WO2023223485A1 - Welding device and welding method - Google Patents

Welding device and welding method Download PDF

Info

Publication number
WO2023223485A1
WO2023223485A1 PCT/JP2022/020778 JP2022020778W WO2023223485A1 WO 2023223485 A1 WO2023223485 A1 WO 2023223485A1 JP 2022020778 W JP2022020778 W JP 2022020778W WO 2023223485 A1 WO2023223485 A1 WO 2023223485A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
rolling
angle
laser
shape
Prior art date
Application number
PCT/JP2022/020778
Other languages
French (fr)
Japanese (ja)
Inventor
達輝 三皷
武彦 斎藤
良祐 光岡
Original Assignee
Primetals Technologies Japan株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Japan株式会社 filed Critical Primetals Technologies Japan株式会社
Priority to PCT/JP2022/020778 priority Critical patent/WO2023223485A1/en
Publication of WO2023223485A1 publication Critical patent/WO2023223485A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/06Resistance welding; Severing by resistance heating using roller electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices

Definitions

  • the present invention relates to an apparatus and method for joining mutually overlapping regions of two plate materials by resistance welding.
  • a welding machine installed in a continuous plate processing line moves in a direction perpendicular to the threading direction (Threading direction, Passing direction, Line direction, etc.) while welding the preceding plate.
  • the tail end and the tip of the trailing plate are connected by welding.
  • the seam welding machine described in Patent Document 1 includes an electrode disk (electrode wheel) and a pressure roll (rolling down roll) that are both rotatably supported by a carriage and arranged above and below a strip. and move the carriage while rotating the pressure roll. By doing so, welded joints are continuously formed in the width direction of the strips while running the electrode disk and then the pressure roll in the overlapping region of the leading strip and the trailing strip.
  • the seam welding machine of Patent Document 1 measures the temperature of the welded joint immediately after welding in order to determine the quality of the welded joint.
  • a seam welding machine includes a plurality of condensing lenses installed between an upper electrode disk and an upper pressure roll, optical fibers each connected to the condensing lenses, and a plurality of condensing lenses installed at respective positions of the condensing lenses through the optical fibers. and a temperature detector that detects the temperature corresponding to the temperature.
  • the plurality of condensing lenses are arranged side by side in the width direction (sheet passing direction) of the region where the leading strip and the trailing strip overlap.
  • the temperature measurement value of the welded joint is also used to determine whether dust has occurred due to the spouting of molten metal during welding. For example, according to the seam weld determination method disclosed in Patent Document 2, the average temperature and temperature difference of a welded joint are calculated over a predetermined range in the welding direction, and a threshold value is applied to each of the average temperature and temperature difference. , the presence or absence of dust is determined.
  • a welded joint formed by welding plate materials in a stepped state often maintains the stepped shape even after welding, although it depends on the plate thickness.
  • folding flaws occur in the welded joint that has passed the reduction roll. If a plate material with folding flaws is supplied to a rolling process, the dimensional ratio of the folding flaws to the thickness of the plate increases due to rolling. Therefore, especially in continuous rolling lines, it is highly necessary to prevent breakage of welded joints due to folding flaws.
  • unfavorable shapes appearing in welded joints such as the shape of eaves, cannot necessarily be detected by temperature measurements.
  • the welding state of the welded joint may not be appropriate. Further, since the temperature measurement values vary widely due to the surface condition of the electrode ring, etc., it may not be possible to distinguish between cases where dust is generated and cases where dust is not generated.
  • an object of the present disclosure is to provide a welding device and a welding method that can appropriately grasp welding defects, including abnormal shapes that lead to folding defects and the occurrence of dust.
  • the welding device of the present disclosure joins the overlapped region of the first plate material and the second plate material by resistance welding, and the welding area is welded along a welding direction that intersects with the threading direction of the first plate material and the second plate material.
  • swaging in the present disclosure refers to a flattening process performed by a rolling part following welding by a welding part.
  • the shape acquisition unit includes a laser information acquisition unit that emits a band-shaped laser to irradiate a linear range of the welding area, and receives the laser reflected from the welding area with an image sensor,
  • the laser information acquisition unit is disposed above or below the welding area, the linear range intersects the welding direction, and the optical axis of the laser emitted by the laser information acquisition unit is It is preferable that the first plate material and the second plate material are set to be inclined with respect to the vertical direction toward a step formed in the welding area.
  • the optical axis forms an angle of 30 degrees or more with respect to the horizontal plane.
  • the laser information acquisition section is supported by the frame of the moving body, and at least one of the welding section and the rolling section is disposed in the projection range of the laser information acquisition section in the sheet passing direction. is preferred.
  • the shape acquisition unit acquires shape data indicating the shape of the step by calculation using information on a change from the laser emitted by the laser information acquisition unit to the laser reflected by the welding area.
  • the welding apparatus includes a step shape data acquisition section that displays at least one of a display section that displays the shape data and a first determination section that determines whether the welding state of the welding area is good or bad using the shape data. It is preferable to have one.
  • the shape acquisition section includes an angle acquisition section that acquires the angle of the step by calculation using the shape data, and the first determination section determines whether the welding state of the welding area is good or bad using the angle. It is preferable that the configuration is such that it can be determined.
  • the welding device of the present disclosure includes a temperature measurement unit that measures the temperature of the welding area before being rolled down by the rolling unit, and the angle acquisition unit uses shape data to acquire at least the angle of the step before being rolled down.
  • the first determination unit may perform the pre-rolling quality determination by applying threshold values to the angle before rolling acquired by the angle acquisition unit and the temperature of the welding area before rolling measured by the temperature measuring unit, respectively. preferable.
  • the shape acquisition unit calculates the angle after rolling from the angle before rolling acquired by the angle acquiring unit, based on the correlation information between the angle before and after the rolling by the rolling part.
  • the first determination section applies a first threshold value to the angle before rolling acquired by the angle acquiring section to determine the quality of the before rolling. It is preferable to apply a second threshold smaller than the first threshold to the obtained angle after reduction to determine the quality after reduction.
  • the shape acquisition unit includes a laser information acquisition unit that irradiates a laser to the welding area and receives the laser reflected from the welding area, and a laser information acquisition unit that determines the shape of the area above and below the welding area.
  • a height measurement value acquisition unit that acquires a measurement value of the height of the welding area in the welding direction using information on a change from the laser emitted from at least one of the laser beams to the laser reflected by the welding area;
  • the welding device includes a display section that displays at least one of the measured value, the amount of change between the measured values, and the presence or absence of the measured value; It is preferable to include at least one of a second determination unit that determines whether the welding state of the welding area is good or bad using at least one of the information.
  • the welding method of the present disclosure welds the overlapping region of the first plate material and the second plate material, and the welding area is welded along the welding direction that intersects with the threading direction of the first plate material and the second plate material.
  • a welding step for forming a rolling down step for rolling down the welding area, a shape acquisition step for acquiring the shape of the welding area at least one of before or after being rolled down by the rolling down step, and a welding part for forming the welding area by resistance welding.
  • a forward step in which a movable body that supports the rolling part that lowers the welding area is aligned in the welding direction is moved from a predetermined retreat position to a predetermined forward position, and a backward step in which the movable body is moved from the forward position to the retreat position.
  • a welding step, a reduction step, and a shape acquisition step are performed.
  • the shape acquisition step includes emitting a band-shaped laser to the welding area, irradiating it to a linear range intersecting the welding direction, and receiving the laser reflected from the welding area by an imaging device.
  • the optical axis of the laser emitted from at least one of the upper side and the lower side of the welding area is set at the step formed by the first plate material and the second plate material in the welding area. It is preferable to set it so that it is inclined with respect to the vertical direction.
  • the shape acquisition step indicates the shape of the step using information about the laser information acquisition step and the change from the laser emitted in the laser information acquisition step to the laser reflected by the welding area.
  • the welding method includes a shape data acquisition step of acquiring shape data by calculation, a display step of displaying the shape data, and a first determination step of determining whether the welding condition of the welding area is good or bad using the shape data. It is preferable to include at least one of them.
  • the shape acquisition step includes an angle acquisition step of calculating the angle of the step using the shape data, and the first determination step uses the angle to determine whether the welding state of the welding area is good or bad. It is preferable to judge.
  • the shape acquisition step calculates the angle after reduction from the angle before reduction obtained in the angle acquisition step, based on correlation information between the angle before and after the reduction in the reduction step.
  • the first determination step applies a first threshold value to the angle before rolling obtained by the angle acquiring step to determine the quality of the before rolling. It is preferable to apply a second threshold smaller than the first threshold to the obtained angle after reduction to determine the quality after reduction.
  • the shape acquisition step includes a laser information acquisition step of irradiating the welding area with a laser and receiving the laser reflected from the welding area; a height measurement value obtaining step of obtaining a measured value of the height of the welding area over the welding direction using information on a change from the laser emitted from at least one of the laser beams to the laser reflected by the welding area;
  • the welding method includes a display step for displaying at least one of the measured value, the amount of change between the measured values, and information on the presence or absence of the measured value; It is preferable to include at least one of a second determination step of determining whether the welding state of the welding area is good or bad using at least one of the information.
  • the welding apparatus and welding method of the present disclosure may perform only the first determination regarding the step shape, or may perform only the second determination regarding the welding height. It is sufficient for the welding apparatus of the present disclosure to include only the determining section to be used out of the first determining section and the second determining section. The same applies to the welding method of the present disclosure.
  • the surface shape of the step included in the welding area and the surface shape of exposed molten metal are obtained, so such surface shape can be confirmed on the screen of a display device, for example.
  • the surface shape data By calculating the surface shape data and automatically determining whether the surface shape is good or bad, it becomes possible to appropriately understand welding defects, including abnormal shapes that lead to folding defects and the occurrence of dust.
  • (a) is a side view schematically showing a welding device of the present disclosure.
  • (b) is a partial sectional view taken along the line Ib-Ib in (a).
  • (a) and (b) are diagrams illustrating one form of a plurality of processing units included in the welding device.
  • (a) is a schematic diagram showing rolling down rolls arranged above and below the plate material with their axial directions intersecting.
  • (b) is a schematic diagram showing the rolling direction with respect to the welding area.
  • (a) is an enlarged cross-sectional view of the welding area.
  • (b) and (c) are schematic diagrams showing the cross-sectional shape of a welding area including a step.
  • (a) and (b) are schematic diagrams showing the cross-sectional shape of a welding area including a step.
  • FIG. 2 is a functional block diagram regarding determination of quality of welding. It is a side view which shows a welding part, a rolling part, and a laser information acquisition part from the same direction as Fig.1 (a).
  • (a) is a diagram showing a rolling part and a laser information acquisition part from the welding direction.
  • FIG. 8 is a schematic diagram showing the optical axis of the laser emitted from the laser information acquisition unit and the welding area irradiated by the laser.
  • 9 is a diagram showing the laser information acquisition unit from the direction of the X arrow in FIG. 8.
  • FIG. It is a figure which shows the process step regarding quality determination of a welding state.
  • (a) and (b) are schematic diagrams showing display examples of welding quality determination results.
  • (a) is a graph for explaining the quality determination of the welding area before reduction.
  • (b) shows a table showing the relationship between the step angle before rolling and the presence or absence of folding flaws after rolling.
  • (a) to (c) are graphs for explaining the quality determination for each plate thickness in the pre-reduction welding area.
  • (a) and (b) are sectional views showing the welding area before and after rolling down when the step angle is larger than a threshold value.
  • (a) and (b) are sectional views showing the welding area before and after rolling down when the step angle is smaller than a threshold value.
  • (a) to (c) are graphs showing the relationship between the measured temperature in the welding area and the Erichsen value base metal ratio for each plate thickness of common steel.
  • (a) to (c) are graphs showing the relationship between the measured temperature in the welding area and the Erichsen value base metal ratio for each plate thickness of high-strength steel. It is a graph showing the correlation between the step angle before rolling and the step angle after rolling.
  • FIG. 3 is a plan view of a welding area.
  • FIG. 6 is a diagram illustrating an example in which laser information acquisition units are installed both above and below the welding area.
  • the welding apparatus 1 shown in FIG. 1(a) joins the tail end of the preceding steel plate 2 and the tip of the following steel plate 2 by overlapping and resistance welding.
  • the welding device 1 is installed and operated in a continuous cold rolling line (not shown).
  • a continuous cold rolling line for example, a coil of hot rolled steel plate is unwound and passed through the line, and a device such as a looper is used to roll the preceding steel plate without stopping the central part of the line (rolling mill). and the trailing steel plate are welded and passed continuously.
  • Such a continuous rolling line includes, for example, a payoff reel, a welding device 1, a short looper, a rolling mill, and a tension reel, and passes the strip through the rolling mill in one direction while circulating the coil, thereby rolling the strip multiple times to a predetermined thickness. Roll for .
  • the welding device 1 welds the overlapping area of the leading steel plate 21 gripped by the leading clamp C1 and the trailing steel plate 22 gripped by the trailing clamp C2. Continuous welding is performed in a predetermined welding direction by heating with electricity and crushing with pressure. That is, the welding device 1 performs mash seam welding (JIS Z 3001) to form the welding region 20 along a predetermined welding direction.
  • the welding direction by the welding device 1 corresponds to the y direction orthogonal to the threading direction x in which the steel plate 2 is conveyed.
  • the welding apparatus 1 flattens the shape of the welding area 20 by pressurizing the welding area 20 with the rolling part 30 following welding by the welding part 10 .
  • the plastic working performed by the rolling part 30 is called swaging.
  • the welding device 1 includes a welding section 10 that forms a welding region 20 by welding the overlapping region of a leading steel plate 21 and a following steel plate 22, a rolling section 30 that rolls down the welding region 20, and a welding section 10 and a rolling section 30 that rolls down the welding region 20.
  • the movable body 40 supports the lower part 30 in a line in the welding direction y, and the control unit 50 controls the operation of each part of the welding device 1.
  • the welding part 10 includes electrode rings 11 and 12 that face each other across the steel plate 2 in the vertical direction z (vertical direction).
  • the rolling part 30 includes rolling rolls 31 and 32 that are adjacent to the electrode wheels 11 and 12 and face each other across the position of the steel plate 2 in the vertical direction z.
  • the movable body 40 includes a frame 41 that rotatably supports both the welding section 10 and the rolling section 30, a plurality of wheels 42 that support the frame 41, and drives the frame 41 in the welding direction y to A drive device 45 for reciprocating the running path 44 is provided.
  • the frame 41 is formed into a substantially C-shape when viewed from the side in the sheet passing direction x.
  • Drive device 45 includes a servo motor 451 and a ball screw 452.
  • the frame 41 is provided with a current applying device 46 including a transformer and a diode.
  • the frame 41 has the steel plate 2 subjected to treatments such as removing coatings such as oxide scale, cutting, cooling, and heating, as shown in FIGS. 2(a) and 2(b).
  • Processing units 61, 62, 63, and 64 may be provided to perform processing on each of the processing units, respectively.
  • the coating removal unit 61 that performs coating removal processing includes, for example, brush rolls 611 and 612 that are rotatably driven and equipped with brushes on their outer peripheries, and are used to clean both the front and back sides of the leading steel plate 21 and the trailing steel plate 22 for stable resistance welding. to grind.
  • the cutting section 62 that performs the cutting process includes, for example, a pair of shearing blades 621 and 622 that face each other in the vertical direction z (vertical direction) and move up and down with respect to the steel plate 2, and cuts off an end portion of the steel plate 2. Coating removal and cutting are performed on the tail end region of the leading steel plate 21 and the leading end region of the trailing steel plate 22 before welding.
  • the cooling unit 63 that performs the cooling process performs hardening by, for example, spraying water onto the welding area 20 to rapidly cool it.
  • the heating unit 64 that performs the heat treatment performs tempering by heating the welding region 20 by induction heating, for example.
  • the steel plate 2 radiates heat to the surrounding air at room temperature and is subjected to a rolling process.
  • the brush roll 611, shear blade 621, electrode ring 11, and roll-down roll 31, all of which are arranged above the steel plate 2, are moved by their respective elevating mechanisms ( 13, 33, etc.). Therefore, the film removal section 61, the cutting section 62, the welding section 10, and the rolling section 30 do not come into contact with the steel plate 2 throughout the welding process except during processing.
  • the frame 41 is moved in the welding direction between a retracted position P1 (FIG. 2(a)) where the steel plate 2 is retracted backward with respect to the conveyance path through which the steel plate 2 is passed, and a forward position P2 (FIG. 2(b)). It is possible to move back and forth along y.
  • the frame 41 includes a heating section 64, a film removing section 61, a cooling section 63, a rolling section 30, a welding section 10, and , and the cutting section 62 are provided in this order.
  • a series of processes in the welding process is performed during one cycle of the welding process including a step of advancing the frame 41 from the retreated position P1 to the forward position P2, and a step of retreating the frame 41 from the forward position P2 to the retreated position P1.
  • the welding apparatus 1 of this embodiment has a steel plate 2 received between an upper frame 411 and a lower frame 412 through an opening 410 in the front of a frame 41, and an upper electrode.
  • the wheel 11 and the upper reduction roll 31 are lowered toward the reference plane 100 (FIG. 1(b)) by the lifting mechanisms 13, 33, and the frame 41 is moved back from the forward position P2 to the backward position P1, while welding and Perform the rolling process.
  • the welding direction y is a direction from the forward position P2 to the backward position P1.
  • the reference plane 100 is set horizontally, for example, at the position of the outer peripheral surfaces of the lower electrode wheel 12 and the reduction roll 32.
  • the axial width w1 of the electrode wheels 11 and 12 is wider than the width (overlap margin w) by which the leading steel plate 21 and the trailing steel plate 22 are overlapped in the sheet passing direction x before welding. It is preferable that the electrode rings 11 and 12 are arranged at the center of the overlap w in the sheet passing direction x.
  • the axial width of the reduction rolls 31 and 32 is also wider than the overlap w. It is preferable that the reduction rolls 31 and 32 are also arranged at the center of the overlap w in the sheet passing direction x.
  • each of the electrode rings 11 and 12 is slightly curved in an arc shape with a large radius of curvature over the entire width.
  • the upper electrode ring 11 is curved so as to protrude in a convex direction (downward) with respect to the reference surface 100 at the center of the sheet passing direction x.
  • the lower electrode ring 12 is curved so as to protrude in a convex direction (upward) with respect to the reference surface 100 at the center of the sheet passing direction x.
  • a current applying device 46 connected to the electrode wheels 11 and 12 applies electricity to the steel plate 2, and a driving device including a motor (not shown) moves the electrode wheels 11 and 12 and the rolling roll 31, 32 are rotated about their respective axes in directions corresponding to the welding direction y.
  • the surface temperature of the welding region 20 immediately after passing through the electrode rings 11 and 12 exceeds, for example, 1,300°C.
  • the temperature of the welding area 20 decreases to, for example, 900° C. or lower when the reduction rolls 31 and 32 contact the welding area 20, and then increases due to recuperation.
  • the axes of the reduction rolls 31 and 32 may be set parallel to the sheet passing direction x, similar to the axes of the electrode wheels 11 and 12, but as shown in FIG. 3(a), the shear forces F1, In order to achieve more sufficient flattening by applying F2, the axes of the reduction rolls 31 and 32 may be inclined with respect to the sheet passing direction x. In this case, the axis of the reduction roll 31 and the axis of the reduction roll 32 intersect in plan view. For example, each axis of the reduction rolls 31 and 32 can be inclined by 3 degrees with respect to the sheet passing direction x.
  • the steel plate 2 After being rolled down by the rolling rolls 31 and 32, the steel plate 2 is supplied to a rolling process.
  • the rotation direction RD of a pair of rolling rolls used in the rolling process is indicated by an arrow.
  • a step is formed in the welding region 20 shown in FIG. Since it is crushed to about 1.1 to 1.2 times its size, it is flattened before the rolling process.
  • FIG. 1(b) mash seam welding is performed by the welding section 10 with the end of one steel plate 2 superimposed on the lower end of the other steel plate 2.
  • the ends of the two steel plates 2 are overlapped in the threading direction x, for example, with a width equivalent to the thickness of a single steel plate 2.
  • the end of the trailing steel plate 22 is stacked on the lower side of the end of the leading steel plate 21.
  • the present invention is not limited to this, and the end of the leading steel plate 21 may be stacked on the lower side of the end of the trailing steel plate 22.
  • leading steel plate 21 and the trailing steel plate 22 Before welding, the leading steel plate 21 and the trailing steel plate 22 have an end face 21A of the leading steel plate 21 rising up from the upper surface of the trailing steel plate 22, and an end face 21A of the leading steel plate 21 rising from the bottom surface of the leading steel plate 21, as shown in FIG. 1(b), for example.
  • the trailing steel plates 22 are stacked so that the end surfaces 22A thereof stand up. At this time, the leading steel plate 21 and the trailing steel plate 22 form an upper step ST1 and a lower step ST2.
  • FIG. 4(a) illustrates a cross section of the welding region 20 after joining and before reduction.
  • the inside of the broken line indicated by N indicates a portion melted due to heat generation, and this portion becomes a nugget N when solidified.
  • the steps ST1 and ST2 before welding are crushed by the electrode rings 11 and 12, and are transformed into steps 201 and 202, for example, as shown in the state after welding in FIG. 4(a). At this time, although the height of the step decreases through the joining process, the step is maintained even after welding.
  • steps 201 and 202 are formed approximately 180 degrees symmetrically with respect to the center of the cross section of the nugget N on both the upper and lower sides of the welding region 20.
  • the present invention is not limited to this, and only one of the upper step 201 and the lower step 202 may be formed.
  • a reference plane 100 is set at the outer circumferential surface of the lower electrode ring 11, and the steel plate 2 is pressurized by pushing the upper electrode ring 11 down toward the reference plane 100.
  • the lower steel plate is pressed against the upper steel plate 2 between the electrode rings 11 and 12.
  • the heat input to the end of the upper steel plate 2 precedes the heat input to the end of the upper steel plate 2, and deformation of the lower steel plate 2 at high temperature progresses. Therefore, the step 202 is less likely to be formed on the lower side, and the step 201 is more likely to be formed on the upper side.
  • the welding region 20 includes the above-mentioned joining range r, the step 201 between the two steel plates 2, and the like.
  • the shape of the step 201 in the welding region 20 varies, for example, as schematically shown in FIGS. 4(b) and 4(c).
  • the respective angles ⁇ of the step 201-1 and the step 201-2 are different.
  • the angle ( ⁇ ) of the step included in the welding region 20 and appearing in the cross section of the welding region 20 is defined as follows for both the upper step and the lower step. Any one of the two steel plates 2 will be referred to as a first plate material (leading steel plate 21 or trailing steel plate 22), and the other will be referred to as a second plate material (tracing steel plate 22 or leading steel plate 21).
  • the step angle ⁇ in one cross section of the welding area 20 is relative to the straight line L1 extending the surface s where the first plate is exposed without being covered by the second plate toward the second plate. This corresponds to the angle formed by the straight line L2 of the end surface of the second plate.
  • the lower step angle ⁇ is shown in FIG. 3(b).
  • the straight line L1 is a line extending parallel to the sheet passing direction x, with the surface s facing the second plate material side.
  • the straight line L1 shown in FIG. 5(a) may be a line extending parallel to the surface s in the vicinity of the step 201-4, with the surface s facing the second plate side, as shown in FIG. 5(b).
  • the angle of the step included in the welding area 20 can also be expressed by the inner angle ⁇ 1 or the outer angle ⁇ 2 formed by the straight line L2 with respect to the exposed surface s. .
  • a threshold value suitable for angle ⁇ 1 or angle ⁇ 2 may be calculated and used.
  • the outer shape of the cross section of the step 201-3 may consist of a curved line. Even in such a case, a straight line connects the inflection point p1 of the inside corner located on the base end side of the curve c rising against the exposed surface s and the inflection point p2 of the out corner located on the tip side of the curve c.
  • L3 is obtained by calculation, the straight line L3 is treated as the straight line L2 of the end surface, and the step angle ⁇ can be specified by the above definition.
  • the angle ⁇ of the step 201-3 exceeds 90 degrees.
  • This step 201-3 is formed in the shape of an eave so as to cover the exposed surface s of the first plate material.
  • the welding area 20 including the step 201-3 shown in FIG. 6(a) is rolled down by the rolling part 30, the eave-shaped part before rolling is crushed as shown in FIG. 6(b). This may cause folding flaws 203. Furthermore, if the welding area 20 including the folding flaw 203 is supplied to the rolling process, the folding flaw 203 is shown in FIG. As shown in (c), it may remain as a crack-like folding flaw. At this time, even if the depth of the folding flaw 203 has not changed from before rolling, the ratio of the flaw depth to the plate thickness increases. If the welding region 20 were to break during the rolling process, the subsequent annealing process, etc.
  • dust a phenomenon called "dust" may occur in the welding area 20 due to molten metal ejecting onto the surface.
  • the dust (expulsion) is raised from the surface of the welding area 20 where no dust is generated, and typically, a plurality of dusts are formed in the welding area 20 in a state where they are scattered in the welding direction y.
  • the electrode rings 11 and 12 must be cleaned.
  • welding defects such as folding defects and dust generation are detected before the rolling process, and a steel plate 2 having welding defects is prevented from being supplied to the rolling process. Then, even if the welding process is stopped for re-welding or maintenance of the electrode wheels 11 and 12, the rolling process can be avoided and the line operating rate can be maintained at a high level.
  • the welding apparatus 1 of this embodiment acquires the surface shape of the welding area 20.
  • the welding apparatus 1 includes a shape acquisition unit 70 that acquires the surface shape of the step in the welding area 20, a temperature measurement unit 77, a display unit 80, and a first determination unit 81 that determines the quality of welding. and a second determination section 82.
  • FIG. 7 shows an example of a functional configuration related to welding quality determination.
  • the shape acquisition unit 70 includes a laser information acquisition unit 71 , a step shape data acquisition unit 72 , a height measurement value acquisition unit 73 , an angle acquisition unit 74 , a step height acquisition unit 75 , and a post-rolling angle acquisition unit 76 It is equipped with
  • the laser information acquisition unit 71 irradiates the welding area 20 with a band-shaped laser from the emission unit 711 and receives the laser reflected from the welding area 20 with the imaging element 712 .
  • a two-dimensional laser displacement meter 700 can be used as the laser information acquisition unit 71.
  • the step shape data acquisition unit 72 calculates shape data indicating the shape of the step in the welding area 20 using information on the change from the laser emitted by the laser information acquisition unit 71 to the laser reflected by the welding area 20. Obtained by
  • the laser information acquisition unit 71 of this embodiment irradiates the welding region 20 with a laser before being rolled down by the rolling section 30. Therefore, the shape acquisition section 70 acquires the shape of the welding region 20 before rolling by the rolling section 30.
  • the height measurement value acquisition unit 73 uses information about the change from the laser emitted by the laser information acquisition unit 71 to the laser reflected by the welding area 20 to obtain a measurement value indicating the height of the welding area 20. Obtain iteratively along the direction y. The measured height value is used to determine whether or not dust is generated.
  • the height measurement value acquisition unit 73 can acquire the surface shape corresponding to the height change over the welding length while irradiating the welding region 20 with laser from the laser displacement meter 700 moving in the welding direction y.
  • the angle acquisition unit 74 uses the shape data of the step to obtain the angle ⁇ of the step included in the welding region 20 by calculation.
  • the step height acquisition unit 75 calculates and obtains the height of the step included in the welding region 20 using the shape data and the angle ⁇ .
  • the post-rolling angle obtaining section 76 calculates the post-rolling angle from the pre-rolling angle obtained by the angle obtaining section 74 based on the correlation information between the angle before and after the rolling by the rolling section 30. do.
  • the temperature measuring section 77 measures the surface temperature of the welding area 20 immediately after passing through the electrode wheels 11 and 12 and before being rolled down by the rolling section 30.
  • the display unit 80 displays the shape data of the step, the step angle ⁇ , the measurement data of the height of the welding area 20, etc. on the screen of the monitor 801.
  • the monitor 801 is provided in the control unit 50, for example.
  • the first determination unit 81 is capable of determining an abnormality in the step shape that leads to folding defects.
  • the first determination unit 81 is configured to be able to determine whether the welding state of the welding area 20 is good or bad using the step angle ⁇ acquired by the angle acquisition unit 74.
  • the second determination unit 82 is capable of determining whether or not dust has occurred.
  • the second determination unit 82 is configured to be able to determine the quality of the welding state of the welding area 20 using the amount of change between the height measurement values acquired by the height measurement value acquisition unit 73.
  • Step shape data acquisition section 72, height measurement value acquisition section 73, angle acquisition section 74, step height acquisition section 75, post-rolling angle acquisition section 76, display section 80, first determination section 81, and second determination section 82 can be configured as a module of a program that operates on a computer equipped with an arithmetic unit, a memory, a storage unit, an input/output unit, and the like.
  • the computer is included in the control unit 50, for example.
  • the step shape data acquisition section 72, the height measurement value acquisition section 73, the angle acquisition section 74, the step height acquisition section 75, and the after-rolling At least a portion of the angle acquisition section 76, the display section 80, the first determination section 81, and the second determination section 82 may be program modules that operate in the computer of the laser displacement meter 700.
  • program modules corresponding to the step shape data acquisition section 72 and the height measurement value acquisition section 73 operate. Therefore, the pixel information of the image received and imaged by the image sensor 712 of the laser information acquisition section 71 is directly passed from the image sensor 712 to the step shape data acquisition section 72 and the height measurement value acquisition section 73. .
  • the shape data obtained by the step shape data acquisition section 72 and the height measurement value obtained by the height measurement value acquisition section 73 are obtained from the laser displacement meter 700 and are executed by a computer included in the control section 50 etc. It is passed to the angle acquisition unit 74, step height acquisition unit 75, post-rolling angle acquisition unit 76, display unit 80, first determination unit 81, and second determination unit 82 as program modules to be executed.
  • program modules corresponding to each of the step shape data acquisition section 72, height measurement value acquisition section 73, angle acquisition section 74, display section 80, first determination section 81, and second determination section 82 are installed on a plurality of computers.
  • a plurality of computers may be configured such that the computer built in the laser displacement meter 700 and the computer built in the control unit 50 are distributed and operated in cooperation with each other.
  • a plurality of computers can be connected so as to be able to send and receive data via, for example, a cable, a wired LAN (Local Area Network), a wireless LAN, or the World Wide Web.
  • the step 201 is likely to be formed above the welding region 20, and the eave-like step 201-3, which causes folding defects, is formed above the welding region 20. Even if a step is formed on the lower side of the welding region 20, an eave-like step is not formed on the lower side. Therefore, as shown in FIGS. 8, 9(a), and 10, it is sufficient that the laser displacement meter 700 including the laser information acquisition section 71 is disposed only above the welding area 20.
  • This embodiment uses shape data obtained from information indicating a change from a laser emitted towards the welding area 20 to a laser reflected by the welding area 20 (correlation information between the emitted laser and the reflected laser). , determine the quality of welding regarding folding defects. At the same time, the quality of the welding regarding the generation of dust is also determined using the height measurement value of the welding area 20 obtained from the information indicated by the change in the laser beam.
  • the laser displacement meter 700 irradiates the welding area 20 with a band-shaped laser LS1 (see FIG. 9(a)) based on the optical cutting method, and determines the shape of the step in the welding area 20 (cross section) based on the change in the reflected light. profile) can be measured. Further, the laser displacement meter 700 can perform one-dimensional measurements such as height and width by emitting a linear laser in addition to emitting the band-shaped laser LS1.
  • the laser information acquisition unit 71 includes an emission unit 711 that emits a band-shaped laser LS1 to irradiate a linear range 20L of the welding area 20, and a laser information acquisition unit 71 that emits a band-shaped laser LS1 to irradiate a linear range 20L of the welding area 20. It includes an image sensor 712 such as a CMOS (Complementary Metal Oxide Semiconductor) that receives the laser LS2 and forms an image. It is preferable that the linear range 20L is perpendicular to the welding direction y. In other words, the linear range 20L extends along the sheet passing direction x.
  • CMOS Complementary Metal Oxide Semiconductor
  • the image sensor 712 is separated from the emission section 711 in the welding direction y. Therefore, the optical axis A2 of the laser LS2 intersects the optical axis A1 of the laser LS1 when viewed from the sheet passing direction x.
  • the laser displacement meter 700 is supported by the upper frame 411 so that the entire welding region 20 in the sheet passing direction x falls within the irradiation range 20L (FIG. 9(a)).
  • the irradiation range 20L is located between the lower end of the electrode ring 11 and the lower end of the reduction roll 31, as shown in FIG.
  • the intersection of the optical axis A1 and the optical axis A2 is located at a position that bisects the distance between the lower end of the electrode ring 11 and the lower end of the reduction roll 31, this is not a limitation. There are no obstacles in the optical path of either the emitted laser LS1 or the reflected laser LS2.
  • the optical axis A1 of the laser LS1 emitted by the laser information acquisition unit 71 is directed from the emission unit 711 toward the step in the welding area 20 with respect to the vertical direction z. Set at an angle.
  • the step angle ⁇ exceeds 90 degrees, as in the step 201-3 shown in FIG. 9(b) and the step 201-2 shown in FIG. 4(c). Even in this case, the laser LS1 emitted from the emitting section 711 can be made to enter the inside of the step.
  • the laser LS1 emitted from the emitting section 711 linearly enters the step 201 in the sheet passing direction x, and the reflected laser LS2 is received by an image sensor 712 that is away from the emitting section 711 in the welding direction y. Since the laser LS2 changes depending on the surface shape of the welding area 20 over the linear irradiation range 20L, data indicating the surface shape can be obtained by capturing the change.
  • shape data of a step formed above the welding area 20 is obtained.
  • the shape of the step is reversed in the left-right direction (sheet threading direction x) with respect to the shape of the step (201-3) shown in FIG. 9(b).
  • the optical axis A1 of the laser LS1 is also set to be inclined with respect to the vertical direction z.
  • the angle ⁇ that the optical axis A1 makes with respect to the horizontal plane is preferably 30 degrees or more. If the angle is 30 degrees or more, an image can be formed on the image sensor 712 by the laser LS2 reflected from the surface of the welding region 20. However, if the angle is less than 30 degrees, it becomes difficult for the reflected laser LS2 to enter the image sensor 712, so it is difficult to form an image of the reflected laser LS2 on the image sensor 712.
  • the inclination angle ⁇ of the optical axis A1 of the output laser LS1 in this embodiment is set within the range of about 50 degrees to about 55 degrees. However, the inclination angle ⁇ can be set to an angle smaller than 90 degrees and larger than 30 degrees, as long as data on the shape of the step can be obtained even if there is an eave-like step.
  • the laser displacement meter 700 is supported by an upper frame 411 via a support member 413 as shown in FIG. 8, with a housing 701 housed in a protective cover 702 as shown in FIG. As the moving body 40 travels, the laser displacement meter 700 moves in the welding direction y with respect to the steel plate 2.
  • the laser displacement meter 700 may be configured such that the inclination angle ⁇ of the optical axis A1 with respect to the horizontal plane can be adjusted.
  • Support parts 415 and 416 that respectively support the electrode ring 11 and the reduction roll 31 on the upper frame 411 and members such as the temperature measurement part 77 are arranged close to each other in the welding direction y.
  • the space between and above it is narrow. Therefore, it is difficult to arrange the laser displacement meter 700 on the straight line L4 that connects the upper frame 411 and the irradiation range 20L that is spaced downward from the upper frame 411 due to installation space constraints.
  • the position of the laser displacement meter 700 of this embodiment is in the threading direction x with respect to the straight line L4. It's shifting. Then, regardless of the space between the welding part 10 and the rolling part 30, the laser displacement meter 700 will not interfere with the welding part 10, the rolling part 30, or the clamps C1 and C2. The straight movement of the emitting laser LS1 and the reflected laser LS2 is not hindered. At this time, with reference to FIG. 8, at least one of the welding part 10 and the rolling part 30 is arranged in the projection range of the laser displacement meter 700 in the sheet passing direction x.
  • the support member 413 to which the laser displacement meter 700 is attached can be installed, for example, on the side surface of the upper frame 411. Since the sheet passing direction x is a direction perpendicular to the paper surface of FIG. 8, the projection range of the laser displacement meter 700 in the sheet passing direction overlaps with
  • the optical axis A1 is set to be inclined with respect to the vertical direction z, even if the step angle ⁇ is larger than 90 degrees, the output laser can be made to enter the inside of the step and the step can be corrected.
  • the shape can be obtained, and it is possible to obtain the step angle ⁇ from the shape data indicating the step shape, and to make a pass/fail judgment according to the step angle ⁇ .
  • the temperature measuring section 77 which is a radiation thermometer, is arranged between the electrode wheel 11 and the reduction roll 31 in the welding direction y, with the temperature sensing section (not shown) facing the lower end of the electrode wheel 11. ing.
  • the infrared rays emitted from the surface of the welding region 20 enter the temperature sensing section provided in the temperature measuring section 77 immediately after passing through the electrode wheels 11 and 12.
  • the temperature measuring section 77 measures the surface temperature of the welding area 20 in a non-contact manner based on the intensity of infrared rays incident on the temperature measuring section.
  • the temperature measuring section 77 is supported by the upper frame 411 via a suitable member, and is arranged in the gap between the electrode wheel 11 and the reduction roll 31. It is preferable that the measurement location by the temperature measurement unit 77 be set at the center of the overlap w in the welding area 20. The temperature measurement unit 77 moves in the welding direction y together with the electrode wheels 11 and 12 and the reduction rolls 31 and 32 as the moving body 40 travels.
  • the shape acquisition section 70 acquires the step shape of the welding region 20 before rolling (step shape acquisition step S2). Thereafter, using the data indicating the step shape, the first determination unit 81 determines whether or not the step shape, which may be a cause of folding defects, is good or bad (first determination step S3).
  • the height measurement value acquisition part 73 acquires the height of the welding area 20 before rolling (height measurement value acquisition step S4) Using the data indicating the height of the welding area 20, the second determination section 82 performs a quality determination regarding the occurrence of dust (second determination step S5).
  • the results of the first and second determinations are displayed on the screen 801A of the monitor 801 by the display unit 80, for example, as shown in FIGS. 12(a) and 12(b) (display step S6). If it is determined that welding is defective, it is preferable to notify the operator of the welding apparatus 1 by, for example, sounding a buzzer provided in the control unit 50 or the like. A buzzer is an example of an output unit that notifies that a welding defect has been determined. The results of the first and second determinations may not be displayed on the screen 801A, but may be notified to the operator only by a buzzer.
  • data indicating the step shape or the height of the welding area 20 may be displayed on the screen 801A without determining whether the step shape or the occurrence of dust is good or bad. Furthermore, the operator may judge whether the welding is good or bad by visually checking the display on the screen 801A.
  • a defective step shape occurs, processing such as rewelding is performed. If dust occurs, maintenance such as cleaning the electrode wheels 11 and 12 is performed. By starting preparations for re-welding, maintenance, etc. as soon as such welding defects are discovered, the time required to stop the welding process can be kept short. According to the present embodiment, a welding defect is detected during the welding process, and the welding area 20 in which the defective occurs is not supplied to the rolling process. 2 is supplied, the continuous rolling line can be stably operated at a high operating rate while preventing breakage of the welding area 20.
  • the welding apparatus 1 may be configured to be able to switch whether or not to perform the first determination regarding the step shape and the second determination regarding the occurrence of dust by mode selection. In that case, both the first determination step S3 and the second determination step S5 are not necessarily performed, and depending on the mode selection state, only the first determination or only the second determination is performed. Is possible. Hereinafter, an example of a specific method for each of the first determination and the second determination will be described.
  • the threshold value used for the first determination and the second determination and the information indicating the correlation of data may be stored in advance in, for example, a storage unit provided in the control unit 50, and may be referenced by the program module that performs the determination.
  • the first determination step S3 includes the following two quality determinations.
  • (1) Pre-reduction determination From the shape data indicating the step shape, the angle acquisition section 74 acquires the step angle ⁇ of the welding area 20 before reduction by the reduction section 30, and the step angle ⁇ and the temperature measurement section 77 measure the step angle ⁇ . Based on the temperature ⁇ , a threshold value is applied to the step angle ⁇ and the temperature ⁇ , respectively, to determine the quality of welding before reduction.
  • the post-rolling angle acquisition unit 76 determines the before rolling angle acquired by the angle acquiring unit 74.
  • the step angle ⁇ after rolling is calculated from the step angle ⁇ .
  • a threshold smaller than the threshold applied to the pre-reduction step angle ⁇ is applied to the step angle ⁇ , and the quality of welding after reduction is determined.
  • the post-rolling determination is performed. However, if it is determined to be defective in the pre-rolling determination, it is not necessarily necessary to perform the post-rolling determination, and it is preferable to proceed to necessary processing such as re-welding at the time when it is determined to be defective in the pre-rolling determination.
  • FIG. 13(a) collectively shows the data in FIGS. 14(a) to 14(c), which are the test results (for each plate thickness) obtained from a welding test in which the welding process was repeated using the welding device 1. .
  • Each plot shown in FIGS. 13(a) and 14(a) to (c) corresponds to one welding region 20 (seam) formed along the welding direction y by one welding process.
  • the thicknesses of the steel plates 2 used in the welding test were 1.6 mm, 3.2 mm, and 6.0 mm.
  • the steel type of the steel plate 2 used in the test was a hot rolled steel plate of low carbon steel, which is ordinary steel.
  • 14(a) to (c) respectively show the step angle A of the welding area 20 before rolling calculated from the shape data obtained by the laser displacement meter 700, and the welding area immediately after welding measured by the temperature measurement unit 77.
  • the relationship between temperature T and temperature T of 20 is shown.
  • the temperature T corresponds to the average temperature measured over the welding length by the temperature measuring section 77.
  • the shape of the welding area 20 after reduction was also measured in order to set a threshold value for post-reduction determination, which will be described later.
  • a band-shaped laser is linearly incident on the welding area 20 along the sheet passing direction x, and the reflected laser is received by the image sensor 712 to obtain shape data indicating the step shape of the welding area 20.
  • the step angle A before rolling was calculated from the shape data through calculation processing by the angle acquisition section 74.
  • a plurality of measurement positions where the laser is incident were set in the welding direction y.
  • the step angle A corresponds to the average step angle before rolling calculated from the shape data obtained for a plurality of measurement positions.
  • the step angle B after rolling (FIG. 19) also corresponds to the average angle of the step angles after rolling calculated from the shape data obtained for a plurality of measurement positions.
  • the step angles A and B follow the definition of the step angle ⁇ described above.
  • the step angles A and B are the straight line L1 extending the surface s of the trailing steel plate 22 exposed from the leading steel plate 21 toward the leading steel plate 21, similar to the step angle ⁇ shown in FIG. 4(a). This corresponds to the angle that the straight line L2 of the end face of the preceding steel plate 21 makes with respect to the straight line L2.
  • the step angles A and B can be specified by treating the straight line L3 calculated from the inflection points p1 and p2 as the straight line L2 of the end face.
  • the table shown in FIG. 13(b) shows the step angle A before rolling obtained at one predetermined position in the welding direction y in the same manner as the above welding test, and the cross section after rolling at the same position in the welding direction y ( The results of an investigation into the presence or absence of folding flaws based on visual inspection of the image (xz plane) are shown.
  • the steel plate 2 used in this investigation is also a hot rolled steel plate, and the data in the table includes a mixture of plate thicknesses of 1.6 mm, 3.2 mm, and 6.0 mm.
  • the steel type is a hot-rolled steel plate of low carbon steel, which is ordinary steel, as in FIG. 13(a). 15(a), (b) and FIG. 16(a), (b) show images extracted from a plurality of images taken for the investigation.
  • FIG. 15(a) shows the cross-sectional image before rolling
  • the lower part of FIG. 15(a) shows the cross-sectional image after rolling (after flattening by rolling part 30) at the same position in the welding direction y.
  • the image is shown.
  • Both of FIGS. 15A and 15B correspond to cases in which the step angle A before rolling exceeds 90 degrees, and folding flaws 203 occur after rolling. If the step angle A exceeds 90 degrees before rolling down, the convex portion 204 of the step is likely to be deformed in the direction of falling and folding inside the step during rolling down. Even if a laser is irradiated toward the folding flaw 203, the laser does not enter the gap of the folding flaw 203, so the folding flaw 203 cannot be imaged on the imaging element 712 by the reflected laser.
  • the step angle A before rolling is less than 90 degrees, and folding flaws 203 do not occur after rolling. If the step angle A is less than 90 degrees before rolling down, the step is deformed in the direction d in which the step opens during rolling down.
  • the first angle threshold t1 can be set to 90 degrees, for example.
  • the same first angle threshold value t1 can be used, which is convenient.
  • the temperature threshold tt applied to the temperature ⁇ immediately after welding measured by the temperature measurement unit 77 during line operation as the temperature necessary to obtain sufficient welding strength is determined by the plate thickness, steel type, and line threading conditions.
  • the temperature can be set at an appropriate temperature by considering the following.
  • the "line threading conditions" correspond to the supply destination of the welded steel sheets 2 (rolling process or other processes such as pickling process), etc.
  • FIGS. 14(a) to 14(c) show temperatures tt-a, tt-b, and tt-c for each plate thickness.
  • the distribution state of each plot in FIGS. 14(a) to (c) is determined to be OK depending on the first angle threshold value t1 and the temperature threshold value (tt-a, tt-a, tt-c) for each plate thickness. It matches well with the area judged as .
  • the temperature threshold tt may be set variably depending on the steel type.
  • FIGS. 17(a) to (c) and FIGS. 18(a) to (c) show examples in which the temperature threshold value tt is set for each plate thickness for ordinary steel and high-strength steel.
  • Each graph shows the relationship between the temperature T of the welding area 20 immediately after welding measured in the above-mentioned welding test and the base metal ratio of the Erichsen value (indicating the elongation at break) of the welding area 20 based on the Erichsen test. ing.
  • a temperature T at which the Erichsen value of the welding region 20 is 60% or more of the Erichsen value of the base metal can be adopted as the temperature threshold value tt for each steel type and plate thickness.
  • the temperature thresholds tt-a, tt-b, and tt-c shown in FIGS. 14(a) to (c) correspond to 600°C, 650°C, and 700°C shown in FIGS. 17(a) to (c), respectively. There is.
  • the first determination unit 81 of the present embodiment determines that when the step angle ⁇ before rolling is less than or equal to the first angle threshold t1, and when the temperature ⁇ is greater than or equal to the temperature threshold tt, the step angle ⁇ and the temperature ⁇ Since all of these are OK, it is determined that the welding condition before rolling down is good. In other cases, the first determination unit 81 determines that the welding state before rolling is poor.
  • the laser displacement meter 700 By obtaining the shape before rolling using the laser displacement meter 700, it is possible to eliminate the possibility of folding defects before the step is bent due to the rolling process by the rolling unit 30 and the shape cannot be measured with a laser. It is possible to detect abnormalities in the shape of certain steps. In addition, the scale adhesion state generated on the surface of the welding region 20 due to the rolling process does not affect the measured value of the surface shape, so that the surface shape can be measured stably and accurately.
  • the first determination unit 81 can perform a quality determination based on not only the temperature ⁇ and the step angle ⁇ but also the step height h after welding and before reduction (FIG. 4(b)). Based on FIG. 7 described in Reference 2 below, the larger the step height h is, the greater the depth of the fold-in flaw when it occurs.
  • the first determination unit 81 determines that when the measured temperature ⁇ is equal to or higher than the temperature threshold value tt, the step angle ⁇ is equal to or less than the first angle t1, and the step height h is equal to or less than a predetermined threshold value. Therefore, it is possible to determine that the welding condition is "good".
  • the step height h can be obtained from the shape data of the welding region 20 obtained by the step shape data acquisition section 72 through calculation by the step height acquisition section 75 .
  • the pre-rolling step angle ⁇ obtained from the shape data is Only by applying the one-angle threshold value t1, it is possible to judge the quality of welding before reduction.
  • the first angle threshold value t1 and the temperature threshold value tt may be determined as follows depending on the line threading conditions.
  • this embodiment When welded steel plates are supplied to the rolling process (this embodiment): In this case, high welding strength is required, and compared to a non-rolling line, there is a high possibility that the step will become a folding flaw and the weld area 20 will break. Therefore, in order to obtain a joint strength that can withstand rolling, it is preferable to set the temperature threshold value tt higher than that of a non-rolling line, and to set the first angle threshold value t1 to 90 degrees.
  • the temperature threshold value tt is lower than that of the rolling line. If the steel plate 2 is a low-tension steel type and is not supplied to the rolling process, the temperature T at which the Erichsen value base material ratio is, for example, 30% (FIGS. 17(a) to (c)) is set as the temperature. The threshold value tt can be set. If the welded steel plate 2 is not supplied to the rolling process, it is not necessary to set the first angle threshold t1.
  • the first determination unit 81 determines the quality of the welding state based only on the measured temperature ⁇ instead of the step angle ⁇ .
  • Example of judgment after reduction Referring to FIG. 19, the post-rolling determination will be described. If the step angle after rolling is large, there is a high possibility that folding defects will occur during the rolling process and breakage will occur during the rolling process or subsequent processes. Therefore, in addition to the pre-rolling determination based on the step angle before rolling, it is preferable to also perform the post-rolling determination based on the step angle after rolling.
  • FIG. 19 shows the step angle A before reduction obtained during the welding test explained with reference to FIGS. 13(a) and 14(a) to (c), and the step angle A obtained during the same test.
  • the relationship with the step angle B after rolling down is shown.
  • the measurement of the step shape after rolling in this welding test is performed by the same laser displacement meter 700 used for measuring the step shape before rolling. Therefore, after the welding step and the rolling step that are performed while moving the moving body 40 backward, the step shape is measured by the laser displacement meter 700 while moving the moving body 40 forward and backward again while holding the steel plate 2 with the clamps C1 and C2. Measure. When retreating again, the electrode wheels 11 and 12 and the reduction rolls 31 and 32 are retracted from the steel plate 2.
  • the coefficient ⁇ is calculated based on the cross-sectional area of the part of the steel plate 2 that is rolled down by the rolling rolls 31 and 32 (corresponding to the product of the overlap w after welding and before rolling and the step height h), and the ease with which the rolled part is deformed. It can be determined from the relationship between the temperature (depending on the measured temperature T) and the swaging pressure of the reduction rolls 31 and 32. Note that the larger the step height h, the larger the step angle B after rolling down by the rolling down rolls 31 and 32 tends to be.
  • the post-rolling angle acquisition section 76 obtains the step angle ⁇ after rolling down by calculation using the step angle ⁇ before rolling obtained by the angle acquiring section 74, the coefficient ⁇ , and the approximate straight line L5. Can be done.
  • the second angle threshold t2 applied to the post-rolling step angle ⁇ acquired by the post-rolling angle acquisition unit 76 during line operation can be set to, for example, 75 degrees.
  • the second angle threshold t2 is preferably smaller than the first angle threshold t1.
  • a plot of white circles indicates that the step angle B after rolling is 75 degrees or more, and a plot of black circles indicates that the step angle B is less than 75 degrees.
  • the second angle threshold t2 may be determined to be 60 degrees or more and 75 degrees or less, for example, based on the correlation between the step angle ⁇ after rolling and before rolling shown in FIG. 20 and the state of flaws after rolling. preferable.
  • FIG. 20 corresponds to FIG. 7 described in Reference 3 below.
  • Reference 3 Takehiko Saito, Noriaki Tominaga, Nobuki Yukawa, Takashi Ishikawa, Hirotomo Tagata, Keiichi Sato: Plasticity and Processing (Journal of the Japan Society for Plastic Processing), Vol. 54, No. 626 (2013-3), pp. 267-271. "Development of a mash seam welding machine that prevents step bending deformation of welded parts"
  • the first determination unit 81 of the present embodiment determines that the welding condition after reduction is good if the step angle ⁇ after reduction is less than 75 degrees, and the step angle ⁇ after reduction is determined to be good. If it is 75 degrees or more, it is determined that the welding condition after reduction is poor.
  • the second angle threshold t2 can be set to an appropriate value depending on the plate thickness, steel type, and line threading conditions. Regarding the plot in FIG. 19, within the range of plate thickness from 1.6 to 6.0 mm, the plot variations show the same tendency even if the plate thickness is different. Therefore, even if the plate thicknesses are different, the same second angle threshold value t2 can be used, which is convenient. In addition, when the dispersion of the plot distribution for each plate thickness is large, it is preferable to set the second angle threshold value t2 for each plate thickness.
  • step angles are obtained both before and after rolling down to determine the quality, as in this embodiment, based on the correlation between the step angle A before rolling and the step angle B after rolling, as shown in FIG. Since the post-rolling step difference angle ⁇ is calculated from the pre-rolling step difference angle ⁇ , it is sufficient to install only one laser displacement meter 700 to obtain the shape before rolling. According to this embodiment, only one laser displacement meter 700 is installed in the welding device 1 during production, so two laser displacement meters 700 are installed in the frame 41, and each of the laser displacement meters 700 is installed before and after rolling down.
  • the apparatus is Costs can be reduced.
  • the second determination step S5 will be explained with reference to FIGS. 21 and 22.
  • the determination as to whether or not dust has occurred is made based on the shape that shows the height change that appears in the welding direction y in the welding area 20 when dust is generated.
  • the moving body 40 on which the laser displacement meter 700 is installed moves, the height is measured while moving the irradiation position p3 where the linear laser is irradiated along the welding direction y as shown in FIG. 21(a).
  • the irradiation position p3 is set, for example, at the center of the overlapping margin of the two steel plates 2 in the sheet passing direction x, where the current density is high.
  • the laser displacement meter 700 can measure the distance between the emitting part 711 and the welding area 20 (the height of the welding area 20) by triangulation using the emitted laser and the reflected laser. Since the laser emitted from the emission part 711 of the laser displacement meter 700 is irradiated to the welding area 20 between the welding part 10 and the rolling part 30, before the dust is crushed by the rolling rolls 31 and 32, Dust can be detected by acquiring data indicating the height of the welding area 20.
  • FIG. 21(b) shows the height of the welding area 20 periodically measured over the welding length when no dust is generated by a laser displacement meter 700 that moves in the welding direction y as the frame 41 travels. Shows a collection of measured values.
  • FIG. 21(c) shows a set of height measurement values similarly measured when dust occurs. Measured values are fluctuating due to the occurrence of dust.
  • a threshold value is applied to the height measurement value of the welding area 20 to remove dust. It is possible to determine whether or not this has occurred.
  • changes in the height in the welding direction y may be observed due to changes in the overlap margin in the welding direction y. .
  • FIG. 22(a) shows the calculated amount of change between adjacent height measurement values, excluding the unsteady range r3 at both ends of the welding length from the height data shown in FIG. 21(b).
  • FIG. 22(b) shows the calculated amount of change between adjacent height measurement values, excluding the unsteady range r3 at both ends of the welding length from the height data shown in FIG. 21(c).
  • the amount of change in height under normal conditions is substantially 0, so the amount of change in height includes the height measurement shown in FIGS. 21(b) and (c). It is possible to provide a smaller threshold value th compared to the case where a threshold value is given to the value. Therefore, regardless of the scale of the dust, dust can be detected with high accuracy based on the amount of change in the height of the welding region 20 indicated by the shape of the dust.
  • the threshold value th can be set to 0.5 mm, for example, in the case of the data shown in FIGS. 22(a) and 22(b).
  • the laser displacement meter 700 becomes unable to measure because there is no reflected laser corresponding to the emitted laser, and there is no measured value data (missing) over a section corresponding to the opening size of the through hole.
  • the second determination unit 82 of the present embodiment calculates the amount of change from the height measurement value acquired by the height measurement value acquisition unit 73 during line operation, and determines that the amount of height change is the threshold value. In addition to the case where the measured value data exceeds th, it can be determined that dust has occurred when the measured value data is missing over a predetermined section using information indicating the presence or absence of the measured value data.
  • the screen 801A in FIG. 12(b) displays, as information regarding the presence or absence of measured value data, that there is a through hole at the location where dust is generated.
  • the height measurement values shown in FIGS. 21(b) and 21(c) and the height change amount shown in FIGS. 22(a) and 22(b) are displayed on the display unit 80 You can also do it.
  • the temperature measured by the temperature measuring section 77 is used for dust determination. Therefore, there is no need to use them together.
  • the temperature measurement values obtained by the temperature measuring section 77 vary widely due to temperature unevenness due to roughness of the surfaces of the electrode wheels 11 and 12 with which the welding region 20 comes into contact. Therefore, even if the average temperature, temperature difference, etc. of temperature measurement values over the welding length are calculated, it is difficult to distinguish between a normal state and a state where dust occurs from the temperature data. According to this embodiment, occurrence of dust can be detected with high accuracy based only on the surface shape of the welding area 20 without using other physical quantities such as temperature and voltage in combination.
  • the laser displacement meter 700 emits a band-shaped laser beam at at least one location in the welding length to obtain the surface shape of the step before reduction, and emit a laser beam in a line shape to the welding area 20. need to be irradiated.
  • the laser displacement meter 700 can measure the height over the welding length in parallel with the processing by the welding part 10 and the rolling part 30, except when emitting a belt-shaped laser beam.
  • the two-dimensional laser displacement meter 700 is not necessary, and a one-dimensional laser displacement meter or laser distance meter is used. can do. In that case, there is no need to tilt the optical axis A1 of the emitted laser with respect to the vertical direction z, so the laser displacement meter or laser distance meter used can be As long as it does not interfere with the member, the laser displacement meter 700 can be placed on the straight line L4 connecting the upper frame 411 and the irradiation position p3, and the output optical axis A1 can be set along the vertical direction z.
  • the second determination it is also possible to use a long laser displacement meter that is equipped with a large number of emission parts 711 lined up in the welding direction y and that can measure the height over the welding length.
  • the position of the laser displacement meter is fixed at a position where the laser is irradiated over the welding length, and the welding is performed before dust is rolled down between the welding part 10 and the rolling part 30. It is preferable to measure the height of the region 20 multiple times.
  • By connecting multiple pieces of height measurement data obtained by dividing the weld length into several parts it is possible to obtain height measurement data as shown in Figures 21(b) and (c). It is also possible to obtain height change amounts as shown in FIGS. 22(a) and 22(b) from the height measurement value data.
  • FIG. 23 shows the position m at which the surface shape of the step is measured.
  • the measurement position m may be one or more arbitrary positions in the welding direction y of the welding area 20.
  • the average angle of the step angles calculated from the shape data obtained for each position can be determined, and the average step angle can be used to determine the quality of the step shape.
  • FIG. 23 shows the dimensions in the welding direction y smaller than the actual dimensions.
  • step angle ⁇ is 90 degrees or more, it is uniformly determined that the step shape is abnormal, and there may be cases where it is not necessary to specify the value of the step angle ⁇ . In that case, it can be determined from the shape data acquired using the laser displacement meter 700 whether the step angle ⁇ is 90 degrees or more. The determination result may be displayed on the screen 801A by the display unit 80.
  • two laser displacement meters 700 can be installed on the frame 41 in order to measure the shape of the welding area 20 before and after rolling down, respectively.
  • the angle acquisition section 74 repeats the same process to obtain the step difference angle before rolling ⁇ and the step difference angle after rolling ⁇ .
  • the quality judgment after rolling for example, based on the correlation between the step angle ⁇ after rolling and before rolling as shown in FIG. It can be determined that
  • the shape data of the step in the welding area 20 is obtained by the laser displacement meter 700 only after rolling down, and the step angle calculated from the shape data is used. It is also permissible to judge pass/fail. Therefore, the step shape data acquisition unit 72 and the step shape acquisition step S2 of the present disclosure are allowed to acquire the shape of the welding region 20 at least either before or after being rolled down by the rolling part 30.
  • steps 201 and 202 are formed 180 degrees symmetrically on both the upper and lower sides of the welding area 20, and not only the upper step but also the lower step is bent. This may lead to defects.
  • the laser displacement gauges 700 are arranged 180 degrees symmetrically, and the quality of the welding condition is determined based on the data of the upper and lower step shapes. It is preferable.
  • the welding device joins the overlapping region of the first plate material and the second plate material by resistance welding, and joins the welding area along a welding direction that intersects with the threading direction of the first plate material and the second plate material.
  • the welding part includes a welded part to be formed, a rolling part that rolls down the welding area, and a shape acquisition part that acquires a surface shape of the welding area at least one of before and after being rolled down by the rolling part.
  • the shape acquisition unit includes a laser information acquisition unit that emits a band-shaped laser beam to irradiate a linear range of the welding area, and receives the laser beam reflected from the welding area with an image sensor,
  • the acquisition unit is disposed above and below the welding area, the linear range intersects with the welding direction, and the linear range intersects with the welding direction, and the acquisition unit is configured to detect the laser beam emitted by the laser information acquisition unit.
  • the optical axis is set to be inclined with respect to the vertical direction toward a step formed by the first plate material and the second plate material in the welding area.
  • the present invention can be developed into a rolling line equipped with the welding device disclosed in this specification and the drawings, and a rolling device that rolls the plate material welded by the welding device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

The purpose of the present invention is to provide a welding device and a welding method with which it is possible to properly comprehend welding defects including abnormal shapes, which are linked to fold defects, and the generation of dust. This welding device 1 comprises: a welding unit 10 that joins, by means of resistance welding, a region where a first sheet member 21 and a second sheet member 22 overlap, and forms a welding region 20 along a welding direction y that crosses the sheet passing direction x of the first sheet material 21 and the second sheet material 22; a rolling reduction unit 30 that applies rolling reduction to the welding region 20; a shape acquiring unit 70 that acquires the shape of the welding region 20 before and/or after the rolling reduction has been applied by the rolling reduction unit 30; and a moving body 40 that is configured to be able to reciprocate in the welding direction y and supports the welding unit 10 and the rolling reduction unit 30 while arranging the welding unit 10 and the rolling reduction unit 30 side by side in the welding direction y.

Description

溶接装置および溶接方法Welding equipment and welding method
 本発明は、2つの板材の互いに重ねられた領域を抵抗溶接により接合する装置および方法に関する。 The present invention relates to an apparatus and method for joining mutually overlapping regions of two plate materials by resistance welding.
 板材の連続処理ライン、例えば連続焼鈍ライン、連続めっきライン等に組み込まれる溶接機は、通板方向(Threading direction, Passing direction, Line direction等)に対して直交する方向に移動しつつ、先行板材の尾端と後行板材の先端とを溶接により接続する。例えば特許文献1に記載されているシーム溶接機は、いずれもキャリッジに回転可能に支持されてストリップの上下に配置される電極円盤(電極輪)および加圧ロール(圧下ロール)を備え、電極円盤および加圧ロールを回転させながらキャリッジを移動させる。そうすることで、先行ストリップと後行ストリップとの重ねられた領域に電極円盤、次いで加圧ロールを走行させつつ、ストリップの幅方向に連続的に溶接接続部を形成する。 A welding machine installed in a continuous plate processing line, such as a continuous annealing line or a continuous plating line, moves in a direction perpendicular to the threading direction (Threading direction, Passing direction, Line direction, etc.) while welding the preceding plate. The tail end and the tip of the trailing plate are connected by welding. For example, the seam welding machine described in Patent Document 1 includes an electrode disk (electrode wheel) and a pressure roll (rolling down roll) that are both rotatably supported by a carriage and arranged above and below a strip. and move the carriage while rotating the pressure roll. By doing so, welded joints are continuously formed in the width direction of the strips while running the electrode disk and then the pressure roll in the overlapping region of the leading strip and the trailing strip.
 特許文献1のシーム溶接機は、溶接接続部の良否を判定するため、溶接直後における溶接接続部の温度を計測している。かかるシーム溶接機は、上側電極円盤と上側加圧ロールとの間に設置される複数の集光レンズと、集光レンズにそれぞれ接続される光ファイバと、光ファイバを通じて集光レンズのそれぞれの位置に対応する温度を検出する温度検出器とを備えている。複数の集光レンズは、先行ストリップと後行ストリップとが重なる領域の幅方向(通板方向)に並べて配置されている。 The seam welding machine of Patent Document 1 measures the temperature of the welded joint immediately after welding in order to determine the quality of the welded joint. Such a seam welding machine includes a plurality of condensing lenses installed between an upper electrode disk and an upper pressure roll, optical fibers each connected to the condensing lenses, and a plurality of condensing lenses installed at respective positions of the condensing lenses through the optical fibers. and a temperature detector that detects the temperature corresponding to the temperature. The plurality of condensing lenses are arranged side by side in the width direction (sheet passing direction) of the region where the leading strip and the trailing strip overlap.
 溶接接続部の温度計測値は、溶接時における溶融金属の噴出によりチリが発生したか否かの判定にも用いられる。例えば、特許文献2が開示するシーム溶接判定方法によれば、溶接方向の所定範囲に亘り溶接接続部の平均温度および温度差を算出し、平均温度および温度差のそれぞれに閾値を適用することにより、チリ発生の有無を判定している。 The temperature measurement value of the welded joint is also used to determine whether dust has occurred due to the spouting of molten metal during welding. For example, according to the seam weld determination method disclosed in Patent Document 2, the average temperature and temperature difference of a welded joint are calculated over a predetermined range in the welding direction, and a threshold value is applied to each of the average temperature and temperature difference. , the presence or absence of dust is determined.
特開平7-195179号公報Japanese Patent Application Publication No. 7-195179 国際公開2018/181398International publication 2018/181398
 板材が段差状に重なった状態で溶接されてなる溶接接続部は、板厚にもよるが、多くの場合、溶接後にも段差形状を維持している。本開示の発明者の調査によれば、電極輪の通過直後に溶接接続部に庇(ひさし)状の段差形状が表れる場合は、圧下ロールを通過した溶接接続部に折れ込み疵が発生する。折れ込み疵を有した状態の板材が圧延工程に供給されるとすれば、圧延により、板厚に対して折れ込み疵の寸法比率が増加する。そのため、特に連続圧延ラインにおいては、折れ込み疵に起因する溶接接続部の破断を未然に防ぐことの必要性が高い。
 しかしながら、庇の形状等、溶接接続部に表れる好ましくない形状は、必ずしも温度計測値によっては検出することができない。つまり、溶接接続部の温度計測値が適切な範囲内にあるとしても、溶接接続部の溶接状態が適切でない場合があり得る。
 また、温度計測値は、電極輪の表面状態等に起因してばらつきが大きいので、チリが発生している場合と発生していない場合とを判別できない可能性がある。
A welded joint formed by welding plate materials in a stepped state often maintains the stepped shape even after welding, although it depends on the plate thickness. According to the research conducted by the inventors of the present disclosure, if an eave-like step shape appears in the welded joint immediately after passing the electrode wheel, folding flaws occur in the welded joint that has passed the reduction roll. If a plate material with folding flaws is supplied to a rolling process, the dimensional ratio of the folding flaws to the thickness of the plate increases due to rolling. Therefore, especially in continuous rolling lines, it is highly necessary to prevent breakage of welded joints due to folding flaws.
However, unfavorable shapes appearing in welded joints, such as the shape of eaves, cannot necessarily be detected by temperature measurements. That is, even if the temperature measurement value of the welded joint is within an appropriate range, the welding state of the welded joint may not be appropriate.
Further, since the temperature measurement values vary widely due to the surface condition of the electrode ring, etc., it may not be possible to distinguish between cases where dust is generated and cases where dust is not generated.
 以上より、本開示は、折れ込み疵に繋がる異常形状やチリの発生を含め、溶接不良を適切に把握することが可能な溶接装置および溶接方法を提供することを目的とする。 In view of the above, an object of the present disclosure is to provide a welding device and a welding method that can appropriately grasp welding defects, including abnormal shapes that lead to folding defects and the occurrence of dust.
 本開示の溶接装置は、第1板材と第2板材との重ねられた領域を抵抗溶接により接合し、第1板材および第2板材の通板方向に対して交差する溶接方向に沿って溶接領域を形成する溶接部と、溶接領域を圧下する圧下部と、圧下部により圧下される前または後の少なくとも一方における溶接領域の表面形状を取得する形状取得部と、溶接方向に往復移動可能に構成され、溶接部および圧下部を溶接方向に並んだ状態に支持する移動体と、を備える。 The welding device of the present disclosure joins the overlapped region of the first plate material and the second plate material by resistance welding, and the welding area is welded along a welding direction that intersects with the threading direction of the first plate material and the second plate material. A welding part that forms a weld, a rolling part that rolls down the welding area, and a shape acquisition part that acquires the surface shape of the welding area at least one of before and after being rolled down by the rolling part, and is configured to be movable back and forth in the welding direction. and a movable body that supports the welding part and the rolling part in a state in which they are lined up in the welding direction.
 本開示における「圧下」(swaging)は、明細書に特に断りがない限り、溶接部による溶接に続いて圧下部により行われる平坦化の処理を言うものとする。 Unless otherwise specified in the specification, "swaging" in the present disclosure refers to a flattening process performed by a rolling part following welding by a welding part.
 本開示の溶接装置において、形状取得部は、帯状のレーザを出射して溶接領域の線状の範囲に照射し、溶接領域から反射されたレーザを撮像素子により受光するレーザ情報取得部を備え、レーザ情報取得部は、溶接領域よりも上側および下側の少なくとも一方に配置され、線状の範囲は、溶接方向に対して交差しており、レーザ情報取得部により出射されるレーザの光軸は、第1板材と第2板材とが溶接領域において形成する段差に向けて、上下方向に対し傾斜して設定されることが好ましい。 In the welding device of the present disclosure, the shape acquisition unit includes a laser information acquisition unit that emits a band-shaped laser to irradiate a linear range of the welding area, and receives the laser reflected from the welding area with an image sensor, The laser information acquisition unit is disposed above or below the welding area, the linear range intersects the welding direction, and the optical axis of the laser emitted by the laser information acquisition unit is It is preferable that the first plate material and the second plate material are set to be inclined with respect to the vertical direction toward a step formed in the welding area.
 本開示の溶接装置において、光軸は、水平面に対して30度以上の角度をなしていることが好ましい。 In the welding apparatus of the present disclosure, it is preferable that the optical axis forms an angle of 30 degrees or more with respect to the horizontal plane.
 本開示の溶接装置において、レーザ情報取得部は、移動体のフレームに支持され、レーザ情報取得部の通板方向への投影範囲には、溶接部および圧下部の少なくとも一方が配置されていることが好ましい。 In the welding device of the present disclosure, the laser information acquisition section is supported by the frame of the moving body, and at least one of the welding section and the rolling section is disposed in the projection range of the laser information acquisition section in the sheet passing direction. is preferred.
 本開示の溶接装置において、形状取得部は、レーザ情報取得部により出射されるレーザから、溶接領域により反射されたレーザへの変化の情報を用いて、段差の形状を示す形状データを演算により取得する段差形状データ取得部と、を備え、溶接装置は、形状データを表示する表示部と、形状データを用いて溶接領域の溶接状態の良否を判定する第1判定部とのうち、少なくとも一方を備えることが好ましい。 In the welding device of the present disclosure, the shape acquisition unit acquires shape data indicating the shape of the step by calculation using information on a change from the laser emitted by the laser information acquisition unit to the laser reflected by the welding area. The welding apparatus includes a step shape data acquisition section that displays at least one of a display section that displays the shape data and a first determination section that determines whether the welding state of the welding area is good or bad using the shape data. It is preferable to have one.
 本開示の溶接装置において、形状取得部は、形状データを用いて、段差の角度を演算により取得する角度取得部を備え、第1判定部は、角度を用いて溶接領域の溶接状態の良否を判定可能に構成されていることが好ましい。 In the welding apparatus of the present disclosure, the shape acquisition section includes an angle acquisition section that acquires the angle of the step by calculation using the shape data, and the first determination section determines whether the welding state of the welding area is good or bad using the angle. It is preferable that the configuration is such that it can be determined.
 本開示の溶接装置は、圧下部により圧下される前における溶接領域の温度を計測する温度計測部を備え、角度取得部は、形状データを用いて、少なくとも圧下される前における段差の角度を取得し、第1判定部は、角度取得部により取得された圧下前の角度、および温度計測部により計測された圧下前の溶接領域の温度にそれぞれ閾値を適用して圧下前良否判定を行うことが好ましい。 The welding device of the present disclosure includes a temperature measurement unit that measures the temperature of the welding area before being rolled down by the rolling unit, and the angle acquisition unit uses shape data to acquire at least the angle of the step before being rolled down. The first determination unit may perform the pre-rolling quality determination by applying threshold values to the angle before rolling acquired by the angle acquisition unit and the temperature of the welding area before rolling measured by the temperature measuring unit, respectively. preferable.
 本開示の溶接装置において、形状取得部は、圧下部による圧下の前の角度と後の角度との相関情報に基づいて、角度取得部により取得された圧下前の角度から圧下後の角度を演算により取得する圧下後角度取得部を備え、第1判定部は、角度取得部により取得された圧下前の角度に第1閾値を適用して圧下前良否判定を行うとともに、圧下後角度取得部により取得された圧下後の角度に第1閾値よりも小さい第2閾値を適用して圧下後良否判定を行うことが好ましい。 In the welding device of the present disclosure, the shape acquisition unit calculates the angle after rolling from the angle before rolling acquired by the angle acquiring unit, based on the correlation information between the angle before and after the rolling by the rolling part. The first determination section applies a first threshold value to the angle before rolling acquired by the angle acquiring section to determine the quality of the before rolling. It is preferable to apply a second threshold smaller than the first threshold to the obtained angle after reduction to determine the quality after reduction.
 本開示の溶接装置において、形状取得部は、溶接領域にレーザを照射し、溶接領域から反射されたレーザを受光するレーザ情報取得部と、レーザ情報取得部により、溶接領域よりも上側および下側の少なくとも一方から出射されるレーザから、溶接領域により反射されたレーザへの変化の情報を用いて、溶接領域の高さの計測値を溶接方向に亘り取得する高さ計測値取得部と、を備え、溶接装置は、計測値、計測値間の変化量、および計測値の有無の情報の少なくとも一つを表示する表示部と、計測値、計測値間の変化量、および計測値の有無の情報の少なくとも一つを用いて、溶接領域の溶接状態の良否を判定する第2判定部とのうち、少なくとも一方を備えることが好ましい。 In the welding apparatus of the present disclosure, the shape acquisition unit includes a laser information acquisition unit that irradiates a laser to the welding area and receives the laser reflected from the welding area, and a laser information acquisition unit that determines the shape of the area above and below the welding area. a height measurement value acquisition unit that acquires a measurement value of the height of the welding area in the welding direction using information on a change from the laser emitted from at least one of the laser beams to the laser reflected by the welding area; The welding device includes a display section that displays at least one of the measured value, the amount of change between the measured values, and the presence or absence of the measured value; It is preferable to include at least one of a second determination unit that determines whether the welding state of the welding area is good or bad using at least one of the information.
 また、本開示の溶接方法は、第1板材と第2板材との重ねられた領域を溶接し、第1板材および第2板材の通板方向に対して交差する溶接方向に沿って溶接領域を形成する溶接ステップと、溶接領域を圧下する圧下ステップと、圧下ステップにより圧下される前または後の少なくとも一方における溶接領域の形状を取得する形状取得ステップと、抵抗溶接により溶接領域を形成する溶接部および溶接領域を圧下する圧下部を溶接方向に並んだ状態に支持する移動体を所定の後退位置から所定の前進位置まで移動させる前進ステップと、移動体を前進位置から後退位置まで移動させる後退ステップと、を備える。
 前進ステップおよび後退ステップの一方において、溶接ステップ、圧下ステップ、および形状取得ステップが実行される。
Further, the welding method of the present disclosure welds the overlapping region of the first plate material and the second plate material, and the welding area is welded along the welding direction that intersects with the threading direction of the first plate material and the second plate material. a welding step for forming, a rolling down step for rolling down the welding area, a shape acquisition step for acquiring the shape of the welding area at least one of before or after being rolled down by the rolling down step, and a welding part for forming the welding area by resistance welding. and a forward step in which a movable body that supports the rolling part that lowers the welding area is aligned in the welding direction is moved from a predetermined retreat position to a predetermined forward position, and a backward step in which the movable body is moved from the forward position to the retreat position. and.
During one of the forward and backward steps, a welding step, a reduction step, and a shape acquisition step are performed.
 本開示の溶接方法は、形状取得ステップは、溶接領域に帯状のレーザを出射して溶接方向に対して交差した線状の範囲に照射し、溶接領域から反射されたレーザを撮像素子により受光するレーザ情報取得ステップを含み、レーザ情報取得ステップにおいて、溶接領域よりも上側および下側の少なくとも一方から出射されるレーザの光軸は、第1板材と第2板材とが溶接領域において形成する段差に向けて、上下方向に対し傾斜して設定されることが好ましい。 In the welding method of the present disclosure, the shape acquisition step includes emitting a band-shaped laser to the welding area, irradiating it to a linear range intersecting the welding direction, and receiving the laser reflected from the welding area by an imaging device. In the laser information acquisition step, the optical axis of the laser emitted from at least one of the upper side and the lower side of the welding area is set at the step formed by the first plate material and the second plate material in the welding area. It is preferable to set it so that it is inclined with respect to the vertical direction.
 本開示の溶接方法において、形状取得ステップは、レーザ情報取得ステップと、レーザ情報取得ステップにおいて出射されるレーザから、溶接領域により反射されたレーザへの変化の情報を用いて、段差の形状を示す形状データを演算により取得する形状データ取得ステップと、を備え、溶接方法は、形状データを表示する表示ステップと、形状データを用いて溶接領域の溶接状態の良否を判定する第1判定ステップとのうち、少なくとも一方を備えることが好ましい。 In the welding method of the present disclosure, the shape acquisition step indicates the shape of the step using information about the laser information acquisition step and the change from the laser emitted in the laser information acquisition step to the laser reflected by the welding area. The welding method includes a shape data acquisition step of acquiring shape data by calculation, a display step of displaying the shape data, and a first determination step of determining whether the welding condition of the welding area is good or bad using the shape data. It is preferable to include at least one of them.
 本開示の溶接方法において、形状取得ステップは、形状データを用いて、段差の角度を演算により取得する角度取得ステップを備え、第1判定ステップは、角度を用いて溶接領域の溶接状態の良否を判定することが好ましい。 In the welding method of the present disclosure, the shape acquisition step includes an angle acquisition step of calculating the angle of the step using the shape data, and the first determination step uses the angle to determine whether the welding state of the welding area is good or bad. It is preferable to judge.
 本開示の溶接方法において、形状取得ステップは、圧下ステップによる圧下の前の角度と後の角度との相関情報に基づいて、角度取得ステップにより取得された圧下前の角度から圧下後の角度を演算により取得する圧下後角度取得ステップを備え、第1判定ステップは、角度取得ステップにより取得された圧下前の角度に第1閾値を適用して圧下前良否判定を行うとともに、圧下後角度取得ステップにより取得された圧下後の角度に第1閾値よりも小さい第2閾値を適用して圧下後良否判定を行うことが好ましい。 In the welding method of the present disclosure, the shape acquisition step calculates the angle after reduction from the angle before reduction obtained in the angle acquisition step, based on correlation information between the angle before and after the reduction in the reduction step. The first determination step applies a first threshold value to the angle before rolling obtained by the angle acquiring step to determine the quality of the before rolling. It is preferable to apply a second threshold smaller than the first threshold to the obtained angle after reduction to determine the quality after reduction.
 本開示の溶接方法において、形状取得ステップは、溶接領域にレーザを照射し、溶接領域から反射されたレーザを受光するレーザ情報取得ステップと、レーザ情報取得ステップにおいて、溶接領域よりも上側および下側の少なくとも一方から出射されるレーザから、溶接領域により反射されたレーザへの変化の情報を用いて、溶接領域の高さの計測値を溶接方向に亘り取得する高さ計測値取得ステップと、を備え、溶接方法は、計測値、計測値間の変化量、および計測値の有無の情報の少なくとも一つを表示する表示ステップと、計測値、計測値間の変化量、および計測値の有無の情報の少なくとも一つを用いて、溶接領域の溶接状態の良否を判定する第2判定ステップとのうち、少なくとも一方を備えることが好ましい。 In the welding method of the present disclosure, the shape acquisition step includes a laser information acquisition step of irradiating the welding area with a laser and receiving the laser reflected from the welding area; a height measurement value obtaining step of obtaining a measured value of the height of the welding area over the welding direction using information on a change from the laser emitted from at least one of the laser beams to the laser reflected by the welding area; The welding method includes a display step for displaying at least one of the measured value, the amount of change between the measured values, and information on the presence or absence of the measured value; It is preferable to include at least one of a second determination step of determining whether the welding state of the welding area is good or bad using at least one of the information.
 本開示の溶接装置および溶接方法は、段差形状に関する第1判定のみを行っても良いし、溶接高さに関する第2判定のみを行っても良い。本開示の溶接装置は、第1判定部および第2判定部のうち、使用される判定部のみを備えていれば足りる。本開示の溶接方法も同様である。 The welding apparatus and welding method of the present disclosure may perform only the first determination regarding the step shape, or may perform only the second determination regarding the welding height. It is sufficient for the welding apparatus of the present disclosure to include only the determining section to be used out of the first determining section and the second determining section. The same applies to the welding method of the present disclosure.
 本開示の溶接装置および溶接方法によれば、溶接領域に含まれる段差の表面形状や、溶融金属が表出した表面形状が取得されるので、そうした表面形状を例えば表示装置の画面上で確認したり、表面形状のデータを演算して表面形状の良否を自動判定したりすることによって、折れ込み疵に繋がる異常形状やチリの発生を含め、溶接不良を適切に把握することが可能となる。 According to the welding device and welding method of the present disclosure, the surface shape of the step included in the welding area and the surface shape of exposed molten metal are obtained, so such surface shape can be confirmed on the screen of a display device, for example. By calculating the surface shape data and automatically determining whether the surface shape is good or bad, it becomes possible to appropriately understand welding defects, including abnormal shapes that lead to folding defects and the occurrence of dust.
(a)は、本開示の溶接装置を模式的に示す側面図である。(b)は、(a)のIb-Ib線矢視による一部断面図である。(a) is a side view schematically showing a welding device of the present disclosure. (b) is a partial sectional view taken along the line Ib-Ib in (a). (a)および(b)は、溶接装置に備わる複数の処理部の一形態を例示する図である。(a) and (b) are diagrams illustrating one form of a plurality of processing units included in the welding device. (a)は、軸線方向が交差した状態で板材の上側および下側に配置される圧下ロールを示す模式図である。(b)は、溶接領域に対する圧延方向を示す模式図である。(a) is a schematic diagram showing rolling down rolls arranged above and below the plate material with their axial directions intersecting. (b) is a schematic diagram showing the rolling direction with respect to the welding area. (a)は、溶接領域の横断面の拡大図である。(b)および(c)は、段差を含む溶接領域の断面形状を示す模式図である。(a) is an enlarged cross-sectional view of the welding area. (b) and (c) are schematic diagrams showing the cross-sectional shape of a welding area including a step. (a)および(b)は、段差を含む溶接領域の断面形状を示す模式図である。(a) and (b) are schematic diagrams showing the cross-sectional shape of a welding area including a step. (a)は、溶接直後でかつ圧下部による圧下前における溶接領域の断面形状を示す図である。(b)は、圧下部による圧下後の溶接領域の断面形状を示す図である。(c)は、圧延装置による圧延後の溶接領域の断面形状を示す図である。(a) is a diagram showing the cross-sectional shape of the welding area immediately after welding and before rolling by the rolling part. (b) is a diagram showing the cross-sectional shape of the welding area after rolling down by the rolling part. (c) is a diagram showing a cross-sectional shape of a welded region after rolling by a rolling device. 溶接状態の良否判定に関する機能ブロック図である。FIG. 2 is a functional block diagram regarding determination of quality of welding. 図1(a)と同じ向きから、溶接部、圧下部、およびレーザ情報取得部を示す側面図である。It is a side view which shows a welding part, a rolling part, and a laser information acquisition part from the same direction as Fig.1 (a). (a)は、溶接方向から、圧下部およびレーザ情報取得部を示す図である。(b)は、レーザ情報取得部から出射されるレーザの光軸と、そのレーザにより照射される溶接領域とを示す模式図である。(a) is a diagram showing a rolling part and a laser information acquisition part from the welding direction. (b) is a schematic diagram showing the optical axis of the laser emitted from the laser information acquisition unit and the welding area irradiated by the laser. 図8のX矢印の向きから、レーザ情報取得部を示す図である。9 is a diagram showing the laser information acquisition unit from the direction of the X arrow in FIG. 8. FIG. 溶接状態の良否判定に係る処理ステップを示す図である。It is a figure which shows the process step regarding quality determination of a welding state. (a)および(b)は、溶接良否判定結果の表示例を示す模式図である。(a) and (b) are schematic diagrams showing display examples of welding quality determination results. (a)は、圧下前の溶接領域の良否判定を説明するためのグラフである。(b)は、圧下前の段差角度と、圧下後の折れ込み疵の有無との関係を示す表を示している。(a) is a graph for explaining the quality determination of the welding area before reduction. (b) shows a table showing the relationship between the step angle before rolling and the presence or absence of folding flaws after rolling. (a)~(c)は、圧下前溶接領域の板厚毎の良否判定を説明するためのグラフである。(a) to (c) are graphs for explaining the quality determination for each plate thickness in the pre-reduction welding area. (a)および(b)は、段差角度が閾値よりも大きい場合の圧下前および圧下後における溶接領域を示す断面図である。(a) and (b) are sectional views showing the welding area before and after rolling down when the step angle is larger than a threshold value. (a)および(b)は、段差角度が閾値よりも小さい場合の圧下前および圧下後における溶接領域を示す断面図である。(a) and (b) are sectional views showing the welding area before and after rolling down when the step angle is smaller than a threshold value. (a)~(c)は、普通鋼の板厚毎に、溶接領域の計測温度とエリクセン値母材比との関係を示すグラフである。(a) to (c) are graphs showing the relationship between the measured temperature in the welding area and the Erichsen value base metal ratio for each plate thickness of common steel. (a)~(c)は、高張力鋼の板厚毎に、溶接領域の計測温度とエリクセン値母材比との関係を示すグラフである。(a) to (c) are graphs showing the relationship between the measured temperature in the welding area and the Erichsen value base metal ratio for each plate thickness of high-strength steel. 圧下前の段差角度と圧下後の段差角度との相関関係を示すグラフである。It is a graph showing the correlation between the step angle before rolling and the step angle after rolling. 圧延工程前の段差角度と圧延工程後の疵の状態との対応を示す図である。It is a figure which shows the correspondence between the step angle before a rolling process, and the state of a flaw after a rolling process. (a)は、溶接領域の平面図である。(b)および(c)は、溶接長に亘り得られた高さの計測値を示すグラフである。(a) is a plan view of the welding area. (b) and (c) are graphs showing height measurements obtained over the weld length. (a)および(b)は、高さの計測値間の変化量を示すグラフである。(a) and (b) are graphs showing the amount of change between height measurements. 溶接領域の平面図である。FIG. 3 is a plan view of a welding area. 溶接領域よりも上側と下側との両方にレーザ情報取得部が設置される例を示す図である。FIG. 6 is a diagram illustrating an example in which laser information acquisition units are installed both above and below the welding area.
 以下、添付図面を参照しながら、本開示の好ましい一実施形態について説明する。
〔全体構成〕
 図1(a)に示す溶接装置1は、先行の鋼板2の尾端と後行の鋼板2の先端とを重ねて抵抗溶接により接合する。溶接装置1は、図示しない連続冷間圧延ラインに組み込まれて稼働される。連続冷間圧延ラインは、例えば熱間圧延鋼板等のコイルを巻き戻してライン内に通板し、ルーパー等の装置によりライン中央部(圧延機)を基本的には停止させることなく、先行鋼板と後行鋼板とを溶接して連続的に通板する。かかる連続圧延ラインは、例えば、ペイオフリール、溶接装置1、ショートルーパ、圧延機、およびテンションリールを備え、コイルを循環させながら一方向に圧延機に通板することで、所定板厚まで複数回に亘り圧延する。
Hereinafter, a preferred embodiment of the present disclosure will be described with reference to the accompanying drawings.
〔overall structure〕
The welding apparatus 1 shown in FIG. 1(a) joins the tail end of the preceding steel plate 2 and the tip of the following steel plate 2 by overlapping and resistance welding. The welding device 1 is installed and operated in a continuous cold rolling line (not shown). In a continuous cold rolling line, for example, a coil of hot rolled steel plate is unwound and passed through the line, and a device such as a looper is used to roll the preceding steel plate without stopping the central part of the line (rolling mill). and the trailing steel plate are welded and passed continuously. Such a continuous rolling line includes, for example, a payoff reel, a welding device 1, a short looper, a rolling mill, and a tension reel, and passes the strip through the rolling mill in one direction while circulating the coil, thereby rolling the strip multiple times to a predetermined thickness. Roll for .
〔溶接装置および溶接工程〕
 溶接装置1は、図1(a)および(b)に示すように、先行クランプC1により把持された先行鋼板21と、後行クランプC2により把持された後行鋼板22との重ねられた領域を通電により加熱しつつ加圧により押し潰すことで、所定の溶接方向に連続的に溶接する。つまり、溶接装置1は、マッシュシーム溶接(mash seam welding,JIS Z 3001)を行い、所定の溶接方向に沿って溶接領域20を形成する。溶接装置1による溶接方向は、鋼板2が搬送される通板方向xに対して直交するy方向に相当する。
 溶接装置1は、溶接部10による溶接に続いて、圧下部30により溶接領域20を加圧することにより溶接領域20の形状を平坦化させる。圧下部30により行われる塑性加工は、スウェージング(swaging)と称される。
[Welding equipment and welding process]
As shown in FIGS. 1(a) and 1(b), the welding device 1 welds the overlapping area of the leading steel plate 21 gripped by the leading clamp C1 and the trailing steel plate 22 gripped by the trailing clamp C2. Continuous welding is performed in a predetermined welding direction by heating with electricity and crushing with pressure. That is, the welding device 1 performs mash seam welding (JIS Z 3001) to form the welding region 20 along a predetermined welding direction. The welding direction by the welding device 1 corresponds to the y direction orthogonal to the threading direction x in which the steel plate 2 is conveyed.
The welding apparatus 1 flattens the shape of the welding area 20 by pressurizing the welding area 20 with the rolling part 30 following welding by the welding part 10 . The plastic working performed by the rolling part 30 is called swaging.
 溶接装置1は、先行鋼板21と後行鋼板22との重ねられた領域を溶接して溶接領域20を形成する溶接部10と、溶接領域20を圧下する圧下部30と、溶接部10および圧下部30を溶接方向yに並んだ状態に支持する移動体40と、溶接装置1の各部の動作を制御する制御部50とを備える。
 溶接部10は、鋼板2の位置を上下方向z(鉛直方向)に挟んで対向する電極輪11,12を含む。圧下部30も同様に、電極輪11,12に隣接して鋼板2の位置を上下方向zに挟んで対向する圧下ロール31,32を含む。
The welding device 1 includes a welding section 10 that forms a welding region 20 by welding the overlapping region of a leading steel plate 21 and a following steel plate 22, a rolling section 30 that rolls down the welding region 20, and a welding section 10 and a rolling section 30 that rolls down the welding region 20. The movable body 40 supports the lower part 30 in a line in the welding direction y, and the control unit 50 controls the operation of each part of the welding device 1.
The welding part 10 includes electrode rings 11 and 12 that face each other across the steel plate 2 in the vertical direction z (vertical direction). Similarly, the rolling part 30 includes rolling rolls 31 and 32 that are adjacent to the electrode wheels 11 and 12 and face each other across the position of the steel plate 2 in the vertical direction z.
 移動体40は、溶接部10および圧下部30をいずれも回転可能に支持するフレーム41と、フレーム41を支持する複数の車輪42と、フレーム41を溶接方向yに駆動して、ベース43上の走行路44を往復走行させる駆動装置45とを備える。
 フレーム41は、通板方向xからの側面視において略C字状に形成されている。駆動装置45は、サーボモータ451およびボールねじ452を含む。フレーム41には、トランスおよびダイオードを含む電流印加装置46が設けられている。
The movable body 40 includes a frame 41 that rotatably supports both the welding section 10 and the rolling section 30, a plurality of wheels 42 that support the frame 41, and drives the frame 41 in the welding direction y to A drive device 45 for reciprocating the running path 44 is provided.
The frame 41 is formed into a substantially C-shape when viewed from the side in the sheet passing direction x. Drive device 45 includes a servo motor 451 and a ball screw 452. The frame 41 is provided with a current applying device 46 including a transformer and a diode.
 フレーム41には、溶接部10や圧下部30の他、例えば図2(a)および(b)に示すように、酸化スケール等の被膜除去、切断、冷却、および加熱等の処理を鋼板2に対してそれぞれ行う処理部61,62,63,64が設けられていてもよい。フレーム41にこれらの処理部も設けることで、溶接と圧下のみならず、被膜除去から熱処理までの一連の処理をスムーズに行うことができる。
 被膜除去処理を行う被膜除去部61は、例えば、外周部にブラシを備えて回転駆動されるブラシロール611,612を含み、安定した抵抗溶接のために先行鋼板21および後行鋼板22の表裏両面を研削する。切断処理を行う切断部62は、例えば、上下方向z(鉛直方向)に対向し、鋼板2に対して昇降される一対のせん断刃621,622を含み、鋼板2の端部を切除する。被膜除去および切断は、先行鋼板21の尾端の領域と、後行鋼板22の先端の領域とに対して溶接前に行われる。
In addition to the welded part 10 and the rolled part 30, the frame 41 has the steel plate 2 subjected to treatments such as removing coatings such as oxide scale, cutting, cooling, and heating, as shown in FIGS. 2(a) and 2(b). Processing units 61, 62, 63, and 64 may be provided to perform processing on each of the processing units, respectively. By providing these processing sections in the frame 41, not only welding and rolling but also a series of processing from film removal to heat treatment can be smoothly performed.
The coating removal unit 61 that performs coating removal processing includes, for example, brush rolls 611 and 612 that are rotatably driven and equipped with brushes on their outer peripheries, and are used to clean both the front and back sides of the leading steel plate 21 and the trailing steel plate 22 for stable resistance welding. to grind. The cutting section 62 that performs the cutting process includes, for example, a pair of shearing blades 621 and 622 that face each other in the vertical direction z (vertical direction) and move up and down with respect to the steel plate 2, and cuts off an end portion of the steel plate 2. Coating removal and cutting are performed on the tail end region of the leading steel plate 21 and the leading end region of the trailing steel plate 22 before welding.
 一方、冷却および加熱は、溶接後に溶接領域20に対して行われる。冷却処理を行う冷却部63は、例えば水を溶接領域20に噴霧して急速に冷却することで焼入れを行う。加熱処理を行う加熱部64は、例えば、誘導加熱により溶接領域20を加熱することで焼戻しを行う。被膜除去、切断、溶接、圧下、冷却、および加熱の順序で行われる一連の処理からなる溶接工程を終えた鋼板2は、常温の周囲の空気へと放熱され、圧延工程へと供される。
 いずれも鋼板2に対して上方に配置されるブラシロール611、せん断刃621、電極輪11、および圧下ロール31は、クランプC1,C2により位置決めされている鋼板2に対して、それぞれの昇降機構(13,33等)により上方へ退避される。そのため、被膜除去部61、切断部62、溶接部10、および圧下部30の各処理部は、溶接工程に亘り、処理時以外は鋼板2に接触しない。
On the other hand, cooling and heating are performed on the welding area 20 after welding. The cooling unit 63 that performs the cooling process performs hardening by, for example, spraying water onto the welding area 20 to rapidly cool it. The heating unit 64 that performs the heat treatment performs tempering by heating the welding region 20 by induction heating, for example. After the welding process consisting of a series of treatments performed in the order of film removal, cutting, welding, reduction, cooling, and heating, the steel plate 2 radiates heat to the surrounding air at room temperature and is subjected to a rolling process.
The brush roll 611, shear blade 621, electrode ring 11, and roll-down roll 31, all of which are arranged above the steel plate 2, are moved by their respective elevating mechanisms ( 13, 33, etc.). Therefore, the film removal section 61, the cutting section 62, the welding section 10, and the rolling section 30 do not come into contact with the steel plate 2 throughout the welding process except during processing.
 フレーム41は、鋼板2が通板される搬送路に対して後方へ退避している後退位置P1(図2(a))と、前進位置P2(図2(b))との間で溶接方向yに沿って往復移動が可能である。
 図2(a)および(b)に示す例において、フレーム41には、前進位置P2から後退位置P1に向けて、加熱部64、被膜除去部61、冷却部63、圧下部30、溶接部10、および切断部62がこの順に設けられている。溶接工程の一連の処理は、フレーム41を後退位置P1から前進位置P2に前進させるステップと、前進位置P2から後退位置P1に後退させるステップとを含む1サイクルの溶接工程の間に行われる。
The frame 41 is moved in the welding direction between a retracted position P1 (FIG. 2(a)) where the steel plate 2 is retracted backward with respect to the conveyance path through which the steel plate 2 is passed, and a forward position P2 (FIG. 2(b)). It is possible to move back and forth along y.
In the example shown in FIGS. 2(a) and 2(b), the frame 41 includes a heating section 64, a film removing section 61, a cooling section 63, a rolling section 30, a welding section 10, and , and the cutting section 62 are provided in this order. A series of processes in the welding process is performed during one cycle of the welding process including a step of advancing the frame 41 from the retreated position P1 to the forward position P2, and a step of retreating the frame 41 from the forward position P2 to the retreated position P1.
 本実施形態の溶接装置1は、例えば図1(a)に示すように、フレーム41の前方の開口410から上部フレーム411と下部フレーム412との間に鋼板2を受け入れた状態で、上側の電極輪11および上側の圧下ロール31を昇降機構13,33により基準面100(図1(b))に向けて下降させ、前進位置P2から後退位置P1に向けてフレーム41を後退させながら、溶接および圧下の処理を行う。このとき、溶接方向yは、前進位置P2から後退位置P1に向かう方向である。
 基準面100は、例えば、下側の電極輪12および圧下ロール32の外周面の位置に水平に設定されている。
As shown in FIG. 1(a), for example, the welding apparatus 1 of this embodiment has a steel plate 2 received between an upper frame 411 and a lower frame 412 through an opening 410 in the front of a frame 41, and an upper electrode. The wheel 11 and the upper reduction roll 31 are lowered toward the reference plane 100 (FIG. 1(b)) by the lifting mechanisms 13, 33, and the frame 41 is moved back from the forward position P2 to the backward position P1, while welding and Perform the rolling process. At this time, the welding direction y is a direction from the forward position P2 to the backward position P1.
The reference plane 100 is set horizontally, for example, at the position of the outer peripheral surfaces of the lower electrode wheel 12 and the reduction roll 32.
 電極輪11,12の軸方向の幅w1は、溶接前に先行鋼板21と後行鋼板22とが通板方向xに重ねられる幅(重なり代w)よりも広い。電極輪11,12は、通板方向xにおける重なり代wの中央部に配置されることが好ましい。
 圧下ロール31,32の軸方向の幅も、重なり代wよりも広い。圧下ロール31,32も、通板方向xにおける重なり代wの中央部に配置されることが好ましい。
The axial width w1 of the electrode wheels 11 and 12 is wider than the width (overlap margin w) by which the leading steel plate 21 and the trailing steel plate 22 are overlapped in the sheet passing direction x before welding. It is preferable that the electrode rings 11 and 12 are arranged at the center of the overlap w in the sheet passing direction x.
The axial width of the reduction rolls 31 and 32 is also wider than the overlap w. It is preferable that the reduction rolls 31 and 32 are also arranged at the center of the overlap w in the sheet passing direction x.
 電極輪11,12のそれぞれの外周面は、幅の全体に亘り、曲率半径の大きな円弧状に、僅かに湾曲している。上側の電極輪11は、通板方向xの中心で基準面100に対して凸の向き(下向き)に突出するように湾曲している。下側の電極輪12は、通板方向xの中心で基準面100に対して凸の向き(上向き)に突出するように湾曲している。 The outer peripheral surface of each of the electrode rings 11 and 12 is slightly curved in an arc shape with a large radius of curvature over the entire width. The upper electrode ring 11 is curved so as to protrude in a convex direction (downward) with respect to the reference surface 100 at the center of the sheet passing direction x. The lower electrode ring 12 is curved so as to protrude in a convex direction (upward) with respect to the reference surface 100 at the center of the sheet passing direction x.
 溶接および圧下の処理時は、電極輪11,12に接続されている電流印加装置46により、鋼板2に通電するとともに、図示しないモータ等を含む駆動装置により電極輪11,12および圧下ロール31,32をそれぞれ溶接方向yに対応する向きに、それぞれの軸線を中心に回転させる。
 電極輪11,12を通過した直後の溶接領域20の表面温度は、例えば1,300℃を超える。溶接領域20の温度は、圧下ロール31,32が溶接領域20に接触することで例えば900℃以下まで下がり、その後、復熱により温度が上昇する。
During welding and rolling down, a current applying device 46 connected to the electrode wheels 11 and 12 applies electricity to the steel plate 2, and a driving device including a motor (not shown) moves the electrode wheels 11 and 12 and the rolling roll 31, 32 are rotated about their respective axes in directions corresponding to the welding direction y.
The surface temperature of the welding region 20 immediately after passing through the electrode rings 11 and 12 exceeds, for example, 1,300°C. The temperature of the welding area 20 decreases to, for example, 900° C. or lower when the reduction rolls 31 and 32 contact the welding area 20, and then increases due to recuperation.
 圧下ロール31,32の軸線は、電極輪11,12の軸線と同様、通板方向xに対して平行に設定されていてもよいが、図3(a)に示すように、せん断力F1,F2を作用させてより十分に平坦化を図るため、圧下ロール31,32の軸線が通板方向xに対して傾斜していてもよい。この場合は、圧下ロール31の軸線と圧下ロール32の軸線とが平面視において交差している。例えば、圧下ロール31,32の各軸線を通板方向xに対して3度ずつ傾斜させることができる。 The axes of the reduction rolls 31 and 32 may be set parallel to the sheet passing direction x, similar to the axes of the electrode wheels 11 and 12, but as shown in FIG. 3(a), the shear forces F1, In order to achieve more sufficient flattening by applying F2, the axes of the reduction rolls 31 and 32 may be inclined with respect to the sheet passing direction x. In this case, the axis of the reduction roll 31 and the axis of the reduction roll 32 intersect in plan view. For example, each axis of the reduction rolls 31 and 32 can be inclined by 3 degrees with respect to the sheet passing direction x.
 圧下ロール31,32による圧下後、鋼板2は圧延工程に供給される。図3(b)には、圧延工程で用いられる一対の圧延ロールの回転方向RDが矢印で示されている。図3(b)に示す溶接領域20には段差が形成されているが、溶接領域20は、通板方向xと平行に引っ張られながら圧下ロール31,32により単一の鋼板2の板厚の1,1~1.2倍程度にまで押し潰されるので、圧延工程の前に平坦化されている。 After being rolled down by the rolling rolls 31 and 32, the steel plate 2 is supplied to a rolling process. In FIG. 3(b), the rotation direction RD of a pair of rolling rolls used in the rolling process is indicated by an arrow. A step is formed in the welding region 20 shown in FIG. Since it is crushed to about 1.1 to 1.2 times its size, it is flattened before the rolling process.
〔溶接領域の詳細〕
 さて、図1(b)に示すように、一方の鋼板2の端部が他方の鋼板2の端部の下側に重ねられた状態で、溶接部10によりマッシュシーム溶接が行われる。2枚の鋼板2の端部は、例えば、単一の鋼板2の板厚と同等の幅で通板方向xに重ねられる。
 本実施形態においては、後行鋼板22の端部が先行鋼板21の端部の下側に重ねられる。但し、これに限らず、先行鋼板21の端部が後行鋼板22の端部の下側に重ねられていてもよい。
 2つの鋼板2の重ねられた領域は、電極輪11,12を通じて電流が印加されると、電気抵抗に相応の発熱により加熱されるとともに、電極輪11,12により上下方向zに加圧されて変形する。このとき、例えば図4(a)に示すように、電極輪11,12(図1(b))が鋼板2に接触する範囲(図1(b)に示す溶接前の重なり代wの範囲に相当)に亘り電流が流れて発熱するとともに、当該範囲が加圧される。そうすると、2つの鋼板2は、溶接前の重なり代wよりも通板方向xに広い接合範囲rに亘り接合される。溶接継手として溶接方向yに沿って形成される溶接領域20は、接合範囲rに相当する。なお、図4(a)に示す範囲r1は、鋼板2に溶接時の入熱により熱影響が及ぶ範囲に相当する。
[Details of welding area]
Now, as shown in FIG. 1(b), mash seam welding is performed by the welding section 10 with the end of one steel plate 2 superimposed on the lower end of the other steel plate 2. The ends of the two steel plates 2 are overlapped in the threading direction x, for example, with a width equivalent to the thickness of a single steel plate 2.
In this embodiment, the end of the trailing steel plate 22 is stacked on the lower side of the end of the leading steel plate 21. However, the present invention is not limited to this, and the end of the leading steel plate 21 may be stacked on the lower side of the end of the trailing steel plate 22.
When a current is applied to the overlapping region of the two steel plates 2 through the electrode wheels 11 and 12, it is heated by heat generation corresponding to the electrical resistance, and is also pressurized in the vertical direction z by the electrode wheels 11 and 12. transform. At this time, for example, as shown in FIG. 4(a), the electrode rings 11, 12 (FIG. 1(b)) are in contact with the steel plate 2 (the range of overlap w before welding shown in FIG. 1(b)). Current flows through the area (corresponding to the area) and generates heat, and the area is pressurized. Then, the two steel plates 2 are joined over a joining range r wider in the sheet passing direction x than the overlap w before welding. The welding region 20 formed along the welding direction y as a welded joint corresponds to the joining range r. Note that the range r1 shown in FIG. 4(a) corresponds to the range where the steel plate 2 is thermally affected by heat input during welding.
 溶接前の先行鋼板21および後行鋼板22は、例えば図1(b)に示すように、後行鋼板22の上面に対して先行鋼板21の端面21Aが立ち上がり、先行鋼板21の下面に対して後行鋼板22の端面22Aが立ち上がる状態に重ねられる。このとき、先行鋼板21および後行鋼板22は、上側の段差ST1と下側の段差ST2とをなしている。 Before welding, the leading steel plate 21 and the trailing steel plate 22 have an end face 21A of the leading steel plate 21 rising up from the upper surface of the trailing steel plate 22, and an end face 21A of the leading steel plate 21 rising from the bottom surface of the leading steel plate 21, as shown in FIG. 1(b), for example. The trailing steel plates 22 are stacked so that the end surfaces 22A thereof stand up. At this time, the leading steel plate 21 and the trailing steel plate 22 form an upper step ST1 and a lower step ST2.
 図4(a)は、接合後で且つ圧下前の溶接領域20の横断面を例示する。Nで示す破線の内側は、発熱により溶融した部分を示しており、当該部分は凝固するとナゲットNとなる。溶接前の段差ST1,ST2は、電極輪11,12により押し潰され、例えば図4(a)に接合後の状態を示すように、段差201,202に変形する。このとき、段差の高さは、接合過程を経て減少するものの、溶接後においても段差は維持されている。
 図4(a)に示す例では、溶接領域20の上側および下側の両方において、段差201,202がナゲットNの横断面の中心に対してほぼ180度対称に形成されている。但し、その限りではなく、上側の段差201および下側の段差202の一方のみが形成される場合もあり得る。
FIG. 4(a) illustrates a cross section of the welding region 20 after joining and before reduction. The inside of the broken line indicated by N indicates a portion melted due to heat generation, and this portion becomes a nugget N when solidified. The steps ST1 and ST2 before welding are crushed by the electrode rings 11 and 12, and are transformed into steps 201 and 202, for example, as shown in the state after welding in FIG. 4(a). At this time, although the height of the step decreases through the joining process, the step is maintained even after welding.
In the example shown in FIG. 4A, steps 201 and 202 are formed approximately 180 degrees symmetrically with respect to the center of the cross section of the nugget N on both the upper and lower sides of the welding region 20. However, the present invention is not limited to this, and only one of the upper step 201 and the lower step 202 may be formed.
 本実施形態においては、下側の電極輪11の外周面の位置に基準面100を設定し、上側の電極輪11を基準面100に向けて押し下げることで鋼板2を加圧している。その場合、溶接開始時に上側の鋼板2の端部と下側の鋼板2の表面との間に隙間が形成されると、電極輪11,12間で上側鋼板2に押圧されている下側鋼板2の端部の入熱が上側鋼板2の端部の入熱に先行し、下側鋼板2の高温での変形が進行する。そのため、下側には段差202が出来難く、上側には段差201が形成され易い。 In this embodiment, a reference plane 100 is set at the outer circumferential surface of the lower electrode ring 11, and the steel plate 2 is pressurized by pushing the upper electrode ring 11 down toward the reference plane 100. In that case, if a gap is formed between the end of the upper steel plate 2 and the surface of the lower steel plate 2 at the start of welding, the lower steel plate is pressed against the upper steel plate 2 between the electrode rings 11 and 12. The heat input to the end of the upper steel plate 2 precedes the heat input to the end of the upper steel plate 2, and deformation of the lower steel plate 2 at high temperature progresses. Therefore, the step 202 is less likely to be formed on the lower side, and the step 201 is more likely to be formed on the upper side.
 溶接領域20には、上述の接合範囲rと、2つの鋼板2がなす段差201等とが含まれる。溶接領域20の段差201の形状は、例えば、図4(b)および(c)に模式的に示しているようにばらつく。段差201-1と段差201-2とのそれぞれの角度αは相違する。 The welding region 20 includes the above-mentioned joining range r, the step 201 between the two steel plates 2, and the like. The shape of the step 201 in the welding region 20 varies, for example, as schematically shown in FIGS. 4(b) and 4(c). The respective angles α of the step 201-1 and the step 201-2 are different.
 ここで、溶接領域20に含まれ、溶接領域20の横断面に表れる段差の角度(α)は、上側の段差および下側の段差のいずれについても、下記のように定義される。2枚の鋼板2の任意の一方を第1板材(先行鋼板21または後行鋼板22)と称し、他方を第2板材(後行鋼板22または先行鋼板21)と称する。このとき、溶接領域20の一の横断面における段差角度αは、第1板材が第2板材に覆われることなく露出している表面sを第2板材側に向けて延長した直線L1に対して第2板材の端面の直線L2がなしている角度に相当する。下側の段差角度αは、図3(b)に示されている。
 図4(b)および(c)に示す例において、直線L1は、表面sを第2板材側に向けて、通板方向xに対して平行に延長した線である。図5(a)に示す直線L1も同様である。
 あるいは、直線L1は、図5(b)に示すように、表面sを第2板材側に向けて、段差201-4の近傍における表面sに対して平行に延長した線であってもよい。
Here, the angle (α) of the step included in the welding region 20 and appearing in the cross section of the welding region 20 is defined as follows for both the upper step and the lower step. Any one of the two steel plates 2 will be referred to as a first plate material (leading steel plate 21 or trailing steel plate 22), and the other will be referred to as a second plate material (tracing steel plate 22 or leading steel plate 21). At this time, the step angle α in one cross section of the welding area 20 is relative to the straight line L1 extending the surface s where the first plate is exposed without being covered by the second plate toward the second plate. This corresponds to the angle formed by the straight line L2 of the end surface of the second plate. The lower step angle α is shown in FIG. 3(b).
In the example shown in FIGS. 4(b) and 4(c), the straight line L1 is a line extending parallel to the sheet passing direction x, with the surface s facing the second plate material side. The same applies to the straight line L1 shown in FIG. 5(a).
Alternatively, the straight line L1 may be a line extending parallel to the surface s in the vicinity of the step 201-4, with the surface s facing the second plate side, as shown in FIG. 5(b).
 後述する第1の良否判定は、上記の定義による段差角度αと、段差角度αに対応する閾値とを用いて説明される。但し、溶接領域20に含まれる段差の角度は、αで表わされる他、露出している表面sに対して直線L2がなしている内側の角度αや外側の角度αにより表すこともできる。角度αや角度αを良否判定に用いる場合は、角度αや角度αに適合する閾値を算出して用いればよい。 The first quality determination described below will be explained using the step angle α defined above and the threshold value corresponding to the step angle α. However, in addition to being expressed by α, the angle of the step included in the welding area 20 can also be expressed by the inner angle α 1 or the outer angle α 2 formed by the straight line L2 with respect to the exposed surface s. . When angle α 1 or angle α 2 is used for quality determination, a threshold value suitable for angle α 1 or angle α 2 may be calculated and used.
 図4(b)および(c)のように、段差をなす出隅の角201Aおよび入隅の角201Bが明確に把握される場合ばかりではない。例えば図6(a)に示すように、段差201-3の横断面の外形が湾曲した線からなる場合もある。そうした場合でも、露出している表面sに対して立ち上がる曲線cの基端側に位置する入隅の変曲点p1と曲線cの先端側に位置する出隅の変曲点p2とを結ぶ直線L3を演算により求め、直線L3を端面の直線L2と扱って、上記定義により段差角度αを特定することができる。
 段差201-3の角度αは、90度を超えている。この段差201-3は、第1板材の露出している表面sを覆うように庇状に形成されている。
As shown in FIGS. 4(b) and 4(c), it is not always the case that the external corner 201A and the internal corner 201B that form a step are clearly understood. For example, as shown in FIG. 6(a), the outer shape of the cross section of the step 201-3 may consist of a curved line. Even in such a case, a straight line connects the inflection point p1 of the inside corner located on the base end side of the curve c rising against the exposed surface s and the inflection point p2 of the out corner located on the tip side of the curve c. L3 is obtained by calculation, the straight line L3 is treated as the straight line L2 of the end surface, and the step angle α can be specified by the above definition.
The angle α of the step 201-3 exceeds 90 degrees. This step 201-3 is formed in the shape of an eave so as to cover the exposed surface s of the first plate material.
 図6(a)に示す段差201-3を含む溶接領域20が、仮に圧下部30により圧下されるとすれば、図6(b)に示すように、圧下前の庇状の部分が押し潰されることで折れ込み疵203が発生し得る。
 さらに、折れ込み疵203を含む溶接領域20が圧延工程に供給されるとすれば、下記の参考文献1により圧延破断に至るプロセスの研究が報告されているように、折れ込み疵203が図6(c)に示すように亀裂状の折れ込み疵となって残存し得る。このとき折れ込み疵203の深さが圧延前から変化していないとしても、板厚に対する疵深さの比率は増加する。このような折れ込み疵203に起因して圧延工程や、その後の焼鈍工程等において溶接領域20が破断するとすれば、復旧に時間が費やされるためラインの稼働率が低下してしまう。
〔参考文献1〕
 斎藤 武彦・富永 憲明・加賀 慎一・田方 浩智・湯川 信樹・石川 孝司:塑性と加工(日本塑性加工学会誌),第54巻 第627号(2013-4),368-372頁.「圧延破断に及ぼす段差折れ込みきずの影響」
If the welding area 20 including the step 201-3 shown in FIG. 6(a) is rolled down by the rolling part 30, the eave-shaped part before rolling is crushed as shown in FIG. 6(b). This may cause folding flaws 203.
Furthermore, if the welding area 20 including the folding flaw 203 is supplied to the rolling process, the folding flaw 203 is shown in FIG. As shown in (c), it may remain as a crack-like folding flaw. At this time, even if the depth of the folding flaw 203 has not changed from before rolling, the ratio of the flaw depth to the plate thickness increases. If the welding region 20 were to break during the rolling process, the subsequent annealing process, etc. due to such folding flaws 203, the operating rate of the line would decrease because it would take time to recover.
[Reference 1]
Takehiko Saito, Noriaki Tominaga, Shinichi Kaga, Hirotomo Tagata, Nobuki Yukawa, Takashi Ishikawa: Plasticity and Processing (Journal of the Japan Society for Plastic Processing), Vol. 54, No. 627 (2013-4), pp. 368-372. "Effect of step fold flaws on rolling fracture"
 また、溶接領域20には、溶融金属が表面に噴出することで「チリ」と呼ばれる現象が発生し得る。チリ(Expulsion)は、溶接領域20のチリが発生していない表面から盛り上がっており、典型的には複数のチリが溶接方向yに散らばった状態で溶接領域20に形成されている。チリの発生により溶融金属が電極輪11,12に付着すると、電極輪11,12の清掃が必要となる。 Additionally, a phenomenon called "dust" may occur in the welding area 20 due to molten metal ejecting onto the surface. The dust (expulsion) is raised from the surface of the welding area 20 where no dust is generated, and typically, a plurality of dusts are formed in the welding area 20 in a state where they are scattered in the welding direction y. When molten metal adheres to the electrode rings 11 and 12 due to the generation of dust, the electrode rings 11 and 12 must be cleaned.
〔溶接領域の形状取得部および良否判定部〕
 本実施形態は、折れ込み疵やチリ発生等の溶接不良を圧延工程の前に把握して、溶接不良の存在する鋼板2が圧延工程に供給されることを回避する。そうすると、再溶接や電極輪11,12のメンテナンスを行うために溶接工程が停止したとしても、圧延工程の停止を避けて、ライン稼働率を高く維持することができる。
[Welding area shape acquisition section and pass/fail judgment section]
In the present embodiment, welding defects such as folding defects and dust generation are detected before the rolling process, and a steel plate 2 having welding defects is prevented from being supplied to the rolling process. Then, even if the welding process is stopped for re-welding or maintenance of the electrode wheels 11 and 12, the rolling process can be avoided and the line operating rate can be maintained at a high level.
 溶接不良を把握するため、本実施形態の溶接装置1は、溶接領域20の表面形状を取得する。溶接装置1は、図7に示すように、溶接領域20の段差の表面形状を取得する形状取得部70と、温度計測部77と、表示部80と、溶接良否判定に係る第1判定部81および第2判定部82とを備えている。なお、図7は、溶接良否判定に係る機能的構成の一例を示している。
 形状取得部70は、レーザ情報取得部71と、段差形状データ取得部72と、高さ計測値取得部73と、角度取得部74と、段差高さ取得部75と、圧下後角度取得部76とを備えている。
In order to understand welding defects, the welding apparatus 1 of this embodiment acquires the surface shape of the welding area 20. As shown in FIG. 7, the welding apparatus 1 includes a shape acquisition unit 70 that acquires the surface shape of the step in the welding area 20, a temperature measurement unit 77, a display unit 80, and a first determination unit 81 that determines the quality of welding. and a second determination section 82. Note that FIG. 7 shows an example of a functional configuration related to welding quality determination.
The shape acquisition unit 70 includes a laser information acquisition unit 71 , a step shape data acquisition unit 72 , a height measurement value acquisition unit 73 , an angle acquisition unit 74 , a step height acquisition unit 75 , and a post-rolling angle acquisition unit 76 It is equipped with
 レーザ情報取得部71は、出射部711から溶接領域20に帯状のレーザを照射し、溶接領域20から反射されたレーザを撮像素子712により受光する。レーザ情報取得部71としては、例えば、二次元のレーザ変位計700を用いることができる。
 段差形状データ取得部72は、レーザ情報取得部71により出射されるレーザから、溶接領域20により反射されたレーザへの変化の情報を用いて、溶接領域20の段差の形状を示す形状データを演算により取得する。
The laser information acquisition unit 71 irradiates the welding area 20 with a band-shaped laser from the emission unit 711 and receives the laser reflected from the welding area 20 with the imaging element 712 . As the laser information acquisition unit 71, for example, a two-dimensional laser displacement meter 700 can be used.
The step shape data acquisition unit 72 calculates shape data indicating the shape of the step in the welding area 20 using information on the change from the laser emitted by the laser information acquisition unit 71 to the laser reflected by the welding area 20. Obtained by
 本実施形態のレーザ情報取得部71は、圧下部30により圧下される前にレーザを溶接領域20に照射する。そのため、形状取得部70は、圧下部30による圧下前における溶接領域20の形状を取得する。 The laser information acquisition unit 71 of this embodiment irradiates the welding region 20 with a laser before being rolled down by the rolling section 30. Therefore, the shape acquisition section 70 acquires the shape of the welding region 20 before rolling by the rolling section 30.
 高さ計測値取得部73は、レーザ情報取得部71により出射されるレーザから、溶接領域20により反射されたレーザへの変化の情報を用いて、溶接領域20の高さを示す計測値を溶接方向yに沿って繰り返し取得する。高さの計測値は、チリ発生有無の判定に用いられる。高さ計測値取得部73は、溶接方向yに移動するレーザ変位計700から溶接領域20にレーザを照射しながら、溶接長に亘る高さ変化に相当する表面形状を取得することができる。 The height measurement value acquisition unit 73 uses information about the change from the laser emitted by the laser information acquisition unit 71 to the laser reflected by the welding area 20 to obtain a measurement value indicating the height of the welding area 20. Obtain iteratively along the direction y. The measured height value is used to determine whether or not dust is generated. The height measurement value acquisition unit 73 can acquire the surface shape corresponding to the height change over the welding length while irradiating the welding region 20 with laser from the laser displacement meter 700 moving in the welding direction y.
 角度取得部74は、段差の形状データを用いて、溶接領域20に含まれる段差の角度αを演算により取得する。
 段差高さ取得部75は、形状データおよび角度αを用いて、溶接領域20に含まれる段差の高さを演算により取得する。
 圧下後角度取得部76は、圧下部30による圧下の前の角度と後の角度との相関情報に基づいて、角度取得部74により取得された圧下前の角度から圧下後の角度を演算により取得する。
The angle acquisition unit 74 uses the shape data of the step to obtain the angle α of the step included in the welding region 20 by calculation.
The step height acquisition unit 75 calculates and obtains the height of the step included in the welding region 20 using the shape data and the angle α.
The post-rolling angle obtaining section 76 calculates the post-rolling angle from the pre-rolling angle obtained by the angle obtaining section 74 based on the correlation information between the angle before and after the rolling by the rolling section 30. do.
 温度計測部77は、電極輪11,12を通過した直後で、圧下部30により圧下される前における溶接領域20の表面温度を計測する。 The temperature measuring section 77 measures the surface temperature of the welding area 20 immediately after passing through the electrode wheels 11 and 12 and before being rolled down by the rolling section 30.
 表示部80は、段差の形状データ、段差角度α、および溶接領域20の高さの計測データ等をモニタ801の画面上に表示する。モニタ801は、例えば、制御部50に備えられている。
 第1判定部81は、折れ込み疵に繋がる段差形状の異常を判定可能である。第1判定部81は、角度取得部74により取得される段差角度αを用いて、溶接領域20の溶接状態の良否を判定可能に構成されている。
 第2判定部82は、チリ発生の有無を判定可能である。第2判定部82は、高さ計測値取得部73により取得される高さの計測値間の変化量を用いて、溶接領域20の溶接状態の良否を判定可能に構成されている。
The display unit 80 displays the shape data of the step, the step angle α, the measurement data of the height of the welding area 20, etc. on the screen of the monitor 801. The monitor 801 is provided in the control unit 50, for example.
The first determination unit 81 is capable of determining an abnormality in the step shape that leads to folding defects. The first determination unit 81 is configured to be able to determine whether the welding state of the welding area 20 is good or bad using the step angle α acquired by the angle acquisition unit 74.
The second determination unit 82 is capable of determining whether or not dust has occurred. The second determination unit 82 is configured to be able to determine the quality of the welding state of the welding area 20 using the amount of change between the height measurement values acquired by the height measurement value acquisition unit 73.
 段差形状データ取得部72、高さ計測値取得部73、角度取得部74、段差高さ取得部75、圧下後角度取得部76、表示部80、第1判定部81、および第2判定部82は、演算部、メモリ、記憶部、および入出力部等を備えたコンピュータにおいて動作するプログラムのモジュールとして構成することができる。そのコンピュータは、例えば、制御部50に備えられている。 Step shape data acquisition section 72, height measurement value acquisition section 73, angle acquisition section 74, step height acquisition section 75, post-rolling angle acquisition section 76, display section 80, first determination section 81, and second determination section 82 can be configured as a module of a program that operates on a computer equipped with an arithmetic unit, a memory, a storage unit, an input/output unit, and the like. The computer is included in the control unit 50, for example.
 レーザ情報取得部71を備えるレーザ変位計700がコンピュータを内蔵している場合は、段差形状データ取得部72、高さ計測値取得部73、角度取得部74、段差高さ取得部75、圧下後角度取得部76、表示部80、第1判定部81、および第2判定部82の少なくとも一部が、レーザ変位計700のコンピュータにおいて動作するプログラムモジュールであってもよい。 When the laser displacement meter 700 including the laser information acquisition section 71 has a built-in computer, the step shape data acquisition section 72, the height measurement value acquisition section 73, the angle acquisition section 74, the step height acquisition section 75, and the after-rolling At least a portion of the angle acquisition section 76, the display section 80, the first determination section 81, and the second determination section 82 may be program modules that operate in the computer of the laser displacement meter 700.
 本実施形態のレーザ変位計700が内蔵するコンピュータにおいては、段差形状データ取得部72および高さ計測値取得部73に相当するプログラムモジュールが動作する。そのため、レーザ情報取得部71の撮像素子712により受光し、結像した画像の画素情報は、撮像素子712から、段差形状データ取得部72および高さ計測値取得部73へと直接的に渡される。そして、段差形状データ取得部72により得られた形状データ、および高さ計測値取得部73により得られた高さ計測値は、レーザ変位計700から、制御部50等に備えられたコンピュータで実行されるプログラムモジュールとしての角度取得部74、段差高さ取得部75、圧下後角度取得部76、表示部80、第1判定部81、および第2判定部82へと渡される。 In the computer built into the laser displacement meter 700 of this embodiment, program modules corresponding to the step shape data acquisition section 72 and the height measurement value acquisition section 73 operate. Therefore, the pixel information of the image received and imaged by the image sensor 712 of the laser information acquisition section 71 is directly passed from the image sensor 712 to the step shape data acquisition section 72 and the height measurement value acquisition section 73. . The shape data obtained by the step shape data acquisition section 72 and the height measurement value obtained by the height measurement value acquisition section 73 are obtained from the laser displacement meter 700 and are executed by a computer included in the control section 50 etc. It is passed to the angle acquisition unit 74, step height acquisition unit 75, post-rolling angle acquisition unit 76, display unit 80, first determination unit 81, and second determination unit 82 as program modules to be executed.
 つまり、段差形状データ取得部72、高さ計測値取得部73、角度取得部74、表示部80、第1判定部81、および第2判定部82のそれぞれに対応するプログラムモジュールは、複数のコンピュータ、例えば、レーザ変位計700に内蔵のコンピュータと制御部50に内蔵のコンピュータ等とに分散し、かつ連携して動作するように構成されていてもよい。複数のコンピュータは、例えば、ケーブルや有線LAN(Local Area Network)、無線LAN、あるいはWorld Wide Web等を介してデータを送受信可能に接続することができる。 In other words, program modules corresponding to each of the step shape data acquisition section 72, height measurement value acquisition section 73, angle acquisition section 74, display section 80, first determination section 81, and second determination section 82 are installed on a plurality of computers. For example, it may be configured such that the computer built in the laser displacement meter 700 and the computer built in the control unit 50 are distributed and operated in cooperation with each other. A plurality of computers can be connected so as to be able to send and receive data via, for example, a cable, a wired LAN (Local Area Network), a wireless LAN, or the World Wide Web.
〔レーザ情報取得部〕
 上述したように、本実施形態においては、溶接領域20の上側に段差201が形成され易く、折れ込み疵の要因となる庇状の段差201-3は溶接領域20の上側に形成される。溶接領域20の下側に段差が形成されたとしても、下側に庇状の段差は形成されない。
 そのため、図8、図9(a)、および図10に示すように、レーザ情報取得部71を備えたレーザ変位計700は、溶接領域20よりも上側のみに配置されていれば足りる。本実施形態は、溶接領域20に向けて出射されるレーザから、溶接領域20により反射されたレーザへの変化が示す情報(出射レーザと反射レーザとの相関情報)から得られる形状データを用いて、折れ込み疵に関する溶接良否を判定する。併せて、レーザの変化が示す情報から得られる溶接領域20の高さ計測値を用いて、チリ発生に関する溶接良否をも判定する。
[Laser information acquisition section]
As described above, in this embodiment, the step 201 is likely to be formed above the welding region 20, and the eave-like step 201-3, which causes folding defects, is formed above the welding region 20. Even if a step is formed on the lower side of the welding region 20, an eave-like step is not formed on the lower side.
Therefore, as shown in FIGS. 8, 9(a), and 10, it is sufficient that the laser displacement meter 700 including the laser information acquisition section 71 is disposed only above the welding area 20. This embodiment uses shape data obtained from information indicating a change from a laser emitted towards the welding area 20 to a laser reflected by the welding area 20 (correlation information between the emitted laser and the reflected laser). , determine the quality of welding regarding folding defects. At the same time, the quality of the welding regarding the generation of dust is also determined using the height measurement value of the welding area 20 obtained from the information indicated by the change in the laser beam.
 レーザ変位計700は、光切断法に基づき、帯状のレーザLS1(図9(a)参照)を溶接領域20に照射し、その反射光の変化に基づいて、溶接領域20の段差の形状(断面プロファイル)を計測可能に構成されている。また、レーザ変位計700は、帯状のレーザLS1を照射する他、線状のレーザを照射して高さ、幅等の一次元計測を行うことも可能である。 The laser displacement meter 700 irradiates the welding area 20 with a band-shaped laser LS1 (see FIG. 9(a)) based on the optical cutting method, and determines the shape of the step in the welding area 20 (cross section) based on the change in the reflected light. profile) can be measured. Further, the laser displacement meter 700 can perform one-dimensional measurements such as height and width by emitting a linear laser in addition to emitting the band-shaped laser LS1.
 レーザ情報取得部71は、帯状のレーザLS1を出射して溶接領域20の線状の範囲20Lに照射する出射部711と、溶接領域20にレーザLS1が入射することで、溶接領域20から反射されたレーザLS2を受光して結像するCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子712とを備えている。
 線状の範囲20Lは、溶接方向yに対して直交していることが好ましい。つまり、線状の範囲20Lは通板方向xに沿って延びている。
The laser information acquisition unit 71 includes an emission unit 711 that emits a band-shaped laser LS1 to irradiate a linear range 20L of the welding area 20, and a laser information acquisition unit 71 that emits a band-shaped laser LS1 to irradiate a linear range 20L of the welding area 20. It includes an image sensor 712 such as a CMOS (Complementary Metal Oxide Semiconductor) that receives the laser LS2 and forms an image.
It is preferable that the linear range 20L is perpendicular to the welding direction y. In other words, the linear range 20L extends along the sheet passing direction x.
 撮像素子712は、出射部711から溶接方向yに離れている。そのため、レーザLS2の光軸A2は、レーザLS1の光軸A1に対して、通板方向xから見て交差している。レーザ変位計700は、通板方向xにおける溶接領域20の全体が照射範囲20L(図9(a))内に収まるように、上部フレーム411に支持されている。照射範囲20Lは、図8に示すように、電極輪11の下端と圧下ロール31の下端との間に位置している。光軸A1と光軸A2との交点は、電極輪11の下端と圧下ロール31の下端との間の距離を二等分する位置に配置されているが、その限りではない。出射レーザLS1および反射レーザLS2のいずれの光路にも障害物は存在しない。 The image sensor 712 is separated from the emission section 711 in the welding direction y. Therefore, the optical axis A2 of the laser LS2 intersects the optical axis A1 of the laser LS1 when viewed from the sheet passing direction x. The laser displacement meter 700 is supported by the upper frame 411 so that the entire welding region 20 in the sheet passing direction x falls within the irradiation range 20L (FIG. 9(a)). The irradiation range 20L is located between the lower end of the electrode ring 11 and the lower end of the reduction roll 31, as shown in FIG. Although the intersection of the optical axis A1 and the optical axis A2 is located at a position that bisects the distance between the lower end of the electrode ring 11 and the lower end of the reduction roll 31, this is not a limitation. There are no obstacles in the optical path of either the emitted laser LS1 or the reflected laser LS2.
 レーザ情報取得部71により出射されるレーザLS1の光軸A1は、図9(a)および(b)に示すように、出射部711から、溶接領域20の段差に向けて、上下方向zに対し傾斜して設定される。 As shown in FIGS. 9(a) and 9(b), the optical axis A1 of the laser LS1 emitted by the laser information acquisition unit 71 is directed from the emission unit 711 toward the step in the welding area 20 with respect to the vertical direction z. Set at an angle.
 光軸A1が上下方向zに対して傾斜しているため、図9(b)に示す段差201-3や図4(c)に示す段差201-2のように段差角度αが90度を超えている場合であっても、出射部711から出射されたレーザLS1を段差の内側に入射させることができる。出射部711から出射されたレーザLS1は、段差201に対して通板方向xに線状に入射し、反射したレーザLS2は、出射部711から溶接方向yに離れた撮像素子712に受光する。レーザLS2は、線状の照射範囲20Lに亘り、溶接領域20の表面形状に依存して変化するので、その変化を捉えて表面形状を示すデータを取得することができる。 Since the optical axis A1 is inclined with respect to the vertical direction z, the step angle α exceeds 90 degrees, as in the step 201-3 shown in FIG. 9(b) and the step 201-2 shown in FIG. 4(c). Even in this case, the laser LS1 emitted from the emitting section 711 can be made to enter the inside of the step. The laser LS1 emitted from the emitting section 711 linearly enters the step 201 in the sheet passing direction x, and the reflected laser LS2 is received by an image sensor 712 that is away from the emitting section 711 in the welding direction y. Since the laser LS2 changes depending on the surface shape of the welding area 20 over the linear irradiation range 20L, data indicating the surface shape can be obtained by capturing the change.
 本実施形態とは逆に、先行鋼板21の端部が後行鋼板22の端部の下側に重ねられている場合であって、溶接領域20の上側に形成される段差の形状データを取得する場合は、段差の形状が図9(b)に示す段差(201-3)の形状に対して左右方向(通板方向x)に反転する。その場合は、図9(a)における右側で上部フレーム411にレーザ変位計700を設置し、出射部711から段差に向けてレーザLS1を照射するとよい。そのレーザLS1の光軸A1も、上下方向zに対し傾斜して設定される。 Contrary to this embodiment, when the end of the leading steel plate 21 is overlapped with the lower end of the trailing steel plate 22, shape data of a step formed above the welding area 20 is obtained. In this case, the shape of the step is reversed in the left-right direction (sheet threading direction x) with respect to the shape of the step (201-3) shown in FIG. 9(b). In that case, it is preferable to install the laser displacement meter 700 on the upper frame 411 on the right side in FIG. 9(a), and irradiate the laser LS1 from the emission part 711 toward the step. The optical axis A1 of the laser LS1 is also set to be inclined with respect to the vertical direction z.
 光軸A1が水平面(例えば、基準面100)に対してなす角度γは、30度以上であることが好ましい。30度以上であれば、溶接領域20の表面で反射したレーザLS2によって撮像素子712に結像させることができる。しかし、30度未満の場合は、反射レーザLS2が撮像素子712に入射し難くなるため、反射レーザLS2を撮像素子712に結像させ難い。
 本実施形態における出射レーザLS1の光軸A1の傾斜角度γは、約50度から約55度までの範囲内に設定されている。これに限らず、庇状の段差が存在する場合でも段差形状のデータを得られる限りにおいて、90度よりも小さく、30度よりも大きい角度に傾斜角度γを設定することができる。
The angle γ that the optical axis A1 makes with respect to the horizontal plane (for example, the reference plane 100) is preferably 30 degrees or more. If the angle is 30 degrees or more, an image can be formed on the image sensor 712 by the laser LS2 reflected from the surface of the welding region 20. However, if the angle is less than 30 degrees, it becomes difficult for the reflected laser LS2 to enter the image sensor 712, so it is difficult to form an image of the reflected laser LS2 on the image sensor 712.
The inclination angle γ of the optical axis A1 of the output laser LS1 in this embodiment is set within the range of about 50 degrees to about 55 degrees. However, the inclination angle γ can be set to an angle smaller than 90 degrees and larger than 30 degrees, as long as data on the shape of the step can be obtained even if there is an eave-like step.
 レーザ変位計700は、図10に示すように筐体701が保護カバー702に収められた状態で、図8に示すように支持部材413を介して上部フレーム411に支持される。移動体40の走行に伴い、レーザ変位計700は鋼板2に対して溶接方向yに移動する。
 レーザ変位計700は、水平面に対する光軸A1の傾斜角度γが調整可能に構成されていてもよい。
The laser displacement meter 700 is supported by an upper frame 411 via a support member 413 as shown in FIG. 8, with a housing 701 housed in a protective cover 702 as shown in FIG. As the moving body 40 travels, the laser displacement meter 700 moves in the welding direction y with respect to the steel plate 2.
The laser displacement meter 700 may be configured such that the inclination angle γ of the optical axis A1 with respect to the horizontal plane can be adjusted.
 電極輪11および圧下ロール31を上部フレーム411にそれぞれ支持する支持部415,416や、温度計測部77等の部材が溶接方向yに近接して配置されているので、電極輪11と圧下ロール31との間や、その上方の空間は狭い。そのため、上部フレーム411と、上部フレーム411から下方へ離れた照射範囲20Lとを結ぶ直線L4上にレーザ変位計700を配置することは、設置スペースの制約から難しい。 Support parts 415 and 416 that respectively support the electrode ring 11 and the reduction roll 31 on the upper frame 411 and members such as the temperature measurement part 77 are arranged close to each other in the welding direction y. The space between and above it is narrow. Therefore, it is difficult to arrange the laser displacement meter 700 on the straight line L4 that connects the upper frame 411 and the irradiation range 20L that is spaced downward from the upper frame 411 due to installation space constraints.
 しかし、光軸A1が溶接領域20の段差に向けて、上下方向に対し傾斜して設定されることにより、本実施形態のレーザ変位計700の位置は、直線L4に対して通板方向xにシフトしている。そうすると、溶接部10と圧下部30との間のスペースにかかわらず、レーザ変位計700が溶接部10や圧下部30、クランプC1,C2に干渉しない。出射レーザLS1や反射レーザLS2の直進が妨げられることもない。
 このとき、図8を参照して、レーザ変位計700の通板方向xへの投影範囲には、溶接部10および圧下部30の少なくとも一方が配置されている。このレーザ変位計700が取り付けられた支持部材413を例えば上部フレーム411の側面に設置することが可能である。
 通板方向xは、図8の紙面に対して直交する方向であるから、レーザ変位計700の通板方向xへの投影範囲は、図8に記載された略矩形状の保護カバー702の領域に重なっている。
However, since the optical axis A1 is set to be inclined with respect to the vertical direction toward the step of the welding area 20, the position of the laser displacement meter 700 of this embodiment is in the threading direction x with respect to the straight line L4. It's shifting. Then, regardless of the space between the welding part 10 and the rolling part 30, the laser displacement meter 700 will not interfere with the welding part 10, the rolling part 30, or the clamps C1 and C2. The straight movement of the emitting laser LS1 and the reflected laser LS2 is not hindered.
At this time, with reference to FIG. 8, at least one of the welding part 10 and the rolling part 30 is arranged in the projection range of the laser displacement meter 700 in the sheet passing direction x. The support member 413 to which the laser displacement meter 700 is attached can be installed, for example, on the side surface of the upper frame 411.
Since the sheet passing direction x is a direction perpendicular to the paper surface of FIG. 8, the projection range of the laser displacement meter 700 in the sheet passing direction overlaps with
 そして、光軸A1が上下方向zに対して傾斜して設定されることによれば、段差角度αが90度よりも大きい場合であっても、出射レーザを段差の内側に入射させて段差の形状を取得することができ、段差形状を示す形状データから段差角度αを求めたり、段差角度αに応じて良否判定を行ったりすることが可能となる。 Since the optical axis A1 is set to be inclined with respect to the vertical direction z, even if the step angle α is larger than 90 degrees, the output laser can be made to enter the inside of the step and the step can be corrected. The shape can be obtained, and it is possible to obtain the step angle α from the shape data indicating the step shape, and to make a pass/fail judgment according to the step angle α.
〔温度計測部〕
 図8に示すように、放射温度計である温度計測部77は、溶接方向yにおける電極輪11と圧下ロール31との間に、図示しない感温部を電極輪11の下端に向けて配置されている。温度計測部77に備わる感温部には、電極輪11,12を通過した直後に溶接領域20の表面から放射された赤外線が入射する。温度計測部77は、検温部に入射する赤外線の入射強度に基づき、溶接領域20の表面温度を非接触で計測する。温度計測部77は、上部フレーム411に適宜な部材を介して支持されており、電極輪11と圧下ロール31との間の空隙に配置される。
 温度計測部77による計測箇所は、溶接領域20における重なり代wの中央部に設定されることが好ましい。
 温度計測部77は、移動体40の走行に伴い、電極輪11,12および圧下ロール31,32と共に、溶接方向yに移動する。
[Temperature measurement section]
As shown in FIG. 8, the temperature measuring section 77, which is a radiation thermometer, is arranged between the electrode wheel 11 and the reduction roll 31 in the welding direction y, with the temperature sensing section (not shown) facing the lower end of the electrode wheel 11. ing. The infrared rays emitted from the surface of the welding region 20 enter the temperature sensing section provided in the temperature measuring section 77 immediately after passing through the electrode wheels 11 and 12. The temperature measuring section 77 measures the surface temperature of the welding area 20 in a non-contact manner based on the intensity of infrared rays incident on the temperature measuring section. The temperature measuring section 77 is supported by the upper frame 411 via a suitable member, and is arranged in the gap between the electrode wheel 11 and the reduction roll 31.
It is preferable that the measurement location by the temperature measurement unit 77 be set at the center of the overlap w in the welding area 20.
The temperature measurement unit 77 moves in the welding direction y together with the electrode wheels 11 and 12 and the reduction rolls 31 and 32 as the moving body 40 travels.
〔溶接良否判定の概要〕
 本実施形態の溶接装置1を用いることにより、例えば図11に概要を示すように、移動体40を例えば後退させながら行われる溶接部10および圧下部30による処理(溶接・圧下ステップS1)と並行して、形状取得部70により圧下前の溶接領域20の段差形状を取得する(段差形状取得ステップS2)。その後、段差形状を示すデータを用いて、第1判定部81により、折れ込み疵の要因となり得る段差形状の良否を判定する(第1判定ステップS3)。
 また、溶接部10および圧下部30による処理(溶接・圧下ステップS1)と並行して、高さ計測値取得部73により圧下前の溶接領域20の高さを取得し(高さ計測値取得ステップS4)、溶接領域20の高さを示すデータを用いて、第2判定部82によりチリ発生について良否判定を行う(第2判定ステップS5)。
[Overview of welding quality judgment]
By using the welding device 1 of this embodiment, for example, as shown in the outline in FIG. Then, the shape acquisition section 70 acquires the step shape of the welding region 20 before rolling (step shape acquisition step S2). Thereafter, using the data indicating the step shape, the first determination unit 81 determines whether or not the step shape, which may be a cause of folding defects, is good or bad (first determination step S3).
In addition, in parallel with the processing by the welding part 10 and the rolling part 30 (welding/rolling step S1), the height measurement value acquisition part 73 acquires the height of the welding area 20 before rolling (height measurement value acquisition step S4) Using the data indicating the height of the welding area 20, the second determination section 82 performs a quality determination regarding the occurrence of dust (second determination step S5).
 第1、第2判定のそれぞれの結果は、例えば図12(a)、(b)に示すように、表示部80によりモニタ801の画面801Aに表示される(表示ステップS6)。溶接不良と判定された場合は、例えば、制御部50等に備わるブザーを鳴らすことにより、溶接装置1のオペレータに報知することが好ましい。ブザーは溶接不良と判定されたことを報知する出力部の一例である。第1、第2判定のそれぞれの結果は、画面801Aに表示されるものではなく、ブザーのみでオペレータに報知されるものであっても良い。
 また、段差形状又はチリ発生の良否が判定されることなく、段差形状又は溶接領域20の高さを示すデータを画面801Aに表示させるようにしても良い。更に、画面801A上の表示の目視により、オペレータが溶接の良否を判定しても良い。
The results of the first and second determinations are displayed on the screen 801A of the monitor 801 by the display unit 80, for example, as shown in FIGS. 12(a) and 12(b) (display step S6). If it is determined that welding is defective, it is preferable to notify the operator of the welding apparatus 1 by, for example, sounding a buzzer provided in the control unit 50 or the like. A buzzer is an example of an output unit that notifies that a welding defect has been determined. The results of the first and second determinations may not be displayed on the screen 801A, but may be notified to the operator only by a buzzer.
Further, data indicating the step shape or the height of the welding area 20 may be displayed on the screen 801A without determining whether the step shape or the occurrence of dust is good or bad. Furthermore, the operator may judge whether the welding is good or bad by visually checking the display on the screen 801A.
 段差形状の不良が発生した場合は、再溶接等の処理が行われる。チリが発生した場合は、電極輪11,12の清掃等の整備が行われる。こうした溶接不良が判明した時点で、再溶接や整備等の準備を開始することで、溶接工程の停止の時間を短く抑えることができる。
 本実施形態によれば、溶接不良を溶接工程の間に把握し、不良の生じた溶接領域20を圧延工程には供給しないことにより、圧延工程には、健全な溶接領域20により接合された鋼板2が供給されるので、溶接領域20の破断を未然に防ぎつつ、連続圧延ラインを高い稼働率で安定操業することができる。
If a defective step shape occurs, processing such as rewelding is performed. If dust occurs, maintenance such as cleaning the electrode wheels 11 and 12 is performed. By starting preparations for re-welding, maintenance, etc. as soon as such welding defects are discovered, the time required to stop the welding process can be kept short.
According to the present embodiment, a welding defect is detected during the welding process, and the welding area 20 in which the defective occurs is not supplied to the rolling process. 2 is supplied, the continuous rolling line can be stably operated at a high operating rate while preventing breakage of the welding area 20.
 溶接装置1は、段差形状に係る第1判定、およびチリ発生に係る第2判定のそれぞれについて、判定を実施するか否かをモード選択により切り替え可能に構成されていてもよい。その場合、第1判定ステップS3および第2判定ステップS5は、必ずしも両方が行われるとは限らず、モードの選択状態に応じて、第1判定のみを実施する、あるいは第2判定のみを実施することが可能である。
 以下、第1判定、第2判定のそれぞれの具体的方法の一例を説明する。第1判定、第2判定に用いられる閾値や、データの相関を示す情報は、例えば制御部50に備わる記憶部に予め記憶させておき、判定を行うプログラムモジュールにより参照するとよい。
The welding apparatus 1 may be configured to be able to switch whether or not to perform the first determination regarding the step shape and the second determination regarding the occurrence of dust by mode selection. In that case, both the first determination step S3 and the second determination step S5 are not necessarily performed, and depending on the mode selection state, only the first determination or only the second determination is performed. Is possible.
Hereinafter, an example of a specific method for each of the first determination and the second determination will be described. The threshold value used for the first determination and the second determination and the information indicating the correlation of data may be stored in advance in, for example, a storage unit provided in the control unit 50, and may be referenced by the program module that performs the determination.
〔段差形状に係る第1判定〕
 以下、第1判定ステップS3について説明する。第1判定ステップS3は、下記の2つの良否判定を含む。
(1)圧下前判定
 段差形状を示す形状データから、角度取得部74により圧下部30による圧下前の溶接領域20の段差角度αを取得し、段差角度αと、温度計測部77により計測された温度τとから、段差角度αおよび温度τにそれぞれ閾値を適用して、圧下前における溶接良否を判定する。
[First judgment regarding step shape]
The first determination step S3 will be explained below. The first determination step S3 includes the following two quality determinations.
(1) Pre-reduction determination From the shape data indicating the step shape, the angle acquisition section 74 acquires the step angle α of the welding area 20 before reduction by the reduction section 30, and the step angle α and the temperature measurement section 77 measure the step angle α. Based on the temperature τ, a threshold value is applied to the step angle α and the temperature τ, respectively, to determine the quality of welding before reduction.
(2)圧下後判定
 試験に基づく圧下前の段差角度Aと圧下後の段差角度Bとの相関を示す情報を用いて、圧下後角度取得部76は、角度取得部74により取得された圧下前の段差角度αから、圧下後の段差角度βを算出する。その段差角度βに、圧下前段差角度αに適用される閾値よりも小さい閾値を適用して、圧下後における溶接良否を判定する。
(2) Post-rolling determination Using information showing the correlation between the step angle A before rolling and the step angle B after rolling based on the test, the post-rolling angle acquisition unit 76 determines the before rolling angle acquired by the angle acquiring unit 74. The step angle β after rolling is calculated from the step angle α. A threshold smaller than the threshold applied to the pre-reduction step angle α is applied to the step angle β, and the quality of welding after reduction is determined.
 本実施形態においては、圧下前判定に加えて圧下後判定を行う。但し、圧下前判定において不良と判定された場合は、圧下後判定を必ずしも行う必要はなく、圧下前判定において不良と判定された時点で、再溶接等の必要な処理に移行するとよい。 In this embodiment, in addition to the pre-rolling determination, the post-rolling determination is performed. However, if it is determined to be defective in the pre-rolling determination, it is not necessarily necessary to perform the post-rolling determination, and it is preferable to proceed to necessary processing such as re-welding at the time when it is determined to be defective in the pre-rolling determination.
圧下前判定の例:
 図13~図18を参照し、圧下前判定について説明する。図13(a)は、溶接装置1を用いて溶接工程を繰り返し行う溶接試験により得られた試験結果(板厚毎)である図14(a)~(c)のデータをまとめて示している。図13(a)、図14(a)~(c)に示す各プロットは、1回の溶接工程により溶接方向yに沿って形成される1つの溶接領域20(シーム)に対応する。
Example of pre-reduction judgment:
The pre-rolling determination will be described with reference to FIGS. 13 to 18. FIG. 13(a) collectively shows the data in FIGS. 14(a) to 14(c), which are the test results (for each plate thickness) obtained from a welding test in which the welding process was repeated using the welding device 1. . Each plot shown in FIGS. 13(a) and 14(a) to (c) corresponds to one welding region 20 (seam) formed along the welding direction y by one welding process.
 溶接試験に用いられた鋼板2の板厚は1.6mmと、3.2mmと、6.0mmである。試験に用いられた鋼板2の鋼種は、普通鋼である低炭素鋼の熱間圧延鋼板である。
 図14(a)~(c)はそれぞれ、レーザ変位計700により得られる形状データから算出された圧下前の溶接領域20の段差角度Aと、温度計測部77により計測される溶接直後の溶接領域20の温度Tとの関係を示している。
 温度Tは、温度計測部77により溶接長に亘り計測される温度の平均の温度に相当する。
The thicknesses of the steel plates 2 used in the welding test were 1.6 mm, 3.2 mm, and 6.0 mm. The steel type of the steel plate 2 used in the test was a hot rolled steel plate of low carbon steel, which is ordinary steel.
14(a) to (c) respectively show the step angle A of the welding area 20 before rolling calculated from the shape data obtained by the laser displacement meter 700, and the welding area immediately after welding measured by the temperature measurement unit 77. The relationship between temperature T and temperature T of 20 is shown.
The temperature T corresponds to the average temperature measured over the welding length by the temperature measuring section 77.
 後述する圧下後判定の閾値を設定するため、溶接試験においては、圧下後の溶接領域20の形状をも計測した。 In the welding test, the shape of the welding area 20 after reduction was also measured in order to set a threshold value for post-reduction determination, which will be described later.
 溶接試験では、溶接領域20に帯状のレーザを通板方向xに沿って線状に入射させ、反射したレーザを撮像素子712に受光させることにより、溶接領域20の段差形状を示す形状データを取得し、その形状データから角度取得部74による演算処理により圧下前の段差角度Aを算出した。かかる溶接試験では、溶接方向yにおいて、レーザを入射させる複数の計測位置を設定した。段差角度Aは、複数の計測位置について得られた形状データから算出した圧下前の段差角度の平均角度に相当する。圧下後の段差角度B(図19)も、複数の計測位置について得られた形状データから算出した圧下後の段差角度の平均角度に相当する。
 段差角度A,Bは、上述した段差角度αの定義に従う。つまり、段差角度A,Bは、図4(a)に示す段差角度αと同様に、後行鋼板22が先行鋼板21から露出している表面sを先行鋼板21側に向けて延長した直線L1に対して先行鋼板21の端面の直線L2がなしている角度に相当する。例えば図6(a)に示すように、変曲点p1,p2から算出される直線L3を端面の直線L2と扱うことで、段差角度A,Bを特定することができる。
In the welding test, a band-shaped laser is linearly incident on the welding area 20 along the sheet passing direction x, and the reflected laser is received by the image sensor 712 to obtain shape data indicating the step shape of the welding area 20. Then, the step angle A before rolling was calculated from the shape data through calculation processing by the angle acquisition section 74. In this welding test, a plurality of measurement positions where the laser is incident were set in the welding direction y. The step angle A corresponds to the average step angle before rolling calculated from the shape data obtained for a plurality of measurement positions. The step angle B after rolling (FIG. 19) also corresponds to the average angle of the step angles after rolling calculated from the shape data obtained for a plurality of measurement positions.
The step angles A and B follow the definition of the step angle α described above. In other words, the step angles A and B are the straight line L1 extending the surface s of the trailing steel plate 22 exposed from the leading steel plate 21 toward the leading steel plate 21, similar to the step angle α shown in FIG. 4(a). This corresponds to the angle that the straight line L2 of the end face of the preceding steel plate 21 makes with respect to the straight line L2. For example, as shown in FIG. 6A, the step angles A and B can be specified by treating the straight line L3 calculated from the inflection points p1 and p2 as the straight line L2 of the end face.
 図13(b)に示す表は、上記溶接試験と同様にして溶接方向yの一の所定位置について取得された圧下前の段差角度Aと、溶接方向yの同一位置における圧下後の横断面(xz面)の画像の目視に基づく折れ込み疵の有無との対応を調査した結果を示している。この調査に用いた鋼板2も、熱間圧延鋼板であり、表のデータは、1.6mm、3.2mm、および6.0mmの板厚が混在している。鋼種は、図13(a)と同様、普通鋼である低炭素鋼の熱間圧延鋼板である。
 図15(a)、(b)および図16(a)、(b)は、当該調査のために撮像された複数の画像から抽出された画像を示している。
The table shown in FIG. 13(b) shows the step angle A before rolling obtained at one predetermined position in the welding direction y in the same manner as the above welding test, and the cross section after rolling at the same position in the welding direction y ( The results of an investigation into the presence or absence of folding flaws based on visual inspection of the image (xz plane) are shown. The steel plate 2 used in this investigation is also a hot rolled steel plate, and the data in the table includes a mixture of plate thicknesses of 1.6 mm, 3.2 mm, and 6.0 mm. The steel type is a hot-rolled steel plate of low carbon steel, which is ordinary steel, as in FIG. 13(a).
15(a), (b) and FIG. 16(a), (b) show images extracted from a plurality of images taken for the investigation.
 図15(a)の上段は、圧下前における横断面の画像を示し、図15(a)の下段は、溶接方向yの同一位置における圧下後(圧下部30による平坦処理後)の横断面の画像を示している。図15(b)、図16(a)および(b)も同様である。
 図15(a)および(b)のいずれも、圧下前の段差角度Aが90度を超えており、圧下後には折れ込み疵203が発生したケースに該当する。圧下前に段差角度Aが90度を超えていると、圧下時に段差の凸の部位204が段差の内側へ倒れて折れ込む方向に変形し易い。折れ込み疵203に向けてレーザを照射したとしても、折れ込み疵203の空隙にはレーザが入射しないので、反射したレーザにより折れ込み疵203を撮像素子712に結像させることはできない。
The upper part of FIG. 15(a) shows the cross-sectional image before rolling, and the lower part of FIG. 15(a) shows the cross-sectional image after rolling (after flattening by rolling part 30) at the same position in the welding direction y. The image is shown. The same applies to FIG. 15(b), FIG. 16(a), and FIG. 16(b).
Both of FIGS. 15A and 15B correspond to cases in which the step angle A before rolling exceeds 90 degrees, and folding flaws 203 occur after rolling. If the step angle A exceeds 90 degrees before rolling down, the convex portion 204 of the step is likely to be deformed in the direction of falling and folding inside the step during rolling down. Even if a laser is irradiated toward the folding flaw 203, the laser does not enter the gap of the folding flaw 203, so the folding flaw 203 cannot be imaged on the imaging element 712 by the reflected laser.
 一方、図16(a)および(b)のいずれにおいても、圧下前の段差角度Aが90度を下回っており、圧下後に折れ込み疵203は発生していない。圧下前に段差角度Aが90度未満であるのならば、圧下時には段差が開く方向dへと変形する。 On the other hand, in both FIGS. 16(a) and 16(b), the step angle A before rolling is less than 90 degrees, and folding flaws 203 do not occur after rolling. If the step angle A is less than 90 degrees before rolling down, the step is deformed in the direction d in which the step opens during rolling down.
 図13(b)に示す圧下前の段差角度Aと、圧下による折れ込み疵203の発生有無との対応関係から、ライン操業時に角度取得部74により取得される圧下前の段差角度αに適用される第1角度閾値t1は、例えば90度に設定することができる。
 ここで、板厚が異なっていても、同じ第1角度閾値t1を使用することができるので、簡便である。
 また、十分な溶接強度を得るために必要な温度として、ライン操業時に温度計測部77により計測される溶接直後の温度τに適用される温度閾値ttは、板厚、鋼種、およびライン通板条件等を考慮して、適宜な温度に設定することができる。
 「ライン通板条件」は、溶接された鋼板2の供給先(圧延工程、あるいは酸洗工程等の他の工程)等に相当する。
Based on the correspondence between the step angle A before rolling shown in FIG. 13(b) and the occurrence of folding flaws 203 due to rolling, it is applied to the step angle α before rolling obtained by the angle acquisition unit 74 during line operation. The first angle threshold t1 can be set to 90 degrees, for example.
Here, even if the plate thicknesses are different, the same first angle threshold value t1 can be used, which is convenient.
In addition, the temperature threshold tt applied to the temperature τ immediately after welding measured by the temperature measurement unit 77 during line operation as the temperature necessary to obtain sufficient welding strength is determined by the plate thickness, steel type, and line threading conditions. The temperature can be set at an appropriate temperature by considering the following.
The "line threading conditions" correspond to the supply destination of the welded steel sheets 2 (rolling process or other processes such as pickling process), etc.
 板厚が大きいほど、計側温度τが高いので、より高い温度閾値ttに設定すると良い。温度閾値ttの一例として、図14(a)~(c)には、板厚毎の温度tt-a,tt-b,tt-cを示す。
 図14(a)~(c)のそれぞれのプロットの分布状態は、第1角度閾値t1と、板厚毎の温度閾値(tt-a,tt-a,tt-c)とにより良(OK)と判定される領域と良く一致している。
The larger the plate thickness, the higher the meter side temperature τ, so it is preferable to set a higher temperature threshold tt. As an example of the temperature threshold value tt, FIGS. 14(a) to 14(c) show temperatures tt-a, tt-b, and tt-c for each plate thickness.
The distribution state of each plot in FIGS. 14(a) to (c) is determined to be OK depending on the first angle threshold value t1 and the temperature threshold value (tt-a, tt-a, tt-c) for each plate thickness. It matches well with the area judged as .
 鋼種に応じて温度閾値ttを可変に設定しても良い。図17(a)~(c)および図18(a)~(c)は、普通鋼と高張力鋼とで板厚毎に温度閾値ttを設定する例を示している。各グラフは、上述の溶接試験において計測された溶接直後の溶接領域20の温度Tと、エリクセン試験に基づく溶接領域20のエリクセン値(破断時の伸びを示す)の母材比との関係を示している。これらのデータに基づくと、鋼種毎・板厚毎の温度閾値ttとして、例えば、溶接領域20のエリクセン値が母材のエリクセン値の60%以上となる温度Tを採用することができる。図14(a)~(c)に示す温度閾値tt-a,tt-b,tt-cはそれぞれ、図17(a)~(c)に示す600℃,650℃,700℃に対応している。 The temperature threshold tt may be set variably depending on the steel type. FIGS. 17(a) to (c) and FIGS. 18(a) to (c) show examples in which the temperature threshold value tt is set for each plate thickness for ordinary steel and high-strength steel. Each graph shows the relationship between the temperature T of the welding area 20 immediately after welding measured in the above-mentioned welding test and the base metal ratio of the Erichsen value (indicating the elongation at break) of the welding area 20 based on the Erichsen test. ing. Based on these data, for example, a temperature T at which the Erichsen value of the welding region 20 is 60% or more of the Erichsen value of the base metal can be adopted as the temperature threshold value tt for each steel type and plate thickness. The temperature thresholds tt-a, tt-b, and tt-c shown in FIGS. 14(a) to (c) correspond to 600°C, 650°C, and 700°C shown in FIGS. 17(a) to (c), respectively. There is.
 以上より、本実施形態の第1判定部81は、圧下前の段差角度αが第1角度閾値t1以下の場合で、かつ、温度τが温度閾値tt以上の場合は、段差角度αおよび温度τのいずれも良(OK)であるため、圧下前の溶接状態が良であると判定する。それ以外の場合には、第1判定部81は、圧下前の溶接状態が不良であると判定する。 From the above, the first determination unit 81 of the present embodiment determines that when the step angle α before rolling is less than or equal to the first angle threshold t1, and when the temperature τ is greater than or equal to the temperature threshold tt, the step angle α and the temperature τ Since all of these are OK, it is determined that the welding condition before rolling down is good. In other cases, the first determination unit 81 determines that the welding state before rolling is poor.
 レーザ変位計700を用いて圧下前の形状を取得することによれば、圧下部30による圧下処理により段差が折れ込みレーザで形状を計測不能になる前に、折れ込み疵を発生させる可能性のある段差形状の異常を捉えることができる。加えて、圧下処理により溶接領域20の表面に生じるスケールの付着状態が表面形状の計測値に影響を与えることなく、表面形状を安定して精度よく計測することができる。 By obtaining the shape before rolling using the laser displacement meter 700, it is possible to eliminate the possibility of folding defects before the step is bent due to the rolling process by the rolling unit 30 and the shape cannot be measured with a laser. It is possible to detect abnormalities in the shape of certain steps. In addition, the scale adhesion state generated on the surface of the welding region 20 due to the rolling process does not affect the measured value of the surface shape, so that the surface shape can be measured stably and accurately.
 第1判定部81は、温度τや段差角度αに加え、溶接後で圧下前の段差高さh(図4(b))にも基づいて良否判定を行うことができる。下記の参考文献2に記載のFig.7に基づき、段差高さhが大きいほど、折れ込み疵が発生した場合に折れ込み疵の深さが大きい。
〔参考文献2〕
斎藤 武彦・富永 憲明・河角 知美・田方 浩智・湯川 信樹・石川 孝司:塑性と加工(日本塑性加工学会誌),第55巻 第647号(2014-5),451-455頁.「マッシュシーム溶接部の段差平坦化に及ぼすクロススウェージングの影響」
The first determination unit 81 can perform a quality determination based on not only the temperature τ and the step angle α but also the step height h after welding and before reduction (FIG. 4(b)). Based on FIG. 7 described in Reference 2 below, the larger the step height h is, the greater the depth of the fold-in flaw when it occurs.
[Reference 2]
Takehiko Saito, Noriaki Tominaga, Tomomi Kawazumi, Hirotomo Tagata, Nobuki Yukawa, Takashi Ishikawa: Plasticity and Processing (Journal of the Japan Society for Plastic Processing), Vol. 55, No. 647 (2014-5), pp. 451-455. "Effect of cross swaging on leveling of mash seam welds"
 そのため、ライン操業時において第1判定部81は、計測温度τが温度閾値tt以上で、かつ段差角度αが第1角度t1以下であって、さらに段差高さhが所定の閾値以下である場合に、溶接状態が「良」と判定することができる。段差高さhは、段差形状データ取得部72により得られた溶接領域20の形状データから、段差高さ取得部75による演算により取得することができる。 Therefore, during line operation, the first determination unit 81 determines that when the measured temperature τ is equal to or higher than the temperature threshold value tt, the step angle α is equal to or less than the first angle t1, and the step height h is equal to or less than a predetermined threshold value. Therefore, it is possible to determine that the welding condition is "good". The step height h can be obtained from the shape data of the welding region 20 obtained by the step shape data acquisition section 72 through calculation by the step height acquisition section 75 .
 温度τが温度閾値tt以上であることが担保される場合、例えば、オペレータが溶接領域20の赤熱状態を目視により確認している場合等は、形状データから取得された圧下前段差角度αに第1角度閾値t1を適用することのみによって、圧下前の溶接良否を判定することが許容される。 When it is ensured that the temperature τ is equal to or higher than the temperature threshold tt, for example, when the operator visually confirms the red-hot state of the welding area 20, the pre-rolling step angle α obtained from the shape data is Only by applying the one-angle threshold value t1, it is possible to judge the quality of welding before reduction.
 第1角度閾値t1および温度閾値ttは、ライン通板条件に応じて次のように決めても良い。
溶接された鋼板が圧延工程に供給される場合(本実施形態):
 この場合には、高い溶接強度が求められ、非圧延ラインと比較すると、段差が折れ込み疵となって溶接領域20が破断する可能性が高い。そのため、圧延に耐える接合強度を得るために温度閾値ttを非圧延ラインと比較して高めに設定するとともに、第1角度閾値t1を90度に設定すると良い。
The first angle threshold value t1 and the temperature threshold value tt may be determined as follows depending on the line threading conditions.
When welded steel plates are supplied to the rolling process (this embodiment):
In this case, high welding strength is required, and compared to a non-rolling line, there is a high possibility that the step will become a folding flaw and the weld area 20 will break. Therefore, in order to obtain a joint strength that can withstand rolling, it is preferable to set the temperature threshold value tt higher than that of a non-rolling line, and to set the first angle threshold value t1 to 90 degrees.
 溶接された鋼板が圧延工程に供給されない場合:
 例えば、溶接された鋼板2に対して酸洗のみが行われる場合に該当する。こうした場合には、溶接強度はさほど必要なく、折れ込み疵から破断に至る可能性は低い。そのため、温度閾値ttを圧延ラインと比較して低めに設定すると良い。鋼板2が張力の低い鋼種であって、鋼板2が圧延工程には供給されない場合には、エリクセン値母材比が例えば30%となる温度T(図17(a)~(c))を温度閾値ttに設定することができる。
 溶接された鋼板2が圧延工程に供給されない場合は、第1角度閾値t1を設定しなくても良い。つまり、ライン通板条件に鑑みて、溶接領域20に破断が生じる可能性が低い場合には、必ずしも、レーザ変位計700を用いて取得される形状データから段差角度αを算出する必要はなく、その場合に、第1判定部81が、段差角度αではなく、計測温度τのみに基づいて溶接状態の良否を判定することは許容される。
If the welded steel plate is not fed into the rolling process:
For example, this applies when only pickling is performed on the welded steel plates 2. In such a case, welding strength is not so required, and the possibility of breakage from folding flaws is low. Therefore, it is preferable to set the temperature threshold value tt to be lower than that of the rolling line. If the steel plate 2 is a low-tension steel type and is not supplied to the rolling process, the temperature T at which the Erichsen value base material ratio is, for example, 30% (FIGS. 17(a) to (c)) is set as the temperature. The threshold value tt can be set.
If the welded steel plate 2 is not supplied to the rolling process, it is not necessary to set the first angle threshold t1. In other words, if there is a low possibility that a break will occur in the welding area 20 in view of the line threading conditions, it is not necessarily necessary to calculate the step angle α from the shape data obtained using the laser displacement meter 700. In that case, it is permissible for the first determination unit 81 to determine the quality of the welding state based only on the measured temperature τ instead of the step angle α.
圧下後判定の例:
 図19を参照し、圧下後判定について説明する。圧下後の段差角度が大きい場合は、圧延工程で折れ込み疵が生じて圧延工程またはその後の工程で破断が発生する可能性が高まる。そのため、圧下前の段差角度に基づく圧下前判定に加え、圧下後の段差角度に基づく圧下後判定をも行うことが好ましい。
Example of judgment after reduction:
Referring to FIG. 19, the post-rolling determination will be described. If the step angle after rolling is large, there is a high possibility that folding defects will occur during the rolling process and breakage will occur during the rolling process or subsequent processes. Therefore, in addition to the pre-rolling determination based on the step angle before rolling, it is preferable to also perform the post-rolling determination based on the step angle after rolling.
 図19には、図13(a)、図14(a)~(c)を参照して説明した溶接試験の際に得られた圧下前の段差角度Aと、同じ試験の際に得られた圧下後の段差角度Bとの関係を示す。
 この溶接試験における圧下後の段差形状の計測は、圧延前の段差形状計測に用いるものと同一のレーザ変位計700により行われる。そのため、移動体40を後退させながら行われる溶接ステップおよび圧下ステップの後、鋼板2をクランプC1,C2で把持したまま、再度、移動体40を前進させて後退させつつレーザ変位計700により段差形状を計測する。再度の後退時には、電極輪11,12および圧下ロール31,32は鋼鈑2から退避させている。
 図19に示すプロットにばらつきはあるものの、圧下前の段差角度Aと圧下後の段差角度Bとの間には相関関係が存在する。つまり、横軸の圧下前段差角度Aに係数εを乗じた値εAが大きいほど、圧下後の段差角度Bが大きい。プロットから、近似直線L5または近似曲線を引くことが可能である。
 鋼種が異なる場合は、高温状況下における引張力に対する強度が異なるので、それを一因として近似曲線の傾きが相違する場合がある。
FIG. 19 shows the step angle A before reduction obtained during the welding test explained with reference to FIGS. 13(a) and 14(a) to (c), and the step angle A obtained during the same test. The relationship with the step angle B after rolling down is shown.
The measurement of the step shape after rolling in this welding test is performed by the same laser displacement meter 700 used for measuring the step shape before rolling. Therefore, after the welding step and the rolling step that are performed while moving the moving body 40 backward, the step shape is measured by the laser displacement meter 700 while moving the moving body 40 forward and backward again while holding the steel plate 2 with the clamps C1 and C2. Measure. When retreating again, the electrode wheels 11 and 12 and the reduction rolls 31 and 32 are retracted from the steel plate 2.
Although there are variations in the plots shown in FIG. 19, there is a correlation between the step angle A before rolling and the step angle B after rolling. In other words, the larger the value εA obtained by multiplying the step angle A before rolling by the coefficient ε on the horizontal axis, the larger the step angle B after rolling. It is possible to draw an approximate straight line L5 or an approximate curve from the plot.
When the steel types are different, the strength against tensile force under high temperature conditions is different, and this may be one reason why the slopes of the approximate curves may be different.
 係数εは、鋼板2において圧下ロール31,32により圧下される部位の断面積(溶接後で圧下前の重なり代wと、段差高さhとの積に相当)と、圧下部位の変形の容易さ(計測温度Tに依存)と、圧下ロール31,32の加圧力(swaging pressure)との関係から定めることができる。なお、段差高さhが大きいほど、圧下ロール31,32による圧下後の段差角度Bが大きい傾向にある。 The coefficient ε is calculated based on the cross-sectional area of the part of the steel plate 2 that is rolled down by the rolling rolls 31 and 32 (corresponding to the product of the overlap w after welding and before rolling and the step height h), and the ease with which the rolled part is deformed. It can be determined from the relationship between the temperature (depending on the measured temperature T) and the swaging pressure of the reduction rolls 31 and 32. Note that the larger the step height h, the larger the step angle B after rolling down by the rolling down rolls 31 and 32 tends to be.
 ライン操業時において、圧下後角度取得部76は、角度取得部74により得られる圧下前の段差角度αと、係数εと、近似直線L5とを用いる演算により、圧下後の段差角度βを得ることができる。 During line operation, the post-rolling angle acquisition section 76 obtains the step angle β after rolling down by calculation using the step angle α before rolling obtained by the angle acquiring section 74, the coefficient ε, and the approximate straight line L5. Can be done.
 圧下後の段差角度βの値が大きい場合は、圧下前の段差角度αが同一の値であった場合と比べ、圧延工程で折れ込み疵が生じる可能性が高まる。そのため、ライン操業時に圧下後角度取得部76により取得される圧下後の段差角度βに適用される第2角度閾値t2は、例えば75度に設定することができる。第2角度閾値t2は、第1角度閾値t1よりも小さいことが好ましい。
 図19には、圧下後段差角度Bが75度以上を白丸のプロットで示し、75度未満を黒丸のプロットで示している。
 第2角度閾値t2は、例えば、図20に示す圧下後であって圧延前の段差角度βと圧延後の疵の状態との相関に基づいて、60度以上、75度以下に定められることが好ましい。図20は、下記参考文献3に記載のFig.7に相当する。
〔参考文献3〕
斎藤 武彦・富永 憲明・湯川 信樹・石川 孝司・田方 浩智・佐藤 恵一:塑性と加工(日本塑性加工学会誌),第54巻 第626号(2013-3),267-271頁.「溶接部の段差折れ込み変形を防止したマッシュシーム溶接機の開発」
When the value of the step angle β after rolling is large, the possibility of folding defects occurring in the rolling process increases compared to when the step angle α before rolling is the same value. Therefore, the second angle threshold t2 applied to the post-rolling step angle β acquired by the post-rolling angle acquisition unit 76 during line operation can be set to, for example, 75 degrees. The second angle threshold t2 is preferably smaller than the first angle threshold t1.
In FIG. 19, a plot of white circles indicates that the step angle B after rolling is 75 degrees or more, and a plot of black circles indicates that the step angle B is less than 75 degrees.
The second angle threshold t2 may be determined to be 60 degrees or more and 75 degrees or less, for example, based on the correlation between the step angle β after rolling and before rolling shown in FIG. 20 and the state of flaws after rolling. preferable. FIG. 20 corresponds to FIG. 7 described in Reference 3 below.
[Reference 3]
Takehiko Saito, Noriaki Tominaga, Nobuki Yukawa, Takashi Ishikawa, Hirotomo Tagata, Keiichi Sato: Plasticity and Processing (Journal of the Japan Society for Plastic Processing), Vol. 54, No. 626 (2013-3), pp. 267-271. "Development of a mash seam welding machine that prevents step bending deformation of welded parts"
 以上より、本実施形態の第1判定部81は、圧下後の段差角度βが例えば75度未満であるのならば、圧下後の溶接状態が良であると判定し、圧下後の段差角度βが75度以上であるのならば、圧下後の溶接状態が不良であると判定する。 From the above, the first determination unit 81 of the present embodiment determines that the welding condition after reduction is good if the step angle β after reduction is less than 75 degrees, and the step angle β after reduction is determined to be good. If it is 75 degrees or more, it is determined that the welding condition after reduction is poor.
 第2角度閾値t2は、第1角度閾値t1と同様に、板厚、鋼種、ライン通板条件によって適宜な値に定めることが可能である。
 図19のプロットに関し、板厚が1.6~6.0mmの範囲内では、板厚が異なっていても、プロットのばらつきは同様の傾向を示す。そのため、板厚が異なっていても、同じ第2角度閾値t2を使用することができるので、簡便である。なお、板厚毎のプロットの分布のばらつきが大きい場合は、板厚毎に第2角度閾値t2を設定するとよい。
Like the first angle threshold t1, the second angle threshold t2 can be set to an appropriate value depending on the plate thickness, steel type, and line threading conditions.
Regarding the plot in FIG. 19, within the range of plate thickness from 1.6 to 6.0 mm, the plot variations show the same tendency even if the plate thickness is different. Therefore, even if the plate thicknesses are different, the same second angle threshold value t2 can be used, which is convenient. In addition, when the dispersion of the plot distribution for each plate thickness is large, it is preferable to set the second angle threshold value t2 for each plate thickness.
 圧下前における溶接状態の良否判定に加え、圧下後における溶接状態の良否判定をも行うことによれば、圧下前においては良判定された場合でも、圧下後の段差角度βに基づき、その後の圧延工程において折れ込み疵に繋がるケースを捕捉することができる。
 ここで、図15(a)および(b)に示すように圧下時に折れ込み疵を発生するケースを想定すると、折れ込み疵の空隙にはレーザが入射しないので、圧下後にのみ段差形状を取得し、段差形状に対応する段差角度βに基づいて良否判定を行うだけでは、圧下時に折れ込み疵が発生した場合に異常な形状を検知することができない。
 以上より、圧下前の段差形状に基づく良品判定と、圧下後の段差形状に基づく良否判定とは、補完関係にある。
In addition to determining the quality of the welding state before rolling, we also determine the quality of the welding after rolling. Even if the welding state is determined to be good before rolling, the subsequent rolling process is determined based on the step angle β after rolling. It is possible to catch cases that lead to folding defects in the process.
Here, assuming a case where folding flaws occur during rolling as shown in Figures 15(a) and (b), since the laser does not enter the gap of folding scratches, the step shape is obtained only after rolling. However, if a pass/fail judgment is only made based on the step angle β corresponding to the step shape, it is not possible to detect an abnormal shape when a folding flaw occurs during rolling down.
As described above, the quality determination based on the step shape before rolling and the quality determination based on the step shape after rolling are in a complementary relationship.
 本実施形態のように圧下前と圧下後との両方において段差角度を取得し良否判定するとしても、図19に示すような圧下前段差角度Aと圧下後段差角度Bとの相関関係に基づき、圧下前段差角度αから演算により圧下後段差角度βを算出しているので、レーザ変位計700を1台のみ、圧下前の形状を取得するために設置すれば足りる。
 本実施形態によれば、生産時に溶接装置1に設置されるレーザ変位計700が1台で済むので、2台のレーザ変位計700をフレーム41に設置し、圧下前と圧下後とのそれぞれにおいて形状データを取得し、圧下前の形状データおよび圧下後の形状データを用いて角度取得部74により同じ処理を繰り返して圧下前段差角度αと圧下後段差角度βとを取得する場合と比べて装置コストを抑えることができる。
Even if the step angles are obtained both before and after rolling down to determine the quality, as in this embodiment, based on the correlation between the step angle A before rolling and the step angle B after rolling, as shown in FIG. Since the post-rolling step difference angle β is calculated from the pre-rolling step difference angle α, it is sufficient to install only one laser displacement meter 700 to obtain the shape before rolling.
According to this embodiment, only one laser displacement meter 700 is installed in the welding device 1 during production, so two laser displacement meters 700 are installed in the frame 41, and each of the laser displacement meters 700 is installed before and after rolling down. Compared to the case where shape data is acquired and the same process is repeated by the angle acquisition unit 74 using the shape data before rolling and the shape data after rolling to obtain the step difference angle α before rolling and the step difference angle β after rolling, the apparatus is Costs can be reduced.
〔チリ発生に係る第2判定〕
 次に、図21および図22を参照し、第2判定ステップS5について説明する。チリ発生有無の判定は、チリの発生時に溶接領域20において溶接方向yに表れる高さ変化を示す形状に基づいて行われる。レーザ変位計700が設置される移動体40の移動に伴い、図21(a)に示すように溶接方向yに沿って線状のレーザが照射される照射位置p3を移動させながら、高さ計測値を周期的に取得することにより、例えば、図21(b)または(c)に示すデータを得ることができる。このとき照射位置p3は、例えば、電流密度の大きい、2枚の鋼板2の重ね代における通板方向xの中心に設定される。
[Second judgment regarding dust outbreak]
Next, the second determination step S5 will be explained with reference to FIGS. 21 and 22. The determination as to whether or not dust has occurred is made based on the shape that shows the height change that appears in the welding direction y in the welding area 20 when dust is generated. As the moving body 40 on which the laser displacement meter 700 is installed moves, the height is measured while moving the irradiation position p3 where the linear laser is irradiated along the welding direction y as shown in FIG. 21(a). By periodically acquiring the values, for example, data shown in FIG. 21(b) or (c) can be obtained. At this time, the irradiation position p3 is set, for example, at the center of the overlapping margin of the two steel plates 2 in the sheet passing direction x, where the current density is high.
 レーザ変位計700は、出射したレーザと、反射したレーザとを用いて、出射部711と溶接領域20との距離(溶接領域20の高さ)を三角測量により計測することができる。レーザ変位計700の出射部711から出射されたレーザは、溶接部10と、圧下部30との間で溶接領域20に照射されるので、圧下ロール31,32によりチリが押し潰される前に、溶接領域20の高さを示すデータを取得してチリを検出することができる。 The laser displacement meter 700 can measure the distance between the emitting part 711 and the welding area 20 (the height of the welding area 20) by triangulation using the emitted laser and the reflected laser. Since the laser emitted from the emission part 711 of the laser displacement meter 700 is irradiated to the welding area 20 between the welding part 10 and the rolling part 30, before the dust is crushed by the rolling rolls 31 and 32, Dust can be detected by acquiring data indicating the height of the welding area 20.
 チリ発生に係る良否判定を行うにあたり、溶接装置1に設置したレーザ変位計700を用いて、溶接領域20の高さの計測試験を行った。図21(b)は、フレーム41の走行に伴い溶接方向yに移動するレーザ変位計700により、チリが発生していない時に溶接長に亘って周期的に計測された溶接領域20の高さの計測値の集合を示している。
 図21(c)は、チリが発生した場合に同様に計測された高さの計測値の集合を示している。チリの発生に伴い計測値が変動している。
In performing the quality determination regarding dust generation, a measurement test of the height of the welding area 20 was conducted using a laser displacement meter 700 installed in the welding apparatus 1. FIG. 21(b) shows the height of the welding area 20 periodically measured over the welding length when no dust is generated by a laser displacement meter 700 that moves in the welding direction y as the frame 41 travels. Shows a collection of measured values.
FIG. 21(c) shows a set of height measurement values similarly measured when dust occurs. Measured values are fluctuating due to the occurrence of dust.
 鋼板2が平坦であり、正常時には溶接長に亘り溶接領域20が高さ方向(上下方向z)に殆ど変位していない場合は、溶接領域20の高さ計測値に閾値を適用してチリが発生しているか否かを判定することができる。
 しかし、図21(b)に示すように、チリが発生していない正常時でも、溶接方向yにおける重ね代の変化等に起因して、溶接方向yにおける高さの変化が見られる場合がある。そうした場合は、チリが発生している場合とチリが発生していない場合とを判別するための閾値の設定が難しい。閾値を小さくすることが難しいので、表面からの突出量の小さなチリを検出することは難しい。
If the steel plate 2 is flat and the welding area 20 is hardly displaced in the height direction (vertical direction z) over the welding length under normal conditions, a threshold value is applied to the height measurement value of the welding area 20 to remove dust. It is possible to determine whether or not this has occurred.
However, as shown in Fig. 21(b), even under normal conditions when no dust occurs, changes in the height in the welding direction y may be observed due to changes in the overlap margin in the welding direction y. . In such a case, it is difficult to set a threshold value for determining when dust is occurring and when dust is not occurring. Since it is difficult to reduce the threshold value, it is difficult to detect small particles that protrude from the surface.
 しかし、溶融金属が噴出するチリの現象より、溶接領域20にチリが存在する箇所では、図21(b)に示すように、チリが存在しない表面に対して高さが急激に変化している。
 図22(a)は、図21(b)に示す高さデータから溶接長の両端の非定常範囲r3を除き、隣接する高さ計測値間の変化量を算出して示すものである。図22(b)は、図21(c)に示す高さデータから溶接長の両端の非定常範囲r3を除き、隣接する高さ計測値間の変化量を算出して示すものである。
However, due to the phenomenon of dust ejecting molten metal, the height of the part where dust exists in the welding area 20 changes rapidly compared to the surface where dust does not exist, as shown in FIG. 21(b). .
FIG. 22(a) shows the calculated amount of change between adjacent height measurement values, excluding the unsteady range r3 at both ends of the welding length from the height data shown in FIG. 21(b). FIG. 22(b) shows the calculated amount of change between adjacent height measurement values, excluding the unsteady range r3 at both ends of the welding length from the height data shown in FIG. 21(c).
 図22(a)に示すように、正常時における高さの変化量は実質的に0であるから、高さの変化量には、図21(b)および(c)に示す高さの計測値に閾値を与える場合と比べて小さな閾値thを与えることができる。そのため、チリの規模を問わず、チリの形状が示す溶接領域20の高さの変化量に基づいてチリを精度良く検出することができる。閾値thは、図22(a)および(b)に示すデータの場合は、例えば0.5mmに設定することができる。 As shown in FIG. 22(a), the amount of change in height under normal conditions is substantially 0, so the amount of change in height includes the height measurement shown in FIGS. 21(b) and (c). It is possible to provide a smaller threshold value th compared to the case where a threshold value is given to the value. Therefore, regardless of the scale of the dust, dust can be detected with high accuracy based on the amount of change in the height of the welding region 20 indicated by the shape of the dust. The threshold value th can be set to 0.5 mm, for example, in the case of the data shown in FIGS. 22(a) and 22(b).
 板厚に対してチリの規模が大きい場合、特に板厚が薄い場合は、チリが発生した箇所に板厚方向に貫通した孔が形成される場合がある。その場合、レーザ変位計700は、出射レーザに対応する反射レーザが存在しないため計測不能となり、貫通孔の開口の大きさに相応の区間に亘り計測値データが無い(欠損する)。 If the scale of the dust is large relative to the thickness of the plate, especially if the thickness of the plate is thin, holes penetrating in the thickness direction of the plate may be formed where the dust occurs. In that case, the laser displacement meter 700 becomes unable to measure because there is no reflected laser corresponding to the emitted laser, and there is no measured value data (missing) over a section corresponding to the opening size of the through hole.
 以上より、本実施形態の第2判定部82は、ライン操業時において、高さ計測値取得部73により取得される高さの計測値から変化量を演算により取得し、高さ変化量が閾値thを超えた場合に加えて、計測値データの有無を示す情報を用いて所定区間に亘り計測値データが欠損している場合に、チリが発生したと判定することができる。
 図12(b)の画面801Aには、計測値データの有無に係る情報として、チリの発生箇所に貫通孔があいていることが表示されている。この他、画面801Aには、表示部80により、図21(b)・(c)に示す高さの計測値や、図22(a)・(b)に示す高さ変化量を表示させることもできる。
As described above, the second determination unit 82 of the present embodiment calculates the amount of change from the height measurement value acquired by the height measurement value acquisition unit 73 during line operation, and determines that the amount of height change is the threshold value. In addition to the case where the measured value data exceeds th, it can be determined that dust has occurred when the measured value data is missing over a predetermined section using information indicating the presence or absence of the measured value data.
The screen 801A in FIG. 12(b) displays, as information regarding the presence or absence of measured value data, that there is a through hole at the location where dust is generated. In addition, on the screen 801A, the height measurement values shown in FIGS. 21(b) and 21(c) and the height change amount shown in FIGS. 22(a) and 22(b) are displayed on the display unit 80 You can also do it.
 本実施形態の第2判定ステップS5においては、溶接領域20に表出した溶融金属の形状に基づいてチリを精度良く検出することができるので、温度計測部77により計測される温度をチリ判定のために併用する必要はない。温度計測部77により得られる温度計測値は、溶接領域20が接触する電極輪11,12の表面の荒れ等による温度のムラに起因してばらつきが大きい。そのため、溶接長に亘る温度計測値の平均温度や温度差等を算出したとしても、温度のデータから正常時とチリ発生時とを判別することは難しい。
 本実施形態によれば、温度や電圧等の他の物理量を併用することなく、溶接領域20の表面形状のみに基づいてチリ発生を精度良く検出することができる。
In the second determination step S5 of the present embodiment, since dust can be detected with high accuracy based on the shape of the molten metal exposed in the welding area 20, the temperature measured by the temperature measuring section 77 is used for dust determination. Therefore, there is no need to use them together. The temperature measurement values obtained by the temperature measuring section 77 vary widely due to temperature unevenness due to roughness of the surfaces of the electrode wheels 11 and 12 with which the welding region 20 comes into contact. Therefore, even if the average temperature, temperature difference, etc. of temperature measurement values over the welding length are calculated, it is difficult to distinguish between a normal state and a state where dust occurs from the temperature data.
According to this embodiment, occurrence of dust can be detected with high accuracy based only on the surface shape of the welding area 20 without using other physical quantities such as temperature and voltage in combination.
 第1判定ステップS3が行われる場合、レーザ変位計700は、圧下前の段差の表面形状を取得するために、溶接長における少なくとも1箇所で帯状のレーザを出射し、溶接領域20へライン状に照射する必要がある。レーザ変位計700は、帯状のレーザを出射する時を除き、溶接部10および圧下部30による処理と並行して、溶接長に亘り高さを計測することができる。 When the first determination step S3 is performed, the laser displacement meter 700 emits a band-shaped laser beam at at least one location in the welding length to obtain the surface shape of the step before reduction, and emit a laser beam in a line shape to the welding area 20. need to be irradiated. The laser displacement meter 700 can measure the height over the welding length in parallel with the processing by the welding part 10 and the rolling part 30, except when emitting a belt-shaped laser beam.
 なお、段差の表面形状を計測しないで、専ら、チリ発生に係る第2判定のみを行うとすれば、二次元のレーザ変位計700は必要なく、一次元のレーザ変位計やレーザ距離計を使用することができる。
 その場合は、出射レーザの光軸A1を上下方向zに対して傾斜させる必要はないため、使用するレーザ変位計やレーザ距離計が溶接部10や圧下部30、クランプC1,C2等の周囲の部材と干渉しないのならば、上部フレーム411と、照射位置p3とを結ぶ直線L4上にレーザ変位計700を配置するとともに、出射光軸A1を上下方向zに沿って設定することができる。
Note that if only the second judgment regarding the occurrence of dust is performed without measuring the surface shape of the step, the two-dimensional laser displacement meter 700 is not necessary, and a one-dimensional laser displacement meter or laser distance meter is used. can do.
In that case, there is no need to tilt the optical axis A1 of the emitted laser with respect to the vertical direction z, so the laser displacement meter or laser distance meter used can be As long as it does not interfere with the member, the laser displacement meter 700 can be placed on the straight line L4 connecting the upper frame 411 and the irradiation position p3, and the output optical axis A1 can be set along the vertical direction z.
 第2判定には、溶接方向yに並ぶ多数の出射部711を備え、溶接長に亘る高さ計測が可能な長尺状のレーザ変位計を用いることも考えられる。そうしたレーザ変位計を用いる場合は、溶接長に亘りレーザが照射される位置に当該レーザ変位計の位置を固定して、溶接部10と圧下部30との間でチリが圧下される前の溶接領域20の高さを複数回に亘り計測すると良い。溶接長をいくつかに分割して得られた複数の高さ計測データを繋ぎ合わせることで、図21(b)・(c)に示すような高さ計測値データを取得することができ、高さ計測値データから、図22(a)・(b)に示すような高さ変化量を取得することもできる。 For the second determination, it is also possible to use a long laser displacement meter that is equipped with a large number of emission parts 711 lined up in the welding direction y and that can measure the height over the welding length. When using such a laser displacement meter, the position of the laser displacement meter is fixed at a position where the laser is irradiated over the welding length, and the welding is performed before dust is rolled down between the welding part 10 and the rolling part 30. It is preferable to measure the height of the region 20 multiple times. By connecting multiple pieces of height measurement data obtained by dividing the weld length into several parts, it is possible to obtain height measurement data as shown in Figures 21(b) and (c). It is also possible to obtain height change amounts as shown in FIGS. 22(a) and 22(b) from the height measurement value data.
〔段差形状の計測位置〕
 図23は、段差の表面形状を計測する位置mを示している。計測位置mは、溶接領域20の溶接方向yにおける1つ以上の任意の位置であってよい。複数の計測位置mにおいて計測する場合は、それぞれの位置について得られた形状データから算出した段差角度の平均角度を求め、平均段差角度を段差形状の良否判定に用いることができる。
 なお、図23は、溶接方向yの寸法を実際の寸法よりも縮小して示している。
[Measurement position of step shape]
FIG. 23 shows the position m at which the surface shape of the step is measured. The measurement position m may be one or more arbitrary positions in the welding direction y of the welding area 20. When measuring at a plurality of measurement positions m, the average angle of the step angles calculated from the shape data obtained for each position can be determined, and the average step angle can be used to determine the quality of the step shape.
Note that FIG. 23 shows the dimensions in the welding direction y smaller than the actual dimensions.
〔段差角度を特定しない良否判定〕
 圧下前判定において段差角度αが90度以上の場合には一律、段差形状の異常と判定し、段差角度αの値の特定は不要である場合もあり得る。その場合は、レーザ変位計700を用いて取得された形状データから、段差角度αが90度以上であるか否かを判定することができる。その判定結果を表示部80により画面801Aに表示してもよい。
[Good/fail judgment without specifying step angle]
In the pre-rolling determination, if the step angle α is 90 degrees or more, it is uniformly determined that the step shape is abnormal, and there may be cases where it is not necessary to specify the value of the step angle α. In that case, it can be determined from the shape data acquired using the laser displacement meter 700 whether the step angle α is 90 degrees or more. The determination result may be displayed on the screen 801A by the display unit 80.
〔他の変形例〕
 装置コストおよび設置スペースが許容される場合は、圧下前と圧下後のそれぞれにおいて溶接領域20の形状を計測するために2台のレーザ変位計700をフレーム41に設置することができる。圧下前と圧下後とのそれぞれにおいて、角度取得部74により同じ処理を繰り返して圧下前段差角度αと圧下後段差角度βとを取得することができる。
 圧下後の良否判定としては、例えば、図20に示す圧下後であって圧延前の段差角度βと圧延後の疵の状態との相関に基づいて、段差角度βが60度以上の場合に不良と判定することができる。
[Other variations]
If the device cost and installation space allow, two laser displacement meters 700 can be installed on the frame 41 in order to measure the shape of the welding area 20 before and after rolling down, respectively. Before rolling and after rolling, the angle acquisition section 74 repeats the same process to obtain the step difference angle before rolling α and the step difference angle after rolling β.
As for the quality judgment after rolling, for example, based on the correlation between the step angle β after rolling and before rolling as shown in FIG. It can be determined that
 なお、圧下ロール31,32による圧下時に折れ込み疵が発生しない条件においては、圧下後のみにおいてレーザ変位計700により溶接領域20の段差の形状データを取得し、形状データから算出した段差角度に基づき良否判定することも許容される。
 したがって、本開示の段差形状データ取得部72および段差形状取得ステップS2は、圧下部30により圧下される前または後の少なくとも一方における溶接領域20の形状を取得することが許容される。
In addition, under conditions where folding defects do not occur during rolling down by the rolling down rolls 31 and 32, the shape data of the step in the welding area 20 is obtained by the laser displacement meter 700 only after rolling down, and the step angle calculated from the shape data is used. It is also permissible to judge pass/fail.
Therefore, the step shape data acquisition unit 72 and the step shape acquisition step S2 of the present disclosure are allowed to acquire the shape of the welding region 20 at least either before or after being rolled down by the rolling part 30.
 図4(a)に示すように溶接領域20の上側および下側の両方に段差201,202が180度対称に形成される場合であって、上側の段差のみならず、下側の段差も折れ込み疵に繋がる場合があり得る。その場合は、図24に示すように、段差201,202と同様に、レーザ変位計700を180度対称に配置し、上側と下側の段差形状のデータに基づいて溶接状態の良否を判定することが好ましい。 As shown in FIG. 4(a), steps 201 and 202 are formed 180 degrees symmetrically on both the upper and lower sides of the welding area 20, and not only the upper step but also the lower step is bent. This may lead to defects. In that case, as shown in FIG. 24, similarly to the steps 201 and 202, the laser displacement gauges 700 are arranged 180 degrees symmetrically, and the quality of the welding condition is determined based on the data of the upper and lower step shapes. It is preferable.
 上記以外にも、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。 In addition to the above, it is possible to select the configurations mentioned in the above embodiments or to change them to other configurations as appropriate, without departing from the gist of the present invention.
〔付記〕
 本明細書および図面の記載によれば、以上で述べた構成に加え、以下に記す構成も把握される。
 溶接装置は、第1板材と第2板材との重ねられた領域を抵抗溶接により接合し、前記第1板材および前記第2板材の通板方向に対して交差する溶接方向に沿って溶接領域を形成する溶接部と、前記溶接領域を圧下する圧下部と、前記圧下部により圧下される前または後の少なくとも一方における前記溶接領域の表面形状を取得する形状取得部と、を備える。
 前記形状取得部は、帯状のレーザを出射して前記溶接領域の線状の範囲に照射し、前記溶接領域から反射された前記レーザを撮像素子により受光するレーザ情報取得部を備え、前記レーザ情報取得部は、前記溶接領域よりも上側および下側の少なくとも一方に配置され、前記線状の範囲は、前記溶接方向に対して交差しており、前記レーザ情報取得部により出射される前記レーザの光軸は、前記第1板材と前記第2板材とが前記溶接領域において形成する段差に向けて、上下方向に対し傾斜して設定される。
[Additional note]
According to the description of this specification and the drawings, in addition to the configurations described above, the configurations described below can also be understood.
The welding device joins the overlapping region of the first plate material and the second plate material by resistance welding, and joins the welding area along a welding direction that intersects with the threading direction of the first plate material and the second plate material. The welding part includes a welded part to be formed, a rolling part that rolls down the welding area, and a shape acquisition part that acquires a surface shape of the welding area at least one of before and after being rolled down by the rolling part.
The shape acquisition unit includes a laser information acquisition unit that emits a band-shaped laser beam to irradiate a linear range of the welding area, and receives the laser beam reflected from the welding area with an image sensor, The acquisition unit is disposed above and below the welding area, the linear range intersects with the welding direction, and the linear range intersects with the welding direction, and the acquisition unit is configured to detect the laser beam emitted by the laser information acquisition unit. The optical axis is set to be inclined with respect to the vertical direction toward a step formed by the first plate material and the second plate material in the welding area.
 本発明は、本明細書および図面により開示された溶接装置と、当該溶接装置により溶接された板材を圧延する圧延装置とを備えた圧延ラインに展開することができる。 The present invention can be developed into a rolling line equipped with the welding device disclosed in this specification and the drawings, and a rolling device that rolls the plate material welded by the welding device.
1    溶接装置
2    鋼板(板材)
10   溶接部
11,12   電極輪
13,33   昇降機構
20   溶接領域
20L  照射範囲
21   先行鋼板
21A  端面
22   後行鋼板
22A  端面
30   圧下部
31,32   圧下ロール
40   移動体
41   フレーム
42   車輪
43   ベース
44   走行路
45   駆動装置
46   電流印加装置
50   制御部
61   被膜除去部
62   切断部
63   冷却部
64   加熱部
70   形状取得部
71   レーザ情報取得部
72   段差形状データ取得部
73   高さ計測値取得部
74   角度取得部
75   段差高さ取得部
76   圧下後角度取得部
77   温度計測部
80   表示部
81   第1判定部
82   第2判定部
100  基準面
201,202   段差
201A,201B   角
203  折れ込み疵
204  部位
410  開口
411  上部フレーム
412  下部フレーム
413  支持部材
415,416   支持部
451   サーボモータ
611,612   ブラシロール
621,622   せん断刃
700  レーザ変位計
701  筐体
702  保護カバー
711  出射部
712  撮像素子
801  モニタ
801A 画面
A    圧下前段差角度
B    圧下後段差角度
A1,A2   光軸
c    曲線
C1   先行クランプ
C2   後行クランプ
d    方向
F1,F2   せん断力
h    段差高さ
L1,L2,L3,L4   直線
L5   近似直線
LS1  出射レーザ
LS2  反射レーザ
N    ナゲット
m    計測位置
P1   後退位置
P2   前進位置
p1,p2   変曲点
p3   照射位置
RD   回転方向
r    接合範囲
r1   範囲
r3   非定常範囲
s    表面
S1   溶接・圧下ステップ
S2   段差形状取得ステップ
S3   第1判定ステップ
S4   高さ計測値取得ステップ
S5   第2判定ステップ
S6   表示ステップ
ST1,ST2   段差
T    温度
w    重なり代
w1   幅
x    通板方向
y    溶接方向
z    上下方向
α    圧下前段差角度
α,α 角度
β    圧下後段差角度
γ    角度
1 Welding device 2 Steel plate (plate material)
10 Welding parts 11, 12 Electrode wheels 13, 33 Lifting mechanism 20 Welding area 20L Irradiation range 21 Leading steel plate 21A End face 22 Trailing steel plate 22A End face 30 Rolling section 31, 32 Rolling down roll 40 Moving body 41 Frame 42 Wheel 43 Base 44 Running path 45 Drive device 46 Current application device 50 Control section 61 Film removal section 62 Cutting section 63 Cooling section 64 Heating section 70 Shape acquisition section 71 Laser information acquisition section 72 Step shape data acquisition section 73 Height measurement value acquisition section 74 Angle acquisition section 75 Step height acquisition section 76 Post-rolling angle acquisition section 77 Temperature measurement section 80 Display section 81 First judgment section 82 Second judgment section 100 Reference planes 201, 202 Steps 201A, 201B Corner 203 Folding flaw 204 Part 410 Opening 411 Upper frame 412 Lower frame 413 Support member 415, 416 Support part 451 Servo motor 611, 612 Brush roll 621, 622 Shear blade 700 Laser displacement meter 701 Housing 702 Protective cover 711 Emitting part 712 Image pickup element 801 Monitor 801A Screen A Step angle before rolling B Step angle after rolling A1, A2 Optical axis c Curve C1 Leading clamp C2 Trailing clamp d Direction F1, F2 Shear force h Step height L1, L2, L3, L4 Straight line L5 Approximate straight line LS1 Output laser LS2 Reflected laser N Nugget m Measurement Position P1 Retracted position P2 Forward position p1, p2 Inflection point p3 Irradiation position RD Rotation direction r Joining range r1 Range r3 Unsteady range s Surface S1 Welding/rolling down step S2 Step shape acquisition step S3 First judgment step S4 Height measurement value Acquisition step S5 Second judgment step S6 Display steps ST1, ST2 Step T Temperature w Overlapping margin w1 Width x Threading direction y Welding direction z Vertical direction α Step angle before rolling α 1 , α 2 angle β Step angle after rolling γ Angle

Claims (15)

  1.  第1板材と第2板材との重ねられた領域を抵抗溶接により接合し、前記第1板材および前記第2板材の通板方向に対して交差する溶接方向に沿って溶接領域を形成する溶接部と、
     前記溶接領域を圧下する圧下部と、
     前記圧下部により圧下される前または後の少なくとも一方における前記溶接領域の表面形状を取得する形状取得部と、
     前記溶接方向に往復移動可能に構成され、前記溶接部および前記圧下部を前記溶接方向に並んだ状態に支持する移動体と、を備える、溶接装置。
    A welding part where the overlapping region of a first plate material and a second plate material is joined by resistance welding, and a welding area is formed along a welding direction that intersects with the threading direction of the first plate material and the second plate material. and,
    a rolling part that rolls down the welding area;
    a shape acquisition unit that acquires the surface shape of the welding area at least either before or after being rolled down by the rolling unit;
    A welding device comprising: a movable body configured to be reciprocally movable in the welding direction and supporting the welding part and the rolling part in a state lined up in the welding direction.
  2.  前記形状取得部は、
     帯状のレーザを出射して前記溶接領域の線状の範囲に照射し、前記溶接領域から反射された前記レーザを撮像素子により受光するレーザ情報取得部を備え、
     前記レーザ情報取得部は、前記溶接領域よりも上側および下側の少なくとも一方に配置され、
     前記線状の範囲は、前記溶接方向に対して交差しており、
     前記レーザ情報取得部により出射される前記レーザの光軸は、前記第1板材と前記第2板材とが前記溶接領域において形成する段差に向けて、上下方向に対し傾斜して設定される、
    請求項1に記載の溶接装置。
    The shape acquisition unit is
    comprising a laser information acquisition unit that emits a band-shaped laser beam to irradiate a linear range of the welding area, and receives the laser beam reflected from the welding area with an imaging device;
    The laser information acquisition unit is arranged at least one of above and below the welding area,
    The linear range intersects with the welding direction,
    The optical axis of the laser emitted by the laser information acquisition unit is set to be inclined with respect to the vertical direction toward a step formed by the first plate material and the second plate material in the welding area.
    The welding device according to claim 1.
  3.  前記光軸は、水平面に対して30度以上の角度をなしている、
    請求項2に記載の溶接装置。
    The optical axis makes an angle of 30 degrees or more with respect to a horizontal plane,
    The welding device according to claim 2.
  4.  前記レーザ情報取得部は、前記移動体のフレームに支持され、
     前記レーザ情報取得部の前記通板方向への投影範囲には、前記溶接部および前記圧下部の少なくとも一方が配置されている、
    請求項2または3に記載の溶接装置。
    The laser information acquisition unit is supported by a frame of the moving body,
    At least one of the welding part and the rolling part is arranged in a projection range of the laser information acquisition part in the sheet passing direction,
    The welding device according to claim 2 or 3.
  5.  前記形状取得部は、
     前記レーザ情報取得部により出射される前記レーザから、前記溶接領域により反射された前記レーザへの変化の情報を用いて、前記段差の形状を示す形状データを演算により取得する段差形状データ取得部を備え、
     前記溶接装置は、
     前記形状データを表示する表示部と、
     前記形状データを用いて前記溶接領域の溶接状態の良否を判定する第1判定部とのうち、少なくとも一方を備える、
    請求項2から4のいずれか一項に記載の溶接装置。
    The shape acquisition unit is
    a step shape data acquisition unit that acquires shape data indicating the shape of the step by calculation using information on a change from the laser emitted by the laser information acquisition unit to the laser reflected by the welding area; Prepare,
    The welding device includes:
    a display section that displays the shape data;
    comprising at least one of a first determination unit that determines the quality of the welding state of the welding area using the shape data;
    The welding device according to any one of claims 2 to 4.
  6.  前記形状取得部は、前記形状データを用いて、前記段差の角度を演算により取得する角度取得部を備え、
     前記第1判定部は、前記角度を用いて前記溶接領域の溶接状態の良否を判定可能に構成されている、
    請求項5に記載の溶接装置。
    The shape acquisition unit includes an angle acquisition unit that acquires the angle of the step by calculation using the shape data,
    The first determination unit is configured to be able to determine the quality of the welding state of the welding area using the angle.
    The welding device according to claim 5.
  7.  前記溶接装置は、前記圧下部により圧下される前における前記溶接領域の温度を計測する温度計測部を備え、
     前記角度取得部は、前記形状データを用いて、少なくとも圧下される前における前記段差の角度を取得し、
     前記第1判定部は、前記角度取得部により取得された圧下前の角度、および前記温度計測部により計測された圧下前の前記溶接領域の温度にそれぞれ閾値を適用して圧下前良否判定を行う、
    請求項6に記載の溶接装置。
    The welding device includes a temperature measurement unit that measures the temperature of the welding area before being rolled down by the rolling unit,
    The angle acquisition unit uses the shape data to acquire at least the angle of the step before being rolled down,
    The first determination unit performs a pre-rolling quality determination by applying threshold values to the angle before rolling acquired by the angle acquiring unit and the temperature of the welding area before rolling measured by the temperature measuring unit, respectively. ,
    The welding device according to claim 6.
  8.  前記形状取得部は、前記圧下部による圧下の前の角度と後の角度との相関情報に基づいて、前記角度取得部により取得された圧下前の角度から圧下後の角度を演算により取得する圧下後角度取得部を備え、
     前記第1判定部は、前記角度取得部により取得された圧下前の角度に第1閾値を適用して圧下前良否判定を行うとともに、前記圧下後角度取得部により取得された圧下後の角度に前記第1閾値よりも小さい第2閾値を適用して圧下後良否判定を行う、
    請求項6または7に記載の溶接装置。
    The shape acquisition unit is configured to perform a rolling operation that calculates an angle after rolling from an angle before rolling acquired by the angle acquiring unit based on correlation information between an angle before rolling and an angle after rolling by the rolling unit. Equipped with a rear angle acquisition section,
    The first determination unit applies a first threshold value to the pre-rolling angle acquired by the angle acquiring unit to determine the quality of the before rolling. applying a second threshold value smaller than the first threshold value to perform a pass/fail determination after rolling down;
    The welding device according to claim 6 or 7.
  9.  前記形状取得部は、
     前記溶接領域にレーザを照射し、前記溶接領域から反射された前記レーザを受光するレーザ情報取得部と、
     前記レーザ情報取得部により、前記溶接領域よりも上側および下側の少なくとも一方から出射される前記レーザから、前記溶接領域により反射された前記レーザへの変化の情報を用いて、前記溶接領域の高さの計測値を前記溶接方向に亘り取得する高さ計測値取得部と、を備え、
     前記溶接装置は、
     前記計測値、前記計測値間の変化量、および前記計測値の有無の情報の少なくとも一つを表示する表示部と、
     前記計測値、前記計測値間の変化量、および前記計測値の有無の情報の少なくとも一つを用いて、前記溶接領域の溶接状態の良否を判定する第2判定部とのうち、少なくとも一方を備える、
    請求項1に記載の溶接装置。
    The shape acquisition unit is
    a laser information acquisition unit that irradiates the welding area with a laser and receives the laser reflected from the welding area;
    The laser information acquisition unit determines the height of the welding area using information on a change from the laser emitted from at least one of above and below the welding area to the laser reflected by the welding area. a height measurement value acquisition unit that acquires a height measurement value across the welding direction;
    The welding device includes:
    a display unit that displays at least one of the measured value, the amount of change between the measured values, and information on the presence or absence of the measured value;
    and a second determination unit that determines the quality of the welding state of the welding area using at least one of the measured value, the amount of change between the measured values, and information on the presence or absence of the measured value. prepare,
    The welding device according to claim 1.
  10.  第1板材と第2板材との重ねられた領域を溶接し、前記第1板材および前記第2板材の通板方向に対して交差する溶接方向に沿って溶接領域を形成する溶接ステップと、
     前記溶接領域を圧下する圧下ステップと、
     前記圧下ステップにより圧下される前または後の少なくとも一方における前記溶接領域の表面形状を取得する形状取得ステップと、
     抵抗溶接により前記溶接領域を形成する溶接部および前記溶接領域を圧下する圧下部を前記溶接方向に並んだ状態に支持する移動体を所定の後退位置から所定の前進位置まで移動させる前進ステップと、
     前記移動体を前記前進位置から前記後退位置まで移動させる後退ステップと、を備え、
     前記前進ステップおよび前記後退ステップの一方において、前記溶接ステップ、前記圧下ステップ、および前記形状取得ステップが実行される、溶接方法。
    a welding step of welding an overlapping region of a first plate material and a second plate material to form a welding region along a welding direction that intersects with the threading direction of the first plate material and the second plate material;
    a rolling down step of rolling down the welding area;
    a shape obtaining step of obtaining a surface shape of the welding area at least either before or after being rolled down in the rolling down step;
    an advancing step of moving a movable body that supports a welding part that forms the welding area by resistance welding and a rolling part that rolls down the welding area in a state lined up in the welding direction from a predetermined retreat position to a predetermined forward position;
    a retreating step of moving the movable body from the forward position to the retreating position,
    The welding method, wherein the welding step, the rolling step, and the shape acquisition step are performed in one of the forward step and the backward step.
  11.  前記形状取得ステップは、前記溶接領域に帯状のレーザを出射して前記溶接方向に対して交差した線状の範囲に照射し、前記溶接領域から反射された前記レーザを撮像素子により受光するレーザ情報取得ステップを含み、
     前記レーザ情報取得ステップにおいて、前記溶接領域よりも上側および下側の少なくとも一方から出射される前記レーザの光軸は、前記第1板材と前記第2板材とが前記溶接領域において形成する段差に向けて、上下方向に対し傾斜して設定される、
    請求項10に記載の溶接方法。
    The shape acquisition step includes emitting a band-shaped laser to the welding area, irradiating it to a linear range intersecting the welding direction, and receiving laser information reflected from the welding area by an imaging device. includes an acquisition step;
    In the laser information acquisition step, the optical axis of the laser emitted from at least one of above and below the welding area is directed toward a step formed by the first plate material and the second plate material in the welding area. and is set at an angle with respect to the vertical direction.
    The welding method according to claim 10.
  12.  前記形状取得ステップは、
     前記レーザ情報取得ステップにおいて出射される前記レーザから、前記溶接領域により反射された前記レーザへの変化の情報を用いて、前記段差の形状を示す形状データを演算により取得する形状データ取得ステップを備え、
     前記溶接方法は、
     前記形状データを表示する表示ステップと、
     前記形状データを用いて前記溶接領域の溶接状態の良否を判定する第1判定ステップとのうち、少なくとも一方を備える、
    請求項11に記載の溶接方法。
    The shape obtaining step includes:
    A shape data acquisition step of acquiring shape data indicating the shape of the step by calculation using information on a change from the laser emitted in the laser information acquisition step to the laser reflected by the welding area. ,
    The welding method includes:
    a display step of displaying the shape data;
    comprising at least one of a first determination step of determining the quality of the welding state of the welding area using the shape data;
    The welding method according to claim 11.
  13.  前記形状取得ステップは、前記形状データを用いて、前記段差の角度を演算により取得する角度取得ステップを備え、
     前記第1判定ステップは、前記角度を用いて前記溶接領域の溶接状態の良否を判定する、
    請求項12に記載の溶接方法。
    The shape obtaining step includes an angle obtaining step of obtaining the angle of the step by calculation using the shape data,
    The first determination step uses the angle to determine whether the welding state of the welding area is good or bad.
    The welding method according to claim 12.
  14.  前記形状取得ステップは、前記圧下ステップによる圧下の前の角度と後の角度との相関情報に基づいて、前記角度取得ステップにより取得された圧下前の角度から圧下後の角度を演算により取得する圧下後角度取得ステップを備え、
     前記第1判定ステップは、前記角度取得ステップにより取得された圧下前の角度に第1閾値を適用して圧下前良否判定を行うとともに、前記圧下後角度取得ステップにより取得された圧下後の角度に前記第1閾値よりも小さい第2閾値を適用して圧下後良否判定を行う、
    請求項13に記載の溶接方法。
    The shape obtaining step is a rolling operation in which an angle after rolling is obtained by calculation from an angle before rolling obtained in the angle obtaining step, based on correlation information between an angle before rolling and an angle after rolling in the rolling step. Equipped with a rear angle acquisition step,
    The first determination step applies a first threshold value to the pre-rolling angle obtained in the angle obtaining step to determine whether the pre-rolling is good or bad, and also applies the first threshold to the pre-rolling angle obtained in the post-rolling angle obtaining step. applying a second threshold value smaller than the first threshold value to perform a pass/fail determination after rolling down;
    The welding method according to claim 13.
  15.  前記形状取得ステップは、
     前記溶接領域にレーザを照射し、前記溶接領域から反射された前記レーザを受光するレーザ情報取得ステップと、
     前記レーザ情報取得ステップにおいて、前記溶接領域よりも上側および下側の少なくとも一方から出射される前記レーザから、前記溶接領域により反射された前記レーザへの変化の情報を用いて、前記溶接領域の高さの計測値を前記溶接方向に亘り取得する高さ計測値取得ステップと、を備え、
     前記溶接方法は、
     前記計測値、前記計測値間の変化量、および前記計測値の有無の情報の少なくとも一つを表示する表示ステップと、
     前記計測値、前記計測値間の変化量、および前記計測値の有無の情報の少なくとも一つを用いて、前記溶接領域の溶接状態の良否を判定する第2判定ステップとのうち、少なくとも一方を備える、
    請求項10に記載の溶接方法。
    The shape obtaining step includes:
    a laser information acquisition step of irradiating the welding area with a laser and receiving the laser reflected from the welding area;
    In the laser information acquisition step, the height of the welding area is determined using information on a change from the laser emitted from at least one of above and below the welding area to the laser reflected by the welding area. a height measurement value acquisition step of acquiring height measurement values across the welding direction;
    The welding method includes:
    a display step of displaying at least one of the measured value, the amount of change between the measured values, and information on the presence or absence of the measured value;
    and a second determination step of determining the quality of the welding state of the welding area using at least one of the measured value, the amount of change between the measured values, and information on the presence or absence of the measured value. prepare,
    The welding method according to claim 10.
PCT/JP2022/020778 2022-05-19 2022-05-19 Welding device and welding method WO2023223485A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020778 WO2023223485A1 (en) 2022-05-19 2022-05-19 Welding device and welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020778 WO2023223485A1 (en) 2022-05-19 2022-05-19 Welding device and welding method

Publications (1)

Publication Number Publication Date
WO2023223485A1 true WO2023223485A1 (en) 2023-11-23

Family

ID=88834915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020778 WO2023223485A1 (en) 2022-05-19 2022-05-19 Welding device and welding method

Country Status (1)

Country Link
WO (1) WO2023223485A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181847A (en) * 1989-12-12 1991-08-07 Kawasaki Steel Corp Method for judging welding quality of connectively and welded part of steel strips
JPH05185240A (en) * 1992-01-16 1993-07-27 Mitsubishi Electric Corp Seam welding equipment
JPH05318132A (en) * 1992-05-18 1993-12-03 Nippon Steel Corp Welding equipment for strip continuous processing line and its welding determining method
JPH0972721A (en) * 1995-09-05 1997-03-18 Kobe Steel Ltd Method and apparatus for diagnosing welded part of thin plate material of continuous processing line
JP2018079502A (en) * 2016-11-18 2018-05-24 日産自動車株式会社 Welding quality judgment method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03181847A (en) * 1989-12-12 1991-08-07 Kawasaki Steel Corp Method for judging welding quality of connectively and welded part of steel strips
JPH05185240A (en) * 1992-01-16 1993-07-27 Mitsubishi Electric Corp Seam welding equipment
JPH05318132A (en) * 1992-05-18 1993-12-03 Nippon Steel Corp Welding equipment for strip continuous processing line and its welding determining method
JPH0972721A (en) * 1995-09-05 1997-03-18 Kobe Steel Ltd Method and apparatus for diagnosing welded part of thin plate material of continuous processing line
JP2018079502A (en) * 2016-11-18 2018-05-24 日産自動車株式会社 Welding quality judgment method

Similar Documents

Publication Publication Date Title
TW397731B (en) A welding method and the construction members to be welded
Sreedhar et al. Automatic defect identification using thermal image analysis for online weld quality monitoring
EP2551048B1 (en) Operation management device, operation management method, and operation management program for high-frequency resistance welding and induction welding
CN201503415U (en) Online detection device for strip welding seam defects
JP2005021988A (en) Method and device for manufacturing welded large diameter tube
CN108655203B (en) Method for quickly identifying and monitoring camber defect of hot continuous rolling strip steel
JP2005342788A (en) Method and apparatus for diagnosing flash-butt weld zone of steel sheet
JP2013134198A (en) End shape detection method, end shape inspection method, end shape detection device, and end shape inspection device for angle steel
WO2023223485A1 (en) Welding device and welding method
US6399949B1 (en) System and method for detecting debonding in rubber coated rolls
JPH10170228A (en) Detecting device for seamed part of electro-resistance welded pipe and its method
JP6219075B2 (en) 疵 Detection method
JP2789990B2 (en) Lap seam welding machine diagnosis device and welding quality judgment device
KR20170118810A (en) Method of monitoring manufacturing status of electric resistance welded pipe, device for monitoring manufacturing status of electric resistance welded pipe, and method of manufacturing electric resistance welded pipe
JP2518120B2 (en) Method and apparatus for re-welding strip welds
JP2576326B2 (en) Pass / fail judgment device for strip welds
JPH0972721A (en) Method and apparatus for diagnosing welded part of thin plate material of continuous processing line
KR102297178B1 (en) Cold rolled steel sheet sheets seam welding ultrasonic inspection device
JP5058707B2 (en) Equipment management method for steel sheet flash butt welder
KR102377160B1 (en) Welding apparatus having detecting function of welding part in real time and method for detecting welding part in real time
JPH10160451A (en) Device for discriminating cause of abnormality of butt weld part
JPH05223788A (en) Method for diagnosing soundness of weld on sheet
JP2011016143A (en) Method and apparatus for manufacturing welded wide flange shape
JPH11248638A (en) Automatic detection method for surface of press-molded product
CN214895027U (en) Quality inspection device for steel rail welding joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942690

Country of ref document: EP

Kind code of ref document: A1