WO2023221531A1 - 一种绕组切换型开关磁阻电机功率电路及其控制方法 - Google Patents

一种绕组切换型开关磁阻电机功率电路及其控制方法 Download PDF

Info

Publication number
WO2023221531A1
WO2023221531A1 PCT/CN2022/144412 CN2022144412W WO2023221531A1 WO 2023221531 A1 WO2023221531 A1 WO 2023221531A1 CN 2022144412 W CN2022144412 W CN 2022144412W WO 2023221531 A1 WO2023221531 A1 WO 2023221531A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
motor
mode
coil
diode
Prior art date
Application number
PCT/CN2022/144412
Other languages
English (en)
French (fr)
Inventor
陈昊
王星
陈涛
王少江
郑建能
苏振华
刘胜涛
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2023221531A1 publication Critical patent/WO2023221531A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/092Converters specially adapted for controlling reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention belongs to the technical field of switched reluctance motors, and specifically relates to a power circuit suitable for a winding-switching switched reluctance motor and a control method thereof.
  • Winding switching motors also known as winding reconfiguration motors, currently have three commonly used winding coil configuration methods, including series/parallel, star/angle and tapped winding configurations. Winding switching motors have been studied a lot on induction motors and permanent magnet motors, and the working state of the windings is reconstructed through electronic switches. At low speed, the motor operates in series, star connection or full winding to achieve large torque output. At low speed, the motor windings are reconfigured into parallel connection, angular connection or partial winding operation to broaden the speed regulation range, which can effectively realize the wide high-efficiency area of the motor system. , operates in a wide speed range, and compared with the traditional gearbox speed regulation scheme, it can effectively reduce the axial size and shift time of the system, making it an effective choice for future vehicle speed regulation systems.
  • the invention discloses a winding-switching switched reluctance motor power circuit and a control method thereof.
  • the motor uses series windings at low speeds to achieve high torque output, and is reconfigured into parallel windings at high speeds to obtain a higher speed range and Output Power.
  • This two-speed range drive will have better torque/speed characteristics than a single-speed range motor drive (i.e. a fixed winding motor drive).
  • a winding-switching switched reluctance motor power circuit including:
  • a winding switching switched reluctance motor that can realize two working modes of phase winding series connection and parallel connection;
  • a power converter circuit that enables a switched reluctance motor to freely switch between winding series and parallel modes, including a basic asymmetric half-bridge circuit and a winding mode switching circuit;
  • a current sensor for detecting the phase winding currents ia , ib and ic of the switched reluctance motor
  • a speed calculation module that receives the rotor position ⁇ of the switched reluctance motor transmitted by the position sensor and converts the rotor position into the rotor speed n of the switched reluctance motor;
  • a speed controller that receives the speed error signal obtained by the difference between the actual speed n transmitted by the speed calculation module and the given reference speed n ref , and outputs the reference current i ref or the reference opening angle ⁇ onref ;
  • the current chopper/angle position control module that receives the reference current i ref or the reference opening angle ⁇ onref and outputs the control signal of the basic asymmetric half-bridge circuit; the speed controller communicates with the asymmetric half-bridge circuit through the current chopper/angle position control module connect;
  • the torque calculation module receives the phase winding currents i a , ib , ic and the rotor position ⁇ , and obtains the current output torque value T em through offline table lookup processing;
  • a winding mode selection module that receives the current actual speed n and output torque T em , determines the working mode the motor should be in based on the value ranges of n and T em , and outputs the control signal of the winding mode switching circuit;
  • the asymmetric half-bridge circuit is used to convert the DC bus voltage into the required voltage according to the control signal output by the current chopper/angle position control module to achieve normal operation of the motor;
  • the winding mode switching circuit is used to change the connection mode between one part of the coil and another part of the same phase winding, and includes two working modes: winding coil series and winding coil parallel mode.
  • the winding series mode is the connection between one part of the motor's same phase winding and another part of the coil.
  • the working mode in which a part of the coils are connected in series, and the winding parallel mode is the working mode in which a part of the coils of the same phase winding of the motor is connected in parallel with another part of the coils; according to the real-time working conditions of the motor, the appropriate winding coil connection mode is judged and the switching tube is turned on and off. cut off to make the motor work in series or parallel mode;
  • the basic asymmetric half-bridge circuit consists of 6 switching tubes S1, S2, S3, S4, S5, S6 and 6 diodes D1, D2, D3, D4, D5, D6 and the connecting lines between them;
  • the winding mode switching circuit consists of 9 switching tubes S S1 , S S2 , S S3 , SP1 , SP2 , SP3 , SP4 , SP5 , SP6 It consists of 9 diodes DS1 , DS2 , DS3 , DP1, DP2 , DP3 , DP4 , DP5 , DP6 and the connecting lines between them ;
  • the power converter circuit consists of 1 DC voltage source U s , 1 electrolytic capacitor C 1 , and 15 switching tubes S1, S2, S3, S4, S5, S6 , S S1 , S S2 , S S3 , S P1 , S P2 , S P3 , S P4 , S P5 , S P6 , 15 diodes D1, D2, D3, D4 , D5, D6, D S1 , D S2 , D S3 , D P1 , D P2 , D P3 , D P4 , D P5 , D P6 and six winding coils A1, A2, B1, B2, C1, C2 and the connecting lines between them;
  • the drain of the switch S1 is connected to the positive electrode of the DC voltage source U s , the positive electrode of the electrolytic capacitor C 1 and the negative electrode of the diode D2, the switch
  • the source of tube S1 is connected to the drain of switch tube S P1 , the anode of winding coil A1 and the cathode of diode D1.
  • the anode of diode D1 is connected to the cathode of DC voltage source U s , the cathode of electrolytic capacitor C 1 and the cathode of switch S2.
  • the sources are connected.
  • the source of the switch tube S P1 is connected to the anode of the diode D P1 .
  • the cathode of the diode D P1 is connected to the cathode of the diode D S1 and the anode of the winding coil A2.
  • the anode of the diode D S1 is connected to the source of the switch S S1 .
  • the drain of the switch S S1 is connected to the cathode of the winding coil A1 and the drain of the switch S P2
  • the source of the switch S P2 is connected to the anode of the diode D P2
  • the cathode of the diode D P2 is connected to the switch S2
  • the drain, the cathode of the winding coil A2 and the anode of the diode D2 are connected; the connections of the components in phase B and phase C are similar to those in phase A.
  • the winding mode switching circuit has 6 working states under normal operation, including: excitation state of coil series mode, freewheeling state of coil series mode, demagnetization state of coil series mode, excitation state of coil parallel mode, and coil parallel mode.
  • excitation state of coil series mode freewheeling state of coil series mode
  • demagnetization state of coil series mode demagnetization state of coil series mode
  • excitation state of coil parallel mode and coil parallel mode.
  • the motor works in the demagnetization state of the coil series mode; when the switching tubes S1, S2, Sp1 , and S P2 are turned on, and the switching tube S s1 is turned off, the motor works in the excitation state of the coil parallel mode; when the switching tubes S2, When S p1 and S P2 are turned on, and the switching tubes S1 and S s1 are turned off, the motor works in the freewheeling state of the coil parallel mode; when the switching tubes S p1 and S P2 are turned on, and the switching tubes S1, S2 and S s1 are turned off.
  • the motor works in the demagnetization state of the coil parallel mode, and the connections of the components in phase B and phase C are similar to those in phase A.
  • a control method for the power circuit of a winding-switching switched reluctance motor which determines the required working mode of the motor based on the actual speed and output torque of the motor to achieve high-efficiency operation in a wide speed range.
  • Collect position and speed signals Use a rotary decoder to collect the rotor position angle signal, and send the rotor position angle signal to the microprocessor. This signal is directly used in the current chopper/angle position controller to determine the corresponding conduction phase sequence and find the current The output torque value of the state; the rotor position angle signal can be used to calculate the motor speed through the pre-written microprocessor program;
  • Collect current signals Use three current Hall sensors to collect three-phase current signals i a , ib , and ic respectively.
  • the three-phase current analog signals are converted into voltage signals through the sampling resistor and filtered out by a second-order low-pass active filter.
  • the high-frequency noise signal is then sent to the A/D conversion chip to convert the analog signal into a digital signal of positive and negative current amplitudes, which is directly used in the current hysteresis comparator of the current chopper controller and to find the output torque value of the current state. ;
  • the asymmetric half-bridge circuit is used to control the on and off of the switching tubes S 1 to S 6 according to the control signal output by the current chopper/angle position control module, and convert the DC bus voltage into the required voltage, thereby realizing the current or Closed-loop control of opening angle to maintain normal operation of the motor;
  • winding mode switching circuit uses the winding mode switching circuit to switch working states, including: excitation state of coil series mode, freewheeling state of coil series mode, demagnetization state of coil series mode, excitation state of coil parallel mode, freewheeling state of coil parallel mode, coil parallel connection
  • the demagnetization state of the mode has 6 working states;
  • Estimated torque Receive the three-phase current signals i a , ib , ic and the rotor position ⁇ , and obtain the current output torque value T em through offline table lookup processing, which is used as one of the input quantities of the winding mode selection module;
  • Winding mode selection receive the current actual speed n and output torque T em , and determine the working mode the motor should be in based on the value ranges of actual speed n and output torque T em .
  • the winding mode switching circuit is used to change the connection mode between one part of the coil and another part of the same phase winding. Specifically, it includes two working modes, namely, the winding coil series connection and the winding coil parallel connection mode.
  • the winding series connection mode is the connection between one part of the coil and another part of the same phase winding of the motor.
  • the operating mode in which some coils are connected in series. At this time, the switch S s1 is turned on, and the switches S p1 and S P2 are turned off.
  • the winding parallel mode is an operating mode in which a part of the coil of the same phase winding of the motor is connected in parallel with another part of the coil. At this time, the switch S s1 is turned off, and the switches S p1 and S P2 are turned on. ;
  • the first critical speed in the winding coil series mode is defined as ⁇ s1 and the second critical speed is defined as ⁇ s2 ;
  • the first critical speed in the parallel mode is defined as ⁇ p1 and the second critical speed is defined as ⁇ p2 ;
  • the motor In the winding series mode, the motor is in the constant torque range when the speed is less than ⁇ s1 .
  • the motor In the winding parallel connection mode, the motor is in the constant torque range when the speed is less than ⁇ p1 .
  • the output torque capability is a fixed value, which is determined by the rated current value and current density; in the winding parallel connection mode, the motor is in the speed range between At ⁇ p1 and ⁇ p2 , it is in the constant power range.
  • the output power capability is a fixed value, and the output torque capability decreases from increasing to ⁇ p1.
  • the drain of the switch S1 is connected to the positive pole of the DC voltage source U s , the positive pole of the electrolytic capacitor C 1 and the negative pole of the diode D2, and the switch
  • the source of tube S1 is connected to the anode of winding coil A1
  • the cathode of winding coil A1 is connected to the drain of switch tube S S1
  • the source of switch tube S S1 is connected to the anode of diode D S1
  • the cathode of diode D S1 is connected to the winding.
  • the positive electrode of the coil A2 is connected, the negative electrode of the winding coil A2 is connected to the drain of the switch S2, and the source of the switch S2 is connected to the negative electrode of the DC voltage source U s and the negative electrode of the electrolytic capacitor C 1 .
  • the current flows out from the anode of the DC voltage source U s , flows through the switching tube S1, winding coil A1, switching tube S S1 , diode D S1 , winding coil A2 and switching tube S2, and returns to the DC voltage source U s the negative pole;
  • the negative electrode of the diode D1 is connected to the positive electrode of the winding coil A1, and the negative electrode of the winding coil A1 is connected to the drain of the switch tube S S1 .
  • the switch The source of tube S S1 is connected to the anode of diode D S1
  • the cathode of diode D S1 is connected to the anode of winding coil A2
  • the cathode of winding coil A2 is connected to the drain of switch tube S2
  • the source of switch tube S2 is connected to the DC voltage.
  • the negative electrode of the source U s is connected to the negative electrode of the electrolytic capacitor C 1 .
  • the anode of the diode D1 is connected to the cathode of the DC voltage source U s and the cathode of the electrolytic capacitor C 1 , and the cathode of the diode D1 is connected to the winding coil A1
  • the anode of the diode D S1 is connected to the cathode of the winding coil A1 and the drain of the switch tube S S1 .
  • the source of the switch tube S S1 is connected to the anode of the diode D S1 .
  • the cathode of the diode D S1 is connected to the anode of the winding coil A2.
  • the winding coil A2 The cathode of is connected to the anode of diode D2, and the cathode of diode D2 is connected to the anode of DC voltage source U s and the anode of electrolytic capacitor C 1 .
  • the current flows out from the cathode of the DC voltage source U s , flows through the diode D1, winding coil A1, switch S S1 , diode D S1 , winding coil A2 and diode D2, and returns to the anode of the DC voltage source U s .
  • the drain of the switch S1 is connected to the positive pole of the DC voltage source U s , the positive pole of the electrolytic capacitor C 1 and the negative pole of the diode D2, and the switch
  • the source of tube S1 is connected to the drain of switch tube S P1 and the anode of winding coil A1.
  • the source of switch tube S P1 is connected to the anode of diode D P1 .
  • the cathode of diode D P1 is connected to the anode of winding coil A2.
  • the winding The cathode of the coil A1 is connected to the drain of the switch tube S P2 .
  • the source of the switch tube S P2 is connected to the anode of the diode D P2 .
  • the cathode of the diode D P2 is connected to the cathode of the winding coil A2 and the drain of the switch S2.
  • the switch The source of tube S2 is connected to the negative electrode of DC voltage source U s and the negative electrode of electrolytic capacitor C 1 .
  • the current flows out from the positive electrode of the DC voltage source U s . It first flows through the switching tube S1, and then splits into two paths. One path flows through the switching tube SP1 , diode D P1 and winding coil A2, and the other path flows through the winding coil. A1, switch tube S P2 , diode D P2 , and then these two currents flow through the switch tube S2 together and return to the negative electrode of the DC voltage source U s .
  • the cathode of the diode D1 is connected to the anode of the winding coil A1 and the drain of the switch tube S P1 , and the source of the switch tube S P1 is connected to the cathode of the diode D1.
  • the anode of diode D P1 is connected, the cathode of diode D P1 is connected to the anode of winding coil A2, the cathode of winding coil A1 is connected to the drain of switch tube S P2 , the source of switch tube S P2 is connected to the anode of diode D P2 , The cathode of the diode D P2 is connected to the cathode of the winding coil A2 and the drain of the switch S2.
  • the source of the switch S2 is connected to the cathode of the DC voltage source U s and the cathode of the electrolytic capacitor C 1 . In this state, the current flows through the diode D1 and then splits into two paths.
  • the cathode of the diode D1 is connected to the anode of the winding coil A1 and the drain of the switch tube S P1 , and the source of the switch tube S P1 is connected to the diode.
  • the anode of D P1 is connected, the cathode of diode D P1 is connected to the anode of winding coil A2, the cathode of winding coil A1 is connected to the drain of switch tube S P2 , the source of switch tube S P2 is connected to the anode of diode D P2 , and the diode
  • the negative electrode of DP2 is connected to the negative electrode of the winding coil A2 and the positive electrode of the diode D2.
  • the negative electrode of the diode D2 is connected to the positive electrode of the DC voltage source Us and the positive electrode of the electrolytic capacitor C1 . In this state, the current flows out from the negative pole of the DC voltage source U s and then divides into two paths.
  • the working mode that the motor should be in is judged according to the value range of the actual speed n of the motor and the output torque T em , specifically as follows:
  • the motor can achieve the required load and power in both the winding series and parallel modes. However, since the motor operates more efficiently in the series mode, the motor winding selection Work in series mode;
  • the motor can achieve the required load and power in both the winding series and parallel modes. However, since the motor operates more efficiently in the series mode, the motor Select winding series mode to work;
  • the winding-switching switched reluctance motor is a dual-working-mode motor.
  • the power circuit and its control method enable the winding-switching motor to realize free switching between two working modes. Compared with the working mode of separate winding coils connected in series, the motor speed range is expanded, and the motor power and power density are improved; compared with the working mode of separate winding coils connected in parallel, the efficiency of the motor at low speeds is improved; therefore, the above
  • the winding-switching switched reluctance motor power circuit and its control method realize high-efficiency operation of the motor in a wide speed range, which is conducive to improving the competitiveness of the switched reluctance motor in the field of electric vehicles.
  • the winding-switching motor of the present invention can greatly expand the rotational speed range of the motor, improve the output power and power density of the motor, and is particularly useful for switched reluctance motor technology without rare earth materials.
  • the motor uses series windings at low speeds to achieve high torque output, and then reconfigures them into parallel windings at high speeds to obtain a higher speed range and output power.
  • a two speed range drive will have better torque/speed characteristics than a single speed range motor drive i.e. a fixed winding motor drive.
  • the high-efficiency operation of the switched reluctance motor can be realized in a wide speed range, and the performance of the switched reluctance motor is improved, especially in industrial fields such as electric vehicles. Competitiveness.
  • Figure 1 is a block diagram of the control method of the winding-switching switched reluctance motor power circuit
  • Figure 2 is a schematic diagram of the power circuit of the winding-switching switched reluctance motor power circuit and its control method
  • Figure 3(a) is a schematic diagram of the series operation mode of the winding-switching switched reluctance motor power circuit
  • Figure 3(b) is a schematic diagram of the parallel operation mode of the winding-switching switched reluctance motor power circuit
  • Figure 4(a) is a schematic diagram of the excitation state in the series operation mode of the winding-switching switched reluctance motor power circuit
  • Figure 4(b) is a schematic diagram of the freewheeling state in the series operation mode of the winding-switching switched reluctance motor power circuit
  • Figure 4(c) is a schematic diagram of the demagnetization state in the series operation mode of the winding-switching switched reluctance motor power circuit
  • Figure 4(d) is a schematic diagram of the excitation state in the parallel operation mode of the winding-switching switched reluctance motor power circuit
  • Figure 4(e) is a schematic diagram of the freewheeling state in the parallel operation mode of the winding-switching switched reluctance motor power circuit
  • Figure 4(f) is a schematic diagram of the demagnetization state in the parallel operation mode of the winding-switching switched reluctance motor power circuit
  • Figure 5 is a control method flow chart of the winding-switching switched reluctance motor power circuit and its control method
  • Figure 6(a) is an efficiency map of the winding-switching switched reluctance motor operating in the winding-independent series mode
  • Figure 6(b) is an efficiency map of the winding-switching switched reluctance motor operating in the winding independent parallel mode
  • Figure 6(c) is an efficiency map of the winding switching switched reluctance motor operating in the series-parallel dual mode.
  • the present invention aims to achieve a wide rotation speed by proposing a power circuit that can realize free switching of winding modes, and at the same time proposing a control method suitable for the power circuit, judging the required working mode of the motor according to the actual speed and output torque of the motor. High-efficiency operation within the range and can be used in electric vehicles. As shown in Figure 1:
  • Collect position and speed signals Use a rotary decoder to collect the rotor position angle signal, and send the rotor position angle signal to the microprocessor. This signal is directly used for the current chopper/angle position controller to determine the corresponding conduction phase sequence and Find the output torque value of the current state; the rotor position angle signal can be used to calculate the motor speed through the pre-written microprocessor program;
  • Collect current signals Use three current Hall sensors to collect the analog signals of the three-phase current i a , ib , and ic respectively.
  • the three-phase current analog signals are converted into voltage signals through the sampling resistor, and then passed through the second-order low-pass active
  • the filter filters out high-frequency noise signals, and then sends them to the A/D conversion chip to convert the analog signals into positive and negative current amplitude digital signals, which are directly used in the current hysteresis comparator of the current chopper controller and to find the current status.
  • Output torque value Use three current Hall sensors to collect the analog signals of the three-phase current i a , ib , and ic respectively.
  • the three-phase current analog signals are converted into voltage signals through the sampling resistor, and then passed through the second-order low-pass active
  • the filter filters out high-frequency noise signals, and then sends them to the A/D conversion chip to convert the analog signals into positive and negative current amplitude digital signals, which are directly used in the
  • the power converter circuit consists of a basic asymmetric half-bridge circuit and a winding mode switching circuit, as shown in Figure 2.
  • S 1 to S 6 , S S1 to S S3 , and S P1 to S P6 are metal-oxide semiconductor field effect transistors (MOSFETs), and D 1 to D 6 , D S1 to D S3 , and D P1 to D P6 are Fast recovery diode.
  • MOSFETs metal-oxide semiconductor field effect transistors
  • the asymmetric half-bridge circuit is used to control the on and off switching tubes S 1 to S 6 according to the control signal output by the current chopper/angle position control module, and convert the DC bus voltage into the required voltage, thereby achieving closed-loop control of current or opening angle to maintain the normal operation of the motor.
  • the winding mode switching circuit is used to change the connection mode of one part of the coil and another part of the same phase winding. Specifically, it includes two working modes, namely, the winding coil series connection and the winding coil parallel connection mode. As shown in Figure 3, A A schematic diagram of the circuit conduction taking the phase as an example.
  • the winding series mode is an operating mode in which a part of the coil of the same phase winding of the motor is connected in series with another part of the coil.
  • the switch S s1 is turned on, and the switches S p1 and S P2 are turned off, as shown in Figure 3(a);
  • the winding parallel mode is an operating mode in which a part of the coil of the same phase winding of the motor is connected in parallel with another part of the coil.
  • the switch S s1 is turned off, and the switches S p1 and S P2 are turned on, as shown in Figure 3(b).
  • the winding mode switching circuit has 6 working states under normal working conditions, as shown in Figure 4, including: the excitation state of the coil series mode, the freewheeling state of the coil series mode, the demagnetization state of the coil series mode, and the coil parallel mode.
  • the excitation state of the coil series mode is shown in Figure 4(a); the freewheeling state of the coil series mode is shown in Figure 4(b); the demagnetization state of the coil series mode is shown in Figure 4(c). is shown; the excitation state of the coil parallel mode is shown in Figure 4(d); the freewheeling state of the coil parallel mode is shown in Figure 4(e); the demagnetization state of the coil parallel mode is shown in Figure 4(f) .
  • Torque estimation Receive the phase winding currents i a , ib , ic and the rotor position ⁇ , and obtain the current output torque value T em through offline table lookup processing, which is used as one of the input quantities of the winding mode selection module;
  • Winding mode selection receive the current actual speed n and output torque T em , and determine the working mode the motor should be in based on the value range of n and T em ;
  • the present invention adopts the above technical solution and obtains beneficial effects, as shown in the motor efficiency map of Figure 6.
  • the efficiency map under series-parallel dual mode operation is shown in Figure 6(c).
  • the speed range of the motor is broadened, and the power and Power density; compared with the efficiency map of the separate parallel mode shown in Figure 6(b), the operating efficiency at low speed is improved.
  • the control method of the present invention by adding a set of winding-switching power circuits and implementing the control method of the present invention, high-efficiency operation of the switched reluctance motor in a wide speed range can be achieved, and the performance of the switched reluctance motor can be improved, especially It is competitiveness in industrial fields such as electric vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本发明公开一种绕组切换型开关磁阻电机功率电路及其控制方法,属于开关磁阻电机领域。包括能实现电机在绕组串联和并联模式之间自由切换的功率变换器、基本不对称半桥电路和绕组模式切换电路;不对称半桥电路控制电机的正常运转,控制方法采用双闭环,外环为转速环,内环为电流环或开通角环;绕组模式切换电路控制电机的模式切换;用电流传感器采集到绕组相电流,结合由位置传感器测得的转子位置信号得到当前的输出转矩值,用实际转速和转矩来判断电机的工作模式,得到合适的绕组模式切换电路控制信号。能合理的给出所需的绕组连接模式,实现电机在不同模式间的自由切换,拓宽电机的转速范围,实现开关磁阻电机在宽转速范围下的高效率运行。

Description

一种绕组切换型开关磁阻电机功率电路及其控制方法 技术领域
本发明属于开关磁阻电机技术领域,具体涉及一种适用于绕组切换型开关磁阻电机的功率电路及其控制方法。
背景技术
绕组切换型电机,也称绕组重构型电机,目前常用的绕组线圈配置方法可分为三种,包括串联/并联、星形/角形和抽头绕组配置。绕组切换型电机已在感应电机和永磁电机上有过不少研究,通过电子开关重构绕组工作状态。低速时电机以串联、星形连接或全绕组运行实现大转矩输出,低速时电机绕组被重新配置为并联、角形连接或部分绕组运行以拓宽调速范围,能有效实现电机系统的宽高效区、宽速域运行,并且相对于传统变速箱调速方案,能够有效减少系统的轴向尺寸和换挡时间,为未来车辆调速系统的有效选择。
不过,尽管绕组切换型电机的概念众所周知,并且在感应电机和永磁电机上取得了很多成果,但是对于开关磁阻电机,关于模式切换和绕组重构的研究不多。
发明内容
本发明公开一种绕组切换型开关磁阻电机功率电路及其控制方法,低速时电机使用串联绕组以实现高转矩输出,在高速时将其重新配置为并联绕组,以获得更高转速范围和输出功率。这种双速范围驱动将比单速范围电机驱动(即固定绕组电机驱动)具有更好的转矩/速度特性。
本发明为解决上述技术问题采用以下技术方案:
一种绕组切换型开关磁阻电机功率电路,包括:
能实现相绕组串联和并联两种工作模式的绕组切换型开关磁阻电机;
能实现开关磁阻电机在绕组串联和并联模式之间自由切换的功率变换器电路,包括基本不对称半桥电路和绕组模式切换电路;
检测所述开关磁阻电机相绕组电流i a、i b、i c的电流传感器;
检测所述开关磁阻电机转子位置θ的位置传感器;
接收所述位置传感器传送的开关磁阻电机转子位置θ,将转子位置转化成开关磁阻电机转子转速n的转速计算模块;
接收所述转速计算模块传送的实际转速n与给定参考转速n ref作差后得到的转速误差信号,输出参考电流i ref或参考开通角θ onref的速度控制器;
接收参考电流i ref或参考开通角θ onref,输出基本不对称半桥电路的控制信号的电流斩波/ 角度位置控制模块;速度控制器通过电流斩波/角度位置控制模块与不对称半桥电路连接;
接收相绕组电流i a、i b、i c和转子位置θ,通过离线查表处理得到当前输出转矩值T em的转矩计算模块;
接收当前实际转速n和输出转矩T em,根据n和T em的取值范围判断所述电机应该处在的工作模式,输出绕组模式切换电路控制信号的绕组模式选择模块;
所述不对称半桥电路,用于根据所述电流斩波/角度位置控制模块输出的控制信号将直流母线电压变换为所需的电压,实现电机的正常运行;
所述绕组模式切换电路,用于改变同一相绕组一部分线圈和另一部分线圈的连接方式,包括2种工作模式:绕组线圈串联和绕组线圈并联模式,绕组串联模式为电机同一相绕组一部分线圈和另一部分线圈相串联的工作模式,绕组并联模式为电机同一相绕组一部分线圈和另一部分线圈相并联的工作模式;根据电机的实时工况,判断合适的绕组线圈连接模式,控制开关管的开通与关断,使电机工作在串联或并联模式下;
进一步,对于三相的绕组切换型开关磁阻电机,基本的不对称半桥电路,由6个开关管S1、S2、S3、S4、S5、S6和6个二极管D1、D2、D3、D4、D5、D6以及它们之间的连接线组成;所述绕组模式切换电路,由9个开关管S S1、S S2、S S3、S P1、S P2、S P3、S P4、S P5、S P6和9个二极管D S1、D S2、D S3、D P1、D P2、D P3、D P4、D P5、D P6以及它们之间的连接线组成;
因此对于三相的绕组切换型开关磁阻电机,所述功率变换器电路由1个直流电压源U s,1个电解电容C 1,15个开关管S1、S2、S3、S4、S5、S6、S S1、S S2、S S3、S P1、S P2、S P3、S P4、S P5、S P6,15个二极管D1、D2、D3、D4、D5、D6、D S1、D S2、D S3、D P1、D P2、D P3、D P4、D P5、D P6和6个绕组线圈A1、A2、B1、B2、C1、C2以及它们之间的连接线组成;
所述绕组切换型功率电路中各电子元件之间的连接关系,A相中:开关管S1的漏极与直流电压源U s的正极、电解电容C 1的正极和二极管D2的负极相连,开关管S1的源极与开关管S P1的漏极、绕组线圈A1的正极和二极管D1的负极相连,二极管D1的正极与直流电压源U s的负极、电解电容C 1的负极和开关管S2的源极相连,开关管S P1的源极与二极管D P1的正极相连,二极管D P1的负极与二极管D S1的负极和绕组线圈A2的正极相连,二极管D S1的正极与开关管S S1的源极相连,开关管S S1的漏极与绕组线圈A1的负极和开关管S P2的漏极相连,开关管S P2的源极与二极管D P2的正极相连,二极管D P2的负极与开关管S2的漏极、绕组线圈A2的负极和二极管D2的正极相连;B相和C相中各元件连接方式与A相类似。
进一步,绕组模式切换电路,正常工作情况下具有6种工作状态,包括:线圈串联模式的励磁状态,线圈串联模式的续流状态,线圈串联模式的退磁状态,线圈并联模式的励磁状 态,线圈并联模式的续流状态,线圈并联模式的退磁状态。
组切换型开关磁阻电机的A相中,当开关管S1、S2、S s1开通,且开关管S p1、S P2关断时,电机工作在线圈串联模式的励磁状态;当开关管S2、S s1开通,且开关管S1、S p1、S P2关断时,电机工作在线圈串联模式的续流状态;当开关管S s1开通,且开关管S1、S2、S p1、S P2关断时,电机工作在线圈串联模式的退磁状态;当开关管S1、S2、S p1、S P2开通,且开关管S s1关断时,电机工作在线圈并联模式的励磁状态;当开关管S2、S p1、S P2开通,且开关管S1、S s1关断时,电机工作在线圈并联模式的续流状态;当开关管S p1、S P2开通,且开关管S1、S2、S s1关断时,电机工作在线圈并联模式的退磁状态,B相和C相中各元件连接方式与A相类似。
一种绕组切换型开关磁阻电机功率电路的控制方法,根据电机的实际转速和输出转矩判断电机所需的工作模式,实现宽转速范围下的高效率运行,
步骤如下:
采集位置和转速信号:采用旋转解码器采集转子位置角信号,将转子位置角信号送入微处理器,该信号直接用于电流斩波/角度位置控制器来确定相应的导通相序及查找当前状态的输出转矩值;转子位置角信号通过预编写的微处理器程序即可计算电机转速;
采集电流信号:用三个电流霍尔传感器分别采集三相电流信号i a、i b、i c,三相电流模拟信号经采样电阻转化为电压信号,经过二阶低通有源滤波器滤除高频噪声信号,然后送入A/D转换芯片将模拟信号对应转换为正负电流幅值数字信号,直接用于电流斩波控制器的电流滞环比较器及查找当前状态的输出转矩值;
计算电流参考值或开通角参考值:转速给定值n ref与反馈值n作差,经过转速PI调节器的输出值i ref或θ onref,作为电流或开通角的参考值;
利用不对称半桥电路根据电流斩波/角度位置控制模块输出的控制信号,控制开关管S 1~S 6的导通和关断,将直流母线电压变换为所需的电压,从而实现电流或开通角的闭环控制,保持电机的正常运行;
根据开关磁阻的实时工况,判断合适的绕组线圈连接模式,控制开关管的开通与关断,使电机工作在串联或并联模式下;
利用绕组模式切换电路切换工作状态,包括:线圈串联模式的励磁状态,线圈串联模式的续流状态,线圈串联模式的退磁状态,线圈并联模式的励磁状态,线圈并联模式的续流状态,线圈并联模式的退磁状态6种工作状态,;
估算转矩:接收三相电流信号i a、i b、i c和转子位置θ,通过离线查表处理得到当前输出转矩值T em,作为绕组模式选择模块的其中一个输入量;
绕组模式选择:接收当前实际转速n和输出转矩T em,根据实际转速n和输出转矩T em的取值范围判断所述电机应该处在的工作模式。
进一步,利用绕组模式切换电路改变同一相绕组一部分线圈和另一部分线圈的连接方式,具体包括2种工作模式,即绕组线圈串联和绕组线圈并联模式,绕组串联模式为电机同一相绕组一部分线圈和另一部分线圈相串联的工作模式,此时开关管S s1开通,且开关管S p1和S P2关断,
绕组并联模式为电机同一相绕组一部分线圈和另一部分线圈相并联的工作模式,此时开关管S s1关断,且开关管S p1和S P2开通。;
进一步,根据开关磁阻电机特性,绕组线圈串联模式下的第一临界转速定义为ω s1,第二临界转速定义为ω s2;并联模式的第一临界转速定义为ω p1,第二转速定义为ω p2;在施加相同电压的情况下,并联模式下的第一临界转速ω p1一般是串联模式的第一临界转速ω s1的二倍,即有ω p1=2*ω s1
绕组串联模式下,电机在转速小于ω s1时,处于恒转矩区间,此时输出转矩能力是一个定值,为T s1,这个值由额定电流值和电流密度决定;绕组串联模式下,电机在转速介于ω s1和ω s2时,处于恒功率区间,此时输出功率能力是一个定值,为P s=ω s1*T s1/9.55,转速从增大到,输出转矩能力是下降的;
绕组并联模式下,电机在转速小于ω p1时,处于恒转矩区间,此时输出转矩能力是一个定值,这个值由额定电流值和电流密度决定;绕组并联模式下,电机在转速介于ω p1和ω p2时,处于恒功率区间,此时输出功率能力是一个定值,转速从增大到,输出转矩能力是下降的。
进一步,利用绕组模式切换电路切换的6种工作状态时工作的电路为:
所述绕组切换型功率电路工作在线圈串联模式的励磁状态时,A相中,开关管S1的漏极与直流电压源U s的正极、电解电容C 1的正极和二极管D2的负极相连,开关管S1的源极与绕组线圈A1的正极相连,绕组线圈A1的负极与开关管S S1的漏极相连,开关管S S1的源极与二极管D S1的正极相连,二极管D S1的负极与绕组线圈A2的正极相连,绕组线圈A2的负极与开关管S2的漏极相连,开关管S2的源极与直流电压源U s的负极和电解电容C 1的负极相连。在此状态下,电流从直流电压源U s的正极流出,流经开关管S1、绕组线圈A1、开关管S S1、二极管D S1、绕组线圈A2和开关管S2,回到直流电压源U s的负极;
所述绕组切换型功率电路工作在线圈串联模式的续流状态时,A相中,二极管D1的负极与绕组线圈A1的正极相连,绕组线圈A1的负极与开关管S S1的漏极相连,开关管S S1的源 极与二极管D S1的正极相连,二极管D S1的负极与绕组线圈A2的正极相连,绕组线圈A2的负极与开关管S2的漏极相连,开关管S2的源极与直流电压源U s的负极和电解电容C 1的负极相连。在此状态下,电流流经二极管D1、绕组线圈A1、开关管S S1、二极管D S1、绕组线圈A2和开关管S2,回到二极管D1。
所述绕组切换型功率电路工作在线圈串联模式的退磁状态时,A相中,二极管D1的正极与直流电压源U s的负极和电解电容C 1的负极相连,二极管D1的负极与绕组线圈A1的正极相连,绕组线圈A1的负极与开关管S S1的漏极相连,开关管S S1的源极与二极管D S1的正极相连,二极管D S1的负极与绕组线圈A2的正极相连,绕组线圈A2的负极与二极管D2的正极相连,二极管D2的负极与直流电压源U s的正极、电解电容C 1的正极相连。在此状态下,电流从直流电压源U s的负极流出,流经二极管D1、绕组线圈A1、开关管S S1、二极管D S1、绕组线圈A2和二极管D2,回到直流电压源U s的正极。
所述绕组切换型功率电路工作在线圈并联模式的励磁状态时,A相中,开关管S1的漏极与直流电压源U s的正极、电解电容C 1的正极和二极管D2的负极相连,开关管S1的源极与开关管S P1的漏极和绕组线圈A1的正极相连,开关管S P1的源极与二极管D P1的正极相连,二极管D P1的负极与绕组线圈A2的正极相连,绕组线圈A1的负极与开关管S P2的漏极相连,开关管S P2的源极与二极管D P2的正极相连,二极管D P2的负极与绕组线圈A2的负极和开关管S2的漏极相连,开关管S2的源极与直流电压源U s的负极和电解电容C 1的负极相连。在此状态下,电流从直流电压源U s的正极流出,首先流经开关管S1,然后分成两路,一路流经开关管S P1、二极管D P1、绕组线圈A2,另一路流经绕组线圈A1、开关管S P2、二极管D P2,然后这两路电流一起流经开关管S2,回到直流电压源U s的负极。
所述绕组切换型功率电路工作在线圈并联模式的续流状态时,A相中,二极管D1的负极与绕组线圈A1的正极和开关管S P1的漏极相连,开关管S P1的源极与二极管D P1的正极相连,二极管D P1的负极与绕组线圈A2的正极相连,绕组线圈A1的负极与开关管S P2的漏极相连,开关管S P2的源极与二极管D P2的正极相连,二极管D P2的负极与绕组线圈A2的负极和开关管S2的漏极相连,开关管S2的源极与直流电压源U s的负极和电解电容C 1的负极相连。在此状态下,电流流经二极管D1,然后分成两路,一路流经开关管S P1、二极管D P1、绕组线圈A2,另一路流经绕组线圈A1、开关管S P2、二极管D P2,然后这两路电流一起流经开关管S2,回到二极管D1。
所述绕组切换型功率电路工作在线圈并联模式的退磁状态时,A相中,二极管D1的负极与绕组线圈A1的正极和开关管S P1的漏极相连,开关管S P1的源极与二极管D P1的正极相 连,二极管D P1的负极与绕组线圈A2的正极相连,绕组线圈A1的负极与开关管S P2的漏极相连,开关管S P2的源极与二极管D P2的正极相连,二极管D P2的负极与绕组线圈A2的负极和二极管D2的正极相连,二极管D2的负极与直流电压源U s的正极、电解电容C 1的正极相连。在此状态下,电流从直流电压源U s的负极流出,然后分成两路,一路流经开关管S P1、二极管D P1、绕组线圈A2,另一路流经绕组线圈A1、开关管S P2、二极管D P2,然后这两路电流一起流经二极管D2,回到直流电压源U s的正极。
进一步,在电机能同时实现绕组串并联的情况下,根据电机实际转速n和输出转矩T em的取值范围判断所述电机应该处在的工作模式,具体为:
当电机转速小于ω s1,负载转矩小于T s1时,电机在绕组串联和并联模式下均能达到所需负载和功率,但由于电机在串联模式下的运行效率更高,因此使电机选择绕组串联模式工作;
当电机转速大于ω s1小于ω P1时,输出功率小于P s时,电机在绕组串联和并联模式下均能达到所需负载和功率,但由于电机在串联模式下的运行效率更高,因此电机选择绕组串联模式工作;
当电机转速大于ω s1小于ω P1时,输出功率大于P s时,电机在绕组串联模式下不能达到所需的功率要求,因此电机选择绕组并联模式工作;
当电机转速大于ω P1时,电机在绕组串联模式下不能达到所需的转速要求,因此电机选择绕组并联模式工作。
进一步,绕组切换型开关磁阻电机属于一种双工作模式电机,所述功率电路及其控制方法使这种绕组切换型电机实现了两种工作模式的自由切换。相较于单独绕组线圈串联的工作模式,扩展了电机转速范围,提升了电机功率和功率密度;相较于单独绕组线圈并联的工作模式,提高了电机在低转速下的效率;因此,所述的绕组切换型开关磁阻电机功率电路及其控制方法实现了电机在宽转速范围下的高效率运行,有利于提升开关磁阻电机在电动汽车领域的竞争力。
有益效果:
本发明的绕组切换型电机能够大幅扩展电机的转速范围,提升电机的输出功率和功率密度,对于没有稀土材料的开关磁阻电机技术尤其有用。本发明的绕组切换型电机在低速时,电机使用串联绕组,以实现高转矩输出,然后在高速时将其重新配置为并联绕组,以获得更高转速范围和输出功率。双速范围驱动将比单速范围电机驱动即固定绕组电机驱动,具有更好的转矩/速度特性。通过绕组切换型功率电路并实施本发明所述的控制方法,能够实现开关磁阻电机在宽转速范围下的高效率运行,提升了开关磁阻电机的性能,尤其是在电动汽车等 工业领域的竞争力。
附图说明
图1为所述绕组切换型开关磁阻电机功率电路的控制方法框图;
图2为所述绕组切换型开关磁阻电机功率电路及其控制方法的功率电路示意图;
图3(a)为所述绕组切换型开关磁阻电机功率电路的串联运行模式示意图;
图3(b)为所述绕组切换型开关磁阻电机功率电路的并联运行模式示意图;
图4(a)为所述绕组切换型开关磁阻电机功率电路的串联运行模式下的励磁状态示意图;
图4(b)为所述绕组切换型开关磁阻电机功率电路的串联运行模式下的续流状态示意图;
图4(c)为所述绕组切换型开关磁阻电机功率电路的串联运行模式下的退磁状态示意图;
图4(d)为所述绕组切换型开关磁阻电机功率电路的并联运行模式下的励磁状态示意图;
图4(e)为所述绕组切换型开关磁阻电机功率电路的并联运行模式下的续流状态示意图;
图4(f)为所述绕组切换型开关磁阻电机功率电路的并联运行模式下的退磁状态示意图;
图5为所述绕组切换型开关磁阻电机功率电路及其控制方法的控制方法流程图;
图6(a)为所述绕组切换型开关磁阻电机工作在绕组单独串联模式下的效率map图;
图6(b)为所述绕组切换型开关磁阻电机工作在绕组单独并联模式下的效率map图;
图6(c)为所述绕组切换型开关磁阻电机工作在所述串联-并联双模式下的效率map图。
具体实施方式
下面结合附图对本发明的实施例做进一步说明:
本发明旨在通过提出一种能够实现绕组模式自由切换的功率电路,同时提出了适用于该功率电路的控制方法,根据电机的实际转速和输出转矩判断电机所需的工作模式,实现宽转速范围下的高效率运行,可用于电动汽车。如图1所示:
1、采集位置和转速信号:采用旋转解码器采集转子位置角信号,将转子位置角信号送入微处理器,该信号直接用于电流斩波/角度位置控制器来确定相应的导通相序及查找当前状态的输出转矩值;转子位置角信号通过预编写的微处理器程序即可计算电机转速;
2、采集电流信号:用三个电流霍尔传感器分别采集三相电流的模拟信号i a、i b、i c,三相电流模拟信号经采样电阻转化为电压信号,经过二阶低通有源滤波器滤除高频噪声信号,然后送入A/D转换芯片将模拟信号对应转换为正负电流幅值数字信号,直接用于电流斩波控制器的电流滞环比较器及查找当前状态的输出转矩值;
3、计算电流参考值或开通角参考值:转速给定值n ref与反馈值n作差,经过转速PI调节器的输出值i ref或θ onref,作为电流或开通角的参考值;
4、功率变换器电路:功率变换器电路由基本的不对称半桥电路和绕组模式切换电路组成,如附图2所示。其中,S 1~S 6、S S1~S S3、S P1~S P6为金属-氧化物半导体场效应晶体管(MOSFET),D 1~D 6、D S1~D S3、D P1~D P6为快恢复二极管。
所述不对称半桥电路,用于根据所述电流斩波/角度位置控制模块输出的控制信号,控制开关管S 1~S 6的导通和关断,将直流母线电压变换为所需的电压,从而实现电流或开通角的闭环控制,保持电机的正常运行。
所述绕组模式切换电路,用于改变同一相绕组一部分线圈和另一部分线圈的连接方式,具体包括2种工作模式,即绕组线圈串联和绕组线圈并联模式,如图3所示给出了以A相为例的电路导通示意图。
绕组串联模式为电机同一相绕组一部分线圈和另一部分线圈相串联的工作模式,此时开关管S s1开通,且开关管S p1和S P2关断,如附图3(a)所示;
绕组并联模式为电机同一相绕组一部分线圈和另一部分线圈相并联的工作模式,此时开关管S s1关断,且开关管S p1和S P2开通,如附图3(b)所示。
根据电机的实时工况,判断合适的绕组线圈连接模式,控制开关管的开通与关断,使电机工作在串联或并联模式下。
所述绕组模式切换电路,正常工作情况下具有6种工作状态,如附图4所示,包括:线圈串联模式的励磁状态,线圈串联模式的续流状态,线圈串联模式的退磁状态,线圈并联模式的励磁状态,线圈并联模式的续流状态,线圈并联模式的退磁状态。
具体地,线圈串联模式的励磁状态,如图4(a)所示;线圈串联模式的续流状态,如图4(b)所示;线圈串联模式的退磁状态,如图4(c)所示;线圈并联模式的励磁状态,如图4(d)所示;线圈并联模式的续流状态,如图4(e)所示;线圈并联模式的退磁状态,如图4(f)所示。
5、转矩估算:接收相绕组电流i a、i b、i c和转子位置θ,通过离线查表处理得到当前输出转矩值T em,作为绕组模式选择模块的其中一个输入量;
6、绕组模式选择:接收当前实际转速n和输出转矩T em,根据n和T em的取值范围判断所述电机应该处在的工作模式;
绕组模式具体判断规则如附图5所示:首先获取电机当前实际转速n和输出转矩T em,对于本发明的实施例,首先判断电机转速n是否小于等于600r/min,若是,则电机工作在绕组串联模式,输出绕组模式切换电路的控制信号,S S=1,S P=0;否则,则进入下一个判断模块;
其次,判断电机转速n是否大于1200r/min,若是,则电机工作在绕组并联模式,输出绕组模式切换电路的控制信号,S S=0,S P=1;否则,则进入下一个判断模块;
再次,判断电机转速n与电机转矩T em之积是否小于等于电机串联模式下的额定功率1250W,若是,则电机工作在绕组串联模式,输出绕组模式切换电路的控制信号,S S=1,S P=0;否则,电机工作在绕组并联模式,输出绕组模式切换电路的控制信号,S S=0,S P=1;
本发明采用上述技术方案,获得的有益效果,如图6的电机效率map图所示。串联-并联双模式运行下效率map图如图6(c)所示,相较于如图6(a)所示的单独串联模式的效率map图,拓宽了电机的转速范围,提升了功率和功率密度;相较于如图6(b)所示的单独并联模式的效率map图,提升了低速下的运行效率。综上所述,通过增加一套绕组切换型功率电路并实施本发明所述的控制方法,能够实现开关磁阻电机在宽转速范围下的高效率运行,提升了开关磁阻电机的性能,尤其是在电动汽车等工业领域的竞争力。

Claims (9)

  1. 一种绕组切换型开关磁阻电机功率电路,其特征在于,包括:
    能实现相绕组串联和并联两种工作模式的绕组切换型开关磁阻电机;
    能实现开关磁阻电机在绕组串联和并联模式之间自由切换的功率变换器电路,包括基本不对称半桥电路和绕组模式切换电路;
    检测所述开关磁阻电机相绕组电流i a、i b、i c的电流传感器;
    检测所述开关磁阻电机转子位置θ的位置传感器;
    接收所述位置传感器传送的开关磁阻电机转子位置θ,将转子位置转化成开关磁阻电机转子转速n的转速计算模块;
    接收所述转速计算模块传送的实际转速n与给定参考转速n ref作差后得到的转速误差信号,输出参考电流i ref或参考开通角θ onref的速度控制器;
    接收参考电流i ref或参考开通角θ onref,输出基本不对称半桥电路的控制信号的电流斩波/角度位置控制模块;速度控制器通过电流斩波/角度位置控制模块与不对称半桥电路连接;
    接收相绕组电流i a、i b、i c和转子位置θ,通过离线查表处理得到当前输出转矩值T em的转矩计算模块;
    接收当前实际转速n和输出转矩T em,根据n和T em的取值范围判断所述电机应该处在的工作模式,输出绕组模式切换电路控制信号的绕组模式选择模块;
    所述不对称半桥电路,用于根据所述电流斩波/角度位置控制模块输出的控制信号将直流母线电压变换为所需的电压,实现电机的正常运行;
    所述绕组模式切换电路,用于改变同一相绕组一部分线圈和另一部分线圈的连接方式,包括2种工作模式:绕组线圈串联和绕组线圈并联模式,绕组串联模式为电机同一相绕组一部分线圈和另一部分线圈相串联的工作模式,绕组并联模式为电机同一相绕组一部分线圈和另一部分线圈相并联的工作模式;根据电机的实时工况,判断合适的绕组线圈连接模式,控制开关管的开通与关断,使电机工作在串联或并联模式下;
  2. 根据权利要求1所述绕组切换型开关磁阻电机功率电路,其特征在于,
    对于三相的绕组切换型开关磁阻电机,基本的不对称半桥电路,由6个开关管S1、S2、S3、S4、S5、S6和6个二极管D1、D2、D3、D4、D5、D6以及它们之间的连接线组成;所述绕组模式切换电路,由9个开关管S S1、S S2、S S3、S P1、S P2、S P3、S P4、S P5、S P6和9个二极管D S1、D S2、D S3、D P1、D P2、D P3、D P4、D P5、D P6以及它们之间的连接线组 成;
    因此对于三相的绕组切换型开关磁阻电机,所述功率变换器电路由1个直流电压源U s,1个电解电容C 1,15个开关管S1、S2、S3、S4、S5、S6、S S1、S S2、S S3、S P1、S P2、S P3、S P4、S P5、S P6,15个二极管D1、D2、D3、D4、D5、D6、D S1、D S2、D S3、D P1、D P2、D P3、D P4、D P5、D P6和6个绕组线圈A1、A2、B1、B2、C1、C2以及它们之间的连接线组成;
    所述绕组切换型功率电路中各电子元件之间的连接关系,A相中:开关管S1的漏极与直流电压源U s的正极、电解电容C 1的正极和二极管D2的负极相连,开关管S1的源极与开关管S P1的漏极、绕组线圈A1的正极和二极管D1的负极相连,二极管D1的正极与直流电压源U s的负极、电解电容C 1的负极和开关管S2的源极相连,开关管S P1的源极与二极管D P1的正极相连,二极管D P1的负极与二极管D S1的负极和绕组线圈A2的正极相连,二极管D S1的正极与开关管S S1的源极相连,开关管S S1的漏极与绕组线圈A1的负极和开关管S P2的漏极相连,开关管S P2的源极与二极管D P2的正极相连,二极管D P2的负极与开关管S2的漏极、绕组线圈A2的负极和二极管D2的正极相连;B相和C相中各元件连接方式与A相类似。
  3. 根据权利要求2所述绕组切换型开关磁阻电机功率电路,其特征在于,绕组模式切换电路,正常工作情况下具有6种工作状态,包括:线圈串联模式的励磁状态,线圈串联模式的续流状态,线圈串联模式的退磁状态,线圈并联模式的励磁状态,线圈并联模式的续流状态,线圈并联模式的退磁状态。
    组切换型开关磁阻电机的A相中,当开关管S1、S2、S s1开通,且开关管S p1、S P2关断时,电机工作在线圈串联模式的励磁状态;当开关管S2、S s1开通,且开关管S1、S p1、S P2关断时,电机工作在线圈串联模式的续流状态;当开关管S s1开通,且开关管S1、S2、S p1、S P2关断时,电机工作在线圈串联模式的退磁状态;当开关管S1、S2、S p1、S P2开通,且开关管S s1关断时,电机工作在线圈并联模式的励磁状态;当开关管S2、S p1、S P2开通,且开关管S1、S s1关断时,电机工作在线圈并联模式的续流状态;当开关管S p1、S P2开通,且开关管S1、S2、S s1关断时,电机工作在线圈并联模式的退磁状态,B相和C相中各元件连接方式与A相类似。
  4. 一种如权利要求1所述绕组切换型开关磁阻电机功率电路的控制方法,其特征在于:根据电机的实际转速和输出转矩判断电机所需的工作模式,实现宽转速范围下的高效率运行,
    步骤如下:
    采集位置和转速信号:采用旋转解码器采集转子位置角信号,将转子位置角信号送入微处理器,该信号直接用于电流斩波/角度位置控制器来确定相应的导通相序及查找当前状态的输出转矩值;转子位置角信号通过预编写的微处理器程序即可计算电机转速;
    采集电流信号:用三个电流霍尔传感器分别采集三相电流信号i a、i b、i c,三相电流模拟信号经采样电阻转化为电压信号,经过二阶低通有源滤波器滤除高频噪声信号,然后送入A/D转换芯片将模拟信号对应转换为正负电流幅值数字信号,直接用于电流斩波控制器的电流滞环比较器及查找当前状态的输出转矩值;
    计算电流参考值或开通角参考值:转速给定值n ref与反馈值n作差,经过转速PI调节器的输出值i ref或θ onref,作为电流或开通角的参考值;
    利用不对称半桥电路根据电流斩波/角度位置控制模块输出的控制信号,控制开关管S 1~S 6的导通和关断,将直流母线电压变换为所需的电压,从而实现电流或开通角的闭环控制,保持电机的正常运行;
    根据开关磁阻的实时工况,判断合适的绕组线圈连接模式,控制开关管的开通与关断,使电机工作在串联或并联模式下;
    利用绕组模式切换电路切换工作状态,包括:线圈串联模式的励磁状态,线圈串联模式的续流状态,线圈串联模式的退磁状态,线圈并联模式的励磁状态,线圈并联模式的续流状态,线圈并联模式的退磁状态6种工作状态,;
    估算转矩:接收三相电流信号i a、i b、i c和转子位置θ,通过离线查表处理得到当前输出转矩值T em,作为绕组模式选择模块的其中一个输入量;
    绕组模式选择:接收当前实际转速n和输出转矩T em,根据实际转速n和输出转矩T em的取值范围判断所述电机应该处在的工作模式。
  5. 根据权利要求4所述的控制方法,其特征在于:利用绕组模式切换电路改变同一相绕组一部分线圈和另一部分线圈的连接方式,具体包括2种工作模式,即绕组线圈串联和绕组线圈并联模式,绕组串联模式为电机同一相绕组一部分线圈和另一部分线圈相串联的工作模式,此时开关管S s1开通,且开关管S p1和S P2关断,
    绕组并联模式为电机同一相绕组一部分线圈和另一部分线圈相并联的工作模式,此时开关管S s1关断,且开关管S p1和S P2开通。;
  6. 根据权利要求5所述的控制方法,其特征在于:根据开关磁阻电机特性,绕组线圈串联模式下的第一临界转速定义为ω s1,第二临界转速定义为ω s2;并联模式的第一临界转速定义为ω p1,第二转速定义为ω p2;在施加相同电压的情况下,并联模式下的第一临界转速ω p1一般是串联模式的第一临界转速ω s1的二倍,即有ω p1=2*ω s1
    绕组串联模式下,电机在转速小于ω s1时,处于恒转矩区间,此时输出转矩能力是一个定值,为T s1,这个值由额定电流值和电流密度决定;绕组串联模式下,电机在转速介于ω s1和ω s2时,处于恒功率区间,此时输出功率能力是一个定值,为P s=ω s1*T s1/9.55,转速从增大到,输出转矩能力是下降的;
    绕组并联模式下,电机在转速小于ω p1时,处于恒转矩区间,此时输出转矩能力是一个定值,这个值由额定电流值和电流密度决定;绕组并联模式下,电机在转速介于ω p1和ω p2时,处于恒功率区间,此时输出功率能力是一个定值,转速从增大到,输出转矩能力是下降的。
  7. 根据权利要求4所述所述的控制方法,其特征在于:利用绕组模式切换电路切换的6种工作状态时工作的电路为:
    所述绕组切换型功率电路工作在线圈串联模式的励磁状态时,A相中,开关管S1的漏极与直流电压源U s的正极、电解电容C 1的正极和二极管D2的负极相连,开关管S1的源极与绕组线圈A1的正极相连,绕组线圈A1的负极与开关管S S1的漏极相连,开关管S S1的源极与二极管D S1的正极相连,二极管D S1的负极与绕组线圈A2的正极相连,绕组线圈A2的负极与开关管S2的漏极相连,开关管S2的源极与直流电压源U s的负极和电解电容C 1的负极相连。在此状态下,电流从直流电压源U s的正极流出,流经开关管S1、绕组线圈A1、开关管S S1、二极管D S1、绕组线圈A2和开关管S2,回到直流电压源U s的负极;
    所述绕组切换型功率电路工作在线圈串联模式的续流状态时,A相中,二极管D1的负极与绕组线圈A1的正极相连,绕组线圈A1的负极与开关管S S1的漏极相连,开关管S S1的源极与二极管D S1的正极相连,二极管D S1的负极与绕组线圈A2的正极相连,绕组线圈A2的负极与开关管S2的漏极相连,开关管S2的源极与直流电压源U s的负极和电解电容C 1的负极相连。在此状态下,电流流经二极管D1、绕组线圈A1、开关管S S1、二极管D S1、绕组线圈A2和开关管S2,回到二极管D1。
    所述绕组切换型功率电路工作在线圈串联模式的退磁状态时,A相中,二极管D1的正极与直流电压源U s的负极和电解电容C 1的负极相连,二极管D1的负极与绕组线圈A1的正极相连,绕组线圈A1的负极与开关管S S1的漏极相连,开关管S S1的源极与二极管D S1的正极相连,二极管D S1的负极与绕组线圈A2的正极相连,绕组线圈A2的负极与二极管D2的正极相连,二极管D2的负极与直流电压源U s的正极、电解电容C 1的正极相连。在此状态下,电流从直流电压源U s的负极流出,流经二极管D1、绕组线圈A1、开关管S S1、二极管D S1、绕组线圈A2和二极管D2,回到直流电压源U s的正极。
    所述绕组切换型功率电路工作在线圈并联模式的励磁状态时,A相中,开关管S1的漏极与直流电压源U s的正极、电解电容C 1的正极和二极管D2的负极相连,开关管S1的源极与开关管S P1的漏极和绕组线圈A1的正极相连,开关管S P1的源极与二极管D P1的正极相连,二极管D P1的负极与绕组线圈A2的正极相连,绕组线圈A1的负极与开关管S P2的漏极相连,开关管S P2的源极与二极管D P2的正极相连,二极管D P2的负极与绕组线圈A2的负极和开关管S2的漏极相连,开关管S2的源极与直流电压源U s的负极和电解电容C 1的负极相连。在此状态下,电流从直流电压源U s的正极流出,首先流经开关管S1,然后分成两路,一路流经开关管S P1、二极管D P1、绕组线圈A2,另一路流经绕组线圈A1、开关管S P2、二极管D P2,然后这两路电流一起流经开关管S2,回到直流电压源U s的负极。
    所述绕组切换型功率电路工作在线圈并联模式的续流状态时,A相中,二极管D1的负极与绕组线圈A1的正极和开关管S P1的漏极相连,开关管S P1的源极与二极管D P1的正极相连,二极管D P1的负极与绕组线圈A2的正极相连,绕组线圈A1的负极与开关管S P2的漏极相连,开关管S P2的源极与二极管D P2的正极相连,二极管D P2的负极与绕组线圈A2的负极和开关管S2的漏极相连,开关管S2的源极与直流电压源U s的负极和电解电容C 1的负极相连。在此状态下,电流流经二极管D1,然后分成两路,一路流经开关管S P1、二极管D P1、绕组线圈A2,另一路流经绕组线圈A1、开关管S P2、二极管D P2,然后这两路电流一起流经开关管S2,回到二极管D1。
    所述绕组切换型功率电路工作在线圈并联模式的退磁状态时,A相中,二极管D1的负极与绕组线圈A1的正极和开关管S P1的漏极相连,开关管S P1的源极与二极管D P1的正极相连,二极管D P1的负极与绕组线圈A2的正极相连,绕组线圈A1的负极与开关管S P2的漏极相连,开关管S P2的源极与二极管D P2的正极相连,二极管D P2的负极与绕组线圈A2的负极和二极管D2的正极相连,二极管D2的负极与直流电压源U s的正极、电解电容C 1的正极相连。在此状态下,电流从直流电压源U s的负极流出,然后分成两路,一路流经开关管S P1、二极管D P1、绕组线圈A2,另一路流经绕组线圈A1、开关管S P2、二极管D P2,然后这两路电流一起流经二极管D2,回到直流电压源U s的正极。
  8. 根据权利要求3所述的控制方法,其特征在于:在电机能同时实现绕组串并联的情况下,根据电机实际转速n和输出转矩T em的取值范围判断所述电机应该处在的工作模式,具体为:
    当电机转速小于ω s1,负载转矩小于T s1时,电机在绕组串联和并联模式下均能达到所需负载和功率,但由于电机在串联模式下的运行效率更高,因此使电机选择绕组串联模式 工作;
    当电机转速大于ω s1小于ω P1时,输出功率小于P s时,电机在绕组串联和并联模式下均能达到所需负载和功率,但由于电机在串联模式下的运行效率更高,因此电机选择绕组串联模式工作;
    当电机转速大于ω s1小于ω P1时,输出功率大于P s时,电机在绕组串联模式下不能达到所需的功率要求,因此电机选择绕组并联模式工作;
    当电机转速大于ω P1时,电机在绕组串联模式下不能达到所需的转速要求,因此电机选择绕组并联模式工作。
  9. 根据权利要求4所述的控制方法,其特征在于:绕组切换型开关磁阻电机属于一种双工作模式电机,所述功率电路及其控制方法使这种绕组切换型电机实现了两种工作模式的自由切换。相较于单独绕组线圈串联的工作模式,扩展了电机转速范围,提升了电机功率和功率密度;相较于单独绕组线圈并联的工作模式,提高了电机在低转速下的效率;因此,所述的绕组切换型开关磁阻电机功率电路及其控制方法实现了电机在宽转速范围下的高效率运行,有利于提升开关磁阻电机在电动汽车领域的竞争力。
PCT/CN2022/144412 2022-05-20 2022-12-31 一种绕组切换型开关磁阻电机功率电路及其控制方法 WO2023221531A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210563263.8A CN114928276A (zh) 2022-05-20 2022-05-20 一种绕组切换型开关磁阻电机功率电路及其控制方法
CN202210563263.8 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023221531A1 true WO2023221531A1 (zh) 2023-11-23

Family

ID=82810222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144412 WO2023221531A1 (zh) 2022-05-20 2022-12-31 一种绕组切换型开关磁阻电机功率电路及其控制方法

Country Status (2)

Country Link
CN (1) CN114928276A (zh)
WO (1) WO2023221531A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114928276A (zh) * 2022-05-20 2022-08-19 中国矿业大学 一种绕组切换型开关磁阻电机功率电路及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352589A (ja) * 1989-07-18 1991-03-06 Brother Ind Ltd 可変リラクタンスモータの駆動装置
CN204597782U (zh) * 2015-05-12 2015-08-26 辽宁当凯电力有限公司 全自动补偿式稳压变压器
CN111082735A (zh) * 2019-12-20 2020-04-28 华中科技大学 一种开关磁阻电机绕组串并联转换控制系统及控制方法
CN111342736A (zh) * 2020-04-14 2020-06-26 华中科技大学 一种开关磁阻电机变绕组驱动系统和在线软切换方法
CN113746398A (zh) * 2021-09-03 2021-12-03 浙江大学 一种开关磁阻变档电机
CN114928276A (zh) * 2022-05-20 2022-08-19 中国矿业大学 一种绕组切换型开关磁阻电机功率电路及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0352589A (ja) * 1989-07-18 1991-03-06 Brother Ind Ltd 可変リラクタンスモータの駆動装置
CN204597782U (zh) * 2015-05-12 2015-08-26 辽宁当凯电力有限公司 全自动补偿式稳压变压器
CN111082735A (zh) * 2019-12-20 2020-04-28 华中科技大学 一种开关磁阻电机绕组串并联转换控制系统及控制方法
CN111342736A (zh) * 2020-04-14 2020-06-26 华中科技大学 一种开关磁阻电机变绕组驱动系统和在线软切换方法
CN113746398A (zh) * 2021-09-03 2021-12-03 浙江大学 一种开关磁阻变档电机
CN114928276A (zh) * 2022-05-20 2022-08-19 中国矿业大学 一种绕组切换型开关磁阻电机功率电路及其控制方法

Also Published As

Publication number Publication date
CN114928276A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
WO2023221531A1 (zh) 一种绕组切换型开关磁阻电机功率电路及其控制方法
CN108390602B (zh) 一种混合励磁同步电机直接预测功率控制方法
CN106533310B (zh) 一种直流偏置正弦电流电机控制器
CN110798117A (zh) 一种磁场调制开关磁阻电机双电端口驱动系统及控制方法
CN111800056A (zh) 一种基于新型开关表的永磁同步电机三矢量模型预测转矩控制方法
CN113890434B (zh) 动态切换实现励磁变换器容错控制的电励磁双凸极电机
CN113300653B (zh) 一种开关磁阻电机直接瞬时转矩控制系统及方法
CN114400949B (zh) 基于开绕组混合励磁双凸极电机的电流塑形控制方法
CN110572096A (zh) 高速大惯量负载用无铁芯无刷直流电机控制系统及方法
CN101854065B (zh) 一种级联型升压斩波电路的控制方法
CN111293943B (zh) 双三相电机缺相运行的控制方法
CN110098777B (zh) 一种全桥变换器的开关磁阻电机直接瞬时转矩控制方法
CN108540026B (zh) 一种基于碳化硅/氮化镓mosfet的永磁同步电机驱动控制实时调压电路
CN114865983B (zh) 一种复用励磁绕组的三相交流调速系统
CN114204878B (zh) 一种开关磁阻电机多模式驱动控制系统及控制方法
CN211981785U (zh) 用于厨师机的直流无刷电机驱动系统和直流无刷电机
CN109600095A (zh) 一种基于四桥臂逆变器的永磁同步电机的断相容错控制系统及方法
CN214315109U (zh) 一种基于无位置传感器控制的无刷直流电机
CN114531087A (zh) 一种基于电流源逆变器的高速永磁同步电机优化控制方法
Yao et al. Line voltage difference integral method of commutation error adjustment for sensorless brushless DC motor
CN112436763A (zh) 一种开关磁阻电机制动控制系统及控制方法
CN114598231B (zh) 一种开关磁阻电机转矩控制方法及其模块化功率变换器
CN113972880B (zh) 一种单台逆变器驱动多并联开关磁阻电机系统的控制方法
CN116846281B (zh) 基于带补偿磁链观测器的异步电机无速度传感器控制方法
CN113489388B (zh) 开关磁阻电机直接瞬时电流控制方法及控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942550

Country of ref document: EP

Kind code of ref document: A1