の密閉可能な小袋や容器、水溶液を充填する容器としてはガラス製のバイアルなどが挙げられる。 Specifically, water-soluble heavy metal salts that are easily dissolved are stored in the form of powder or aqueous solution, and water-soluble polymers are stored in the form of aqueous solution, and the necessary amounts of water-soluble heavy metal salts and water-soluble polymers are collected during observation. For example, a composition for embedding and fixing having a desired concentration is prepared by weighing, dissolving and mixing a water-soluble heavy metal salt with a water-soluble polymer. The concentration of the two component aqueous solutions prepared in advance may be one type or two or more types. Examples of containers to be filled with solids such as powders include sealable plastic bags and containers, and examples of containers to be filled with aqueous solutions include glass vials.
 本発明の包埋固定用組成物は、前記2つ若しくは3つの水溶性成分が水に溶解した水溶液、又はこれに導電性高分子を分散させた水溶液である。その特性をさらに向上させるため、界面活性剤等の他の成分を添加してもよいが、NaやKなどが混入すると電子顕微鏡及びX線顕微鏡の観察時に悪影響を与える可能性があるため、界面活性剤等の他の成分はNaやKなどを含まないことが望ましい。 The embedding and fixing composition of the present invention is an aqueous solution in which the two or three water-soluble components are dissolved in water, or an aqueous solution in which a conductive polymer is dispersed. In order to further improve the properties, other components such as surfactants may be added, but if Na or K is mixed in, it may have an adverse effect on observation using an electron microscope or an X-ray microscope, so the interface It is desirable that other components such as the activator do not contain Na, K, etc.
 また、本発明は包埋固定用組成物を含侵させる段階と、固体化する段階と、観察面を露出させる段階とを含む、電子顕微鏡又はX線顕微鏡による観察方法であり、軽元素を主成分とする固体材料の微構造を簡単な操作で明瞭に観察することができる。 The present invention also provides an observation method using an electron microscope or an X-ray microscope, which includes the steps of impregnating an embedding and fixing composition, solidifying the composition, and exposing an observation surface. The microstructure of solid materials can be clearly observed with simple operations.
 本発明の包埋固定用組成物は適度な粘性の水溶液であり、固体材料の微構造への含侵性に優れている。そのため、固体材料を水溶液中に浸漬してもよく、固体材料と水溶液を混合して攪拌してもよく、固体材料の表面に水溶液を塗布してもよい。また、減圧などの含侵処理を併用してもよい。 The embedding and fixing composition of the present invention is an aqueous solution of moderate viscosity and has excellent impregnation properties into the microstructure of solid materials. Therefore, the solid material may be immersed in the aqueous solution, the solid material and the aqueous solution may be mixed and stirred, or the aqueous solution may be applied to the surface of the solid material. Further, impregnation treatment such as reduced pressure may be used in combination.
 固体材料の微構造中に水溶液を含浸させて、その空隙が満たされた後で固化又は硬化させることにより固体化し、固体材料の微構造を包埋固定することができる。固体化は自然乾燥により水分を蒸発させる固化が、最も簡便で試料に対しても負荷が少ない。減圧や加温を併用してもよい。固体材料に含侵、混合、塗布等して固化又は硬化させた後の組成物は、硬めの固体、柔らかめの固体、ゲル状、ペースト状等いずれの形態でもよい。 The microstructure of the solid material can be solidified by impregnating the aqueous solution into the microstructure of the solid material and solidifying or curing the solution after the voids are filled, thereby embedding and fixing the microstructure of the solid material. Solidification by evaporating water through natural drying is the simplest method and has the least burden on the sample. Decompression and heating may be used together. The composition after being solidified or cured by impregnating, mixing, or coating a solid material may be in any form such as a hard solid, a soft solid, a gel, or a paste.
 また、水溶性高分子間に化学的に架橋を形成して硬化させてもよい。これにより包埋固定した試料に耐水性を付与することができる。化学的な架橋は常法を用いることができる。例えばPVAの場合には、80℃以上に加温しながらホルムアルデヒドと塩酸を添加して架橋を促進させることができる。 Alternatively, crosslinks may be chemically formed between water-soluble polymers and cured. This makes it possible to impart water resistance to the embedded and fixed sample. A conventional method can be used for chemical crosslinking. For example, in the case of PVA, crosslinking can be promoted by adding formaldehyde and hydrochloric acid while heating to 80° C. or higher.
 包埋固定した固体材料を加工して観察面を露出させることにより、固体材料の内部構造を観察することができる。加工方法としては、集束イオンビーム装置によるFIB(Focused Ion Beam)加工、イオンミリング装置によるCP(Cross Section Polisher)加工、刃物による物理的な切削等が挙げられる。 By processing the embedded and fixed solid material to expose the observation surface, the internal structure of the solid material can be observed. Examples of processing methods include FIB (Focused Ion Beam) processing using a focused ion beam device, CP (Cross Section Polisher) processing using an ion milling device, and physical cutting using a blade.
 本発明の観察方法に用いる電子顕微鏡としては、走査型電子顕微鏡(Scanning Electron Microscope:SEM)、低真空走査型電子顕微鏡(Low-Vacuum Pressure Scanning Electron Microscope:LVP-SEM)、集束イオンビーム装置(Focused Ion Beam System:FIB)、透過型電子顕微鏡(Transmission Electron Microscope:TEM)が挙げられる。X線顕微鏡(X-Ray Microscope:XRM)としては、軟X線又は硬X線走査型顕微鏡、3次元X線顕微鏡(X-Ray Computed Tomography:X線CT)が挙げられる。 Electron microscopes used in the observation method of the present invention include a scanning electron microscope (SEM), a low-vacuum pressure scanning electron microscope (LVP-SEM), and a focused ion beam device (Focused ion beam device). Ion Beam System (FIB) and Transmission Electron Microscope (TEM). Examples of the X-ray microscope (XRM) include a soft X-ray or hard X-ray scanning microscope, and a three-dimensional X-ray microscope (X-Ray Computed Tomography: X-ray CT).
 以下、本発明の包埋固定用組成物、その製造方法及びそれを用いた観察方法について、実施例、比較例及び試験例を参照して具体的に説明する。なお、本発明はこれらの実施例等によって限定されるものではなく、本発明の技術的思想を逸脱しない範囲で種々の変更が可能である。 Hereinafter, the embedding and fixing composition of the present invention, its manufacturing method, and observation method using the same will be specifically explained with reference to Examples, Comparative Examples, and Test Examples. Note that the present invention is not limited to these Examples, etc., and various changes can be made without departing from the technical idea of the present invention.
[実施例1]
 純水90gにポリビニルアルコール(PVA)(東京化成工業(株)製、製品コードP0469)5gを、室温で攪拌しながら徐々に混合して十分に分散させた。続いて、攪拌しながら80℃まで加温し、さらに90、95、98℃まで段階的に加温し、各温度で30分間攪拌して完全に溶解させた。この溶液が室温まで冷えてから、リンタングステン酸(PTA)(TAAB社製)5gを攪拌しながら徐々に混合して溶解し、本発明の包埋固定用組成物(水溶液)を調製した。そのpHは1.40であった。
[Example 1]
5 g of polyvinyl alcohol (PVA) (manufactured by Tokyo Kasei Kogyo Co., Ltd., product code P0469) was gradually mixed with 90 g of pure water while stirring at room temperature to sufficiently disperse the mixture. Subsequently, the mixture was heated to 80° C. with stirring, and further heated stepwise to 90, 95, and 98° C., and stirred at each temperature for 30 minutes to completely dissolve. After this solution cooled to room temperature, 5 g of phosphotungstic acid (PTA) (manufactured by TAAB) was gradually mixed and dissolved with stirring to prepare an embedding and fixing composition (aqueous solution) of the present invention. Its pH was 1.40.
 この水溶液1gに乾燥させたカーボンペースト粉末(C:原子番号6)(TED PELLA社製、製品名アクアダック)0.01~0.1gを加えて混合し、シリコンウエハ表面に塗布し自然乾燥して固化させた。減圧などの含侵処理は行わなかった。 Add 0.01 to 0.1 g of dried carbon paste powder (C: atomic number 6) (manufactured by TED PELLA, product name: Aquaduck) to 1 g of this aqueous solution, mix, apply to the surface of a silicon wafer, and dry naturally. and solidified. Impregnation treatment such as reduced pressure was not performed.
 スパッタリングによりC又はOsをコーティングして導電処理を行った後、走査型電子顕微鏡(SEM)を搭載した集束イオンビーム装置(FEI社製、型式Scios)でFIB加工して、固化した試料及びシリコンウエハの表面に垂直方向の断面を形成した。試料全体を水平位置から52°傾けて、露出した断面を上方からSEMで観察した。観察結果を図1A及びBに示す。図1Bは図1A中の試料部分の拡大観察像である。 After conducting conductive treatment by coating with C or Os by sputtering, FIB processing was performed using a focused ion beam device (manufactured by FEI, model: Scios) equipped with a scanning electron microscope (SEM), and the solidified sample and silicon wafer were A vertical cross section was formed on the surface of. The entire sample was tilted at 52 degrees from the horizontal position, and the exposed cross section was observed from above using an SEM. The observation results are shown in FIGS. 1A and B. FIG. 1B is an enlarged observation image of the sample portion in FIG. 1A.
[比較例1]
 PTAを加えずPVAのみを溶解した水溶液にカーボン粉末を混合して包埋固定したこと以外は、実施例1と同様に試料を作成して断面を観察した。観察結果を図2A及びBに示す。
[比較例2]
 市販のエポキシ系包埋樹脂(GATAN社製、製品名G2 Epoxy)にカーボン粉末を混合して包埋固定したこと以外は、実施例1と同様に試料を作成して断面を観察した。観察結果を図3A及びBに示す。
[Comparative example 1]
A sample was prepared in the same manner as in Example 1, except that carbon powder was mixed in an aqueous solution in which only PVA was dissolved without adding PTA, and the sample was embedded and fixed, and its cross section was observed. The observation results are shown in FIGS. 2A and B.
[Comparative example 2]
A sample was prepared in the same manner as in Example 1, and its cross section was observed, except that carbon powder was mixed with a commercially available epoxy embedding resin (manufactured by GATAN, product name: G2 Epoxy) and embedded and fixed. The observation results are shown in FIGS. 3A and B.
 図1A及びBの結果より、実施例1では軽元素のカーボン粉末の暗色と、重金属のタングステンを含む固化した包埋組成物の明色との間で大きなコントラストが付き、観察像の視認性が向上して数十nmレベルの微構造まで識別できることが分かる。一方、図2A及びB並びに図3A及びBの結果より、比較例1及び2では軽元素のカーボン粉末と固化したPVA及び硬化したエポキシ系包埋樹脂との間でコントラストがほとんど付かず、観察像の視認性が劣り微構造が十分に識別できないことが分かる。 From the results shown in Figures 1A and B, in Example 1, there was a large contrast between the dark color of the light element carbon powder and the light color of the solidified embedding composition containing the heavy metal tungsten, and the visibility of the observed image was improved. It can be seen that this has been improved and it is possible to identify fine structures down to the level of several tens of nanometers. On the other hand, from the results shown in FIGS. 2A and B and FIGS. 3A and B, in Comparative Examples 1 and 2, there was almost no contrast between the light element carbon powder and the solidified PVA and hardened epoxy embedding resin, and the observed images It can be seen that the visibility is poor and the microstructure cannot be sufficiently identified.
[実施例2]
 カーボン粉末の代わりに窒化ホウ素粉末凝集体(BN:原子番号5及び7)を用いたこと以外は、実施例1と同様に試料を作成して断面を観察した。観察結果を図4A~Dに示す。
[Example 2]
Samples were prepared in the same manner as in Example 1, except that boron nitride powder aggregates (BN: atomic numbers 5 and 7) were used instead of carbon powder, and the cross sections were observed. The observation results are shown in FIGS. 4A to 4D.
 図4A~Dの結果より、実施例2では軽元素の窒化ホウ素粉末の暗色と、固化した包埋組成物の明色との間で大きなコントラストが付き、明瞭に可視化され観察像の視認性が向上していることが分かる。図4Dの観察像からは粒子間の約10nmの隙間も識別することができる。 From the results shown in FIGS. 4A to 4D, in Example 2, there was a large contrast between the dark color of the light element boron nitride powder and the light color of the solidified embedding composition, which was clearly visualized and the visibility of the observed image was improved. I can see that it is improving. A gap of approximately 10 nm between particles can also be identified from the observed image in FIG. 4D.
[実施例3]
 実施例1と同じ包埋固定用組成物のみをシリコンウエハ上に塗布し、自然乾燥させて固化させた。次いで、集束イオンビーム装置(FIB)(FEI社製、型式Scios)で厚さ約100nmの薄膜を作製し、透過型電子顕微鏡(TEM)(Thermo Fisher Scientific社製、型式Talos)で観察した。観察結果を図5A及びBに示す。また、電子線回折像の観察結果を図5Cに示す。
[Example 3]
Only the same embedding and fixing composition as in Example 1 was applied onto a silicon wafer and allowed to air dry to solidify. Next, a thin film with a thickness of about 100 nm was prepared using a focused ion beam device (FIB) (manufactured by FEI, model: Scios), and observed with a transmission electron microscope (TEM) (manufactured by Thermo Fisher Scientific, model: Talos). The observation results are shown in FIGS. 5A and B. Furthermore, the observation results of the electron beam diffraction image are shown in FIG. 5C.
 図5A及びBの結果より、本発明を固化させた組成物では、矢印部分などに1nm以下のサイズで構造体らしきものが散見されるが、PTAがナノレベルでPVA中に均一に分散しており、ほぼ無構造であることが分かる。また、図5Cの結果より、固化させた組成物はアモルファスであることが分かる。固化後に高分子中に重金属塩がナノレベルで分散していることが、微構造の明瞭な可視化を可能にしていると考えられる。 From the results shown in Figures 5A and B, in the solidified composition of the present invention, what appears to be structures with a size of 1 nm or less can be seen here and there, such as in the arrow parts, but PTA is uniformly dispersed in PVA at the nano level. It can be seen that there is almost no structure. Further, from the results shown in FIG. 5C, it can be seen that the solidified composition is amorphous. It is thought that the nano-level dispersion of heavy metal salts in the polymer after solidification makes it possible to clearly visualize the microstructure.
[試験例1]
 実施例1の包埋固定用組成物を乾燥固化させた試料(PVA+PTA)、PVA及びPTA、並びに定法に従って合成したビニロンの表面を、X線光電子分光法(XPS)測定装置(アルバック・ファイ社製、型式Quantera SXM)で測定した。高分解能分析(ナロースキャン分析)により、構成元素の化学結合状態を解析した。取得されたC1s及びW4fスペクトルを図6A及びBに示す。なお、後述する実施例7の包埋固定用組成物を架橋硬化させた試料(ビニロン+PTA)のC1s及びW4fスペクトルを合わせて示す。
[Test example 1]
The surface of the sample (PVA+PTA) obtained by drying and solidifying the embedding and fixing composition of Example 1, PVA and PTA, and vinylon synthesized according to a standard method was measured using an X-ray photoelectron spectroscopy (XPS) measuring device (manufactured by ULVAC-PHI). , Model Quantera SXM). The chemical bonding state of the constituent elements was analyzed using high-resolution analysis (narrow scan analysis). The acquired C1s and W4f spectra are shown in FIGS. 6A and B. The C1s and W4f spectra of a sample (vinylon+PTA) obtained by crosslinking and curing the embedding and fixing composition of Example 7, which will be described later, are also shown.
 図6AのC1sスペクトルより、PVAにPTAを添加すると、PVAの残存酢酸基に由来するO-C=Oのピークが消失していることが分かる。これより、強酸性下においてPVAの酢酸基のエステル結合が加水分解されていることが考えられる。また、PVAのC-O結合の比率が相対的に低下しC-C結合の比率が相対的に増加していることが分かる。これより、PTAによりPVAの水酸基が化学修飾等され架橋されていることが考えられる。これらの結果は、水溶液中においてPVAの誘導体が形成されていることを示している。 From the C1s spectrum in FIG. 6A, it can be seen that when PTA is added to PVA, the OC=O peak derived from the residual acetate group of PVA disappears. This suggests that the ester bond of the acetate group in PVA is hydrolyzed under strong acidity. It can also be seen that the ratio of C--O bonds in PVA is relatively reduced, and the ratio of C--C bonds is relatively increased. This suggests that the hydroxyl groups of PVA are chemically modified and crosslinked by PTA. These results indicate that PVA derivatives are formed in the aqueous solution.
 PVAの誘導体が形成され残存酢酸基が大きく減少することにより、PVAの官能基は相対的に水酸基が多数を占めるようになる。これにより、水溶液中におけるPTAとPVAとの分散性が向上して、包埋固定後の試料中においてもPTAとPVAとの分散性が向上することが考えられる。また、PVAのケン化度が高くなることにより、乾燥固化後の固体物の水への溶解性が低下し、架橋硬化後の固体物の硬度が上昇することにより、包埋固定後の試料の取扱性や加工性が向上することが考えられる。 As PVA derivatives are formed and residual acetate groups are greatly reduced, hydroxyl groups become relatively dominant in the functional groups of PVA. It is thought that this improves the dispersibility of PTA and PVA in the aqueous solution, and also improves the dispersibility of PTA and PVA in the sample after embedding and fixation. In addition, as the degree of saponification of PVA increases, the solubility of the solid in water after drying and solidification decreases, and the hardness of the solid after crosslinking and hardening increases, which increases the stability of the sample after embedding and fixation. It is conceivable that handling and processability will be improved.
 一方、図6BのW4fスペクトルより、PVAにPTAを添加しても、PTAのタングステン(W)のスペクトル形状はほとんど変化しないことが分かる。このことは、PVAにPTAを添加しても、水溶液中におけるPTAの構造変化は極めて小さいことを示している。 On the other hand, from the W4f spectrum in FIG. 6B, it can be seen that even if PTA is added to PVA, the spectrum shape of tungsten (W) in PTA hardly changes. This shows that even if PTA is added to PVA, the structural change of PTA in an aqueous solution is extremely small.
[実施例4]
 実施例1と同じ包埋固定用組成物に市販の衣服から取り出した綿糸を浸漬して、自然乾燥して固化させ包埋固定した。減圧などの含侵処理は行わなかった。次いで、カミソリでカットして、その断面を走査型電子顕微鏡(SEM)(日本電子(株)製、型式JSM-7800F Prime)の低真空モードで観察した。観察結果を図7A及びBに示す。
[Example 4]
A cotton thread taken out from a commercially available garment was immersed in the same embedding and fixing composition as in Example 1, air-dried to solidify, and then embedded and fixed. Impregnation treatment such as reduced pressure was not performed. Next, it was cut with a razor, and its cross section was observed in the low vacuum mode of a scanning electron microscope (SEM) (manufactured by JEOL Ltd., Model JSM-7800F Prime). The observation results are shown in FIGS. 7A and B.
 図7A及びBの結果より、本発明を用いると繊維(有機物)でも簡単な処理だけで内部まで十分に包埋固定でき、高コントラストにより微構造の視認性が向上することが分かる。 From the results shown in FIGS. 7A and B, it can be seen that by using the present invention, even fibers (organic substances) can be sufficiently embedded and fixed to the inside with simple processing, and the visibility of the microstructure is improved due to the high contrast.
[実施例5]
 市販のポリプロピレン製クリアファイルの表面にカッターで傷をつけ、そこに実施例1と同じ包埋固定用組成物を塗布し、自然乾燥して固化させた。減圧などの含侵処理は行わなかった。次いで、カミソリでカットして、その断面を実施例4と同様にSEMの低真空モードで観察した。観察結果を図8Aに示す。
[Example 5]
The surface of a commercially available polypropylene clear file was scratched with a cutter, and the same embedding and fixing composition as in Example 1 was applied thereto, followed by natural drying and solidification. Impregnation treatment such as reduced pressure was not performed. Next, it was cut with a razor, and its cross section was observed in the low vacuum mode of the SEM in the same manner as in Example 4. The observation results are shown in FIG. 8A.
[比較例3]
 比較例1と同じPVAのみを溶解した水溶液を用いて包埋したこと以外は、実施例5と同様に試料を作成して断面を観察した。観察結果を図8Bに示す。
[Comparative example 3]
A sample was prepared in the same manner as in Example 5, except that it was embedded using the same aqueous solution in which only PVA was dissolved as in Comparative Example 1, and its cross section was observed. The observation results are shown in FIG. 8B.
 図8A及びBの結果より、一部剥離が認められるものの、本発明を用いると高分子材料でも簡単な処理だけで欠陥の細部まで十分に包埋でき、高コントラストにより微細な欠陥の視認性が向上することが分かる。 From the results in Figures 8A and B, although some peeling is observed, using the present invention, even with polymeric materials, even the details of defects can be sufficiently embedded with simple processing, and the high contrast makes it easy to see fine defects. I can see that it will improve.
[実施例6]
 市販のポリカーボネート製ワッシャー(内径3mm×外径8mm×厚み0.8mm)を、実施例1と同じ包埋固定用組成物に浸漬して、自然乾燥して固化させ包埋した。次いで、X線顕微鏡(XRM)(メディエックステック(株)製、型式MXT-160UU)で上方から観察した。観察結果を図9Aに示す。
[Example 6]
A commercially available polycarbonate washer (inner diameter 3 mm x outer diameter 8 mm x thickness 0.8 mm) was immersed in the same embedding and fixing composition as in Example 1, air-dried, solidified, and embedded. Next, it was observed from above using an X-ray microscope (XRM) (manufactured by Medi-Extech Co., Ltd., model MXT-160UU). The observation results are shown in FIG. 9A.
[比較例4]
 比較例1と同じPVAのみを溶解した水溶液を用いて包埋したこと以外は、実施例6と同様に試料を作成して観察した。観察結果を図9Bに示す。
[Comparative example 4]
A sample was prepared and observed in the same manner as in Example 6, except that it was embedded using the same aqueous solution in which only PVA was dissolved as in Comparative Example 1. The observation results are shown in FIG. 9B.
 図9A及びBの結果より、本発明の包埋固定用組成物を用いるとX線顕微鏡による観察においても、高分子材料を高コントラストで観察できることが分かる。このことは、X線顕微鏡やX線CTによる観察において、高分子多孔体やカーボンフィルターを本発明で包埋固定して、微構造をより明瞭に可視化できる可能性を示している。 From the results shown in FIGS. 9A and 9B, it can be seen that when the embedding and fixing composition of the present invention is used, polymeric materials can be observed with high contrast even when observed using an X-ray microscope. This indicates the possibility of embedding and fixing a porous polymer or a carbon filter using the present invention to visualize microstructures more clearly during observation using an X-ray microscope or X-ray CT.
[実施例7]
 純水80gにPVA10gとPTA10gを混合して溶解したこと以外は、実施例1と同様の条件で包埋固定用組成物とカーボン粉末との混合物を1g調製した。続いて、13.4mol/Lのホルムアルデヒドを0.08mL加えてよく混合し、さらに12.0mol/Lの塩酸を0.12mL滴下してPVAを化学的に架橋した。生成したゲル状組成物を80℃に加温して水分を蒸発させ硬化させた。
[Example 7]
1 g of a mixture of the embedding and fixing composition and carbon powder was prepared under the same conditions as in Example 1, except that 10 g of PVA and 10 g of PTA were mixed and dissolved in 80 g of pure water. Subsequently, 0.08 mL of 13.4 mol/L formaldehyde was added and mixed well, and further 0.12 mL of 12.0 mol/L hydrochloric acid was added dropwise to chemically crosslink the PVA. The resulting gel composition was heated to 80° C. to evaporate water and harden it.
 この硬化組成物を市販のエポキシ系包埋樹脂(GATAN社製、製品名G2 Epoxy)で包埋固定して、イオンミリング装置(日本電子(株)製、型式IB-19520CCP)で加工して断面を形成した。スパッタリングによりCをコーティングして導電処理を行い、走査型電子顕微鏡(SEM)(日本電子(株)製、型式JSM-7800F Prime)で断面を観察した。観察結果を図10A及びBに示す。図10Bは図10A中試料部分の拡大観察像である。また、硬化組成物の外観を図10Cに示す。 This cured composition was embedded and fixed in a commercially available epoxy embedding resin (manufactured by GATAN, product name: G2 Epoxy), and processed with an ion milling device (manufactured by JEOL Ltd., model IB-19520CCP) to cross-section it. was formed. Conductive treatment was performed by coating with C by sputtering, and the cross section was observed using a scanning electron microscope (SEM) (manufactured by JEOL Ltd., Model JSM-7800F Prime). The observation results are shown in FIGS. 10A and B. FIG. 10B is an enlarged observation image of the sample portion in FIG. 10A. Moreover, the appearance of the cured composition is shown in FIG. 10C.
 図10A及びBの結果より、本発明の包埋固定用組成物を化学的に架橋して硬化させた試料においても、軽元素のカーボン粉末の暗色と、重金属のタングステンを含む硬化組成物の明色との間で大きなコントラストが付き、観察像の視認性が向上して数十nmレベルの微構造まで識別できることが分かる。 From the results shown in FIGS. 10A and 10B, even in the sample in which the embedding and fixing composition of the present invention was chemically crosslinked and cured, the dark color of the light element carbon powder and the light color of the cured composition containing the heavy metal tungsten were found. It can be seen that there is a large contrast between the colors, the visibility of the observed image is improved, and fine structures down to the tens of nm level can be identified.
[試験例2]
 実施例7の包埋固定用組成物を架橋硬化させた試料(ビニロン+PTA)の断面を、試験例1と同様のX線光電子分光法(XPS)により測定した。取得されたC1s及びW4fスペクトルを図6A及びB並びに図11A及びBに示す。なお、比較のため図11A及びBのピーク強度のスケールを調整している。
[Test example 2]
The cross section of a sample (vinylon+PTA) obtained by crosslinking and curing the embedding and fixing composition of Example 7 was measured by the same X-ray photoelectron spectroscopy (XPS) as in Test Example 1. The acquired C1s and W4f spectra are shown in FIGS. 6A and B and FIGS. 11A and B. Note that the scale of the peak intensity in FIGS. 11A and 11B has been adjusted for comparison.
 図6A、図11A1及び2のC1sスペクトルでは、C-C結合のスペクトルのみが現れており、実施例7の包埋固定用組成物を化学的に架橋させることにより、PVAからビニロンが形成されていることが分かる。また、図11B1及び2のW4fスペクトルでは、スペクトルの形状が変化して金属タングステンのスペクトルが現れる約31~34eVの領域にシフトしており、ホルムアルデヒドと塩酸の添加によりPTAのWOが還元されて、金属WやWOが形成されていると考えられる。 In the C1s spectra in FIGS. 6A and 11A1 and 2, only the C--C bond spectrum appears, indicating that vinylon is formed from PVA by chemically crosslinking the embedding and fixing composition of Example 7. I know that there is. In addition, in the W4f spectra in Figures 11B1 and 2, the shape of the spectrum changes and shifts to the region of about 31 to 34 eV where the spectrum of metallic tungsten appears, indicating that WO 3 of PTA is reduced by the addition of formaldehyde and hydrochloric acid. , it is thought that metal W or WO 2 is formed.
[比較例5]
 比較例1及び2と同様にしてPVA溶液及びエポキシ系包埋樹脂を用いてカーボンペースト粉末を包埋固定した試料を作製した。次に、フィールドエミッション走査型電子顕微鏡(FE-SEM)を搭載した集束イオンビーム装置(エスアイアイ・ナノテクノロジー(株)製、型式XVision200TB)でFIB加工して、露出させた断面の反射電子像と二次電子像を観察した。図12A1及び2に反射電子像を、図12B1及び2に二次電子像を示す。
[Comparative example 5]
Samples in which carbon paste powder was embedded and fixed using a PVA solution and an epoxy embedding resin were prepared in the same manner as in Comparative Examples 1 and 2. Next, FIB processing is performed using a focused ion beam device (manufactured by SII Nanotechnology Co., Ltd., model XVision 200TB) equipped with a field emission scanning electron microscope (FE-SEM) to obtain a backscattered electron image of the exposed cross section. A secondary electron image was observed. 12A1 and 2 show backscattered electron images, and FIGS. 12B1 and 2 show secondary electron images.
 図12A1及び2の結果より、反射電子の観察像では、軽元素のカーボン粉末(矢印部分)と固化したPVA及び硬化したエポキシ系包埋樹脂との間でコントラストが全く付かず、微構造が全く識別できないことが分かる。一方、図12B1及び2の結果より、二次電子の観察像では、僅かにコントラストが付き外縁は識別できるものの、視認性が劣り微構造までは識別できないことが分かる。 From the results in Figures 12A1 and 2, it can be seen that in the backscattered electron observation image, there is no contrast at all between the light element carbon powder (arrow area) and the solidified PVA and hardened epoxy embedding resin, and there is no microstructure at all. It turns out that it cannot be identified. On the other hand, from the results shown in FIGS. 12B1 and 2, it can be seen that in the secondary electron observation image, although there is a slight contrast and the outer edge can be identified, the visibility is poor and the fine structure cannot be identified.
[実施例8]
 ポリビニルアルコール(PVA)とリンタングステン酸(PTA)の配合比率、PVA:PTA=20:1(10g:0.5g)、10:1(10g:1g)、3:1(7.5g:2.5g)、1:1(5g:5g)、1:3(2.5g:7.5g)、1:10(1g:10g)の6種類の包埋固定用組成物を調製した。その他の試料の作製条件は実施例1と同様とした。次に、試料の表面を比較例5と同様の方法でFIB加工して、露出させた断面をFE-SEMで観察した。各組成物で包埋固定した試料の観察結果を図13A~Fに示す。全ての観察像は検出器の条件を一定にして取得した反射電子像であり、試料台となるシリコンウエハ部分のコントラストは全ての試料において同一とした。
[Example 8]
The blending ratio of polyvinyl alcohol (PVA) and phosphotungstic acid (PTA), PVA:PTA=20:1 (10g:0.5g), 10:1 (10g:1g), 3:1 (7.5g:2. Six types of embedding and fixing compositions were prepared: 5g), 1:1 (5g:5g), 1:3 (2.5g:7.5g), and 1:10 (1g:10g). The other sample preparation conditions were the same as in Example 1. Next, the surface of the sample was subjected to FIB processing in the same manner as in Comparative Example 5, and the exposed cross section was observed using FE-SEM. Observation results of samples embedded and fixed with each composition are shown in FIGS. 13A to 13F. All observed images were backscattered electron images obtained under constant detector conditions, and the contrast of the silicon wafer portion serving as the sample stage was the same for all samples.
 図13A~Fの結果より、PVA:PTAの配合比率が20:1や10:1ではコントラストが付かずカーボン粉末(矢印部分)がほとんど視認できないが、3:1からコントラストが付き始め、PTAの配合比率を大きくするとそれに比例してコントラストが大きくなることが分かる。特に1:1~1:10の範囲では、カーボン粉末(矢印部分)の暗色と固化した組成物の明色との間で十分なコントラストが付き視認性が向上して、数十nmレベルの微構造まで十分に識別できることが分かる。このことは、観察する固体材料の構成元素に応じて、包埋固定組成物の重金属塩の配合比率を変えることにより、観察像のコントラストを最適化して視認性を向上できることを示している。 From the results in Figures 13A to 13F, it can be seen that when the PVA:PTA blending ratio is 20:1 or 10:1, there is no contrast and the carbon powder (arrow area) is hardly visible, but from 3:1, contrast starts to appear and PTA It can be seen that as the blending ratio increases, the contrast increases in proportion. In particular, in the range of 1:1 to 1:10, there is sufficient contrast between the dark color of the carbon powder (arrow portion) and the light color of the solidified composition, improving visibility and improving the visibility of fine particles at the level of several tens of nanometers. It can be seen that the structure can be sufficiently identified. This shows that by changing the blending ratio of heavy metal salts in the embedding fixation composition depending on the constituent elements of the solid material to be observed, it is possible to optimize the contrast of the observed image and improve visibility.
 例えば、電子顕微鏡で電極触媒の白金担持カーボン(Pt/C)を観察する場合には、原子番号が大きく明るいPtに対応してPTAを少なく配合して背景を暗くする。一方、マグネシウム担持カーボン(Mg/C)の観察をする場合は、原子番号が小さく暗いMgに対応してPTAを多く配合して背景を明るくすることなどが例示される。 For example, when observing platinum-supported carbon (Pt/C) as an electrode catalyst using an electron microscope, a small amount of PTA is blended to darken the background, corresponding to Pt, which has a large atomic number and is bright. On the other hand, when observing magnesium-supported carbon (Mg/C), an example is to mix a large amount of PTA to brighten the background, corresponding to dark Mg with a small atomic number.
 観察する試料を前処理することによって、その観察像のコントラストを制御する技術は従来無かったものである。前述の金属コーティングやネガティブ染色では不可能であり、電子染色でも極めて困難であり再現性も期待できない。本発明の包埋固定用組成物を用いた重金属塩の配合比率を変える方法は、簡単な前処理で実現することができ再現性にも優れている。 There has never been a technique to control the contrast of an observed image by pre-treating the sample to be observed. This is not possible with the metal coating or negative staining mentioned above, and even with electronic staining it is extremely difficult and reproducible cannot be expected. The method of changing the compounding ratio of heavy metal salts using the embedding and fixing composition of the present invention can be achieved by simple pretreatment and has excellent reproducibility.
[実施例9]
 水溶性重金属塩としてモリブデン酸アンモニウム((NHMo24・4HO)、酢酸ガドリニウム((CHCOO)Gd・nHO)、及び酢酸鉛(Pb(CHCOO))を用いた。ポリビニルアルコール(PVA)と水溶性重金属塩の配合比率を、1:1(5g:5g)、1:5(2g:10g)として計6種類の包埋固定用組成物を調製した。その他の試料の作製条件や観察条件は実施例8と同様とした。各組成物で包埋固定した試料の観察結果を図14A~Fに示す。
[Example 9]
Water-soluble heavy metal salts include ammonium molybdate ((NH 4 ) 6 Mo 7 O 24 ·4H 2 O), gadolinium acetate ((CH 3 COO) 3 Gd·nH 2 O), and lead acetate (Pb(CH 3 COO)). 2 ) was used. A total of six types of embedding and fixing compositions were prepared with the blending ratios of polyvinyl alcohol (PVA) and water-soluble heavy metal salts being 1:1 (5 g: 5 g) and 1:5 (2 g: 10 g). Other sample preparation conditions and observation conditions were the same as in Example 8. Observation results of samples embedded and fixed with each composition are shown in FIGS. 14A to 14F.
 図14A~Fの結果より、PTA以外の水溶性重金属塩を用いても、カーボン粉末の暗色と固化した組成物の明色との間でコントラストが付き視認性が向上して微構造を識別できることが分かる。また、水溶性重金属塩の配合比率を大きくするとそれに比例してコントラストが大きくなることが分かる。 The results shown in Figures 14A to 14F show that even when water-soluble heavy metal salts other than PTA are used, there is a contrast between the dark color of the carbon powder and the bright color of the solidified composition, improving visibility and making it possible to identify the microstructure. I understand. It can also be seen that as the blending ratio of the water-soluble heavy metal salt increases, the contrast increases in proportion.
[実施例10]
 実施例1と同じ包埋固定用組成物に、導電性高分子のポリエチレンジオキシチオフェンとポリスチレンスルホン酸との複合体(PEDOT/PSS)(Sigma-Aldrich社製、品番739332)の1.1質量%分散液を下記表1の配合比率となるように添加して混合した。
[Example 10]
1.1 mass of a complex of conductive polymer polyethylene dioxythiophene and polystyrene sulfonic acid (PEDOT/PSS) (manufactured by Sigma-Aldrich, product number 739332) was added to the same embedding and fixing composition as in Example 1. % dispersion liquid was added and mixed so as to have the blending ratio shown in Table 1 below.
 PEDOT/PSSを添加すると組成物のゲル化が進むため、添加後にアルミ製試料台上にシート状に塗布してゲル化させた。その塗膜上にアセチレンカーボンブラック(STREM CHEMICALS社製、品番06-0026)を振り掛けて付着させ固定した。次いで、導電処理を行わずに、その粒子形態を加速電圧1kVのSEM(FEI社製、型式Scios)で観察した。試料サンプルNo.2の観察結果を図15Aに、観察時のチャージの有無を表1に示す。 Addition of PEDOT/PSS promotes gelation of the composition, so after addition, it was applied in the form of a sheet onto an aluminum sample stand and gelled. Acetylene carbon black (manufactured by STREM CHEMICALS, product number 06-0026) was sprinkled on top of the coating film to adhere and fix it. Next, the particle morphology was observed using a SEM (manufactured by FEI, model Scios) at an accelerating voltage of 1 kV without conducting conductive treatment. The observation results of sample No. 2 are shown in FIG. 15A, and Table 1 shows the presence or absence of charges at the time of observation.
 また、調製した組成物をスライドガラス上に線状(幅約2mm×厚み約0.1mm)に塗布して乾燥させた。次いで、この乾燥サンプルの抵抗値を電極間隔約10mmのテスターで測定した。測定結果を合わせて表1に示す。 Additionally, the prepared composition was applied in a linear form (width: approximately 2 mm x thickness: approximately 0.1 mm) onto a slide glass and dried. Next, the resistance value of this dried sample was measured using a tester with an electrode spacing of about 10 mm. The measurement results are also shown in Table 1.
[比較例6]
 市販のカーボンペースト(TED PELLA社製、製品名アクアダック)を用いてカーボンブラックを固定したこと以外は、実施例10と同様の方法により試料を作製し、カーボンペースト塗膜上のカーボンブラックの粒子形態をSEMで観察した。観察結果を図15Bに、観察時のチャージの有無を表1に示す。また、測定した塗膜の抵抗値を合わせて表1に示す。
[Comparative example 6]
A sample was prepared in the same manner as in Example 10, except that carbon black was fixed using a commercially available carbon paste (manufactured by TED PELLA, product name: Aquaduck), and carbon black particles on the carbon paste coating were fixed. The morphology was observed using SEM. The observation results are shown in FIG. 15B, and the presence or absence of charge at the time of observation is shown in Table 1. Table 1 also shows the measured resistance values of the coating films.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図15Aの結果より、導電性を付与した実施例10の塗膜を下地にした観察では、カーボンブラックの暗い色と、下地のタングステンを含むゲル化シートの明るい色との間で大きなコントラスト付き、視認性が向上していることが分かる。一方、図15Bの結果より、従来のカーボンペーストを下地にした観察では、カーボンブラックとカーボンペーストの主成分が同一でありコントラストが付かないため、視認性が悪いことが分かる。 From the results in FIG. 15A, observation using the conductive coating film of Example 10 as a base shows that there is a large contrast between the dark color of carbon black and the light color of the gelled sheet containing tungsten as the base. It can be seen that visibility has improved. On the other hand, from the results shown in FIG. 15B, it can be seen that in observation using the conventional carbon paste as a base, visibility is poor because the main components of carbon black and carbon paste are the same and there is no contrast.
 本発明の包埋固定組成物用いた観察方法では、従来の包埋樹脂を用いた観察方法と比較した場合、固体材料の電子顕微鏡やX線顕微鏡の観察で得られる画像コントラストには歴然とした差が生じる。特に固体材料を構成している元素の原子番号が小さいほどコントラスト差が大きくなり、鮮明な観察が可能となる。例えば、グラファイト、カーボンブラック、ダイヤモンドのような炭素のみから構成されている固体材料に対しては極めて大きな効果を発揮する。 The observation method using the embedding fixation composition of the present invention shows a clear difference in image contrast obtained when observing solid materials with an electron microscope or an X-ray microscope when compared with an observation method using a conventional embedding resin. occurs. In particular, the smaller the atomic number of the elements constituting the solid material, the greater the contrast difference, allowing clearer observation. For example, it is extremely effective for solid materials composed only of carbon, such as graphite, carbon black, and diamond.
 したがって、本発明の包埋固定用組成物とそれを用いた電子顕微鏡等による観察方法は、炭素材料、高分子材料等の素材、これらの素材を用いる固体高分子型燃料電池等の評価や解析において極めて有用であると考えられ、これらの産業の発展に大いに寄与することが期待される。 Therefore, the embedding and fixing composition of the present invention and the observation method using the same using an electron microscope etc. are useful for evaluation and analysis of materials such as carbon materials and polymer materials, and polymer electrolyte fuel cells using these materials. It is expected that this technology will be extremely useful in the industry, and it is expected that it will greatly contribute to the development of these industries.
 1A1…FIB加工で形成した垂直断面、1A2…カーボン粉末を包埋固定した実施例1試料の断面、1A3…試料台のシリコンウエハの断面、1A4…図1Bの拡大観察領域。
 2A1…FIB加工で形成した垂直断面、2A2…カーボン粉末を包埋固定した比較例1試料の断面、2A3…試料台のシリコンウエハの断面、2A4…図2Bの拡大観察領域。
 3A1…FIB加工で形成した垂直断面、3A2…カーボン粉末を包埋固定した比較例2試料の断面、3A3…試料台のシリコンウエハの断面、3A4…図3Bの拡大観察領域。
 4A1…窒化ホウ素粉末凝集体、4B1…FIB加工で形成した垂直断面、4B2…窒化ホウ素粉末凝集体を包埋固定した実施例2試料の断面、4B3…試料台のシリコンウエハの断面。
1A1... Vertical cross section formed by FIB processing, 1A2... Cross section of Example 1 sample in which carbon powder was embedded and fixed, 1A3... Cross section of silicon wafer on sample stage, 1A4... Enlarged observation area of FIG. 1B.
2A1... Vertical cross section formed by FIB processing, 2A2... Cross section of Comparative Example 1 sample in which carbon powder was embedded and fixed, 2A3... Cross section of silicon wafer on sample stage, 2A4... Enlarged observation area of FIG. 2B.
3A1... Vertical cross section formed by FIB processing, 3A2... Cross section of Comparative Example 2 sample in which carbon powder was embedded and fixed, 3A3... Cross section of silicon wafer on sample stage, 3A4... Enlarged observation area of FIG. 3B.
4A1...Boron nitride powder aggregate, 4B1...Vertical section formed by FIB processing, 4B2... Cross section of Example 2 sample in which boron nitride powder aggregate was embedded and fixed, 4B3... Cross section of silicon wafer on sample stage.
 5A1…固化した実施例3試料の垂直断面、5A2…試料台のシリコンウエハの垂直断面。
 8A1…固化した実施例5試料の断面、8A2…ポリプロピレンシートの断面、8B1…硬化した比較例3試料の断面、8B2…ポリプロピレンシートの断面。
 10A1…架橋して樹脂包埋した実施例7試料をCP加工して形成した断面、10C1…架橋して樹脂包埋した実施例7試料の外観。

 
5A1...Vertical section of the solidified Example 3 sample, 5A2... Vertical section of the silicon wafer on the sample stage.
8A1...Cross section of the solidified Example 5 sample, 8A2...Cross section of the polypropylene sheet, 8B1...Cross section of the cured Comparative Example 3 sample, 8B2...Cross section of the polypropylene sheet.
10A1: Cross-section formed by CP processing of a cross-linked and resin-embedded Example 7 sample, 10C1: Appearance of a cross-linked and resin-embedded Example 7 sample.

Claims (11)

  1.  水溶性重金属塩と、水溶性高分子及び/又はその誘導体とを含有し、これらの水溶性成分が水に溶解した水溶液であり、
     軽元素を主成分とする固体材料の電子顕微鏡又はX線顕微鏡の観察において、前記水溶性重金属塩を構成する重金属と前記固体材料の主成分である軽元素とのコントラストによって、観察像の視認性を向上することができる、包埋固定用組成物。
    An aqueous solution containing a water-soluble heavy metal salt and a water-soluble polymer and/or a derivative thereof, in which these water-soluble components are dissolved in water,
    When observing a solid material containing light elements as a main component using an electron microscope or an X-ray microscope, the visibility of the observed image is improved by the contrast between the heavy metals constituting the water-soluble heavy metal salt and the light elements that are the main components of the solid material. A composition for embedding and fixing that can improve
  2.  水溶性重金属塩がリンタングステン酸(PTA)、酢酸ガドリニウム、モリブデン酸アンモニウム、リンモリブデン酸、フェロシアンカリウム、硝酸鉛及び酢酸鉛からなる群より選択される1種以上であり、水溶性高分子がポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、ポリアクリルアミド(PAM)、ポリアクリル酸(PAA)及びポリエチレンオキシド(PEO)からなる群より選択される1種以上である、請求項1に記載の包埋固定用組成物。 The water-soluble heavy metal salt is one or more selected from the group consisting of phosphotungstic acid (PTA), gadolinium acetate, ammonium molybdate, phosphomolybdic acid, potassium ferrocyanate, lead nitrate, and lead acetate, and the water-soluble polymer is The package according to claim 1, which is one or more selected from the group consisting of polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), polyacrylamide (PAM), polyacrylic acid (PAA) and polyethylene oxide (PEO). Composition for implantation.
  3.  水溶性重金属塩がリンタングステン酸(PTA)であり、水溶性高分子がポリビニルアルコール(PVA)である、請求項2に記載の包埋固定用組成物。 The embedding and fixing composition according to claim 2, wherein the water-soluble heavy metal salt is phosphotungstic acid (PTA) and the water-soluble polymer is polyvinyl alcohol (PVA).
  4.  組成物全体量に対して、水溶性重金属塩0.25~40質量%と、水溶性高分子及び/又はその誘導体0.5~15質量%とを含有する、請求項1から3の何れかに記載の包埋固定用組成物。 Any one of claims 1 to 3, which contains 0.25 to 40% by mass of a water-soluble heavy metal salt and 0.5 to 15% by mass of a water-soluble polymer and/or its derivative, based on the total amount of the composition. The embedding and fixing composition described in .
  5.  水溶性重金属塩の含有量及び/又は種類が異なる請求項1から3の何れかに記載の包埋固定用組成物を2種類以上備え、該包埋固定用組成物の種類を変更することにより観察像のコントラストを調整することができる、包埋固定用組成物の観察用キット。 By providing two or more types of embedding and fixing compositions according to any one of claims 1 to 3 having different contents and/or types of water-soluble heavy metal salts, and changing the type of the embedding and fixing compositions. An observation kit for embedding and fixing compositions that allows the contrast of observation images to be adjusted.
  6.  請求項1から3の何れかに記載の包埋固定用組成物と、導電性高分子が水に分散した分散液とを備え、該分散液を前記包埋固定用組成物に添加することにより導電性を付与することができる、包埋固定用組成物の観察用キット。 By comprising the composition for embedding and fixing according to any one of claims 1 to 3 and a dispersion in which a conductive polymer is dispersed in water, and adding the dispersion to the composition for embedding and fixing. A kit for observing embedding and fixing compositions that can be imparted with conductivity.
  7.  導電性高分子がポリエチレンジオキシチオフェンとポリスチレンスルホン酸との複合体(PEDOT/PSS)である、請求項6に記載の包埋固定用組成物の観察用キット。 The kit for observing an embedding and fixing composition according to claim 6, wherein the conductive polymer is a composite of polyethylene dioxythiophene and polystyrene sulfonic acid (PEDOT/PSS).
  8.  固体又は水溶液の形態の水溶性重金属塩と、固体又は水溶液の形態の水溶性高分子とを備え、前記水溶性重金属塩と前記水溶性高分子とを、水に加えて混合又は互いに混合して溶解又は混和することにより、請求項1から3の何れかに記載の包埋固定用組成物を製造することができる、包埋固定用組成物の製造用キット。 A water-soluble heavy metal salt in the form of a solid or an aqueous solution, and a water-soluble polymer in the form of a solid or an aqueous solution, wherein the water-soluble heavy metal salt and the water-soluble polymer are mixed in addition to water or mixed with each other. A kit for producing an embedding and fixing composition, which can produce the embedding and fixing composition according to any one of claims 1 to 3 by dissolving or mixing.
  9.  水溶性高分子を水に加えて溶解する工程と、得られた水溶液に水溶性重金属塩を加えて溶解する工程とを含む、請求項1から3の何れかに記載の包埋固定用組成物の製造方法。 The composition for embedding and fixing according to any one of claims 1 to 3, comprising the steps of adding and dissolving a water-soluble polymer in water, and adding and dissolving a water-soluble heavy metal salt to the resulting aqueous solution. manufacturing method.
  10.  請求項1から3の何れかに記載の包埋固定用組成物を固体材料に含侵させる段階と、前記包埋固定用組成物の水を蒸発させること又は水溶性高分子及び/又はその誘導体を架橋させることにより固体化する段階と、該包埋固定した固体材料を加工して観察面を露出させる段階とを含む、電子顕微鏡又はX線顕微鏡による観察方法。 Impregnating a solid material with the embedding and fixing composition according to any one of claims 1 to 3, and evaporating water in the embedding and fixing composition, or a water-soluble polymer and/or a derivative thereof. An observation method using an electron microscope or an X-ray microscope, which includes a step of solidifying by crosslinking the solid material, and a step of processing the embedded and fixed solid material to expose an observation surface.
  11.  さらに、水溶性重金属塩の含有量及び/又は種類が異なる請求項1から3の何れかに記載の包埋固定用組成物を2種類以上用いて、観察像のコントラストを最適化する段階を含む、請求項10に記載の電子顕微鏡又はX線顕微鏡による観察方法。 The method further includes the step of optimizing the contrast of the observed image by using two or more types of embedding and fixing compositions according to any one of claims 1 to 3 having different contents and/or types of water-soluble heavy metal salts. An observation method using an electron microscope or an X-ray microscope according to claim 10.
PCT/JP2022/020896 2022-05-19 2022-05-19 Embedding and fixation composition for improving visibility in observation using electron microscope or the like, and observation method using same WO2023223521A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/020896 WO2023223521A1 (en) 2022-05-19 2022-05-19 Embedding and fixation composition for improving visibility in observation using electron microscope or the like, and observation method using same
JP2023547912A JP7445353B1 (en) 2022-05-19 2022-05-19 An embedding and fixing composition that improves visibility during observation using an electron microscope, etc., and an observation method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020896 WO2023223521A1 (en) 2022-05-19 2022-05-19 Embedding and fixation composition for improving visibility in observation using electron microscope or the like, and observation method using same

Publications (1)

Publication Number Publication Date
WO2023223521A1 true WO2023223521A1 (en) 2023-11-23

Family

ID=88835089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020896 WO2023223521A1 (en) 2022-05-19 2022-05-19 Embedding and fixation composition for improving visibility in observation using electron microscope or the like, and observation method using same

Country Status (2)

Country Link
JP (1) JP7445353B1 (en)
WO (1) WO2023223521A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694240A (en) * 1979-12-27 1981-07-30 Yutaka Suzuki Investment compound used for slice of large section tissue specimen
WO2016034859A1 (en) * 2014-09-01 2016-03-10 University Court Of The University Of St Andrews A method of preparing an analytical sample comprising a particulate analyte for use in microscopy
JP2020531813A (en) * 2017-12-07 2020-11-05 エルジー・ケム・リミテッド Specimen for shape analysis of antistatic antifouling layer and its manufacturing method
JP2021518564A (en) * 2018-03-16 2021-08-02 クライオカプセル Biological sample embedding fluid for imaging biological samples with optical and / or electron microscopy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5694240B2 (en) 2012-06-18 2015-04-01 日本電信電話株式会社 Tracking antenna device and transmission phase compensation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694240A (en) * 1979-12-27 1981-07-30 Yutaka Suzuki Investment compound used for slice of large section tissue specimen
WO2016034859A1 (en) * 2014-09-01 2016-03-10 University Court Of The University Of St Andrews A method of preparing an analytical sample comprising a particulate analyte for use in microscopy
JP2020531813A (en) * 2017-12-07 2020-11-05 エルジー・ケム・リミテッド Specimen for shape analysis of antistatic antifouling layer and its manufacturing method
JP2021518564A (en) * 2018-03-16 2021-08-02 クライオカプセル Biological sample embedding fluid for imaging biological samples with optical and / or electron microscopy

Also Published As

Publication number Publication date
JPWO2023223521A1 (en) 2023-11-23
JP7445353B1 (en) 2024-03-07

Similar Documents

Publication Publication Date Title
Jehle et al. Hierarchically-structured metalloprotein composite coatings biofabricated from co-existing condensed liquid phases
EP3069855B1 (en) Powder material for three-dimensional modeling, kit for three-dimensional modeling and method of manufacturing three-dimensional object
Baalousha et al. Supramolecular structure of humic acids by TEM with improved sample preparation and staining
CN110205809B (en) Sizing method of carbon fiber and application thereof
Meagher et al. Dextran-encapsulated barium sulfate nanoparticles prepared for aqueous dispersion as an X-ray contrast agent
JP7445353B1 (en) An embedding and fixing composition that improves visibility during observation using an electron microscope, etc., and an observation method using the same
JP5681205B2 (en) Nano-calcite composite with high magnesium surface concentration
Xavier Novel multilayer structural epoxy composite coating containing graphene oxide and silanized chromium carbide for the protection of steel structures
EP3810686B1 (en) Nanoparticles of polydopamine and s-paek (sulfonated-polyaryletherketone) derivatives and water-based process for preparing thereof
Fang et al. Rapid collagen-directed mineralization of calcium fluoride nanocrystals with periodically patterned nanostructures
Raja et al. Novel ternary epoxy resin composites obtained by blending graphene oxide and polypropylene fillers: an avenue for the enhancement of mechanical characteristics
JP2019178219A (en) Composite particle, method for producing composite particle and antibacterial agent
Durdureanu-Angheluta et al. Formation by laser ablation in liquid (LAL) and characterization of citric-acid-coated iron oxide nanoparticles
Huang et al. Substrate surface roughness-dependent 3-D complex nanoarchitectures of gold particles from directed electrodeposition
Yuan et al. A novel synthesis of silver nanowires by using 6-chlorohexylzinc bromide as an additive for low haze transparent conductive films
Yan et al. Porous fibers surface decorated with nanofillers: From melt‐spun PP/PVA blend fibers with silica nanoparticles
Asif et al. Studying the effect of nHAP on the mechanical and surface properties of PBS matrix
Begum et al. Characterisation of hollow Russian doll microspheres
JP2020158858A (en) Method for producing silver nanowire
JP2020158857A (en) Method for producing silver nanowire
Luo et al. Formation of gold nanocrystalline films at the liquid/liquid interface: Comparison of direct interfacial reaction and interfacial assembly
Raza et al. Nano-silica mediated poly (vinyl alcohol) films with tailored opto-structural properties
Irigoyen et al. Fabrication of hybrid graphene oxide/polyelectrolyte capsules by means of layer-by-layer assembly on erythrocyte cell templates
Wysocka-Zolopa et al. Formation and characterization of mesoporous silica MCM-48 and polypyrrole composite
Start et al. Surlyn®/silicate nanocomposite materials via a polymer in situ sol–gel process: Morphology

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023547912

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942725

Country of ref document: EP

Kind code of ref document: A1