WO2023221288A1 - 一种多金属阳极自供能-多模态电致变色器件及制备方法 - Google Patents

一种多金属阳极自供能-多模态电致变色器件及制备方法 Download PDF

Info

Publication number
WO2023221288A1
WO2023221288A1 PCT/CN2022/107419 CN2022107419W WO2023221288A1 WO 2023221288 A1 WO2023221288 A1 WO 2023221288A1 CN 2022107419 W CN2022107419 W CN 2022107419W WO 2023221288 A1 WO2023221288 A1 WO 2023221288A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
conductive substrate
electrochromic device
metal anode
powered
Prior art date
Application number
PCT/CN2022/107419
Other languages
English (en)
French (fr)
Inventor
魏昂
李泽阳
位威
Original Assignee
南京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京邮电大学 filed Critical 南京邮电大学
Publication of WO2023221288A1 publication Critical patent/WO2023221288A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1524Transition metal compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F2001/15145Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material the electrochromic layer comprises a mixture of anodic and cathodic compounds

Definitions

  • the present application belongs to the field of electrochromic technology, and particularly relates to a multi-metal anode self-powered multi-mode electrochromic device and a preparation method.
  • Electrochromic technology refers to the phenomenon of reversible changes in the optical properties of materials under the action of an external electric field.
  • Smart windows made of electrochromic materials have excellent ability to dynamically adjust indoor light and temperature. They are widely used in commercial and civil buildings, It has broad application prospects in the automotive and aerospace fields.
  • the near-infrared band accounts for about 50% of the total solar radiation, so dynamically or selectively modulating near-infrared light through electrochromic smart windows can have a significant impact on the thermal management of buildings, energy consumption, and the comfort of indoor personnel. Influence.
  • common electrochromic smart windows mainly focus on the visible light region. Therefore, the development of dual-band electrochromic smart windows, that is, independently adjusting the transmittance of visible light and near-infrared light, has important practical significance and scientific value.
  • dual-band electrochromic materials and anode metals are integrated into a multi-metal anode self-powered multi-modal electrochromic device.
  • Different metal anodes are connected to the thin film cathode to produce different open circuit voltages.
  • the open circuit voltage When it is small, it will only drive the cations in the electrolyte to gather on the surface of the thin film cathode. Due to the effect of capacitive adsorption, the transmittance of the thin film cathode in the near-infrared region is greatly reduced, while the transmittance in the visible light region remains at a high level.
  • the open circuit voltage is large, most of the cations in the electrolyte will be strongly driven to insert into the thin film cathode, changing the crystal form of the cathode material, thereby adjusting the transmittance in the visible light region.
  • this application proposes a method for preparing a multi-metal anode self-powered multi-modal electrochromic device. According to the preparation method, a multi-metal anode self-powered multi-modal electrochromic device is obtained.
  • a multi-metal anode self-powered - multi-mode electrochromic device including a first conductive substrate, metal A, metal B, electrolyte, material C, and a second conductive substrate; metal A and metal B are respectively adhered to the first conductive substrate Metal anodes are formed on both sides of one side of the substrate; material C is formed on top of the second conductive substrate as a working electrode; an electrolyte is injected between the metal anode and the working electrode to obtain the multi-metal anode self-powered-multimodal electroplating Color-changing device; when metal A and material C are connected through wires, the open circuit voltage generated in the circuit is between 0 and 1V, and the smaller voltage drives the electrochromic device in the "cool" mode; when metal B and material When C is connected through a wire, the open circuit voltage generated in the circuit is between 1 and 3V, and a larger voltage drives the electrochromic device in the "dark" mode.
  • an external circuit is formed after connecting metal A and material C with a wire.
  • Material C is colored, and at the same time, current appears in the external circuit to realize the discharge process.
  • This external current can power externally connected electrical devices below 0.5V; when a voltage of 3V is applied, ions escape from the working electrode of the electrochromic device, realizing a self-charging process.
  • the material C begins to fade, and the device Returning to the initial potential difference of high potential on one side and low potential on the other side, an energy cycle is formed.
  • the coloring process is achieved through the built-in voltage, and the energy consumption of the fading process is recovered by powering other small devices.
  • the first conductive substrate is FTO, ITO conductive glass or ordinary transparent base material.
  • metal A and metal B include but are not limited to Cu, Al, Fe, Zn, and Mg.
  • Metal A and metal B use different metal materials to ensure that the open circuit voltage is in a suitable voltage range; metal A and metal B
  • the area of metal B is 1/5 to 1/6 of the first conductive base, and the distance between them is greater than 2/3 of the width of the first conductive base.
  • the electrolyte is in the form of liquid, colloid or solid alone; the electrolyte includes but is not limited to H + , Li + , K + and Na + monovalent ions or Mg 2+ , Al 3+ , Zn 2+ multivalent ions One or more ions, the concentration of the electrolyte is 0.5 mol/L ⁇ 1 mol/L.
  • the material C includes but is not limited to WO 3-x , TiO 2-x nanocrystals or ITO nanocrystals, wherein the value range of WO 3-x and TiO 2-x nanocrystals x is from 0 to 1
  • the thickness of the material C is 200 to 800 nm.
  • the second conductive substrate includes but is not limited to FTO, ITO conductive glass or flexible PET conductive film.
  • a method for preparing a multi-metal anode self-powered multi-mode electrochromic device including the following steps:
  • S2 Grow material C on the second conductive substrate as a working electrode by methods including but not limited to photodeposition, spin coating, hydrothermal or magnetron sputtering;
  • S3 adheres metal A and metal B to both sides of one side of the first conductive substrate as metal anodes;
  • the working electrode in step S2 and the metal anode in S3 are separated by a hollow PET gasket.
  • a small hole is left on the edge of the PET.
  • the device is encapsulated with UV curing glue, then the electrolyte is injected into the small hole, and finally with UV The curing glue encapsulates the small holes to obtain the multi-metal anode self-powered multi-mode electrochromic device.
  • the metal anode used in this application allows the establishment of an inherent potential (controlled by the Gibbs free energy difference between a given metal anode and cathode material) to drive the spontaneous coloration of the cathode electrochromic layer, so no external power supply is required.
  • This application uses the principle of primary batteries, so that the device only consumes one-way energy during the round-trip coloring/fading process, and the consumed energy can be partially recovered through the discharge process, thereby powering small devices such as small light bulbs.
  • This application adopts a multi-metal anode coupling control method to achieve two modes of "cool” and “dark” by switching different metal anodes.
  • the thin film cathode is connected to the anode metal A (for example, Al)
  • its open circuit voltage is greater than the open circuit voltage when the thin film cathode is connected to the anode metal B (for example, Cu). Therefore, the transmittance of visible light and near-infrared light can be dynamically controlled, truly realizing the preparation of multi-modal, low-energy-consuming electrochromic devices.
  • Figure 1 is a schematic structural diagram of the electrochromic device prepared in Example 1;
  • Figure 2 is a graph of the UV-vis-NIR transmittance of the electrochromic device prepared in Example 1 under three different voltages;
  • Figure 3 is a cross-sectional SEM characterization of the composite material of SnO 2 nanosheets and crystalline WO 3-x prepared in Example 1;
  • Figure 4 is the XRD characterization of the composite material of SnO 2 nanosheets and crystalline WO 3-x prepared in Example 1;
  • Figure 5 shows the memory effect of the electrochromic device prepared in Example 1 in two modes.
  • the multi-metal anode self-powered multi-mode electrochromic device described in this application includes a first conductive substrate 1, metal A2, metal B3, electrolyte 4, material C5, and a second conductive substrate 6 ;
  • Metal A2 and metal B3 are respectively adhered to both sides of one side of the first conductive substrate 1 to form a metal anode;
  • material C5 is formed above the second conductive substrate 6 as a working electrode; electrolyte is injected between the metal anode and the working electrode 4.
  • the first conductive substrate 1 is FTO glass
  • metal A2 uses Cu foil
  • metal B3 uses Al foil
  • electrolyte 4 is 1MAlCl 3 /ZnSO 4 electrolyte
  • material C5 is A composite material of SnO 2 nanosheets and crystalline WO 3-x
  • the second conductive substrate 6 is FTO glass.
  • a method for preparing a multi-metal anode self-powered multi-mode electrochromic device including the following steps:
  • the electrochromic device packaged in Example 1 uses 1MAlCl 3 /ZnSO 4 electrolyte to inject the electrochromic device.
  • the UV-vis-NIR transmittance curves at three different voltages are shown in Figure 2.
  • the working electrode When connected to metal A2 (Cu), the device is in "cool” mode, allowing visible light from sunlight to enter and blocking near-infrared light (73.4% transmission at 633nm, 12.1% at 1200nm and 10.9% at 1600nm) ;
  • the working electrode is connected to metal B3 (Al)
  • the device is in "dark” mode, shielding visible light in sunlight and near-infrared light (the transmittance at 633nm is 2.9%, 1200nm and 1600nm are 0.7% and 1.1 %); after applying +3.0V voltage in reverse, the device is in "bright” mode, allowing visible light and near-infrared light to pass through (the transmittance at 633nm is 85.4%, and the transmittance at
  • the XRD characterization of the composite material of SnO 2 nanosheets and crystalline WO 3-x prepared in Example 1 is shown in Figure 4.
  • the SnO 2 nanosheets have a tetragonal rutile structure, and the upper layer of WO 3-x has a monoclinic crystal structure.
  • bistable performance characterization diagram of the electrochromic device packaged in Example 1 in different modes is shown in Figure 5.
  • Bistableness is another performance index of electrochromic materials. The excellent bistability shows that electrical energy is only needed between mode switches, and no electrical energy is needed to maintain its own color after the voltage is removed, greatly reducing energy consumption.
  • the transmittance changes after the circuit is disconnected. The transmittance changes at 1100nm ("cold” mode) and 633nm (“dark” mode) were 1.0% and 2.2% respectively within 3600s.
  • a method for preparing a multi-metal anode self-powered multi-mode electrochromic device including the following steps:
  • the second conductive substrate 6 of the nanosheet use a UV light box to irradiate for 5 to 10 minutes, repeat spin coating and irradiation 6 times, and then calcine at 400 to 500°C for 1 hour to obtain a WO 3-x /SnO 2 structure;
  • Packaging of the S4 device Use the second conductive substrate 6 loaded with crystalline WO 3-x on SnO 2 nanosheets in step S2 as the working electrode, and the first conductive substrate 1 with metal foil adhered to it in step S3 as the metal anode, 0.2 A mm-thick PET gasket is cut into a hollow structure to separate the working electrode and the metal anode. A small hole is left on the edge of the PET. The device is encapsulated with UV curing glue, and then the small hole is filled with 1MAlCl 3 electrolyte (AlCl 3 /ZnSO The ratio of 4 is 1:0), and finally the small holes are sealed with ultraviolet curing glue to obtain the electrochromic device.
  • 1MAlCl 3 electrolyte AlCl 3 /ZnSO The ratio of 4 is 1:0
  • a method for preparing a multi-metal anode self-powered multi-mode electrochromic device including the following steps:

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

一种多金属阳极自供能-多模态电致变色器件及制备方法,制备方法为:将第一导电基底(1)以及第二导电基底(6)洗净晾干;将双波段电致变色材料通过包括但不限于旋涂、水热或者磁控溅射的方法生长在第二导电基底(6)上;将金属A和金属B粘附在第一导电基底(1)的一侧两边;将已经负载双波段电致变色材料的第二导电基底(6)作为工作电极,附有金属A和金属B的第一导电基底(1)作为金属阳极,最后注入电解质(4)并封装成器件。将薄膜阴极材料分别与不同金属阳极组合,产生不同大小的开路电压,通过此内置电压实现多种模态,动态调制可见光以及近红外光的透过程度。

Description

一种多金属阳极自供能-多模态电致变色器件及制备方法 技术领域
本申请属于电致变色技术领域,特别涉及一种多金属阳极自供能-多模态电致变色器件及制备方法。
背景技术
电致变色技术是指材料在外加电场的作用下光学性质发生可逆变化的现象,由电致变色材料所制得的智能窗具有出色的动态调节室内光线和温度的能力,在商业和民用建筑、汽车和航空航天领域具有广阔的应用前景。太阳光谱中,近红外波段约占太阳总辐射的50%,所以通过电致变色智能窗动态或选择性地调制近红外光可以对建筑物的热管理、能源消耗和室内人员的舒适性产生显著影响。然而,常见的电致变色智能窗主要关注的是可见光区域。因此,开发双波段电致变色智能窗,即独立调节可见光和近红外光的透射率有着重要的现实意义和科学价值。
研究表明单斜晶体WO 3-x可以分别通过局部的表面等离子体共振和相变转换,独立控制可见光和近红外光的透射率。此后,控制可见光和近红外光的双波段电致变色材料被广泛研究。因此,由双波段电致变色材料组装的电致变色智能窗能够在三种特定模式下工作。“亮”模式允许可见光和近红外光通过,“冷”模式阻挡大部分近红外光而允许可见光通过,“暗”模式同时阻挡可见光和近红外光。此外,大多数报道的电致变色器件需要外部电源来驱动光学透明度的变化,这可能会阻碍这些器件的独立性和便携性。因此,将双波段电致变色材料与阳极金属集成在一种多金属阳极自供能-多模态电致变色器件中,不同的金属阳极与薄膜阴极相连可产生不同大小的开路电压,当开路电压较小时,只会驱动电解质中的阳离子聚集在薄膜阴极的表面,由于电容性吸附的作用,大大降低薄膜阴极在近红外区域的透过率,可见光区域的透过率依然保持较高的水平。当开路电压较大时,会强烈驱动电解质中的大部分的阳离子插入薄膜阴极中,改变阴极材料的晶型,进而可以调节在可见光区域的透过率。
传统电致变色器件的操作需要外部电压来触发着色/褪色过程,而自供能-多模态电致变色器件的着色过程通过内置电压实现着色,褪色过程的能耗也可以通过为其他小型装置供电从而可以部分回收。因此本申请通过结合自供电系统以及双波段电致变色材料的独特优势,开发出多金属阳极自供能-多模态电致变色器件,在双波段电致变色智能窗的推广应用中具有一定的前景。
发明内容
传统电致变色器件的操作需要外部电压来触发着色/褪色过程,而自供能-多模态电致变色器件的着色过程通过内置电压实现着色,褪色过程的能耗也可以通过为其他小型装置供电从而可以部分回收。针对现有技术的不足,本申请提出一种多金属阳极自供能-多模态电致变色器件的制备方法,根据该制备方法得到的多金属阳极自供能-多模态电致变色器件。
技术方案:
一种多金属阳极自供能-多模态电致变色器件,包括第一导电基底、金属A、金属B、电解质、材料C、第二导电基底;金属A和金属B分别粘附在第一导电基底一侧的两边,形成金属阳极;材料C形成于第二导电基底的上方,作为工作电极;在金属阳极与工作电极之间注入电解质,得到所述多金属阳极自供能-多模态电致变色器件;当金属A与材料C通过导线连接时,在电路中产生的开路电压大小在0~1V之间,较小的电压驱动该电致变色器件处于“凉爽”模式;当金属B与材料C通过导线连接时,在电路中产生的开路电压大小在1~3V之间,较大的电压驱动该电致变色器件处于“黑暗”模式。
进一步地,由于金属A、金属B与材料C之间存在着氧化还原电位差,用导线连接金属A与材料C之后形成外部电路,材料C进行着色,同时外部电路有电流出现,实现放电过程,该外部电流能够为外部接入的低于0.5V的用电器件供电;当外加3V电压后,该电致变色器件的工作电极存在离子的脱出,实现自我充电过程,同时材料C开始褪色,器件重新回到一边电势高、一边电势低的初始电势差,如此形成能量循环,着色过程通过内置电压实现着色,褪色过程的能耗则通过为其他小型装置供电实现能量回收。
进一步地,所述的第一导电基底为FTO、ITO导电玻璃或者普通透明基底材料。
进一步地,所述的金属A和金属B的材料包括且不限于Cu、Al、Fe、Zn、Mg,金属A与金属B选用不同的金属材料以确保开路电压处于合适的电压区间;金属A和金属B的面积为第一导电基底的1/5~1/6,两者的间隔距离大于第一导电基底宽度的2/3。
进一步地,所述的电解质单独为液体、胶体或固体的形式;电解质中包含且不限于H +、Li +、K +和Na +单价离子或者Mg 2+、Al 3+、Zn 2+多价离子的一种或多种,电解质的浓度为0.5mol/L~1mol/L。
进一步地,所述的材料C包括且不限于WO 3-x、TiO 2-x纳米晶体或ITO纳米晶体,其中,WO 3-x、TiO 2-x纳米晶体x的取值范围在0~1之间,所述的材料C厚度为200~800nm。
进一步地,所述的第二导电基底包括且不限于FTO、ITO导电玻璃或柔性PET导电膜。
一种多金属阳极自供能-多模态电致变色器件的制备方法,包括以下步骤:
S1将第一导电基底以及第二导电基底洗净晾干;
S2将材料C通过包括但不限于光沉积、旋涂、水热或者磁控溅射的方法生长在第二导电基底上,作为工作电极;
S3将金属A和金属B分别粘附在第一导电基底一侧的两边,作为金属阳极;
S4将步骤S2中的工作电极,以及S3中的金属阳极通过中空PET垫片隔开,PET边缘留有一个小孔,用紫外固化胶对器件进行封装,然后从小孔注入电解质,最后用紫外固化胶封装小孔,得到所述的多金属阳极自供能-多模态电致变色器件。
有益效果:
1.本申请采用的金属阳极允许建立固有电势(由给定金属阳极和阴极材料之间的吉布斯自由能差控制)以驱动阴极电致变色层的自发着色,因此不需要外部电源。
2.本申请采用原电池的原理,使得器件在往返着色/褪色过程中仅消耗单向能量,并且消耗的能量可以通过放电过程部分回收,从而给小灯泡等小型设备供电。
3.本申请采用多金属阳极耦合调控的方法,通过切换不同的金属阳极以达到“凉爽”以及“黑暗”两种模式。当薄膜阴极与阳极金属A(例如Al)连接时,其开路电压大于薄膜阴极与阳极金属B(例如Cu)连接时的开路电压。因此可以动态的调控可见光和近红外光的透过率,真正实现多模态、少能耗的电致变色器件的制备。
附图说明
图1为实施例1制备的电致变色器件的结构示意图;
图2为实施例1制备的电致变色器件在三种不同电压下的UV-vis-NIR透过率曲线图;
图3为实施例1制备的SnO 2纳米片与晶态WO 3-x的复合材料的截面SEM表征;
图4为实施例1制备的SnO 2纳米片与晶态WO 3-x的复合材料的XRD表征;
图5为实施例1制备的电致变色器件在两种模态下的记忆效应。
附图说明标记:1-第一导电基底,2-金属A,3-金属B,4-电解质,5-材料C,6-第二导电基底。
具体实施方式
下面结合附图与实施例对本申请做进一步阐述:
实施例1
如图1所示,本申请所述一种多金属阳极自供能-多模态电致变色器件,包括第一导电基底 1、金属A2、金属B3、电解质4、材料C5、第二导电基底6;金属A2和金属B3分别粘附在第一导电基底1一侧的两边,形成金属阳极;材料C5形成于第二导电基底6的上方,作为工作电极;在金属阳极与工作电极之间注入电解质4,通过导线分别连接金属A2、金属B3与材料C5;第一导电基底1为FTO玻璃,金属A2选用Cu箔、金属B3选用Al箔,电解质4为1MAlCl 3/ZnSO 4电解液,材料C5为SnO 2纳米片与晶态WO 3-x的复合材料,第二导电基底6为FTO玻璃。
一种多金属阳极自供能-多模态电致变色器件的制备方法,包括以下步骤,
S1将作为第一导电基底1以及第二导电基底6的FTO导电玻璃(2×3cm 2)洗净晾干;
S2将0.5g尿素溶解在40mL去离子水中,接着加入10μL硫代乙醇酸以及0.5mL 37%HCl,最后加入0.05g SnCl 2·2H 2O,空气中持续搅拌5min形成澄清溶液;然后转移到放有第二导电基底6的聚四氟乙烯内衬中,将第二导电基底6的导电面朝下,且于内衬呈45°角放置,在130℃下反应8h,取出清洗后在马弗炉400℃下煅烧3h,得到负载SnO 2纳米片的第二导电基底6;称取0.4g的六氯化钨粉末溶解于4mL无水乙醇中,混合均匀后利用旋涂仪旋涂在长有SnO 2纳米片的第二导电基底6上,接着使用紫外灯箱照射5~10min,重复旋涂、照射6次后,在400~500℃下煅烧1h,得到WO 3-x/SnO 2结构;
S3将金属A2和金属B3剪取第一导电基底1面积的1/5~1/6,粘附在第一导电基底1的一侧的两边,两者的间隔距离大于第一导电基底1宽的2/3;
S4将步骤S2中在SnO 2纳米片上负载晶态WO 3-x的第二导电基底6作为工作电极,步骤S3中的粘有金属A2和金属B3的第一导电基底1为金属阳极,0.2mm厚的PET垫片剪成中空结构隔开工作电极以及金属阳极,PET边缘留有一个小孔,用紫外固化胶对器件进行封装,然后从小孔注满1M AlCl 3/ZnSO 4电解液(AlCl 3:ZnSO 4=1:1),最后用紫外固化胶封装小孔,就得到所述的电致变色器件。
实施例1封装的电致变色器件,使用1MAlCl 3/ZnSO 4电解液注入电致变色器件,在三种不同电压下的UV-vis-NIR透过率曲线图如图2所示,当工作电极与金属A2(Cu)连接时,器件处于“凉爽”模式,允许太阳光中的可见光进入,屏蔽近红外光(633nm处的透射率为73.4%,1200nm和1600nm处的为12.1%和10.9%);当工作电极与金属B3(Al)连接时,器件处于“黑暗”模式,屏蔽太阳光中的可见光以及近红外光(633nm处的透射率为2.9%,1200nm和1600nm处的为0.7%和1.1%);反向施加+3.0V电压后,器件处于“明亮”模式,此时允许可见光及近红外光通过(633nm处的透射率为85.4%,1200nm和1600nm处的为74.8%和86.6%)。
实施例1制备的SnO 2纳米片与晶态WO 3-x的复合材料的截面SEM表征如图3所示,可以看出底层的SnO 2纳米片垂直生长在FTO玻璃上,长度约为300nm,具有交联和开放的框架,有利于支撑WO 3-x的晶态结构,上层为晶态WO 3-x
实施例1制备的SnO 2纳米片与晶态WO 3-x的复合材料的XRD表征如图4所示,SnO 2纳米片为四方金红石结构,上层的WO 3-x为单斜晶体结构。
实施例1封装的电致变色器件在不同模态下的双稳态性能表征图如图5所示,双稳态性,是电致变色材料的另一个性能指标。优异的双稳态性表明,只有在模式切换之间需要电能,而在撤去电压后便不需要电能来维持其自身的颜色,大大降低了能耗。从图5可以看出,当阴极与不同金属连接250s后,断开回路状态后的透过率变化。在1100nm(“冷”模式)和633nm(“暗”模式)的透过率在3600s内变化分别为1.0%和2.2%。
实施例2
一种多金属阳极自供能-多模态电致变色器件的制备方法,包括以下步骤,
S1将作为第一导电基底1和第二导电基底6的FTO导电玻璃(2×3cm 2)洗净晾干;
S2将0.5g尿素溶解在40mL去离子水中,接着加入10μL硫代乙醇酸以及0.5mL 37%HCl,最后加入0.05g SnCl 2·2H 2O,空气中持续搅拌5min形成澄清溶液,然后转移到放有第二导电基底6的聚四氟乙烯内衬中,将第二导电基底6的导电面朝下,且于内衬呈45°角放置,在130℃下反应10h,取出清洗后在马弗炉400℃下煅烧3h,得到负载SnO 2纳米片的第二导电基底6;称取0.4g的六氯化钨粉末溶解于4mL无水乙醇中,混合均匀后利用旋涂仪旋涂在长有SnO 2纳米片的第二导电基底6上,接着使用紫外灯箱照射5~10min,重复旋涂、照射6次后,在400~500℃下煅烧1h,得到WO 3-x/SnO 2结构;
S3将金属A2(Al箔)和金属B3(Zn箔)剪取第一导电基底1面积的1/5~1/6,粘附在第一导电基底1的一侧的两边,两者的间隔距离大于第一导电基底1宽的2/3;
S4器件的封装:将步骤S2中在SnO 2纳米片上负载晶态WO 3-x的第二导电基底6作为工作电极,步骤S3中的粘有金属箔的第一导电基底1作为金属阳极,0.2mm厚的PET垫片剪成中空结构隔开工作电极以及金属阳极,PET边缘留有一个小孔,用紫外固化胶对器件进行封装,然后从小孔注满1MAlCl 3电解液(AlCl 3/ZnSO 4的比例为1:0),最后用紫外固化胶封装小孔,得到所述的电致变色器件。
实施例3
一种多金属阳极自供能-多模态电致变色器件的制备方法,包括以下步骤,
S1将作为第一导电基底1和第二导电基底6的FTO导电玻璃(2×3cm 2)洗净晾干;
S2将0.5g尿素溶解在40mL去离子水中,接着加入10μL硫代乙醇酸以及0.5mL 37%HCl,最后加入0.05g SnCl 2·2H 2O,空气中持续搅拌5min形成澄清溶液。然后转移到放有第二导电基底6的聚四氟乙烯内衬中,将第二导电基底6的导电面朝下,且于内衬呈45°角放置,在130℃下反应6h,取出清洗后在马弗炉400℃下煅烧3h,得到负载SnO 2纳米片的第二导电基底6;称取0.4g的六氯化钨粉末溶解于4mL无水乙醇中,混合均匀后利用旋涂仪旋涂在长有SnO 2纳米片的第二导电基底6上,接着使用紫外灯箱照射5~10min,重复旋涂、照射6次后,在400~500℃下煅烧2h,得到WO 3-x/SnO 2结构;
S3将金属A2(Zn箔)和金属B3(Cu箔)剪取第一导电基底1面积的1/5~1/6,粘附在第一导电基底1的一侧的两边,两者的间隔距离大于第一导电基底1宽的2/3;
S4器件的封装:将步骤S2中在SnO 2纳米片上负载晶态WO 3-x的第二导电基底6作为工作电极,步骤S3中的粘有金属箔的第一导电基底1作为金属阳极,0.2mm厚的PET垫片剪成中空结构隔开工作电极以及金属阳极,PET边缘留有一个小孔,用紫外固化胶对器件进行封装,然后从小孔注满1M ZnSO 4电解液(AlCl 3:ZnSO 4=0:1),最后用紫外固化胶封装小孔,得到所述的电致变色器件。

Claims (8)

  1. 一种多金属阳极自供能-多模态电致变色器件,其特征在于:包括第一导电基底(1)、金属A(2)、金属B(3)、电解质(4)、材料C(5)、第二导电基底(6);金属A(2)和金属B(3)分别粘附在第一导电基底(1)一侧的两边,形成金属阳极;材料C(5)形成于第二导电基底(6)的上方,作为工作电极;在金属阳极与工作电极之间注入电解质(4),得到所述多金属阳极自供能-多模态电致变色器件;当金属A(2)与材料C(5)通过导线连接时,在电路中产生的开路电压大小在0~1V之间,较小的电压驱动该电致变色器件处于“凉爽”模式;当金属B(3)与材料C(5)通过导线连接时,在电路中产生的开路电压大小在1~3V之间,较大的电压驱动电致变色器件处于“黑暗”模式。
  2. 如权利要求1所述的一种多金属阳极自供能-多模态电致变色器件,其特征在于:由于金属A(2)、金属B(3)与材料C(5)之间存在着氧化还原电位差,用导线连接金属A(2)与材料C(5)之后形成外部电路,材料C(5)进行着色,同时外部电路有电流出现,实现放电过程,该外部电流能够为外部接入的低于0.5V的用电器件供电;当外加3V电压后,该电致变色器件的工作电极存在离子的脱出,实现充电过程,同时材料C(5)开始褪色,器件重新回到一边电势高、一边电势低的初始电势差,如此形成能量循环,着色过程通过内置电压实现着色,褪色过程的能耗则通过为其他小型装置供电实现能量回收。
  3. 如权利要求1所述的一种多金属阳极自供能-多模态电致变色器件,其特征在于:所述的第一导电基底(1)为FTO、ITO导电玻璃或者普通透明基底材料。
  4. 如权利要求1所述的一种多金属阳极自供能-多模态电致变色器件,其特征在于:所述的金属A(2)和金属B(3)的材料包括且不限于Cu、Al、Fe、Zn、Mg,金属A(2)与金属B(3)选用不同的金属材料以确保开路电压处于合适的电压区间;金属A(2)和金属B(3)的面积为第一导电基底(1)的1/5~1/6,两者的间隔距离大于第一导电基底(1)宽度的2/3。
  5. 如权利要求1所述的一种多金属阳极自供能-多模态电致变色器件,其特征在于:所述的电解质(4)单独为液体、胶体或固体的形式;电解质(4)中包含且不限于H +、Li +、K +和Na +单价离子或者Mg 2+、Al 3+、Zn 2+多价离子的一种或多种,电解质的浓度为0.5mol/L~1mol/L。
  6. 如权利要求1所述的一种多金属阳极自供能-多模态电致变色器件,其特征在于:所述的材料C(5)包括且不限于WO 3-x、TiO 2-x纳米晶体或ITO纳米晶体,其中,WO 3-x、TiO 2-x纳米晶体x的取值范围在0~1之间;所述的材料C(5)厚度为200~800nm。
  7. 如权利要求1所述的一种多金属阳极自供能-多模态电致变色器件,其特征在于:所述的 第二导电基底(6)包括且不限于FTO、ITO导电玻璃或柔性PET导电膜。
  8. 如权利要求1所述的一种多金属阳极自供能-多模态电致变色器件的制备方法,其特征在于:包括以下步骤:
    S1将第一导电基底(1)以及第二导电基底(6)洗净晾干;
    S2将材料C(5)通过包括但不限于光沉积、旋涂、水热或者磁控溅射的方法生长在第二导电基底(6)上,作为工作电极;
    S3将金属A(2)和金属B(3)分别粘附在第一导电基底(1)一侧的两边,作为金属阳极;
    S4将步骤S2中的工作电极,以及步骤S3中的金属阳极通过中空PET垫片隔开,PET边缘留有一个小孔,用紫外固化胶对器件进行封装,然后从小孔注入电解质(4),最后用紫外固化胶封装小孔,得到所述的多金属阳极自供能-多模态电致变色器件。
PCT/CN2022/107419 2022-05-19 2022-07-22 一种多金属阳极自供能-多模态电致变色器件及制备方法 WO2023221288A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210543868.0A CN115185132B (zh) 2022-05-19 2022-05-19 一种多金属阳极自供能-多模态电致变色器件及制备方法
CN202210543868.0 2022-05-19

Publications (1)

Publication Number Publication Date
WO2023221288A1 true WO2023221288A1 (zh) 2023-11-23

Family

ID=83513089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107419 WO2023221288A1 (zh) 2022-05-19 2022-07-22 一种多金属阳极自供能-多模态电致变色器件及制备方法

Country Status (2)

Country Link
CN (1) CN115185132B (zh)
WO (1) WO2023221288A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109661611A (zh) * 2016-10-10 2019-04-19 金泰克斯公司 偏振窗组合件
CN110720120A (zh) * 2017-04-26 2020-01-21 唯景公司 用于建筑物服务的可着色窗户系统
CN111386193A (zh) * 2018-10-26 2020-07-07 法国圣戈班玻璃厂 包括具有可电控光学性能的可区段状切换的功能元件的复合玻璃板
CN111638618A (zh) * 2020-07-01 2020-09-08 京东方科技集团股份有限公司 调光面板、调光玻璃及装置、光透过率调节系统
US20200301232A1 (en) * 2019-03-01 2020-09-24 The Governors Of The University Of Alberta Electrochromic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109661611A (zh) * 2016-10-10 2019-04-19 金泰克斯公司 偏振窗组合件
CN110720120A (zh) * 2017-04-26 2020-01-21 唯景公司 用于建筑物服务的可着色窗户系统
CN111386193A (zh) * 2018-10-26 2020-07-07 法国圣戈班玻璃厂 包括具有可电控光学性能的可区段状切换的功能元件的复合玻璃板
US20200301232A1 (en) * 2019-03-01 2020-09-24 The Governors Of The University Of Alberta Electrochromic device
CN111638618A (zh) * 2020-07-01 2020-09-08 京东方科技集团股份有限公司 调光面板、调光玻璃及装置、光透过率调节系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WEI, WEI ET AL.: "An electrochromic window based on hierarchical amorphous WO3/SnO2 nanoflake arrays with boosted NIR modulation", APPLIED SURFACE SCIENCE, vol. 571, 16 September 2021 (2021-09-16), pages 1 - 10, XP086826720, DOI: 10.1016/j.apsusc.2021.151277 *
WU NAN; MA LONG; ZHAO SHAN; XIAO DEBAO: "Novel triazine-centered viologen analogues for dual-band electrochromic devices", SOLAR ENERGY MATERIALS AND SOLAR CELLS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM., NL, vol. 195, 1 January 1900 (1900-01-01), NL , pages 114 - 121, XP085651424, ISSN: 0927-0248, DOI: 10.1016/j.solmat.2019.03.005 *

Also Published As

Publication number Publication date
CN115185132B (zh) 2024-04-02
CN115185132A (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
Huang et al. Electrochromic materials based on ions insertion and extraction
CN110727155B (zh) 一种电致变色/储能双功能器件及其应用
Huang et al. Boosting the Zn2+-based electrochromic properties of tungsten oxide through morphology control
CN106997134A (zh) 一种智能遥控自供能电致变色窗及其制备方法
Bai et al. Dual-band electrochromic smart windows towards building energy conservation
CN106371259A (zh) 一种全固态电致变色智能玻璃及其自驱动能源系统
CN101726956A (zh) 新型太阳能自驱动电子纸器件单元模块及制备方法
Zhang et al. Integrated photo-chargeable electrochromic energy-storage devices
Liu et al. A solar-powered multifunctional and multimode electrochromic smart window based on WO3/Prussian blue complementary structure
Kou et al. Multi-functional electrochromic energy storage smart window powered by CZTSSe solar cell for intelligent managing solar radiation of building
Zhang et al. Two birds with one stone: a novel thermochromic cellulose hydrogel as electrolyte for fabricating electric-/thermal-dual-responsive smart windows
CN104614914A (zh) 一种自带太阳能电池的电致变色玻璃
CN103744246A (zh) 一种镜面反射型电致变色器件及其制备方法
CN103762085A (zh) 集成染料敏化太阳能电池自驱动电致变色器件的制备方法
CN111665672B (zh) 一种双功能电致变色能量存储器件及其制作方法
CN106886115A (zh) 一种还原性金属/聚苯胺电致变色电池及其制备方法
Guo et al. Recent progress in improving strategies of metal oxide-based electrochromic smart window
CN108227332A (zh) 一种基于有机无机复合材料的电致变色器件及其制备方法
Qin et al. Advancements in dual-band electrochromic smart windows: Exploring single-component materials for sustainable building solutions
WO2023221288A1 (zh) 一种多金属阳极自供能-多模态电致变色器件及制备方法
CN115097677A (zh) 一种电致变色能量存储双功能器件、其制备方法及其应用
Xie et al. Proton and redox couple synergized strategy for aqueous low voltage-driven WO3 electrochromic devices
CN101509306B (zh) 基于染料敏化太阳能电池的光电一体化建筑材料
CN107633951A (zh) 一种利用四氯化钛水解制备同质阻挡层/骨架结构的方法及其应用
CN105446046A (zh) 一种基于电量可视化面板的电源模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942319

Country of ref document: EP

Kind code of ref document: A1