WO2023223414A1 - Frequency band estimation device, frequency band estimation method, ems testing method, and frequency band estimation program - Google Patents

Frequency band estimation device, frequency band estimation method, ems testing method, and frequency band estimation program Download PDF

Info

Publication number
WO2023223414A1
WO2023223414A1 PCT/JP2022/020490 JP2022020490W WO2023223414A1 WO 2023223414 A1 WO2023223414 A1 WO 2023223414A1 JP 2022020490 W JP2022020490 W JP 2022020490W WO 2023223414 A1 WO2023223414 A1 WO 2023223414A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
vulnerable
under test
frequency
test
Prior art date
Application number
PCT/JP2022/020490
Other languages
French (fr)
Japanese (ja)
Inventor
雄一郎 奥川
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/020490 priority Critical patent/WO2023223414A1/en
Publication of WO2023223414A1 publication Critical patent/WO2023223414A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/30Marginal testing, e.g. by varying supply voltage

Definitions

  • the present invention relates to a frequency band estimation device, a frequency band estimation method, an EMS test method, and a frequency band estimation program.
  • EMC Electromagnetic Compatibility
  • EMS Electromagnetic Susceptibility test
  • Non-Patent Document 1 When conducting the EMS test disclosed in the above-mentioned Non-Patent Document 1, a dedicated test equipment suitable for the standard is used, and a test signal simulating interference waves is transmitted to the equipment under test at a certain frequency. It is necessary to sweep the signal across the band. Therefore, there is a problem that the EMS test requires a long time.
  • the present invention has been made in view of the above circumstances, and its purpose is to estimate the required frequency band and shorten the EMS test when conducting an EMS test of a device to be measured.
  • An object of the present invention is to provide a frequency band estimating device, a frequency band estimating method, an EMS test method, and a frequency band estimating program that can perform the following.
  • a frequency band estimating device includes a measuring device that sweeps a measurement signal in a predetermined frequency band and supplies it to a device under test, and measures the frequency characteristics of the device under test with respect to the measurement signal; and a calculation device that estimates a vulnerable frequency band in which the device under test is vulnerable to external signals based on the frequency characteristics.
  • a frequency band estimation method includes the steps of: sweeping a measurement signal in a predetermined frequency band and supplying the same to a device under test; and measuring the frequency characteristics of the device under test with respect to the measurement signal; and estimating a vulnerable frequency band in which the device under test is vulnerable to external signals based on frequency characteristics.
  • An EMS test method includes the steps of: sweeping a measurement signal in a predetermined frequency band and supplying it to a device under test; measuring the frequency characteristics of the device under test with respect to the measurement signal; estimating a vulnerable frequency band in which the device under test is vulnerable to external signals based on characteristics; and performing an EMS test on the device under test only in the vulnerable frequency band using an EMS test device. and a step of doing so.
  • One aspect of the present invention is a frequency band estimating program for causing a computer to function as the frequency band estimating device.
  • the present invention when performing an EMS test on a device to be measured, it is possible to estimate the required frequency band, and it is possible to shorten the time required for the EMS test.
  • FIG. 1 is a block diagram showing the configuration of a frequency band estimating device according to an embodiment.
  • FIG. 2 is a block diagram showing the configuration of the EMS test device.
  • FIG. 3 is a graph showing the emission level and impedance frequency characteristics of the EUT.
  • FIG. 4 is a graph showing the frequency characteristics of the product of emission level and impedance.
  • FIG. 5 is a block diagram showing the hardware configuration of this embodiment.
  • FIG. 1 is a block diagram showing the configuration of a frequency band estimating device 1 according to an embodiment.
  • FIG. 2 is a block diagram showing the configuration of an EMS test device 100 that performs an EMS test.
  • the EMS test device 100 connects probes 31 and 32 to two measurement points 21 and 22 provided on the equipment under test 2 (hereinafter referred to as "EUT 2 (Equipment Under Test)") that tests external signals such as interference waves.
  • EUT 2 Equipment Under Test
  • EMS test of EUT2 will be carried out.
  • the measurement points 21 and 22 may be input/output points for communication signals, input/output points for control signals, or input/output points for electric power provided in the EUT 2.
  • the purpose of the EMS test is to evaluate the immunity of EUT2 in the expected electromagnetic environment.
  • the EMS test device 100 supplies a test signal simulating an interference wave by sweeping the frequency in a predetermined band to each measurement point 21, 22 of the EUT 2, and confirms the operation of the EUT 2.
  • the EMS test device 100 includes coupling/decoupling circuit networks 4A, 4B (hereinafter referred to as "CDN 4A, 4B (Coupling Decoupling Network)”), auxiliary equipment 5A, 5B, an amplifier 6, a terminating resistor 7, and a test A signal generator 8 is provided.
  • CDN 4A, 4B Coupling Decoupling Network
  • the CDN 4A is provided between the measurement point 21 and the auxiliary equipment 5A, supplies a test signal such as an RF signal to the EUT 2, and measures the signal generated by the EUT 2.
  • the CDN 4A has the role of preventing signals from flowing into the auxiliary device 5A.
  • the CDN 4B is provided between the measurement point 22 and the auxiliary equipment 5B, supplies a test signal such as an RF signal to the EUT 2, and measures the signal generated by the EUT 2.
  • the CDN 4B has the role of preventing signals from flowing into the auxiliary device 5B.
  • the test signal generator 8 generates a test signal simulating an interference wave and outputs it to the amplifier 6.
  • the test signal generator 8 sweeps the frequency of the test signal within a certain frequency range and outputs the same.
  • the amplifier 6 amplifies the test signal output from the test signal generator 8 and outputs it to the CDN 4B.
  • the terminating resistor 7 is a resistor installed between the CDN 4A and the ground.
  • the frequency band estimating device 1 includes a measuring device 11 and an arithmetic device 12.
  • the measuring device 11 sweeps and supplies a measurement signal in a predetermined frequency band to the measurement points 21 and 22 of the EUT 2, and measures the frequency characteristics of the EUT 2.
  • the frequency of the measurement signal approaches or matches the frequency of various signals such as clock signals, synchronization signals, switching signals, and pilot signals used in the EUT 2
  • the emission level output from the measurement points 21 and 22 of the EUT 2 increases.
  • "Emission level” is the level of an output signal relative to an input signal. Furthermore, the impedance between the measurement points 21 and 22 is reduced.
  • the measuring device 11 measures the frequency characteristics of the emission level emitted from the EUT 2 with respect to the measurement signal supplied in a swept manner.
  • the measuring device 11 measures the frequency characteristics of impedance between two measurement points 21 and 22.
  • the measuring device 11 may measure the frequency characteristics of either the emission level or the impedance of the EUT 2, as shown in a first modification example and a second modification example described later.
  • an impedance analyzer for example, an impedance analyzer, a network analyzer, or a spectrum analyzer can be used.
  • the impedance analyzer supplies measurement signals to the measurement points 21 and 22 of the EUT 2 while changing the frequency.
  • the impedance analyzer measures the voltage, current, and phase applied to the EUT 2 to measure impedance characteristics with respect to frequency changes. That is, by using an impedance analyzer, the impedance characteristics of the EUT 2 can be measured.
  • the network analyzer supplies a measurement signal to the measurement point of the EUT 2 while changing the frequency, and measures the passing power and reflected power at the measurement point.
  • the spectrum analyzer supplies measurement signals to the measurement points 21 and 22 of the EUT 2 while changing the frequency, and measures the power of the EUT 2.
  • a spectrum analyzer displays a two-dimensional graph on the screen with frequency on the horizontal axis and power or voltage on the vertical axis. That is, the emission level of the EUT 2 can be measured using a network analyzer or a spectrum analyzer.
  • the arithmetic device 12 includes an input section 121, a multiplication section 122, and an estimation section 123.
  • the input unit 121 obtains the absolute value of the emission level
  • the multiplier 122 multiplies the absolute value of the emission level
  • to calculate a multiplication value X1 (
  • the estimation unit 123 compares the multiplication value X1 with a predetermined first threshold Th1, and obtains a frequency band Fx (see FIG. 4 described later) in which the multiplication value X1 exceeds the first threshold Th1 (X1>Th1). do.
  • the estimation unit 123 estimates this frequency band Fx as a vulnerable frequency band Fx in which the EUT 2 is vulnerable to external signals such as interference waves.
  • the vulnerable frequency band Fx means a frequency band in which the EUT 2 is easily affected by external signals and malfunctions.
  • the estimation unit 123 outputs the estimated vulnerable frequency band Fx to a subsequent device.
  • the vulnerable frequency band Fx estimated by the estimation unit 123 is displayed, for example, on a display (not shown). The user can recognize the vulnerable frequency band Fx of the EUT 2 by looking at the display.
  • FIG. 3 is a graph showing an example of the frequency characteristics of the emission level Ve and impedance Zc of the EUT 2.
  • a curve P1 shown in FIG. 3 shows the frequency characteristics of the emission level Ve, and a curve P2 shows the frequency characteristics of the impedance Zc.
  • the emission level Ve is increasing in the frequency band f1 to f2, and exceeds the threshold Th2 (second threshold described later).
  • the impedance Zc decreases in the frequency band f3 to f4, and is below a threshold Th3 (a third threshold to be described later). That is, it can be seen that the EUT 2 is vulnerable to interference waves having frequencies in the frequency bands f1 to f2 and f3 to f4.
  • the multiplier 122 obtains the emission level Ve and the impedance Zc, and multiplies them by their respective absolute values
  • the estimation unit 123 obtains the multiplication value X1 (
  • FIG. 4 is a graph showing the frequency characteristics of the multiplication value X1.
  • a curve P3 shown in FIG. 4 indicates the multiplication value X1 (
  • the estimation unit 123 estimates that the frequency band in which the multiplication value X1 shown in the curve P3 exceeds the predetermined first threshold Th1 is a vulnerable frequency band in which the EUT 2 is vulnerable to external signals.
  • the estimation unit 123 outputs the estimated vulnerable frequency band information to the outside. Information on vulnerable frequency bands is displayed on a display and notified to the user, for example.
  • the calculation device 12 estimates the vulnerable frequency band in which the EUT 2 (device under test) is vulnerable to external signals such as interference waves, based on the frequency characteristics.
  • the arithmetic device 12 determines a frequency band in which a multiplication value "
  • the user When carrying out an EMS test with the EMS test apparatus 100 shown in FIG. 2, the user sets the frequency of the test signal output by the test signal generator 8 to the vulnerable frequency band estimated by the above processing.
  • the test signal generator 8 may carry out the EMS test in the vulnerable frequency band estimated by the above processing.
  • the frequency band estimating device 1 sweeps a measurement signal in a predetermined frequency band and supplies it to the equipment under test (EUT 2), and performs a measurement to measure the frequency characteristics of the EUT 2 with respect to the measurement signal. and an arithmetic device 12 that estimates a vulnerable frequency band in which the EUT 2 is vulnerable to external signals based on frequency characteristics.
  • the test signal generator 8 when carrying out an EMS test with the EMS test device 100, the test signal generator 8 does not need to sweep the frequency over the entire frequency band to be tested; EMS tests can be conducted in vulnerable frequency bands. Therefore, it becomes possible to shorten the time required for the EMS test.
  • the measuring device 11 supplies a measurement signal to at least one of a communication signal input/output point, a control signal input/output point, and a power input/output point provided in the EUT 2. Therefore, the measuring device 11 can be easily connected to the EUT 2, and the emission level Ve and impedance Zc can be measured with high precision.
  • the emission level Ve exceeds the second threshold Th2 in a part of the frequency band f1 to f2. Therefore, this band is estimated to be a vulnerable frequency band.
  • the measuring device 11 measures the frequency characteristics of the emission level Ve output from the EUT 2, and the arithmetic device 12 defines the frequency band in which the emission level Ve exceeds the second threshold Th2 as a vulnerable frequency. Estimate as band.
  • the vulnerable frequency band is estimated based on the emission level Ve measured by the EUT 2, so the vulnerable frequency band can be estimated by simple measurement. Furthermore, as in the embodiment described above, the frequency band for conducting the EMS test can be limited to the vulnerable frequency band, so the time required for the EMS test can be shortened.
  • the impedance Zc is below the predetermined third threshold Th3 in the frequency band f3 to f4. Therefore, this band is estimated to be a vulnerable frequency band.
  • the measuring device 11 measures the frequency characteristic of the impedance Zc between the measuring points 21 and 22, and the arithmetic device 12 defines the frequency band in which the impedance Zc is below the third threshold Th3 as a vulnerable frequency. Estimate as band.
  • the vulnerable frequency band is estimated based on the impedance Zc measured by the EUT 2, so the vulnerable frequency band can be estimated by simple measurement. Furthermore, as in the embodiments described above, the frequency band for conducting the EMS test can be limited to the vulnerable frequency band, so the time required for the EMS test can be shortened.
  • the arithmetic device 12 installed in the frequency band estimating device 1 of the present embodiment described above includes, for example, a CPU (Central Processing Unit, processor) 901, a memory 902, and a storage 903 (HDD: A general-purpose computer system including a HardDisk Drive (SSD: Solid State Drive), a communication device 904, an input device 905, and an output device 906 can be used.
  • Memory 902 and storage 903 are storage devices.
  • each function of the arithmetic unit 12 is realized by the CPU 901 executing a predetermined program loaded onto the memory 902.
  • the arithmetic device 12 may be implemented by one computer or by multiple computers. Further, the arithmetic device 12 may be a virtual machine implemented in a computer.
  • the program for the arithmetic unit 12 may be stored in a computer-readable recording medium such as an HDD, SSD, USB (Universal Serial Bus) memory, CD (Compact Disc), or DVD (Digital Versatile Disc), or it may be stored on a network. It can also be distributed via.
  • a computer-readable recording medium such as an HDD, SSD, USB (Universal Serial Bus) memory, CD (Compact Disc), or DVD (Digital Versatile Disc), or it may be stored on a network. It can also be distributed via.
  • Frequency band estimation device 2 EUT (device under test) 4A, 4B CDN (coupling/decoupling network) 5A, 5B Auxiliary equipment 6 Amplifier 7 Termination resistor 8 Test signal generator 11 Measuring device 12 Arithmetic device 21, 22 Measurement points 31, 32 Probe 121 Input section 122 Multiplying section 123 Estimating section 100 EMS test equipment

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

This frequency band estimation device comprises: a measuring instrument (11) that supplies a measurement signal to an EUT (2) while sweeping in a predetermined frequency band, to measure frequency characteristics of the EUT (2) with respect to the measurement signal; and an arithmetic device (12) that estimates, on the basis of the frequency characteristics, a vulnerable frequency band in which the EUT (2) is vulnerable to external signals such as interference waves.

Description

周波数帯域推定装置、周波数帯域推定方法、EMS試験方法、及び、周波数帯域推定プログラムFrequency band estimation device, frequency band estimation method, EMS test method, and frequency band estimation program
 本発明は、周波数帯域推定装置、周波数帯域推定方法、EMS試験方法、及び、周波数帯域推定プログラムに関する。 The present invention relates to a frequency band estimation device, a frequency band estimation method, an EMS test method, and a frequency band estimation program.
 地上では様々な妨害波が存在し、これらの妨害波が電子機器などに侵入すると機器が誤動作する、いわゆるEMC(Electromagnetic Compatibility)故障が発生する可能性がある。EMC故障の発生を抑制し、機器の動作信頼性を向上させるため、EMCに関する様々な規格が整備され、規格に基づいて電磁妨害波に対する耐力試験、評価を実施し、一定の基準をクリアすることが必要になる。 Various types of interference waves exist on the ground, and when these interference waves enter electronic equipment, there is a possibility that the equipment will malfunction, causing a so-called EMC (Electromagnetic Compatibility) failure. In order to suppress the occurrence of EMC failures and improve the operational reliability of equipment, various standards regarding EMC have been established, and based on the standards, resistance tests and evaluations against electromagnetic interference waves must be conducted to clear certain standards. is required.
 EMCの試験規格として、非特許文献1に開示されている伝導イミュニティ試験(以下「EMS(Electromagnetic Susceptibility)試験」という)が知られている。更に、CISPR、ITU勧告などの国際規格、及び、VCCI、TTCなどの国内規格が知られている。 A conducted immunity test (hereinafter referred to as "EMS (Electromagnetic Susceptibility) test") disclosed in Non-Patent Document 1 is known as an EMC test standard. Furthermore, international standards such as CISPR and ITU recommendations, and domestic standards such as VCCI and TTC are known.
 上述した非特許文献1に開示されたEMS試験を実施する際には、規格に適した専用の試験設備を利用し、且つ、試験対象機器に対して妨害波を模擬した試験信号を一定の周波数帯域においてスイープして印加する必要がある。このため、EMS試験に長時間を要するという問題がある。 When conducting the EMS test disclosed in the above-mentioned Non-Patent Document 1, a dedicated test equipment suitable for the standard is used, and a test signal simulating interference waves is transmitted to the equipment under test at a certain frequency. It is necessary to sweep the signal across the band. Therefore, there is a problem that the EMS test requires a long time.
 本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、測定対象機器のEMS試験を実施する際に、必要とする周波数帯域を推定し、EMS試験を短縮化することが可能な周波数帯域推定装置、周波数帯域推定方法、EMS試験方法、及び、周波数帯域推定プログラムを提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to estimate the required frequency band and shorten the EMS test when conducting an EMS test of a device to be measured. An object of the present invention is to provide a frequency band estimating device, a frequency band estimating method, an EMS test method, and a frequency band estimating program that can perform the following.
 本発明の一態様の周波数帯域推定装置は、測定用信号を所定の周波数帯域でスイープさせて試験対象機器に供給し、前記測定用信号に対する前記試験対象機器の周波数特性を測定する測定器と、前記周波数特性に基づいて、前記試験対象機器が外部信号に対して脆弱な脆弱周波数帯域を推定する演算装置とを備える。 A frequency band estimating device according to one aspect of the present invention includes a measuring device that sweeps a measurement signal in a predetermined frequency band and supplies it to a device under test, and measures the frequency characteristics of the device under test with respect to the measurement signal; and a calculation device that estimates a vulnerable frequency band in which the device under test is vulnerable to external signals based on the frequency characteristics.
 本発明の一態様の周波数帯域推定方法は、測定用信号を所定の周波数帯域でスイープさせて試験対象機器に供給し、前記測定用信号に対する前記試験対象機器の周波数特性を測定するステップと、前記周波数特性に基づいて、前記試験対象機器が外部信号に対して脆弱な脆弱周波数帯域を推定するステップとを備える。 A frequency band estimation method according to one aspect of the present invention includes the steps of: sweeping a measurement signal in a predetermined frequency band and supplying the same to a device under test; and measuring the frequency characteristics of the device under test with respect to the measurement signal; and estimating a vulnerable frequency band in which the device under test is vulnerable to external signals based on frequency characteristics.
 本発明の一態様のEMS試験方法は、測定用信号を所定の周波数帯域でスイープさせて試験対象機器に供給し、前記測定用信号に対する前記試験対象機器の周波数特性を測定するステップと、前記周波数特性に基づいて、前記試験対象機器が外部信号に対して脆弱な脆弱周波数帯域を推定するステップと、EMS試験装置により、前記試験対象機器に対して前記脆弱周波数帯域に対してのみEMS試験を実施するステップとを備える。 An EMS test method according to one aspect of the present invention includes the steps of: sweeping a measurement signal in a predetermined frequency band and supplying it to a device under test; measuring the frequency characteristics of the device under test with respect to the measurement signal; estimating a vulnerable frequency band in which the device under test is vulnerable to external signals based on characteristics; and performing an EMS test on the device under test only in the vulnerable frequency band using an EMS test device. and a step of doing so.
 本発明の一態様は、上記周波数帯域推定装置としてコンピュータを機能させるための周波数帯域推定プログラムである。 One aspect of the present invention is a frequency band estimating program for causing a computer to function as the frequency band estimating device.
 本発明によれば、測定対象機器のEMS試験を実施する際に、必要とする周波数帯域を推定することができ、EMS試験に要する時間を短縮化することが可能になる。 According to the present invention, when performing an EMS test on a device to be measured, it is possible to estimate the required frequency band, and it is possible to shorten the time required for the EMS test.
図1は、実施形態に係る周波数帯域推定装置の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of a frequency band estimating device according to an embodiment. 図2は、EMS試験装置の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the EMS test device. 図3は、EUTのエミッションレベル、及びインピーダンスの周波数特性を示すグラフである。FIG. 3 is a graph showing the emission level and impedance frequency characteristics of the EUT. 図4は、エミッションレベルとインピーダンスとの乗算値の周波数特性を示すグラフである。FIG. 4 is a graph showing the frequency characteristics of the product of emission level and impedance. 図5は、本実施形態のハードウェア構成を示すブロック図である。FIG. 5 is a block diagram showing the hardware configuration of this embodiment.
[実施形態の説明]
 以下、実施形態について図面を参照して説明する。図1は、実施形態に係る周波数帯域推定装置1の構成を示すブロック図である。図2は、EMS試験を実施するEMS試験装置100の構成を示すブロック図である。
[Description of embodiment]
Hereinafter, embodiments will be described with reference to the drawings. FIG. 1 is a block diagram showing the configuration of a frequency band estimating device 1 according to an embodiment. FIG. 2 is a block diagram showing the configuration of an EMS test device 100 that performs an EMS test.
 初めに、図2を参照してEMS試験装置100の構成について説明する。EMS試験装置100は、妨害波などの外部信号に対する試験を実施する試験対象機器2(以下、「EUT2(Equipment Under Test)」という)に設けられる2つの測定点21、22にプローブ31、32接続してEUT2のEMS試験を実施する。測定点21、22は、EUT2に設けられた通信信号の入出力ポイント、制御信号の入出力ポイント、電力の入出力ポイントとしてもよい。 First, the configuration of the EMS test device 100 will be described with reference to FIG. 2. The EMS test device 100 connects probes 31 and 32 to two measurement points 21 and 22 provided on the equipment under test 2 (hereinafter referred to as "EUT 2 (Equipment Under Test)") that tests external signals such as interference waves. EMS test of EUT2 will be carried out. The measurement points 21 and 22 may be input/output points for communication signals, input/output points for control signals, or input/output points for electric power provided in the EUT 2.
 EMS試験は、EUT2に想定される電磁環境における耐性を評価することを目的としている。EMS試験装置100は、所定の帯域で周波数をスイープさせて妨害波を模擬した試験信号をEUT2の各測定点21、22に供給し、EUT2の動作を確認する。 The purpose of the EMS test is to evaluate the immunity of EUT2 in the expected electromagnetic environment. The EMS test device 100 supplies a test signal simulating an interference wave by sweeping the frequency in a predetermined band to each measurement point 21, 22 of the EUT 2, and confirms the operation of the EUT 2.
 EMS試験装置100は、結合/減結合回路網4A、4B(以下、「CDN4A、4B(Coupling Decoupling Network)」という)と、補助機器5A、5Bと、増幅器6と、終端抵抗器7と、試験信号発生器8を備えている。 The EMS test device 100 includes coupling/ decoupling circuit networks 4A, 4B (hereinafter referred to as " CDN 4A, 4B (Coupling Decoupling Network)"), auxiliary equipment 5A, 5B, an amplifier 6, a terminating resistor 7, and a test A signal generator 8 is provided.
 CDN4Aは、測定点21と補助機器5Aの間に設けられ、EUT2に対してRF信号などの試験信号を供給し、EUT2で発生した信号を測定する。CDN4Aは、補助機器5Aへの信号の流入を防ぐ役割を有する。 The CDN 4A is provided between the measurement point 21 and the auxiliary equipment 5A, supplies a test signal such as an RF signal to the EUT 2, and measures the signal generated by the EUT 2. The CDN 4A has the role of preventing signals from flowing into the auxiliary device 5A.
 CDN4Bは、測定点22と補助機器5Bの間に設けられ、EUT2に対してRF信号などの試験信号を供給し、EUT2で発生した信号を測定する。CDN4Bは、補助機器5Bへの信号の流入を防ぐ役割を有する。 The CDN 4B is provided between the measurement point 22 and the auxiliary equipment 5B, supplies a test signal such as an RF signal to the EUT 2, and measures the signal generated by the EUT 2. The CDN 4B has the role of preventing signals from flowing into the auxiliary device 5B.
 試験信号発生器8は、妨害波を模擬した試験信号を発生して増幅器6に出力する。試験信号発生器8は、試験信号の周波数を一定の周波数の範囲でスイープして出力する。 The test signal generator 8 generates a test signal simulating an interference wave and outputs it to the amplifier 6. The test signal generator 8 sweeps the frequency of the test signal within a certain frequency range and outputs the same.
 増幅器6は、試験信号発生器8から出力される試験信号を増幅してCDN4Bに出力する。 The amplifier 6 amplifies the test signal output from the test signal generator 8 and outputs it to the CDN 4B.
 終端抵抗器7は、CDN4Aとグランドとの間に設置される抵抗器である。 The terminating resistor 7 is a resistor installed between the CDN 4A and the ground.
 次に、図1を参照して実施形態に係る周波数帯域推定装置1について説明する。周波数帯域推定装置1は、測定器11と、演算装置12を備えている。 Next, a frequency band estimating device 1 according to an embodiment will be described with reference to FIG. 1. The frequency band estimating device 1 includes a measuring device 11 and an arithmetic device 12.
 測定器11は、EUT2の測定点21、22に対して、測定用信号を所定の周波数帯域でスイープさせて供給し、EUT2の周波数特性を測定する。測定用信号の周波数がEUT2で使用されるクロック信号、同期信号、スイッチング信号、パイロット信号などの各種の信号の周波数に近づく或いは一致すると、EUT2の測定点21、22から出力されるエミッションレベルが高まる。「エミッションレベル」とは、入力信号に対する出力信号のレベルである。また、測定点21、22間のインピーダンスが低下する。 The measuring device 11 sweeps and supplies a measurement signal in a predetermined frequency band to the measurement points 21 and 22 of the EUT 2, and measures the frequency characteristics of the EUT 2. When the frequency of the measurement signal approaches or matches the frequency of various signals such as clock signals, synchronization signals, switching signals, and pilot signals used in the EUT 2, the emission level output from the measurement points 21 and 22 of the EUT 2 increases. . "Emission level" is the level of an output signal relative to an input signal. Furthermore, the impedance between the measurement points 21 and 22 is reduced.
 測定器11は、スイープさせて供給した測定用信号に対してEUT2にから放出されるエミッションレベルの周波数特性を測定する。測定器11は、2つの測定点21、22間のインピーダンスの周波数特性を測定する。 The measuring device 11 measures the frequency characteristics of the emission level emitted from the EUT 2 with respect to the measurement signal supplied in a swept manner. The measuring device 11 measures the frequency characteristics of impedance between two measurement points 21 and 22.
 測定器11は、後述する第1変形例、第2変形例で示すように、EUT2のエミッションレベル及びインピーダンスのうちのいずれか一方の周波数特性を測定してもよい。 The measuring device 11 may measure the frequency characteristics of either the emission level or the impedance of the EUT 2, as shown in a first modification example and a second modification example described later.
 測定器11として、例えばインピーダンスアナライザ、ネットワークアナライザ、スペクトラムアナライザを使用することができる。 As the measuring device 11, for example, an impedance analyzer, a network analyzer, or a spectrum analyzer can be used.
 インピーダンスアナライザは、EUT2の測定点21、22に測定用の信号を周波数を変化させながら供給する。インピーダンスアナライザは、EUT2に印加される電圧、電流、位相を測定して周波数変化に対するインピーダンス特性を測定する。即ち、インピーダンスアナライザを用いることによりEUT2のインピーダンス特性を測定することができる。 The impedance analyzer supplies measurement signals to the measurement points 21 and 22 of the EUT 2 while changing the frequency. The impedance analyzer measures the voltage, current, and phase applied to the EUT 2 to measure impedance characteristics with respect to frequency changes. That is, by using an impedance analyzer, the impedance characteristics of the EUT 2 can be measured.
 ネットワークアナライザは、EUT2の測定点に測定用の信号を、周波数を変化させながら供給し、測定点における通過電力、及び反射電力を測定する。 The network analyzer supplies a measurement signal to the measurement point of the EUT 2 while changing the frequency, and measures the passing power and reflected power at the measurement point.
 スペクトラムアナライザは、EUT2の測定点21、22に測定用の信号を、周波数を変化させながら供給し、EUT2の電力を測定する。スペクトラムアナライザは、横軸を周波数、縦軸を電力または電圧とする二次元のグラフを画面に表示する。即ち、ネットワークアナライザ、或いはスペクトラムアナライザによりEUT2のエミッションレベルを測定することができる。 The spectrum analyzer supplies measurement signals to the measurement points 21 and 22 of the EUT 2 while changing the frequency, and measures the power of the EUT 2. A spectrum analyzer displays a two-dimensional graph on the screen with frequency on the horizontal axis and power or voltage on the vertical axis. That is, the emission level of the EUT 2 can be measured using a network analyzer or a spectrum analyzer.
 図1に戻って、演算装置12は、入力部121と、乗算部122と、推定部123を備えている。 Returning to FIG. 1, the arithmetic device 12 includes an input section 121, a multiplication section 122, and an estimation section 123.
 入力部121は、測定器11で測定されたエミッションレベルの絶対値|Ve|、及びインピーダンスの絶対値|Zc|を取得する。 The input unit 121 obtains the absolute value of the emission level |Ve| and the absolute value of the impedance |Zc| measured by the measuring device 11.
 乗算部122は、エミッションレベルの絶対値|Ve|とインピーダンスの絶対値|Zc|とを乗算し、乗算値X1(=|Ve|*|Zc|)を算出する。 The multiplier 122 multiplies the absolute value of the emission level |Ve| by the absolute value of the impedance |Zc| to calculate a multiplication value X1 (=|Ve|*|Zc|).
 推定部123は、乗算値X1と所定の第1の閾値Th1を比較し、乗算値X1が第1の閾値Th1を上回る(X1>Th1となる)周波数帯域Fx(後述する図4参照)を取得する。推定部123は、この周波数帯域Fxを、EUT2が妨害波などの外部信号に対して脆弱な脆弱周波数帯域Fxとして推定する。脆弱周波数帯域Fxは、EUT2が外部信号により影響を受けて誤動作を発生し易い周波数帯域を意味する。推定部123は、推定した脆弱周波数帯域Fxを後段の機器に出力する。 The estimation unit 123 compares the multiplication value X1 with a predetermined first threshold Th1, and obtains a frequency band Fx (see FIG. 4 described later) in which the multiplication value X1 exceeds the first threshold Th1 (X1>Th1). do. The estimation unit 123 estimates this frequency band Fx as a vulnerable frequency band Fx in which the EUT 2 is vulnerable to external signals such as interference waves. The vulnerable frequency band Fx means a frequency band in which the EUT 2 is easily affected by external signals and malfunctions. The estimation unit 123 outputs the estimated vulnerable frequency band Fx to a subsequent device.
 推定部123で推定された脆弱周波数帯域Fxは、例えばディスプレイ(図示省略)に表示される。ユーザは、ディスプレイを見ることにより、EUT2の脆弱周波数帯域Fxを認識することができる。 The vulnerable frequency band Fx estimated by the estimation unit 123 is displayed, for example, on a display (not shown). The user can recognize the vulnerable frequency band Fx of the EUT 2 by looking at the display.
 次に、本実施形態に係る周波数帯域推定装置1の動作について説明する。図1に示す測定器11から、測定用信号を一定の周波数帯域でスイープさせてEUT2の測定点21、22に供給すると、測定器11においてエミッションレベルVeの周波数特性、及びインピーダンスZcの周波数特性が得られる。 Next, the operation of the frequency band estimating device 1 according to this embodiment will be explained. When a measurement signal is swept in a certain frequency band from the measuring instrument 11 shown in FIG. can get.
 図3は、EUT2のエミッションレベルVe及びインピーダンスZcの周波数特性の一例を示すグラフである。図3に示す曲線P1はエミッションレベルVeの周波数特性を示し、曲線P2はインピーダンスZcの周波数特性を示している。 FIG. 3 is a graph showing an example of the frequency characteristics of the emission level Ve and impedance Zc of the EUT 2. A curve P1 shown in FIG. 3 shows the frequency characteristics of the emission level Ve, and a curve P2 shows the frequency characteristics of the impedance Zc.
 曲線P1に示すようにエミッションレベルVeは、周波数f1~f2の帯域で上昇しており、閾値Th2(後述する第2の閾値)を上回っている。曲線P2に示すように、インピーダンスZcは周波数f3~f4の帯域で低下しており、閾値Th3(後述する第3の閾値)を下回っている。即ち、EUT2はこの周波数f1~f2、f3~f4の帯域の周波数を有する妨害波に脆弱であることが分かる。 As shown in the curve P1, the emission level Ve is increasing in the frequency band f1 to f2, and exceeds the threshold Th2 (second threshold described later). As shown by the curve P2, the impedance Zc decreases in the frequency band f3 to f4, and is below a threshold Th3 (a third threshold to be described later). That is, it can be seen that the EUT 2 is vulnerable to interference waves having frequencies in the frequency bands f1 to f2 and f3 to f4.
 乗算部122は、エミッションレベルVeとインピーダンスZcを取得し、それぞれの絶対値|Ve|及び|Zc|を乗算する。推定部123は、乗算値X1(|Ve|*|Zc|)を取得する。図4は、乗算値X1の周波数特性を示すグラフである。図4に示す曲線P3は、乗算値X1(|Ve|*|Zc|)を示している。 The multiplier 122 obtains the emission level Ve and the impedance Zc, and multiplies them by their respective absolute values |Ve| and |Zc|. The estimation unit 123 obtains the multiplication value X1 (|Ve|*|Zc|). FIG. 4 is a graph showing the frequency characteristics of the multiplication value X1. A curve P3 shown in FIG. 4 indicates the multiplication value X1 (|Ve|*|Zc|).
 推定部123は、曲線P3に示す乗算値X1が所定の第1の閾値Th1を上回る周波数帯域を、EUT2が外部信号に対して脆弱な脆弱周波数帯域であると推定する。推定部123は、推定した脆弱周波数帯域の情報を外部に出力する。脆弱周波数帯域の情報は、例えばディスプレイに表示されてユーザに通知される。 The estimation unit 123 estimates that the frequency band in which the multiplication value X1 shown in the curve P3 exceeds the predetermined first threshold Th1 is a vulnerable frequency band in which the EUT 2 is vulnerable to external signals. The estimation unit 123 outputs the estimated vulnerable frequency band information to the outside. Information on vulnerable frequency bands is displayed on a display and notified to the user, for example.
 即ち演算装置12は、周波数特性に基づいて、EUT2(試験対象機器)が妨害波などの外部信号に対して脆弱な脆弱周波数帯域を推定する。演算装置12は、エミッションレベルの絶対値|Ve|とインピーダンスの絶対値|Zc|とを乗算した乗算値「|Ve|*|Zc|」が、所定の第1の閾値Th1を上回る周波数帯域を、脆弱周波数帯域として推定する。 That is, the calculation device 12 estimates the vulnerable frequency band in which the EUT 2 (device under test) is vulnerable to external signals such as interference waves, based on the frequency characteristics. The arithmetic device 12 determines a frequency band in which a multiplication value "|Ve|*|Zc|" obtained by multiplying the absolute value of the emission level |Ve| by the absolute value of the impedance |Zc| exceeds a predetermined first threshold Th1. , estimated as a vulnerable frequency band.
 ユーザは、図2に示したEMS試験装置100でEMS試験を実施する際に、試験信号発生器8が出力する試験信号の周波数を上記の処理で推定された脆弱周波数帯域に設定する。 When carrying out an EMS test with the EMS test apparatus 100 shown in FIG. 2, the user sets the frequency of the test signal output by the test signal generator 8 to the vulnerable frequency band estimated by the above processing.
 EMS試験装置100でEMS試験を実施する際には、試験信号発生器8は、上記の処理で推定された脆弱周波数帯域においてEMS試験を実施すればよい。 When carrying out an EMS test with the EMS test device 100, the test signal generator 8 may carry out the EMS test in the vulnerable frequency band estimated by the above processing.
 このように、本実施形態に係る周波数帯域推定装置1は、測定用信号を所定の周波数帯域でスイープさせて試験対象機器(EUT2)に供給し、測定用信号に対するEUT2の周波数特性を測定する測定器11と、周波数特性に基づいて、EUT2が外部信号に対して脆弱な脆弱周波数帯域を推定する演算装置12と、を備える。 As described above, the frequency band estimating device 1 according to the present embodiment sweeps a measurement signal in a predetermined frequency band and supplies it to the equipment under test (EUT 2), and performs a measurement to measure the frequency characteristics of the EUT 2 with respect to the measurement signal. and an arithmetic device 12 that estimates a vulnerable frequency band in which the EUT 2 is vulnerable to external signals based on frequency characteristics.
 本実施形態では、EMS試験装置100でEMS試験を実施する際に、試験信号発生器8は、試験対象とする周波数帯域全体に亘って周波数をスイープさせる必要はなく、上記の処理で推定された脆弱周波数帯域においてEMS試験を実施すればよい。このため、EMS試験に要する時間を短縮化することが可能になる。 In this embodiment, when carrying out an EMS test with the EMS test device 100, the test signal generator 8 does not need to sweep the frequency over the entire frequency band to be tested; EMS tests can be conducted in vulnerable frequency bands. Therefore, it becomes possible to shorten the time required for the EMS test.
 本実施形態では、測定器11は、EUT2に設けられる通信信号の入出力ポイント、制御信号の入出力ポイント、及び電力の入出力ポイントのうちの少なくとも一つに測定用信号を供給している。従って、測定器11をEUT2に対して容易に接続することができ、且つ、エミッションレベルVe、及びインピーダンスZcを高精度に測定することができる。 In the present embodiment, the measuring device 11 supplies a measurement signal to at least one of a communication signal input/output point, a control signal input/output point, and a power input/output point provided in the EUT 2. Therefore, the measuring device 11 can be easily connected to the EUT 2, and the emission level Ve and impedance Zc can be measured with high precision.
[第1変形例の説明]
 次に、本実施形態の第1変形例について説明する。前述した実施形態では、EUT2に測定用信号を供給したときのエミッションレベルVe、及びインピーダンスZcの周波数特性を取得し、これらの絶対値を乗算した乗算値X1に基づいて脆弱周波数帯域を推定した。第1変形例では、エミッションレベルVeが所定の第2の閾値Th2を上回る周波数帯域を検出し、この周波数帯域を脆弱周波数帯域として推定する。
[Description of the first modification]
Next, a first modification of this embodiment will be described. In the embodiment described above, the frequency characteristics of the emission level Ve and impedance Zc when the measurement signal is supplied to the EUT 2 are obtained, and the vulnerable frequency band is estimated based on the multiplication value X1 obtained by multiplying these absolute values. In the first modification, a frequency band in which the emission level Ve exceeds a predetermined second threshold Th2 is detected, and this frequency band is estimated as a vulnerable frequency band.
 具体的に、図3の曲線P1において、周波数f1~f2の帯域の一部においてエミッションレベルVeが第2の閾値Th2を上回っている。従って、この帯域を脆弱周波数帯域として推定する。 Specifically, in the curve P1 of FIG. 3, the emission level Ve exceeds the second threshold Th2 in a part of the frequency band f1 to f2. Therefore, this band is estimated to be a vulnerable frequency band.
 即ち、第1変形例では、測定器11は、EUT2から出力されるエミッションレベルVeの周波数特性を測定し、演算装置12は、エミッションレベルVeが第2の閾値Th2を上回る周波数帯域を、脆弱周波数帯域として推定する。 That is, in the first modification, the measuring device 11 measures the frequency characteristics of the emission level Ve output from the EUT 2, and the arithmetic device 12 defines the frequency band in which the emission level Ve exceeds the second threshold Th2 as a vulnerable frequency. Estimate as band.
 第1変形例では、EUT2で測定されるエミッションレベルVeに基づいて脆弱周波数帯域を推定するので、簡易な測定で脆弱周波数帯域を推定することができる。また、前述した実施形態と同様に、EMS試験を実施する際の周波数帯域を脆弱周波数帯域に限定して試験を実施できるので、EMS試験に要する時間を短縮化することができる。 In the first modification, the vulnerable frequency band is estimated based on the emission level Ve measured by the EUT 2, so the vulnerable frequency band can be estimated by simple measurement. Furthermore, as in the embodiment described above, the frequency band for conducting the EMS test can be limited to the vulnerable frequency band, so the time required for the EMS test can be shortened.
[第2変形例の説明]
 次に、本実施形態の第2変形例について説明する。第2変形例では、インピーダンスZcが所定の第3の閾値Th3を下回る周波数帯域を検出し、この周波数帯域を脆弱周波数帯域として推定する。
[Description of second modification]
Next, a second modification of this embodiment will be described. In the second modification, a frequency band in which the impedance Zc is lower than a predetermined third threshold Th3 is detected, and this frequency band is estimated as a vulnerable frequency band.
 具体的に、図3の曲線P2において、周波数f3~f4の帯域においてインピーダンスZcが所定の第3の閾値Th3を下回っている。従って、この帯域を脆弱周波数帯域として推定する。 Specifically, in the curve P2 of FIG. 3, the impedance Zc is below the predetermined third threshold Th3 in the frequency band f3 to f4. Therefore, this band is estimated to be a vulnerable frequency band.
 即ち、第2変形例では、測定器11は、測定点21、22間のインピーダンスZcの周波数特性を測定し、演算装置12は、インピーダンスZcが第3の閾値Th3を下回る周波数帯域を、脆弱周波数帯域として推定する。 That is, in the second modification, the measuring device 11 measures the frequency characteristic of the impedance Zc between the measuring points 21 and 22, and the arithmetic device 12 defines the frequency band in which the impedance Zc is below the third threshold Th3 as a vulnerable frequency. Estimate as band.
 第2変形例では、EUT2で測定されるインピーダンスZcに基づいて脆弱周波数帯域を推定するので、簡易な測定で脆弱周波数帯域を推定することができる。また、前述した実施形態と同様に、EMS試験を実施する際の周波数帯域を脆弱周波数帯域に限定して試験を実施できるので、EMS試験に要する時間を短縮化することができる。 In the second modification, the vulnerable frequency band is estimated based on the impedance Zc measured by the EUT 2, so the vulnerable frequency band can be estimated by simple measurement. Furthermore, as in the embodiments described above, the frequency band for conducting the EMS test can be limited to the vulnerable frequency band, so the time required for the EMS test can be shortened.
 上記説明した本実施形態の周波数帯域推定装置1に搭載される演算装置12には、図5に示すように例えば、CPU(Central Processing Unit、プロセッサ)901と、メモリ902と、ストレージ903(HDD:HardDisk Drive、SSD:SolidState Drive)と、通信装置904と、入力装置905と、出力装置906とを備える汎用的なコンピュータシステムを用いることができる。メモリ902およびストレージ903は、記憶装置である。このコンピュータシステムにおいて、CPU901がメモリ902上にロードされた所定のプログラムを実行することにより、演算装置12の各機能が実現される。 As shown in FIG. 5, the arithmetic device 12 installed in the frequency band estimating device 1 of the present embodiment described above includes, for example, a CPU (Central Processing Unit, processor) 901, a memory 902, and a storage 903 (HDD: A general-purpose computer system including a HardDisk Drive (SSD: Solid State Drive), a communication device 904, an input device 905, and an output device 906 can be used. Memory 902 and storage 903 are storage devices. In this computer system, each function of the arithmetic unit 12 is realized by the CPU 901 executing a predetermined program loaded onto the memory 902.
 なお、演算装置12は、1つのコンピュータで実装されてもよく、あるいは複数のコンピュータで実装されても良い。また、演算装置12は、コンピュータに実装される仮想マシンであっても良い。 Note that the arithmetic device 12 may be implemented by one computer or by multiple computers. Further, the arithmetic device 12 may be a virtual machine implemented in a computer.
 なお、演算装置12用のプログラムは、HDD、SSD、USB(Universal Serial Bus)メモリ、CD (Compact Disc)、DVD (Digital Versatile Disc)などのコンピュータ読取り可能な記録媒体に記憶することも、ネットワークを介して配信することもできる。 Note that the program for the arithmetic unit 12 may be stored in a computer-readable recording medium such as an HDD, SSD, USB (Universal Serial Bus) memory, CD (Compact Disc), or DVD (Digital Versatile Disc), or it may be stored on a network. It can also be distributed via.
 なお、本発明は上記実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。 Note that the present invention is not limited to the above-described embodiments, and many modifications can be made within the scope of the invention.
 1 周波数帯域推定装置
 2 EUT(試験対象機器)
 4A、4B CDN(結合/減結合回路網)
 5A、5B 補助機器
 6 増幅器
 7 終端抵抗器
 8 試験信号発生器
 11 測定器
 12 演算装置
 21、22 測定点
 31、32 プローブ
 121 入力部
 122 乗算部
 123 推定部
 100 EMS試験装置
1 Frequency band estimation device 2 EUT (device under test)
4A, 4B CDN (coupling/decoupling network)
5A, 5B Auxiliary equipment 6 Amplifier 7 Termination resistor 8 Test signal generator 11 Measuring device 12 Arithmetic device 21, 22 Measurement points 31, 32 Probe 121 Input section 122 Multiplying section 123 Estimating section 100 EMS test equipment

Claims (8)

  1.  測定用信号を所定の周波数帯域でスイープさせて試験対象機器に供給し、前記測定用信号に対する前記試験対象機器の周波数特性を測定する測定器と、
     前記周波数特性に基づいて、前記試験対象機器が外部信号に対して脆弱な脆弱周波数帯域を推定する演算装置と、
     を備えた周波数帯域推定装置。
    a measuring device that sweeps a measurement signal in a predetermined frequency band and supplies it to the device under test, and measures the frequency characteristics of the device under test with respect to the measurement signal;
    a calculation device that estimates a vulnerable frequency band in which the device under test is vulnerable to external signals based on the frequency characteristics;
    A frequency band estimator equipped with
  2.  前記測定器は、前記試験対象機器に設けられる通信信号の入出力ポイント、制御信号の入出力ポイント、及び電力の入出力ポイントのうちの少なくとも一つに前記測定用信号を供給する
     請求項1に記載の周波数帯域推定装置。
    The measuring device supplies the measurement signal to at least one of a communication signal input/output point, a control signal input/output point, and a power input/output point provided in the device under test. The frequency band estimation device described.
  3.  前記測定器は、前記試験対象機器から出力されるエミッションレベルの周波数特性、及び前記試験対象機器のインピーダンスの周波数特性を測定し、
     前記演算装置は、前記エミッションレベルの絶対値と前記インピーダンスの絶対値との乗算値が第1の閾値を上回る周波数帯域を、前記脆弱周波数帯域として推定する
     請求項1または2に記載の周波数帯域推定装置。
    The measuring device measures the frequency characteristics of the emission level output from the device under test and the frequency characteristics of the impedance of the device under test,
    The frequency band estimation according to claim 1 or 2, wherein the arithmetic device estimates a frequency band in which a multiplication value of the absolute value of the emission level and the absolute value of the impedance exceeds a first threshold value as the vulnerable frequency band. Device.
  4.  前記測定器は、前記試験対象機器から出力されるエミッションレベルの周波数特性を測定し、
     前記演算装置は、前記エミッションレベルが第2の閾値を上回る周波数帯域を、前記脆弱周波数帯域として推定する
     請求項1または2に記載の周波数帯域推定装置。
    The measuring device measures the frequency characteristics of the emission level output from the device under test,
    The frequency band estimating device according to claim 1 or 2, wherein the arithmetic device estimates a frequency band in which the emission level exceeds a second threshold value as the vulnerable frequency band.
  5.  前記測定器は、前記試験対象機器のインピーダンスの周波数特性を測定し、
     前記演算装置は、前記インピーダンスが第3の閾値を下回る周波数帯域を、前記脆弱周波数帯域として推定する
     請求項1または2に記載の周波数帯域推定装置。
    The measuring device measures frequency characteristics of impedance of the device under test,
    The frequency band estimating device according to claim 1 or 2, wherein the arithmetic device estimates a frequency band in which the impedance is lower than a third threshold value as the vulnerable frequency band.
  6.  測定用信号を所定の周波数帯域でスイープさせて試験対象機器に供給し、前記測定用信号に対する前記試験対象機器の周波数特性を測定するステップと、
     前記周波数特性に基づいて、前記試験対象機器が外部信号に対して脆弱な脆弱周波数帯域を推定するステップと、
     を備えた周波数帯域推定方法。
    Sweeping the measurement signal in a predetermined frequency band and supplying it to the device under test, and measuring the frequency characteristics of the device under test with respect to the measurement signal;
    estimating a vulnerable frequency band in which the device under test is vulnerable to external signals based on the frequency characteristics;
    A frequency band estimation method with
  7.  測定用信号を所定の周波数帯域でスイープさせて試験対象機器に供給し、前記測定用信号に対する前記試験対象機器の周波数特性を測定するステップと、
     前記周波数特性に基づいて、前記試験対象機器が外部信号に対して脆弱な脆弱周波数帯域を推定するステップと、
     EMS試験装置により、前記試験対象機器に対して前記脆弱周波数帯域に対してのみEMS試験を実施するステップと、
     を備えたEMS試験方法。
    Sweeping the measurement signal in a predetermined frequency band and supplying it to the device under test, and measuring the frequency characteristics of the device under test with respect to the measurement signal;
    estimating a vulnerable frequency band in which the device under test is vulnerable to external signals based on the frequency characteristics;
    performing an EMS test on the test target device only for the vulnerable frequency band using an EMS test device;
    EMS test method with
  8.  請求項1または2に記載の周波数帯域推定装置としてコンピュータを機能させる周波数帯域推定プログラム。 A frequency band estimating program that causes a computer to function as the frequency band estimating device according to claim 1 or 2.
PCT/JP2022/020490 2022-05-17 2022-05-17 Frequency band estimation device, frequency band estimation method, ems testing method, and frequency band estimation program WO2023223414A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020490 WO2023223414A1 (en) 2022-05-17 2022-05-17 Frequency band estimation device, frequency band estimation method, ems testing method, and frequency band estimation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020490 WO2023223414A1 (en) 2022-05-17 2022-05-17 Frequency band estimation device, frequency band estimation method, ems testing method, and frequency band estimation program

Publications (1)

Publication Number Publication Date
WO2023223414A1 true WO2023223414A1 (en) 2023-11-23

Family

ID=88834855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020490 WO2023223414A1 (en) 2022-05-17 2022-05-17 Frequency band estimation device, frequency band estimation method, ems testing method, and frequency band estimation program

Country Status (1)

Country Link
WO (1) WO2023223414A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304794A (en) * 1999-04-22 2000-11-02 Ntt Advanced Technology Corp Conduction immunity testing device
JP2015001517A (en) * 2013-07-02 2015-01-05 ローム株式会社 Method for evaluating electric circuit
JP2020030073A (en) * 2018-08-21 2020-02-27 地方独立行政法人東京都立産業技術研究センター Electronic product evaluation method and evaluation device
JP7053969B1 (en) * 2021-05-21 2022-04-12 三菱電機株式会社 IC noise tolerance detection device, IC noise tolerance detection method, and IC internal impedance measurement method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304794A (en) * 1999-04-22 2000-11-02 Ntt Advanced Technology Corp Conduction immunity testing device
JP2015001517A (en) * 2013-07-02 2015-01-05 ローム株式会社 Method for evaluating electric circuit
JP2020030073A (en) * 2018-08-21 2020-02-27 地方独立行政法人東京都立産業技術研究センター Electronic product evaluation method and evaluation device
JP7053969B1 (en) * 2021-05-21 2022-04-12 三菱電機株式会社 IC noise tolerance detection device, IC noise tolerance detection method, and IC internal impedance measurement method

Similar Documents

Publication Publication Date Title
US7337079B2 (en) Time-frequency domain reflectometry apparatus and method
JP6738135B2 (en) How to perform electrical cable fault detection on a computer
KR102014582B1 (en) Apparatus for processing reflected wave
TWI480558B (en) Power line communication detecting system and method thereof
Gizatullin et al. Study of the electromagnetic compatibility of local area networks under the action of nanosecond electromagnetic disturbances
KR102245944B1 (en) Method for testing sensitivity of data packet signal transceiver
Chahine et al. Characterization and modeling of the susceptibility of integrated circuits to conducted electromagnetic disturbances up to 1 GHz
EP3051709B1 (en) De-embedding cable effect for waveform monitoring for arbitrary waveform and function generator
KR101525475B1 (en) Cable fault diagnostic apparatus and method for thereof
JP6034978B2 (en) Method for identifying defect position in HF signal transmission line
WO2017144087A1 (en) Method and device for calibrating an automated test equipment
Guillen et al. Partial discharges location in transformer winding using wavelets and Kullback–Leibler divergence
WO2023223414A1 (en) Frequency band estimation device, frequency band estimation method, ems testing method, and frequency band estimation program
US20070197169A1 (en) Systems and methods for transmitter and channel characterization
JP7565443B2 (en) System and method for compensating for power loss due to radio frequency (RF) signal probe mismatch in conducted signal testing - Patents.com
US11263100B2 (en) Testing method and device to determine problem source of server failure
KR20220075994A (en) Cable diagonosis apparatus and method using reflectometry
JP2014016195A (en) Electromagnetic interference noise measuring method
Havunen et al. Design and Verification of a Calculable Composite Voltage Calibrator
TWI785801B (en) Method and system for testing radiation susceptibility
JP7443269B2 (en) Insulation diagnosis system and insulation diagnosis method
US11740273B2 (en) Method and system for testing radiation susceptibility
TWI771232B (en) System and method for testing radiation susceptibility
US20230128364A1 (en) Testing method and testing system
Yang Passive harmonic generation at spring contacts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942619

Country of ref document: EP

Kind code of ref document: A1