WO2023222523A1 - Machine électrique synchrone pour aéronef, dispositif de propulsion, turbomoteur et procédé associés - Google Patents

Machine électrique synchrone pour aéronef, dispositif de propulsion, turbomoteur et procédé associés Download PDF

Info

Publication number
WO2023222523A1
WO2023222523A1 PCT/EP2023/062669 EP2023062669W WO2023222523A1 WO 2023222523 A1 WO2023222523 A1 WO 2023222523A1 EP 2023062669 W EP2023062669 W EP 2023062669W WO 2023222523 A1 WO2023222523 A1 WO 2023222523A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
coils
stator coils
electric machine
Prior art date
Application number
PCT/EP2023/062669
Other languages
English (en)
Inventor
Thomas Klonowski
Sophie HUMBERT
David Lemay
Alexandre Edouard Emile FIGIELSKI
Original Assignee
Safran Helicopter Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Helicopter Engines filed Critical Safran Helicopter Engines
Publication of WO2023222523A1 publication Critical patent/WO2023222523A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/02Synchronous motors
    • H02K19/10Synchronous motors for multi-phase current
    • H02K19/12Synchronous motors for multi-phase current characterised by the arrangement of exciting windings, e.g. for self-excitation, compounding or pole-changing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K19/00Synchronous motors or generators
    • H02K19/16Synchronous generators
    • H02K19/26Synchronous generators characterised by the arrangement of exciting windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/06Machines characterised by the presence of fail safe, back up, redundant or other similar emergency arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/12Machines characterised by the modularity of some components

Definitions

  • TITLE Synchronous electric machine for aircraft, propulsion device, turbine engine and associated method
  • the invention relates to rotating electric machines for aircraft, and more particularly synchronous electric machines with wound rotors for aircraft.
  • the invention further relates to a propulsion device and a propulsion system comprising such an electric machine, an aircraft comprising such a propulsion device or such a propulsion system, and a method for controlling such an electric machine.
  • An aircraft for example a twin-engine helicopter, of the VTOL vertical take off and landing type, comprises a propulsion system comprising two turbine engines, each turbine engine comprising a gas generator and a free turbine driven in rotation by the gas generator, and integral with an output shaft.
  • the output shaft of each free turbine is adapted to set in motion a power transmission box, which itself drives the rotor of the helicopter. It is known that when the helicopter is in a cruising flight situation (i.e. when it is operating under normal conditions, during all phases of the flight, excluding transitional phases of takeoff, climb, landing or hovering), the turbine engines develop low powers lower than the maximum continuous powers.
  • Cs specific consumption
  • Document FR3027058 discloses a helicopter comprising at least one turbine engine as described above, and a hybrid turbine engine comprising a turbine engine as described and a rapid reactivation system comprising two reactivation chains.
  • Each reactivation chain comprises a rotating electrical machine and a power conversion device controlling said machine.
  • the helicopter also includes an electrical energy store, and an on-board network supplying the power conversion devices.
  • Each electric machine allows the hybrid turbine engine to be quickly reactivated when it is on standby.
  • the redundancy of the reactivation chains ensures a high level of fallibility of the “rapid reactivation” function.
  • the redundancy of the reactivation chains increases the mass of the helicopter, thereby reducing the payload of the helicopter, and increasing the bulk of the rapid reactivation system.
  • the electric motor includes a rotor equipped with permanent magnets
  • Short-circuit currents heat the motor and are likely to damage the motor.
  • the aim of the invention is to overcome all or part of these drawbacks.
  • the subject of the invention is a synchronous electric machine for an aircraft, comprising a stator and a wound rotor inserted in the stator, the stator comprising two sets of stator coils intended to be connected to different power converters , and the wound rotor comprising a rotor shaft and two rotor coils intended to each be powered by a different supply current.
  • the two sets of stator coils are arranged in the stator so that when a first set of stator coils fails, the second set of stator coils cooperates with at least the second rotor coil powered by the associated supply current to generate electrical energy at the terminals of the second set of stator coils or generate a mechanical torque on the rotor shaft, and so that the power converter connected to the first set of stator coils does not deliver electrical power.
  • the first set of faulty stator coils is no longer supplied with electrical power in order to prevent the propagation of a fault by inducing a short-circuit current in the set of stator coils of the faulty converter in said machine and in the converter power connected to said set of faulty coils.
  • the second set of coils ensures the operation of the machine so that it delivers on its rotor shaft a mechanical torque equal to the nominal operating torque of the electrical machine or delivers electrical power to its terminals equal to the nominal electrical power delivered by said machine making it possible to increase the operating reliability of said electrical machine.
  • the two rotor coils are arranged in series on the rotor shaft, the first set of stator coils and the second set of stator coils being arranged in the stator so that the first rotor coil and the first set of stator coils form a first electromagnetic converter, and so that the second rotor coil and the second set of stator coils form a second electromagnetic converter.
  • the rotor comprises two identical rotor magnetic half-masses extending in a longitudinal direction of the rotor and the stator comprises two identical stator magnetic half-masses extending in a longitudinal direction of the stator, each rotor coil being inserted in a half -different rotor magnetic mass and each set of stator coils being inserted in a different stator magnetic half-mass.
  • the rotor comprises two sets of power rings, each set being connected to a different rotor coil, and in which the stator comprises two sets of brushes each supplying a different set of rings, each set of brushes being intended to be connected to one of the second power converters.
  • a propulsion device for an aircraft comprising an electric machine as defined above, and a propulsion propeller connected to the rotor shaft.
  • a hybrid turbine engine for an aircraft comprising an electric machine as defined above and a turbine engine comprising a free gas turbine, the free turbine being further connected to the rotor shaft of the electric machine.
  • An aircraft comprising a propulsion device as defined above or a hybrid turboshaft engine as defined above.
  • a method of controlling a synchronous electric machine for an aircraft comprising a stator and a wound rotor inserted in the stator, the stator comprising two sets of stator coils connected to different power converters, and the wound rotor comprising a rotor shaft and two rotor coils each supplied with a different supply current.
  • the method comprises deactivation of the first set of faulty stator coils by controlling the power converter connected to said first set so that said converter does not deliver electrical power to said set of coils, an electrical supply of the second set of stator coils by the converter associated power, and at least one supply of the second coil with the associated supply current to generate a mechanical torque on the rotor shaft or the generation of electrical energy at the terminals of the second set of stator coils.
  • the rotor comprising two identical rotor magnetic half-masses extending in a longitudinal direction of the rotor and the stator comprising two identical stator magnetic half-masses extending in a longitudinal direction of the stator, each rotor coil being inserted in a different rotor magnetic half-mass and each set of stator coils being inserted into a different stator magnetic half-mass, the method comprising controlling the currents power supply so that the amplitude of the supply current supplying the rotor coil of a half-rotor mass covering the first set of stator coils decreases, so that said current is substantially zero when said half-rotor mass covers the entire first set of stator coils, and so that the amplitude of said current increases when said rotor half-mass discovers the first set of stator coils, the effective value of said current being non-zero.
  • each supply current is sinusoidal.
  • FIG 1 schematically illustrates a first example of an aircraft according to the invention
  • FIG 2 illustrates an electrical diagram of a first example of an electric machine according to the invention
  • FIG 3 schematically illustrates a section of the first example of the electric machine according to the invention
  • FIG 4 illustrates an electrical diagram of a second example of an electric machine according to the invention
  • FIG 5 schematically illustrates a radial section of the second example of the electric machine according to the invention
  • FIG 6 illustrates a schematic modeling of the second example of the electric machine according to the invention
  • FIG 7 schematically illustrates the evolution of the rotor currents of the second example of the electric machine according to the invention.
  • FIG 8 schematically illustrates a first example of an aircraft according to the invention.
  • Figure 1 schematically illustrates an example of an aircraft 1 of the twin-engine VTOL type comprising a propeller 2, a gearbox 3, a turbine engine 4 and a hybrid turbine engine 5.
  • the turboshaft 4 and the hybrid turboshaft 5 drive the propeller 2 via the gearbox 3.
  • the turbine engine 4 comprises a gas generator 6 producing hot gases from the combustion of a fuel such as kerosene, and a free turbine 7 connected to a first input of the gearbox 3.
  • the hot gases generated by the gas generator 6 drive the free turbine 7 which in turn generates a mechanical torque driving the propeller 2.
  • the hybrid turbine engine 5 comprises a gas generator 8 producing hot gases from the combustion of a fuel such as kerosene, a free turbine 9 connected to a first input of the gearbox 3, an electric machine 10 comprising a rotor shaft 11 connected to the free turbine 9, and control means 12 of the machine 10.
  • a fuel such as kerosene
  • a free turbine 9 connected to a first input of the gearbox 3
  • an electric machine 10 comprising a rotor shaft 11 connected to the free turbine 9, and control means 12 of the machine 10.
  • the hot gases generated by the gas generator 8 drive the free turbine 9 which in turn generates a mechanical torque driving the propeller 2.
  • the machine 10 can operate in a motor mode so as to deliver a mechanical drive torque to drive the free turbine 9 or in a generator mode so that the free turbine 9 drives the rotor shaft 11 and the machine 10 produces electrical energy.
  • the gas generator 8 of the hybrid turboshaft engine 5 is turned off to save fuel.
  • the machine 10 drives the free turbine 9 to facilitate starting of the hybrid turboshaft 5.
  • the machine 10 is of the polyphase synchronous type with wound rotor. We assume in what follows that machine 10 is three-phase.
  • Figure 2 illustrates an electrical diagram of a first example of the machine 10 and the control means 12.
  • the machine 10 comprises a stator 13 comprising a first set of stator coils and a second set of stator coils (not shown in this figure).
  • the coils of the first set form a first set of three phases coupled for example in a star or triangle, each phase comprising the same number of poles.
  • the coils of the second set form a second set of phases coupled for example in a star or triangle, each phase comprising the same number of poles as the phases formed by the first set of coils.
  • Each set of coils is powered by a different reversible power converter 14, 15.
  • Each converter 14, 15 includes power supply terminals 16, 17, 18, 19 and output terminals 180, 190, 200, 210, 220, 230.
  • the first converter 14 is connected to a first power supply network R I of the helicopter, and the second converter 15 is connected to a second power supply network R2 of the helicopter.
  • the networks R I and R2 are independent so that if one of the networks is faulty, the other network is functional.
  • Each of the phases of the first set of three phases comprises a connection terminal 24, 25, 26 connected to a different output terminal 180, 190, 200 of a first power converter 14, and each of the phases of the second set of three phases comprises a connection terminal 27, 28, 29 connected to an output terminal 210, 220, 230 different from the second power converter 15.
  • the first converter 14 has as many switching arms 30, 31, 32 as there are phases of the machine 10.
  • Each switching arm 30, 31, 32 comprises a first switching cell 33 comprising for example a field effect transistor 34 and a diode 35.
  • the gate of the transistor 35 is controlled by control means 240 comprising for example a controller.
  • the drain of transistor 34 is connected to a first power supply terminal 16 and to the cathode of diode 35, the source of transistor 34 is connected to the anode of diode 35 and to an output terminal 180, 190, 200 .
  • Each switching arm 30, 31, 32 further comprises a second switching cell 36 comprising for example the field effect transistor 34 and the diode 35 arranged so that the drain of the transistor 34 is connected to an output terminal 180, 190, 200 and to the cathode of diode 35, and the source of transistor 34 is connected to the anode of diode 35 and to the second power supply terminal 17.
  • a second switching cell 36 comprising for example the field effect transistor 34 and the diode 35 arranged so that the drain of the transistor 34 is connected to an output terminal 180, 190, 200 and to the cathode of diode 35, and the source of transistor 34 is connected to the anode of diode 35 and to the second power supply terminal 17.
  • the first converter 14 further comprises one or more filter capacitors 37 extending between the power supply terminals 16, 17.
  • the machine 10 further comprises a wound rotor 38 comprising two rotor coils 39, 40 comprising power supply terminals 41, 42, 43, 44.
  • the power supply terminals 41, 42 of a first rotor coil 39 are connected to a third electrical supply network R3, and the power supply terminals 43, 44 of the second rotor coil 40 are connected to a fourth network R4 d 'electrical supply.
  • Networks R3 and R4 are independent so that if one of the networks fails, the other network is functional.
  • the first set of stator coils, the second set of stator coils, the first rotor coil 38 and the second rotor coil 40 are arranged in the machine 10 so that the first set of stator coils and the first rotor coil 39 cooperate to deliver a mechanical torque on the rotor shaft 11 or to deliver electrical power to the connection terminals 24, 25, 26, and so that the second set of coils stator coils and the second rotor coil 40 cooperate to deliver a mechanical torque to the rotor shaft 11 or to deliver electrical power to the connection terminals 27, 28, 29.
  • the control means 12 comprise the first and second converters 14, 15 and the control means 240.
  • the control means 240 are produced for example from a controller.
  • the first set of stator coils and the first rotor coil 39 form a first electromagnetic converter 45 (not shown), and the second set of stator coils and the second rotor coil 40 form a second electromagnetic converter 46 (not shown) independent of the first converter electromagnetic.
  • the control means 240 control the power converters 14, 15 so that when one of the first and second electromagnetic power converters fails, the power converter 14, 15 connected to the set of stator coils of said faulty converter does not does not deliver electrical power and so that the other electromagnetic converter is functional to generate mechanical torque or generate electrical energy across the set of stator coils of the functional electromagnetic converter.
  • control means 240 deactivate the power supply to the rotor coil of the faulty converter to de-energize the rotor of the faulty converter so as to prevent the propagation of the fault by inducing a short-circuit current in the set of stator coils of the faulty converter. faulty converter.
  • stator coils and the rotor coil of the functional electromagnetic converter are powered despite the failure of the other electromagnetic converter.
  • Each electromagnetic converter 45, 46 is dimensioned so that it ensures rapid reactivation of the hybrid turbine engine 5 increasing the reliability of the reactivation function.
  • the networks RI, R2, R3 and R4 are all independent, the reliability of the reactivation function is improved.
  • Figure 3 schematically illustrates a section of the machine 10 according to the first example.
  • the machine 10 includes a casing 46 housing the electromagnetic converters 45, 46.
  • the first electromagnetic converter 45 comprises the first set of stator coils 47 connected to the connection terminals 24, 25, 26, a magnetic mass 48 enclosing the rotor shaft 11 and housing the first rotor coil 39.
  • the second electromagnetic converter 46 comprises the second set of stator coils 49 connected to the connection terminals 27, 28, 29, a magnetic mass 50 enclosing the rotor shaft 11 and housing the second rotor coil 40.
  • the magnetic masses 48, 50 of the electromagnetic converters 45, 46 are mounted in series on the rotor shaft 11.
  • the sets of stator coils 47, 49 form the stator 13, and the rotor shaft 11 and the magnetic masses 48, 50 comprising the rotor coils 39, 40 form the rotor 38.
  • the rotor 38 further comprises two sets of feed rings 51, 52.
  • a first set of conductive rings 51 comprises two rings 53, 54 arranged on the rotor shaft 11 and connected to the first rotor coil 39.
  • Each ring 53, 54 cooperates with a brush 55, 56 different from a first set of brushes of the stator 13.
  • the brushes 55, 56 are connected to the power supply terminals 41, 42 to power the first rotor coil 39.
  • the second set of rings 52 comprises two rings 57, 58 arranged on the rotor shaft 11 and connected to the second rotor coil 40.
  • Each ring 57, 58 cooperates with a brush 59, 60 different from a second set of brushes of the stator 13.
  • the brushes 59, 60 are connected to the power supply terminals 43, 44 to power the second rotor coil 40.
  • Figure 4 illustrates an electrical diagram of a second example of the machine 10 and the control means 12.
  • the machine 10 comprises a stator 61 comprising a first set of stator coils and a second set of stator coils (not shown in this figure).
  • the coils of the first set of stator coils form three first phases coupled for example in a star or triangle, each phase comprising the same number of poles.
  • the coils of the second set of stator coils form three second phases coupled for example in a star or triangle, each phase comprising the same number of poles as the phases formed by the first set of coils.
  • Each set of coils is powered by a different reversible power converter 14, 15.
  • the output terminals 180, 190, 200 of a first converter 14 are each connected to a terminal 62, 63, 64 for connecting a different first phase
  • the output terminals 210, 220, 230 of the second converter 15 are each connected to a terminal 65, 66, 67 for connecting a different second phase.
  • the machine 10 further comprises a wound rotor 68 comprising two independent rotor coils 69, 70 each supplied by auxiliary power converters 71, 72.
  • the auxiliary power converters 71, 72 are made from switching cells 35, 36 and include input terminals 73, 74, 75, 76.
  • the power supply terminals 73, 74 of a first auxiliary power converter 71 are connected to the third network R3 and the power supply terminals 75, 76 of a second auxiliary power converter 72 are connected to the fourth network R4.
  • the control means 12 comprise the first and second converters 14, 15, the first and second auxiliary converters 71, 72, and control means 250 controlling the gate of the transistors of the first and second converters 14, 15 and the first and second converters auxiliaries 71, 72 so that the machine 10 delivers a mechanical torque on the rotor shaft 11 or generates electrical power at its terminals.
  • the control means 250 are produced for example from a controller.
  • Figure 5 schematically illustrates a radial section of the second example of machine 10.
  • the machine 10 includes a casing 80 in which the stator 61 and the rotor 68 are housed.
  • the stator 61 comprises two identical stator magnetic half-masses 81, 82 extending in a longitudinal direction of the stator 61, and connected together to form the stator 61.
  • the first set of stator coils is inserted in a first stator magnetic half-mass 81 and comprises nine coils 83 to 91 inserted between stator teeth of said stator half-mass, extending in a longitudinal direction of the stator and forming three poles per phase.
  • a first phase of the first stator half-mass 81 comprises the coils 83, 86 and 89 and is powered by the connection terminal 62
  • a second phase of the first stator half-mass 81 comprises the coils 84, 87 and 90 and is powered by the connection terminal 63
  • the third phase of the first stator half-mass 81 comprises the coils 85, 88 and 81 and is powered by the connection terminal 64.
  • the second set of stator coils is inserted in the second stator magnetic half-mass 82 and comprises nine coils 92 to 100 inserted between stator teeth of said stator half-mass, extending in a longitudinal direction of the stator and forming three poles per phase.
  • a first phase of the second stator half-mass 82 comprises the coils 92, 95, 98 and is powered by the connection terminal 65
  • a second phase of the second stator half-mass 82 comprises the coils 93, 96 and 99 and is powered by the connection terminal 66
  • the third phase of the second stator half-mass 82 comprises the coils 94, 97, 100 and is powered by the connection terminal 67.
  • stator half-masses 81, 82 are distributed making it possible to optimize the torque distribution in the machine 10 by attenuating torque variations.
  • stator half-masses 81, 82 are concentric.
  • first and second sets of stator coils may comprise more than three phases, each phase may comprise more than three poles.
  • Each pole can also be formed by several stator coils.
  • the rotor 68 comprises two identical half-rotor magnetic masses 101, 102 extending in a longitudinal direction of the rotor, and fixed on the rotor shaft 11 and between them to form the rotor 68.
  • a first rotor magnetic half-mass 101 comprises the first rotor coil 69 wound around rotor pads of the half-mass 101.
  • the rotor pads are arranged in the half-mass 101 so that they are perpendicular.
  • the turns of the coil 69 arranged on a first pad forming a north pole denoted N I and the turns arranged on the second pad forming a south pole denoted S I of the first coil 69 are arranged perpendicular to each other.
  • the second rotor magnetic half-mass 102 comprises the second rotor coil 70 wound around rotor pads of the half-mass 102.
  • the rotor pads are arranged in the half-mass 102 so that they are perpendicular.
  • the turns of the coil 70 arranged on a first stud forming a north pole denoted N2 and the turns arranged on the second stud forming a south pole denoted S2 of the second coil 70 are arranged perpendicular to each other.
  • the poles N I, S I, N2, S2 are arranged perpendicular to each other in the doubly wound rotor 68.
  • the machine 10 further comprises the first and second sets of rings 51, 52 (not shown in this figure) arranged on the rotor shaft 11 and cooperating with the brushes 55, 56, 59, 60 (not shown in this figure) so that the first set of rings 51 supplies the first coil 69 from the first auxiliary converter 71, and so that the second set of rings 52 supplies the second coil 70 from the second auxiliary converter 72.
  • control means 250 control the auxiliary converters 71, 72 so that they each deliver a continuous supply current, and also control the power converters 14, 15 so that the machine 10 delivers a mechanical torque on the rotor shaft 11 or generates electrical power at its terminals 61 to 67 reinjected by the converters 14, 15 into the networks R I, R2 of the helicopter.
  • control means 250 control the power converter 14, 15 connected to said set of failed stator coils so that said converter no longer supplies said faulty assembly and controls in in addition to the auxiliary converters 71, 72 so that the amplitude of the supply current supplying the rotor coil 69, 70 of a half-rotor mass covering the set of failed stator coils decreases, so that said current is substantially zero when said rotor half-mass covers the entire set of failed stator coils, and so that the amplitude of said current increases when said rotor half-mass uncovers the faulty set of stator coils.
  • the effective value of the supply current is non-zero.
  • the instantaneous value of the magnetic field created in the air gap of the machine 10 between the set of faulty stator coils and the rotor coils is minimal, thus preventing the propagation of the fault to the set of functional stator coils.
  • Figure 6 illustrates a schematic modeling of the second example of the machine 10 illustrated in Figure 5.
  • a reference frame comprising an origin located at the center of the rotor shaft 11, a first fixed axis X and a second axis Y passing through the center of the rotor coils 69, 70 and defining an angle a with the first axis X.
  • first stator half-mass 81 extends from 0 to n along the first axis X
  • second stator half-mass 82 extends from n to 0 along the first axis X.
  • Figure 7 illustrates the evolution of the sinusoidal supply currents I I, 12 delivered by the auxiliary power converters when the first set of stator coils integrated in the first half-mass 81 fails.
  • FIG 8 illustrates an example of an aircraft 200 of the CTOL type, for example a twin-engine aircraft comprising two identical propulsion devices 201 arranged on either side of a longitudinal axis of the aircraft.
  • Each propulsion device 201 comprises a propeller 202 and a machine 10 as described previously in Figures 2 to 5, and the control means 12 connected to the machine 10.
  • the rotor shaft 11 is connected to the propeller 10 so that the propeller rotated by the motor 10 propels the aircraft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

La machine électrique synchrone ( 10) pour aéronef, comporte un stator ( 13) et un rotor bobiné (38) inséré dans le stator, le stator comportant deux ensembles de bobines statoriques (47, 49) destinés à être reliés à des convertisseurs de puissance différents, et le rotor bobiné comportant un arbre rotorique (11) et deux bobines rotoriques (39, 40) destinées à être chacune alimentée par un courant d' alimentation différent. Les deux ensembles de bobines statoriques sont disposés dans le stator de sorte que lors de la défaillance d'un premier ensemble de bobines statoriques (47), le deuxième ensemble de bobines statoriques (49) coopère avec au moins la deuxième bobine rotorique (40) alimenté par le courant d' alimentation associé pour générer un couple mécanique sur l' arbre rotorique, et de sorte que le convertisseur de puissance relié au premier ensemble de bobines statoriques ne délivre pas de puissance électrique.

Description

DESCRIPTION
TITRE : Machine électrique synchrone pour aéronef, dispositif de propulsion, turbomoteur et procédé associés
Domaine technique de l’invention
L’ invention concerne des machines électriques tournantes pour aéronef, et plus particulièrement les machines électriques synchrones à rotor bobiné pour aéronef.
L’ invention concerne en outre un dispositif de propulsion et un système de propulsion comprenant une telle machine électrique, un aéronef comportant un tel dispositif de propulsion ou un tel système de propulsion, et un procédé de commande d’une telle machine électrique.
Etat de la technique antérieure
Un aéronef, par exemple un hélicoptère bimoteur, du type à décollage et atterrissage vertical VTOL « vertical take off and landing » en anglais, comprend un système propulsif comprenant deux turbomoteurs, chaque turbomoteur comprenant un générateur de gaz et une turbine libre entraînée en rotation par le générateur de gaz, et solidaire d'un arbre de sortie. L'arbre de sortie de chaque turbine libre est adapté pour mettre en mouvement une boîte de transmission de puissance, qui entraîne elle-même le rotor de l'hélicoptère. Il est connu que lorsque l'hélicoptère est en situation de vol de croisière (c'est-à- dire lorsqu'il évolue dans des conditions normales, au cours de toutes les phases du vol, hors phases transitoires de décollage, de montée, d'atterrissage ou de vol stationnaire), les turbomoteurs développent des puissances faibles inférieures aux puissances maximales continues . Ces faibles niveaux de puissance entraînent une consommation spécifique (ci-après, Cs), définie comme étant le rapport entre la consommation horaire de carburant par la chambre de combustion du turbomoteur et la puissance mécanique fournie par ce turbomoteur, supérieure de l'ordre de 30% à la Cs de la puissance maximale de décollage, et donc une surconsommation en carburant en vol de croisière. Afin de réduire la consommation en carburant de l’hélicoptère, il est connu en situation de vol de croisière de mettre en veille une des deux turbines, de manière à ce que l’ autre moteur fonctionne à régime élevé et bénéficie de ce fait d’ une Consommation Spécifique beaucoup plus faible.
Afin de pallier des situations critiques, notamment en cas de défaillance de la turbine à gaz qui n’est pas en veille ou en cas d’ une manœuvre d’ évitement, il est nécessaire de réactiver rapidement la turbine en veille.
Comme il s’ agit d’ une procédure critique, il est nécessaire de garantir un niveau de fiabilité élevé de la procédure de réactivation de la turbine en veille pour garantir la sécurité en vol de l’hélicoptère.
Le document FR3027058 divulgue un hélicoptère comprenant au moins un turbomoteur tel que décrit précédemment, et un turbomoteur hybride comportant un turbomoteur tel que décrit et un système de réactivation rapide comportant deux chaînes de réactivation.
Chaque chaîne de réactivation comprend une machine électrique tournante et un dispositif de conversion de puissance pilotant ladite machine.
L’hélicoptère comprend en outre un stockeur d'énergie électrique, et un réseau de bord alimentant les dispositifs de conversion de puissance.
Chaque machine électrique permet de réactiver rapidement le turbomoteur hybride lorsqu’il est en veille.
La redondance des chaînes de réactivation permet de garantir un niveau de faillibilité élevé de la fonction « réactivation rapide ».
Cependant, la redondance des chaînes de réactivation augmente la masse de l’hélicoptère réduisant d’ autant la charge utile de l’hélicoptère, et augmentant l’ encombrement du système de réactivation rapide.
En outre, il est connu de remplacer au moins une turbomachine destinée à produire la poussée d’un aéronef de type à décollage et atterrissage conventionnel CTOL « conventionnal take-off and landing » en anglais, par un moteur électrique entraînant une hélice pour diminuer la consommation élevée de combustible fossile, notamment de kérosène, de l’ aéronef.
Généralement le moteur électrique comprend un rotor muni d’ aimants permanents
Cependant, lorsque le rotor est mis en rotation par l’hélice entraînée un flux d’ air incident, « windmilling » en anglais, les aimants génèrent un flux d’ excitation dans le moteur susceptible d’induire des courants de court-circuit dans les bobinages statoriques du moteur.
Les courants de court-circuit échauffent le moteur et sont susceptibles de détériorer le moteur.
De plus, lorsqu’ un bobinage statorique est défaillant, le flux d’ excitation généré par les aimants permanents induit un courant dans le bobinage statorique défaillant susceptible de propager la défaillance.
Exposé de l’invention
Le but de l’ invention est de pallier tout ou partie de ces inconvénients .
Au vu de ce qui précède, l’ invention a pour objet une machine électrique synchrone pour aéronef, comportant un stator et un rotor bobiné inséré dans le stator, le stator comportant deux ensembles de bobines statoriques destinés à être reliés à des convertisseurs de puissance différents, et le rotor bobiné comportant un arbre rotorique et deux bobines rotoriques destinées à être chacune alimentée par un courant d’ alimentation différent.
Les deux ensembles de bobines statoriques sont disposés dans le stator de sorte que lors de la défaillance d’ un premier ensemble de bobines statoriques, le deuxième ensemble de bobines statoriques coopère avec au moins la deuxième bobine rotorique alimentée par le courant d’ alimentation associé pour générer de l’ énergie électrique aux bornes du deuxième ensemble de bobines statoriques ou générer un couple mécanique sur l’ arbre rotorique, et de sorte que le convertisseur de puissance relié au premier ensemble de bobines statoriques ne délivre pas de puissance électrique. Le premier ensemble de bobines statoriques défaillant n’ est plus alimenté en puissance électrique afin d’ empêcher la propagation d’un défaut en induisant un courant de court-circuit dans l’ ensemble de bobines statoriques du convertisseur défaillant dans ladite machine et dans le convertisseur de puissance relié audit ensemble de bobines défaillant.
Malgré la défaillance du premier ensemble de bobines, le deuxième ensemble de bobines assure le fonctionnement de la machine de sorte qu’elle délivre sur son arbre rotorique un couple mécanique égal au couple de fonctionnement nominal de la machine électrique ou délivre une puissance électrique à ses bornes égale à la puissance électrique nominale délivrée par ladite machine permettant d’ augmenter la fiabilité de fonctionnement de ladite machine électrique.
De préférence, les deux bobines rotoriques sont disposées en série sur l’ arbre rotorique, le premier ensemble de bobines statoriques et le deuxième ensemble de bobines statoriques étant disposés dans le stator de sorte que la première bobine rotorique et le premier ensemble de bobines statoriques forment un premier convertisseur électromagnétique, et de sorte que la deuxième bobine rotorique et le deuxième ensemble de bobines statoriques forment un deuxième convertisseur électromagnétique.
Avantageusement, le rotor comprend deux demi-masses magnétiques rotoriques identiques s’ étendant selon une direction longitudinale du rotor et le stator comprend deux demi-masses magnétiques statoriques identiques s ’ étendant selon une direction longitudinale du stator, chaque bobine rotorique étant insérée dans une demi-masse magnétique rotorique différente et chaque ensemble de bobines statoriques étant inséré dans une demi-masse magnétique statorique différente.
De préférence, le rotor comporte deux jeux de bagues d’ alimentation, chaque jeu étant relié à une bobine rotorique différente, et dans laquelle le stator comprend deux jeux de balais alimentant chacun un jeu de bagues différent, chaque jeu de balais étant destiné à être relié à l’un des deuxièmes convertisseurs de puissance. Il est également proposé un dispositif de propulsion pour aéronef comportant une machine électrique telle que définie précédemment, et une hélice de propulsion reliée à l’ arbre rotorique.
Il est également proposé un turbomoteur hybride pour aéronef comportant une machine électrique telle que définie précédemment et un turbomoteur comprenant une turbine libre à gaz, la turbine libre étant en outre reliée à l’ arbre rotorique de la machine électrique.
Il est également proposé un aéronef comportant un dispositif de propulsion tel que défini précédemment ou un turbomoteur hybride tel que défini précédemment.
Il est également proposé un procédé de commande d’ une machine électrique synchrone pour aéronef, la machine électrique comportant un stator et un rotor bobiné inséré dans le stator, le stator comportant deux ensembles de bobines statoriques reliés à des convertisseurs de puissance différents, et le rotor bobiné comportant un arbre rotorique et deux bobines rotoriques alimentées chacune par un courant d’ alimentation différent.
Le procédé comprend une désactivation du premier ensemble de bobines statoriques défaillant en pilotant le convertisseur de puissance relié audit premier ensemble de sorte que ledit convertisseur ne délivre pas de puissance électrique audit ensemble de bobines, une alimentation électrique du deuxième ensemble de bobines statoriques par le convertisseur de puissance associé, et au moins une alimentation de la deuxième bobine par le courant d’ alimentation associé pour générer un couple mécanique sur l’ arbre rotorique ou la génération d’ énergie électrique aux bornes du deuxième ensemble de bobines statoriques .
De préférence, le rotor comprenant deux demi-masses magnétiques rotoriques identiques s’ étendant selon une direction longitudinale du rotor et le stator comprenant deux demi-masses magnétiques statoriques identiques s ’ étendant selon une direction longitudinale du stator, chaque bobine rotorique étant insérée dans une demi-masse magnétique rotorique différente et chaque ensemble de bobines statoriques étant inséré dans une demi-masse magnétique statorique différente, le procédé comprenant la commande des courants d’ alimentation de sorte que l’ amplitude du courant d’ alimentation alimentant la bobine rotorique d’une demi-masse rotorique recouvrant le premier ensemble de bobines statoriques décroît, de sorte que ledit courant est sensiblement nul lorsque ladite demi-masse rotorique recouvre la totalité du premier ensemble de bobines statoriques, et de sorte que l’ amplitude dudit courant augmente lorsque ladite demi-masse rotorique découvre le premier ensemble de bobines statoriques, la valeur efficace dudit courant étant non nulle.
Avantageusement, chaque courant d’ alimentation est sinusoïdal.
Brève description des dessins
D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d'exemple non limitatif, et faite en référence aux dessins annexés sur lesquels :
[Fig 1 ] illustre schématiquement un premier exemple d’un aéronef selon l’invention ;
[Fig 2] illustre un schéma électrique d’ un premier exemple d’ une machine électrique selon l’ invention ;
[Fig 3] illustre schématiquement une coupe du premier exemple de la machine électrique selon l’ invention ;
[Fig 4] illustre un schéma électrique d’ un deuxième exemple d’ une machine électrique selon l’ invention ;
[Fig 5] illustre schématiquement une coupe radiale du deuxième exemple de la machine électrique selon l’ invention,
[Fig 6] illustre une modélisation schématique du deuxième exemple de la machine électrique selon l’ invention,
[Fig 7] illustre schématiquement l’ évolution des courants rotoriques du deuxième exemple de la machine électrique selon l’ invention, et
[Fig 8] illustre schématiquement un premier exemple d’ un aéronef selon l’invention.
Exposé détaillé d’au moins un mode de réalisation On se réfère à la figure 1 qui illustre schématiquement un exemple d’un aéronef 1 du type VTOL bimoteur comportant une hélice 2, une boîte de vitesse 3 , un turbomoteur 4 et un turbomoteur hybride 5.
Le turbomoteur 4 et le turbomoteur hybride 5 entraînent l’hélice 2 par l’ intermédiaire de la boîte de vitesse 3.
Le turbomoteur 4 comprend un générateur de gaz 6 produisant des gaz chauds à partir de la combustion d’un combustible tel que du kérosène, et une turbine libre 7 reliée à une entrée première de la boîte de vitesse 3.
Les gaz chauds générés par le générateur de gaz 6 entraînent la turbine libre 7 qui à son tour génère un couple mécanique entraînant l’hélice 2.
Le turbomoteur hybride 5 comprend un générateur de gaz 8 produisant des gaz chauds à partir de la combustion d’un combustible tel que du kérosène, une turbine libre 9 reliée à une première entrée de la boîte de vitesse 3, une machine 10 électrique comportant un arbre rotorique 1 1 relié à la turbine libre 9, et des moyens de commande 12 de la machine 10.
Les gaz chauds générés par le générateur de gaz 8 entraînent la turbine libre 9 qui à son tour génère un couple mécanique entraînant l’hélice 2.
La machine 10 peut fonctionner selon un mode moteur de manière à délivrer un couple mécanique d’ entraînement pour entraîner la turbine libre 9 ou selon un mode générateur de sorte que la turbine libre 9 entraîne l’ arbre rotorique 1 1 et la machine 10 produise de l’ énergie électrique.
Lorsque l’hélicoptère est en situation de vol de croisière, le générateur de gaz 8 du turbomoteur hydride 5 est mis à l’ arrêt pour économiser du combustible.
Lorsqu’ une réactivation du turbomoteur hybride 5 est nécessaire, par exemple lors d’une manœuvre d’ évitement d’ un obstacle en vol ou lorsque la turbomachine 4 est défaillante, la machine 10 entraîne la turbine libre 9 pour faciliter le démarrage du turbomoteur hybride 5.
La machine 10 est du type synchrone polyphasée à rotor bobiné. On suppose dans ce qui suit que la machine 10 est triphasée.
La figure 2 illustre un schéma électrique d’ un premier exemple de la machine 10 et des moyens de commande 12.
La machine 10 comprend un stator 13 comprenant un premier ensemble de bobines statoriques et un deuxième ensemble de bobines statoriques (non représentés sur cette figure) .
Les bobines du premier ensemble forment un premier ensemble de trois phases couplées par exemple en étoile ou en triangle, chaque phase comportant un même nombre de pôles .
Les bobines du deuxième ensemble forment un deuxième ensemble de phases couplées par exemple en étoile ou en triangle, chaque phase comportant un même nombre de pôles que les phases formées par le premier ensemble de bobines .
Chaque ensemble de bobines est alimenté par un convertisseur de puissance 14, 15 réversible différent.
Chaque convertisseur 14, 15 comprend des bornes d’ alimentation 16, 17, 18 , 19 et des bornes de sortie 180, 190, 200, 210, 220, 230.
Le premier convertisseur 14 est relié à un premier réseau R I d’ alimentation électrique de l’hélicoptère, et le deuxième convertisseur 15 est relié à un deuxième réseau R2 d’ alimentation électrique de l’hélicoptère.
Les réseaux R I et R2 sont indépendants de sorte que si l’ un des réseaux est défaillant, l’ autre réseau est fonctionnel.
Chacune des phases du premier ensemble de trois phases comprend une borne de connexion 24, 25, 26 reliée à une borne de sortie 180, 190, 200 différente d’ un premier convertisseur 14 de puissance, et chacune des phases du deuxième ensemble de trois phases comprend une borne de connexion 27, 28, 29 reliée à une borne de sortie 210, 220, 230 différente du deuxième convertisseur 15 de puissance.
Comme l’ architecture des convertisseurs 14, 15 est identique, seul un premier convertisseur 14 alimentant le premier ensemble de bobines statoriques est détaillé.
Le premier convertisseur 14 comporte autant de bras de commutation 30, 31 , 32 que de phases de la machine 10. Chaque bras de commutation 30, 31 , 32 comprend une première cellule de commutation 33 comportant par exemple un transistor à effet de champs 34 et une diode 35. La grille du transistor 35 est commandée par des moyens de pilotage 240 comportant par exemple un contrôleur.
Le drain du transistor 34 est relié à une première borne d’ alimentation 16 et à la cathode de la diode 35, la source du transistor 34 est reliée à l’ anode de la diode 35 et à une borne de sortie 180, 190, 200.
Chaque bras de commutation 30, 31 , 32 comprend en outre une deuxième cellule de commutation 36 comportant par exemple le transistor à effet de champs 34 et la diode 35 agencés de sorte que le drain du transistor 34 est relié à une borne de sortie 180, 190, 200 et à la cathode de la diode 35, et la source du transistor 34 est reliée à l’ anode de la diode 35 et à la deuxième borne d’ alimentation 17.
Le premier convertisseur 14 comprend en outre un ou plusieurs condensateurs de filtrage 37 s ’étendant entre les bornes d’ alimentation 16, 17.
La machine 10 comprend en outre un rotor 38 bobiné comprenant deux bobines rotoriques 39, 40 comprenant des bornes d’ alimentation 41 , 42, 43 , 44.
Les bornes d’ alimentation 41 , 42 d’ une première bobine rotorique 39 sont reliées à un troisième réseau R3 d’ alimentation électrique, et les bornes d’ alimentation 43, 44 de la deuxième bobine rotorique 40 sont reliées à un quatrième réseau R4 d’ alimentation électrique.
Les réseaux R3 et R4 sont indépendants de sorte que si l’ un des réseaux est défaillant, l’ autre réseau est fonctionnel.
Le premier ensemble de bobines statoriques, le deuxième ensemble de bobines statoriques, la première bobine rotorique 38 et la deuxième bobine rotorique 40 sont disposées dans la machine 10 de sorte que le premier ensemble de bobines statoriques et la première bobine rotorique 39 coopèrent pour délivrer un couple mécanique sur l’ arbre rotorique 1 1 ou pour délivrer une puissance électrique sur les bornes de connexion 24, 25, 26, et de sorte que le deuxième ensemble de bobines statoriques et la deuxième bobine rotorique 40 coopèrent pour délivrer un couple mécanique sur l’ arbre rotorique 1 1 ou pour délivrer une puissance électrique sur les bornes de connexion 27, 28, 29.
Les moyens de commande 12 comprennent les premier et deuxième convertisseurs 14, 15 et les moyens de pilotage 240.
Les moyens de pilotage 240 sont réalisés par exemple à partir d’ un contrôleur.
Le premier ensemble de bobines statoriques et la première bobine rotorique 39 forment un premier convertisseur électromagnétique 45 (non représenté) , et le deuxième ensemble de bobines statoriques et la deuxième bobine rotorique 40 forment un deuxième convertisseur électromagnétique 46 (non représenté) indépendant du premier convertisseur électromagnétique.
Les moyens de pilotage 240 pilotent les convertisseurs de puissance 14, 15 de sorte que lorsque l’un des premier et deuxième convertisseurs de puissance électromagnétique est défaillant, le convertisseur de puissance 14, 15 relié à l’ ensemble de bobines statoriques dudit convertisseur défaillant ne délivre pas de puissance électrique et de sorte que l’ autre convertisseur électromagnétique est fonctionnel pour générer un couple mécanique ou générer de l’énergie électrique aux bornes de l’ ensemble de bobines statoriques du convertisseur électromagnétique fonctionnel.
En outre, les moyens de pilotage 240 désactivent l’ alimentation de la bobine rotorique du convertisseur défaillant pour désexciter le rotor du convertisseur défaillant de manière à empêcher la propagation du défaut en induisant un courant de court-circuit dans l’ ensemble de bobines statoriques du convertisseur défaillant.
Les bobines statoriques et la bobine rotorique du convertisseur électromagnétique fonctionnel sont alimentées malgré la défaillance de l’ autre convertisseur électromagnétique.
Chaque convertisseur électromagnétique 45, 46 est dimensionné de sorte qu’ il assure une réactivation rapide du turbomoteur hybride 5 augmentant la fiabilité de la fonction de réactivation. Lorsque les réseaux R I , R2, R3 et R4 sont tous indépendants, la fiabilité de la fonction de réactivation est améliorée.
La figure 3 illustre schématiquement une coupe de la machine 10 selon le premier exemple.
La machine 10 comprend un carter 46 logeant les convertisseurs électromagnétiques 45, 46.
Le premier convertisseur électromagnétique 45 comprend le premier ensemble de bobines statoriques 47 reliées aux bornes de connexion 24, 25, 26, une masse magnétique 48 enserrant l’ arbre rotorique 1 1 et logeant la première bobine rotorique 39.
Le deuxième convertisseur électromagnétique 46 comprend le deuxième ensemble de bobines statoriques 49 reliées aux bornes de connexion 27, 28 , 29, une masse magnétique 50 enserrant l’ arbre rotorique 1 1 et logeant la deuxième bobine rotorique 40.
Les masses magnétiques 48 , 50 des convertisseurs électromagnétiques 45, 46 sont montées en série sur l’ arbre rotorique 11.
Les ensembles de bobines statoriques 47, 49 forment le stator 13, et l’ arbre rotorique 1 1 et les masses magnétiques 48 , 50 comprenant les bobines rotoriques 39, 40 forment le rotor 38.
Le rotor 38 comprend en outre deux jeux de bagues 51 , 52 d’ alimentation.
Un premier jeu de bagues 51 conductrices comprend deux bagues 53, 54 disposées sur l’ arbre rotorique 1 1 et reliées à la première bobine rotorique 39.
Chaque bague 53, 54 coopère avec un balai 55, 56 différent d’ un premier jeu de balais du stator 13.
Les balais 55, 56 sont reliés aux bornes d’ alimentation 41 , 42 pour alimenter la première bobine rotorique 39.
Le deuxième jeu de bagues 52 comprend deux bagues 57, 58 disposées sur l’ arbre rotorique 1 1 et reliées à la deuxième bobine rotorique 40.
Chaque bague 57, 58 coopère avec un balai 59, 60 différent d’ un deuxième jeu de balais du stator 13. Les balais 59, 60 sont reliés aux bornes d’ alimentation 43, 44 pour alimenter la deuxième bobine rotorique 40.
La figure 4 illustre un schéma électrique d’ un deuxième exemple de la machine 10 et des moyens de commande 12.
On retrouve les premier et deuxième convertisseurs de puissance 14, 15.
La machine 10 comprend un stator 61 comprenant un premier ensemble de bobines statoriques et un deuxième ensemble de bobines statoriques (non représentés sur cette figure) .
Les bobines du premier ensemble de bobines statoriques forment trois premières phases couplées par exemple en étoile ou en triangle, chaque phase comportant un même nombre de pôles .
Les bobines du deuxième ensemble de bobines statoriques forment trois deuxièmes phases couplées par exemple en étoile ou en triangle, chaque phase comportant un même nombre de pôles que les phases formées par le premier ensemble de bobines .
Chaque ensemble de bobines est alimenté par un convertisseur de puissance 14, 15 réversible différent.
Les bornes de sortie 180, 190, 200 d’un premier convertisseur 14 sont reliées chacune à une borne 62, 63, 64 de connexion d’ une première phase différente, et les bornes de sortie 210, 220, 230 du deuxième convertisseur 15 sont reliées chacune à une borne 65, 66, 67 de connexion d’ une deuxième phase différente.
La machine 10 comprend en outre un rotor 68 bobiné comprenant deux bobines rotoriques 69, 70 indépendantes alimentées chacune par des convertisseurs de puissance auxiliaires 71 , 72.
Les convertisseurs de puissance auxiliaires 71 , 72 sont réalisés à partir de cellules de commutation 35, 36 et comprennent des bornes d’ entrées 73, 74, 75, 76.
Les bornes d’ alimentation 73, 74 d’ un premier convertisseur de puissance auxiliaire 71 sont reliées au troisième réseau R3 et les bornes d’ alimentation 75, 76 d’ un deuxième convertisseur de puissance auxiliaire 72 sont reliées au quatrième réseau R4. Les moyens de commande 12 comportent les premier et deuxième convertisseurs 14, 15, les premier et deuxième convertisseurs auxiliaires 71 , 72, et des moyens de pilotage 250 pilotant la grille des transistors des premier et deuxième convertisseurs 14, 15 et des premier et deuxième convertisseurs auxiliaires 71 , 72 de sorte que la machine 10 délivre un couple mécanique sur l’ arbre rotorique 1 1 ou génère une puissance électrique à ses bornes .
Les moyens de pilotage 250 sont réalisés par exemple à partir d’ un contrôleur.
Figure 5 illustre schématiquement une coupe radiale du deuxième exemple de la machine 10.
La machine 10 comprend un carter 80 dans lequel est logé le stator 61 et le rotor 68.
Le stator 61 comprend deux demi-masses magnétiques statoriques identiques 81 , 82 s’ étendant selon une direction longitudinale du stator 61 , et reliées entre elles pour former le stator 61.
Le premier ensemble de bobines statoriques est inséré dans une première demi-masse magnétique statorique 81 et comprend neuf bobines 83 à 91 insérées entre des dents statoriques de ladite demi- masse statorique, s ’ étendant selon une direction longitudinale du stator et formant trois pôles par phase.
Une première phase de la première demi-masse statorique 81 comprend les bobines 83, 86 et 89 et est alimentée par la borne de connexion 62, une deuxième phase de la première demi-masse statorique 81 comprend les bobines 84, 87 et 90 et est alimentée par la borne de connexion 63, et la troisième phase de la première demi-masse statorique 81 comprend les bobines 85, 88 et 81 et est alimentée par la borne de connexion 64.
Le deuxième ensemble de bobines statoriques est inséré dans la deuxième demi-masse magnétique statorique 82 et comprend neuf bobines 92 à 100 insérées entre des dents statoriques de ladite demi- masse statorique, s ’ étendant selon une direction longitudinale du stator et formant trois pôles par phase. Une première phase de la deuxième demi-masse statorique 82 comprend les bobines 92, 95, 98 et est alimentée par la borne de connexion 65, une deuxième phase de la deuxième demi-masse statorique 82 comprend les bobines 93, 96 et 99 et est alimentée par la borne de connexion 66, et la troisième phase de la deuxième demi-masse statorique 82 comprend les bobines 94, 97, 100 et est alimentée par la borne de connexion 67.
Les bobinages des demi-masses statoriques 81 , 82 sont distribués permettant d’ optimiser la distribution de couple dans la machine 10 en atténuant les variations de couple.
En variante, les bobinages des demi-masses statoriques 81 , 82 sont concentriques.
Bien entendu, les premier et deuxième ensembles de bobines statoriques peuvent comprendre plus de trois phases, chaque phase pouvant comprendre plus de trois pôles .
Chaque pôle peut en outre être formé par plusieurs bobines statoriques.
Le rotor 68 comprend deux demi-masses magnétiques rotoriques 101 , 102 identiques s ’ étendant selon une direction longitudinale du rotor, et fixées sur l’ arbre rotorique 1 1 et entre elles pour former le rotor 68.
Une première demi-masse magnétique rotorique 101 comprend la première bobine rotorique 69 bobinée autour de plots rotoriques de la demi-masse 101.
Les plots rotoriques sont disposés dans la demi-masse 101 de sorte qu’ ils sont perpendiculaires .
Les spires de la bobine 69 disposées sur un premier plot formant un pôle nord noté N I et les spires disposées sur le deuxième plot formant un pôle sud noté S I de la première bobine 69 sont disposées perpendiculairement les unes par rapport aux autres .
La deuxième demi-masse magnétique rotorique 102 comprend la deuxième bobine rotorique 70 bobinée autour de plots rotoriques de la demi-masse 102. Les plots rotoriques sont disposés dans la demi-masse 102 de sorte qu’ ils sont perpendiculaires .
Les spires de la bobine 70 disposées sur un premier plot formant un pôle nord noté N2 et les spires disposées sur le deuxième plot formant un pôle sud noté S2 de la deuxième bobine 70 sont disposées perpendiculairement les unes par rapport aux autres .
Les pôles N I , S I , N2, S2 sont disposés perpendiculairement les uns par rapport aux autres dans le rotor doublement bobiné 68.
La machine 10 comprend en outre les premier et deuxième jeux de bagues 51 , 52 (non représentées sur cette figure) disposés sur l’ arbre rotorique 1 1 et coopérant avec les balais 55, 56, 59, 60 (non représentés sur cette figure) de sorte que le premier jeu de bagues 51 alimente la première bobine 69 à partir du premier convertisseur auxiliaire 71 , et de sorte que le deuxième jeu de bagues 52 alimente la deuxième bobine 70 à partir du deuxième convertisseur auxiliaire 72.
Lorsque les deux jeux de bobinages statoriques sont fonctionnels, les moyens de pilotage 250 pilotent les convertisseurs auxiliaires 71 , 72 de sorte qu’ ils délivrent chacun un courant d’ alimentation continu, et pilotent en outre les convertisseurs de puissance 14, 15 de sorte que la machine 10 délivre un couple mécanique sur l’ arbre rotorique 1 1 ou génère une puissance électrique à ses bornes 61 à 67 réinjectée par les convertisseurs 14, 15 sur dans les réseaux R I , R2 de l’hélicoptère.
Lorsque l’ un des premier et deuxième ensembles de bobinages statoriques est défaillant, les moyens de pilotage 250 pilotent le convertisseur de puissance 14, 15 relié audit ensemble de bobines statoriques défaillant de sorte que ledit convertisseur n’ alimente plus ledit ensemble défaillant et pilotent en outre les convertisseurs auxiliaires 71 , 72 de sorte que l’ amplitude du courant d’ alimentation alimentant la bobine rotorique 69, 70 d’une demi-masse rotorique recouvrant l’ ensemble de bobines statoriques défaillant décroît, de sorte que ledit courant est sensiblement nul lorsque ladite demi-masse rotorique recouvre la totalité de l’ ensemble de bobines statoriques défaillant, et de sorte que l’ amplitude dudit courant augmente lorsque ladite demi-masse rotorique découvre l’ ensemble de bobines statoriques défaillant.
La valeur efficace du courant d’ alimentation est non nulle.
La valeur instantanée du champ magnétique créé dans l’ entrefer de la machine 10 entre l’ ensemble de bobines statoriques défaillant et les bobines rotoriques est minimale empêchant ainsi la propagation du défaut à l’ ensemble de bobines statoriques fonctionnel.
Afin d’ empêcher l’ apparition d’un courant parasite de court- circuit trop important dans l’ensemble de bobines statoriques défaillants induit par la magnétisation de l’ entrefer par le bobinage rotorique opposé à celui en face de l’ ensemble de bobinages statoriques défaillants , des temps morts peuvent être créés .
La figure 6 illustre une modélisation schématique du deuxième exemple de la machine 10 illustrée à la figure 5.
On retrouve les deux demi-masses magnétiques statoriques identiques 81 , 82 et les deux bobines rotoriques 69, 70 alimentées respectivement par le courant d’ alimentation I I et le courant d’ alimentation 12.
On définit un repère comportant une origine située au centre de l’ arbre rotorique 1 1 , un premier axe X fixe et un deuxième axe Y passant au centre des bobines rotoriques 69, 70 et définissant un angle a avec le premier axe X.
On suppose que la première demi-masse statorique 81 s ’ étend de 0 à n selon le premier axe X, et la deuxième demi-masse statorique 82 s’ étend de n à 0 selon le premier axe X.
La figure 7 illustre l’évolution des courants d’ alimentation I I , 12 sinusoïdaux délivrés par les convertisseurs de puissance auxiliaires lorsque le premier ensemble de bobines statoriques intégré dans la première demi-masse 81 est défaillant.
La figure 8 illustre un exemple d’un aéronef 200 du type CTOL, par exemple un avion bimoteur comportant deux dispositifs de propulsion 201 identiques disposés de part et d’ autre d’un axe longitudinal de l’ avion. Chaque dispositif de propulsion 201 comporte une hélice 202 et une machine 10 tel que décrite précédemment aux figure 2 à 5, et les moyens de commande 12 reliés à la machine 10.
L’ arbre rotorique 1 1 est relié à l’hélice 10 de sorte que l’hélice mise en rotation par le moteur 10 propulse l’ avion.

Claims

REVENDICATIONS
1. Machine électrique synchrone ( 10) pour aéronef ( 1 , 200), comportant un stator ( 13, 61 ) et un rotor bobiné (38, 68) inséré dans le stator, le stator comportant deux ensembles de bobines statoriques (47, 49, 83, 84, 85 , 86, 87 , 88, 89, 90, 91 , 92, 93, 94, 95, 96, 97, 98, 99, 100) destinés à être reliés à des convertisseurs de puissance ( 14, 15) différents, et le rotor bobiné comportant un arbre rotorique ( 1 1 ) et deux bobines rotoriques (39, 40, 69, 70) destinées à être chacune alimentée par un courant d’ alimentation différent (II , 12) , caractérisée en ce que les deux ensembles de bobines statoriques sont disposés dans le stator de sorte que lors de la défaillance d’ un premier ensemble de bobines statoriques (47), le deuxième ensemble de bobines statoriques (49) coopère avec au moins la deuxième bobine rotorique (40, 70) alimentée par le courant d’ alimentation (12) associé pour générer de l’ énergie électrique aux bornes du deuxième ensemble de bobines statoriques ou générer un couple mécanique sur l’ arbre rotorique, et de sorte que le convertisseur de puissance relié au premier ensemble de bobines statoriques ne délivre pas de puissance électrique.
2. Machine électrique selon la revendication 1 , dans laquelle les deux bobines rotoriques (39, 40) sont disposées en série sur l’ arbre rotorique ( 1 1 ), le premier ensemble de bobines statoriques (47) et le deuxième ensemble de bobines statoriques (49) étant disposés dans le stator de sorte que la première bobine rotorique et le premier ensemble de bobines statoriques forment un premier convertisseur électromagnétique, et de sorte que la deuxième bobine rotorique et le deuxième ensemble de bobines statoriques forment un deuxième convertisseur électromagnétique.
3. Machine électrique selon la revendication 1 , dans laquelle le rotor (68) comprend deux demi-masses magnétiques rotoriques ( 101 , 102) identiques s ’ étendant selon une direction longitudinale du rotor et le stator (61 ) comprend deux demi-masses magnétiques statoriques (81 , 82) identiques s’ étendant selon une direction longitudinale du stator, chaque bobine rotorique étant insérée dans une demi-masse magnétique rotorique différente et chaque ensemble de bobines statoriques étant inséré dans une demi-masse magnétique statorique différente.
4. Machine électrique selon l’une quelconque des revendications 1 à 3 , dans laquelle le rotor (38, 68) comporte deux jeux de bagues d’ alimentation (51 , 52), chaque jeu étant relié à une bobine rotorique différente (39, 40, 69, 70), et dans laquelle le stator comprend deux jeux de balais (55, 56, 59, 60) alimentant chacun un jeu de bagues différent, chaque jeu de balais étant destiné à être relié à l’ un des deuxièmes convertisseurs de puissance.
5. Dispositif de propulsion (201 ) pour aéronef (200) comportant une machine électrique ( 10) selon l’une quelconque des revendications 1 à 4, et une hélice de propulsion (202) reliée à l’ arbre rotorique ( 1 1 ) .
6. Turbomoteur hybride (5) pour aéronef ( 1 ) comportant une machine électrique ( 10) selon l’ une quelconque des revendications 1 à 4 et un turbomoteur comprenant une turbine libre à gaz (9), la turbine libre étant en outre reliée à l’ arbre rotorique ( 1 1 ) de la machine électrique.
7. Aéronef ( 1 , 200) comportant un dispositif de propulsion (201 ) selon la revendication 5 ou un turbomoteur hybride (5) selon la revendication 6.
8. Procédé de commande d’ une machine électrique synchrone ( 10) pour aéronef ( 1 , 200), la machine électrique comportant un stator ( 13, 61 ) et un rotor bobiné (38, 68) inséré dans le stator, le stator comportant deux ensembles de bobines statoriques (47, 49, 83 , 84, 85 , 86, 87, 88, 89, 90, 91 , 92, 93, 94, 95, 96, 97, 98, 99, 100) reliés à des convertisseurs de puissance ( 14, 15) différents, et le rotor bobiné comportant un arbre rotorique ( 1 1 ) et deux bobines rotoriques (39, 40, 69, 70) alimentées chacune par un courant d’ alimentation (II , 12) différent, caractérisé en ce que le procédé comprend une désactivation du premier ensemble de bobines statoriques défaillant (47, 83, 84, 85, 86, 87, 88, 89, 90, 91 ) en pilotant le convertisseur de puissance ( 14) relié audit premier ensemble de sorte que ledit convertisseur ne délivre pas de puissance électrique audit ensemble de bobines, une alimentation électrique du deuxième ensemble de bobines statoriques (49, 92, 93, 94, 95, 96, 97, 98 , 99, 100) par le convertisseur de puissance ( 15) associé, et au moins une alimentation de la deuxième bobine rotorique (40, 70) par le courant d’ alimentation (12) associé pour générer un couple mécanique sur l’ arbre rotorique ( 1 1 ) ou la génération d’énergie électrique aux bornes du deuxième ensemble de bobines statoriques .
9. Procédé selon la revendication 8, le rotor (68) comprenant deux demi-masses magnétiques rotoriques ( 101 , 102) identiques s’ étendant selon une direction longitudinale du rotor et le stator (61 ) comprenant deux demi-masses magnétiques statoriques (81 , 82) identiques s ’ étendant selon une direction longitudinale du stator, chaque bobine rotorique (69, 70) étant insérée dans une demi-masse magnétique rotorique différente et chaque ensemble de bobines statoriques étant inséré dans une demi-masse magnétique statorique différente, le procédé comprenant la commande des courants d’ alimentations (II , 12) de sorte que l’ amplitude du courant d’ alimentation alimentant la bobine rotorique d’ une demi-masse rotorique recouvrant le premier ensemble de bobines statoriques décroît, de sorte que ledit courant est sensiblement nul lorsque ladite demi-masse rotorique recouvre la totalité du premier ensemble de bobines statoriques, et de sorte que l’ amplitude dudit courant augmente lorsque ladite demi-masse rotorique découvre le premier ensemble de bobines statoriques, la valeur efficace dudit courant étant non nulle.
10. Procédé selon la revendication 9, dans lequel chaque courant d’ alimentation (II , 12) est sinusoïdal.
PCT/EP2023/062669 2022-05-17 2023-05-11 Machine électrique synchrone pour aéronef, dispositif de propulsion, turbomoteur et procédé associés WO2023222523A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2204680A FR3135843B1 (fr) 2022-05-17 2022-05-17 Machine électrique synchrone pour aéronef, dispositif de propulsion, turbomoteur et procédé associés
FR2204680 2022-05-17

Publications (1)

Publication Number Publication Date
WO2023222523A1 true WO2023222523A1 (fr) 2023-11-23

Family

ID=83506664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/062669 WO2023222523A1 (fr) 2022-05-17 2023-05-11 Machine électrique synchrone pour aéronef, dispositif de propulsion, turbomoteur et procédé associés

Country Status (2)

Country Link
FR (1) FR3135843B1 (fr)
WO (1) WO2023222523A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162262U (fr) * 1985-03-29 1986-10-07
FR2897895A1 (fr) * 2006-02-27 2007-08-31 Hispano Suiza Sa Integration d'un demarreur/generateur dans une boite de transmission d'une turbine a gaz
US20130181553A1 (en) * 2010-09-07 2013-07-18 Dezheng Wu Fault-tolerant electrical machine
FR3027058A1 (fr) 2014-10-13 2016-04-15 Turbomeca Architecture d'un systeme propulsif d'un helicoptere comprenant un turbomoteur hybride et un systeme de reactivation de ce turbomoteur hybride
EP3576293A1 (fr) * 2017-01-26 2019-12-04 Mitsubishi Electric Corporation Dispositif de commande électrique et dispositif de direction assistée électrique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162262U (fr) * 1985-03-29 1986-10-07
FR2897895A1 (fr) * 2006-02-27 2007-08-31 Hispano Suiza Sa Integration d'un demarreur/generateur dans une boite de transmission d'une turbine a gaz
US20130181553A1 (en) * 2010-09-07 2013-07-18 Dezheng Wu Fault-tolerant electrical machine
FR3027058A1 (fr) 2014-10-13 2016-04-15 Turbomeca Architecture d'un systeme propulsif d'un helicoptere comprenant un turbomoteur hybride et un systeme de reactivation de ce turbomoteur hybride
EP3576293A1 (fr) * 2017-01-26 2019-12-04 Mitsubishi Electric Corporation Dispositif de commande électrique et dispositif de direction assistée électrique

Also Published As

Publication number Publication date
FR3135843B1 (fr) 2024-04-05
FR3135843A1 (fr) 2023-11-24

Similar Documents

Publication Publication Date Title
EP3519294B1 (fr) Systeme propulsif hybride pour aeronef a voilure tournante multirotor comprenant des moyens ameliores de conversion dc/ac
CA2779155C (fr) Demarreur-generateur de turbomachine et procede pour sa commande
CA2597941C (fr) Alimentation electrique d'equipements d'un moteur d'avion a turbine a gaz
EP3873810B1 (fr) Systeme de conversion et de transport d'energie electrique pour l'hybridation interne d'un aeronef a turboreacteurs
EP2847845B1 (fr) Systeme de commande et d'alimentation en energie des turbomachines d'un helicoptere
EP1515426B1 (fr) Système de génération électrique à fréquence fixe et procédé de contrôle de celui-ci
EP3966108A1 (fr) Systeme de propulsion hybride pour aeronef a decollage et atterrissage verticaux
FR3079210A1 (fr) Systeme propulsif d'aeronef multirotor avec reseau electrique reconfigurable
EP3956218B1 (fr) Système propulsif hybride et procédé de contrôle d'un tel système
WO2020115416A1 (fr) Moteur electrique intelligent a multi-bobinages decouples
EP3830399A1 (fr) Système de génération de puissance électrique pour aéronef
FR3129375A1 (fr) Système de conversion et de transport d'énergie électrique pour l'hybridation interne d'une turbomachine d'aéronef
WO2021005304A1 (fr) Architecture propulsive électrique pour un aéronef à décollage et atterrissage vertical multi-rotors et procédé de contrôle d'une telle architecture
EP4244474A1 (fr) Turbomachine a turbine libre comprenant des machines electriques assistant un generateur de gaz et une turbine libre
WO2020208318A1 (fr) Installation propulsive hybride et procédé de commande d'une telle installation
WO2023222523A1 (fr) Machine électrique synchrone pour aéronef, dispositif de propulsion, turbomoteur et procédé associés
FR2969424A1 (fr) Systeme de production electrique
FR3073569A1 (fr) Turbopropulseur comportant un mecanisme de reduction integrant un dispositif de generation de courant
EP4136746A1 (fr) Canal de propulsion pour aéronef
FR3062420A1 (fr) Dispositif d'entrainement d'une pompe a carburant pour turbomachine
WO2024033592A1 (fr) Procédé de contrôle d'un système électrique comprenant une machine synchrone à aimants permanents
EP3939153A1 (fr) Système configuré pour délivrer un courant polyphasé de fréquence constante à partir d'une génératrice synchrone
EP4071977A1 (fr) Ensemble moteur electrique de propulsion avec generateur electrique
FR3131277A1 (fr) Système de calage et dégivrage de pales d’une helice d’un aeronef

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23726111

Country of ref document: EP

Kind code of ref document: A1