WO2023222058A1 - 换热装置、换热模组、热管理系统及汽车 - Google Patents

换热装置、换热模组、热管理系统及汽车 Download PDF

Info

Publication number
WO2023222058A1
WO2023222058A1 PCT/CN2023/094900 CN2023094900W WO2023222058A1 WO 2023222058 A1 WO2023222058 A1 WO 2023222058A1 CN 2023094900 W CN2023094900 W CN 2023094900W WO 2023222058 A1 WO2023222058 A1 WO 2023222058A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
condenser
pressure generator
temperature
gas
Prior art date
Application number
PCT/CN2023/094900
Other languages
English (en)
French (fr)
Inventor
袁志
施健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023222058A1 publication Critical patent/WO2023222058A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H1/00278HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit for the battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00321Heat exchangers for air-conditioning devices
    • B60H1/00328Heat exchangers for air-conditioning devices of the liquid-air type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00271HVAC devices specially adapted for particular vehicle parts or components and being connected to the vehicle HVAC unit
    • B60H2001/00307Component temperature regulation using a liquid flow

Definitions

  • Embodiments of the present application relate to the field of thermal management technology, and in particular to a heat exchange device, a heat exchange module, a thermal management system and an automobile.
  • Thermal management is a process that uses heating or cooling means to adjust and control the temperature or temperature difference of a specific object according to the requirements of the object. Thermal management can be seen everywhere in daily life, such as in mobile phones, computers, automobiles and various industrial applications.
  • the thermal management system includes a battery module and a heat exchange module.
  • the heat exchange module can exchange heat with the battery module to reduce the temperature of the battery system. Due to the rapid development of new energy vehicles, there is no technology that can significantly increase the energy density of lithium batteries in the short term, and few models can achieve a single-charge cruising range of more than 1,000km. In order to alleviate users' mileage anxiety, while narrowing the gap between charging time and fuel vehicle refueling time, and improving travel experience, high-power fast charging technology has attracted more and more attention from OEMs and operators.
  • Embodiments of the present application provide a heat exchange device, a heat exchange module, a thermal management system and an automobile.
  • the heat exchange device can improve the heat exchange capacity of the heat exchange module and solve the insufficient heat exchange capacity of the heat exchange module in related technologies. , thus leading to poor performance of the entire thermal management system.
  • the embodiment of the present application provides a heat exchange device.
  • the heat exchange device includes: a pressure generator and a condenser.
  • the heat exchange device is applied to a heat exchange system.
  • the heat exchange system includes: a gas-liquid separation device and a throttling device connected in sequence through pipelines. device and evaporator.
  • the condenser is connected between the evaporator and the gas-liquid separation device through pipelines.
  • the condenser, gas-liquid separation device, throttling device and evaporator form a loop.
  • the working fluid points in the direction of the condenser according to the evaporator.
  • Directional flow is in the loop.
  • the pressure generator is connected through a pipeline between the gas-liquid separation device and the working medium inflow side of the condenser.
  • the pressure generator is used to transfer the gaseous working fluid or gas-liquid mixed working fluid in the gas-liquid separation device. transferred to the condenser.
  • the heat exchange device provided by this application can transport the incompletely condensed gaseous working fluid or gas-liquid mixed working fluid in the gas-liquid separation device back to the condenser through the pressure generator in the heat exchange device.
  • the gaseous working fluid or gas-liquid mixed working fluid extracted by the pressure generator after the gaseous working fluid or gas-liquid mixed working fluid extracted by the pressure generator enters the main loop, it will accelerate the flow rate of the working fluid on the inflow side of the condenser, significantly improving the heat exchange performance of the condenser. Can release more heat.
  • the gas-liquid separation device extracts the working fluid by the pressure generator
  • the working fluid in the gas-liquid separation device can be further cooled and depressurized, increasing the degree of subcooling in front of the throttling device, thereby causing the inside of the evaporator to The evaporation temperature of the working fluid is lower, and the cooling water entering the evaporator from the water inlet pipe absorbs more heat, so that the cooling water flowing out of the water outlet pipe has a lower temperature, which can increase the cooling capacity of the evaporator and the entire System energy efficiency ratio.
  • the overall structure is simple, and the equipment cost and installation cost are low.
  • the pressure generator is connected through a pipeline between the gas-liquid separation device and the pipeline between the evaporator and the condenser.
  • the pressure generator is connected through pipelines between the gas-liquid separation device and the pipelines between the evaporator and condenser to avoid An auxiliary inlet is provided on the condenser, eliminating the need to modify the condenser and saving costs.
  • the pressure generator has a check function such that the working fluid inflow side of the condenser points in the direction of the gas-liquid separation device.
  • the non-return function of the pressure generator can prevent the working fluid from bypassing the condenser from the branch circuit where the pressure generator is located when the pressure generator is not working, and maintain the normal operation of the main loop. And there is no need to install a check valve, saving installation steps and installation costs.
  • the heat exchange device further includes: a check valve, the check valve is arranged on the connecting pipeline of the pressure generator, and the check valve has a working fluid inflow side of the condenser pointing in the direction of the gas-liquid separation device. non-return function.
  • the check function of the check valve can prevent the working fluid from bypassing the condenser from the branch circuit where the pressure generator is located when the pressure generator is not working, and maintain the normal operation of the main loop. And there is no need to select the non-return function of the pressure generator, which reduces the selection requirements of the pressure generator.
  • connection port of the gas-liquid separation device that communicates with the pressure generator is located on the top of the gas-liquid separation device. Since the liquid level of the working fluid in the gas-liquid separation device fluctuates up and down, by arranging the connection port of the gas-liquid separation device and the pressure generator at the top of the gas-liquid separation device, it can be ensured that the pressure generator can extract gaseous working fluid or gas. Liquid mixed working fluid is used to prevent pure liquid working fluid from entering the branch circuit where the pressure generator is located.
  • the above-mentioned heat exchange system further includes: a compressor, which is arranged on the connecting pipeline between the evaporator and the condenser to improve the efficiency of the condenser, gas-liquid separation device, throttling device and evaporation. the driving force in the loop formed by the
  • the heat exchange device further includes: a first temperature sensor, a second temperature sensor and a controller.
  • the first temperature sensor is arranged at the water outlet of the evaporator, and the second temperature sensor is arranged at the outlet of the condenser.
  • the water inlet and the controller are electrically connected to the first temperature sensor, the second temperature sensor, the pressure generator and the compressor respectively.
  • the controller can adjust the compressor and the pressure generator according to the temperature detected by the first temperature sensor or the temperature detected by the second temperature sensor. of power. This allows the compressor and pressure generator to be fully utilized without either under-functioning or over-energy.
  • the controller can be used to obtain the first temperature of the evaporator water outlet and the second temperature of the condenser water outlet, and determine whether the heat exchange module is in an insufficient cooling scenario based on the first temperature and the second temperature. Or insufficient heating scene. If the heat exchange module is in the insufficient cooling scene or insufficient heating scene, determine whether the power of the compressor is at the maximum value. If the power of the compressor is not at the maximum value, increase the power of the compressor. If the compression When the power of the machine is at the maximum value, start the pressure generator. If the heat exchange module is not in a cooling or heating shortage scenario, turn off the pressure generator.
  • determining whether the heat exchange module is in an insufficient cooling scenario or an insufficient heating scenario based on the first temperature and the second temperature specifically includes: setting a first temperature threshold in advance, and determining whether the heat exchange module is in an insufficient cooling or heating scenario based on the first temperature and the first temperature.
  • the temperature threshold determines whether the heat exchange module is in an insufficient cooling scenario. If the first temperature is greater than or equal to the first temperature threshold, the heat exchange module is in an insufficient cooling scenario, otherwise it is not in an insufficient cooling scenario; the second temperature threshold is preset, according to The second temperature and the second temperature threshold determine whether the heat exchange module is in an insufficient heating scenario. If the second temperature is less than the second temperature threshold, the heat exchange module is in an insufficient heating scenario, otherwise it is not in an insufficient heating scenario.
  • starting the pressure generator specifically includes: if the heat exchange module is in a refrigeration insufficient scenario and the power of the compressor is at the maximum value, starting the pressure generator, And adjust the power of the pressure generator according to the difference between the first temperature and the first temperature threshold; if the heat exchange module is in a heating insufficient scenario and the compressor When the power is at a maximum value, the pressure generator is started, and the power of the pressure generator is adjusted according to the difference between the second temperature threshold and the second temperature.
  • An embodiment of the present application provides a heat exchange module, including: a gas-liquid separation device, a throttling device, an evaporator, and the heat exchange device shown above.
  • the incompletely condensed gaseous working fluid or gas-liquid mixed working fluid in the gas-liquid separation device can be fed back to the condenser through the pressure generator in the heat exchange device.
  • the gaseous working fluid or gas-liquid mixed working fluid extracted by the pressure generator enters the main loop, it will accelerate the flow rate of the working fluid on the inflow side of the condenser, significantly improving the heat exchange performance of the condenser. Can release more heat.
  • the gas-liquid separation device extracts the working fluid by the pressure generator
  • the working fluid in the gas-liquid separation device can be further cooled and depressurized, increasing the degree of subcooling in front of the throttling device, thereby causing the inside of the evaporator to The evaporation temperature of the working fluid is lower, and the cooling water entering the evaporator from the water inlet pipe absorbs more heat, resulting in a lower temperature of the cooling water flowing out of the water outlet pipe, which can increase the cooling capacity of the evaporator and the energy efficiency ratio of the entire system.
  • there is no need to modify the equipment the overall structure is simple, and the equipment cost and installation cost are low.
  • the heat exchange module further includes: a compressor, which is arranged on the connecting pipeline between the evaporator and the condenser of the heat exchange device to improve the driving force of the working fluid flow in the entire heat exchange module. force.
  • Embodiments of the present application provide a thermal management system, including: a battery module, an electric drive module, and a heat exchange module as shown above.
  • the battery module is connected to one of the evaporator and the condenser in the heat exchange module.
  • the electric drive module is connected to the other one of the evaporator and condenser in the heat exchange module.
  • Refrigeration mode and heat pump mode can be realized respectively.
  • the pressure generator in the heat exchange module can return the incompletely condensed gaseous working fluid or gas-liquid mixed working fluid in the gas-liquid separation device back to the condenser.
  • the gaseous working fluid or gas-liquid mixed working fluid extracted by the pressure generator enters the main loop, it will accelerate the flow rate of the working fluid on the inflow side of the condenser, significantly improving the heat exchange performance of the condenser. Can release more heat.
  • the gas-liquid separation device extracts the working fluid by the pressure generator
  • the working fluid in the gas-liquid separation device can be further cooled and depressurized, increasing the degree of subcooling in front of the throttling device, thereby causing the inside of the evaporator to The evaporation temperature of the working fluid is lower, and the cooling water entering the evaporator from the water inlet pipe absorbs more heat, resulting in a lower temperature of the cooling water flowing out of the water outlet pipe, which can increase the cooling capacity of the evaporator and the energy efficiency ratio of the entire system.
  • there is no need to modify the equipment the overall structure is simple, and the equipment cost and installation cost are low.
  • Embodiments of the present application provide an automobile, including: a thermal management system as shown above.
  • the thermal management system performs thermal management on the automobile and can realize cooling mode and heat pump mode respectively.
  • the generator can return the incompletely condensed gaseous working fluid or gas-liquid mixed working fluid in the gas-liquid separation device back to the condenser.
  • the gaseous working fluid or gas-liquid mixed working fluid extracted by the pressure generator enters the main loop, it will accelerate the flow rate of the working fluid on the inflow side of the condenser, significantly improving the heat exchange performance of the condenser. Can release more heat.
  • the gas-liquid separation device extracts the working fluid by the pressure generator
  • the working fluid in the gas-liquid separation device can be further cooled and depressurized, increasing the degree of subcooling in front of the throttling device, thereby causing the inside of the evaporator to The evaporation temperature of the working fluid is lower, and the cooling water entering the evaporator from the water inlet pipe absorbs more heat, resulting in a lower temperature of the cooling water flowing out of the water outlet pipe, which can increase the cooling capacity of the evaporator and the energy efficiency ratio of the entire system.
  • there is no need to modify the equipment the overall structure is simple, and the equipment cost and installation cost are low.
  • Figure 1 is a schematic diagram of a thermal management system of a new energy vehicle in related technology
  • Figure 2 is a schematic diagram of a refrigerant circuit in the related art
  • Figure 3 is a schematic diagram of a refrigerant circuit in the related art
  • Figure 4 is a schematic diagram of a heat exchange device provided in an embodiment of the present application applied in a heat exchange system
  • FIG. 5 is a schematic diagram of a heat exchange module provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a heat exchange module provided by an embodiment of the present application.
  • Figure 7 is a flow chart of the controller of the heat exchange module provided by an embodiment of the present application.
  • Figure 8 is a flow chart of the controller of the heat exchange module provided by an embodiment of the present application.
  • FIG. 9 is a flow chart of the controller of the heat exchange module provided by an embodiment of the present application.
  • Figure 10 is a control flow chart of the heat exchange module in cooling mode provided by an embodiment of the present application.
  • Figure 11 is a control flow chart of the heat exchange module in the heating mode provided by an embodiment of the present application.
  • the heat exchange device and heat exchange module provided by the embodiments of the present application can be applied to any engineering field that conforms to reverse Carnot cycle refrigeration, such as household air conditioners, central air conditioners, refrigerators, cold storages, or vehicle thermal management systems.
  • the basic principle of reverse Carnot cycle refrigeration is that the low-temperature and high-pressure liquid refrigerant is throttled by the expansion mechanism and becomes a low-temperature and low-pressure liquid refrigerant. It enters the first heat exchanger and evaporates and absorbs heat. The refrigerant evaporates and absorbs heat.
  • the compressor In gaseous form, and after being compressed, it becomes a high-temperature and high-pressure refrigerant (at this time, the heat contained in the refrigerant is divided into two parts, one part is the heat Q1 absorbed by the evaporation heat absorption, and the other part is input into the compressor
  • the electrical energy is converted into heat Q2) when compressing the refrigerant.
  • the compressed high-temperature and high-pressure refrigerant enters the second heat exchanger and releases the heat (Q1+Q2) contained in it to the cold water entering the second heat exchanger. , the cold water is heated and sent to the outside.
  • the heat-released refrigerant re-enters the expansion mechanism in a low-temperature and high-pressure liquid form, and then is throttled and decompressed, and the cycle continues uninterrupted.
  • the heat exchange device and heat exchange module provided in the embodiment of the present application are used in the thermal management system of a new energy vehicle as an example for description.
  • FIG 1 is a schematic structural diagram of a thermal management system of a new energy vehicle in the related art.
  • the thermal management system 1 includes three independent circulation loops: battery loop (also known as battery module) 2, refrigerant loop (also called heat exchange module) 3 and electric drive circuit (also called electric drive module) 4.
  • battery loop also known as battery module
  • refrigerant loop also called heat exchange module
  • electric drive circuit also called electric drive module
  • the heat-carrying fluid in the battery circuit 2 and the electric drive circuit 4 is generally a mixture of 50% water and 50% ethylene glycol, which has low-temperature antifreeze properties and can prevent water from freezing and blocking the pipelines in low-temperature environments.
  • the working fluid in the refrigerant circuit generally uses refrigerants such as R134a, R1234yf or R744.
  • FIG 2 is a schematic diagram of a refrigerant circuit in the related art.
  • Figure 2 adds a liquid storage tank 31 to the refrigerant circuit 3 in Figure 1 for separating and drying the liquid working medium.
  • the refrigerant circuit Includes: liquid storage tank 31, expansion valve 32. Evaporator 33, compressor 34 and condenser 35.
  • the pressure drops suddenly and becomes a low-temperature and low-pressure gas-liquid mixed state. It absorbs heat and evaporates rapidly in the evaporator 33.
  • the liquid working medium passes through the water inlet pipe a and the water outlet pipe b and The working fluid in the evaporator 33 exchanges heat.
  • the working fluid After passing through the evaporator 33, the working fluid becomes a gaseous working fluid and is compressed into a high-temperature and high-pressure gaseous working fluid by the compressor 34. It is condensed and releases heat in the condenser 35. During this period, Heat is exchanged with the working fluid in the condenser 35 through the water inlet pipe c and the water outlet pipe d. After passing through the condenser 35, the working fluid becomes a liquid working fluid, and is separated and dried in the liquid storage tank 31, and then enters the expansion valve 32. Cycle like this.
  • the refrigerant circuit shown in Figure 2 has the following shortcomings: First, in related technologies, the refrigerant circuit generally uses a compressor to drive the working fluid cycle. If the heat exchange capacity needs to be improved, the compressor power and condenser volume need to be increased simultaneously, which is relatively expensive. High, and the demand for heat exchange capacity has not increased in non-fast charging scenarios of new energy vehicles. Therefore, under the premise of increasing the compressor power and condenser volume, the refrigerant circuit is in a state of excess performance, and the overall energy efficiency ratio of the system is low. ; Second, condensers and evaporators generally use aluminum corrugated plate heat exchangers.
  • the condenser Since the condenser is located after the compressor, at the same working time, the heat exchange rate of the condenser is greater, and the volume of the condenser is generally larger than that of the evaporator. 1.5 times. If the compressor power is increased, the condenser will need more plates to increase the heat exchange area, which will cause the condenser to be too large and costly, and will also make the appearance of the condenser and evaporator uncoordinated; second Third, the working fluid in the condenser is in a continuous condensation process, and the flow rate of the working fluid decreases sharply. If the compressor power is increased, multiple processes need to be used to increase the flow rate. However, multiple processes will lead to side flow of the working fluid inlet of the condenser. The resistance increases and the energy consumption increases.
  • Figure 3 is a schematic diagram of a refrigerant circuit in the related art.
  • Figure 3 adds an economizer 36, a solenoid valve 37 and an expansion valve on the basis of Figure 2.
  • Valve 38 Referring to Figure 3, the economizer 36 is disposed between the liquid storage tank 31 and the expansion valve 32.
  • the solenoid valve 37 and the expansion valve 38 are sequentially disposed in the pipeline between the liquid storage tank 31 and the economizer 36 and the economizer 36. Between the mass outlet side, another pipeline is led from the economizer 36 to the compressor 34.
  • the high-temperature and high-pressure gaseous working fluid discharged from the compressor 34 transfers heat to the outside through the condenser 35 and becomes liquid.
  • the high-pressure liquid working fluid coming out of the condenser 35 is divided into two paths after passing through the liquid storage tank 31
  • the liquid working fluid in the main path directly enters the economizer 36.
  • the liquid working fluid in the auxiliary path first passes through a solenoid valve 37, and then is throttled and decompressed by an expansion valve 38, and then becomes a gas-liquid mixture and enters the economizer 36.
  • the two The heat exchange occurs in the economizer 36.
  • the working fluid in the auxiliary path absorbs heat and becomes gaseous and is sucked into the auxiliary air inlet of the compressor 34.
  • the working fluid in the main path releases heat and becomes a subcooled liquid and is throttled by the expansion valve 32. After the pressure is reduced, it enters the evaporator 33. In the evaporator 33, the working fluid in the main path absorbs heat and becomes low-pressure gas, which is sucked into the compressor 34. The working fluid in the main path and the auxiliary path are mixed in the working chamber of the compressor 34, and then further compressed and discharged, forming a closed working chamber. Circulation loop.
  • a one-way valve (not shown in the figure) needs to be installed on the auxiliary path. On the one hand, it can prevent the compressor 34 from reversing and causing reverse flow at the moment of shutdown. On the other hand, it can reduce the clearance volume of the compressor 34. When the auxiliary circuit is not working, the auxiliary circuit is equivalent to the clearance volume of the compressor 34. If the one-way valve is not installed, the volumetric efficiency of the compressor 34 will inevitably be reduced, so the one-way The valve needs to be installed close to the auxiliary air inlet of the compressor 34 to reduce clearance in this area.
  • the refrigerant circuit can increase the heat release on the condenser side, it does not significantly increase the heat absorption on the evaporator side, so it is only suitable for Improving the performance of the thermal management system in heat pump mode will not benefit scenarios that require large cooling capacity for fast battery charging.
  • the refrigerant circuit structure is complex. Compared with Figure 2, an economizer, a solenoid valve, and An expansion valve, a one-way valve and auxiliary pipelines are required, and an auxiliary air inlet needs to be reserved on the compressor. The installation cost and parts cost are high; thirdly, the control of the refrigerant circuit is difficult and requires precise control of the auxiliary circuit. Only with a certain working fluid flow rate can the ideal effect be achieved. Due to the limitations of actual usage scenarios, it is difficult to control the optimal working conditions during work.
  • this application improves the refrigerant circuit shown in Figure 2 and adds a branch circuit.
  • This branch circuit can re-inject the incompletely condensed gaseous working fluid or gas-liquid mixed working fluid in the liquid storage tank. Back to the condenser. on the one hand, After the gaseous working fluid or gas-liquid mixed working fluid in the branch loop enters the main circulation circuit, it will accelerate the flow rate of the working fluid on the inflow side of the condenser, significantly improving the heat exchange performance of the condenser and releasing more energy per unit time. Much heat.
  • the working medium in the liquid storage tank can be further cooled and depressurized, increasing the degree of subcooling in front of the expansion valve, increasing the cooling capacity of the evaporator and the overall System energy efficiency ratio.
  • only one pressure generator and auxiliary pipelines are added based on the relevant technology, and there is no need to modify the original equipment. The structure is simple and the cost is low.
  • FIG 4 is a schematic diagram of a heat exchange device 100 provided by an embodiment of the present application applied in a heat exchange system.
  • the heat exchange device 100 provided by an embodiment of the present application includes: a pressure generator 110 and a condenser 120.
  • the heat exchange device 100 is used in a heat exchange system.
  • the heat exchange system includes: a gas-liquid separation device 210, a throttling device 220 and an evaporator 230 that are connected in sequence through pipelines.
  • the throttling device 220 may be an expansion valve.
  • the condenser 120 is connected between the evaporator 230 and the gas-liquid separation device 210 through pipelines, so that the condenser 120, the gas-liquid separation device 210, the throttling device 220 and the evaporator 230 form a loop, and the gas flowing in the loop is
  • the working fluid flows in the loop in the direction from the evaporator 230 to the condenser 120.
  • the solid arrow in Figure 4 indicates the pipeline and the direction in which the working fluid flows in the pipeline.
  • the pressure of the working fluid drops suddenly and becomes a low-temperature and low-pressure gas-liquid mixed state. It absorbs heat and evaporates rapidly in the evaporator 230.
  • the working medium passes through the water inlet pipe a and the water outlet pipe b and The working fluid in the evaporator 230 exchanges heat.
  • the working fluid becomes a gaseous working fluid and enters the condenser 120 to condense and generate heat.
  • the working fluid in the condenser 120 interacts with the working fluid in the condenser 120 through the water inlet pipe c and the water outlet pipe d. Heat exchange is performed, and the working medium changes to a liquid working medium after passing through the condenser 120, enters the gas-liquid separation device 210, and then enters the throttling device 220, thus circulating.
  • the pressure generator 110 in the heat exchange device 100 is connected through a pipeline between the gas-liquid separation device 210 and the working fluid inflow side of the condenser 120 to form a branch circuit.
  • the pressure generator 110 is connected through a pipeline between the gas-liquid At the working fluid inlet of the separation device 210 and the condenser 120, or as shown in Figure 4, the pressure generator 110 is connected through a pipeline between the gas-liquid separation device 210 and the pipeline between the evaporator 230 and the condenser 120, Compared with the former, there is no need to reserve an auxiliary inlet on the condenser 120, and there is no need to modify the condenser 120, thus saving costs.
  • the pressure generator 110 is a driving component that can generate a pressure difference, and can use an air pump, a compressor, a peristaltic pump, a volumetric pump, etc.
  • the pressure generator 110 can convert the gaseous working fluid and the gas-liquid mixing process in the gas-liquid separation device 210.
  • the mass is transferred to condenser 120.
  • the heat exchange device 100 can return the incompletely condensed gaseous working fluid or gas-liquid mixed working fluid in the gas-liquid separation device 210 back to the condenser 120 through the pressure generator 110 .
  • the gaseous working fluid or gas-liquid mixed working fluid extracted by the pressure generator 110 enters the main loop, it will accelerate the working fluid flow rate on the working fluid inflow side of the condenser 120, significantly improving the heat exchange performance of the condenser 120. More heat can be released per unit time.
  • the working fluid in the gas-liquid separation device 210 can be further cooled and depressurized, thereby increasing the degree of subcooling in front of the throttling device 220, thereby The evaporation temperature of the working fluid in the evaporator 230 is lowered, and the cooling water entering the evaporator 230 from the water inlet pipe a absorbs more heat, so that the cooling water flowing out of the water outlet pipe b is lower in temperature, which can increase the cooling capacity of the evaporator 230 and the energy efficiency ratio of the entire system.
  • the overall structure is simple, and the equipment cost and installation cost are low.
  • the embodiment of the present application also provides a heat exchange module 300, which can be referred to as shown in Figure 4, including: the heat exchange device 100 and the heat exchange system mentioned above, that is, the heat exchange module 300 provided by the embodiment of the present application. It includes: a gas-liquid separation device 210, a throttling device 220, an evaporator 230, a condenser 120 and a pressure generator 110.
  • the installation method of the heat exchange module 300 is the same as above, and will not be repeated here.
  • the gas-liquid separation device 210 can use a liquid storage tank provided in related technologies, or a three-way valve with a gas-liquid separation function. In the drawings of this application, the gas-liquid separation device 210 is used as a liquid storage tank as an example. Be explained.
  • the connection port of the gas-liquid separation device 210 that communicates with the pressure generator 110 can be set on the top of the gas-liquid separation device 210 to ensure that the pressure generator 110 can extract gaseous working fluid or gas-liquid mixing. working fluid to prevent pure liquid working fluid from entering the branch circuit where the pressure generator 110 is located.
  • the connection port can also be provided at other positions of the gas-liquid separation device 210, as long as the pressure generator 110 can extract the gaseous working medium or the gas-liquid mixed working medium.
  • FIG. 5 is a schematic diagram of a heat exchange module 300 provided by an embodiment of the present application.
  • the driving force of the working fluid in the loop formed by the throttling device 220 and the evaporator 230 may also include a compressor 310 , which is disposed on the connecting pipeline between the evaporator 230 and the condenser 120 in the heat exchange device 100 .
  • the working fluid after passing through the evaporator 230 can be compressed by the compressor 310 into a high-temperature and high-pressure gaseous working fluid, and then enters the condenser 120 to release heat.
  • FIG. 6 is a schematic diagram of the heat exchange module 300 provided by an embodiment of the application.
  • the heat exchange device 100 in the heat exchange module 300 It may also include: a first temperature sensor (not shown in the figure), a second temperature sensor (not shown in the figure), and a controller 130 .
  • the first temperature sensor is provided at the water outlet of the evaporator 230
  • the second temperature sensor is provided at the water outlet of the condenser 120
  • the controller 130 is electrically connected to the first temperature sensor, the second temperature sensor and the pressure generator 110 respectively.
  • the first temperature sensor is arranged at the water outlet of the evaporator 230
  • the second temperature sensor is arranged at the water outlet of the condenser 120
  • the bodies of the evaporator 230 and the condenser 120 can also be provided on the water outlet pipe b of the evaporator 230 and the water outlet pipe d of the condenser 120 .
  • the controller 130 may adjust the power of pressure generation according to the detected temperature of the first temperature sensor or the detected temperature of the second temperature sensor. For example, when the detected temperature T 1 of the first temperature sensor exceeds a certain temperature threshold T max , the heat exchange module 300 can be considered to have insufficient cooling, and the power of the pressure generator 110 is adjusted according to the difference between T 1 and T max , the greater the difference between T 1 and T max , the greater the power of the pressure generator 110; when the detected temperature T 2 of the second temperature sensor is lower than a certain temperature threshold T min , the heat exchange module 300 can be considered If the heating is insufficient, the power of the pressure generator 110 is adjusted according to the difference between T 2 and T min . The greater the difference between T 2 and T min , the greater the power of the pressure generator 110. The heat exchange module 300 can be fully utilized, and there will be neither insufficient energy supply nor excessive energy.
  • controller 130 may also be electrically connected to the compressor 310 .
  • controller 130 can be used to implement the following steps, as shown in Figure 7, including:
  • the pressure generator 110 is turned off.
  • judging whether the heat exchange module 300 is in an insufficient cooling scenario or an insufficient heating scenario according to the first temperature and the second temperature specifically includes (the flow chart is shown in Figure 8):
  • the second temperature threshold in advance, and determine whether the heat exchange module 300 is in an insufficient heating scenario based on the second temperature and the second temperature threshold. If the second temperature is less than the second temperature threshold, the heat exchange module 300 is in an insufficient heating scenario. , otherwise it is not in a heating insufficient scenario.
  • the pressure generator 110 is started, which specifically includes (the flow chart is shown in Figure 9):
  • the pressure generator 110 is started, and the power of the pressure generator 110 is adjusted according to the difference between the second temperature threshold and the second temperature. .
  • the pressure generator 110 has a press
  • the check function of the working fluid inflow side of the condenser 120 points in the direction of the gas-liquid separation device 210, eliminating the need to install a check valve, saving installation steps and installation costs.
  • the heat exchange device 100 in the heat exchange module 300 provided by the embodiment of the present application may also include: a check valve (not shown in the drawings), which is disposed on the connecting pipeline of the pressure generator 110.
  • the check valve has a check function such that the working medium inflow side of the condenser 120 points in the direction of the gas-liquid separation device 210. In this way, there is no need to select the check function of the pressure generator 110, which reduces the selection requirements of the pressure generator 110. .
  • FIG 10 is a control flow chart of the heat exchange module 300 in the cooling mode provided by an embodiment of the present application.
  • the heat exchange module 300 provided by the present application only The compressor 310 needs to work alone to meet the requirements.
  • it can be determined based on the water outlet temperature T 1 of the evaporator 230.
  • T max the water temperature exceeds a certain temperature threshold
  • the system is considered to have insufficient cooling.
  • the system is insufficient for cooling, first determine whether the rotation speed R 1 of the compressor 310 has reached the maximum value. Otherwise, continue to increase the rotation speed R 1 of the compressor 310 to increase the cooling capacity.
  • the pressure generator 110 is started to increase the system's cooling capacity.
  • the rotation speed R 2 of the pressure generator 110 can be adjusted accordingly according to the difference between the actual outlet water temperature T 1 and the temperature threshold T max . Generally, the greater the difference between T 1 and T max , the higher the rotation speed R 2 of the pressure generator 110 is.
  • FIG 11 is a control flow chart of the heat exchange module 300 in the heating mode provided by an embodiment of the present application.
  • the heat exchange module 300 provided by the present application Only the compressor 310 needs to work alone to meet the requirements.
  • it can be determined with the help of the water outlet temperature T 2 of the condenser 120.
  • T min a certain temperature threshold
  • the system is considered to have insufficient heating.
  • the heating system is insufficient, first determine whether the rotation speed R 1 of the compressor 310 has reached the maximum value, otherwise continue to increase the rotation speed R 1 of the compressor 310 to increase the heating capacity.
  • the pressure generator 110 is started to increase the heating capacity of the system.
  • the rotation speed R 2 of the pressure generator 110 can be adjusted accordingly according to the difference between the actual outlet water temperature T 2 and the temperature threshold T min . Generally, the greater the difference between T min and T 2 , the higher the rotation speed R 2 of the pressure generator 110 will be.
  • the heat exchange module 300 including the heat exchange device 100 provided by this application is mainly used in existing on-board thermal management systems in new energy vehicles, and is fully compatible with electric drive modules and battery modules in related technologies. Therefore, this application also provides a thermal management system.
  • the thermal management system includes: a battery module, an electric drive module, and the heat exchange module 300 shown above, wherein the battery module can be combined with the heat exchange module.
  • the evaporator 230 in the heat exchange module 300 is connected, and the electric drive module can be connected to the condenser 120 in the heat exchange module 300 to achieve cooling of the battery module.
  • battery modules in new energy vehicles also have the problem of significant decline in discharge capacity at low temperatures.
  • battery modules In order to maintain battery performance in winter or other low-temperature environments (generally below 10°C), battery modules must be actively Heating, and the heat pump mode that absorbs heat from the environment is more energy-saving than pure electric heating, so in the future more and more new energy vehicles will have their own heat pump function in the thermal management system.
  • the battery module can be connected to the condenser 120 in the heat exchange module 300, and the electric drive module can be connected to the evaporator 230 in the heat exchange module 300, so that energy can be continuously absorbed and transported from the air. to the battery module.
  • the application also provides an automobile, including the thermal management system as shown above.
  • Thermal management system thermal management of automobiles Adjustment can realize cooling mode and heat pump mode respectively.
  • the technical characteristics, corresponding technical effects and solved technical problems of this thermal management system are the same as those shown above, and will not be repeated here.
  • the compressor 310 used in the on-board thermal management system of new energy vehicles usually has a displacement of 45cc and a maximum speed of 8000rpm.
  • the refrigeration flow rate of the main circuit under refrigeration conditions is approximately 0.076kg/s.
  • the pressure generator 110 when the pressure generator 110 is started, the flow rate inside the condenser 120 and the working medium inflow side of the condenser 120 can be increased to 0.265kg/s, which is equivalent to more than three times the flow rate of the main loop.
  • the heat transfer coefficient of the working medium inflow side of the condenser 120 increases with the increase of the flow rate, and the overall heat transfer performance of the condenser 120 can be significantly improved.
  • the working medium in the gas-liquid separation device 210 is extracted by the pressure generator 110 as a gaseous working medium or a gas-liquid mixed working medium, the temperature and pressure can be further reduced, and the degree of subcooling of the working medium in front of the throttling device 220 can be increased, which can improve cooling capacity and energy efficiency ratio of the entire system.
  • the cooling capacity can be increased by up to 20.7% after adding the pressure generator 110.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a fixed connection.
  • Indirect connection through an intermediary can be the internal connection between two elements or the interaction between two elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

本申请实施例提供一种换热装置、换热模组、热管理系统及汽车,其中,换热装置包括:压力发生器及冷凝器,换热装置应用于换热系统,换热系统包括:通过管路依次连通的气液分离装置、节流装置以及蒸发器,冷凝器通过管路连接在蒸发器与气液分离装置之间,工质按蒸发器指向冷凝器的方向定向流动在环路中,压力发生器通过管路连接在气液分离装置与冷凝器的工质流入侧之间,压力发生器用于将气液分离装置中的气态工质或气液混合工质传输至冷凝器中。本申请实施例提供的换热装置、换热模组、热管理系统及汽车可解决相关技术中换热模组换热能力不足,从而导致整个热管理系统性能差的问题。

Description

换热装置、换热模组、热管理系统及汽车
本申请要求于2022年05月20日提交中国专利局、申请号为202210549385.1、申请名称为“换热装置、换热模组、热管理系统及汽车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及热管理技术领域,特别涉及一种换热装置、换热模组、热管理系统及汽车。
背景技术
热管理是根据具体对象的要求,利用加热或冷却手段对其温度或温差进行调节和控制的过程。日常生活中随处可见热管理,例如手机、电脑、汽车以及各种工业应用中。
以新能源汽车行业为例,热管理系统包括电池模组和换热模组,换热模组可对电池模组进行热量交换,以降低电池系统的温度。由于新能源汽车的快速发展,短期内没有技术能显著提升锂电池的能量密度,单次充电续航里程少有车型能够达到1000km以上。为了缓解用户的里程焦虑,同时缩小充电时间与燃油车加油时间的差距,提升出行体验,大功率快充技术越来越受到主机厂和运营商的关注。
然而,大功率快充会导致新能源汽车电池模组的快速发热,若整车的热管理系统中换热模组不能及时带走电池系统的热量,不但会加速电池的老化,影响电池的寿命,还有可能因电池模组内部热失控引起火灾。因此,随着新能源汽车充电速度越来越快,亟需一种换热模组来提升换热能力,以适应新能源汽车行业的快速发展。
发明内容
本申请实施例提供一种换热装置、换热模组、热管理系统及汽车,其中,换热装置可提升换热模组的换热能力,解决相关技术中换热模组换热能力不足,从而导致整个热管理系统性能差的问题。
本申请实施例提供一种换热装置,换热装置包括:压力发生器及冷凝器,换热装置应用于换热系统,换热系统包括:通过管路依次连通的气液分离装置、节流装置以及蒸发器,冷凝器通过管路连接在蒸发器与气液分离装置之间,冷凝器、气液分离装置、节流装置以及蒸发器形成环路,工质按蒸发器指向冷凝器的方向定向流动在环路中,压力发生器通过管路连接在气液分离装置与冷凝器的工质流入侧之间,压力发生器用于将气液分离装置中的气态工质或气液混合工质传输至冷凝器中。本申请提供的换热装置,通过换热装置中的压力发生器可将气液分离装置中未完全冷凝的气态工质或者气液混合工质重新输回冷凝器。一方面,压力发生器抽取的气态工质或者气液混合工质进入主环路后,会加速冷凝器工质流入侧的工质流速,使冷凝器的换热性能得到显著提高,单位时间内能够释放更多的热量。另一方面,气液分离装置在被压力发生器抽取工质时,可使气液分离装置内的工质得到进一步降温降压,增大节流装置前的过冷度,从而使蒸发器内工质蒸发温度更低,从进水管进入蒸发器的冷却水中吸收更多的热量,使出水管所流出的冷却水温度更低,可提升蒸发器的制冷量以及整个 系统的能效比。再一方面,无需对设备进行改造,并且整体结构简单,设备成本以及安装成本低。
在一种可能的实施方式中,压力发生器通过管路连接在气液分离装置与蒸发器和冷凝器间的管路之间。相比压力发生器通过管路连接在气液分离装置和冷凝器的工质进口处,压力发生器通过管路连接在气液分离装置与蒸发器和冷凝器间的管路之间可避免在冷凝器上开设辅助进口,无需对冷凝器进行改造,节省成本。
在一种可能的实施方式中,压力发生器具有按冷凝器的工质流入侧指向气液分离装置方向上的止回功能。通过压力发生器的止回功能,可防止当压力发生器不工作时工质从压力发生器所在的分支回路绕过冷凝器,维持主环路的正常工作。并且无需安装止回阀,节省安装步骤以及安装成本。
在一种可能的实施方式中,换热装置还包括:止回阀,止回阀设置在压力发生器的连接管路上,止回阀具有按冷凝器的工质流入侧指向气液分离装置方向上的止回功能。通过止回阀的止回功能,可防止当压力发生器不工作时工质从压力发生器所在的分支回路绕过冷凝器,维持主环路的正常工作。并且无需对压力发生器进行止回功能选择,降低压力发生器的选型要求。
在一种可能的实施方式中,气液分离装置的与压力发生器连通的连接口位于气液分离装置的顶部。由于气液分离装置中工质液面上下起伏不定,通过将气液分离装置的与压力发生器连通的连接口设置在气液分离装置的顶部,可保证压力发生器可抽取气态工质或者气液混合工质,避免纯液态工质进入压力发生器所在的分支回路。
在一种可能的实施方式中,上述换热系统还包括:压缩机,压缩机设置在蒸发器与冷凝器之间的连接管路上,以提高冷凝器、气液分离装置、节流装置以及蒸发器形成的环路中的驱动力。
在一种可能的实施方式中,换热装置还包括:第一温度传感器、第二温度传感器以及控制器,第一温度传感器设置在蒸发器的出水口,第二温度传感器设置在冷凝器的出水口,控制器分别与第一温度传感器、第二温度传感器、压力发生器以及压缩机电连接,控制器可根据第一温度传感器的检测温度或第二温度传感器的检测温度调节压缩机和压力发生器的功率。如此,可使压缩机和压力发生器得到充分利用,既不会功能不足也不会能量过剩。
在一种可能的实施方式中,控制器可用于获取蒸发器出水口的第一温度和冷凝器出水口的第二温度,根据第一温度和第二温度判断换热模组是否处于制冷不足场景或制热不足场景,若换热模组处于制冷不足场景或制热不足场景,判断压缩机的功率是否为最大值,若压缩机的功率不为最大值,加大压缩机的功率,若压缩机的功率为最大值,启动压力发生器,若换热模组不处于制冷不足场景或制热不足场景,关闭压力发生器。
在一种可能的实施方式中,根据第一温度和第二温度判断换热模组是否处于制冷不足场景或制热不足场景,具体包括:预先设置第一温度阈值,根据第一温度和第一温度阈值判断换热模组是否处于制冷不足场景,若第一温度大于或者等于第一温度阈值,则换热模组处于制冷不足场景,否则不处于制冷不足场景;预先设置第二温度阈值,根据第二温度和第二温度阈值判断换热模组是否处于制热不足场景,若第二温度小于第二温度阈值,则换热模组处于制热不足场景,否则不处于制热不足场景。
在一种可能的实施方式中,若压缩机的功率为最大值,启动压力发生器,具体包括:若换热模组处于制冷不足场景且压缩机的功率为最大值时,启动压力发生器,并根据第一温度与第一温度阈值之间的差值调节压力发生器的功率;若换热模组处于制热不足场景且压缩机 的功率为最大值时,启动压力发生器,并根据第二温度阈值与第二温度之间的差值调节压力发生器的功率。
本申请实施例提供一种换热模组,包括:气液分离装置、节流装置、蒸发器以及如上所示的换热装置。通过换热装置中的压力发生器可将气液分离装置中未完全冷凝的气态工质或者气液混合工质重新输回冷凝器。一方面,压力发生器抽取的气态工质或者气液混合工质进入主环路后,会加速冷凝器工质流入侧的工质流速,使冷凝器的换热性能得到显著提高,单位时间内能够释放更多的热量。另一方面,气液分离装置在被压力发生器抽取工质时,可使气液分离装置内的工质得到进一步降温降压,增大节流装置前的过冷度,从而使蒸发器内工质蒸发温度更低,从进水管进入蒸发器的冷却水中吸收更多的热量,使出水管所流出的冷却水温度更低,可提升蒸发器的制冷量以及整个系统的能效比。再一方面,无需对设备进行改造,并且整体结构简单,设备成本以及安装成本低。
在一种可能的实施方式中,换热模组还包括:压缩机,压缩机设置在蒸发器与换热装置的冷凝器的连接管路上,以提高整个换热模组中工质流动的驱动力。
本申请实施例提供一种热管理系统,包括:电池模组、电驱模组以及如上所示的换热模组,电池模组与换热模组中的蒸发器和冷凝器中其中一个连接,电驱模组与换热模组中的蒸发器和冷凝器中的另一个连接。可分别实现制冷模式以及热泵模式,同时,通过换热模组中的压力发生器可将气液分离装置中未完全冷凝的气态工质或者气液混合工质重新输回冷凝器。一方面,压力发生器抽取的气态工质或者气液混合工质进入主环路后,会加速冷凝器工质流入侧的工质流速,使冷凝器的换热性能得到显著提高,单位时间内能够释放更多的热量。另一方面,气液分离装置在被压力发生器抽取工质时,可使气液分离装置内的工质得到进一步降温降压,增大节流装置前的过冷度,从而使蒸发器内工质蒸发温度更低,从进水管进入蒸发器的冷却水中吸收更多的热量,使出水管所流出的冷却水温度更低,可提升蒸发器的制冷量以及整个系统的能效比。再一方面,无需对设备进行改造,并且整体结构简单,设备成本以及安装成本低。
本申请实施例提供一种汽车,包括:如上所示的热管理系统,热管理系统对汽车进行热管理,可分别实现制冷模式以及热泵模式,同时,通过热管理系统中换热模组的压力发生器可将气液分离装置中未完全冷凝的气态工质或者气液混合工质重新输回冷凝器。一方面,压力发生器抽取的气态工质或者气液混合工质进入主环路后,会加速冷凝器工质流入侧的工质流速,使冷凝器的换热性能得到显著提高,单位时间内能够释放更多的热量。另一方面,气液分离装置在被压力发生器抽取工质时,可使气液分离装置内的工质得到进一步降温降压,增大节流装置前的过冷度,从而使蒸发器内工质蒸发温度更低,从进水管进入蒸发器的冷却水中吸收更多的热量,使出水管所流出的冷却水温度更低,可提升蒸发器的制冷量以及整个系统的能效比。再一方面,无需对设备进行改造,并且整体结构简单,设备成本以及安装成本低。
附图说明
图1为相关技术中新能源汽车的一热管理系统的示意图;
图2为相关技术中一冷媒回路的示意图;
图3为相关技术中一冷媒回路的示意图;
图4为本申请一实施例提供的换热装置应用在换热系统中的示意图;
图5为本申请一实施例提供的换热模组的示意图;
图6为本申请一实施例提供的换热模组的示意图;
图7为本申请一实施例提供的换热模组的控制器的作用流程图;
图8为本申请一实施例提供的换热模组的控制器的作用流程图;
图9为本申请一实施例提供的换热模组的控制器的作用流程图;
图10为本申请一实施例提供的换热模组在制冷模式下的控制流程图;
图11为本申请一实施例提供的换热模组在制热模式下的控制流程图。
附图标记说明:
1-热管理系统;             2-电池回路;              3-冷媒回路;
31-储液罐;                32-膨胀阀;               33-蒸发器;
34-压缩机;                35-冷凝器;               36-经济器;
37-电磁阀;                38-膨胀阀;
4-电驱回路;               5-电池包;                6-前端冷却模组;
100-换热装置;             110-压力发生器;          120-冷凝器;
130-控制器;
210-气液分离装置;         220-节流装置;            230-蒸发器;
300-换热模组;             310-压缩机。
具体实施方式
本申请实施例提供的换热装置及换热模组,可适用于任何符合逆卡诺循环制冷的工程领域,例如:家用空调、中央空调、冰箱、冷库或者车载热管理系统中。逆卡诺循环制冷的基本原理为,低温高压的液态制冷剂经膨胀机构节流处理后变为低温低压的液态制冷剂,进入第一热交换器中蒸发吸热,蒸发吸热后的制冷剂以气态形式进入压缩机,被压缩后,变成高温高压的制冷剂(此时制冷剂中所蕴藏的热量分为两部分,一部分为蒸发吸热所吸收的热量Q1,一部分为输入压缩机中的电能在压缩制冷剂时转化成的热量Q2),被压缩后的高温高压制冷剂进入第二热交换器,将其所含热量(Q1+Q2)释放给进入第二热交换器中的冷水,冷水被加热后传出至外部,放热后的制冷剂以低温高压的液态形式重新进入膨胀机构,再节流降压,如此不间断进行循环。
为了方便描述本申请方案,本申请实施例提供的换热装置及换热模组以应用在新能源汽车的热管理系统中为例进行说明。
目前,新能源汽车中业界主流的热管理系统均是采用间接冷却的方式给电池包散热。图1为相关技术中新能源汽车的一热管理系统的结构示意图,参考图1所示,该热管理系统1包括三个独立的循环回路:电池回路(又称电池模组)2、冷媒回路(又称换热模组)3和电驱回路(又称电驱模组)4。当电池包5充电、放电时,通过驱动装置可将电池包5的热量传递到电池回路2,再到冷媒回路3,最后到达电驱回路4,通过电驱回路4中的前端冷却模组6将热量散发到空气中。其中,电池回路2和电驱回路4中的载热流体一般采用50%水,50%乙二醇的混合液,具有低温防冻特性,可避免在低温环境下水结冰堵住管路。而冷媒回路中的工质一般采用R134a、R1234yf或R744等制冷剂。
图2为相关技术中一冷媒回路的示意图,图2在图1中冷媒回路3的基础上增加了一个储液罐31,用于分离和干燥液态工质,参考图2所示,该冷媒回路包括:储液罐31、膨胀阀 32、蒸发器33、压缩机34以及冷凝器35。在该冷媒回路中,液态工质经过膨胀阀32之后压力骤降变成低温低压的气液混合态,在蒸发器33内迅速吸热蒸发,在此期间,通过进水管a和出水管b与蒸发器33中工质进行热量交换,工质经过蒸发器33之后变为气态工质,并由压缩机34压缩成高温高压的气态工质,在冷凝器35内冷凝放热,在此期间,通过进水管c和出水管d与冷凝器35中工质进行热量交换,工质经过冷凝器35之后变为液态工质,并在储液罐31中分离干燥,然后再进入膨胀阀32中,以此循环。
但是,图2中所示冷媒回路具有以下缺点:第一,相关技术中冷媒回路一般采用一个压缩机驱动工质循环,如需提升换热能力需要同步提高压缩机功率和冷凝器体积,成本较高,并且在新能源汽车的非快充场景中换热能力需求并没有提高,所以在提高压缩机功率和冷凝器体积的前提下,该冷媒回路均处于性能过剩的状态,系统整体能效比低;第二,冷凝器和蒸发器一般采用铝波纹板式换热器,由于冷凝器处于压缩机之后,在同一工作时间点,冷凝器的换热量更大,冷凝器的体积一般大于蒸发器的1.5倍。若增大压缩机功率,冷凝器需要更多的板片以增大换热面积,这将会造成冷凝器过大,并且成本较高,另外还会使冷凝器和蒸发器外观不协调;第三,冷凝器中工质处于不断冷凝过程,工质流速急剧减小,若增大压缩机功率,则需采用多条流程的方法以增加流速,但是多流程将导致冷凝器工质进口侧流阻增加,能耗增大。
为了增加换热能力,相关技术中提供了一种解决方法,图3为相关技术中一冷媒回路的示意图,图3在图2的基础上增加了一个经济器36、一个电磁阀37和一个膨胀阀38。参考图3所示,经济器36设置在储液罐31和膨胀阀32之间,电磁阀37和膨胀阀38依次设置在储液罐31与经济器36之间的管路和经济器36工质出口侧之间,再引一条管路从经济器36接至压缩机34。在该冷媒回路中,压缩机34排出的高温高压气态工质经冷凝器35将热量传递给外界后变为液态,从冷凝器35出来的高压液态工质经储液罐31后分为两路,主路的液态工质直接进入经济器36内,辅路的液态工质先经过一个电磁阀37,再经过一个膨胀阀38节流降压后,变为气液混合物也进入经济器36,两者在经济器36中产生热量交换,辅路的工质吸热变为气态后被压缩机34的辅助进气口吸入,主路的工质放热后变为过冷液体经膨胀阀32节流降压后进入蒸发器33。在蒸发器33内,主路的工质吸收热量变为低压气体被压缩机34吸入,主路和辅路的工质在压缩机34的工作腔内混合,再进一步压缩后排出,构成封闭的工作循环回路。
另外,还需在辅路上安装一个单向阀(图中未示出),一方面可防止压缩机34在停机的瞬间发生反转,产生逆流。另一方面可减少压缩机34的余隙容积,在辅路不工作状态下辅路相当于压缩机34的余隙容积,若不安装单向阀,势必会降低压缩机34的容积效率,所以单向阀需要靠近压缩机34的辅助进气口安装以减少这部分的余隙。
但是,这种增加换热效率的方法也存在以下几点不足:第一,该冷媒回路虽然可以提升冷凝器侧的放热量,但是对蒸发器侧的吸热量没有显著提升,所以只适合于提升热管理系统在热泵模式下的性能,对电池快充需要较大制冷量的场景收益不高;第二,该冷媒回路结构复杂,相比图2中增加了一个经济器、一个电磁阀、一个膨胀阀、一个单向阀以及附属管路,并且还需在压缩机上预留一个辅助进气口,安装成本以及零部件成本较高;第三,该冷媒回路控制难度大,需要精密调控辅路的工质流量,才能达到理想的效果,受实际使用场景限制,工作时很难控制在最佳工况。
为了解决上述问题,本申请在图2中所示出的冷媒回路上进行改进,增加一条分支回路,该分支回路可将储液罐中未完全冷凝的气态工质或者气液混合工质重新输回冷凝器。一方面, 该分支回路中的气态工质或者气液混合工质进入循环主路后,会加速冷凝器工质流入侧的工质流速,使冷凝器的换热性能得到显著提升,单位时间内能够释放更多的热量。另一方面,储液罐在被该分支回路抽取工质时,可使储液罐内的工质得到进一步降温降压,增大膨胀阀前的过冷度,提升蒸发器的制冷量以及整个系统的能效比。再一方面,在相关技术的基础上只增加了一个压力发生器以及附属管路,并且无需对原有设备进行改造,结构简单,成本低。
下面参考附图及具体实施例对本申请实施例提供的换热装置、换热模组、热管理系统以及汽车进行详细说明。
图4为本申请一实施例提供的换热装置100应用在换热系统中的示意图,参考图4所示,本申请实施例提供的换热装置100包括:压力发生器110及冷凝器120,该换热装置100应用在换热系统中,换热系统包括:通过管路依次连通的气液分离装置210、节流装置220以及蒸发器230。其中,节流装置220可采用膨胀阀。冷凝器120通过管路连接在蒸发器230与气液分离装置210之间,以使冷凝器120、气液分离装置210、节流装置220以及蒸发器230形成环路,流通在环路中的工质按蒸发器230指向冷凝器120的方向定向流动在环路中,图4中实线箭头即为管路以及工质在管路中流通方向。
在该环路中,工质经节流装置220之后压力骤降变为低温低压的气液混合态,在蒸发器230内迅速吸热蒸发,在此期间,通过进水管a和出水管b与蒸发器230中工质进行热量交换,工质经过蒸发器230之后变为气态工质,进入冷凝器120内冷凝发热,在此期间,通过进水管c和出水管d与冷凝器120中工质进行热量交换,工质经过冷凝器120之后变为液态工质,进入气液分离装置210,然后再进入节流装置220中,以此循环。
换热装置100中的压力发生器110通过管路连接在气液分离装置210与冷凝器120的工质流入侧之间,构成一条分支回路,例如,压力发生器110通过管路连接在气液分离装置210和冷凝器120的工质进口处,又或者如图4所示,压力发生器110通过管路连接在气液分离装置210与蒸发器230和冷凝器120间的管路之间,相比前者,可无需在冷凝器120上预留辅助进口,无需对冷凝器120进行改造,节省成本。其中,压力发生器110为可产生压差的驱动部件,可采用气泵、压缩机、蠕动泵、容积泵等,压力发生器110可将气液分离装置210中的气态工质以及气液混合工质传输至冷凝器120中。
应理解的是,本申请实施例提供的换热装置100,通过压力发生器110可将气液分离装置210中未完全冷凝的气态工质或者气液混合工质重新输回冷凝器120。一方面,压力发生器110抽取的气态工质或者气液混合工质进入主环路后,会加速冷凝器120工质流入侧的工质流速,使冷凝器120的换热性能得到显著提高,单位时间内能够释放更多的热量。另一方面,气液分离装置210在被压力发生器110抽取工质时,可使气液分离装置210内的工质得到进一步降温降压,增大节流装置220前的过冷度,从而使蒸发器230内工质蒸发温度更低,从进水管a进入蒸发器230的冷却水中吸收更多的热量,使出水管b所流出的冷却水温度更低,可提升蒸发器230的制冷量以及整个系统的能效比。再一方面,无需对设备进行改造,并且整体结构简单,设备成本以及安装成本低。
本申请实施例还提供一种换热模组300,可参考图4所示,包括:上文所提到的换热装置100及换热系统,即本申请实施例提供的换热模组300包括:气液分离装置210、节流装置220、蒸发器230、冷凝器120以及压力发生器110,该换热模组300的安装方式与上文相同,在此不再一一赘述。其中,气液分离装置210可采用相关技术中所提供的储液罐,也可以采用具有气液分离功能的三通阀等,本申请附图中以气液分离装置210为储液罐为例进行说明。
继续参考图4所示,由于气液分离装置210(例如储液罐)中工质液面上下起伏不定,在 本申请的一些实施例中,可将气液分离装置210的与压力发生器110连通的连接口设置在气液分离装置210的顶部,以保证压力发生器110可抽取气态工质或者气液混合工质,避免纯液态工质进入压力发生器110所在的分支回路。当然,该连接口也可设置在气液分离装置210的其他位置,只要保证压力发生器110能抽取气态工质或者气液混合工质即可。
图5为本申请一实施例提供的换热模组300的示意图,参考图5所示,在本申请实施例提供的换热模组300中,为了提高冷凝器120、气液分离装置210、节流装置220及蒸发器230形成的环路中工质的驱动力,还可以包括:压缩机310,该压缩机310设置在蒸发器230与换热装置100中冷凝器120的连接管路上。经过蒸发器230后的工质可由压缩机310压缩成高温高压的气态工质,继而再进入冷凝器120中放热。
当然,本申请不止如此,图6为本申请一实施例提供的换热模组300的示意图,参考图6所示,在本申请一些实施例中,换热模组300中的换热装置100还可以包括:第一温度传感器(图中未示出)、第二温度传感器(图中未示出)以及控制器130。
具体的,第一温度传感器设置在蒸发器230的出水口,第二温度传感器设置在冷凝器120的出水口,控制器130分别与第一温度传感器、第二温度传感器以及压力发生器110电连接。需要提到的是,“第一温度传感器设置在蒸发器230的出水口,第二温度传感器设置在冷凝器120的出水口”,并不是指第一温度传感器和第二温度传感器只可设置在蒸发器230和冷凝器120的本体上,当然也可设置在蒸发器230的出水管b和冷凝器120的出水管d上。
控制器130可根据第一温度传感器的检测温度或第二温度传感器的检测温度调节压力发生的功率。例如,当第一温度传感器的检测温度T1超过一定温度阈值Tmax时,可认为该换热模组300制冷不足,根据T1和Tmax之间的差值来调节压力发生器110的功率,T1和Tmax之间的差值越大,压力发生器110的功率越大;当第二温度传感器的检测温度T2低于一定温度阈值Tmin时,可认为该换热模组300制热不足,根据T2和Tmin之间的差值来调节压力发生器110的功率,T2和Tmin之间的差值越大,压力发生器110的功率越大。可使换热模组300得到充分利用,既不会供能不足也不会能量过剩。
继续参考图6所示,控制器130还可以与压缩机310电连接。由此,控制器130可用于实施以下步骤,如图7所示,包括:
S100、获取蒸发器230出水口的第一温度和冷凝器120出水口的第二温度。
S200、根据第一温度和第二温度判断换热模组300是否处于制冷不足场景或制热不足场景。
S300、若换热模组300处于制冷不足场景或制热不足场景,判断压缩机310的功率是否为最大值,若压缩机310的功率不为最大值,加大压缩机310的功率,若压缩机310的功率为最大值,启动压力发生器110;
若换热模组300不处于制冷不足场景或制热不足场景,关闭压力发生器110。
其中,根据第一温度和第二温度判断换热模组300是否处于制冷不足场景或制热不足场景,具体包括(流程图如图8所示):
S201、预先设置第一温度阈值,根据第一温度和第一温度阈值判断换热模组300是否处于制冷不足场景,若第一温度大于或者等于第一温度阈值,则换热模组300处于制冷不足场景,否则不处于制冷不足场景;
预先设置第二温度阈值,根据第二温度和第二温度阈值判断换热模组300是否处于制热不足场景,若第二温度小于第二温度阈值,则换热模组300处于制热不足场景,否则不处于制热不足场景。
其中,若压缩机310的功率为最大值,启动压力发生器110,具体包括(流程图如图9所示):
S301、若换热模组300处于制冷不足场景且压缩机310的功率为最大值时,启动压力发生器110,并根据第一温度与第一温度阈值之间的差值调节压力发生器110的功率;
若换热模组300处于制热不足场景且压缩机310的功率为最大值时,启动压力发生器110,并根据第二温度阈值与第二温度之间的差值调节压力发生器110的功率。
为了防止当压力发生器110不工作时工质从压力发生器110所在的分支回路绕过冷凝器120,维持主环路的正常工作,在本申请的一些实施例中,压力发生器110具有按冷凝器120的工质流入侧指向气液分离装置210方向上的止回功能,无需安装止回阀,节省安装步骤以及安装成本。或者,本申请实施例提供的换热模组300中的换热装置100还可以包括:止回阀(附图中未示出),止回阀设置在压力发生器110的连接管路上,该止回阀具有按冷凝器120的工质流入侧指向气液分离装置210方向上的止回功能,如此,可无需对压力发生器110进行止回功能选择,降低压力发生器110的选型要求。
图10为本申请一实施例提供的换热模组300在制冷模式下的控制流程图,参考图10所示,在制冷量需求不大的一般场景,本申请提供的换热模组300只需要压缩机310单独工作即可满足要求。在制冷不足场景,可借助蒸发器230出水口温度T1判断,当水温超过一定温度阈值Tmax时,认为系统制冷不足。当系统制冷不足时,首先判断压缩机310转速R1是否已达到最大值,否则继续提升压缩机310转速R1进而提高制冷量。如果压缩机310已经最大转速仍然制冷不足,启动压力发生器110,提升系统制冷能力。压力发生器110的转速R2可以根据实际出水温度T1与温度阈值Tmax差值做对应调整。一般的,T1和Tmax之间的差值越大,压力发生器110的转速R2也越高。
图11为本申请一实施例提供的换热模组300在制热模式下的控制流程图,参考图11所示,在制热量需求不大的一般场景,本申请提供的换热模组300只需要压缩机310单独工作即可满足要求。在制热不足场景,可借助冷凝器120出水口温度T2判断,当水温低于一定温度阈值Tmin时,认为系统制热不足。当系统制热不足时,首先判断压缩机310转速R1是否已达到最大值,否则继续提升压缩机310转速R1进而提高制热量。如果压缩机310已经最大转速仍然制热不足,启动压力发生器110,提升系统制热能力。压力发生器110的转速R2可以根据实际出水温度T2与温度阈值Tmin差值做对应调整。一般的,Tmin和T2之间的差值越大,压力发生器110的转速R2也越高。
本申请提供的包含换热装置100的换热模组300主要应用于现有的新能源汽车中车载热管理系统,对相关技术中的电驱模组和电池模组完全兼容。由此,本申请还提供一种热管理系统,该热管理系统包括:电池模组、电驱模组以及上文所示的换热模组300,其中,电池模组可与换热模组300中的蒸发器230连接,电驱模组可与换热模组300中的冷凝器120连接,以实现对电池模组的制冷。
此外,新能源汽车中的电池模组还存在低温下放电能力显著衰退的问题,为了维持冬季或其他低温环境下(一般低于10℃以下)的电池性能不明显衰退,必须主动给电池模组加热,而从环境中吸热的热泵模式比纯电加热更加节能,所以未来会有越来越多的新能源汽车的热管理系统自带热泵功能。此时,可将电池模组与换热模组300中的冷凝器120连接,电驱模组与换热模组300中的蒸发器230连接,这样就可源源不断的从空气中吸收能量输送至电池模组。
本申请还提供一种汽车,包括如上文所示的热管理系统。热管理系统对汽车进行热管理 调节,可分别实现制冷模式以及热泵模式,该热管理系统的技术特征、对应的技术效果以及解决的技术问题均与上文所示相同,在此不再一一赘述。
新能源汽车车载热管理系统选用的压缩机310常见为45cc排量,最大转速为8000rpm。当只有压缩机310工作时,制冷工况主回路制冷流量约为0.076kg/s。在本申请实施例中,当压力发生器110启动时,冷凝器120和冷凝器120工质流入侧内部的流量可增加到0.265kg/s,相当于主回路流量的三倍多。由于冷凝器120内部工质流速受到压力发生器110所在分支回路的流量叠加而显著增大,冷凝器120工质流入侧换热系数随流速增大而增大,冷凝器120的整体换热性能可以得到显著提升。并且气液分离装置210中的工质被压力发生器110抽取气态工质或者气液混合工质的过程中可以进一步降温降压,增大节流装置220前工质的过冷度,可提升制冷量和整个系统的能效比。根据本申请提供的热管理系统仿真评估结果,在压缩机310全速工作状态下,增加压力发生器110后制冷量最大约可提升20.7%。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易地想到变化或者替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例或者暗示所指的装置或者元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。在本申请实施例的描述中,“多个”的含义是两个或两个以上,除非是另有精确具体地规定。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请实施例的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
最后应说明的是:以上各实施例仅用以说明本申请实施例的技术方案,而非对其限制;尽管参照前述各实施例对本申请实施例进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请实施例各实施例技术方案的范围。

Claims (14)

  1. 一种换热装置,其特征在于,所述换热装置包括:压力发生器及冷凝器,所述换热装置应用于换热系统,所述换热系统包括:通过管路依次连通的气液分离装置、节流装置以及蒸发器;
    所述冷凝器通过管路连接在所述蒸发器与所述气液分离装置之间,所述冷凝器、所述气液分离装置、所述节流装置以及所述蒸发器形成环路,工质按所述蒸发器指向所述冷凝器的方向定向流动在所述环路中;
    所述压力发生器通过管路连接在所述气液分离装置与所述冷凝器的工质流入侧之间,所述压力发生器用于将所述气液分离装置中的气态工质或气液混合工质传输至所述冷凝器中。
  2. 根据权利要求1所述的换热装置,其特征在于,所述压力发生器通过管路连接在所述气液分离装置与所述蒸发器和所述冷凝器间的管路之间。
  3. 根据权利要求1或2所述的换热装置,其特征在于,所述压力发生器具有按所述冷凝器的工质流入侧指向所述气液分离装置方向上的止回功能。
  4. 根据权利要求1或2所述的换热装置,其特征在于,还包括:止回阀;
    所述止回阀设置在所述压力发生器的连接管路上,所述止回阀具有按所述冷凝器的工质流入侧指向所述气液分离装置方向上的止回功能。
  5. 根据权利要求1-4任一项所述的换热装置,其特征在于,所述气液分离装置的与所述压力发生器连通的连接口位于所述气液分离装置的顶部。
  6. 根据权利要求1-5任一项所述的换热装置,其特征在于,所述换热系统还包括:压缩机,所述压缩机设置在所述蒸发器与所述冷凝器之间的连接管路上。
  7. 根据权利要求6所述的换热装置,其特征在于,还包括:第一温度传感器、第二温度传感器以及控制器;
    所述第一温度传感器设置在所述蒸发器的出水口,所述第二温度传感器设置在所述冷凝器的出水口,所述控制器分别与所述第一温度传感器、所述第二温度传感器、所述压力发生器以及所述压缩机电连接;
    所述控制器根据所述第一温度传感器的检测温度或所述第二温度传感器的检测温度调节所述压缩机和所述压力发生器的功率。
  8. 根据权利要求7所述的换热装置,其特征在于,所述控制器用于:
    获取所述蒸发器出水口的第一温度和所述冷凝器出水口的第二温度;
    根据所述第一温度和所述第二温度判断所述换热模组是否处于制冷不足场景或制热不足场景;
    若所述换热模组处于所述制冷不足场景或所述制热不足场景,判断所述压缩机的功率是否为最大值,若所述压缩机的功率不为最大值,加大所述压缩机的功率,若所述压缩机的功率为最大值,启动压力发生器;
    若所述换热模组不处于所述制冷不足场景或所述制热不足场景,关闭所述压力发生器。
  9. 根据权利要求8所述的换热装置,其特征在于,所述根据所述第一温度和所述第二温度判断所述换热模组是否处于制冷不足场景或制热不足场景,具体包括:
    预先设置第一温度阈值,根据所述第一温度和所述第一温度阈值判断所述换热模组是否处于所述制冷不足场景,若所述第一温度大于或者等于所述第一温度阈值,则所述换热模组处于制冷不足场景,否则不处于制冷不足场景;
    预先设置第二温度阈值,根据所述第二温度和所述第二温度阈值判断所述换热模组是否处于所述制热不足场景,若所述第二温度小于所述第二温度阈值,则所述换热模组处于制热不足场景,否则不处于制热不足场景。
  10. 根据权利要求9所述的换热装置,其特征在于,所述若所述压缩机的功率为最大值,启动压力发生器,具体包括:
    若所述换热模组处于制冷不足场景且所述压缩机的功率为最大值时,启动压力发生器,并根据所述第一温度与所述第一温度阈值之间的差值调节所述压力发生器的功率;
    若所述换热模组处于制热不足场景且所述压缩机的功率为最大值时,启动压力发生器,并根据所述第二温度阈值与所述第二温度之间的差值调节所述压力发生器的功率。
  11. 一种换热模组,其特征在于,包括:气液分离装置、节流装置、蒸发器以及如权利要求1-10任一项所述的换热装置。
  12. 根据权利要求11所述的换热模组,其特征在于,还包括:压缩机;
    所述压缩机设置在所述蒸发器与所述换热装置的冷凝器的连接管路上。
  13. 一种热管理系统,其特征在于,包括:电池模组、电驱模组以及如权利要求11或12所述的换热模组;
    所述电池模组与所述换热模组中的蒸发器和冷凝器中其中一个连接,所述电驱模组与所述换热模组中的蒸发器和冷凝器中的另一个连接。
  14. 一种汽车,其特征在于,包括:权利要求13所述的热管理系统。
PCT/CN2023/094900 2022-05-20 2023-05-17 换热装置、换热模组、热管理系统及汽车 WO2023222058A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210549385.1 2022-05-20
CN202210549385.1A CN117124791A (zh) 2022-05-20 2022-05-20 换热装置、换热模组、热管理系统及汽车

Publications (1)

Publication Number Publication Date
WO2023222058A1 true WO2023222058A1 (zh) 2023-11-23

Family

ID=88834694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094900 WO2023222058A1 (zh) 2022-05-20 2023-05-17 换热装置、换热模组、热管理系统及汽车

Country Status (2)

Country Link
CN (1) CN117124791A (zh)
WO (1) WO2023222058A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563947A (zh) * 2012-03-22 2012-07-11 北京德能恒信科技有限公司 一种热管热泵组合型制冷装置
CN102788392A (zh) * 2012-08-03 2012-11-21 北京德能恒信科技有限公司 一种热管热泵复合系统
CN105402958A (zh) * 2015-12-29 2016-03-16 海信(山东)空调有限公司 一种空调器以及空调冷媒的控制方法
CN107453005A (zh) * 2017-07-28 2017-12-08 厦门金龙汽车空调有限公司 一种汽车热管理方法
CN207456996U (zh) * 2017-11-24 2018-06-05 武汉理工大学 一种新能源汽车电池包高低温检测装置
EP3499634A1 (en) * 2017-12-14 2019-06-19 Mahle International GmbH Battery thermal management system for a vehicle
CN112665208A (zh) * 2020-12-29 2021-04-16 西安交通大学 一种吸收式制冷循环系统及其工作方法
KR102350303B1 (ko) * 2021-08-10 2022-01-17 김봉석 냉동싸이클 시스템

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563947A (zh) * 2012-03-22 2012-07-11 北京德能恒信科技有限公司 一种热管热泵组合型制冷装置
CN102788392A (zh) * 2012-08-03 2012-11-21 北京德能恒信科技有限公司 一种热管热泵复合系统
CN105402958A (zh) * 2015-12-29 2016-03-16 海信(山东)空调有限公司 一种空调器以及空调冷媒的控制方法
CN107453005A (zh) * 2017-07-28 2017-12-08 厦门金龙汽车空调有限公司 一种汽车热管理方法
CN207456996U (zh) * 2017-11-24 2018-06-05 武汉理工大学 一种新能源汽车电池包高低温检测装置
EP3499634A1 (en) * 2017-12-14 2019-06-19 Mahle International GmbH Battery thermal management system for a vehicle
CN112665208A (zh) * 2020-12-29 2021-04-16 西安交通大学 一种吸收式制冷循环系统及其工作方法
KR102350303B1 (ko) * 2021-08-10 2022-01-17 김봉석 냉동싸이클 시스템

Also Published As

Publication number Publication date
CN117124791A (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
CN107914538B (zh) 一种电动汽车热管理系统
WO2021169286A1 (zh) 一种热管理系统和新能源汽车
US11745562B1 (en) Coupling thermal management system of pure electric vehicle based on phase change heat storage
CN111251802A (zh) 车辆的热管理系统及车辆
CN111993884B (zh) 一种混合动力车辆热管理系统及混合动力车辆热管理方法
CN113173050A (zh) 热管理系统
CN113173049A (zh) 热管理系统
CN111251813A (zh) 车辆的热管理系统及车辆
CN109760485B (zh) 一种具有制冷/制热/辅助电池包散热功能的二氧化碳系统
CN212289440U (zh) 一种热管理系统和电动车
CN112046237A (zh) 一种热管理系统、控制方法和电动车
CN218677306U (zh) 一种汽车电池热管理系统
CN218480778U (zh) 一种储能系统的水冷机组
WO2023222058A1 (zh) 换热装置、换热模组、热管理系统及汽车
CN111251808A (zh) 车辆的热管理系统及车辆
CN212289436U (zh) 热管理系统、电动汽车
CN111391616B (zh) 一种空调系统
CN111169327B (zh) 基于相变材料的电动汽车整车集成热管理系统
CN111251805B (zh) 车辆、车辆的热管理系统及其控制方法
CN112046240A (zh) 热管理系统、热管理方法和电动汽车
CN212685163U (zh) 电动汽车热泵空调系统
CN212242889U (zh) 一种热管理系统和电动车
CN220429896U (zh) 一种耦合快充充电站及整车的热管理系统
WO2024022451A1 (zh) 热泵空调系统及车辆
CN113571807B (zh) 蓄能式电池液冷和加热的热管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807009

Country of ref document: EP

Kind code of ref document: A1