WO2023221610A1 - 一种ar眼镜及ar眼镜系统 - Google Patents

一种ar眼镜及ar眼镜系统 Download PDF

Info

Publication number
WO2023221610A1
WO2023221610A1 PCT/CN2023/080534 CN2023080534W WO2023221610A1 WO 2023221610 A1 WO2023221610 A1 WO 2023221610A1 CN 2023080534 W CN2023080534 W CN 2023080534W WO 2023221610 A1 WO2023221610 A1 WO 2023221610A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
solar cells
photovoltaic device
glasses
lens
Prior art date
Application number
PCT/CN2023/080534
Other languages
English (en)
French (fr)
Inventor
罗琨
江从彪
张翠萍
Original Assignee
海思技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海思技术有限公司 filed Critical 海思技术有限公司
Publication of WO2023221610A1 publication Critical patent/WO2023221610A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0176Head mounted characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C11/00Non-optical adjuncts; Attachment thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • This application relates to the field of AR technology, and in particular to an AR glasses and an AR glasses system.
  • Augmented Reality (AR) technology refers to superimposing computer-generated virtual objects onto real-world scenes to enhance the real world.
  • AR technology needs to collect real-world scenes and then add a virtual environment to the real world.
  • AR technology has a wide application field, mainly involving medical, education, military, industry, entertainment games and other fields. It widely uses multimedia, three-dimensional modeling, real-time tracking and registration, intelligent interaction, sensing and other technical means to transform computer-generated images into After simulation, virtual information such as text, images, three-dimensional models, music, and videos is applied to the real world. The two types of information complement each other, thereby achieving "enhancement" of the real world.
  • AR glasses are required to be light in weight, comfortable to wear, have long battery life, and can be used for a long time.
  • the usual way to improve battery life is to increase the battery capacity, which causes the weight of the glasses to increase and affects the user's comfort.
  • This application provides an AR glasses and an AR glasses system, aiming to improve the battery life of the AR glasses.
  • This application provides AR glasses, which include a frame and lenses.
  • the lenses are installed on the frames.
  • the AR glasses also include:
  • the optical machine used to emit light, the optical machine is installed on the frame;
  • a power supply device used to provide electrical energy for the AR glasses
  • a photovoltaic device is used to absorb light that has not entered the light propagation medium and convert the light energy into electrical energy.
  • the photovoltaic device is electrically connected to the power supply device, and the electrical energy generated by the photovoltaic device is transmitted to the power supply device.
  • the optical machine can emit light toward the light propagation medium, causing the light to enter the light propagation medium, and the light propagation medium guides this part of the light to propagate to the human eye.
  • the optical machine emits light toward the light propagation medium, some of the light will not enter the light propagation medium and cannot be used for display.
  • This part of the light can illuminate the photovoltaic device.
  • the photovoltaic device converts this part of the light energy into electrical energy.
  • the photovoltaic device communicates with the photovoltaic device through wires.
  • the power supply device is electrically connected to transmit the electric energy converted by the photovoltaic device to the power supply device to provide electric energy for the AR glasses.
  • a photovoltaic device is set up to recycle light that cannot be used for display and convert it into electrical energy, which is fed back to the AR glasses to increase the battery life of the AR glasses.
  • the light propagation medium includes a coupling grating and an optical waveguide, the coupling grating is disposed between the optical machine and the optical waveguide, and the coupling grating is used to change the direction of light, to allow light to enter the optical waveguide;
  • the photovoltaic device can convert light energy that does not enter the optical waveguide after passing through the coupling grating into electrical energy.
  • the coupling grating can change the direction of the light emitted by the optical machine, so that the light can enter the optical waveguide.
  • the guide light propagates in it and propagates to the coupling grating, which changes the direction of the light again and transmits the light to the human eye. Due to the diffraction effect of light, part of the light directly passes through the coupling grating and cannot enter the optical waveguide. This part of the light can be absorbed by the photovoltaic device, which converts this part of the light into electrical energy.
  • the photovoltaic device is arranged opposite to the coupling grating.
  • a photovoltaic device is placed opposite the coupling grating, and the light passing through the coupling grating is directly irradiated on the surface of the photovoltaic device, so that the photovoltaic device absorbs the light and generates electrical energy, and reuses the wasted light.
  • This application prevents the light passing through the coupling grating from being reflected to the optical waveguide again, and at the same time, it can also convert this part of the light into electrical energy for reuse.
  • the photovoltaic device includes silicon solar cells, organic solar cells, perovskite solar cells, quantum dot solar cells, organic solar cells and silicon solar cells in series, perovskite solar cells and silicon solar cells.
  • the optical machine includes a lens and a luminescent screen, and the lens is capable of converging the light emitted by the luminescent screen to the light propagation medium;
  • the photovoltaic device is capable of converting light energy that is not condensed by the lens into electrical energy.
  • the light-emitting screen can emit light, and multiple lenses are provided.
  • the light is converged by the multiple lenses and emitted in the direction of coupling into the grating. Since part of the light cannot be collected by the lens, this part can be absorbed by the photovoltaic device.
  • the photovoltaic device converts this part of the light into electrical energy, reducing the light loss of the optical machine.
  • the photovoltaic device is arranged around the periphery of the luminescent screen and the lens.
  • the light emitted to the outside of the lens or the light extending to its surroundings after being refracted by the lens can be absorbed by the photovoltaic device.
  • the optical machine further includes a housing, the light-emitting screen and the lens are installed inside the housing, and the photovoltaic device is installed outside the housing;
  • the housing is made of transparent material, and light can enter the photovoltaic device through the housing.
  • a transparent material surrounds the casing, and the casing is made of highly transparent material, so that the light not collected by the lens can pass through the casing and shine on the photovoltaic device.
  • the photovoltaic device absorbs this part of the light and converts it into electrical energy, realizing energy recovery.
  • the material of the casing can be transparent plastic.
  • the photovoltaic device is a flexible solar cell.
  • the flexible solar cells include organic solar cells, quantum dot solar cells, perovskite solar cells, organic solar cells and quantum solar cells in tandem, and organic solar cells and perovskite solar cells in tandem. , one or more of quantum dot solar cells and perovskite solar cells in series.
  • This application also provides an AR glasses system, which includes the above-mentioned AR glasses.
  • Figure 1 is a schematic structural diagram of AR glasses provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of AR glasses provided by an embodiment of the present application.
  • Figure 3 is a schematic cross-sectional view of the optical machine provided by the embodiment of the present application.
  • FIG. 4 is a schematic cross-sectional view of the optical machine provided by the embodiment of the present application from another perspective.
  • Augmented reality glasses are considered to be the display technology that will replace mobile phones.
  • the Micro LED light machine and diffraction light waveguide combiner solution with high brightness, small size and long life is a way to realize AR glasses.
  • the utilization rate of the light emitted by Micro LED is very low.
  • the light machine has its first volume. About 30% of the light emitted by Micro LED can be collected and emitted from the light machine.
  • the light emitted by the optical machine enters the optical waveguide through the coupling grating and propagates to the eyes. Due to the diffraction effect of light, more than 50% of the light passing through the coupling grating cannot enter the optical waveguide.
  • This part of the light cannot be used for display and is wasted, and this part of the light may be reflected to the coupling grating and enter the optical waveguide again. , causing interference to the previous light.
  • a black film is usually placed on the opposite side of the coupling grating. The black film absorbs the light that passes through the coupling grating but does not enter the optical waveguide. However, most of the light cannot be used. Display and waste.
  • this embodiment provides an AR glasses 1, which includes a frame, one or two lenses, and the lenses are installed on the frame.
  • the AR glasses 1 also include an optical machine 11, an optical machine 11, and an optical machine 11.
  • the optical engine 11 is used to emit light, and the optical engine 11 is installed on the frame.
  • the light propagation medium 12 is used to guide the propagation of the light emitted by the optical machine 11, and the light propagation medium 12 is installed on the lens.
  • the power supply device is used to provide power for the AR glasses 1 .
  • the photovoltaic device 13 is used to absorb light that has not entered the light propagation medium 12 and convert the light energy into electrical energy.
  • the photovoltaic device 13 is electrically connected to the power supply device, and the electrical energy generated by the photovoltaic device 13 is transmitted to the power supply device.
  • the optical machine 11 can emit light toward the light propagation medium 12, so that the light enters the light propagation medium 12.
  • the propagation medium 12 guides this part of the light to propagate to the human eye.
  • the optical machine 11 emits light toward the light propagation medium 12, some of the light does not enter the light propagation medium 12 and cannot be used for display.
  • This part of the light can illuminate the photovoltaic device 13, and the photovoltaic device 13 converts this part of the light energy into electrical energy.
  • the photovoltaic device 13 is electrically connected to the power supply device through the wire 14 to transmit the electric energy converted by the photovoltaic device 13 to the power supply device to provide electric energy for the AR glasses 1 .
  • the photovoltaic device 13 is provided to recycle and convert the light that cannot be used for display into electrical energy and feed it back to the AR glasses 1 to increase the battery life of the AR glasses 1 .
  • the light propagation medium 12 includes a coupling grating 121, an optical waveguide 122 and an outcoupling grating 123.
  • the coupling grating 121 is disposed between the optical machine 11 and the optical waveguide 122.
  • the coupling grating 121 is used to change the direction of light so that the light enters the optical waveguide 122; the photovoltaic device 13 can convert the light energy that does not enter the optical waveguide 122 after being coupled into the grating 121 into electrical energy.
  • the coupling grating 121 can change the direction of the light emitted by the optical engine 11 so that the light can enter the optical waveguide 122.
  • the optical waveguide 122 guides the light to propagate therein and propagates to the coupling grating 123.
  • the coupling grating 123 changes again.
  • Light direction conducts light to the human eye. Due to the diffraction effect of light, part of the light directly passes through the coupling grating 121 and cannot enter the optical waveguide 122. This part of the light can be absorbed by the photovoltaic device 13, and the photovoltaic device 13 converts this part of the light into electrical energy.
  • the photovoltaic device 13 is arranged opposite the coupling grating 121, that is, the photovoltaic device 13 is placed opposite the coupling grating 121, and the light passing through the coupling grating 121 is directly illuminated on the photovoltaic device.
  • the surface of the photovoltaic device 13 allows the photovoltaic device 13 to absorb light and generate electrical energy, thereby reusing the wasted light.
  • the photovoltaic device 13 is used to replace the black film, which prevents the light passing through the coupling grating 121 from being reflected to the optical waveguide 122 again, while also converting this part of the light into electrical energy for reuse.
  • the photovoltaic device 13 is a solar cell
  • the solar cell can be a silicon solar cell, an organic solar cell, a perovskite solar cell, a quantum dot solar cell, an organic solar cell and a silicon solar cell in series, a perovskite solar cell and a silicon solar cell.
  • the light engine 11 is a Micro LED light engine 11.
  • Micro LED display technology refers to a display technology that uses self-luminous micron-level LEDs as light-emitting pixel units and assembles them onto a drive panel to form a high-density LED array. . Due to the characteristics of micro LED chips such as small size, high integration and self-illumination, compared with LCD and OLED, it has greater brightness, resolution, contrast, energy consumption, service life, response speed and thermal stability. The advantages.
  • the process of light energy recovery is:
  • the luminous efficiency of the LED is expressed as WPE, which is the ratio of the light energy emitted by the LED to the input electrical energy;
  • the light emitted by the LED is collected by the light engine 11 and then emitted.
  • the light collection efficiency of the light engine 11 is etalight, that is, the proportion of light entering the coupling grating 121 is etalight;
  • the light accounting for ⁇ Tr passes through the coupling grating 121 but does not enter the optical waveguide and is not used;
  • the light passing through the coupling grating 121 is absorbed by the photovoltaic device 13 and converted into electrical energy, and the conversion efficiency is PCE;
  • the AR glasses 1 can increase the battery life by about 25 minutes under the standard 8 hours.
  • the optical machine 11 includes a lens 111 and a light-emitting screen 112.
  • the lens 111 can condense the light emitted by the light-emitting screen 112 to the light propagation medium 12; the photovoltaic device 13
  • the light energy that is not condensed and emitted by the lens 111 can be converted into electrical energy.
  • the light-emitting screen 112 can emit light, and multiple lenses 111 are provided.
  • the light is converged by the multiple lenses 111 and emitted in a direction coupled into the grating 121 . Since part of the light cannot be collected by the lens 111, this part can be absorbed by the photovoltaic device 13.
  • the photovoltaic device 13 converts this part of the light into electrical energy, thereby reducing the light loss of the optical machine 11.
  • the photovoltaic device 13 is arranged around the periphery of the light-emitting screen 112 and the lens 111 , so that the light emitted to the outside of the lens 111 or the light extended to its surroundings after being refracted by the lens 111 can be absorbed by the photovoltaic device.
  • Device 13 absorbs.
  • the optical machine 11 also includes a housing 113.
  • the luminous screen 112 and the lens 111 are installed inside the housing 113, and the photovoltaic device 13 is installed outside the housing 113; the housing 113 is made of transparent material, and light can pass through it. Enter the photovoltaic device 13 through the housing 113 .
  • a transparent material surrounds the casing 113, and the casing 113 is made of highly transparent material, so that the light that is not collected by the lens 111 can pass through the casing 113 and illuminate the photovoltaic device 13, and the photovoltaic device 13 absorbs this part of the light and converts it into electrical energy. Achieve energy recovery.
  • the material of the housing 113 can be transparent plastic.
  • the photovoltaic device 13 is a flexible solar cell.
  • Flexible solar cells can be organic solar cells, quantum dot solar cells, perovskite solar cells, organic solar cells and quantum solar cells in tandem, organic solar cells and perovskite solar cells in tandem, quantum dot solar cells and perovskite.
  • the AR glasses 1 will last for a standard 8 hours. It can be improved for about 2 hours, and the improvement rate is about 25%.
  • the AR glasses system includes AR glasses 1, a processor and a memory.
  • the memory is provided with control instructions.
  • the processor can perform corresponding processing according to the control instructions and transfer the processed data to the AR glasses 1.
  • this embodiment uses a photovoltaic device to recover light and convert it into electrical energy, which can also be used in projectors.
  • a photovoltaic device is added to the optical engine of the projector, so that the photovoltaic device can recover light that cannot be collected by the lens and convert it into electrical energy, thereby increasing the use time of the projector.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种AR眼镜(1)及AR眼镜系统。AR眼镜(1)还包括光机(11)、光传播介质(12)、供电装置和光伏装置(13)。光机(11)用于发射光线,光机(11)安装于镜框。光传播介质(12)用于引导光机(11)发射的光线传播,光传播介质(12)安装于镜片。供电装置用于为AR眼镜(1)提供电能。光伏装置(13)用于吸收未进入光传播介质的光线,并将光能转变为电能,光伏装置(13)与供电装置电连接,光伏装置(13)产生的电能传输至供电装置。通过设置光伏装置(13)将无法用于显示的光线回收并转变为电能,反馈至AR眼镜(1),以提高AR眼镜(1)续航时间。

Description

一种AR眼镜及AR眼镜系统
本申请要求于2022年05月19日提交中国专利局、申请号为202210554304.7、发明名称为“一种AR眼镜及AR眼镜系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及AR技术领域,尤其涉及一种AR眼镜及AR眼镜系统。
背景技术
增强现实(Augmented Reality,AR)技术是指将计算机生成的虚拟对象叠加到真实世界的场景之上,从而实现对真实世界的增强。也就是说,AR技术中需要采集真实世界的场景,然后在真实世界上增加虚拟环境。AR技术应用领域广阔,主要涉及医疗、教育、军事、工业、娱乐游戏等领域,广泛运用了多媒体、三维建模、实时跟踪及注册、智能交互、传感等多种技术手段,将计算机生成的文字、图像、三维模型、音乐、视频等虚拟信息模拟仿真后,应用到真实世界中,两种信息互为补充,从而实现对真实世界的“增强”。
AR眼镜作为穿戴电子产品,要求重量轻、佩戴舒适、续航持久,可长时间使用,通常提高续航的方式为增大电池容量,导致眼镜重量增加,影响使用者的舒适度。
申请内容
本申请提供了一种AR眼镜及AR眼镜系统,旨在提高AR眼镜的续航时间。
本申请提供了一种AR眼镜,包括镜框和镜片,所述镜片安装于所述镜框,所述AR眼镜还包括:
光机,用于发射光线,所述光机安装于所述镜框;
光传播介质,用于引导所述光机发射的光线传播;
供电装置,用于为所述AR眼镜提供电能;
光伏装置,用于吸收未进入所述光传播介质的光线,并将光能转变为电能,所述光伏装置与所述供电装置电连接,所述光伏装置产生的电能传输至所述供电装置。
本申请中,光机能够朝光传播介质发射光线,使光线进入光传播介质中,光传播介质引导该部分光线传播至人眼。光机朝光传播介质发射光线时,会有部分光线未进入光传播介质无法用于显示,该部分光线能够照射在光伏装置上,光伏装置将该部分光能转变为电能,光伏装置通过导线与供电装置电连接,以将光伏装置转变的电能传输至供电装置,为AR眼镜提供电能。本实施例通过设置光伏装置将无法用于显示的光线回收并转变为电能,反馈至AR眼镜,以提高AR眼镜续航时间。
在一种可能的设计中,所述光传播介质包括耦入光栅和光波导,所述耦入光栅设置于所述光机与所述光波导之间,所述耦入光栅用于改变光线方向,以使光线进入所述光波导;
所述光伏装置能够将经所述耦入光栅后未进入所述光波导的光能转变为电能。
本申请中,耦入光栅能够改变光机发射光线的方向,使光线能够进入光波导中,光波 导引导光在其中传播,传播至耦出光栅,耦出光栅再次改变光线方向,将光传导至人眼。由于光的衍射效应,部分光线直接穿过耦入光栅而无法进入光波导,该部分光线能够被光伏装置吸收,光伏装置将该部分光线转变为电能。
在一种可能的设计中,所述光伏装置与所述耦入光栅相对设置。
本申请中,在耦入光栅的对面放置光伏装置,将穿过耦入光栅的光线直接照射在光伏装置的表面,使光伏装置吸收光线并产生电能,将浪费的光线重复利用。本申请防止穿过耦入光栅的光线再次被反射至光波导的同时还能将该部分光转化为电能重复利用。
在一种可能的设计中,所述光伏装置包括硅太阳能电池、有机太阳能电池、钙钛矿太阳能电池、量子点太阳能电池、有机太阳能电池与硅太阳能电池串联电池、钙钛矿太阳能电池与硅太阳能电池串联电池、量子点太阳能电池与硅太阳能电池串联电池中的一种或多种。
在一种可能的设计中,所述光机包括透镜和发光屏,所述透镜能够将所述发光屏发射的光线会聚发至所述光传播介质;
所述光伏装置能够将未被所述透镜会聚发出的光能转变为电能。
本申请中,发光屏能够发射光线,透镜设置有多个,光线经多个透镜会聚并朝耦入光栅的方向发射。由于部分光线无法被透镜采集,该部分能被光伏装置吸收,光伏装置将该部分光线转变为电能,降低光机的光线损失。
在一种可能的设计中,所述光伏装置绕所述发光屏与所述透镜的外周设置。
本申请中,使发射至透镜的外侧的光线或经透镜折射后向其四周延伸的光线能够被光伏装置吸收。
在一种可能的设计中,所述光机还包括外壳,所述发光屏与所述透镜安装于所述外壳内部,所述光伏装置安装于所述外壳外部;
所述外壳为透明材质,光线能够透过所述外壳进入所述光伏装置。
本申请中,透明材料包围外壳设置,外壳为高透明材料,使未被透镜收集的光线能够穿过外壳照射在光伏装置,光伏装置吸收该部分光线并转变为电能,实现能量回收。
外壳的材质可以为透明塑料。
在一种可能的设计中,所述光伏装置为柔性太阳能电池。
在一种可能的设计中,所述柔性太阳能电池包括有机太阳能电池、量子点太阳能电池、钙钛矿太阳能电池、有机太阳能电池与量子太阳能电池串联电池、有机太阳能电池与钙钛矿太阳能电池串联电池、量子点太阳能电池与钙钛矿太阳能电池串联电池中的一种或多种。
本申请还提供了一种AR眼镜系统,所述AR眼镜系统包括上述所述的AR眼镜。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
图1为本申请实施例所提供AR眼镜的结构示意图;
图2为本申请实施例所提供AR眼镜的结构示意图;
图3为本申请实施例所提供光机的剖视示意图;
图4为本申请实施例所提供光机的另一视角的剖视示意图。
附图标记:
1-AR眼镜、11-光机、111-透镜、112-发光屏、113-外壳、12-光传播介质、121-耦入
光栅、122-光波导、123-耦出光栅、13-光伏装置、14-导线。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
需要注意的是,本申请实施例所描述的“上”、“下”、“左”、“右”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外,在上下文中,还需要理解的是,当提到一个元件连接在另一个元件“上”或者“下”时,其不仅能够直接连接在另一个元件“上”或者“下”,也可以通过中间元件间接连接在另一个元件“上”或者“下”。
增强现实眼镜(Augmented reality Glass)被认为是取代手机的显示技术。亮度高、体积小、寿命长的Micro LED光机与衍射光波导组合器方案是一种AR眼镜实现方式。采用Micro LED光机与衍射光波导组合器时,Micro LED发出的光线利用率很低。首先,光机首先体积,Micro LED发射的光线中大概约30%可以被收集而从光机中射出。光机发出的光由耦入光栅进入光波导并传播到眼前。由于光的衍射效应,超过50%的光穿过耦入光栅无法进入光波导,这部分光无法被用于显示而浪费,且这部分光可能被反射至耦入光栅处,再次进入光波导中,对之前的光线产生干扰。为解决光线被反射再次进入光波导的问题,通常在耦入光栅对侧放置黑色薄膜,通过黑色薄膜吸收穿过耦入光栅而未进入光波导的光线,但仍有大部分光线无法用于被显示而浪费。
为解决上述技术问题,本实施例提供了一种AR眼镜1,包括镜框、一个或两个镜片,镜片安装于镜框,如图1至图4所示,AR眼镜1还包括光机11、光传播介质12、供电装置和光伏装置13。光机11用于发射光线,光机11安装于镜框。光传播介质12用于引导光机11发射的光线传播,光传播介质12安装于镜片。供电装置用于为AR眼镜1提供电能。光伏装置13用于吸收未进入光传播介质12的光线,并将光能转变为电能,光伏装置13与供电装置电连接,光伏装置13产生的电能传输至供电装置。
本实施例中,光机11能够朝光传播介质12发射光线,使光线进入光传播介质12中,光 传播介质12引导该部分光线传播至人眼。光机11朝光传播介质12发射光线时,会有部分光线未进入光传播介质12无法用于显示,该部分光线能够照射在光伏装置13上,光伏装置13将该部分光能转变为电能,光伏装置13通过导线14与供电装置电连接,以将光伏装置13转变的电能传输至供电装置,为AR眼镜1提供电能。本实施例通过设置光伏装置13将无法用于显示的光线回收并转变为电能,反馈至AR眼镜1,以提高AR眼镜1续航时间。
如图1和图2所示,在一种可能的设计中,光传播介质12包括耦入光栅121、光波导122和耦出光栅123,耦入光栅121设置于光机11与光波导122之间,耦入光栅121用于改变光线方向,以使光线进入光波导122;光伏装置13能够将经耦入光栅121后未进入光波导122的光能转变为电能。
本实施例中,耦入光栅121能够改变光机11发射光线的方向,使光线能够进入光波导122中,光波导122引导光在其中传播,传播至耦出光栅123,耦出光栅123再次改变光线方向,将光传导至人眼。由于光的衍射效应,部分光线直接穿过耦入光栅121而无法进入光波导122,该部分光线能够被光伏装置13吸收,光伏装置13将该部分光线转变为电能。
具体地,如图1和图2所示,光伏装置13与耦入光栅121相对设置,即在耦入光栅121的对面放置光伏装置13,将穿过耦入光栅121的光线直接照射在光伏装置13的表面,使光伏装置13吸收光线并产生电能,将浪费的光线重复利用。本实施例采用光伏装置13替换黑色薄膜,防止穿过耦入光栅121的光线再次被反射至光波导122的同时还能将该部分光转化为电能重复利用。
其中,光伏装置13为太阳能电池,该太阳能电池可以为硅太阳能电池、有机太阳能电池、钙钛矿太阳能电池、量子点太阳能电池、有机太阳能电池与硅太阳能电池串联电池、钙钛矿太阳能电池与硅太阳能电池串联电池、量子点太阳能电池与硅太阳能电池串联电池中的一种或多种。
本实施例中,光机11为Micro LED光机11,Micro LED显示技术是指以自发光的微米量级的LED为发光像素单元,将其组装到驱动面板上形成高密度LED阵列的显示技术。由于micro LED芯片尺寸小、集成度高和自发光等特点,在显示方面与LCD、OLED相比在亮度、分辨率、对比度、能耗、使用寿命、响应速度和热稳定性等方面具有更大的优势。
本实施例中,光能回收的过程为:
对Micro LED施加电压,LED发光,此时LED的发光效率表示为WPE,即LED发射的光能与输入电能的比;
LED发出的光线经光机11收光后射出,光机11的收光效率为ηlight,即进入耦入光栅121的光占比为ηlight;
光线达到耦入光栅121后,占比ηTr的光线穿过耦入光栅121未进入光导波而未被使用;
穿过耦入光栅121的光线被光伏装置13吸收后转变为电能,转换效率为PCE;
因此,整个过程被回收利用的光线转变为电能可表示为:
EF=WPE×ηlight×ηTr×PCE
AR眼镜1续航提升的比例(TT)可表示为:
TT=EF/WPE=ηlight×ηTr×PCE
由此可以估算,若在光机11收光效率为35%,耦入光栅121透过率为50%,光伏装置 13的光电转换效率为30%的条件下,AR眼镜1在标准8小时续航下可以提升25分钟左右。
如图3和图4所示,在另一种可能的设计中,光机11包括透镜111和发光屏112,透镜111能够将发光屏112发射的光线会聚发至光传播介质12;光伏装置13能够将未被透镜111会聚发出的光能转变为电能。
本实施例中,发光屏112能够发射光线,透镜111设置有多个,光线经多个透镜111会聚并朝耦入光栅121的方向发射。由于部分光线无法被透镜111采集,该部分能被光伏装置13吸收,光伏装置13将该部分光线转变为电能,降低光机11的光线损失。
进一步地,如图3和图4所示,光伏装置13绕发光屏112与透镜111的外周设置,使发射至透镜111的外侧的光线或经透镜111折射后向其四周延伸的光线能够被光伏装置13吸收。
具体地,如图3和图4所示,光机11还包括外壳113,发光屏112与透镜111安装于外壳113内部,光伏装置13安装于外壳113外部;外壳113为透明材质,光线能够透过外壳113进入光伏装置13。本实施例中,透明材料包围外壳113设置,外壳113为高透明材料,使未被透镜111收集的光线能够穿过外壳113照射在光伏装置13,光伏装置13吸收该部分光线并转变为电能,实现能量回收。
外壳113的材质可以为透明塑料。
其中,光伏装置13为柔性太阳能电池。柔性太阳能电池可以为有机太阳能电池、量子点太阳能电池、钙钛矿太阳能电池、有机太阳能电池与量子太阳能电池串联电池、有机太阳能电池与钙钛矿太阳能电池串联电池、量子点太阳能电池与钙钛矿太阳能电池串联电池中的一种或多种。
将穿过耦入光线未进入光波导122的光线与光机11中未被透镜111采集的光线重新回收利用,进一步提升AR眼镜1续航效果。将两处被回收的光线相结合,被回收的光能转换为电能可以表示为:
FF=WPE×ηlight×ηTr×PCE+WPE×(1-ηlight)×PCE
AR眼镜1续航提升的比例可表示为:
TT=EF/WPE=ηlight×ηTr×PCE+(1-ηlight)×PCE
由此可以估算,若在光机11收光效率为35%,耦入光栅121透过率为50%,光伏装置13的光电转换效率为30%的条件下,AR眼镜1在标准8小时续航下可以提升2小时左右,提升比例约25%。
本实施例还提供了一种AR眼镜系统,AR眼镜系统包括AR眼镜1、处理器和存储器,存储器设有控制指令,处理器能够根据控制指令进行相应处理并将处理数据传递至AR眼镜1。
另外,本实施例采用光伏装置回收光线转变为电能的方案还可用于投影机中。具体地,在投影机的光机处增加光伏装置,使光伏装置回收无法被透镜采集的光线转变为电能,提高投影机的使用时间。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种AR眼镜,包括镜框和镜片,所述镜片安装于所述镜框,其特征在于,所述AR眼镜还包括:
    光机,用于发射光线,所述光机安装于所述镜框;
    光传播介质,用于引导所述光机发射的光线传播;
    供电装置,用于为所述AR眼镜提供电能;
    光伏装置,用于吸收未进入所述光传播介质的光线,并将光能转变为电能,所述光伏装置与所述供电装置电连接,所述光伏装置产生的电能传输至所述供电装置。
  2. 根据权利要求1所述的AR眼镜,其特征在于,所述光传播介质包括耦入光栅和光波导,所述耦入光栅设置于所述光机与所述光波导之间,所述耦入光栅用于改变光线方向,以使光线进入所述光波导;
    所述光伏装置能够将经所述耦入光栅后未进入所述光波导的光能转变为电能。
  3. 根据权利要求2所述的AR眼镜,其特征在于,所述光伏装置与所述耦入光栅相对设置。
  4. 根据权利要求1~3中任一项所述的AR眼镜,其特征在于,所述光伏装置包括硅太阳能电池、有机太阳能电池、钙钛矿太阳能电池、量子点太阳能电池、有机太阳能电池与硅太阳能电池串联电池、钙钛矿太阳能电池与硅太阳能电池串联电池、量子点太阳能电池与硅太阳能电池串联电池中的一种或多种。
  5. 根据权利要求1所述的AR眼镜,其特征在于,所述光机包括透镜和发光屏,所述透镜能够将所述发光屏发射的光线会聚发至所述光传播介质;
    所述光伏装置能够将未被所述透镜会聚发出的光能转变为电能。
  6. 根据权利要求5所述的AR眼镜,其特征在于,所述光伏装置绕所述发光屏与所述透镜的外周设置。
  7. 根据权利要求6所述的AR眼镜,其特征在于,所述光机还包括外壳,所述发光屏与所述透镜安装于所述外壳内部,所述光伏装置安装于所述外壳外部;
    所述外壳为透明材质,光线能够透过所述外壳进入所述光伏装置。
  8. 根据权利要求7所述的AR眼镜,其特征在于,所述光伏装置为柔性太阳能电池。
  9. 根据权利要求8所述的AR眼镜,其特征在于,所述柔性太阳能电池包括有机太阳能电池、量子点太阳能电池、钙钛矿太阳能电池、有机太阳能电池与量子太阳能电池串联电池、有机太阳能电池与钙钛矿太阳能电池串联电池、量子点太阳能电池与钙钛矿太阳能电池串联电池中的一种或多种。
  10. 一种AR眼镜系统,其特征在于,所述AR眼镜系统包括权利要求1~9中任一项所述的AR眼镜。
PCT/CN2023/080534 2022-05-19 2023-03-09 一种ar眼镜及ar眼镜系统 WO2023221610A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210554304.7A CN117130157A (zh) 2022-05-19 2022-05-19 一种ar眼镜及ar眼镜系统
CN202210554304.7 2022-05-19

Publications (1)

Publication Number Publication Date
WO2023221610A1 true WO2023221610A1 (zh) 2023-11-23

Family

ID=88834523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080534 WO2023221610A1 (zh) 2022-05-19 2023-03-09 一种ar眼镜及ar眼镜系统

Country Status (2)

Country Link
CN (1) CN117130157A (zh)
WO (1) WO2023221610A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2316473A1 (en) * 1999-07-28 2001-01-28 Steve Mann Covert headworn information display or data display or viewfinder
CN101995691A (zh) * 2009-08-20 2011-03-30 上海天马微电子有限公司 液晶显示装置
CN206946103U (zh) * 2017-07-06 2018-01-30 王志冲 一种组合式增强现实眼镜
CN108364979A (zh) * 2018-01-30 2018-08-03 上海瀚莅电子科技有限公司 Ar眼镜
CN110764260A (zh) * 2018-07-28 2020-02-07 华为技术有限公司 一种增强现实装置
CN111587392A (zh) * 2017-12-11 2020-08-25 奇跃公司 波导照射器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2316473A1 (en) * 1999-07-28 2001-01-28 Steve Mann Covert headworn information display or data display or viewfinder
CN101995691A (zh) * 2009-08-20 2011-03-30 上海天马微电子有限公司 液晶显示装置
CN206946103U (zh) * 2017-07-06 2018-01-30 王志冲 一种组合式增强现实眼镜
CN111587392A (zh) * 2017-12-11 2020-08-25 奇跃公司 波导照射器
CN108364979A (zh) * 2018-01-30 2018-08-03 上海瀚莅电子科技有限公司 Ar眼镜
CN110764260A (zh) * 2018-07-28 2020-02-07 华为技术有限公司 一种增强现实装置

Also Published As

Publication number Publication date
CN117130157A (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
US20180190882A1 (en) Flip chip light emitting diode package structure
CN105794201B (zh) 显示设备
CN103365057B (zh) 投影装置
CN106502001A (zh) 一种背光模组、显示装置及电子设备
CN207082533U (zh) 一种显示面板及显示装置
CN108254919A (zh) 显示模块和包括该显示模块的头戴式显示装置
CN114335382A (zh) 显示模组及其制备方法
US20200004022A1 (en) Electronic device
CN105118848A (zh) 一种有机发光显示器件
CN105892073A (zh) 基于柔性智能手机的虚拟现实眼镜
WO2023221610A1 (zh) 一种ar眼镜及ar眼镜系统
CN113589973A (zh) 产生浮空图像的装置及方法
WO2016088635A1 (ja) 照明装置、表示装置、及びテレビ受信装置
CN102913849A (zh) 一种日光辅助的直下式背光模组及液晶显示器
CN212694165U (zh) 一种头戴式显示设备
WO2021082880A1 (zh) 显示屏模组及终端
CN1885249A (zh) 光线鼠标装置
US11789275B2 (en) Electronic device
CN204062599U (zh) Led模压玻璃镜片
KR20190011868A (ko) 표시 장치 및 이의 구동 방법
CN212083821U (zh) 基于眼球追踪技术的显示面板、显示装置
TW201427098A (zh) 發光二極體發光裝置
CN102622093A (zh) 电脑荧光键盘
KR102439301B1 (ko) 태양광 패널에 적용된 가시광 통신 시스템
CN111710655A (zh) 基于生物识别技术的显示面板及其制造方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806570

Country of ref document: EP

Kind code of ref document: A1