WO2023221555A1 - 根序列索引rsi冲突的处理方法、服务器和存储介质 - Google Patents

根序列索引rsi冲突的处理方法、服务器和存储介质 Download PDF

Info

Publication number
WO2023221555A1
WO2023221555A1 PCT/CN2023/074241 CN2023074241W WO2023221555A1 WO 2023221555 A1 WO2023221555 A1 WO 2023221555A1 CN 2023074241 W CN2023074241 W CN 2023074241W WO 2023221555 A1 WO2023221555 A1 WO 2023221555A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
serving
rsi
serving cell
Prior art date
Application number
PCT/CN2023/074241
Other languages
English (en)
French (fr)
Inventor
唐琳
龚澍
冯红
柯雅珠
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023221555A1 publication Critical patent/WO2023221555A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/0858Random access procedures, e.g. with 4-step access with collision treatment collision detection

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a method, server and storage medium for processing root sequence index RSI conflicts.
  • Root Sequence Index (RSI) conflicts will occur.
  • RSI Root Sequence Index
  • a terminal uses the same PRACH time-frequency code resource to initiate random access in the current cell, it will cause false call alarms to other neighboring cells and affect the wireless connection rate of other neighboring cells. Therefore, how to timely detect whether RSI conflict detection occurs in a cell is particularly important.
  • Embodiments of the present disclosure provide a method, a server, and a storage medium for processing root sequence index RSI conflicts.
  • embodiments of the present disclosure provide a method for handling root sequence index RSI conflicts, including: determining at least one suspicious cell, and sequentially determining each of the suspicious cells as a serving cell, where the suspicious cells are related to Neighboring cells have overlapping coverage areas, or the suspicious cell is a cell with a coverage radius greater than the preset coverage radius threshold; according to the preset engineering parameter table and the measurement report data corresponding to each of the serving cells, each Perform RSI conflict detection on each of the serving cells to obtain a cell that has an RSI conflict with each of the serving cells.
  • embodiments of the present disclosure also provide a server, which includes a processor, a memory, a computer program stored on the memory and executable by the processor, and a computer program for implementing the processor and A data bus is used for connection and communication between the memories, wherein when the computer program is executed by the processor, the above-mentioned root sequence index RSI conflict processing method is implemented.
  • embodiments of the present disclosure also provide a storage medium for computer-readable storage.
  • the storage medium stores one or more programs, and the one or more programs can be executed by one or more processors. , to implement the steps of any root sequence index RSI conflict processing method provided in this disclosure.
  • Figure 1 is a schematic diagram of a false alarm caused by PRACH conflict
  • Figure 2 is a schematic structural diagram of an RSI conflict detection system provided by an embodiment of the present disclosure
  • Figure 3 is a schematic structural block diagram of a network management server provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic flow chart of a method for handling root sequence index RSI conflicts provided by an embodiment of the present disclosure
  • Figure 5 is a schematic flow chart of the sub-steps of RSI conflict detection for a serving cell provided by an embodiment of the present disclosure
  • Figure 6 is a schematic flow chart of sub-steps of determining an associated cell corresponding to a serving cell provided by an embodiment of the present disclosure
  • Figure 7 is a schematic flowchart of sub-steps for determining candidate cells corresponding to serving cells provided by an embodiment of the present disclosure
  • Figure 8 is a schematic flow chart of sub-steps of RSI conflict detection provided by an embodiment of the present disclosure.
  • Figure 9 is a schematic flowchart of another sub-step of RSI conflict detection for a serving cell provided by an embodiment of the present disclosure.
  • RSI conflict detection methods usually include RSI conflict detection methods based on neighbor cell lists and RSI detection methods based on X2/Xn port messages.
  • the RSI conflict detection method based on the neighbor cell list cannot be applied to the RSI conflict scenario of non-neighbor cells, and the RSI detection method based on the X2/Xn interface message cannot be applied to the scenario where the serving base station and other base stations have not established X2/Xn interfaces. Therefore, , these two RSI conflict detection methods cannot be applied to all RSI conflict detection scenarios, reducing the accuracy of root sequence index conflict detection.
  • Figure 1 is a schematic diagram of a false alarm caused by a PRACH conflict.
  • the PRACH time-frequency code resources of adjacent cells are configured the same, then the user terminal UE1 at the edge of the cell may use the same PRACH time-frequency code resource to initiate random access.
  • Msg1 random access request signaling
  • RAR Random Access Response
  • the UE access fails. This is a false alarm for UE1 calls caused by PRACH conflicts between cells.
  • Cell A will also detect the preamble sent by UE1. For CellA, this preamble is a false alarm.
  • a cell-level PRACH resource (including time, frequency, and code resources) needs to be allocated.
  • the time domain and frequency domain resources of PRACH are fixed, so it can be assigned to multiple cells by Configure different starting logical root sequence indexes (RSI) to ensure that the preamble sequence sets generated using this logical root sequence index between adjacent co-frequency cells do not conflict, thereby reducing mutual interference caused by adjacent cells using the same preamble sequence.
  • RSSI logical root sequence indexes
  • Msg2/Msg3 scheduling failures When there are a large number of preamble false alarm detections in the cell, it will cause a large number of Msg2/Msg3 scheduling failures and consume a large amount of public CCE (Control Channel Element, control channel unit). Insufficient CCE may cause normal UE (rrc connection set up complete, the wireless connection setting is completed) Msg5 scheduling fails, which ultimately affects the wireless connection rate of the cell.
  • FIG. 2 is a schematic structural diagram of an RSI conflict detection system provided by an embodiment of the present disclosure.
  • the RSI conflict detection system includes a network management server, a storage server, a base station and a user terminal.
  • the RSI conflict detection system can be applied to wireless networks such as LTE (Long Term Evolution, Long Term Evolution) network or NR (New Radio, New Radio Access Technology) network to detect cell occurrences in the wireless network. Cells with RSI conflict.
  • LTE Long Term Evolution, Long Term Evolution
  • NR New Radio, New Radio Access Technology
  • User terminals may include, but are not limited to, electronic devices such as smartphones, tablets, laptops, personal digital assistants, and wearable devices.
  • the base station may be an eNodeB (Evolved Node B) base station or a gNB (Next Generation NodeB) base station.
  • the network management server and storage server can be independent servers or server clusters.
  • the storage server is used to collect and store measurement report data (Measurement Report, MR) reported by all base stations in the entire network.
  • the user terminal is used to measure the downlink reference signal and report the obtained first measurement report data to the base station.
  • the base station is used to measure the uplink reference signal to obtain the second measurement report data; and collect the first measurement report data reported by the user terminal, and upload the first measurement report data and the second measurement report data to the storage server as the final measurement report data. .
  • the network management server is used to determine at least one suspicious cell, and determine each suspicious cell as a serving cell in turn; then, obtain a preset engineering parameter table and measurement report data corresponding to each serving cell from the storage server, and perform The cell performs RSI conflict detection and obtains the cells that have RSI conflicts with each serving cell; finally, the serving cells with RSI conflicts are optimized, and the optimization results are sent to the base station corresponding to the serving cell to make the optimization results effective.
  • FIG. 3 is a schematic structural block diagram of a network management server provided by an embodiment of the present disclosure.
  • the network management server 1000 may include a processor 1001 and a memory 1002, where the processor 1001 and the memory 1002 may be connected through a bus, such as an I2C (Inter-integrated Circuit) bus or any other applicable bus.
  • I2C Inter-integrated Circuit
  • Memory 1002 may include non-volatile storage media and internal memory.
  • Non-volatile storage media stores operating systems and computer programs.
  • the computer program includes program instructions that, when executed, can cause the processor 1001 to perform any method for handling root sequence index RSI conflicts.
  • the processor 1001 is used to provide computing and control capabilities to support the operation of the entire network management server 1000.
  • the processor 1001 is used to run a computer program stored in the memory 1002, and implement the following steps when executing the computer program: determine at least one suspicious cell, and determine each suspicious cell as a serving cell in turn.
  • a cell is a cell with an overlapping coverage area with an adjacent cell, or a suspicious cell is a cell with a coverage radius greater than the preset coverage radius threshold; according to the preset engineering parameter table and the measurement report data corresponding to each serving cell, each cell is Perform RSI conflict detection on each serving cell, and obtain the cells that have RSI conflicts with each serving cell.
  • the processor 1001 when determining at least one suspicious cell, can determine the suspicious cell according to the random access parameters of each cell, where the random access parameters include false detection probability and mobility rate, false detection probability, and mobility rate.
  • the detection probability is the ratio of the number of false detections of random access request signaling to the total number of random access request signaling.
  • the mobility rate is the ratio of the total number of random access request signaling to the total number of identification message signaling. Random access request Signaling and identification message signaling is the signaling when the user terminal initiates random access to the base station; or the suspicious cell is determined based on the time advance in the measurement report data of each cell.
  • the processor 1001 when determining suspicious cells based on the random access parameters of each cell, can implement at least one of the following: obtain the false detection probability of each cell, and set the false detection probability to be greater than or equal to the preset The cells with the false detection probability threshold are determined as suspicious cells; the migration rate of each cell is obtained, and the cells whose migration rate is less than or equal to the preset mobility rate threshold are determined as suspicious cells.
  • the measurement report data includes frequency points, physical layer cell identifiers, reference signal received power and timing advance; the processor 1001 implements the measurement report data corresponding to each serving cell according to the preset engineering parameter table, Perform RSI conflict detection on each serving cell, and when obtaining the cells that have RSI conflicts with each serving cell, it is possible to: determine the associated cell corresponding to each serving cell based on the frequency points and reference signal received power in the measurement report data, The associated cell is a cell that has an overlapping coverage area with the corresponding serving cell; according to the engineering parameter table and the frequency point and physical layer cell identifier of the associated cell, the first candidate cell set corresponding to each serving cell is determined; according to each serving cell time advance and the corresponding time advance of each candidate cell in the first candidate cell set, perform RSI conflict detection on each serving cell and each corresponding candidate cell, and obtain the RSI conflict with each serving cell community.
  • the processor 1001 may: determine the associated cell corresponding to each serving cell based on the frequency point in the measurement report data. At least one co-frequency cell of each serving cell; based on the measurement report data of each co-frequency cell of each serving cell in the same statistical period, determine the total number of measurement report data for each co-frequency cell that meets the first preset condition; The co-frequency cells whose total number is greater than the preset total number are determined as associated cells corresponding to each serving cell.
  • the engineering parameter table includes the latitude and longitude information of each cell; the processor 1001 determines the first candidate cell set corresponding to each serving cell according to the engineering parameter table and the frequency point and physical layer cell identifier of the associated cell. At this time, it can be achieved: determining at least one similar cell of all associated cells of each serving cell.
  • the similar cells are cells with the same frequency point and physical layer cell identity as the associated cell; according to the longitude and latitude information of each serving cell and the corresponding each The longitude and latitude information of similar cells is used to determine the distance between each serving cell and each corresponding similar cell; similar cells whose distance from each serving cell is less than the preset distance threshold are determined as candidate cells, which are determined by at least One candidate cell constitutes the first candidate cell set.
  • the processor 1001 implements, according to the timing advance of each serving cell and the timing advance of each candidate cell in the corresponding first candidate cell set, the processor 1001 determines the time advance of each serving cell and each corresponding candidate cell.
  • the cell performs RSI conflict detection and obtains the cell that has an RSI conflict with each serving cell, it can be achieved:
  • the time advance of each serving cell and the time advance of each candidate cell in the corresponding first candidate cell set Determine the coverage radius of each serving cell and the corresponding coverage radius of each candidate cell; determine the inter-station distance corresponding to each candidate cell based on the longitude and latitude information of each serving cell and the corresponding longitude and latitude information of each candidate cell, where , the inter-station distance is the distance between each candidate cell and the serving cell; according to the coverage radius of each serving cell and the coverage radius and inter-station distance of each candidate cell in the corresponding first candidate cell set, determine each A conflict cell set corresponding to the serving cell.
  • the conflict cell set includes cells that have RSI conflicts with the
  • the processor 1001 determines the conflicting cell corresponding to each serving cell based on the coverage radius of each serving cell and the coverage radius and inter-station distance of each candidate cell in the corresponding first candidate cell set.
  • the processor 1001 determines the conflicting cell corresponding to each serving cell based on the coverage radius of each serving cell and the coverage radius and inter-station distance of each candidate cell in the corresponding first candidate cell set.
  • the serving cell is a suspicious cell whose coverage radius is greater than the preset coverage radius threshold; the processor 1001 performs the measurement report data corresponding to each serving cell according to the preset engineering parameter table, and performs the measurement on each serving cell.
  • RSI conflict detection when obtaining the cell that has an RSI conflict with each serving cell, can be implemented: within the range of twice the coverage radius of each serving cell, and the time-frequency code resources are consistent with the time-frequency code resources of each serving cell.
  • the second candidate cell set corresponding to each serving cell For the same suspicious cells other than the serving cell, determine the second candidate cell set corresponding to each serving cell; according to the engineering parameter table, the measurement report data corresponding to each serving cell, and each of the corresponding second candidate cell sets Based on the measurement report data of the candidate cells, RSI conflict detection is performed on each serving cell and each corresponding candidate cell, and the cells that have RSI conflicts with each serving cell are obtained.
  • the processor 1001 performs RSI conflict detection on each serving cell according to the preset engineering parameter table and the measurement report data corresponding to each serving cell, and obtains the cells that have RSI conflicts with each serving cell. After that, it can also be realized: based on the twice coverage radius of each serving cell and the maximum inter-station distance corresponding to the cell where RSI conflict occurs in each serving cell, determine the reuse distance corresponding to each serving cell; based on the corresponding Reuse the reuse distance of each serving cell to reconfigure the RSI.
  • the processor 1001 can be a central processing unit (Central Processing Unit, CPU), which can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), or application specific integrated circuits (ASIC). , Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • FIG. 4 is a schematic flow chart of a method for handling root sequence index RSI conflicts provided by an embodiment of the present disclosure.
  • This root sequence index RSI conflict processing method can be applied to the network management server. By sequentially determining each suspicious cell as a serving cell, and then performing root sequence index conflict detection on the serving cell based on the measurement report data and the engineering parameter table, no need Detect all cells on the entire network, It is also applicable to all root sequence index conflict scenarios, improving the efficiency and accuracy of root sequence index conflict detection.
  • the root sequence index RSI conflict processing method includes step S10 and step S20.
  • Step S10 Determine at least one suspicious cell, and determine each suspicious cell as a serving cell in turn.
  • a suspicious cell is a cell that has an overlapping coverage area with an adjacent cell, or a suspicious cell has a coverage radius greater than a preset coverage radius threshold. community.
  • the cell will detect the random access preamble (Preamble) sent by the user terminal.
  • Preamble random access preamble
  • the power of the user terminal sending the Preamble is directly proportional to the distance from the user terminal to the cell.
  • RSI conflicts will occur.
  • a user terminal uses exactly the same PRACH time-frequency code resource to initiate random access in the serving cell, it may generate false call alarms for other neighboring cells. The smaller the distance between the user terminal and the neighboring cells, the smaller the distance between the user terminal and the user terminal. The probability is higher.
  • the coverage radius of a cell refers to the maximum coverage radius.
  • determining at least one suspicious cell may include: determining the suspicious cell according to random access parameters of each cell.
  • Random access parameters include false detection probability and migration rate.
  • False detection probability is the ratio of the number of false detections of random access request signaling (Random Access Request) to the total number of random access request signaling.
  • the migration rate is the ratio of random access request signaling.
  • Random access request signaling and identification message signaling are the signaling when the user terminal initiates random access to the base station.
  • the base station can collect interactive signaling when the user terminal initiates random access to the base station, and report the interactive signaling to the network management server.
  • the network management server can determine the random access parameters of the cell based on the interactive signaling.
  • the suspicious cell can be determined first through the random access parameters of the cell, and then RSI conflict detection is performed on the suspicious cell.
  • the random access request signaling that is, the signaling for sending the random access preamble (Preamble)
  • the identification message signaling can be expressed as Msg3.
  • the probability of false detection can be expressed as:
  • Msg1_Fail is the number of false detections of Msg1
  • Msg1_Detect is the total number of Msg1 detected by the base station.
  • the migration rate can be expressed as:
  • Msg3_Detect is the total number of Msg3 detected by the base station.
  • determining suspicious cells based on the random access parameters of each cell includes at least one of the following: obtaining the false detection probability of each cell, and classifying the cells whose false detection probability is greater than or equal to the preset false detection probability threshold. , determined as a suspicious cell; obtain the migration rate of each cell, and determine the cell whose migration rate is less than or equal to the preset migration rate threshold as a suspicious cell.
  • determining suspicious cells based on the random access parameters of each cell may include: obtaining the false detection probability of each cell, and determining cells whose false detection probability is greater than or equal to a preset false detection probability threshold as suspicious. community.
  • the cell when the false detection probability of a certain cell is greater than or equal to a preset false detection probability threshold, the cell may be determined as a suspicious cell.
  • the cell can be added to the suspicious cell list RSIDetectList.
  • the preset false detection probability threshold can be set according to the actual situation, and the specific value is not limited here.
  • determining the suspicious cells based on the random access parameters of each cell may also include: obtaining the mobility rate of each cell, and determining cells whose mobility rate is less than or equal to a preset mobility rate threshold as suspicious cells. .
  • the cell when the mobility rate of a certain cell is greater than or equal to a preset mobility rate threshold, the cell may be determined as a suspicious cell.
  • the cell can be added to the suspicious cell list RSIDetectList.
  • the preset migration rate threshold can be set according to the actual situation, and the specific value is not limited here.
  • determining at least one suspicious cell may include: determining the suspicious cell based on the time advance in the measurement report data of each cell.
  • the suspicious cell can first be determined based on the timing advance (Timing Advance, TA) in the measurement report data of each cell, and then the suspicious cell can be identified.
  • TA Timing Advance
  • RSI conflict detection is performed on suspicious cells.
  • the storage server stores measurement report data corresponding to each cell, and the base station corresponding to each cell can report the collected measurement report data to the storage server.
  • the measurement report data includes parameters such as frequency point, physical layer cell identifier (Physical Cell Identifier, PCI), reference signal received power (Reference Singnal Received Power, RSRP), and timing advance.
  • the measurement report data corresponding to each cell includes parameters such as frequency, PCI, RSRP, and TA of the cell, and may also include parameters such as frequency, PCI, RSRP, and TA of neighboring cells of the cell.
  • the frequency point refers to the number of the fixed frequency.
  • the coverage radius Rs of each cell can be calculated based on the time advance in the measurement report data of each cell; then cells with a coverage radius greater than a preset coverage radius threshold are determined as suspicious cells.
  • the preset coverage radius threshold can be set according to the actual situation, and the specific value is not limited here.
  • the calculation process of the coverage radius is not limited here.
  • the preset coverage radius threshold is 2Km
  • cells with a coverage radius Rs greater than or equal to 2Km can be determined as suspicious cells; and the determined suspicious cells are added to the suspicious cell list RSIDetectList.
  • each suspicious cell may be determined as a serving cell in turn, where a suspicious cell is a cell that has an overlapping coverage area with an adjacent cell.
  • each suspicious cell may be determined as a serving cell in turn, where a suspicious cell is a cell whose coverage radius is greater than a preset coverage radius threshold.
  • the users in Cell B Terminals using the same PRACH time-frequency code resource to initiate random access may cause false call alarms in Cell A. Since the transmit power of the UE in Cell A is small, user terminals in Cell A use the same PRACH time-frequency code. Resource-initiated random access will not cause false call alarms in Cell B.
  • Using a cell with a coverage radius greater than the preset coverage radius threshold as a serving cell for RSI conflict detection can be applicable to scenarios where RSI conflict detection is performed on cells with high power or high locations.
  • Step S20 Perform RSI conflict detection on each serving cell according to the preset engineering parameter table and the measurement report data corresponding to each serving cell, and obtain the cells that have RSI conflicts with each serving cell.
  • a serving cell is a suspicious cell that has an overlapping coverage area with an adjacent cell as an example, and RSI conflict detection for each serving cell is described in detail.
  • the associated cell of each serving cell can be determined by measuring the frequency and RSRP in the report data; then based on the engineering parameter table, candidate cells that may have RSI conflicts with the serving cell are searched based on the frequency and PCI of the associated cell. ; Finally, perform RSI conflict detection on each serving cell and each corresponding candidate cell, and obtain the cells that have RSI conflicts with each serving cell.
  • the engineering parameter table can include the cell's Global Cell Identity (CGI), frequency, PCI, latitude and longitude information, PRACH time-frequency code resources, etc.
  • CGI Global Cell Identity
  • PCI Global Cell Identity
  • latitude and longitude information e.g., a cell's Global Cell Identity
  • PRACH time-frequency code resources e.g., a cell's Global Cell Identity (CGI), frequency, PCI, latitude and longitude information, PRACH time-frequency code resources, etc.
  • the engineering parameter table is a predefined engineering parameter of the base station, which can include parameters such as the longitude and latitude of the base station antenna position, height, antenna directivity, gain, azimuth angle, downtilt angle, etc.
  • a cell refers to the range covered by the wireless network signal of the base station. Therefore, the engineering parameter table of the base station can be used as the engineering parameter table of the cell corresponding to the base station, and the engineering parameter table can include engineering parameters of the entire network cell.
  • the cells that have RSI conflicts with each serving cell are obtained, and the RSI conflict detection based on the neighbor cell list is solved.
  • the method cannot be applied to RSI conflict scenarios in non-neighboring cells and the RSI detection method based on X2/Xn port messages cannot be applied to scenarios where the serving base station and other base stations have not established X2/Xn interfaces. This improves the accuracy of root sequence index conflict detection. sex.
  • Figure 5 is a schematic flowchart of sub-steps of RSI conflict detection for each serving cell provided by an embodiment of the present disclosure, which may include steps S201 to S203.
  • Step S201 Determine the associated cell corresponding to each serving cell based on the frequency point and reference signal received power in the measurement report data.
  • the associated cell is a cell that has an overlapping coverage area with the corresponding serving cell.
  • the measurement report data corresponding to each serving cell may also include the frequency, PCI, RSRP, and TA of the neighboring cells of the serving cell. and other parameters. Therefore, the frequency points and RSRP in the measurement report data of each serving cell can be used to calculate the co-frequency cells in the overlapping coverage area stored in each serving cell, and will meet the preset first preset condition.
  • the co-frequency cell is determined as the associated cell.
  • FIG. 6 is a schematic flowchart of sub-steps for determining an associated cell corresponding to each serving cell provided by an embodiment of the present disclosure, which may include step S2011 and step S2013.
  • Step S2011 Determine at least one co-frequency cell of each serving cell based on the frequency points in the measurement report data.
  • a co-frequency cell refers to a cell whose frequency point is the same as that of the serving cell. For example, if the frequency point of the serving cell Cell 0 is f0, the neighboring cell with the frequency point f0 can be determined as the same-frequency cell of the serving cell Cell 0.
  • Step S2012 Based on the measurement report data of each co-frequency cell of each serving cell in the same statistical period, determine the total number of measurement report data of each co-frequency cell that satisfies the first preset condition.
  • the first preset condition includes: the reference signal received power of the serving cell is greater than or equal to the preset first reference signal received power threshold, and the difference between the reference signal received power of the serving cell and the reference signal received power of the co-frequency cell Less than or equal to the preset second reference signal receiving power threshold.
  • the preset first reference signal receiving power threshold and the preset second reference signal receiving power threshold can be determined according to The actual situation is set, and the specific value is not limited here.
  • the reference signal received power RSRP is used to represent the wireless signal strength.
  • the total number of measurement report data of each co-frequency cell that satisfies the first preset condition may be determined based on the measurement report data of each serving cell and each corresponding co-frequency cell within the same statistical period.
  • the first reference signal reception power threshold may be -120dBm
  • the second reference signal reception power threshold may be 9dBm.
  • the measurement report data in which the RSRP of the serving cell is less than or equal to -120dBm and the difference between the RSRP of the serving cell and the RSRP of the same-frequency cell is less than or equal to 9dBm can be determined as the measurement of the same-frequency cell that meets the first preset condition Report data, as shown in Table 1.
  • the total number of MRs that meet the first preset condition in the same-frequency cell Cell 10 is 176
  • the total number of MRs that meet the first preset condition in the same-frequency cell Cell 216 is 23.
  • Step S2013 Determine the co-frequency cells whose total number is greater than the preset total number as the associated cells corresponding to each serving cell.
  • the preset total number can be set according to the actual situation, and the specific value is not limited here.
  • co-frequency cells whose total number is greater than 100 can be determined as associated cells corresponding to each serving cell.
  • the associated cells corresponding to the serving cell Cell 0 are Cell 10 and Cell 29.
  • the total number can be greater than the preset total number.
  • the co-frequency cell is determined as the associated cell corresponding to each serving cell, and the associated cell that has an overlapping coverage area with the serving cell is determined based on the frequency point and reference signal received power.
  • Step S202 Determine the first candidate cell set corresponding to each serving cell according to the engineering parameter table and the frequency point and physical layer cell identifier of the associated cell.
  • Figure 7 is a schematic flowchart of sub-steps for determining candidate cells corresponding to each serving cell provided by an embodiment of the present disclosure, which may include step S2021 and step S2023.
  • Step S2021 Determine at least one similar cell among all associated cells of each serving cell.
  • the similar cell is a cell that has the same frequency point and physical layer cell identity as the associated cell.
  • the frequency point and PCI of the associated cell of the serving cell can be used, and the serving cell is used as the starting point, and the entire network is searched for the frequency point and physical layer cell identifier of the associated cell that are the same and are close to each other. n cells, candidate cells that may have RSI conflicts with the serving cell are obtained.
  • a cell with the same frequency point and physical layer cell identity as the associated cell may be determined as a similar cell to the serving cell. For example, for the serving cell Cell 0, cells that have the same frequency point and PCI as the associated cell Cell 10 and cells that have the same frequency point and PCI as the associated cell Cell 29 can be determined as similar cells to the serving cell Cell 0. In addition, the associated cell Cell 10 and the associated cell Cell 29 can also be determined as similar cells to the serving cell Cell 0 .
  • Step S2022 Determine the distance between each serving cell and each corresponding similar cell based on the longitude and latitude information of each serving cell and the corresponding longitude and latitude information of each similar cell.
  • the engineering parameter table includes the longitude and latitude information of each cell. Therefore, the longitude and latitude information of each serving cell and the corresponding longitude and latitude information of each similar cell can be obtained by querying the engineering parameter table.
  • the latitude and longitude information may include location coordinates composed of longitude and latitude.
  • the distance between each serving cell and each similar cell can be calculated based on the longitude and latitude information of each serving cell and the corresponding longitude and latitude information of each similar cell.
  • the specific calculation process is not limited here.
  • the distance between the serving cell Cell 0 and each similar cell can be calculated based on the position coordinates of the serving cell Cell 0 and the position coordinates of each similar cell of the serving cell Cell 0.
  • Step S2023 Determine similar cells whose distance from each serving cell is less than a preset distance threshold as candidate cells, and form a first candidate cell set from at least one determined candidate cell.
  • the preset distance threshold can be set according to the actual situation, and the specific value is not limited here.
  • the preset distance threshold may be 10km.
  • the entire network searches for the frequency point and physical layer cell identity of the associated cell, and is the same as the serving cell Cell For cells whose distance from 0 is less than the preset distance threshold, the candidate cell corresponding to the serving cell Cell 0 is obtained.
  • the serving cell Cell 0 when the entire network search range is too large and the search time is too long, you can start from the serving cell Cell 0 and search for cells with the same frequency and physical layer cell identity as the associated cell within a 10km range to obtain services.
  • a first candidate cell set is generated from similar cells whose distance from serving cell Cell 0 is less than 10km, such as ⁇ cell 17, cell 56, cell 128 ⁇ .
  • candidate cells By determining candidate cells based on frequency points, physical layer cell identifiers, and latitude and longitude information, candidate cells that have overlapping coverage areas with the serving cell within the preset distance threshold range can be obtained.
  • Step S203 Perform RSI conflict detection on each serving cell and each corresponding candidate cell based on the timing advance of each serving cell and the corresponding timing advance of each candidate cell in the first candidate cell set, and obtain Cells where RSI conflicts occur in each serving cell.
  • FIG. 8 is a schematic flowchart of sub-steps for RSI conflict detection provided by an embodiment of the present disclosure, which may include step S2031 and step S2033.
  • Step S2031 Determine the coverage radius of each serving cell and the corresponding coverage radius of each candidate cell based on the timing advance of each serving cell and the corresponding timing advance of each candidate cell in the first candidate cell set.
  • the coverage radius of each serving cell and the corresponding coverage of each candidate cell may be determined based on the timing advance of each serving cell and the timing advance of each candidate cell in the corresponding first candidate cell set. radius.
  • the coverage radius Rs of the serving cell Cell 0 can be calculated based on the time advance TA of the serving cell Cell 0 and the time advance TA of each candidate cell in the corresponding first candidate cell set.
  • the corresponding coverage radius Rc of each candidate cell is not limited here.
  • Step S2032 Determine each candidate based on the longitude and latitude information of each serving cell and the corresponding longitude and latitude information of each candidate cell.
  • the base stations of the two cells can be used as the center point, and the distance between the two base stations can be determined as the inter-station distance between the two cells.
  • the inter-station distance corresponding to each candidate cell can be calculated based on the location coordinates of each serving cell and the corresponding location coordinates of each candidate cell.
  • the distance between stations can be expressed as L, and the specific calculation process is not limited here.
  • Step S2033 Determine a conflict cell set corresponding to each serving cell based on the coverage radius of each serving cell and the coverage radius and inter-station distance of each candidate cell in the corresponding first candidate cell set.
  • the conflict cell set includes The cell where RSI conflict occurs in the corresponding serving cell.
  • determining the conflicting cell set corresponding to each serving cell based on the coverage radius of each serving cell and the coverage radius and inter-station distance of each candidate cell in the corresponding first candidate cell set may include: Determine the target coverage radius of each candidate cell; add the candidate cells that meet the second preset condition to the conflicting cell set of the corresponding serving cell.
  • the target coverage radius is the maximum value among the coverage radii of each candidate cell and the corresponding serving cell.
  • the second preset condition is that the time-frequency code resources of the candidate cell are the same as those of the serving cell, and the inter-station distance of the candidate cell is less than twice the target coverage radius.
  • the target coverage radius can be expressed as max ⁇ Rs, Rc ⁇ , and the inter-station distance of the candidate cell is less than twice the target coverage radius can be expressed as L ⁇ max ⁇ 2Rs, 2Rc ⁇ .
  • the coverage radius of the serving cell Cell 0 and the corresponding first candidate cell set ⁇ cell 17, cell 56, cell 128 ⁇ is shown in Table 2.
  • the serving cell Cell 0 is combined with each candidate cell in the first candidate cell set, and the candidate cell pairs to obtain the serving cell Cell 0 are ⁇ (Cell 0, cell 17), (Cell 0, cell 56), ( Cell 0, cell 128) ⁇ .
  • the inter-station distance corresponding to each candidate cell is shown in Table 3.
  • the obtained conflicting cell set corresponding to the serving cell Cell 0 is ⁇ (Cell 0, cell 17), (Cell 0, cell 128) ⁇ .
  • each serving cell By determining the coverage radius of each serving cell and the corresponding coverage radius of each candidate cell, and determining the inter-station distance corresponding to each candidate cell, it is possible to realize that the time-frequency code resources of the station are the same as those of the serving cell.
  • the candidate cells whose distance is less than twice the target coverage radius are determined to determine the set of conflicting cells corresponding to each serving cell, which improves the accuracy of RSI conflict detection.
  • the serving cell may also be a suspicious cell with a coverage radius greater than a preset coverage radius threshold.
  • a serving cell is taken as a suspicious cell with a coverage radius greater than a preset coverage radius threshold as an example, and RSI conflict detection for each serving cell is described in detail.
  • Figure 9 is a schematic flowchart of another sub-step of RSI conflict detection for each serving cell provided by an embodiment of the present disclosure, which may include step S204 and step S205.
  • Step S204 Based on other suspicious cells other than the serving cell that are within twice the coverage radius of each serving cell and whose time-frequency code resources are the same as those of each serving cell, determine the corresponding number of each serving cell. The second set of candidate cells.
  • each serving cell may be determined based on other suspicious cells other than the serving cell that are within twice the coverage radius of each serving cell and whose time-frequency code resources are the same as those of each serving cell.
  • the candidate cells of the serving cell consist of at least one determined candidate cell and form a second set of candidate cells corresponding to each serving cell.
  • the coverage radius Rs of each serving cell can be calculated based on the time advance TA of each serving cell.
  • Time-frequency code resources can be obtained by querying the project parameter table.
  • serving cell Cell 1 For serving cell Cell 1, you can use serving cell Cell 1 as the starting point, search the entire network within twice the coverage radius, and identify other suspicious cells with the same time-frequency code resources as serving cell Cell 1 as candidate cells, forming The second candidate cell set, such as ⁇ cell 11, cell 67, cell 215 ⁇ .
  • Other suspicious cells refer to cells that have overlapping coverage areas with adjacent cells, or cells whose coverage radius is greater than the preset coverage radius threshold, that is, cells in the suspicious cell list RSIDetectList.
  • the way of determining the second candidate cell set is different from the way of determining the first candidate cell set.
  • the third number corresponding to each serving cell is determined based on other suspicious cells other than the serving cell that are within twice the coverage radius of each serving cell and whose time-frequency code resources are the same as those of each serving cell.
  • the two candidate cell sets can use a small number of cells as candidate cells without using all cells as candidate cells for the serving cell, which improves the efficiency of subsequent RSI conflict detection.
  • Step S205 Perform RSI on each serving cell and each corresponding candidate cell according to the engineering parameter table, the measurement report data corresponding to each serving cell, and the measurement report data of each candidate cell in the corresponding second candidate cell set.
  • Conflict detection obtain the cells that have RSI conflicts with each serving cell.
  • the engineering parameter table includes the longitude and latitude information of each serving cell and the corresponding longitude and latitude information of each candidate cell.
  • the measurement report data corresponding to the serving cell includes the timing advance of the serving cell; the measurement report data of the candidate cell includes the timing advance of the candidate cell.
  • the measurement report data corresponding to each serving cell, and the measurement report data of each candidate cell in the corresponding second candidate cell set, each serving cell and each corresponding candidate cell are The cell performs RSI conflict detection and obtains the cells that have RSI conflicts with each serving cell. This may include: based on the time advance of each serving cell and the corresponding second candidate cell.
  • the time advance of each candidate cell in the zone set is used to determine the coverage radius of each serving cell and the corresponding coverage radius of each candidate cell; according to the longitude and latitude information of each serving cell and the corresponding longitude and latitude information of each candidate cell , determine the inter-station distance corresponding to each candidate cell, where the inter-station distance is the distance between each candidate cell and the serving cell; according to the coverage radius of each serving cell and the corresponding second candidate cell set, each The coverage radius and inter-station distance of the candidate cells determine the set of conflicting cells corresponding to each serving cell.
  • the set of conflicting cells includes cells that have RSI conflicts with the corresponding serving cells.
  • determining the conflicting cell set corresponding to each serving cell based on the coverage radius of each serving cell and the coverage radius and inter-station distance of each candidate cell in the corresponding second candidate cell set may include: determining each The target coverage radius of each candidate cell is the maximum value of the coverage radius of the candidate cell and the coverage radius of the corresponding serving cell; the candidate cell that meets the third preset condition is added to the conflicting cell of the corresponding serving cell.
  • the third preset condition is that the inter-station distance of the candidate cell is less than twice the target coverage radius.
  • the target coverage radius can be expressed as max ⁇ Rs, Rc ⁇ , and the third preset condition is L ⁇ max ⁇ 2Rs, 2Rc ⁇ .
  • the coverage radius of the serving cell Cell 1 and the corresponding second candidate cell set ⁇ cell 11, cell 67, cell 215 ⁇ is shown in Table 4.
  • the serving cell Cell 1 is combined with each candidate cell in the second candidate cell set, and the candidate cell pairs for the serving cell Cell 1 are ⁇ (Cell 1, cell 11), (Cell 1, cell 67), ( Cell 1, cell 215) ⁇ .
  • the inter-station distance corresponding to each candidate cell is shown in Table 5.
  • the candidate cell pair (Cell 1, cell 11) can be determined as the target cell pair, that is, the candidate cell cell 11 is the cell that has an RSI conflict with the serving cell Cell 1.
  • the obtained conflicting cell set corresponding to the serving cell Cell 1 is ⁇ (Cell 1, cell 11), (Cell 1, cell 215) ⁇ .
  • the fourth preset condition is that the candidate cell is a suspicious cell other than the serving cell whose time-frequency code resources are the same as those of each serving cell.
  • RSI optimization can also be performed on each serving cell, that is, the RSI related to each serving cell can be reconfigured.
  • RSI conflict detection is performed on each serving cell according to the preset engineering parameter table and the measurement report data corresponding to each serving cell. After obtaining the cells that have RSI conflicts with each serving cell, it may also include: : Determine the reuse distance corresponding to each serving cell based on the twice coverage radius of each serving cell and the maximum inter-station distance corresponding to the cell where RSI conflict occurs in each serving cell; based on the reuse distance corresponding to each serving cell , the RSI of each serving cell is reconfigured so that cells that have RSI conflicts with each serving cell cannot reuse the reconfigured RSI within the reuse distance.
  • the maximum inter-station distance refers to the maximum inter-station distance corresponding to all cells that have RSI conflicts with each serving cell in the set of conflicting cells corresponding to each serving cell.
  • the reuse distance refers to the minimum distance between cells using the same carrier frequency that is allowed to use the same carrier frequency under the conditions of satisfying mobile communication quality, that is, the minimum safe distance for co-frequency reuse.
  • the largest of twice the coverage radius of each serving cell and the maximum inter-station distance corresponding to the cell where RSI conflict occurs in each serving cell can be determined as the reuse distance corresponding to each serving cell.
  • the reuse distance can be expressed as max ⁇ 2Rs, L max ⁇ , and 2Rs is twice the coverage radius.
  • the twice coverage radius of each serving cell and the maximum inter-station distance corresponding to the cell where RSI conflict occurs in each serving cell are shown in Table 6.
  • the reuse distance corresponding to Cell 0 is 4km; for the serving cell Cell 1, it can be determined that the reuse distance corresponding to Cell 1 is 10km.
  • the RSI of each serving cell can be reconfigured based on the reuse distance corresponding to each serving cell, so that RSI conflicts with each serving cell occur.
  • the cell cannot reuse the reconfigured RSI within the reuse distance.
  • the specific RSI configuration process is not limited here.
  • the RSI of the serving cell Cell 0 is reconfigured so that the cells Cell 17 and Cell 128 that have RSI conflicts with the serving cell Cell 0 cannot be reused within the reuse distance of 4km. Use the RSI obtained from reconfiguration.
  • the RSI of the serving cell Cell 1 is reconfigured so that the cells Cell 11 and Cell 215 that have RSI conflicts with the serving cell Cell 1 cannot be reused within the reuse distance of 10km. Reuse the RSI obtained from reconfiguration.
  • each service Reconfiguring the RSI of the cells can effectively avoid RSI conflicts between cells, thereby reducing the probability of false alarms in the cells and improving the wireless connection rate of the cells.
  • the root sequence index RSI conflict processing method, server and storage medium determine at least one suspicious cell and determine each suspicious cell as a serving cell in turn. Subsequently, overlapping coverage areas with adjacent cells can be determined RSI conflict detection is performed on cells or cells whose coverage radius is greater than the preset coverage radius threshold. There is no need to detect cells in the entire network, which improves the efficiency of RSI conflict detection; it is determined based on frequency points, physical layer cell identifiers, and longitude and latitude information.
  • Candidate cells can be obtained that have overlapping coverage areas with the serving cells within the preset distance threshold; by determining the coverage radius of each serving cell and the corresponding coverage radius of each candidate cell, and determining each candidate cell
  • the corresponding inter-station distance can determine the conflicting cell set corresponding to each serving cell based on the candidate cells whose time-frequency code resources are the same as those of the serving cell and whose inter-station distance is less than twice the target coverage radius, thus improving the RSI.
  • the accuracy of conflict detection by determining each suspicious cell except the serving cell within twice the coverage radius of each serving cell and with the same time-frequency code resources as the time-frequency code resources of each serving cell.
  • the second set of candidate cells corresponding to each serving cell can use a small number of cells as candidate cells, without the need to use all cells as candidate cells of the serving cell, which improves the efficiency of subsequent RSI conflict detection; times the coverage radius and the maximum inter-station distance corresponding to the cell where RSI conflict occurs in each serving cell, determine the reuse distance corresponding to each serving cell, and reconfigure the RSI of each serving cell based on the reuse distance.
  • the real correlation effect avoids RSI conflicts between cells, thereby reducing the probability of false alarms in the cells and improving the wireless connection rate of the cells.
  • Embodiments of the present disclosure also provide a storage medium for computer-readable storage.
  • the storage medium stores one or more programs.
  • the one or more programs can be executed by one or more processors to implement the embodiments of the present disclosure.
  • the instructions provide steps for handling any root sequence index RSI conflict.
  • the program is loaded by the processor and can perform the following steps: determine at least one suspicious cell, and determine each suspicious cell as a serving cell in turn.
  • a suspicious cell is a cell that has an overlapping coverage area with an adjacent cell, or a suspicious cell. It is a cell whose coverage radius is greater than the preset coverage radius threshold; based on the preset engineering parameter table and the measurement report data corresponding to each serving cell, RSI conflict detection is performed on each serving cell to obtain the RSI conflict with each serving cell. community.
  • the storage medium may be an internal storage unit of the network management server in the aforementioned embodiment, such as a hard disk or memory of the network management server.
  • the storage medium can also be an external storage device of the network management server, such as a plug-in hard drive, smart memory card (Smart Media Card, SMC), secure digital (SD) card, flash memory card (Flash) equipped on the network management server. Card) etc.
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes volatile and nonvolatile media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. removable, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, Digital Versatile Disk (DVD) or other optical disk storage, magnetic cassettes, tapes, disk storage or other other magnetic storage device, or any other medium that can be used to store the desired information and can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media .
  • Embodiments of the present disclosure provide a root sequence index RSI conflict processing method, server and storage medium.
  • RSI conflict detection is performed on cells with overlapping coverage areas or cells with a coverage radius greater than the preset coverage radius threshold. There is no need to detect cells in the entire network, which improves the efficiency of RSI conflict detection; by using the preset engineering parameter table and each Measurement report data corresponding to each serving cell is used to detect RSI conflicts for each serving cell, and the cells that have RSI conflicts with each serving cell are obtained. This can be applied to all root sequence index conflict scenarios and improves the accuracy of root sequence index conflict detection. sex.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种根序列索引RSI冲突的处理方法、服务器和存储介质,属于通信技术领域。该方法包括:确定至少一个可疑小区,并依次将每个可疑小区确定为服务小区,可疑小区为与相邻小区存在交叠覆盖区域的小区,或可疑小区为覆盖半径大于预设的覆盖半径阈值的小区;以及根据预设的工程参数表与每个服务小区对应的测量报告数据,对每个服务小区进行RSI冲突检测,获得每个服务小区的冲突小区集合。

Description

根序列索引RSI冲突的处理方法、服务器和存储介质
相关申请的交叉引用
本公开要求享有2022年05月16日提交的名称为“根序列索引RSI冲突的处理方法、服务器和存储介质”的中国专利申请CN202210529037.8的优先权,其全部内容通过引用并入本公开中。
技术领域
本公开涉及通信技术领域,尤其涉及一种根序列索引RSI冲突的处理方法、服务器和存储介质。
背景技术
在无线网络中,当多个地理位置相邻小区使用相同的PRACH(Physical Random Access Channel)时域、频域、码域资源时,会产生根序列索引(Root Sequence Index,RSI)冲突,当用户终端使用相同的PRACH时频码资源在当前小区发起随机接入时,会导致对其他相邻小区产生呼叫虚警,影响其他相邻小区的无线接通率。因此,如何及时检测小区是否出现RSI冲突检测尤为重要。
发明内容
本公开实施例提供了一种根序列索引RSI冲突的处理方法、服务器和存储介质。
第一方面,本公开实施例提供了一种根序列索引RSI冲突的处理方法,包括:确定至少一个可疑小区,并依次将每个所述可疑小区确定为服务小区,所述可疑小区为与相邻小区存在交叠覆盖区域的小区,或所述可疑小区为覆盖半径大于预设的覆盖半径阈值的小区;根据预设的工程参数表与每个所述服务小区对应的测量报告数据,对每个所述服务小区进行RSI冲突检测,获得与每个所述服务小区发生RSI冲突的小区。
第二方面,本公开实施例还提供了一种服务器,所述服务器包括处理器、存储器、存储在所述存储器上并可被所述处理器执行的计算机程序以及用于实现所述处理器和所述存储器之间的连接通信的数据总线,其中,所述计算机程序被所述处理器执行时实现如上述的根序列索引RSI冲突的处理方法。
第三方面,本公开实施例还提供一种存储介质,用于计算机可读存储,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如本公开说明书提供的任一项根序列索引RSI冲突的处理方法的步骤。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
为了更清楚地说明本公开实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是PRACH冲突导致呼叫虚警的示意图;
图2是本公开实施例提供的一种RSI冲突检测系统的结构示意图;
图3是本公开实施例提供的一种网络管理服务器的结构示意性框图;
图4是本公开实施例提供的一种根序列索引RSI冲突的处理方法的示意性流程图;
图5是本公开实施例提供的一种对服务小区进行RSI冲突检测的子步骤的示意性流程图;
图6是本公开实施例提供的一种确定服务小区对应的关联小区的子步骤的示意性流程图;
图7是本公开实施例提供的一种确定服务小区对应的候选小区的子步骤的示意性流程图;
图8是本公开实施例提供的一种进行RSI冲突检测的子步骤的示意性流程图;以及
图9是本公开实施例提供的另一种对服务小区进行RSI冲突检测的子步骤的示意性流程图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
附图中所示的流程图仅是示例说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解、组合或部分合并,因此实际执行的顺序有可能根据实际情况改变。
应当理解,在此本公开说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本公开。如在本公开说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
相关的RSI冲突检测方式通常包括基于邻区列表的RSI冲突检测方式和基于X2/Xn口消息的RSI检测方式。其中,基于邻区列表的RSI冲突检测方式无法适用于非邻区的RSI冲突场景,基于X2/Xn口消息的RSI检测方式无法应用于服务基站与其它基站未建立X2/Xn接口的场景,因此,这两种RSI冲突检测方式不能适用于所有RSI冲突检测的场景,降低了根序列索引冲突检测的准确性。另外,由于某个小区中的用户终端数量较少或用户终端的位置分布等各种原因,地理位置相邻小区即使使用了相同的PRACH时频码资源,也并不会导致另一个小区产生呼叫虚警,这种情况并不需要进行RSI冲突检测和优化;而这两种RSI冲突检测方式需要对全网中的小区进行检测,因此降低了RSI冲突检测的效率。
因此,如何提高根序列索引冲突检测的效率与准确性成为亟需解决的问题。
请参见图1,图1是PRACH冲突导致呼叫虚警的示意图。如图1所示,如果相邻小区的PRACH时频码资源的配置相同,那么小区边缘的用户终端UE1就有可能使用相同的PRACH时频码资源发起随机接入,结果导致相邻的两个Cell A和Cell B都接收到了该UE1发送的随机接入请求信令(Random Access Request,表示为Msg1),并且都发送随机接入响应(Random Access Response,RAR)给该UE1,Cell A和Cell B发送的RAR互相干扰,如果UE1解调出RAR就会继续发送标识消息信令(Identification Message,表示为Msg3),否则UE接入失败,这就是小区间的PRACH冲突导致的UE1呼叫虚警。UE1向Cell B发起随机接入时,Cell A也会检测到UE1发送的前导。对于CellA,该前导为虚警。
对于LTE或NR网络中的每个小区都需要分配一个小区级的PRACH资源(包括时、频、码资源),通常PRACH的时域和频域资源都是固定的,因此可以通过给多个小区配置不同起始逻辑根序列索引(RSI),来保证相邻同频小区间使用该逻辑根序列索引生成的前导序列集合不冲突,从而降低相邻小区使用相同的前导序列而产生的相互干扰。当小区中存在大量的preamble虚警检测时,会引起大量的Msg2/Msg3调度失败,消耗了大量的公共CCE(Control Channel Element,控制信道单元),CCE不足可能会导致正常UE的(rrc connection set up complete,无线连接设置完成)Msg5调度失败,最终影响小区无线接通率。
请参阅图2,图2是本公开实施例提供的一种RSI冲突检测系统的结构示意图。如图2所示,RSI冲突检测系统包括网络管理服务器、存储服务器、基站以及用户终端。
在本公开实施例中,该RSI冲突检测系统可以应用于无线网络如LTE(Long Term Evolution,长期演进)网络或NR(New Radio,新无线接入技术)网络中,实现检测无线网络中小区发生RSI冲突的小区。
用户终端可以包括但不限于是智能手机、平板电脑、笔记本电脑、个人数字助理和穿戴式设备等电子设备。基站可以是eNodeB(Evolved Node B)基站,也可以是gNB(Next Generation NodeB)基站。网络管理服务器、存储服务器可以为独立的服务器,也可以为服务器集群。
需要说明的是,存储服务器用于采集和存储全网所有基站上报的测量报告数据(Measurement Report,MR)。用户终端用于测量下行参考信号,并将得到的第一测量报告数据上报给基站。基站用于进行上行参考信号测量,得到第二测量报告数据;并收集用户终端上报的第一测量报告数据,将第一测量报告数据与第二测量报告数据作为最终的测量报告数据上传至存储服务器。网络管理服务器用于确定至少一个可疑小区,并依次将每个可疑小区确定为服务小区;然后,从存储服务器获取预设的工程参数表与每个服务小区对应的测量报告数据,对每个服务小区进行RSI冲突检测,获得与每个服务小区发生RSI冲突的小区;最后,对发生RSI冲突的服务小区进行优化,将优化结果下发给服务小区对应的基站以使优化结果生效。
请参阅图3,图3是本公开实施例提供的一种网络管理服务器的结构示意性框图。如图3所示,网络管理服务器1000可以包括处理器1001和存储器1002,其中,处理器1001以及存储器1002可以通过总线连接,该总线比如为I2C(Inter-integrated Circuit)总线等任意适用的总线。
存储器1002可以包括非易失性存储介质和内存储器。非易失性存储介质可存储操作系统和计算机程序。该计算机程序包括程序指令,该程序指令被执行时,可使得处理器1001执行任意一种根序列索引RSI冲突的处理方法。
处理器1001用于提供计算和控制能力,支撑整个网络管理服务器1000的运行。
在一些实施例中,处理器1001用于运行存储在存储器1002中的计算机程序,并在执行计算机程序时实现如下步骤:确定至少一个可疑小区,并依次将每个可疑小区确定为服务小区,可疑小区为与相邻小区存在交叠覆盖区域的小区,或可疑小区为覆盖半径大于预设的覆盖半径阈值的小区;根据预设的工程参数表与每个服务小区对应的测量报告数据,对每个服务小区进行RSI冲突检测,获得与每个服务小区发生RSI冲突的小区。
在一些个实施例中,处理器1001在实现确定至少一个可疑小区时,可以实现:根据各小区的随机接入参数,确定可疑小区,其中,随机接入参数包括虚检概率和移行率,虚检概率为随机接入请求信令的虚检次数与随机接入请求信令的总数的比值,移行率为随机接入请求信令的总数与标识消息信令的总数的比值,随机接入请求信令与标识消息信令为用户终端向基站发起随机接入时的信令;或根据各小区的测量报告数据中的时间提前量,确定可疑小区。
在一些个实施例中,处理器1001在实现根据各小区的随机接入参数,确定可疑小区时,可以实现以下至少之一:获取各小区的虚检概率,将虚检概率大于或等于预设的虚检概率阈值的小区,确定为可疑小区;获取各小区的移行率,将移行率小于或等于预设的移行率阈值的小区,确定为可疑小区。
在一些实施例中,测量报告数据包括频点、物理层小区标识、参考信号接收功率以及时间提前量;处理器1001在实现根据预设的工程参数表与每个服务小区对应的测量报告数据,对每个服务小区进行RSI冲突检测,获得与每个服务小区发生RSI冲突的小区时,可以实现:根据测量报告数据中的频点以及参考信号接收功率,确定每个服务小区对应的关联小区,关联小区为与对应的服务小区有交叠覆盖区域的小区;根据工程参数表与关联小区的频点与物理层小区标识,确定每个服务小区对应的第一候选小区集合;根据每个服务小区的时间提前量与对应的第一候选小区集合中的每个候选小区的时间提前量,对每个服务小区与对应的每个候选小区进行RSI冲突检测,获得与每个服务小区发生RSI冲突的小区。
在一些实施例中,处理器1001在实现根据测量报告数据中的频点以及参考信号接收功率,确定每个服务小区对应的关联小区时,可以实现:根据测量报告数据中的频点,确定每个服务小区的至少一个同频小区;根据每个服务小区在同一统计周期内每个同频小区的测量报告数据,确定每个同频小区满足第一预设条件的测量报告数据的总数;将总数大于预设总数的同频小区,确定为每个服务小区对应的关联小区。
在一些实施例中,工程参数表包括每个小区的经纬度信息;处理器1001在实现根据工程参数表与关联小区的频点与物理层小区标识,确定每个服务小区对应的第一候选小区集合时,可以实现:确定每个服务小区的全部关联小区的至少一个相似小区,相似小区为与关联小区的频点、物理层小区标识相同的小区;根据每个服务小区的经纬度信息与对应的每个相似小区的经纬度信息,确定每个服务小区与对应的每个相似小区之间的距离;将与每个服务小区的距离小于预设距离阈值的相似小区,确定为候选小区,由确定的至少一个候选小区组成第一候选小区集合。
在一些实施例中,处理器1001在实现根据每个服务小区的时间提前量与对应的第一候选小区集合中的每个候选小区的时间提前量,对每个服务小区与对应的每个候选小区进行RSI冲突检测,获得与每个服务小区发生RSI冲突的小区时,可以实现:根据每个服务小区的时间提前量与对应的第一候选小区集合中的每个候选小区的时间提前量,确定每个服务小区的覆盖半径以及对应的每个候选小区的覆盖半径;根据每个服务小区的经纬度信息与对应的每个候选小区的经纬度信息,确定每个候选小区对应的站间距离,其中,站间距离为每个候选小区与服务小区之间的距离;根据每个服务小区的覆盖半径和对应的第一候选小区集合中的每个候选小区的覆盖半径、站间距离,确定每个服务小区对应的冲突小区集合,冲突小区集合中包括与对应的服务小区发生RSI冲突的小区。
在一些实施例中,处理器1001在实现根据每个服务小区的覆盖半径和对应的第一候选小区集合中的每个候选小区的覆盖半径、站间距离,确定每个服务小区对应的冲突小区集合时,可以实现:确定每个候选小区的目标覆盖半径,目标覆盖半径为每个候选小区与对应的服务小区的覆盖半径中的最大值;将满足第二预设条件的候选小区,添加至对应的服务小区的冲突小区集合中,第二预设条件为候选小区的时频码资源与服务小区的时频码资源相同,且候选小区的站间距离小于两倍目标覆盖半径。
在一些实施例中,服务小区为覆盖半径大于预设覆盖半径阈值的可疑小区;处理器1001在实现根据预设的工程参数表与每个服务小区对应的测量报告数据,对每个服务小区进行RSI冲突检测,获得与每个服务小区发生RSI冲突的小区时,可以实现:根据在每个服务小区的两倍覆盖半径的范围内、且时频码资源与每个服务小区的时频码资源相同的除服务小区以外的其它可疑小区,确定每个服务小区对应的第二候选小区集合;根据工程参数表、每个服务小区对应的测量报告数据以及对应的第二候选小区集合中的每个候选小区的测量报告数据,对每个服务小区与对应的每个候选小区进行RSI冲突检测,获得与每个服务小区发生RSI冲突的小区。
在一些实施例中,处理器1001在实现根据预设的工程参数表与每个服务小区对应的测量报告数据,对每个服务小区进行RSI冲突检测,获得与每个服务小区发生RSI冲突的小区之后,还可以实现:根据每个服务小区的两倍覆盖半径以及每个服务小区发生RSI冲突的小区对应的最大站间距离,确定每个服务小区对应的复用距离;基于每个服务小区对应的复用距离,对每个服务小区的RSI进行重新配置。
处理器1001可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
下面结合附图,对本公开的一些实施例作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图4,图4是本公开实施例提供的一种根序列索引RSI冲突的处理方法的示意性流程图。该根序列索引RSI冲突的处理方法可应用于网络管理服务器中,通过依次将每个可疑小区确定为服务小区,再根据测量报告数据与工程参数表对服务小区进行根序列索引冲突检测,不需要对全网的小区进行检测, 并且适用于所有根序列索引冲突的场景,提高了根序列索引冲突检测的效率与准确性。该根序列索引RSI冲突的处理方法包括步骤S10和步骤S20。
步骤S10、确定至少一个可疑小区,并依次将每个可疑小区确定为服务小区,可疑小区为与相邻小区存在交叠覆盖区域的小区,或可疑小区为覆盖半径大于预设的覆盖半径阈值的小区。
需要说明的是,通过确定至少一个可疑小区,并依次将每个可疑小区确定为服务小区,后续可以对与相邻小区存在交叠覆盖区域的小区或覆盖半径大于预设的覆盖半径阈值的小区进行RSI冲突检测,不需要对全网的小区进行检测,提高了RSI冲突检测的效率。
在本公开实施例中,将分别针对与相邻小区存在交叠覆盖区域的小区、以及覆盖半径大于预设的覆盖半径阈值的小区这两种场景,详细说明如何进行RSI冲突检测。
需要说明的是,用户终端向小区发起随机接入时,小区会检测到用户终端发送的随机接入前导码(Preamble)。其中,通常用户终端发送Preamble的功率与用户终端到小区的距离是正比的。当多个地理位置相邻小区配置相同的PRACH时域、频域、码域资源时,会产生RSI冲突。当用户终端使用完全相同的PRACH时频码资源在服务小区发起随机接入时,可能会对其他相邻小区产生呼叫虚警,与用户终端之间的距离越小的相邻小区产生呼叫虚警的概率更高。小区的覆盖半径是指最大覆盖半径。
在一些实施例中,确定至少一个可疑小区,可以包括:根据各小区的随机接入参数,确定可疑小区。
随机接入参数包括虚检概率和移行率,虚检概率为随机接入请求信令(Random Access Request)的虚检次数与随机接入请求信令的总数的比值,移行率为随机接入请求信令的总数与标识消息信令(Identification Message)的总数的比值,随机接入请求信令与标识消息信令为用户终端向基站发起随机接入时的信令。基站可以采集用户终端向基站发起随机接入时的交互信令,并将交互信令上报至网络管理服务器,网络管理服务器可以根据交互信令确定小区的随机接入参数。
需要说明的是,对于与相邻小区存在交叠覆盖区域的小区这种场景,可以先通过小区的随机接入参数确定可疑小区,然后再对可疑小区进行RSI冲突检测。
示例性的,随机接入请求信令,即发送随机接入前导码(Preamble)的信令,可以表示为Msg1;标识消息信令可以表示为Msg3。虚检概率可以表示为:
式中,Msg1_Fail为Msg1的虚检次数;Msg1_Detect为基站检测到的Msg1的总数。
移行率可以表示为:
式中,Msg3_Detect为基站检测到的Msg3的总数。
在本公开实施例中,根据各小区的随机接入参数,确定可疑小区,包括以下至少之一:获取各小区的虚检概率,将虚检概率大于或等于预设的虚检概率阈值的小区,确定为可疑小区;获取各小区的移行率,将移行率小于或等于预设的移行率阈值的小区,确定为可疑小区。
在一些实施方式中,根据各小区的随机接入参数,确定可疑小区,可以包括:获取各小区的虚检概率,将虚检概率大于或等于预设的虚检概率阈值的小区,确定为可疑小区。
示例性的,当某个小区的虚检概率大于或等于预设的虚检概率阈值时,可以将该小区确定为可疑小区。例如,可以将该小区添加至可疑小区列表RSIDetectList中。其中,预设的虚检概率阈值可以根据实际情况设定,具体数值在此不作限定。
在另一些实施方式中,根据各小区的随机接入参数,确定可疑小区,还可以包括:获取各小区的移行率,将移行率小于或等于预设的移行率阈值的小区,确定为可疑小区。
示例性的,当某个小区的移行率大于或等于预设的移行率阈值时,可以将该小区确定为可疑小区。例如,可以将该小区添加至可疑小区列表RSIDetectList中。其中,预设的移行率阈值可以根据实际情况设定,具体数值在此不作限定。
通过将虚检概率大于或等于预设的虚检概率阈值的小区、或移行率小于或等于预设的移行率阈值的小区,确定为可疑小区,不仅可以将与相邻小区存在交叠覆盖区域的小区确定为可疑小区,而且还提高了确定可疑小区的准确性。
在另一些实施例中,确定至少一个可疑小区,可以包括:根据各小区的测量报告数据中的时间提前量,确定可疑小区。
在本公开实施例中,对于覆盖半径大于预设的覆盖半径阈值的小区这种场景,可以先根据各小区的测量报告数据中的时间提前量(Timing Advance,TA)确定可疑小区,然后再对可疑小区进行RSI冲突检测。
需要说明的是,存储服务器存储有每个小区对应的测量报告数据,每个小区对应的基站可以将采集的测量报告数据上报至存储服务器。示例性的,测量报告数据包括频点、物理层小区标识(Physical Cell Identifier,PCI)、参考信号接收功率(Reference Singnal Received Power,RSRP)以及时间提前量等参数。例如,每个小区对应的测量报告数据包括该小区的频点、PCI、RSRP以及TA等参数,还可以包括该小区的邻区的频点、PCI、RSRP以及TA等参数。其中,频点是指固定频率的编号。
在一些实施方式中,可以根据各小区的测量报告数据中的时间提前量,计算得到各小区的覆盖半径Rs;然后将覆盖半径大于预设的覆盖半径阈值的小区,确定为可疑小区。其中,预设的覆盖半径阈值可以根据实际情况设定,具体数值在此不作限定。覆盖半径的计算过程,在此不作限定。
示例性的,当预设的覆盖半径阈值为2Km时,可以覆盖半径Rs大于或等于2Km的小区,确定为可疑小区;并将确定的可疑小区添加至可疑小区列表RSIDetectList中。
通过根据各小区的测量报告数据中的时间提前量,计算得到各小区的覆盖半径,将覆盖半径大于预设的覆盖半径阈值的小区确定为可疑小区,实现将高功率或位置较高的小区确定为可疑小区。需要说明的是,对于覆盖半径过大的小区,由于该小区中的用户终端UE的发射功率会偏高,若该小区和周边覆盖半径较小的小区发生RSI冲突,则容易产生呼叫虚警。
在一些实施例中,可以依次将每个可疑小区确定为服务小区,其中,可疑小区为与相邻小区存在交叠覆盖区域的小区。
示例性的,当相邻的小区Cell A和小区Cell B存在交叠覆盖区域时,交叠覆盖区域内的用户终端使用相同的PRACH时频码资源发起随机接入有可能导致小区Cell A和小区Cell B产生呼叫虚警。其中,与用户终端之间的距离越小的小区产生呼叫虚警的概率更高。
通过将与相邻小区存在交叠覆盖区域的小区作为服务小区进行RSI冲突检测,可以适用于对与其它小区存在交叠覆盖区域的小区进行RSI冲突检测的场景。
在另一些实施例中,可以依次将每个可疑小区确定为服务小区,其中,可疑小区为覆盖半径大于预设的覆盖半径阈值的小区。
示例性的,对于相邻的小区Cell A和小区Cell B,当小区Cell B的覆盖半径大于预设的覆盖半径阈值时,由于小区Cell B中UE的发射功率较大,小区Cell B内的用户终端使用相同的PRACH时频码资源发起随机接入有可能导致小区Cell A产生呼叫虚警,由于小区Cell A中UE的发射功率较小,小区Cell A内的用户终端使用相同的PRACH时频码资源发起随机接入不会导致小区Cell B产生呼叫虚警。
通过覆盖半径大于预设的覆盖半径阈值的小区作为服务小区进行RSI冲突检测,可以适用于对高功率或位置较高的小区进行RSI冲突检测的场景。
步骤S20、根据预设的工程参数表与每个服务小区对应的测量报告数据,对每个服务小区进行RSI冲突检测,获得与每个服务小区发生RSI冲突的小区。
需要说明的是,通过根据预设的工程参数表与每个服务小区对应的测量报告数据对每个服务小区进行RSI冲突检测,获得与每个服务小区发生RSI冲突的小区,可以适用于所有根序列索引冲突的场景,提高了根序列索引冲突检测的准确性。
在本公开实施例中,将以服务小区为与相邻小区存在交叠覆盖区域的可疑小区为例,对每个服务小区进行RSI冲突检测进行详细说明。
示例性的,可以通过测量报告数据中的频点和RSRP,确定每个服务小区的关联小区;然后基于工程参数表,根据关联小区的频点和PCI搜索可能与服务小区发生RSI冲突的候选小区;最后,对每个服务小区与对应的每个候选小区进行RSI冲突检测,获得与每个服务小区发生RSI冲突的小区。
工程参数表可以包括小区的全球小区标识(Cell Global Identity,CGI)、频点、PCI、经纬度信息以及PRACH时频码资源等等。需要说明的是,工程参数表是预先定义的基站的工程参数,可以包括基站天线位置的经纬度、挂高、天线方向性、增益、方位角以及下倾角等等参数。可以理解的是,小区是指基站的无线网络信号覆盖的范围,因此,基站的工程参数表可以作为基站对应的小区的工程参数表,工程参数表可以包括全网小区的工程参数。
通过根据预设的工程参数表与每个服务小区对应的测量报告数据对每个服务小区进行RSI冲突检测,获得与每个服务小区发生RSI冲突的小区,解决了基于邻区列表的RSI冲突检测方式无法适用于非邻区的RSI冲突场景以及基于X2/Xn口消息的RSI检测方式无法应用于服务基站与其它基站未建立X2/Xn接口的场景的问题,提高了根序列索引冲突检测的准确性。
请参阅图5,图5是本公开实施例提供的一种对每个服务小区进行RSI冲突检测的子步骤的示意性流程图,可以包括步骤S201至步骤S203。
步骤S201、根据测量报告数据中的频点以及参考信号接收功率,确定每个服务小区对应的关联小区,关联小区为与对应的服务小区有交叠覆盖区域的小区。
需要说明的是,由于每个服务小区对应的测量报告数据除了包括该服务小区的频点、PCI、RSRP以及TA等参数,还可以包括该服务小区的邻区的频点、PCI、RSRP以及TA等参数,因此,可以通过每个服务小区的测量报告数据中的频点和RSRP,统计出与每个服务小区存储交叠覆盖区域的同频小区,并将满足预设的第一预设条件的同频小区确定为关联小区。
示例性的,对于服务小区Cell 0,对应的测量报告数据如下所示:服务小区Cell 0:频点=f0,PCI=0,RSRP=-100dBm;邻区1:频点=f0,PCI=5,RSRP=-105dBm;邻区2:频点=f1,PCI=10,RSRP=-110dBm;邻区3:频点=f0,PCI=12,RSRP=-106dBm。
请参阅图6,图6是本公开实施例提供的一种确定每个服务小区对应的关联小区的子步骤的示意性流程图,可以包括步骤S2011与步骤S2013。
步骤S2011、根据测量报告数据中的频点,确定每个服务小区的至少一个同频小区。
示例性的,同频小区是指频点与服务小区的频点相同的小区。例如,若服务小区Cell 0的频点为f0,则可以将频点为f0的邻区,确定为服务小区Cell 0的同频小区。
步骤S2012、根据每个服务小区在同一统计周期内每个同频小区的测量报告数据,确定每个同频小区满足第一预设条件的测量报告数据的总数。
第一预设条件包括:服务小区的参考信号接收功率大于或等于预设的第一参考信号接收功率阈值,且服务小区的参考信号接收功率与同频小区的参考信号接收功率之间的差值小于或等于预设的第二参考信号接收功率阈值。预设的第一参考信号接收功率阈值、预设的第二参考信号接收功率阈值可以根据 实际情况设定,具体数值在此不作限定。
可以理解的是,参考信号接收功率RSRP用于表示无线信号强度,参考信号接收功率的数值越大,表示信号强度越大。因此,当服务小区的RSRP与同频小区的RSRP之间的差值越小时,说明服务小区与同频小区越有可能存在交叠覆盖区域。
示例性的,可以根据同一统计周期内包含每个服务小区与对应的每个同频小区的测量报告数据,确定每个同频小区满足第一预设条件的测量报告数据的总数。
例如,第一参考信号接收功率阈值可以是-120dBm,第二参考信号接收功率阈值可以是9dBm。可以将服务小区的RSRP小于或等于-120dBm、且服务小区的RSRP与同频小区的RSRP之间的差值小于或等于9dBm的测量报告数据,确定为同频小区满足第一预设条件的测量报告数据,如表1所示。
表1
例如,在表1中,同频小区Cell 10满足第一预设条件的MR总数为176,同频小区Cell 216满足第一预设条件的MR总数为23。
步骤S2013、将总数大于预设总数的同频小区,确定为每个服务小区对应的关联小区。
在本公开实施例中,预设总数可以根据实际情况设定,具体数值在此不作限定。
示例性的,当预设总数为100时,可以将总数大于100的同频小区,确定为每个服务小区对应的关联小区。例如,在表1中,服务小区Cell 0对应的关联小区为Cell 10和Cell 29。
通过先根据测量报告数据中的频点确定每个服务小区的至少一个同频小区,然后确定每个同频小区满足第一预设条件的测量报告数据的总数,进而可以将总数大于预设总数的同频小区,确定为每个服务小区对应的关联小区,实现根据频点和参考信号接收功率确定与服务小区有交叠覆盖区域的关联小区。
步骤S202、根据工程参数表与关联小区的频点与物理层小区标识,确定每个服务小区对应的第一候选小区集合。
请参阅图7,图7是本公开实施例提供的一种确定每个服务小区对应的候选小区的子步骤的示意性流程图,可以包括步骤S2021与步骤S2023。
步骤S2021、确定每个服务小区的全部关联小区的至少一个相似小区,相似小区为与关联小区的频点、物理层小区标识相同的小区。
需要说明的是,在本公开实施例中,可以根据服务小区的关联小区的频点和PCI,以服务小区为起点,全网搜索与关联小区的频点、物理层小区标识相同且距离较近的n个小区,得到可能与服务小区发生RSI冲突的候选小区。
示例性的,可以将与关联小区的频点、物理层小区标识相同的小区,确定为服务小区的相似小区。例如,对于服务小区Cell 0,可以将与关联小区Cell 10的频点、PCI相同的小区,以及将与关联小区Cell 29的频点、PCI相同的小区,确定为服务小区Cell 0的相似小区。此外,还可以将关联小区Cell 10和关联小区Cell 29,确定为服务小区Cell 0的相似小区。
可以理解的是,当同频组网的小区数目较多时,不可避免地会出现PCI复用,即多个小区使用同一个PCI。
步骤S2022、根据每个服务小区的经纬度信息与对应的每个相似小区的经纬度信息,确定每个服务小区与对应的每个相似小区之间的距离。
需要说明的是,工程参数表包括各小区的经纬度信息,因此,可以通过工程参数表查询得到每个服务小区的经纬度信息与对应的每个相似小区的经纬度信息。其中,经纬度信息可以包括经度和维度组成的位置坐标。
示例性的,可以根据每个服务小区的经纬度信息与对应的每个相似小区的经纬度信息,计算出每个服务小区与每个相似小区之间的距离。其中,具体的计算过程在此不作限定。例如,可以根据服务小区Cell 0的位置坐标与服务小区Cell 0的每个相似小区的位置坐标,计算出服务小区Cell 0与每个相似小区之间的距离。
步骤S2023、将与每个服务小区的距离小于预设距离阈值的相似小区,确定为候选小区,由确定的至少一个候选小区组成第一候选小区集合。
示例性的,在确定每个服务小区与每个相似小区之间的距离之后,可以将与每个服务小区的距离小于预设距离阈值的相似小区,确定为候选小区。然后,根据每个服务小区对应的候选小区,生成每个服务小区对应的第一候选小区集合。其中,预设距离阈值可以根据实际情况设定,具体数值在此不作限定。例如,预设距离阈值可以是10km。
可以理解的是,与服务小区之间的距离越小的相似小区,与服务小区存在交叠覆盖区域的概率越高。
例如,对于服务小区Cell 0,根据服务小区Cell 0的关联小区的频点和PCI,以服务小区Cell 0为起点全网搜索与关联小区的频点、物理层小区标识相同、且与服务小区Cell 0的距离小于预设距离阈值的小区,得到服务小区Cell 0对应的候选小区。
又例如,当全网搜索范围过大,导致搜索时间过长时,可以以服务小区Cell 0为起点,在10km的范围内搜索与关联小区的频点、物理层小区标识相同的小区,得到服务小区Cell 0对应的候选小区。
示例性的,对于服务小区Cell 0,将与服务小区Cell 0的距离小于10km的相似小区,生成第一候选小区集合,例如{cell 17,cell 56,cell 128}。
通过根据频点、物理层小区标识以及经纬度信息确定候选小区,可以获得在预设距离阈值范围内与服务小区有交叠覆盖区域的候选小区。
步骤S203、根据每个服务小区的时间提前量与对应的第一候选小区集合中的每个候选小区的时间提前量,对每个服务小区与对应的每个候选小区进行RSI冲突检测,获得与每个服务小区发生RSI冲突的小区。
请参阅图8,图8是本公开实施例提供的一种进行RSI冲突检测的子步骤的示意性流程图,可以包括步骤S2031与步骤S2033。
步骤S2031、根据每个服务小区的时间提前量与对应的第一候选小区集合中的每个候选小区的时间提前量,确定每个服务小区的覆盖半径以及对应的每个候选小区的覆盖半径。
示例性的,可以根据每个服务小区的时间提前量与对应的第一候选小区集合中的每个候选小区的时间提前量,确定每个服务小区的覆盖半径以及对应的每个候选小区的覆盖半径。
例如,对于服务小区Cell 0,可以根据服务小区Cell 0的时间提前量TA与对应的第一候选小区集合中的每个候选小区的时间提前量TA,计算出服务小区Cell 0的覆盖半径Rs以及对应的每个候选小区的覆盖半径Rc。其中,具体的计算过程,在此不作限定。
步骤S2032、根据每个服务小区的经纬度信息与对应的每个候选小区的经纬度信息,确定每个候选 小区对应的站间距离,其中,站间距离为每个候选小区与服务小区之间的距离。
需要说明的是,在计算两个小区之间的距离时,可以以两个小区的基站为中心点,将两个基站之间的距离,确定为两个小区之间的站间距离。
示例性的,可以根据每个服务小区的位置坐标与对应的每个候选小区的位置坐标,计算得到每个候选小区对应的站间距离。其中,站间距离可以表示为L,具体的计算过程,在此不作限定。
步骤S2033、根据每个服务小区的覆盖半径和对应的第一候选小区集合中的每个候选小区的覆盖半径、站间距离,确定每个服务小区对应的冲突小区集合,冲突小区集合中包括与对应的服务小区发生RSI冲突的小区。
在一些实施例中,根据每个服务小区的覆盖半径和对应的第一候选小区集合中的每个候选小区的覆盖半径、站间距离,确定每个服务小区对应的冲突小区集合,可以包括:确定每个候选小区的目标覆盖半径;将满足第二预设条件的候选小区,添加至对应的服务小区的冲突小区集合中。
目标覆盖半径为每个候选小区与对应的服务小区的覆盖半径中的最大值。,第二预设条件为候选小区的时频码资源与服务小区的时频码资源相同,且候选小区的站间距离小于两倍目标覆盖半径。目标覆盖半径可以表示为max{Rs,Rc},候选小区的站间距离小于两倍目标覆盖半径可以表示为L<max{2Rs,2Rc}。
在一些实施方式中,对于服务小区Cell 0和对应的第一候选小区集合{cell 17,cell 56,cell 128},服务小区Cell 0的覆盖半径和对应的第一候选小区集合{cell 17,cell 56,cell 128}中的每个候选小区的覆盖半径,如表2所示。
表2
然后,将服务小区Cell 0与第一候选小区集合中的每个候选小区进行组合,获得服务小区Cell 0的候选小区对为{(Cell 0,cell 17),(Cell 0,cell 56),(Cell 0,cell 128)}。其中,每个候选小区对应的站间距离,如表3所示。
表3
例如,对于候选小区对(Cell 0,cell 17),站间距离L为4km,max{2Rs,2Rc}=max{2km,5km}=5km,满足L<max{2Rs,2Rc},若候选小区cell 17的时频码资源与服务小区Cell 0的时频码资源相同,则可以将候选小区对(Cell 0,cell 17),确定为目标小区对,即候选小区cell 17是与服务小区Cell 0发生RSI冲突的小区。
例如,对于候选小区对(Cell 0,cell 56),站间距离L为6km,max{2Rs,2Rc}=max{2km,10km}=10km,满足L<max{2Rs,2Rc},若候选小区cell 56的时频码资源与服务小区Cell 0的时频码资源不相同,则可以确定候选小区cell 56与服务小区Cell 0不发生RSI冲突。
又例如,对于候选小区对(Cell 0,cell 128),站间距离L为3km,max{2Rs,2Rc}=max{2km,4km}=4km,满足L<max{2Rs,2Rc},若候选小区cell 128的时频码资源与服务小区Cell 0的时频码资源相同,则可以将候选小区对(Cell 0,cell 128),确定为目标小区对,即候选小区cell 128是与服务小区Cell 0发生RSI冲突的小区。
示例性的,得到的服务小区Cell 0对应的冲突小区集合为{(Cell 0,cell 17),(Cell 0,cell 128)}。
通过确定每个服务小区的覆盖半径以及对应的每个候选小区的覆盖半径,以及确定每个候选小区对应的站间距离,可以实现根据时频码资源与服务小区的时频码资源相同且站间距离小于两倍目标覆盖半径的候选小区,确定每个服务小区对应的冲突小区集合,提高了RSI冲突检测的准确性。
需要说明的是,服务小区除了是与相邻小区存在交叠覆盖区域的可疑小区,还可以是覆盖半径大于预设的覆盖半径阈值的可疑小区。在本公开实施例中,将以服务小区为覆盖半径大于预设的覆盖半径阈值的可疑小区为例,对每个服务小区进行RSI冲突检测进行详细说明。
请参阅图9,图9是本公开实施例提供的另一种对每个服务小区进行RSI冲突检测的子步骤的示意性流程图,可以包括步骤S204与步骤S205。
步骤S204、根据在每个服务小区的两倍覆盖半径的范围内、且时频码资源与每个服务小区的时频码资源相同的除服务小区以外的其它可疑小区,确定每个服务小区对应的第二候选小区集合。
示例性的,可以根据在每个服务小区的两倍覆盖半径的范围内、且时频码资源与每个服务小区的时频码资源相同的除服务小区以外的其它可疑小区,确定为每个服务小区的候选小区,由确定的至少一个候选小区组成每个服务小区对应的第二候选小区集合。其中,可以根据每个服务小区的时间提前量TA计算得到每个服务小区的覆盖半径Rs。时频码资源可以通过查询工程参数表得到。
例如,对于服务小区Cell 1,可以以服务小区Cell 1为起点,在两倍覆盖半径的范围内全网搜索,将与服务小区Cell 1时频码资源相同的其它可疑小区确定为候选小区,组成的第二候选小区集合,如{cell 11,cell 67,cell 215}。
其它可疑小区是指与相邻小区存在交叠覆盖区域的小区,或覆盖半径大于预设的覆盖半径阈值的小区,即在可疑小区列表RSIDetectList中的小区。
需要说明的是,在本公开实施例中,确定第二候选小区集合的方式与确定第一候选小区集合的方式不同。通过根据在每个服务小区的两倍覆盖半径的范围内、且时频码资源与每个服务小区的时频码资源相同的除服务小区以外的其它可疑小区,作为候选小区,可以适用于对高功率或位置较高的小区进行RSI冲突检测的场景。
通过根据在每个服务小区的两倍覆盖半径的范围内、且时频码资源与每个服务小区的时频码资源相同的除服务小区以外的其它可疑小区,确定每个服务小区对应的第二候选小区集合,可以实现将少量的小区作为候选小区,不需要将全部小区作为服务小区的候选小区,提高了后续RSI冲突检测的效率。
步骤S205、根据工程参数表、每个服务小区对应的测量报告数据以及对应的第二候选小区集合中的每个候选小区的测量报告数据,对每个服务小区与对应的每个候选小区进行RSI冲突检测,获得与每个服务小区发生RSI冲突的小区。
示例性的,工程参数表包括每个服务小区的经纬度信息与对应的每个候选小区的经纬度信息。服务小区对应的测量报告数据包括服务小区的时间提前量;候选小区的测量报告数据包括候选小区的时间提前量。
在一些实施例中,根据工程参数表、每个服务小区对应的测量报告数据以及对应的第二候选小区集合中的每个候选小区的测量报告数据,对每个服务小区与对应的每个候选小区进行RSI冲突检测,获得与每个服务小区发生RSI冲突的小区,可以包括:根据每个服务小区的时间提前量与对应的第二候选小 区集合中的每个候选小区的时间提前量,确定每个服务小区的覆盖半径以及对应的每个候选小区的覆盖半径;根据每个服务小区的经纬度信息与对应的每个候选小区的经纬度信息,确定每个候选小区对应的站间距离,其中,站间距离为每个候选小区与服务小区之间的距离;根据每个服务小区的覆盖半径和对应的第二候选小区集合中的每个候选小区的覆盖半径、站间距离,确定每个服务小区对应的冲突小区集合,冲突小区集合中包括与对应的服务小区发生RSI冲突的小区。
示例性的,根据每个服务小区的覆盖半径和对应的第二候选小区集合中的每个候选小区的覆盖半径、站间距离,确定每个服务小区对应的冲突小区集合,可以包括:确定每个候选小区的目标覆盖半径,目标覆盖半径为候选小区的覆盖半径与对应的服务小区的覆盖半径中的最大值;将满足第三预设条件的候选小区,添加至对应的服务小区的冲突小区集合中,第三预设条件为候选小区的站间距离小于两倍目标覆盖半径。
目标覆盖半径可以表示为max{Rs,Rc},第三预设条件为L<max{2Rs,2Rc}。
在一些实施方式中,对于服务小区Cell 1和对应的第二候选小区集合{cell 11,cell 67,cell 215},服务小区Cell 1的覆盖半径和对应的第二候选小区集合{cell 11,cell 67,cell 215}中的每个候选小区的覆盖半径,如表4所示。
表4
然后,将服务小区Cell 1与第二候选小区集合中的每个候选小区进行组合,获得服务小区Cell 1的候选小区对为{(Cell 1,cell 11),(Cell 1,cell 67),(Cell 1,cell 215)}。其中,每个候选小区对应的站间距离,如表5所示。
表5
例如,对于候选小区对{cell 1,cell 11},站间距离L=2km,max{2Rs,2Rc}=max{10km,4km}=10km,满足第三预设条件:L<max{2Rs,2Rc},可以将候选小区对(Cell 1,cell 11)确定为目标小区对,即候选小区cell 11是与服务小区Cell 1发生RSI冲突的小区。
例如,对于候选小区对{cell 1,cell 67},站间距离L=11km,max{2Rs,2Rc}=max{10km,2km}=10km,不满足第三预设条件:L<max{2Rs,2Rc},则候选小区对{cell 1,cell 67}不存在RSI冲突。
又例如,候选小区对{cell 1,cell 215},站间距离L=7km,max{2Rs,2Rc}=max{10km,3km}=10km,满足第三预设条件:L<max{2Rs,2Rc},可以将候选小区对{cell 1,cell 215}确定为目标小区对,即候选小区cell 215是与服务小区Cell 1发生RSI冲突的小区。
示例性的,得到的服务小区Cell 1对应的冲突小区集合为{(Cell 1,cell 11),(Cell 1,cell 215)}。
需要说明的是,在本公开实施例中,在确定第二候选小区集合时,可以先将时频码资源与每个服务小区的时频码资源相同的除服务小区以外的其它可疑小区作为候选小区,当然也可以在对候选小区进行 RSI冲突检测时,再将时频码资源与每个服务小区的时频码资源相同的除服务小区以外的其它可疑小区的候选小区确定为与服务小区发生RSI冲突的小区。
例如,在步骤S204中确定第二候选小区集合时,还可以根据在每个服务小区的两倍覆盖半径的范围内的小区,确定每个服务小区对应的第二候选小区集合。在根据每个服务小区的覆盖半径和对应的第二候选小区集合中的每个候选小区的覆盖半径、站间距离,确定每个服务小区对应的冲突小区集合,可以包括:确定每个服务小区的每个候选小区的目标覆盖半径,目标覆盖半径为服务小区的覆盖半径与候选小区的覆盖半径中的最大值;将每个服务小区的满足第三预设条件以及第四预设条件的候选小区,确定为每个服务小区的目标小区;根据每个服务小区的目标小区,生成每个服务小区对应的冲突小区集合。
第四预设条件为候选小区为时频码资源与每个服务小区的时频码资源相同的除服务小区以外的其它可疑小区。
需要说明的是,在本公开实施例中,在获得与每个服务小区发生RSI冲突的小区之后,还可以对每个服务小区进行RSI优化,即对每个服务小区相关的RSI进行重新配置。
在一些实施例中,根据预设的工程参数表与每个服务小区对应的测量报告数据,对每个服务小区进行RSI冲突检测,获得与每个服务小区发生RSI冲突的小区之后,还可以包括:根据每个服务小区的两倍覆盖半径以及每个服务小区发生RSI冲突的小区对应的最大站间距离,确定与每个服务小区对应的复用距离;基于每个服务小区对应的复用距离,对每个服务小区的RSI进行重新配置,以使与每个服务小区发生RSI冲突的小区在复用距离内不能复用重新配置得到的RSI。
需要说明的是,最大站间距离是指在每个服务小区对应的冲突小区集合中,与每个服务小区发生RSI冲突的全部小区对应的站间距离的最大值。复用距离是指在满足移动通信质量的条件下,允许使用相同载频小区之间的最小距离,即同频复用的最小安全距离。
示例性的,可以将每个服务小区的两倍覆盖半径与每个服务小区发生RSI冲突的小区对应的最大站间距离中的最大者,确定为每个服务小区对应的复用距离。其中,复用距离可以表示为max{2Rs,Lmax},2Rs为两倍覆盖半径。
例如,每个服务小区的两倍覆盖半径以及每个服务小区发生RSI冲突的小区对应的最大站间距离,如表6所示。
表6
例如,对于服务小区Cell 0,通过上述表6,可以确定Cell 0对应的复用距离为4km;对于服务小区Cell 1,可以确定Cell 1对应的复用距离为10km。
示例性的,在确定每个服务小区对应的复用距离之后,可以基于每个服务小区对应的复用距离,对每个服务小区的RSI进行重新配置,以使与每个服务小区发生RSI冲突的小区在复用距离内不能复用重新配置得到的RSI。其中,具体的RSI配置过程,在此不作限定。
例如,对于服务小区Cell 0,基于复用距离4km,对服务小区Cell 0的RSI进行重新配置,以使与服务小区Cell 0发生RSI冲突的小区Cell 17、Cell 128在复用距离4km内不能复用重新配置得到的RSI。
又例如,对于服务小区Cell 1,基于复用距离10km,对服务小区Cell 1的RSI进行重新配置,以使与服务小区Cell 1发生RSI冲突的小区Cell 11、Cell 215在复用距离10km内不能复用重新配置得到的RSI。
通过根据每个服务小区的两倍覆盖半径以及每个服务小区发生RSI冲突的小区对应的最大站间距离,确定与每个服务小区对应的复用距离,并基于复用距离,对每个服务小区的RSI进行重新配置,可以实相关效避免小区之间产生RSI冲突,进而降低小区产生呼叫虚警的概率,提高了小区的无线接通率。
上述实施例提供的根序列索引RSI冲突的处理方法、服务器和存储介质,通过确定至少一个可疑小区,并依次将每个可疑小区确定为服务小区,后续可以对与相邻小区存在交叠覆盖区域的小区或覆盖半径大于预设的覆盖半径阈值的小区进行RSI冲突检测,不需要对全网的小区进行检测,提高了RSI冲突检测的效率;通过根据频点、物理层小区标识以及经纬度信息确定候选小区,可以获得在预设距离阈值范围内与服务小区有交叠覆盖区域的候选小区;通过确定每个服务小区的覆盖半径以及对应的每个候选小区的覆盖半径,以及确定每个候选小区对应的站间距离,可以实现根据时频码资源与服务小区的时频码资源相同且站间距离小于两倍目标覆盖半径的候选小区,确定每个服务小区对应的冲突小区集合,提高了RSI冲突检测的准确性;通过根据在每个服务小区的两倍覆盖半径的范围内、且时频码资源与每个服务小区的时频码资源相同的除服务小区以外的其它可疑小区,确定每个服务小区对应的第二候选小区集合,可以实现将少量的小区作为候选小区,不需要将全部小区作为服务小区的候选小区,提高了后续RSI冲突检测的效率;通过根据每个服务小区的两倍覆盖半径以及每个服务小区发生RSI冲突的小区对应的最大站间距离,确定与每个服务小区对应的复用距离,并基于复用距离,对每个服务小区的RSI进行重新配置,可以实相关效避免小区之间产生RSI冲突,进而降低小区产生呼叫虚警的概率,提高了小区的无线接通率。
本公开实施例还提供一种存储介质,用于计算机可读存储,存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,以实现如本公开实施例说明书提供的任一项根序列索引RSI冲突的处理方法的步骤。
例如,该程序被处理器加载,可以执行如下步骤:确定至少一个可疑小区,并依次将每个可疑小区确定为服务小区,可疑小区为与相邻小区存在交叠覆盖区域的小区,或可疑小区为覆盖半径大于预设的覆盖半径阈值的小区;根据预设的工程参数表与每个服务小区对应的测量报告数据,对每个服务小区进行RSI冲突检测,获得与每个服务小区发生RSI冲突的小区。
存储介质可以是前述实施例的网络管理服务器的内部存储单元,例如网络管理服务器的硬盘或内存。存储介质也可以是网络管理服务器的外部存储设备,例如网络管理服务器上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施例中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其 他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
本公开实施例提供了一种根序列索引RSI冲突的处理方法、服务器和存储介质,通过确定至少一个可疑小区,并依次将每个可疑小区确定为服务小区,后续可以对与相邻小区存在交叠覆盖区域的小区或覆盖半径大于预设的覆盖半径阈值的小区进行RSI冲突检测,不需要对全网的小区进行检测,提高了RSI冲突检测的效率;通过根据预设的工程参数表与每个服务小区对应的测量报告数据对每个服务小区进行RSI冲突检测,获得与每个服务小区发生RSI冲突的小区,可以适用于所有根序列索引冲突的场景,提高了根序列索引冲突检测的准确性。
应当理解,在本公开说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。以上所述,仅为本公开的具体实施例,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种根序列索引RSI冲突的处理方法,包括:
    确定至少一个可疑小区,并依次将每个所述可疑小区确定为服务小区,所述可疑小区为与相邻小区存在交叠覆盖区域的小区,或所述可疑小区为覆盖半径大于预设的覆盖半径阈值的小区;以及
    根据预设的工程参数表与每个所述服务小区对应的测量报告数据,对每个所述服务小区进行RSI冲突检测,获得与每个所述服务小区发生RSI冲突的小区。
  2. 根据权利要求1所述的根序列索引RSI冲突的处理方法,其中,所述确定至少一个可疑小区,包括:
    根据各小区的随机接入参数,确定所述可疑小区,其中,所述随机接入参数包括虚检概率和移行率,所述虚检概率为随机接入请求信令的虚检次数与随机接入请求信令的总数的比值,所述移行率为随机接入请求信令的总数与标识消息信令的总数的比值,所述随机接入请求信令与所述标识消息信令为用户终端向基站发起随机接入时的信令;或
    根据各小区的测量报告数据中的时间提前量,确定所述可疑小区。
  3. 根据权利要求2所述的根序列索引RSI冲突的处理方法,其中,所述根据各小区的随机接入参数,确定所述可疑小区,包括以下至少之一:
    获取各小区的虚检概率,将虚检概率大于或等于预设的虚检概率阈值的小区,确定为所述可疑小区;以及
    获取各小区的移行率,将移行率小于或等于预设的移行率阈值的小区,确定为所述可疑小区。
  4. 根据权利要求1所述的根序列索引RSI冲突的处理方法,其中,所述测量报告数据包括频点、物理层小区标识、参考信号接收功率以及时间提前量;
    所述根据预设的工程参数表与每个所述服务小区对应的测量报告数据,对每个所述服务小区进行RSI冲突检测,获得与每个所述服务小区发生RSI冲突的小区,包括:
    根据所述测量报告数据中的频点以及参考信号接收功率,确定每个所述服务小区对应的关联小区,所述关联小区为与对应的服务小区有交叠覆盖区域的小区;
    根据所述工程参数表与所述关联小区的频点与物理层小区标识,确定每个所述服务小区对应的第一候选小区集合;以及
    根据每个所述服务小区的时间提前量与对应的第一候选小区集合中的每个候选小区的时间提前量,对每个所述服务小区与对应的每个所述候选小区进行RSI冲突检测,获得与每个所述服务小区发生RSI冲突的小区。
  5. 根据权利要求4所述的根序列索引RSI冲突的处理方法,其中,所述根据所述测量报告数据中的频点以及参考信号接收功率,确定每个所述服务小区对应的关联小区,包括:
    根据所述测量报告数据中的频点,确定每个所述服务小区的至少一个同频小区;
    根据每个所述服务小区在同一统计周期内每个同频小区的测量报告数据,确定每个所述同频小区满足第一预设条件的测量报告数据的总数;以及
    将所述总数大于预设总数的同频小区,确定为每个所述服务小区对应的关联小区。
  6. 根据权利要求5所述的根序列索引RSI冲突的处理方法,其中,所述第一预设条件包括:所述服务小区的参考信号接收功率大于或等于预设的第一参考信号接收功率阈值,且所述服务小区的参考信号接收功率与同频小区的参考信号接收功率之间的差值小于或等于预设的第二参考信 号接收功率阈值。
  7. 根据权利要求4所述的根序列索引RSI冲突的处理方法,其中,所述工程参数表包括每个小区的经纬度信息;
    所述根据所述工程参数表与所述关联小区的频点与物理层小区标识,确定每个所述服务小区对应的第一候选小区集合,包括:
    确定每个所述服务小区的全部关联小区的至少一个相似小区,所述相似小区为与关联小区的频点、物理层小区标识相同的小区;
    根据每个所述服务小区的经纬度信息与对应的每个所述相似小区的经纬度信息,确定每个所述服务小区与对应的每个所述相似小区之间的距离;以及
    将与每个所述服务小区的距离小于预设距离阈值的相似小区,确定为候选小区,由确定的至少一个候选小区组成所述第一候选小区集合。
  8. 根据权利要求4所述的根序列索引RSI冲突的处理方法,其中,所述根据每个所述服务小区的时间提前量与对应的第一候选小区集合中的每个候选小区的时间提前量,对每个所述服务小区与对应的每个所述候选小区进行RSI冲突检测,获得与每个所述服务小区发生RSI冲突的小区,包括:
    根据每个所述服务小区的时间提前量与对应的第一候选小区集合中的每个候选小区的时间提前量,确定每个所述服务小区的覆盖半径以及对应的每个所述候选小区的覆盖半径;
    根据每个所述服务小区的经纬度信息与对应的每个所述候选小区的经纬度信息,确定每个所述候选小区对应的站间距离,其中,所述站间距离为每个所述候选小区与所述服务小区之间的距离;以及
    根据每个所述服务小区的覆盖半径和对应的第一候选小区集合中的每个候选小区的覆盖半径、站间距离,确定每个所述服务小区对应的冲突小区集合,所述冲突小区集合中包括与对应的所述服务小区发生RSI冲突的小区。
  9. 根据权利要求8所述的根序列索引RSI冲突的处理方法,其中,所述根据每个所述服务小区的覆盖半径和对应的第一候选小区集合中的每个候选小区的覆盖半径、站间距离,确定每个所述服务小区对应的冲突小区集合,包括:
    确定每个所述候选小区的目标覆盖半径,所述目标覆盖半径为每个所述候选小区与对应的服务小区的覆盖半径中的最大值;以及
    将满足第二预设条件的候选小区,添加至对应的所述服务小区的冲突小区集合中,所述第二预设条件为候选小区的时频码资源与所述服务小区的时频码资源相同,且候选小区的站间距离小于两倍所述目标覆盖半径。
  10. 根据权利要求1所述的根序列索引RSI冲突的处理方法,其中,所述服务小区为覆盖半径大于预设覆盖半径阈值的可疑小区;
    所述根据预设的工程参数表与每个所述服务小区对应的测量报告数据,对每个所述服务小区进行RSI冲突检测,获得与每个所述服务小区发生RSI冲突的小区,包括:
    根据在每个所述服务小区的两倍覆盖半径的范围内、且时频码资源与每个所述服务小区的时频码资源相同的除所述服务小区以外的其它可疑小区,确定每个所述服务小区对应的第二候选小区集合;以及
    根据所述工程参数表、每个所述服务小区对应的测量报告数据以及对应的第二候选小区集合中的每个候选小区的测量报告数据,对每个所述服务小区与对应的每个所述候选小区进行RSI冲 突检测,获得与每个所述服务小区发生RSI冲突的小区。
  11. 根据权利要求1-10任一项所述的根序列索引RSI冲突的处理方法,其中,所述根据预设的工程参数表与每个所述服务小区对应的测量报告数据,对每个所述服务小区进行RSI冲突检测,获得与每个所述服务小区发生RSI冲突的小区之后,还包括:
    根据每个所述服务小区的两倍覆盖半径以及每个所述服务小区发生RSI冲突的小区对应的最大站间距离,确定每个所述服务小区对应的复用距离;以及
    基于每个所述服务小区对应的复用距离,对每个所述服务小区的RSI进行重新配置。
  12. 一种服务器,包括处理器、存储器、存储在所述存储器上并可被所述处理器执行的计算机程序以及用于实现所述处理器和所述存储器之间的连接通信的数据总线,其中,所述计算机程序被所述处理器执行时实现如权利要求1至11中任一项所述的根序列索引RSI冲突的处理方法。
  13. 一种存储介质,用于可读存储,其中,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现如权利要求1至11中任一项所述的根序列索引RSI冲突的处理方法。
PCT/CN2023/074241 2022-05-16 2023-02-02 根序列索引rsi冲突的处理方法、服务器和存储介质 WO2023221555A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210529037.8 2022-05-16
CN202210529037.8A CN117119511A (zh) 2022-05-16 2022-05-16 根序列索引rsi冲突的处理方法、服务器和存储介质

Publications (1)

Publication Number Publication Date
WO2023221555A1 true WO2023221555A1 (zh) 2023-11-23

Family

ID=88802551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074241 WO2023221555A1 (zh) 2022-05-16 2023-02-02 根序列索引rsi冲突的处理方法、服务器和存储介质

Country Status (2)

Country Link
CN (1) CN117119511A (zh)
WO (1) WO2023221555A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104125574A (zh) * 2013-04-23 2014-10-29 华为技术服务有限公司 一种zc根序列索引重分配方法及装置
KR20150027548A (ko) * 2013-09-04 2015-03-12 주식회사 엘지유플러스 루트시퀀스 인덱스 충돌 감지를 위한 시스템 및 방법
WO2017092497A1 (zh) * 2015-11-30 2017-06-08 中兴通讯股份有限公司 一种根序列优化方法及装置
WO2021038270A1 (en) * 2019-08-23 2021-03-04 Telefonaktiebolaget Lm Ericsson (Publ) Methods for cognitive physical random access channel planning and related apparatus
US11240689B1 (en) * 2020-10-13 2022-02-01 At&T Intellectual Property I, L.P. Automated cell parameter update in cellular networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104125574A (zh) * 2013-04-23 2014-10-29 华为技术服务有限公司 一种zc根序列索引重分配方法及装置
KR20150027548A (ko) * 2013-09-04 2015-03-12 주식회사 엘지유플러스 루트시퀀스 인덱스 충돌 감지를 위한 시스템 및 방법
WO2017092497A1 (zh) * 2015-11-30 2017-06-08 中兴通讯股份有限公司 一种根序列优化方法及装置
WO2021038270A1 (en) * 2019-08-23 2021-03-04 Telefonaktiebolaget Lm Ericsson (Publ) Methods for cognitive physical random access channel planning and related apparatus
US11240689B1 (en) * 2020-10-13 2022-02-01 At&T Intellectual Property I, L.P. Automated cell parameter update in cellular networks

Also Published As

Publication number Publication date
CN117119511A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
WO2019154333A1 (zh) 资源选择的方法和终端设备
EP3543731A1 (en) Positioning method and system, and related device
WO2019084927A1 (zh) D2d通信中资源选取的方法和终端设备
US20160286465A1 (en) Method and apparatus for transmitting d2d discovery signal and communication system
JP6843895B2 (ja) 通信方法及び通信装置
EP2802165B1 (en) Indication of device to device communication state to base station
US20200351953A1 (en) Back-off timer per ssb in nr
WO2019136720A1 (zh) 信号传输的方法和设备
WO2020164142A1 (zh) 同步信号块信息处理方法、装置及通信装置
US20220394594A1 (en) Access Method and Apparatus
US20230037478A1 (en) Positioning signal processing method and apparatus
WO2019137422A1 (zh) 同步指示方法和设备
EP3145237A1 (en) Processing method for dynamic channel detection, station, and access point device
US11706588B2 (en) Positioning method and apparatus for UE
US20160295367A1 (en) Proximity-based services
WO2019148451A1 (zh) 信息传输的方法和设备
WO2023221555A1 (zh) 根序列索引rsi冲突的处理方法、服务器和存储介质
US20220330186A1 (en) Beam training method and related device
CN110346754B (zh) 一种定位时刻获取方法及装置
WO2019136721A1 (zh) 传输信息的方法和设备
US20190253998A1 (en) Methods, Wireless Communication Device and Location Node for Managing a Location Request
CN114928849A (zh) 一种基站部署方法、装置、电子设备及存储介质
WO2018137246A1 (zh) 终端设备定位方法以及网络设备
CN110708151B (zh) 一种载波聚合的方法及设备
WO2023077356A1 (zh) 资源重选方法、设备间协作方法以及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806517

Country of ref document: EP

Kind code of ref document: A1