JP5694240B2 - Tracking antenna device and transmission phase compensation method - Google Patents

Tracking antenna device and transmission phase compensation method Download PDF

Info

Publication number
JP5694240B2
JP5694240B2 JP2012136819A JP2012136819A JP5694240B2 JP 5694240 B2 JP5694240 B2 JP 5694240B2 JP 2012136819 A JP2012136819 A JP 2012136819A JP 2012136819 A JP2012136819 A JP 2012136819A JP 5694240 B2 JP5694240 B2 JP 5694240B2
Authority
JP
Japan
Prior art keywords
transmission
signal
reception
phase
frequency conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012136819A
Other languages
Japanese (ja)
Other versions
JP2014003430A (en
Inventor
皓平 須崎
皓平 須崎
鈴木 義規
義規 鈴木
貴史 廣瀬
貴史 廣瀬
杉山 隆利
隆利 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012136819A priority Critical patent/JP5694240B2/en
Publication of JP2014003430A publication Critical patent/JP2014003430A/en
Application granted granted Critical
Publication of JP5694240B2 publication Critical patent/JP5694240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radio Transmission System (AREA)

Description

本発明は、移動体衛星通信用地球局装置における追尾アンテナ装置および送信位相補償方法に関する。   The present invention relates to a tracking antenna device and a transmission phase compensation method in an earth station device for mobile satellite communication.

衛星通信は洋上で提供される唯一のブロードバンド通信手段であることから、船上の衛星通信用地球局装置の故障に対する信頼性が求められている。これを低コストで実現する手法として、複数のアンテナを使用する追尾アンテナ装置が検討されている(非特許文献1)。ここで、追尾アンテナ装置は、各種センサ情報や通信の相手方からの受信信号から指向方向推定や指向方向誤差量を検出し、アンテナの指向方向(仰角および方位角)を機械的に制御する機能を備えている。   Since satellite communication is the only broadband communication means provided on the ocean, reliability against failure of the earth station device for satellite communication on board is required. As a technique for realizing this at a low cost, a tracking antenna apparatus using a plurality of antennas has been studied (Non-patent Document 1). Here, the tracking antenna device has a function of mechanically controlling the directivity direction (elevation angle and azimuth angle) of the antenna by detecting the directivity direction estimation and the directivity direction error amount from various sensor information and signals received from the other party of communication. I have.

図5は、複数のアンテナを使用する従来の追尾アンテナ装置の構成例を示す。
図5において、追尾アンテナ装置は、N個(Nは2以上の整数)の送受信装置50−1〜50−N、位相制御装置60および変復調装置70により構成される。
FIG. 5 shows a configuration example of a conventional tracking antenna apparatus using a plurality of antennas.
In FIG. 5, the tracking antenna device includes N (N is an integer of 2 or more) transmission / reception devices 50-1 to 50 -N, a phase control device 60, and a modem device 70.

図6は、従来の送受信装置50−kの構成例を示す(k=1〜N)。
図6において、送受信装置50−kは、アンテナ部51と、周波数アップコンバート器(UC)52と、周波数ダウンコンバート器(DC)53により構成される。UC52およびDC53は、周波数fLOのローカル信号LOk を出力する局部発振器と周波数変換器を備える。UC52の周波数変換器は、変復調装置70から位相制御装置60を介して入力する周波数fIFの送信IF信号TIF-kとローカル信号LOk とをミキシングし、アップコンバートした周波数fRF(=fIF+fLO)の送信RF信号TRF-kをアンテナ部51に出力する。DC53の周波数変換器は、アンテナ部51に受信した周波数fRFの受信RF信号RRF-kとローカル信号LOk とをミキシングし、ダウンコンバートした周波数fIF(=fRF−fLO)の受信IF信号RIF-kを位相制御装置60を介して変復調装置70に出力する。
FIG. 6 shows a configuration example of a conventional transmission / reception device 50-k (k = 1 to N).
In FIG. 6, the transmission / reception device 50-k includes an antenna unit 51, a frequency up-converter (UC) 52, and a frequency down-converter (DC) 53. The UC 52 and the DC 53 include a local oscillator that outputs a local signal LO k having a frequency f LO and a frequency converter. The frequency converter of the UC 52 mixes the transmission IF signal T IF-k of the frequency f IF input from the modulation / demodulation device 70 via the phase control device 60 and the local signal LO k and up-converts the frequency f RF (= f IF + f LO ) transmission RF signal T RF-k is output to antenna unit 51. The frequency converter of the DC 53 mixes the received RF signal R RF-k of the frequency f RF received by the antenna unit 51 and the local signal LO k and receives the down-converted frequency f IF (= f RF −f LO ). The IF signal R IF-k is output to the modem device 70 via the phase control device 60.

このような追尾アンテナ装置では、各送受信装置50−kからの送信RF信号が衛星局に対して所定の位相(例えば同相)で送信されるように制御し、信頼性向上とともに指向方向精度の向上、EIRP(実効放射電力)およびG/T(受信性能)を向上させている。   In such a tracking antenna device, the transmission RF signal from each transmission / reception device 50-k is controlled to be transmitted in a predetermined phase (for example, in-phase) to the satellite station, thereby improving the reliability and the pointing accuracy. , EIRP (effective radiation power) and G / T (reception performance) are improved.

ただし、各送信RF信号が所定の位相(例えば同相)で送信されるように制御するには、各送受信装置50−kのUC52や増幅器(図6では省略)で発生する位相変動や、衛星との間の経路長変動を補償する必要がある。前者のUC52や増幅器の位相変動補償には、送信IF信号の逓倍波または低周波数の基準信号の逓倍波を用いて、UC52から出力される送信RF信号を低い周波数のFB(フィードバック)信号に変換して位相制御装置60にフィードバックし、各送受信装置50−kで発生する位相変動を補償する方法が提案されている(非特許文献2,3)。   However, in order to control each transmission RF signal to be transmitted at a predetermined phase (for example, in-phase), phase fluctuations generated by the UC 52 and amplifier (not shown in FIG. 6) of each transmission / reception device 50-k, It is necessary to compensate for the path length variation between. For the former UC52 and amplifier phase fluctuation compensation, a transmission RF signal output from the UC52 is converted into a low-frequency FB (feedback) signal using a multiplied wave of the transmission IF signal or a low-frequency reference signal. Thus, there has been proposed a method of feeding back to the phase control device 60 and compensating for the phase fluctuation generated in each transmission / reception device 50-k (Non-Patent Documents 2 and 3).

また、後者の経路長変動は、図7に示すように追尾アンテナ装置が船舶上などの移動・動揺環境に置かれている場合、時々刻々と衛星の方向や距離が変化することから、到来方向の推定を行い、経路長変動を補償する方法が提案されている(非特許文献4)。   In addition, the latter variation in path length is caused by the direction of the arrival of the satellite because the direction and distance of the satellite changes from moment to moment when the tracking antenna device is placed in a moving or shaking environment such as on a ship as shown in FIG. Has been proposed to compensate for path length variations (Non-Patent Document 4).

また、これらの方法を実現するためには、まず各送受信装置の初期位相特性を補償する必要がある。その初期位相特性の補償方法として、素子電界ベクトル回転法(REV法:Rotating Element Electric Field Vector Method )を用いて、各送受信装置の位相を移相させ、衛星を経由した自信号の折り返しが最大となるように補償を行う方法がある(非特許文献5)。また、同期直交符号を用いて各送受信装置のアンテナから出力される送信RF信号間が直交するように制御し、受信信号を逆FFT変換するなどして振幅・位相の不均一成分を補償する方法がある(非特許文献6)。   In order to realize these methods, it is first necessary to compensate the initial phase characteristics of each transmitting / receiving device. As an initial phase characteristic compensation method, the element electric field vector rotation method (REV method: Rotating Element Electric Field Vector Method) is used to shift the phase of each transmitting / receiving device, and the return of the own signal via the satellite is maximized. There is a method of performing compensation so as to satisfy (Non-Patent Document 5). Also, a method for compensating for non-uniform components of amplitude and phase by controlling the transmission RF signals output from the antennas of the respective transmitting and receiving apparatuses to be orthogonal using a synchronous orthogonal code and performing inverse FFT conversion on the received signal. (Non-Patent Document 6).

須崎、鈴木、山下、小林、「複数アンテナを用いた船上地球局追尾アンテナの検討」、2010年電子情報通信学会ソサイエティ大会、 B-3-19 、2010Susaki, Suzuki, Yamashita, Kobayashi, "Study on a tracking antenna for a shipboard earth station using multiple antennas", 2010 IEICE Society Conference, B-3-19, 2010 須崎、鈴木、小林、「船上地球局分散アレーアンテナの位相変動補償方法および実験的検証」、信学技報SAT2011-3、pp.11-16、May 2011Susaki, Suzuki, Kobayashi, "Method for compensating phase variation of shipboard earth station distributed array antenna and experimental verification", IEICE Technical Report SAT2011-3, pp.11-16, May 2011 須崎、鈴木、廣瀬、杉山、「船上地球局用分散アレーアンテナの受信系位相変動補償の検討」、2012年電子情報通信学会総合大会B-3-5Susaki, Suzuki, Hirose, Sugiyama, “Examination of compensation for phase variation in receiving system of shipboard earth station distributed array antenna”, 2012 IEICE General Conference B-3-5 須崎、鈴木、小林、「ESV用分散アレーアンテナの船上環境における経路長変動補償方法の検討」、信学技報SAT2011-9、pp.7-12 、July 2011Susaki, Suzuki, Kobayashi, “Examination of compensation method for path length variation in shipboard environment of ESV distributed array antenna”, IEICE Technical Report SAT2011-9, pp.7-12, July 2011 真野、片木、「フェイズドアレーアンテナの素子振幅位相測定法―素子電界ベクトル回転法―」、電子情報通信学会論文誌B、Vol.J65-B 、No.5、pp.555-560、1982年5月Mano, Katagi, "Element Amplitude Phase Measurement Method for Phased Array Antenna-Element Electric Field Vector Rotation Method", IEICE Transactions B, Vol.J65-B, No.5, pp.555-560, 1982 May 大堂、三浦、「同期直交符号を利用した送信アレーアンテナ較正」、信学技法A・P99-121 、RCS99-118 、1999年10月Odo, Miura, "Transmission Array Antenna Calibration Using Synchronous Orthogonal Codes", IEICE Techniques A / P99-121, RCS99-118, October 1999

図6に示す各送受信装置50−kのUC52およびDC53が備える局部発振器は、共通の参照信号(例えば10MHz参照信号)により、同一の周波数(Ku帯では 13.05GHz)で発振している。ただし、局部発振器が出力するローカル信号の周波数fLOと参照信号との周波数差が1000倍超であるため、各局部発振器間の分周等によるわずかな位相のずれΔθk(t)が蓄積すると、時間経過とともに相対的な位相が変動する。図8は、送受信装置間に生じる送信信号の相対位相差の時間変動例を示す。図9は、送受信装置間に生じる2つの受信信号の相対位相差の時間変動例を示す。このような相対的な位相差が生じると、利得の低下、指向方向のずれといった問題が生じるので、時間経過に対して発生するこれらの位相変動を補償する必要がある。 The local oscillators included in the UC 52 and the DC 53 of each transmission / reception device 50-k shown in FIG. 6 oscillate at the same frequency (13.05 GHz in the Ku band) by a common reference signal (for example, 10 MHz reference signal). However, since the frequency difference between the frequency f LO of the local signal output from the local oscillator and the reference signal is more than 1000 times, a slight phase shift Δθ k (t) due to frequency division between the local oscillators is accumulated. The relative phase varies with time. FIG. 8 shows an example of time variation of the relative phase difference of the transmission signal generated between the transmitting and receiving apparatuses. FIG. 9 shows an example of time variation of the relative phase difference between two received signals generated between the transmitting and receiving apparatuses. When such a relative phase difference occurs, problems such as a decrease in gain and a shift in the directivity direction occur, and it is necessary to compensate for these phase fluctuations that occur over time.

これらの位相ずれは、各送受信装置を起動する毎に異なる値を持つため、REV法などの手段を用いて送信信号の初期位相補正を行う必要がある。しかし、REV法は、自局信号の衛星折り返し信号の受信レベルの変化を見るため、補正が受信レベルに反映するまで 250msの遅延が生じる上に、送受信装置数が増えると1つ1つの位相を調整・モニタしていくため時間がかかってしまう。また、同期直交符号を用いる場合に高精度に校正を行うには衛星方向を予め知っておく必要があり、適用しようとしているシステムには適さない。   Since these phase shifts have different values every time each transmitting / receiving apparatus is activated, it is necessary to perform initial phase correction of the transmission signal using means such as the REV method. However, since the REV method sees the change in the reception level of the satellite return signal of the local station signal, a delay of 250 ms occurs until the correction is reflected in the reception level, and each phase is increased as the number of transmission / reception devices increases. It takes time to adjust and monitor. In addition, in order to perform calibration with high accuracy when using a synchronous orthogonal code, it is necessary to know the satellite direction in advance, which is not suitable for the system to be applied.

さらに、送信系と受信系が独立に動作するので、それぞれに対してFB信号を生成する必要があり、送受信装置の構成が複雑になる問題がある。   Furthermore, since the transmission system and the reception system operate independently, it is necessary to generate FB signals for each of them, and there is a problem that the configuration of the transmission / reception apparatus becomes complicated.

また、図7に示すように船舶の移動・動揺などによって、各送受信装置における送受信信号の位相関係が変化する場合には、到来方向の推定を行い、経路長変動に伴う位相変動補償が必要になる。   In addition, as shown in FIG. 7, when the phase relationship of transmission / reception signals in each transmission / reception device changes due to movement or shaking of the ship, the arrival direction is estimated, and phase fluctuation compensation accompanying path length fluctuation is required. Become.

本発明は、複数の送受信装置間の位相変動と経路長変動を同時に補償することができる追尾アンテナ装置および送信位相補償方法を提供することを目的とする。   It is an object of the present invention to provide a tracking antenna apparatus and a transmission phase compensation method that can simultaneously compensate for phase fluctuations and path length fluctuations between a plurality of transmission / reception apparatuses.

第1の発明は、位相制御装置から複数の送受信装置に送信IF信号を入力し、各送受信装置で送信IF信号を周波数変換した送信RF信号をアンテナ部からそれぞれ所定の位相で送信する追尾アンテナ装置において、複数の送受信装置は、同一装置から同時送信された異なる周波数の第1の受信RF信号と第2の受信RF信号を受信し、送信RF信号をローカル信号として各受信RF信号を周波数変換し、第1の周波数変換信号および第2の周波数変換信号として位相制御装置に送出する構成であり、位相制御装置は、基準となる送受信装置および制御対象の送受信装置からそれぞれ入力する第1の周波数変換信号を固有値展開し、制御対象の送受信装置における第1の到来方向を推定する第1の到来方向推定手段と、制御対象の送受信装置から入力する第1の周波数変換信号および第2の周波数変換信号を固有値展開し、制御対象の送受信装置における第2の到来方向を推定する第2の到来方向推定手段と、第1の到来方向と第2の到来方向との差が小さくなる方向に、制御対象の送受信装置に送出する送信IF信号の位相を設定する送信位相設定手段とを備える。   A first invention is a tracking antenna device in which a transmission IF signal is input from a phase control device to a plurality of transmission / reception devices, and a transmission RF signal obtained by frequency-converting the transmission IF signal by each transmission / reception device is transmitted from an antenna unit at a predetermined phase. The plurality of transmission / reception devices receive the first reception RF signal and the second reception RF signal of different frequencies simultaneously transmitted from the same device, and frequency-convert each reception RF signal using the transmission RF signal as a local signal. The first frequency conversion signal and the second frequency conversion signal are sent to the phase control device, and the phase control device receives the first frequency conversion input from the reference transmission / reception device and the control target transmission / reception device, respectively. A first arrival direction estimating means for expanding a signal into eigenvalues and estimating a first arrival direction in a transmission / reception device to be controlled; and a transmission / reception device to be controlled A first arrival direction estimating means for expanding eigenvalues of the first frequency conversion signal and the second frequency conversion signal input from the input and estimating a second arrival direction in the transmission / reception apparatus to be controlled; Transmission phase setting means for setting the phase of the transmission IF signal transmitted to the transmission / reception apparatus to be controlled in a direction in which the difference from the second arrival direction becomes smaller.

第2の発明は、位相制御装置から複数の送受信装置に送信RF信号を入力し、各送受信装置で送信RF信号をアンテナ部からそれぞれ所定の位相で送信する追尾アンテナ装置において、複数の送受信装置は、同一装置から同時送信された異なる周波数の第1の受信RF信号と第2の受信RF信号を受信し、送信RF信号をローカル信号として各受信RF信号を周波数変換し、第1の周波数変換信号および第2の周波数変換信号として位相制御装置に送出する構成であり、位相制御装置は、送信IF信号を送信RF信号に周波数変換して各送受信装置に送出する周波数変換手段と、基準となる送受信装置および制御対象の送受信装置からそれぞれ入力する第1の周波数変換信号を固有値展開し、制御対象の送受信装置における第1の到来方向を推定する第1の到来方向推定手段と、制御対象の送受信装置から入力する第1の周波数変換信号および第2の周波数変換信号を固有値展開し、制御対象の送受信装置における第2の到来方向を推定する第2の到来方向推定手段と、第1の到来方向と第2の到来方向との差が小さくなる方向に、制御対象の送受信装置に送出する送信RF信号の位相を設定する送信位相設定手段とを備える。   A second invention is a tracking antenna device in which a transmission RF signal is input from a phase control device to a plurality of transmission / reception devices, and each transmission / reception device transmits a transmission RF signal from an antenna unit at a predetermined phase. The first reception RF signal and the second reception RF signal of different frequencies transmitted simultaneously from the same device are received, each reception RF signal is frequency-converted using the transmission RF signal as a local signal, and the first frequency conversion signal is converted. And a second frequency conversion signal that is sent to the phase control device, the phase control device frequency-converting the transmission IF signal to a transmission RF signal and sending it to each transmission / reception device, and a reference transmission / reception device The first frequency conversion signal input from each of the apparatus and the transmission / reception apparatus to be controlled is expanded into eigenvalues, and the first arrival direction in the transmission / reception apparatus to be controlled is determined. Eigenvalue expansion is performed on the first arrival direction estimation means to be determined and the first frequency conversion signal and the second frequency conversion signal input from the transmission / reception apparatus to be controlled, and the second arrival direction in the transmission / reception apparatus to be controlled is estimated Second arrival direction estimation means for performing transmission phase setting means for setting a phase of a transmission RF signal to be transmitted to a transmission / reception apparatus to be controlled in a direction in which a difference between the first arrival direction and the second arrival direction is reduced. With.

第3の発明は、位相制御装置から複数の送受信装置に送信IF信号を入力し、各送受信装置で送信IF信号を周波数変換した送信RF信号をアンテナ部からそれぞれ所定の位相で送信する追尾アンテナ装置の送信位相制御方法において、複数の送受信装置は、同一装置から同時送信された異なる周波数の第1の受信RF信号と第2の受信RF信号を受信し、送信RF信号をローカル信号として各受信RF信号を周波数変換し、第1の周波数変換信号および第2の周波数変換信号として位相制御装置に送出し、位相制御装置は、基準となる送受信装置および制御対象の送受信装置からそれぞれ入力する第1の周波数変換信号を固有値展開し、制御対象の送受信装置における第1の到来方向を推定し、制御対象の送受信装置から入力する第1の周波数変換信号および第2の周波数変換信号を固有値展開し、制御対象の送受信装置における第2の到来方向を推定し、第1の到来方向と第2の到来方向との差が小さくなる方向に、制御対象の送受信装置に送出する送信IF信号の位相を設定する。   According to a third aspect of the present invention, there is provided a tracking antenna device that inputs transmission IF signals from a phase control device to a plurality of transmission / reception devices, and transmits transmission RF signals obtained by frequency conversion of the transmission IF signals by the transmission / reception devices from an antenna unit at a predetermined phase. In the transmission phase control method, the plurality of transmission / reception devices receive the first reception RF signal and the second reception RF signal of different frequencies simultaneously transmitted from the same device, and each reception RF is made the transmission RF signal as a local signal. The signal is frequency-converted and sent to the phase control device as a first frequency conversion signal and a second frequency conversion signal. The phase control device receives a first input from a reference transmission / reception device and a control target transmission / reception device, respectively. First frequency expansion of the frequency conversion signal, estimation of the first arrival direction in the transmission / reception apparatus to be controlled, and input from the transmission / reception apparatus to be controlled The eigenvalue expansion is performed on the number conversion signal and the second frequency conversion signal, the second arrival direction in the transmission / reception apparatus to be controlled is estimated, and the difference between the first arrival direction and the second arrival direction is reduced. Sets the phase of the transmission IF signal to be transmitted to the transmission / reception device to be controlled.

第4の発明は、位相制御装置から複数の送受信装置に送信RF信号を入力し、各送受信装置で送信RF信号をアンテナ部からそれぞれ所定の位相で送信する追尾アンテナ装置の送信位相制御方法において、複数の送受信装置は、同一装置から同時送信された異なる周波数の第1の受信RF信号と第2の受信RF信号を受信し、送信RF信号をローカル信号として各受信RF信号を周波数変換し、第1の周波数変換信号および第2の周波数変換信号として位相制御装置に送出し、位相制御装置は、送信IF信号を送信RF信号に周波数変換して各送受信装置に送出し、基準となる送受信装置および制御対象の送受信装置からそれぞれ入力する第1の周波数変換信号を固有値展開し、制御対象の送受信装置における第1の到来方向を推定し、制御対象の送受信装置から入力する第1の周波数変換信号および第2の周波数変換信号を固有値展開し、制御対象の送受信装置における第2の到来方向を推定し、第1の到来方向と第2の到来方向との差が小さくなる方向に、制御対象の送受信装置に送出する送信RF信号の位相を設定する。   A fourth aspect of the invention relates to a transmission phase control method for a tracking antenna device in which a transmission RF signal is input from a phase control device to a plurality of transmission / reception devices, and each transmission / reception device transmits a transmission RF signal at a predetermined phase from an antenna unit. The plurality of transmission / reception devices receive the first reception RF signal and the second reception RF signal of different frequencies simultaneously transmitted from the same device, frequency-convert each reception RF signal using the transmission RF signal as a local signal, The frequency control signal is sent to the phase control device as a frequency conversion signal of 1 and a second frequency conversion signal, and the phase control device converts the frequency of the transmission IF signal to a transmission RF signal and sends it to each transmission / reception device. The first frequency conversion signal input from each control target transmission / reception device is eigenvalue-expanded, the first arrival direction in the control target transmission / reception device is estimated, and control is performed. The first frequency conversion signal and the second frequency conversion signal input from the elephant transmission / reception apparatus are expanded to eigenvalues, the second arrival direction in the transmission / reception apparatus to be controlled is estimated, and the first arrival direction and the second arrival direction are estimated. The phase of the transmission RF signal transmitted to the transmission / reception device to be controlled is set in the direction in which the difference from the direction becomes smaller.

本発明は、基準となる送受信装置と制御対象の送受信装置からそれぞれ入力する第1の周波数変換信号を固有値展開し、制御対象の送受信装置における位相誤差を含む第1の到来方向を推定する。さらに、制御対象の送受信装置から入力する第1および第2の周波数変換信号を固有値展開し、制御対象の送受信装置における位相誤差を含まない第2の到来方向を推定する。第1の到来方向と第2の到来方向との差が小さくなる方向に制御対象の送受信装置に送出する送信IF信号(または送信RF信号)の位相を設定することにより、制御対象の送受信装置における位相変動と同一装置との経路長変動を同時に補償することができる。   The present invention expands eigenvalues of first frequency conversion signals respectively input from a reference transmission / reception device and a control target transmission / reception device, and estimates a first arrival direction including a phase error in the control target transmission / reception device. Further, the first and second frequency conversion signals input from the transmission / reception apparatus to be controlled are expanded to eigenvalues, and the second arrival direction not including the phase error in the transmission / reception apparatus to be controlled is estimated. By setting the phase of the transmission IF signal (or transmission RF signal) transmitted to the transmission / reception apparatus to be controlled in a direction in which the difference between the first arrival direction and the second arrival direction becomes smaller, the transmission / reception apparatus to be controlled It is possible to simultaneously compensate for phase variation and path length variation with the same device.

本発明の追尾アンテナ装置の実施例1の構成を示す図である。It is a figure which shows the structure of Example 1 of the tracking antenna apparatus of this invention. 2つのアンテナに受信される1受信信号を用いた到来方向推定のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the arrival direction estimation using 1 received signal received by two antennas. 1つのアンテナに受信される異なる周波数の2受信信号を用いた到来方向推定のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the arrival direction estimation using 2 received signals of a different frequency received by one antenna. 本発明の追尾アンテナ装置の実施例2の構成を示す図である。It is a figure which shows the structure of Example 2 of the tracking antenna apparatus of this invention. 複数のアンテナを使用する従来の追尾アンテナ装置の構成例を示す図である。It is a figure which shows the structural example of the conventional tracking antenna apparatus which uses a some antenna. 従来の送受信装置50−kの構成例を示す図である。It is a figure which shows the structural example of the conventional transmission / reception apparatus 50-k. 移動・動揺による経路長変動例を示す図である。It is a figure which shows the example of a path | route length fluctuation | variation by a movement and shaking. 送受信装置間に生じる送信信号の相対位相差の時間変動例を示す図である。It is a figure which shows the time variation example of the relative phase difference of the transmission signal which arises between transmission / reception apparatuses. 送受信装置間に生じる2つの受信信号の相対位相差の時間変動例を示す図である。It is a figure which shows the example of a time fluctuation | variation of the relative phase difference of the two received signals produced between transmission / reception apparatuses.

図1は、本発明の追尾アンテナ装置の実施例1の構成を示す。
図1において、本実施例の追尾アンテナ装置は、送受信装置10−k(k=1〜N、Nは2以上の整数)、位相制御装置20および変復調装置(図1では省略)により構成される。
FIG. 1 shows a configuration of a tracking antenna device according to a first embodiment of the present invention.
In FIG. 1, the tracking antenna device of the present embodiment is configured by a transmission / reception device 10-k (k = 1 to N, N is an integer of 2 or more), a phase control device 20 and a modulation / demodulation device (not shown in FIG. 1). .

送受信装置10−kは、アンテナ部11、周波数アップコンバート器(UC)12、周波数変換器13および増幅器14,15により構成される。アンテナ部11は、衛星から異なる周波数fr1,fr2の受信RF信号Sr1,Sr2を受信し、増幅器15を介して周波数変換器13に入力する。なお、一方が通信回線、他方が制御回線などである。また、位相制御装置20を介して入力する送信IF信号は、UC12で周波数ft の送信RF信号St-k に周波数変換され、増幅器14を介してアンテナ部11から衛星に送信されるとともに周波数変換器13に入力し、当該送信RF信号St-k がローカル信号として受信RF信号Sr1-k,Sr2-kの周波数変換に用いられる。各送受信装置10−kの送信RF信号St-k には、UC12の位相変動に伴う位相誤差が含まれ、受信RF信号Sr1-k,Sr2-kにはUC12の位相変動と衛星との経路長変動に伴う位相誤差が含まれる。 The transmission / reception device 10-k includes an antenna unit 11, a frequency up-converter (UC) 12, a frequency converter 13, and amplifiers 14 and 15. The antenna unit 11 receives received RF signals S r1 and S r2 having different frequencies f r1 and f r2 from the satellite and inputs them to the frequency converter 13 via the amplifier 15. One is a communication line and the other is a control line. The transmission IF signal inputted through the phase control device 20 is frequency-converted to a transmission RF signal S tk frequency f t in UC12, frequency converter with transmitted from the antenna unit 11 to the satellite via the amplifier 14 13, the transmission RF signal S tk is used as a local signal for frequency conversion of the reception RF signals S r1-k and S r2-k . The transmission RF signal S tk of each transmission / reception device 10-k includes a phase error due to the phase variation of the UC 12, and the reception RF signals S r1-k and S r2-k include the phase variation of the UC 12 and the path to the satellite. Includes phase error due to long variation.

位相制御装置20は、送信位相設定部21、周波数fr1,fr2を分離する波長分離フィルタを含むベースバンド変換部22、到来方向推定部23、誤差比較部24により構成される。位相制御装置20に入力する送信IF信号は、送信位相設定部21を介して各送受信装置10−kのUC12に伝送される。各送受信装置10−kから出力される受信IF信号は、位相制御装置20のベースバンド変換部23に入力し、送信IF信号を用いて送信変調成分を打ち消す処理が行われる。 The phase control device 20 includes a transmission phase setting unit 21, a baseband conversion unit 22 including a wavelength separation filter that separates the frequencies f r1 and f r2 , an arrival direction estimation unit 23, and an error comparison unit 24. The transmission IF signal input to the phase control device 20 is transmitted to the UC 12 of each transmission / reception device 10-k via the transmission phase setting unit 21. The reception IF signal output from each transmission / reception device 10-k is input to the baseband conversion unit 23 of the phase control device 20, and processing for canceling the transmission modulation component is performed using the transmission IF signal.

(2つのアンテナに受信される1受信信号を用いた到来方向推定)
送受信装置10−1,10−kに受信する同一の受信RF信号Sr1-1(t) ,Sr1-k(t) を用いて到来方向推定値を算出する手順について説明する。
(Direction of arrival estimation using one received signal received by two antennas)
A procedure for calculating the direction-of-arrival estimated value using the same received RF signals S r1-1 (t) and S r1-k (t) received by the transmitting and receiving apparatuses 10-1 and 10-k will be described.

送受信装置10−kに時刻tで受信する周波数fr1の受信RF信号Sr1-k(t) は、任意の基準点からの距離をdk 、波長をλr1、到来方向角をθa としたときに、
r1-k(t) =expj[2πfr1t +(2πdkr1) sinθa(t)] …(1)
と表される。
The received RF signal S r1-k (t) of the frequency f r1 received at the time t by the transmitting / receiving device 10-k has a distance from an arbitrary reference point as d k , a wavelength as λ r1 , and an arrival direction angle as θa. sometimes,
S r1−k (t) = expj [2πf r1 t + (2πd k / λ r1 ) sinθa (t)] (1)
It is expressed.

この受信RF信号Sr1-k(t) は周波数変換器13に入力され、送信RF信号St-k(t)をローカル信号として周波数変換する。送信RF信号St-k(t)は、UC12が有する初期位相値をφuc-k(t) としたときに、
t-k(t) =expj[2πfr1t +φuc-k(t)] …(2)
となり、周波数変換後の受信IF信号Sr1c-k(t)は、Sr1c-1(t)の位相を基準として、
r1c-k(t) =expj[2π(fr1−ft)t+(2πdkr1) sinθa(t)−φuc-k(t)] …(3)
となる。
The received RF signal S r1-k (t) is input to the frequency converter 13 and frequency-converted using the transmission RF signal S tk (t) as a local signal. The transmission RF signal S tk (t) has an initial phase value of UC12 of φ uc-k (t).
S tk (t) = expj [2πf r1 t + φ uc-k (t)] (2)
The received IF signal S r1c-k (t) after frequency conversion is based on the phase of S r1c-1 (t).
S r1c-k (t) = expj [2π (f r1 −f t ) t + (2πd k / λ r1 ) sin θa (t) −φ uc−k (t)] (3)
It becomes.

この受信IF信号Sr1c-k(t)を位相制御装置20のベースバンド変換部22に入力して生成されるベースバンド受信信号Sr1b-k(t)は、Sr1c-1(t)の位相を基準として、
r1b-k(t)=expj[(2πdkr1) sinθa(t)] expj[−φuc-k(t)] …(4)
となる。
The baseband received signal S r1b-k (t) generated by inputting the received IF signal S r1c-k (t) to the baseband conversion unit 22 of the phase control device 20 is the Sr1c-1 (t) With reference to phase
S r1b-k (t) = expj [(2πd k / λ r1 ) sin θa (t)] expj [−φ uc-k (t)] (4)
It becomes.

ここで、送受信装置10−1を基準とし、d1 =0、φuc-1(t) =0とすると、送受信装置10−1の受信RF信号Sr1-1(t) から変換されたベースバンド受信信号Sr1b-1(t)は、
r1b-1(t)=expj[0] expj[0] =1 …(5)
となる。
Here, when the transmission / reception device 10-1 is used as a reference and d 1 = 0 and φ uc-1 (t) = 0, the base converted from the reception RF signal S r1-1 (t) of the transmission / reception device 10-1 is used. The band received signal S r1b-1 (t) is
S r1b-1 (t) = expj [0] expj [0] = 1 (5)
It becomes.

到来方向推定部23は、送受信装置10−1,10−kの受信RF信号Sr1-1(t) ,Sr1-k(t) から得られたベースバンド受信信号Sr1b-1(t),Sr1b-k(t)を固有値展開し、MUSIC(MUltiple Signal Classification) 法や最小ノルム法などを用いて算出される到来方向推定値θpe(t) は、
θpe(t) =arc[sinθa(t)+(λr1/2πdkuc-k(t)] …(6)
となる。なお、受信IF信号Sr1c-1(t),Sr1c-k(t)を固有値展開する構成としてもよい。
The arrival direction estimation unit 23 receives the baseband received signal S r1b-1 (t) obtained from the received RF signals S r1-1 (t) and S r1-k (t) of the transmission / reception devices 10-1 and 10-k. , S r1b-k (t) is expanded into eigenvalues, and the direction-of-arrival estimated value θpe (t) calculated using the MUSIC (MUltiple Signal Classification) method or the minimum norm method is
θpe (t) = arc [sin θa (t) + (λ r1 / 2πd k ) φ uc-k (t)] (6)
It becomes. The reception IF signals S r1c-1 (t) and S r1c-k (t) may be expanded to eigenvalues.

図2は、2つのアンテナに受信される1受信信号を用いた到来方向推定のシミュレーション結果を示す。ここでは、表1の条件で到来方向シミュレーションを行ったスペクトラム応答例を示すが、2つのアンテナに受信される1受信信号から得られる誤差を含む到来方向が約40.2度と推定される。   FIG. 2 shows a simulation result of direction-of-arrival estimation using one received signal received by two antennas. Here, an example of a spectrum response obtained by performing an arrival direction simulation under the conditions of Table 1 is shown, but the arrival direction including an error obtained from one received signal received by two antennas is estimated to be about 40.2 degrees.

Figure 0005694240
Figure 0005694240

(1つのアンテナに受信される異なる周波数の2受信信号を用いた到来方向推定)
送受信装置10−kに受信する異なる周波数の受信RF信号Sr1-k(t) ,Sr2-k(t) を用いて到来方向推定値を算出する手順について説明する。
(Direction of arrival estimation using two received signals of different frequencies received by one antenna)
A procedure for calculating the direction-of-arrival estimated value using received RF signals S r1-k (t) and S r2-k (t) of different frequencies received by the transmitting / receiving apparatus 10-k will be described.

受信RF信号Sr1-k(t) に対応する受信IF信号Sr1c-k(t)は (3)式で示される。同様に、受信RF信号Sr2-k(t) に対応する受信IF信号Sr2c-k(t)は、Sr2c-1(t)の位相を基準として、
r2c-k(t) =expj[2π(fr2−ft)t+(2πdkr2) sinθa(t)−φuc-k(t)] …(7)
となる。
The reception IF signal S r1c-k (t) corresponding to the reception RF signal S r1-k (t) is expressed by the following equation (3). Similarly, the received IF signal S r2c-k (t) corresponding to the received RF signal S r2-k (t) is based on the phase of S r2c-1 (t).
S r2c−k (t) = expj [2π (f r2 −f t ) t + (2πd k / λ r2 ) sin θa (t) −φ uc−k (t)] (7)
It becomes.

この受信IF信号Sr2c-k(t)を位相制御装置20のベースバンド変換部22に入力して生成されるベースバンド受信信号Sr2b-k(t)は、Sr2c-1(t)の位相を基準として、
r2b-k(t)=expj[(2πdkr2) sinθa(t)] expj[−φuc-k(t)] …(8)
となる。
The baseband received signal S r2b-k (t) generated by inputting the received IF signal S r2c-k (t) to the baseband conversion unit 22 of the phase control device 20 is the Sr2c-1 (t) With reference to phase
S r2b-k (t) = expj [(2πd k / λ r2 ) sin θa (t)] expj [−φ uc-k (t)] (8)
It becomes.

到来方向推定部23は、送受信装置10−kの受信RF信号Sr1-k(t) ,Sr2-k(t) から得られた (4)式のベースバンド受信信号Sr1b-k(t)と (8)式のベースバンド受信信号Sr2b-k(t)を固有値展開して到来方向推定を行うことで、正しい到来方向θa(t)を求めることができる。なお、 (3)式の受信IF信号Sr1c-k(t)と (7)式の受信IF信号Sr2c-k(t)を固有値展開する構成としてもよい。 The arrival direction estimation unit 23 obtains the baseband received signal S r1b-k (t of the equation (4) obtained from the received RF signals S r1-k (t) and S r2-k (t) of the transmission / reception device 10-k. ) And (8), the correct arrival direction θa (t) can be obtained by performing eigenvalue expansion on the baseband received signal S r2b-k (t) and estimating the arrival direction. Incidentally, it may be configured to expand eigenvalues (3) received IF signal S R1c-k of formula (t) and (7) the reception of formula IF signal S r2c-k (t).

図3は、1つのアンテナに受信される異なる周波数の2受信信号を用いた到来方向推定のシミュレーション結果を示す。ここでは、表1の条件で到来方向シミュレーションを行ったスペクトラム応答例を示すが、1つのアンテナに受信される2受信信号から得られる到来方向が誤差成分をキャンセルし、到来方向が正確に40度と推定される。   FIG. 3 shows a simulation result of direction-of-arrival estimation using two received signals of different frequencies received by one antenna. Here, a spectrum response example is shown in which the direction of arrival simulation is performed under the conditions of Table 1. However, the direction of arrival obtained from two received signals received by one antenna cancels the error component, and the direction of arrival is exactly 40 degrees. It is estimated to be.

位相制御装置20の誤差比較部24は、到来方向推定部23で得られる正しい到来方向θa(t)と誤差を含む到来方向θpe(t) を比較し、 (6)式に示す到来方向θpe(t) の第2項の誤差成分が小さくなるように、送信位相設定部21を制御して送受信装置10−kに送出する送信IF信号の位相を調整する。これにより、送受信装置10−kのUC12の位相変動と衛星との経路長変動を同時に補償することができる。   The error comparison unit 24 of the phase control device 20 compares the correct arrival direction θa (t) obtained by the arrival direction estimation unit 23 with the arrival direction θpe (t) including the error, and the arrival direction θpe ( The phase of the transmission IF signal transmitted to the transmission / reception device 10-k is adjusted by controlling the transmission phase setting unit 21 so that the error component of the second term of t) becomes small. Thereby, the phase variation of the UC 12 of the transmission / reception device 10-k and the path length variation with the satellite can be compensated simultaneously.

図4は、本発明の追尾アンテナ装置の実施例2の構成を示す。
図4において、本実施例の追尾アンテナ装置は、送受信装置10−k(k=1〜N、Nは2以上の整数)、位相制御装置20および変復調装置(図4では省略)により構成される。
FIG. 4 shows a configuration of a tracking antenna apparatus according to a second embodiment of the present invention.
In FIG. 4, the tracking antenna device of the present embodiment is configured by a transmission / reception device 10-k (k = 1 to N, N is an integer of 2 or more), a phase control device 20 and a modulation / demodulation device (omitted in FIG. 4). .

実施例1との違いは、送受信装置10−kのUC12の機能を位相制御装置20に移動したところにある。位相制御装置20では、送受信装置10−kに対応する周波数変換器16−kを備え、共通の局部発振器17から出力されるローカル信号を用いて周波数変換した送信RF信号St-k(t)を送受信装置10−kへ送出する。送受信装置10−kは、入力する送信RF信号St-k(t)を増幅器14を介してアンテナ部11から衛星に送信するとともに周波数変換器13に入力し、当該送信RF信号St-k がローカル信号として受信RF信号Sr1,Sr2の周波数変換に用いられる。 The difference from the first embodiment is that the function of the UC 12 of the transmission / reception device 10-k is moved to the phase control device 20. The phase control device 20 includes a frequency converter 16-k corresponding to the transmission / reception device 10-k, and transmits / receives a transmission RF signal S tk (t) frequency-converted using a local signal output from the common local oscillator 17. Send to device 10-k. The transmission / reception device 10-k transmits the input transmission RF signal S tk (t) from the antenna unit 11 to the satellite via the amplifier 14 and also inputs the transmission RF signal S tk as a local signal. Used for frequency conversion of received RF signals S r1 and S r2 .

本構成では、各送受信装置10−kに共通の局部発振器17を用いるため、実施例1のように各送受信装置10−kのUC12で生じる位相変動は回避される。しかし、位相制御装置20から各送受信装置10−kまでの経路(ケーブル)において、温度などの影響による位相変動が生じる可能性がある。したがって、経路の位相変動と、実施例1と同様に衛星との経路長変動を同時に補償することができる。   In this configuration, since the local oscillator 17 common to each transmission / reception device 10-k is used, the phase fluctuation generated in the UC 12 of each transmission / reception device 10-k is avoided as in the first embodiment. However, there is a possibility that phase fluctuation due to the influence of temperature or the like may occur in the path (cable) from the phase control device 20 to each transmission / reception device 10-k. Therefore, the path phase fluctuation and the path length fluctuation with the satellite as in the first embodiment can be compensated simultaneously.

10,50 送受信装置
11,51 アンテナ部
12,52 周波数アップコンバート器(UC)
13 周波数変換器
14,15 増幅器
20,60 位相制御装置
21 送信位相設定部
22 ベースバンド変換部
23 到来方向推定部
24 誤差比較部
53 周波数ダウンコンバート器(DC)
70 変復調装置
10, 50 Transceiver 11, 51 Antenna unit 12, 52 Frequency up-converter (UC)
DESCRIPTION OF SYMBOLS 13 Frequency converter 14,15 Amplifier 20,60 Phase control apparatus 21 Transmission phase setting part 22 Baseband conversion part 23 Arrival direction estimation part 24 Error comparison part 53 Frequency down-converter (DC)
70 modem

Claims (4)

位相制御装置から複数の送受信装置に送信IF信号を入力し、各送受信装置で送信IF信号を周波数変換した送信RF信号をアンテナ部からそれぞれ所定の位相で送信する追尾アンテナ装置において、
前記複数の送受信装置は、同一装置から同時送信された異なる周波数の第1の受信RF信号と第2の受信RF信号を受信し、前記送信RF信号をローカル信号として各受信RF信号を周波数変換し、第1の周波数変換信号および第2の周波数変換信号として前記位相制御装置に送出する構成であり、
前記位相制御装置は、
基準となる送受信装置および制御対象の送受信装置からそれぞれ入力する前記第1の周波数変換信号を固有値展開し、前記制御対象の送受信装置における第1の到来方向を推定する第1の到来方向推定手段と、
前記制御対象の送受信装置から入力する前記第1の周波数変換信号および前記第2の周波数変換信号を固有値展開し、前記制御対象の送受信装置における第2の到来方向を推定する第2の到来方向推定手段と、
前記第1の到来方向と前記第2の到来方向との差が小さくなる方向に、前記制御対象の送受信装置に送出する前記送信IF信号の位相を設定する送信位相設定手段と
を備えたことを特徴とする追尾アンテナ装置。
In a tracking antenna device that transmits a transmission IF signal from a phase control device to a plurality of transmission / reception devices, and transmits a transmission RF signal obtained by frequency-converting the transmission IF signal in each transmission / reception device from an antenna unit at a predetermined phase,
The plurality of transmission / reception devices receive a first reception RF signal and a second reception RF signal of different frequencies simultaneously transmitted from the same device, and frequency-convert each reception RF signal using the transmission RF signal as a local signal. , The first frequency conversion signal and the second frequency conversion signal are sent to the phase control device,
The phase control device includes:
First arrival direction estimation means for expanding eigenvalues of the first frequency conversion signals respectively input from a reference transmission / reception device and a control target transmission / reception device, and estimating a first arrival direction in the control target transmission / reception device; ,
Second arrival direction estimation for estimating a second arrival direction in the transmission / reception device to be controlled by expanding eigenvalues of the first frequency conversion signal and the second frequency conversion signal input from the transmission / reception device to be controlled Means,
Transmission phase setting means for setting a phase of the transmission IF signal to be transmitted to the transmission / reception device to be controlled in a direction in which a difference between the first arrival direction and the second arrival direction is reduced. A characteristic tracking antenna device.
位相制御装置から複数の送受信装置に送信RF信号を入力し、各送受信装置で送信RF信号をアンテナ部からそれぞれ所定の位相で送信する追尾アンテナ装置において、
前記複数の送受信装置は、同一装置から同時送信された異なる周波数の第1の受信RF信号と第2の受信RF信号を受信し、前記送信RF信号をローカル信号として各受信RF信号を周波数変換し、第1の周波数変換信号および第2の周波数変換信号として前記位相制御装置に送出する構成であり、
前記位相制御装置は、
送信IF信号を前記送信RF信号に周波数変換して前記各送受信装置に送出する周波数変換手段と、
基準となる送受信装置および制御対象の送受信装置からそれぞれ入力する前記第1の周波数変換信号を固有値展開し、前記制御対象の送受信装置における第1の到来方向を推定する第1の到来方向推定手段と、
前記制御対象の送受信装置から入力する前記第1の周波数変換信号および前記第2の周波数変換信号を固有値展開し、前記制御対象の送受信装置における第2の到来方向を推定する第2の到来方向推定手段と、
前記第1の到来方向と前記第2の到来方向との差が小さくなる方向に、前記制御対象の送受信装置に送出する前記送信RF信号の位相を設定する送信位相設定手段と
を備えたことを特徴とする追尾アンテナ装置。
In a tracking antenna device that inputs a transmission RF signal from a phase control device to a plurality of transmission / reception devices, and transmits the transmission RF signal from the antenna unit at a predetermined phase by each transmission / reception device,
The plurality of transmission / reception devices receive a first reception RF signal and a second reception RF signal of different frequencies simultaneously transmitted from the same device, and frequency-convert each reception RF signal using the transmission RF signal as a local signal. , The first frequency conversion signal and the second frequency conversion signal are sent to the phase control device,
The phase control device includes:
A frequency conversion means for frequency-converting a transmission IF signal to the transmission RF signal,
First arrival direction estimation means for expanding eigenvalues of the first frequency conversion signals respectively input from a reference transmission / reception device and a control target transmission / reception device, and estimating a first arrival direction in the control target transmission / reception device; ,
Second arrival direction estimation for estimating a second arrival direction in the transmission / reception device to be controlled by expanding eigenvalues of the first frequency conversion signal and the second frequency conversion signal input from the transmission / reception device to be controlled Means,
Transmission phase setting means for setting a phase of the transmission RF signal transmitted to the transmission / reception device to be controlled in a direction in which a difference between the first arrival direction and the second arrival direction is reduced. A characteristic tracking antenna device.
位相制御装置から複数の送受信装置に送信IF信号を入力し、各送受信装置で送信IF信号を周波数変換した送信RF信号をアンテナ部からそれぞれ所定の位相で送信する追尾アンテナ装置の送信位相制御方法において、
前記複数の送受信装置は、同一装置から同時送信された異なる周波数の第1の受信RF信号と第2の受信RF信号を受信し、前記送信RF信号をローカル信号として各受信RF信号を周波数変換し、第1の周波数変換信号および第2の周波数変換信号として前記位相制御装置に送出し、
前記位相制御装置は、
基準となる送受信装置および制御対象の送受信装置からそれぞれ入力する前記第1の周波数変換信号を固有値展開し、前記制御対象の送受信装置における第1の到来方向を推定し、
前記制御対象の送受信装置から入力する前記第1の周波数変換信号および前記第2の周波数変換信号を固有値展開し、前記制御対象の送受信装置における第2の到来方向を推定し、
前記第1の到来方向と前記第2の到来方向との差が小さくなる方向に、前記制御対象の送受信装置に送出する前記送信IF信号の位相を設定する
ことを特徴とする追尾アンテナ装置の送信位相制御方法。
In a transmission phase control method for a tracking antenna apparatus, wherein a transmission IF signal is input from a phase control apparatus to a plurality of transmission / reception apparatuses, and a transmission RF signal obtained by frequency-converting the transmission IF signal by each transmission / reception apparatus is transmitted from an antenna unit at a predetermined phase. ,
The plurality of transmission / reception devices receive a first reception RF signal and a second reception RF signal of different frequencies simultaneously transmitted from the same device, and frequency-convert each reception RF signal using the transmission RF signal as a local signal. , And send to the phase control device as a first frequency conversion signal and a second frequency conversion signal,
The phase control device includes:
Eigenvalue expansion of the first frequency conversion signal input from each of the reference transmission / reception device and the control-target transmission / reception device, and the first arrival direction in the control-target transmission / reception device is estimated;
Eigenvalue expansion of the first frequency conversion signal and the second frequency conversion signal input from the transmission / reception apparatus to be controlled, and estimating a second arrival direction in the transmission / reception apparatus to be controlled;
The phase of the transmission IF signal transmitted to the transmission / reception device to be controlled is set in a direction in which the difference between the first arrival direction and the second arrival direction is reduced. Phase control method.
位相制御装置から複数の送受信装置に送信RF信号を入力し、各送受信装置で送信RF信号をアンテナ部からそれぞれ所定の位相で送信する追尾アンテナ装置の送信位相制御方法において、
前記複数の送受信装置は、同一装置から同時送信された異なる周波数の第1の受信RF信号と第2の受信RF信号を受信し、前記送信RF信号をローカル信号として各受信RF信号を周波数変換し、第1の周波数変換信号および第2の周波数変換信号として前記位相制御装置に送出し、
前記位相制御装置は、
送信IF信号を前記送信RF信号に周波数変換して前記各送受信装置に送出し、
基準となる送受信装置および制御対象の送受信装置からそれぞれ入力する前記第1の周波数変換信号を固有値展開し、前記制御対象の送受信装置における第1の到来方向を推定し、
前記制御対象の送受信装置から入力する前記第1の周波数変換信号および前記第2の周波数変換信号を固有値展開し、前記制御対象の送受信装置における第2の到来方向を推定し、
前記第1の到来方向と前記第2の到来方向との差が小さくなる方向に、前記制御対象の送受信装置に送出する前記送信RF信号の位相を設定する
ことを特徴とする追尾アンテナ装置の送信位相制御方法。
In a transmission phase control method for a tracking antenna device, a transmission RF signal is input from a phase control device to a plurality of transmission / reception devices, and each transmission / reception device transmits a transmission RF signal from an antenna unit at a predetermined phase.
The plurality of transmission / reception devices receive a first reception RF signal and a second reception RF signal of different frequencies simultaneously transmitted from the same device, and frequency-convert each reception RF signal using the transmission RF signal as a local signal. , And send to the phase control device as a first frequency conversion signal and a second frequency conversion signal,
The phase control device includes:
The transmission IF signal is frequency-converted to the transmission RF signal and sent to each transmitting / receiving device,
Eigenvalue expansion of the first frequency conversion signal input from each of the reference transmission / reception device and the control-target transmission / reception device, and the first arrival direction in the control-target transmission / reception device is estimated;
Eigenvalue expansion of the first frequency conversion signal and the second frequency conversion signal input from the transmission / reception apparatus to be controlled, and estimating a second arrival direction in the transmission / reception apparatus to be controlled;
The phase of the transmission RF signal transmitted to the transmission / reception device to be controlled is set in a direction in which the difference between the first arrival direction and the second arrival direction becomes smaller. Phase control method.
JP2012136819A 2012-06-18 2012-06-18 Tracking antenna device and transmission phase compensation method Active JP5694240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012136819A JP5694240B2 (en) 2012-06-18 2012-06-18 Tracking antenna device and transmission phase compensation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012136819A JP5694240B2 (en) 2012-06-18 2012-06-18 Tracking antenna device and transmission phase compensation method

Publications (2)

Publication Number Publication Date
JP2014003430A JP2014003430A (en) 2014-01-09
JP5694240B2 true JP5694240B2 (en) 2015-04-01

Family

ID=50036218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012136819A Active JP5694240B2 (en) 2012-06-18 2012-06-18 Tracking antenna device and transmission phase compensation method

Country Status (1)

Country Link
JP (1) JP5694240B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7445353B1 (en) 2022-05-19 2024-03-07 地方独立行政法人神奈川県立産業技術総合研究所 An embedding and fixing composition that improves visibility during observation using an electron microscope, etc., and an observation method using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3145093B1 (en) * 2014-05-12 2019-02-13 Mitsubishi Electric Corporation Calibration device
JP2021190775A (en) * 2020-05-27 2021-12-13 富士通株式会社 Radio device
JP2022168751A (en) 2021-04-26 2022-11-08 富士通株式会社 Wireless signal processing circuit and wireless device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162688A (en) * 2008-01-09 2009-07-23 Honda Elesys Co Ltd Electronic scanning radar device, and received wave direction estimation method and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7445353B1 (en) 2022-05-19 2024-03-07 地方独立行政法人神奈川県立産業技術総合研究所 An embedding and fixing composition that improves visibility during observation using an electron microscope, etc., and an observation method using the same

Also Published As

Publication number Publication date
JP2014003430A (en) 2014-01-09

Similar Documents

Publication Publication Date Title
US10734722B2 (en) Beamforming method, apparatus for polarized antenna array and radio communication device and system thereof
US20180088221A1 (en) Multi-radar system
EP3767845B1 (en) Test method and transmitting apparatus
JP5815448B2 (en) Phased array transmitter
US9859881B2 (en) Phase difference detecting device
US11431092B1 (en) Near zero intermediate frequency (NZIF) compensation of local oscillator leakage
US10230163B2 (en) Monopulse autotracking system for high gain antenna pointing
JP5966419B2 (en) Antenna scanning device and wireless device using the same
JP5694240B2 (en) Tracking antenna device and transmission phase compensation method
JP4320441B2 (en) Array antenna calibration method and calibration apparatus
US10541760B2 (en) Radio communication apparatus and antenna calibration method
US7944891B2 (en) Frequency transformation based transmit beamforming in a communication system
US9287616B2 (en) Calibrating a retro-directive array for an asymmetric wireless link
JP4842333B2 (en) Radio apparatus and polarization plane control method
JP5431374B2 (en) Wireless communication system and base station apparatus
JP5700571B2 (en) Tracking antenna device and initial phase difference compensation method
JP7192370B2 (en) Transmission and reception baseband processing device, communication system, correction method and program
WO2015144233A1 (en) A beam forming receiver
JP2009081792A (en) Wireless transmitter and wireless transmission method
Jenn et al. Adaptive phase synchronization in distributed digital arrays
JP5306516B2 (en) Positioning device
JP5474892B2 (en) Tracking antenna device and RF characteristic variation compensation method
JPWO2019207628A1 (en) Displacement measuring device
JP6505621B2 (en) Array antenna system, array control method and array controller
JP2005245182A (en) Method and device for controlling phase for transmission wave, and space photovoltaic power generation system or distance measurement device using phase control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150204

R150 Certificate of patent or registration of utility model

Ref document number: 5694240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150