WO2023221222A1 - 等离子体诊断方法和系统 - Google Patents

等离子体诊断方法和系统 Download PDF

Info

Publication number
WO2023221222A1
WO2023221222A1 PCT/CN2022/099450 CN2022099450W WO2023221222A1 WO 2023221222 A1 WO2023221222 A1 WO 2023221222A1 CN 2022099450 W CN2022099450 W CN 2022099450W WO 2023221222 A1 WO2023221222 A1 WO 2023221222A1
Authority
WO
WIPO (PCT)
Prior art keywords
thomson
laser
plasma
spectrum
scattered light
Prior art date
Application number
PCT/CN2022/099450
Other languages
English (en)
French (fr)
Inventor
张长虹
吕金壮
陈兵
黎卫国
杨旭
李明洋
方苏
王奇
陈蔚
张良
李士杰
彭翔
房博一
阮彦俊
Original Assignee
中国南方电网有限责任公司超高压输电公司检修试验中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国南方电网有限责任公司超高压输电公司检修试验中心 filed Critical 中国南方电网有限责任公司超高压输电公司检修试验中心
Publication of WO2023221222A1 publication Critical patent/WO2023221222A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/0006Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
    • H05H1/0012Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry
    • H05H1/0037Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry by spectrometry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the present application relates to the field of optical measurement technology, and in particular to a plasma diagnostic method and system.
  • Arc discharge in power system circuit breakers is usually generated in gases above atmospheric pressure.
  • the diagnosis of the plasma generated by arc discharge in a transient state is of great significance for the physical understanding of arc physical parameters and transport coefficients.
  • the Langmuir probe is a diagnostic method commonly used in plasma diagnosis. By inserting a probe whose end working part is covered with insulating material into the plasma, the end working part of the probe is in contact with the plasma. The other end of the probe is connected to the plasma-generating electrode through an adjustable power supply to change the potential of the probe to the plasma. Based on the Boltzmann relationship of charged particles under the action of the repulsion field, the plasma is determined parameter.
  • the above method is an intrusive measurement and may affect the motion state of the plasma, making the measured plasma parameters less accurate.
  • this application provides a plasma diagnosis method, which method includes:
  • the Thomson scattering spectrum is analyzed to obtain plasma parameters corresponding to the trigger delay.
  • the Thomson scattering spectrum is analyzed to obtain plasma parameters corresponding to the trigger delay, including:
  • the parameters corresponding to the theoretical spectrum are determined as the plasma parameters.
  • the plasma parameters include: electron temperature, electron density, and electron velocity of the plasma.
  • obtaining the Thomson scattering spectrum of the Thomson scattered light includes:
  • the Thomson scattered light includes the first Thomson scattered light and the second Thomson scattered light
  • the Thomson scattering spectrum includes the first Thomson scattering spectrum and the second Thomson scattering spectrum.
  • the Thomson scattering spectrum is analyzed to obtain plasma parameters corresponding to the trigger delay, including:
  • Parameters corresponding to the first theoretical spectrum include a first electron velocity
  • parameters corresponding to the second theoretical spectrum include a second electron velocity
  • the electron velocity is a combination of the first electron velocity and the second electron velocity.
  • the parameters corresponding to the first theoretical spectrum also include a first electron temperature and a first electron density
  • the parameters corresponding to the second theoretical spectrum further include a second electron temperature and a second electron density
  • this application provides a plasma diagnostic device, which includes: a determination module, a light generation module, an acquisition module, and a parameter analysis module,
  • the determination module is used to determine the trigger delay between the arc generating device and the laser;
  • the light generation module is used to trigger the arc generating device to generate plasma, and after the trigger delay, trigger the laser to generate laser, so that the plasma and the laser interact to generate Thomson scattered light;
  • the acquisition module is used to acquire the Thomson scattering spectrum of the Thomson scattered light
  • the parameter analysis module is used to analyze the Thomson scattering spectrum to obtain plasma parameters corresponding to the trigger delay.
  • this application also provides a computer device.
  • the computer device includes a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
  • the Thomson scattering spectrum is analyzed to obtain plasma parameters corresponding to the trigger delay.
  • this application also provides a computer-readable storage medium.
  • the computer-readable storage medium has a computer program stored thereon, and when the computer program is executed by the processor, the following steps are implemented:
  • the Thomson scattering spectrum is analyzed to obtain plasma parameters corresponding to the trigger delay.
  • this application also provides a computer program product.
  • the computer program product includes a computer program that implements the following steps when executed by a processor:
  • the Thomson scattering spectrum is analyzed to obtain plasma parameters corresponding to the trigger delay.
  • the present application provides a plasma diagnostic system.
  • the system includes a signal trigger, an arc generating device, a laser, and a receiving and processing device.
  • the signal trigger is communicated with the arc generating device and the laser respectively. ;
  • the signal trigger is used to determine the trigger delay between the arc generating device and the laser; trigger the arc generating device to generate plasma, and after the trigger delay, trigger the laser to generate laser , so that the plasma and the laser interact to produce Thomson scattered light;
  • the receiving and processing equipment is used to obtain the Thomson scattering spectrum of the Thomson scattered light; analyze the Thomson scattering spectrum to obtain the plasma parameters corresponding to the trigger delay.
  • the reception and processing equipment includes a light imaging device, a spectrum acquisition device and an analysis device;
  • the light imaging device is used to collect the Thomson scattered light and make it incident on the spectrum acquisition device;
  • the spectrum obtaining device is used to obtain the Thomson scattering spectrum of the incident Thomson scattered light
  • the analysis device is used to analyze the Thomson scattering spectrum to obtain the plasma parameters corresponding to the trigger delay.
  • the optical imaging device includes: a first convex lens and a first optical fiber array;
  • the first convex lens is used to image the first Thomson scattered light to the first optical fiber array
  • the first optical fiber array is used to incident the first Thomson scattered light to the spectrum acquisition device;
  • the spectrum obtaining device is used to obtain the first Thomson scattering spectrum of the first Thomson scattered light incident on the first optical fiber array
  • the Thomson scattered light includes the first Thomson scattered light
  • the Thomson scattered spectrum includes the first Thomson scattered spectrum.
  • the optical imaging device further includes: a second convex lens and a second optical fiber array;
  • the second convex lens is used to image the second Thomson scattered light to the second optical fiber array
  • the second optical fiber array is used to incident the second Thomson scattered light to the spectrum acquisition device;
  • the spectrum obtaining device is also used to obtain a second Thomson scattering spectrum of the second Thomson scattered light incident on the second optical fiber array.
  • the second optical fiber array and the second convex lens and the first optical fiber array and the first convex lens are respectively located on opposite sides of the arc generating device, and the second The connection between the optical fiber array and the first optical fiber array is perpendicular to the emission direction of the laser emitted by the laser, and the connection between the second convex lens and the first convex lens is perpendicular to the emission direction of the laser emitted by the laser;
  • the direction in which the first optical fiber array collects the first Thomson scattered light has a first angle with the emission direction of the laser emitted by the laser; the second optical fiber array collects the direction in which the second Thomson scattered light is emitted. , there is a second angle with the emission direction of the laser emitted by the laser;
  • the analysis device is used to obtain a first data point on the first Thomson scattering spectrum, find a first theoretical spectrum that is optimal square approximation to the first data point, and obtain the second Thomson scattering spectrum. Find the second theoretical spectrum that is the optimal square approximation to the second data point; based on the parameters corresponding to the first theoretical spectrum and the parameters corresponding to the first theoretical spectrum, obtain the plasma.
  • the parameters corresponding to the first theoretical spectrum include a first electron speed
  • the parameters corresponding to the first theoretical spectrum include a second electron speed
  • the electron speed is a combination of the first electron speed and the second electron speed.
  • the parameters corresponding to the first theoretical spectrum further include a first electron temperature and a first electron density
  • the parameters corresponding to the second theoretical spectrum further include a second electron temperature and a second electron density
  • the analysis device is further configured to determine one of the first electron temperature or the second electron temperature as the electron temperature of the plasma, and determine the first electron density or the second electron temperature.
  • One of the electron densities is determined to be the electron density of the plasma.
  • the above plasma diagnosis method and system determines the triggering delay between the arc generating device and the laser, so that the arc generating device generates plasma, and after the triggering delay, the laser is triggered to generate laser, so that the plasma and laser
  • the action produces Thomson scattered light, and the Thomson scattering spectrum of the Thomson scattered light is obtained.
  • the plasma parameters corresponding to the trigger delay can be obtained. Since the plasma diagnosis method based on Thomson scattered light is a non-invasive diagnosis method, it will not affect the motion state of the plasma, thereby improving the accuracy of plasma parameter measurement.
  • Figure 1 is a structural block diagram of a plasma diagnostic system
  • Figure 2 is a schematic diagram of the angle between a first optical fiber array and the incident direction of the laser
  • Figure 3 is a structural block diagram of a plasma diagnostic system based on the first optical fiber array
  • Figure 4 is a schematic diagram of the angle between an optical fiber array and the incident direction of the laser
  • Figure 5 is a structural block diagram of a plasma diagnostic system in one embodiment
  • Figure 6 is a schematic flow chart of a plasma diagnosis method in one embodiment
  • Figure 7 is a structural block diagram of a plasma diagnostic device in one embodiment
  • Figure 8 is an internal structure diagram of a computer device in one embodiment.
  • Arc discharge in power system circuit breakers is usually generated in gases above atmospheric pressure.
  • the diagnosis of the plasma generated by arc discharge in a transient state is of great significance for studying arc physical parameters and transport coefficients; among them, arc discharge Physical parameters can be understood as parameters related to thermodynamic properties, such as mass density, enthalpy and constant pressure specific heat, etc.
  • Transport coefficients can include electrical conductivity, thermal conductivity, viscosity coefficient, etc.
  • the Langmuir probe is a commonly used diagnostic method in plasma diagnostics.
  • a probe whose endpoint working part is covered with insulating material is inserted into the plasma, so that the endpoint of the probe The working part is in contact with the plasma, and the other end of the probe is connected to the electrode that generates the plasma through an adjustable power supply, changing the potential of the probe to the plasma, based on the Boltzmann relationship of charged particles under the action of a repulsive field , determine the plasma parameters.
  • the above method is an intrusive measurement and may affect the motion state of the plasma, making the measured plasma parameters less accurate.
  • the above method may cause ablation and damage to the probe, or may cause the measurement signal to suddenly exceed the measurable threshold and damage the instrument.
  • the temperature of the plasma can be 10000K
  • the duration of the plasma can be 10ms
  • the level of the current in the plasma environment can be kA.
  • plasma can be diagnosed using spectral measurement methods, it is affected by the radiation transport process and optical opacity, making it difficult to implement fixed-point measurements.
  • FIG. 1 a structural block diagram of a plasma diagnostic system is provided.
  • the plasma diagnostic system includes a signal trigger 102 , an arc generating device 104 , a laser 106 and a receiving and processing device 108 , the signal trigger 102 is communicatively connected with the arc generating device 104 and the laser 106 respectively.
  • the signal trigger can determine the trigger delay of the arc generating device and the laser.
  • the signal trigger triggers the arc generating device to generate plasma, and after the trigger delay, triggers the laser to generate laser; the arc generating device It can be a high-voltage discharge cavity.
  • the laser can interact with the plasma generated in the cavity to generate Thomson scattered light.
  • the receiving and processing equipment can obtain the plasma parameters based on the Thomson scattered light.
  • the plasma The volume parameters include the electron density, electron temperature and electron speed of the plasma; among them, the nanosecond laser power supply is not shown in Figure 1 .
  • the signal trigger can also trigger the arc generating device and the laser at the same time, and the trigger delay at this time is 0ms.
  • the receiving and processing equipment may include a light imaging device, a spectrum acquisition device and an analysis device.
  • the light imaging device is used to collect Thomson scattered light and incident on the spectrum acquisition device.
  • the spectrum acquisition device is used to obtain the Thomson scattering spectrum of the incident Thomson scattered light.
  • the analysis equipment is used to analyze the Thomson scattering spectrum and obtain the plasma parameters corresponding to the trigger delay; among them, after the nanosecond laser power is turned on, the signal trigger can also be used to trigger the start of the spectrum acquisition device.
  • the spectrum acquisition device may include a spectrometer and a camera.
  • the spectrometer is used to perform dispersion processing on the incident Thomson scattered light.
  • the camera is used to obtain the Thomson scattering spectrum of the dispersion-processed Thomson scattered light.
  • the spectrometer may be a reflection grating spectrometer. or other types of spectrometers, and the camera can be an enhanced charge-coupled device (ICCD) camera or other types of cameras.
  • ICCD enhanced charge-coupled device
  • the analysis equipment can obtain data points on the Thomson scattering spectrum, check the theoretical spectrum that is the optimal square approximation of the data points, and then determine the parameters corresponding to the theoretical spectrum as plasma parameters.
  • the Thomson scattered light may include the first Thomson scattered light
  • the Thomson scattering spectrum may include the first Thomson scattering spectrum
  • the light imaging device may include a first convex lens and a first optical fiber array.
  • the first convex lens is used to image the first Thomson scattered light to the first optical fiber array.
  • the first optical fiber array is used to incident the first Thomson scattered light to the spectrum acquisition device.
  • the spectrum acquisition device is used to obtain the incident light of the first optical fiber array.
  • the analysis device obtains the first data point on the first Thomson scattering spectrum and searches for the first theoretical spectrum that is the optimal square approximation to the first data point, thereby determining the parameters corresponding to the first theoretical spectrum as the plasma's Electron temperature, electron density, and electron speed.
  • the electron speed of the plasma obtained based on the first theoretical spectrum refers to the speed of the plasma on the plane.
  • the direction in which the first optical fiber array collects the first Thomson scattered light has an angle with the emission direction of the laser emitted by the laser, However, this angle will not affect the speed of the resulting plasma on the plane.
  • the distribution of the plasma can be an axial horizontal distribution.
  • the plasma can be an axially horizontal cylinder, so that the emission direction of the laser emitted by the laser is in the same direction as the axial direction of the plasma.
  • Figure 2 is a schematic diagram of the angle between the first optical fiber array and the incident direction of the laser. Taking the axis of the cylinder as the origin, the direction in which the first optical fiber array collects the first Thomson scattered light is consistent with the direction in which the laser emits light. The laser emission direction has a first included angle.
  • the signal trigger can trigger the arc generating device to generate plasma, and after the trigger delay, trigger the laser to emit laser, so that the interaction between plasma and laser can produce the first Thomson scattered light.
  • the camera can obtain the first Thomson scattering spectrum of the dispersion-processed first Thomson scattered light, and then the plasma can be obtained based on the first Thomson scattering spectrum. Electron temperature, electron density, and electron speed.
  • Figure 3 is a structural block diagram of a plasma diagnostic system based on a first optical fiber array.
  • the system includes a signal trigger, a laser, an arc generating device, a third A convex lens, a first optical fiber array, a spectrometer, a camera and analysis equipment.
  • the first optical fiber array and the first convex lens are located on one side of the arc generating device; the system may also include a nanosecond laser power supply, which is not shown in Figure 3 .
  • the interaction process between the signal trigger, the laser, the arc generating device, the first convex lens, the first fiber array, the spectrometer, the camera and the analysis equipment can be adapted to the description with reference to the foregoing content, and will not be described again here.
  • the Thomson scattered light may also include a second Thomson scattered light
  • the Thomson scattered light may further include a second Thomson scattered spectrum
  • the light imaging device may further include a second convex lens and a second optical fiber array.
  • the second convex lens is used to image the second Thomson scattered light to the second optical fiber array.
  • the second optical fiber array is used to incident the second Thomson scattered light to the spectrum acquisition device.
  • the spectrum acquisition device is also used to obtain the incident light of the second optical fiber array.
  • the second Thomson scattering spectrum of the second Thomson scattered light is also used to obtain the incident light of the second optical fiber array.
  • the analysis equipment can also find the second theoretical spectrum based on the second Thomson scattering spectrum, and then determine the parameters corresponding to the second theoretical spectrum as the electron temperature, electron density, and electron velocity of the plasma.
  • the electron speed of the plasma obtained based on the second theoretical spectrum also refers to the speed of the plasma on the plane.
  • the direction in which the second optical fiber array collects the second Thomson scattered light has an angle with the emission direction of the laser emitted by the laser, However, this angle will not affect the speed of the resulting plasma on the plane.
  • the parameters corresponding to the first theoretical spectrum include the first electron temperature, the first electron density and the first electron speed
  • the parameters corresponding to the second theoretical spectrum include the second electron temperature, the second electron density and the second electron speed.
  • the first electron temperature and the second electron temperature are equal
  • the first electron density and the second electron density are equal
  • the first electron density and the second electron density are close.
  • one of the second electron temperature or the first electron temperature can be determined as the electron temperature of the plasma, and one of the second electron density or the first electron density can be determined as the electron density of the plasma, One of the first electron speed and the second electron speed may be determined as the speed of the plasma on the plane.
  • the plasma diagnostic system as shown in Figure 3 can also be designed based on the second optical fiber array and the second convex lens.
  • the second optical fiber array and the second convex lens and the first optical fiber array and the first convex lens are closely related to the arc.
  • the positions of the devices are different, that is, the second optical fiber array and the second convex lens and the first optical fiber array and the first convex lens are respectively located on opposite sides of the arc generating device.
  • the first optical fiber array and the second optical fiber array are two sets of optical fiber arrays with the same structure.
  • the two sets of optical fiber arrays each have 16 optical fibers and are arranged in a "one" shape.
  • the number of optical fibers can also be set according to actual application scenarios, and is not limited in the embodiments of this application.
  • Figure 4 is a schematic diagram of the angle between a provided optical fiber array and the incident direction of the laser.
  • the signal trigger can trigger the arc generating device to generate plasma.
  • the trigger laser emits laser, so that the plasma interacts with the laser to produce Thomson scattered light; the nanosecond laser power supply is not shown in Figure 4 .
  • the Thomson scattered light may include a first Thomson scattered light and a second Thomson scattered light.
  • the direction in which the first optical fiber array collects the first Thomson scattered light has a first angle with the axial direction of the plasma, that is, the first
  • the optical fiber array collects the first Thomson scattered light in the direction of the first angle
  • the second optical fiber array collects the second Thomson scattered light in a direction that has a second included angle with the emission direction of the laser emitted by the laser, that is, the second optical fiber
  • the array collects the second Thomson scattered light in the direction of the second included angle, and the first included angle and the second included angle are the same.
  • the first optical fiber array and the first convex lens may be located directly above the arc generating device, and the second optical fiber array and the second convex lens may be located above the arc generating device. directly below.
  • the second optical fiber array and the second convex lens and the first optical fiber array and the first convex lens are respectively located on opposite sides of the arc generating device, and the connection between the second optical fiber array and the first optical fiber array is connected with the laser emitting laser.
  • the emission direction of the laser is vertical, and the line connecting the second convex lens and the first convex lens is perpendicular to the emission direction of the laser emitted by the laser.
  • changing the angle between the first fiber array and the emission direction of laser emitted by the laser and the angle between the second fiber array and the emission direction of laser emitted by the laser is to change the collection of Thomson scattering by the fiber array.
  • the direction of light is the direction of the first electron speed and the direction of the second electron speed at different angles.
  • the distribution of the plasma can be an axial horizontal distribution, so that the emission direction of the laser emitted by the laser is in the same direction as the axial direction of the plasma. Therefore, the first optical fiber array and the first convex lens are along the plasma The second optical fiber array and the second convex lens are arranged along the plasma axis. In this way, the optical fiber array and the second convex lens have axial spatial resolution capabilities. That is, by setting the optical fiber array and the laser emission direction between The angle between the two can be used to obtain the velocity of the plasma along the axial direction parallel to the direction in which the laser emits laser light, that is, the axial velocity of the plasma. For example, after performing vector calculations on the first electron velocity and the second electron velocity, we can Obtain the axial velocity of the plasma.
  • the electron velocity of the plasma obtained based on one of the first Thomson scattering spectrum or the second Thomson scattering spectrum is different from the axial velocity of the plasma, which is based on the first Thomson scattering spectrum or based on the second Thomson scattering spectrum.
  • the axial velocity is included in the electron velocity of the plasma obtained from one of the Thomson scattering spectra.
  • the first optical fiber array has a first included angle with the emission direction of the laser emitted by the laser
  • the second optical fiber array has a second included angle with the emission direction of the laser emitted by the laser
  • a fourth included angle between the second optical fiber array and the emission direction of the laser emitted by the laser is the same as the fourth included angle.
  • the plasma diagnostic system is based on the Thomson scattering spectrum of the Thomson scattered light collected by the first optical fiber array at the first included angle position and the Thomson scattering spectrum based on the Thomson scattered light collected by the second optical fiber array at the second included angle position.
  • the spectrum, the obtained axial velocity of the plasma is compared with the Thomson scattering spectrum of the Thomson scattered light collected by the plasma diagnostic system based on the first optical fiber array at the third included angle position and the Thomson scattering spectrum based on the second optical fiber array at the fourth included angle.
  • the Thomson scattering spectrum of the Thomson scattered light collected at the position, the axial velocity of the plasma obtained is the same.
  • the plasma diagnostic system may also include a beam collector.
  • the beam collector is located on one side of the arc generating device, and the position of the beam collector is opposite to the emission direction of the laser emitted by the laser.
  • the beam collector is used to collect the laser light that does not interact with the plasma in the arc generating device, that is, the beam collector is used to collect the remaining laser light.
  • the plasma diagnostic system can also include a spatial filter and a third convex lens.
  • the spatial filter has its own vacuum system to filter out random fluctuations in the intensity distribution of the laser and avoid the influence of random fluctuations in the laser.
  • the role of plasma is to improve the accuracy of the obtained plasma parameters; the third convex lens is used to focus the laser after filtering out random fluctuations and emit it to the arc generating device.
  • FIG. 5 is a structural block diagram of a plasma diagnostic system, as shown in FIG. 5 , the system includes a signal trigger, a laser, a spatial filter, a third convex lens, an arc generating device, a beam collector, a first convex lens, a first fiber array, a second convex lens, a second fiber array, a spectrometer, a camera and analysis Equipment; the system may also include a nanosecond laser power supply, which is not shown in Figure 5.
  • the signal trigger triggers the arc generating device to generate plasma
  • the laser is triggered to generate laser light.
  • the laser light can be incident on the spatial filter, and the spatial filter filters out the incident laser light.
  • the laser with the random fluctuations filtered out can be focused and imaged through the third convex lens and emitted to the arc generating device, and then the laser after filtering out the random fluctuations interacts with the plasma in the arc generating device to produce Thomson Scattered light.
  • the Thomson scattered light includes the first Thomson scattered light and the second Thomson scattered light.
  • the first convex lens images the first Thomson scattered light to the first optical fiber array.
  • the first optical fiber array injects the first Thomson scattered light into the spectrometer.
  • the camera can obtain the first Thomson scattering spectrum based on the dispersion processed first Thomson scattered light, and then the analysis equipment can obtain the first Thomson scattering spectrum For the first data point, find the first theoretical spectrum that is the best square approximation to the first data point, so that the first electron temperature, the first electron density and the first electron velocity of the plasma can be determined.
  • the second convex lens images the second Thomson scattered light to the second optical fiber array, and the second optical fiber array injects the second Thomson scattered light into the spectrometer.
  • the camera can be based on The second Thomson scattered light after dispersion processing obtains the second Thomson scattering spectrum.
  • the analysis equipment can obtain the second data point on the second Thomson scattering spectrum and find the second optimal square approximation to the second data point. Two theoretical spectra, so that the second electron temperature, the second electron density and the second electron velocity of the plasma can be determined.
  • the first electron temperature and the second electron temperature are the same, the first electron density and the second electron density are the same, one of the first electron temperature and the second electron temperature is determined as the electron temperature of the plasma, the first electron density One of the densities of the first and second electron densities is determined as the electron density of the plasma, and one of the first electron speed and the second electron speed is determined as the electron speed of the plasma on the plane; and, the analysis device determines the first electron density of the plasma. After performing vector calculations on the first electron speed and the second electron speed, the speed of the plasma along the axial direction parallel to the direction in which the laser emits laser light can be obtained, that is, the axial speed of the plasma.
  • a plasma diagnosis method which may include the following steps:
  • S602. Determine the trigger delay between the arc generating device and the laser.
  • the diagnosis of plasma at different times can be achieved. For example, the diagnosis of plasma arcing and arc extinguishing processes at early times or Diagnosis at late moments. Since the plasma has dynamic processes such as heating and cooling during the arc burning and arc extinguishing processes, dynamic processes such as heating and cooling of the plasma can be realized based on the diagnosis of the plasma at different times. Based on the measurement of the process, and based on the dynamic processes such as plasma heating and cooling, high-voltage gas switches or vacuum circuit breakers can be designed according to actual application scenarios.
  • S604 trigger the arc generating device to generate plasma, and after triggering delay, trigger the laser to generate laser, so that the plasma and laser interact to produce Thomson scattered light.
  • the arc generating device can be a high-voltage discharge cavity, and the plasma generated by the arc generating device can be a gas switching arc plasma.
  • the laser light generated by the laser is incident into the cavity, it can mix with the gas generated in the cavity.
  • the interaction between the switching arc plasma generates Thomson scattered light, in which the parameters of the gas switching arc plasma are within the collective scattering range. Therefore, the generated Thomson scattered light is the Thomson scattered light corresponding to the collective scattering.
  • the signal trigger can be a digital signal trigger or other types of triggers.
  • the model of the digital signal trigger can be DG535.
  • the digital signal trigger can receive a clock pulse sent by a nanosecond laser power supply.
  • the arc generating device and the laser can be triggered; moreover, the trigger delay can be manually adjusted on the signal trigger, and the specific value of the trigger delay can be set according to the actual application scenario, which is not limited by the embodiments of this application.
  • the process of interaction between plasma and laser in the arc generating device can be understood as the process of plasma arcing.
  • the plasma arcing time is usually on the order of milliseconds
  • the signal trigger is usually triggered on the order of milliseconds.
  • the laser is triggered after a delay, wherein the laser can be a pulse laser, so that the laser beam can be generated after the signal trigger triggers the pulse laser.
  • the arc generating device and the laser can also be triggered at the same time.
  • the specific triggering method can be set according to the actual application scenario, and is not limited in the embodiments of this application.
  • the Thomson scattering spectrum of the Thomson scattered light can be obtained by receiving and processing equipment.
  • the Thomson scattered light includes the first Thomson scattered light and the second Thomson scattered light.
  • the Thomson scattering spectrum includes the first Thomson scattered light. Scattering spectrum and second Thomson scattering spectrum.
  • the first Thomson scattered light can be obtained through the first convex lens and the first optical fiber array, and then the first Thomson scattered light can be obtained through the spectrometer and the camera; and, the first Thomson scattered light can be obtained through the second convex lens and the second optical fiber array.
  • the first Thomson scattering spectrum is a first Thomson scattering spectrum of the first Thomson scattered light collected in a direction that is at a first angle with the emission direction of the laser emitted by the laser;
  • the second Thomson scattering spectrum is The scattering spectrum is a second Thomson scattering spectrum of the second Thomson scattered light collected in a direction at a second angle with the emission direction of laser light emitted by the laser.
  • the plasma parameters can be used to study the physical process of the arc, and can also be used to study the arc generation mechanism and arc extinguishing mechanism of various configurations of high-voltage gas switches and vacuum circuit breakers. Moreover, by measuring different gases The physical parameters of the arc under the arc make it possible to design a high-voltage gas switch or vacuum circuit breaker based on the physical parameters according to the actual application scenario.
  • the Thomson scattering spectrum is analyzed to obtain the plasma parameters corresponding to the trigger delay, including: obtaining the first data point on the first Thomson scattering spectrum, and checking the optimal square approximation of the first data point
  • the first theoretical spectrum determining the parameters corresponding to the first theoretical spectrum as the first electron temperature, the first electron density and the first electron velocity of the plasma; and obtaining the second data point on the second Thomson scattering spectrum and checking
  • the second theoretical spectrum approximates the optimal square of the second data point; the parameters corresponding to the second theoretical spectrum are determined as the second electron temperature, the second electron density and the second electron speed of the plasma.
  • the first electron temperature and the second electron temperature are the same, the first electron density and the second electron density are the same, and the first electron speed and the second electron speed are close. Therefore, the first electron temperature and the second electron temperature can be One of the temperatures may be determined as the electron temperature of the plasma, one of the first electron density and the second electron density may be determined as the electron density of the plasma, and one of the first electron speed and the second electron speed may be determined One velocity is determined as the electron speed of the plasma on the plane.
  • the velocity of the plasma along the axial direction parallel to the direction in which the laser emits laser light can be obtained, that is, the axial velocity of the plasma.
  • the first electron speed and the second electron speed are respectively the speed components in the wave vector difference directions corresponding to both sides of the plasma axis. Therefore, after vector calculation is performed on the first electron speed and the second electron speed, the plasma can be obtained The axial velocity of the body. For example, after vector calculation of the first electron velocity and the second electron velocity, the wave vector of the plane where the laser and Thomson scattered light are located can be obtained. Subtract the wave vector of the laser from the wave vector of the Thomson scattered light. After the wave vector, the magnitude corresponding to the obtained wave vector difference is the axial velocity of the plasma.
  • the electron speed obtained by vector calculation of the first electron speed and the second electron speed is different from the first electron speed or the second electron speed, and the first electron speed or the second electron speed includes the axial speed.
  • the arc generating device can be triggered to generate plasma, and after the trigger delay, the laser can be triggered to generate laser, so that The action of plasma and laser produces Thomson scattered light, and the Thomson scattering spectrum of the Thomson scattered light is obtained. Then, by analyzing the Thomson scattering spectrum, the plasma parameters corresponding to the trigger delay can be obtained. Since the plasma diagnosis method based on Thomson scattered light is a non-invasive diagnosis method, it will not affect the motion state of the plasma, thereby improving the accuracy of plasma parameter measurement.
  • the principle of the plasma diagnostic method provided in this application is based on optical diagnostic technology, which measures the electron density, electron temperature and electron speed of the plasma through Thomson scattered light generated by the interaction between laser and plasma.
  • Thomson scattering can include collective scattering and non-collective scattering.
  • the type of Thomson scattering can be determined by parameters. To determine, k is the wave vector difference between laser and Thomson scattered light, is the electronic Debye length, T e is the electron temperature of the plasma, and n e is the electron density of the plasma.
  • the plasma diagnostic system proposed in this application can measure the electron temperature, electron density and electron velocity of the plasma at the same time and in the same area.
  • the first optical fiber array and the second optical fiber array in the plasma diagnostic system can measure the electron temperature, electron density and electron velocity of the plasma at the same time.
  • Thomson scattered light can be collected in the same direction, and without changing other equipment in the plasma diagnostic system, it can be achieved at different times by changing the trigger delay between the arc generating device and the laser on the same plane. Plasma diagnostics.
  • embodiments of the present application also provide a plasma diagnostic device for implementing the above mentioned.
  • the solution to the problem provided by this device is similar to the solution described in the above method. Therefore, for the specific limitations in one or more plasma diagnostic device embodiments provided below, please refer to the above description of the plasma diagnostic method. Limitations will not be repeated here.
  • a structural block diagram of a plasma diagnostic device includes: a determination module 702 , a light generation module 704 , an acquisition module 706 and a parameter analysis module 708 .
  • Determining module for determining the trigger delay between the arc generating device and the laser
  • a light generation module is used to trigger the arc generating device to generate plasma, and after a trigger delay, trigger the laser to generate laser, so that the plasma and laser interact to generate Thomson scattered light;
  • An acquisition module is used to acquire the Thomson scattering spectrum of Thomson scattered light
  • the parameter analysis module is used to analyze the Thomson scattering spectrum and obtain the plasma parameters corresponding to the trigger delay.
  • the parameter analysis module is also used to:
  • the parameters corresponding to the theoretical spectrum are determined as plasma parameters.
  • the plasma parameters include: electron temperature, electron density, and electron velocity of the plasma.
  • the acquisition module is also used to:
  • the Thomson scattered light includes the first Thomson scattered light and the second Thomson scattered light
  • the Thomson scattered spectrum includes the first Thomson scattered spectrum and the second Thomson scattered spectrum.
  • the parameter analysis module is also used to:
  • the parameters corresponding to the first theoretical spectrum include the first electron velocity, and the parameters corresponding to the second theoretical spectrum include the second electron velocity; the electron velocity is the plasma along the line parallel to the laser obtained by vector calculation of the first electron velocity and the second electron velocity. The velocity in the axial direction of the direction in which the laser is emitted.
  • the parameters corresponding to the first theoretical spectrum also include a first electron temperature and a first electron density
  • the parameters corresponding to the second theoretical spectrum also include a second electron temperature and a second electron density.
  • the parameter analysis module also includes Used for:
  • One of the first electron temperature or the second electron temperature is determined as the electron temperature of the plasma, and one of the first electron density or the second electron density is determined as the electron density of the plasma.
  • Each module in the above-mentioned plasma diagnostic device can be implemented in whole or in part by software, hardware and combinations thereof.
  • Each of the above modules may be embedded in or independent of the processor of the computer device in the form of hardware, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • a computer device is provided.
  • the computer device may be a server, and its internal structure diagram may be shown in Figure 8 .
  • the computer device includes a processor, memory, and network interfaces connected through a system bus. Wherein, the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes non-volatile storage media and internal memory.
  • the non-volatile storage medium stores operating systems and computer programs. This internal memory provides an environment for the execution of operating systems and computer programs in non-volatile storage media.
  • the network interface of the computer device is used to communicate with external terminals through a network connection.
  • the computer program when executed by a processor, implements a plasma diagnostic method.
  • Figure 8 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied.
  • Specific computer equipment can May include more or fewer parts than shown, or combine certain parts, or have a different arrangement of parts.
  • a computer device including a memory and a processor.
  • a computer program is stored in the memory.
  • the processor executes the computer program, it implements the steps in the above method embodiments.
  • a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps in the above method embodiments are implemented.
  • a computer program product including a computer program that implements the steps in each of the above method embodiments when executed by a processor.
  • the user information including but not limited to user equipment information, user personal information, etc.
  • data including but not limited to data used for analysis, stored data, displayed data, etc.
  • the computer program can be stored in a non-volatile computer-readable storage.
  • the computer program when executed, may include the processes of the above method embodiments.
  • Any reference to memory, database or other media used in the embodiments provided in this application may include at least one of non-volatile and volatile memory.
  • Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive memory (ReRAM), magnetic variable memory (Magnetoresistive Random Access Memory (MRAM), ferroelectric memory (Ferroelectric Random Access Memory, FRAM), phase change memory (Phase Change Memory, PCM), graphene memory, etc.
  • Volatile memory may include random access memory (Random Access Memory, RAM) or external cache memory, etc.
  • RAM Random Access Memory
  • RAM random access memory
  • RAM Random Access Memory
  • the databases involved in the various embodiments provided in this application may include at least one of a relational database and a non-relational database.
  • Non-relational databases may include blockchain-based distributed databases, etc., but are not limited thereto.
  • the processors involved in the various embodiments provided in this application may be general-purpose processors, central processing units, graphics processors, digital signal processors, programmable logic devices, quantum computing-based data processing logic devices, etc., and are not limited to this.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种等离子体诊断方法和系统,其中的方法包括:确定电弧发生装置(104)和激光器(106)之间的触发延时(602);触发电弧发生装置(104)产生等离子体,并经过触发延时后,触发激光器(106)产生激光,使得等离子体和激光作用产生汤姆逊散射光(604);获取汤姆逊散射光的汤姆逊散射光谱(606);对汤姆逊散射光谱进行分析,获得与触发延时相对应的等离子体参数(608)。由此,能够提高等离子体参数的测量准确率。

Description

等离子体诊断方法和系统 技术领域
本申请涉及光学测量技术领域,特别是涉及一种等离子体诊断方法和系统。
背景技术
电力系统断路器中的电弧放电通常是在高于大气压的气体中产生的,电弧放电产生的等离子体在瞬态状态下的诊断对于电弧物性参数以及输运系数的物理理解具有重要意义。
朗缪尔探针是等离子体诊断中常用的一种诊断方法,通过将一根除了端点工作部分以外其余部分均用绝缘材料覆盖的探针插入等离子体内部,使探针的端点工作部分与等离子体接触,而探针的另一端通过一可调电源与产生等离子体的电极相连,改变探针对等离子体的电位,基于带电粒子在拒斥场作用下的波尔兹曼关系,确定等离子体参数。
但是,上述方法属于侵入式测量,可能会对等离子体的运动状态产生影响,使得测量得到的等离子参数的准确率低。
发明内容
基于此,有必要针对上述技术问题,提供一种能够提高等离子参数测量准确率的等离子体诊断方法和系统。
第一方面,本申请提供一种等离子体诊断方法,所述方法包括:
确定电弧发生装置和激光器之间的触发延时;
触发所述电弧发生装置产生等离子体,并经过所述触发延时后,触发所述激光器产生激光,使得所述等离子体和所述激光作用产生汤姆逊散射光;
获取所述汤姆逊散射光的汤姆逊散射光谱;
对所述汤姆逊散射光谱进行分析,获得与所述触发延时相对应的等离子体参数。
在其中一个实施例中,所述对所述汤姆逊散射光谱进行分析,获得与所述 触发延时相对应的等离子体参数,包括:
获取所述汤姆逊散射光谱上的数据点,查收与所述数据点最优平方逼近的理论光谱;
将所述理论光谱对应的参数确定为所述等离子体参数。
在其中一个实施例中,所述等离子体参数包括:所述等离子体的电子温度、电子密度以及电子速度。
在其中一个实施例中,所述获取所述汤姆逊散射光的汤姆逊散射光谱,包括:
获取以与所述激光器发出激光的发射方向的第一夹角的方向,收集的第一汤姆逊散射光的第一汤姆逊散射光谱;
获取以与所述激光器发出激光的发射方向的第二夹角的方向,收集的第二汤姆逊散射光的第二汤姆逊散射光谱;
所述汤姆逊散射光包括所述第一汤姆逊散射光和所述第二汤姆逊散射光,所述汤姆逊散射光谱包括所述第一汤姆逊散射光谱和所述第二汤姆逊散射光谱。
在其中一个实施例中,所述对所述汤姆逊散射光谱进行分析,获得与所述触发延时相对应的等离子体参数,包括:
获取所述第一汤姆逊散射光谱上的第一数据点,查找与所述第一数据点最优平方逼近的第一理论光谱;
获取所述第二汤姆逊散射光谱上的第二数据点,查找与所述第二数据点最优平方逼近的第二理论光谱;
基于所述第一理论光谱对应的参数和所述第一理论光谱对应的参数,获得所述等离子体的电子温度、电子密度以及电子速度;
所述第一理论光谱对应的参数包括第一电子速度,所述第二理论光谱对应的参数包括第二电子速度;所述电子速度为对所述第一电子速度和所述第二电子速度进行矢量运算得到的所述等离子体沿平行于所述激光器发射激光的方向的轴向方向的速度。
在其中一个实施例中,所述第一理论光谱对应的参数还包括第一电子温度和第一电子密度,所述第二理论光谱对应的参数还包括第二电子温度和第二电 子密度,所述方法还包括:
将所述第一电子温度或所述第二电子温度中的其中一个温度确定为所述等离子体的电子温度,以及将所述第一电子密度或所述第二电子密度中的其中一个密度确定为所述等离子体的电子密度。
第二方面,本申请提供一种等离子体诊断装置,所述装置包括:确定模块、光生成模块、获取模块以及参数分析模块,
所述确定模块,用于确定电弧发生装置和激光器之间的触发延时;
所述光生成模块,用于触发所述电弧发生装置产生等离子体,并经过所述触发延时后,触发所述激光器产生激光,使得所述等离子体和所述激光作用产生汤姆逊散射光;
所述获取模块,用于获取所述汤姆逊散射光的汤姆逊散射光谱;
所述参数分析模块,用于对所述汤姆逊散射光谱进行分析,获得与所述触发延时相对应的等离子体参数。
第三方面,本申请还提供了一种计算机设备。所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
确定电弧发生装置和激光器之间的触发延时;
触发所述电弧发生装置产生等离子体,并经过所述触发延时后,触发所述激光器产生激光,使得所述等离子体和所述激光作用产生汤姆逊散射光;
获取所述汤姆逊散射光的汤姆逊散射光谱;
对所述汤姆逊散射光谱进行分析,获得与所述触发延时相对应的等离子体参数。
第四方面,本申请还提供了一种计算机可读存储介质。所述计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
确定电弧发生装置和激光器之间的触发延时;
触发所述电弧发生装置产生等离子体,并经过所述触发延时后,触发所述激光器产生激光,使得所述等离子体和所述激光作用产生汤姆逊散射光;
获取所述汤姆逊散射光的汤姆逊散射光谱;
对所述汤姆逊散射光谱进行分析,获得与所述触发延时相对应的等离子体参数。
第五方面,本申请还提供了一种计算机程序产品。所述计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现以下步骤:
确定电弧发生装置和激光器之间的触发延时;
触发所述电弧发生装置产生等离子体,并经过所述触发延时后,触发所述激光器产生激光,使得所述等离子体和所述激光作用产生汤姆逊散射光;
获取所述汤姆逊散射光的汤姆逊散射光谱;
对所述汤姆逊散射光谱进行分析,获得与所述触发延时相对应的等离子体参数。
第六方面,本申请提供一种等离子体诊断系统,所述系统包括信号触发器、电弧发生装置、激光器和接收处理设备,所述信号触发器与所述电弧发生装置和所述激光器分别通信连接;
所述信号触发器,用于确定所述电弧发生装置和所述激光器之间的触发延时;触发所述电弧发生装置产生等离子体,并经过所述触发延时后,触发所述激光器产生激光,使得所述等离子体和所述激光作用产生汤姆逊散射光;
所述接收处理设备,用于获取所述汤姆逊散射光的汤姆逊散射光谱;对所述汤姆逊散射光谱进行分析,获得与所述触发延时相对应的所述等离子体参数。
在其中一个实施例中,所述接收处理设备包括光成像装置、光谱获得装置和分析设备;
所述光成像装置,用于收集所述汤姆逊散射光并入射至所述光谱获得装置;
所述光谱获得装置,用于获得入射的所述汤姆逊散射光的汤姆逊散射光谱;
所述分析设备,用于对所述汤姆逊散射光谱进行分析,获得与所述触发延时相对应的所述等离子体参数。
在其中一个实施例中,所述光成像装置包括:第一凸透镜和第一光纤阵列;
所述第一凸透镜,用于将第一汤姆逊散射光成像至所述第一光纤阵列;
所述第一光纤阵列,用于将所述第一汤姆逊散射光入射至所述光谱获得装 置;
所述光谱获得装置,用于获得所述第一光纤阵列入射的所述第一汤姆逊散射光的第一汤姆逊散射光谱;
所述汤姆逊散射光包括所述第一汤姆逊散射光,所述汤姆逊散射光谱包括所述第一汤姆逊散射光谱。
在其中一个实施例中,所述光成像装置还包括:第二凸透镜和第二光纤阵列;
所述第二凸透镜,用于将第二汤姆逊散射光成像至所述第二光纤阵列;
所述第二光纤阵列,用于将所述第二汤姆逊散射光入射至所述光谱获得装置;
所述光谱获得装置,还用于获得所述第二光纤阵列入射的所述第二汤姆逊散射光的第二汤姆逊散射光谱。
在其中一个实施例中,所述第二光纤阵列和所述第二凸透镜与所述第一光纤阵列和所述第一凸透镜分别位于所述电弧发生装置的相对的两侧,且所述第二光纤阵列与所述第一光纤阵列的连线与所述激光器发出激光的发射方向垂直,所述第二凸透镜与所述第一凸透镜的连线与所述激光器发出激光的发射方向垂直;
所述第一光纤阵列收集所述第一汤姆逊散射光的方向,与所述激光器发出激光的发射方向存在第一夹角;所述第二光纤阵列收集所述第二汤姆逊散射光的方向,与所述激光器发出激光的发射方向存在第二夹角;
所述分析设备,用于获取所述第一汤姆逊散射光谱上的第一数据点,查找与所述第一数据点最优平方逼近的第一理论光谱;获取所述第二汤姆逊散射光谱上的第二数据点,查找与所述第二数据点最优平方逼近的第二理论光谱;基于所述第一理论光谱对应的参数和所述第一理论光谱对应的参数,获得所述等离子体的电子温度、电子密度以及电子速度;
其中,所述第一理论光谱对应的参数包括第一电子速度,所述第一理论光谱对应的参数包括第二电子速度;所述电子速度为对所述第一电子速度和所述第二电子速度进行矢量运算得到的所述等离子体沿平行于所述激光器发射激光 的方向的轴向方向的速度。
在其中一个实施例中,所述第一理论光谱对应的参数还包括第一电子温度和第一电子密度,所述第二理论光谱对应的参数还包括第二电子温度和第二电子密度;
所述分析设备,还用于将所述第一电子温度或所述第二电子温度中的其中一个温度确定为所述等离子体的电子温度,以及将所述第一电子密度或所述第二电子密度中的其中一个密度确定为所述等离子体的电子密度。
上述等离子体诊断方法和系统,通过确定电弧发生装置和激光器之间的触发延时,这样,在触发电弧发生装置产生等离子体,并经过触发延时后,触发激光器产生激光,使得等离子体和激光作用产生汤姆逊散射光,获取汤姆逊散射光的汤姆逊散射光谱,进而通过对汤姆逊散射光谱进行分析,可以获得与触发延时相对应的等离子体参数。由于基于汤姆逊散射光对等离子诊断的方法属于非侵入式诊断方法,不会对等离子体的运动状态产生影响,从而可以提高等离子参数测量的准确率。
附图说明
图1为一种等离子体诊断系统的结构框图;
图2为一种第一光纤阵列与激光的入射方向的夹角的示意图;
图3为一种基于第一光纤阵列的等离子体诊断系统的结构框图;
图4为一种光纤阵列与激光的入射方向的夹角的示意图;
图5为一个实施例中等离子体诊断系统的结构框图;
图6为一个实施例中等离子体诊断方法的流程示意图;
图7为一个实施例中等离子体诊断装置的结构框图;
图8为一个实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅 用以解释本申请,并不用于限定本申请。
电力系统断路器中的电弧放电通常是在高于大气压的气体中产生的,电弧放电产生的等离子体在瞬态状态下的诊断,对于研究电弧物性参数以及输运系数具有重要意义;其中,电弧物性参数可以理解为与热力学性质相关的参数,例如质量密度、焓和定压比热等,输运系数可以包括电导率、热导率和粘性系数等。
通常的,朗缪尔探针是等离子体诊断方法中常用的一种诊断方法,通过将一根除了端点工作部分以外其余部分均用绝缘材料覆盖的探针插入等离子体内部,使探针的端点工作部分与等离子体接触,而探针的另一端通过一可调电源与产生等离子体的电极相连,改变探针对等离子体的电位,基于带电粒子在拒斥场作用下的波尔兹曼关系,确定等离子体参数。
但是,上述方法属于侵入式测量,可能会对等离子体的运动状态产生影响,使得测量得到的等离子参数的准确率低。
而且,由于等离子体处于温度高、持续时间短、变化速度快,且处于大电流的环境中,上述方法可能会使探针烧蚀损坏,也可能会使得测量信号突然大于可测阈值而损坏仪器;其中,等离子体的温度可以为10000K,等离子体的持续时间可以为10ms,等离子体环境中的电流的级别可以为kA。
而且,虽然可以光谱测量方法诊断等离子体,但会受到辐射输运过程和光学不透明度的影响,难以实施定点测量。
基于此,在一个实施例中,如图1所示,提供了一种等离子体诊断系统的结构框图,等离子体诊断系统中包括信号触发器102、电弧发生装置104、激光器106和接收处理设备108,信号触发器102与电弧发生装置104和激光器106分别通信连接。
在开启纳秒激光器电源后,信号触发器可以确定电弧发生装置和激光器的触发延时,信号触发器触发电弧发生装置产生等离子体,并在经过触发延时后,触发激光器产生激光;电弧发生装置可以是高压放电腔体,这样,激光入射至腔体后,可以和腔体中产生的等离子体作用产生汤姆逊散射光,接收处理设备基于该汤姆逊散射光可以得到等离体子参数,等离子体参数包括等离子体的电 子密度、电子温度和电子速度;其中,图1中未示出纳秒激光器电源。
可以理解的是,信号触发器也可以同时触发电弧发生装置和激光器,此时的触发延时为0ms。
接收处理设备可以包括光成像设备、光谱获得装置和分析设备,光成像装置用于收集汤姆逊散射光并入射至光谱获得装置,光谱获得装置用于获得入射的汤姆逊散射光的汤姆逊散射光谱,分析设备用于对汤姆逊散射光谱进行分析,获得与触发延时相对应的等离子体参数;其中,开启纳秒激光器电源后,信号触发器还可以用于触发光谱获得装置的启动。
光谱获得装置可以包括光谱仪和相机,光谱仪用于对入射的汤姆逊散射光进行色散处理,相机用于得到色散处理后的汤姆逊散射光的汤姆逊散射光谱;其中,光谱仪可以为反射式光栅光谱仪或其他类型的光谱仪,相机可以为增强型电荷耦合器件(intensified charge-coupled device,ICCD)相机或其他类型的相机。
进一步地,分析设备可以获取汤姆逊散射光谱上的数据点,查收与数据点最优平方逼近的理论光谱,进而,将理论光谱对应的参数确定为等离子体参数。
可能的情况中,汤姆逊散射光可以包括第一汤姆逊散射光,汤姆逊散射光谱可以包括第一汤姆逊散射光谱,光成像装置可以包括第一凸透镜和第一光纤阵列。
第一凸透镜用于将第一汤姆逊散射光成像至第一光纤阵列,第一光纤阵列用于将第一汤姆逊散射光入射至光谱获得装置,光谱获得装置用于获得第一光纤阵列入射的第一汤姆逊散射光的第一汤姆逊散射光谱。
进一步地,分析设备通过获取第一汤姆逊散射光谱上的第一数据点,查找与第一数据点最优平方逼近的第一理论光谱,从而将第一理论光谱对应的参数确定为等离子体的电子温度、电子密度以及电子速度。
其中,基于第一理论光谱得到的等离子体的电子速度指的是等离子在平面上的速度,虽然第一光纤阵列收集第一汤姆逊散射光的方向,与激光器发出激光的发射方向存在夹角,但该夹角不会影响得到的等离子体在平面上的速度。
其中,等离子体的分布可以为轴向水平分布,例如,等离子体可以为轴向 水平的圆柱体,这使得激光器发出激光的发射方向与等离子体的轴向方向在同一方向上。
示例性的,图2为一种第一光纤阵列与激光的入射方向的夹角的示意图,以圆柱体的轴心为原点,第一光纤阵列收集第一汤姆逊散射光的方向,与激光器发出激光的发射方向存在第一夹角。
在开启纳秒激光器电源后,信号触发器可以触发电弧发生装置产生等离子体,并在经过触发延时后,触发激光器发出激光,从而使得等离子体与激光发生作用可以产生第一汤姆逊散射光,光谱仪将对入射的第一汤姆逊散射光进行色散处理后,相机可以得到色散处理后的第一汤姆逊散射光的第一汤姆逊散射光谱,进而可以基于第一汤姆逊散射光谱得到等离子体的电子温度、电子密度以及电子速度。
结合图2,示例性的,图3为提供的一种基于第一光纤阵列的等离子体诊断系统的结构框图,如图3所示,该系统中包括信号触发器、激光器、电弧发生装置、第一凸透镜、第一光纤阵列、光谱仪、相机以及分析设备,第一光纤阵列和第一凸透镜位于电弧发生装置的一侧;该系统还可以包括纳秒激光器电源,图3中未示出纳秒激光器电源。
其中,信号触发器、激光器、电弧发生装置、第一凸透镜、第一光纤阵列、光谱仪、相机以及分析设备之间的交互过程,可以参考前述内容适应描述,在此不在赘述。
可能的情况中,汤姆逊散射光还可以包括第二汤姆逊散射光,汤姆逊散射光谱还可以包括第二汤姆逊散射光谱,光成像装置还可以包括第二凸透镜和第二光纤阵列。
第二凸透镜用于将第二汤姆逊散射光成像至第二光纤阵列,第二光纤阵列用于将第二汤姆逊散射光入射至光谱获得装置,光谱获得装置还用于获得第二光纤阵列入射的第二汤姆逊散射光的第二汤姆逊散射光谱。
同样地,分析设备基于第二汤姆逊散射光谱也可以查找到第二理论光谱,进而,将第二理论光谱对应的参数确定为等离子体的电子温度、电子密度以及电子速度。
其中,基于第二理论光谱得到的等离子体的电子速度指的也是等离子在平面上的速度,虽然第二光纤阵列收集第二汤姆逊散射光的方向,与激光器发出激光的发射方向存在夹角,但该夹角不会影响得到的等离子体在平面上的速度。
具体地,第一理论光谱对应的参数包括第一电子温度、第一电子密度和第一电子速度,第二理论光谱对应的参数包括第二电子温度、第二电子密度和第二电子速度,第一电子温度和第二电子温度相等,第一电子密度和第二电子密度相等,第一电子密度和第二电子密度接近。
因此,可以将第二电子温度或第一电子温度中的其中一个温度确定为等离子体的电子温度,可以将第二电子密度或第一电子密度中的其中一个密度确定为等离子体的电子密度,可以将第一电子速度和第二电子速度中的其中一个速度确定为等离子体在平面上的速度。
可以理解的是,基于第二光纤阵列和第二凸透镜也可以设计如图3所示的等离子体诊断系统,但是,第二光纤阵列和第二凸透镜和第一光纤阵列和第一凸透镜与电弧发生装置的位置是不同的,即,第二光纤阵列和第二凸透镜与第一光纤阵列和第一凸透镜分别位于电弧发生装置的相对的两侧。
其中,第一光纤阵列和第二光纤阵列为两组结构相同的光纤阵列,例如,该两组关系光纤阵列均有16根光纤并呈“一”字型排列,其中,该两组光纤阵列中的光纤数,也可以根据实际应用场景设定,本申请实施例不作限定。
示例性的,图4为提供的一种光纤阵列与激光的入射方向的夹角的示意图,如图4所示,在开启纳秒激光器电源后,信号触发器可以触发电弧发生装置产生等离子体,并在经过触发延时后,触发激光器发出激光,从而使得等离子体与激光发生作用可以产生汤姆逊散射光;其中,图4中未示出纳秒激光器电源。
汤姆逊散射光可以包括第一汤姆逊散射光和第二汤姆逊散射光,第一光纤阵列收集第一汤姆逊散射光的方向,与等离子体的轴向方向存在第一夹角,即第一光纤阵列是在第一夹角的方向上收集第一汤姆逊散射光;第二光纤阵列收集第二汤姆逊散射光的方向,与激光器发出激光的发射方向存在第二夹角,即第二光纤阵列是在第二夹角的方向上收集第二汤姆逊散射光,第一夹角和第二夹角相同。
一种示例中,当第一夹角和第二夹角为90度时,第一光纤阵列和第一凸透镜可以位于电弧发生装置的正上方,第二光纤阵列和第二凸透镜可以位于电弧发生装置的正下方。
需要说明的是,第二光纤阵列和第二凸透镜与第一光纤阵列和第一凸透镜分别位于电弧发生装置的相对的两侧,且第二光纤阵列与第一光纤阵列的连线与激光器发出激光的发射方向垂直,第二凸透镜与第一凸透镜的连线与激光器发出激光的发射方向垂直。
可以理解的是,改变第一光纤阵列与激光器发出激光的发射方向之间的夹角和第二光纤阵列与激光器发出激光的发射方向之间的夹角,即为改变了光纤阵列收集汤姆逊散射光的方向,也即为改变了不同夹角下的第一电子速度的方向和第二电子速度的方向。
需要说明的是,等离子体的分布可以为轴向水平的分布,这样,激光器发出激光的发射方向与等离子体的轴向方向在同一方向上,因此,第一光纤阵列和第一凸透镜是沿等离子体轴向排列的,第二光纤阵列和第二凸透镜也是沿等离子体轴向排列的,这样,光纤阵列和凸透镜具有轴向空间分辨能力,即,通过设置光纤阵列与激光器发出激光的发射方向之间的夹角,可以得到等离子体沿平行于激光器发射激光的方向的轴向方向的速度,即等离子体的轴向速度,例如,将第一电子速度和第二电子速度进行矢量运算后,可以得到等离子体的轴向速度。
其中,基于第一汤姆逊散射光谱或基于第二汤姆逊散射光谱中的其中一个光谱得到的等离子体的电子速度,与等离子体的轴向速度不同,基于第一汤姆逊散射光谱或基于第二汤姆逊散射光谱中的其中一个光谱得到的等离子体的电子速度中包含该轴向速度。
可能的情况中,结合图4,可以在第一时刻设置第一光纤阵列与激光器发出激光的发射方向存在第一夹角,第二光纤阵列与激光器发出激光的发射方向存在第二夹角,以及在第二时刻设置第一光纤阵列与激光器发出激光的发射方向存在第三夹角,第二光纤阵列与激光器发出激光的发射方向存在第四夹角,第三夹角和第四夹角相同。
等离子体诊断系统基于第一光纤阵列在第一夹角位置处收集的汤姆逊散射光的汤姆逊散射光谱和基于第二光纤阵列在第二夹角位置处收集的汤姆逊散射光的汤姆逊散射光谱,得到的等离子体的轴向速度,与等离子体诊断系统基于第一光纤阵列在第三夹角位置处收集的汤姆逊散射光的汤姆逊散射光谱和基于第二光纤阵列在第四夹角位置处收集的汤姆逊散射光的汤姆逊散射光谱,得到的等离子体的轴向速度相同。
可能的方式中,等离子体诊断系统中还可以包括束流收集器,束流收集器位于电弧发生装置的一侧,且束流收集器的位置在激光器发出激光的发射方向相对的位置,束流收集器用于收集电弧发生装置中没有与等离子体发生作用的激光,即束流收集器用于收集剩余激光。
可能的方式中,等离子体诊断系统中还可以包括空间滤波器和第三凸透镜,空间滤波器自带真空系统,用于滤除激光的强度分布中的随机波动,避免激光中的随机波动影响与等离子体的作用,以提高得到的等离子体参数的准确率;第三凸透镜用于将滤除随机波动后的激光聚焦成像并发射至电弧发生装置。
结合上述内容,在其中一个实施例中,以第一夹角和第二夹角均为90度为例,示例性的,图5为一种等离子体诊断系统的结构框图,如图5所示,该系统包括信号触发器、激光器、空间滤波器、第三凸透镜、电弧发生装置、束流收集器、第一凸透镜、第一光纤阵列、第二凸透镜、第二光纤阵列、光谱仪、相机以及分析设备;该系统还可以包括纳秒激光器电源,图5中未示出纳秒激光器电源。
在开启纳秒激光器电源后,信号触发器触发电弧发生装置产生等离子体,并在经过触发延时后,再触发激光器产生激光,该激光可以入射至空间滤波器,空间滤波器滤除入射激光的强度分布中的随机波动后,可以将滤除随机波动的激光通过第三凸透镜聚焦成像并发射至电弧发生装置,进而滤除随机波动后的激光与电弧发生装置中的等离子体发生作用产生汤姆逊散射光。
汤姆逊散射光包括第一汤姆逊散射光和第二汤姆逊散射光,第一凸透镜将第一汤姆逊散射光成像至第一光纤阵列,第一光纤阵列将第一汤姆逊散射光入射至光谱仪,光谱仪将第一汤姆逊散射光进行色散处理后,相机可以基于经过 色散处理后的第一汤姆逊散射光得到第一汤姆逊散射光谱,进而,分析设备可以获取第一汤姆逊散射光谱上的第一数据点,查找与第一数据点最优平方逼近的第一理论光谱,从而可以确定等离子体的第一电子温度、第一电子密度和第一电子速度。
同时,第二凸透镜将第二汤姆逊散射光成像至第二光纤阵列,第二光纤阵列将第二汤姆逊散射光入射至光谱仪,光谱仪将第二汤姆逊散射光进行色散处理后,相机可以基于经过色散处理后的第二汤姆逊散射光得到第二汤姆逊散射光谱,进而,分析设备可以获取第二汤姆逊散射光谱上的第二数据点,查找与第二数据点最优平方逼近的第二理论光谱,从而可以确定等离子体的第二电子温度、第二电子密度和第二电子速度。
其中,第一电子温度和第二电子温度相同,第一电子密度和第二电子密度相同,第一电子温度和第二电子温度中的其中一个温度确定为等离子体的电子温度,第一电子密度和第二电子密度中的其中一个密度确定为的等离子体的电子密度,第一电子速度和第二电子速度中的其中一个速度确定为等离子体在平面上的电子速度;而且,分析设备将第一电子速度和第二电子速度进行矢量运算后,可以得到等离子体沿平行于激光器发射激光的方向的轴向方向的速度,即等离子体的轴向速度。
结合上述内容,基于此,在一个实施例中,如图6所示,提供一种等离子体诊断方法,可以包括以下步骤:
S602,确定电弧发生装置和激光器之间的触发延时。
本申请实施例中,通过确定电弧发生装置和激光器之间的触发延时,可以实现对等离体子在不同时刻的诊断,例如,可以实现对等离子体燃弧和灭弧过程的早期时刻或晚期时刻的诊断,由于等离子体在燃弧和灭弧过程中,等离子体存在加热、冷却等动态过程,因此,基于对不同时刻的等离子体的诊断,可以实现对等离子体的加热以及冷却等动态过程的测量,进而基于等离子体的加热以及冷却等动态过程,可以根据实际应用场景设计高压气体开关或真空断路器。
S604,触发电弧发生装置产生等离子体,并经过触发延时后,触发激光器 产生激光,使得等离子体和激光作用产生汤姆逊散射光。
本申请实施例中,电弧发生装置可以为高压放电腔体,电弧发生装置产生的等离子体可以为气体开关电弧等离子体,激光器产生的激光入射至腔体中后,可以和腔体中产生的气体开关电弧等离子体相互作用产生汤姆逊散射光,其中,气体开关电弧等离子体参数在集体性散射范围内,因此,所产生的汤姆逊散射光为集体性散射对应的汤姆逊散射光。
本申请实施例中,信号触发器可以为数字信号触发器或其他类型的触发器,数字信号触发器的型号可以为DG535,例如,数字信号触发器在接收到纳秒激光器电源发送的时钟脉冲时,可以触发电弧发生装置和激光器;而且,信号触发器上可以手动调节触发延时,触发延时的具体值,可以根据实际应用场景设定,本申请实施例不作限定。
本申请实施例中,电弧发生装置中的等离子体与激光作用的过程,可以理解为等离子体燃弧的过程,等离子体燃弧时间通常为毫秒量级,信号触发器通常在毫秒量级的触发延时后触发激光器,其中,激光器可以为脉冲激光器,这样,信号触发器触发脉冲激光器后可以产生激光束。
可以理解的是,也可以同时触发电弧发生装置和激光器,具体的触发方式,可以根据实际应用场景设定,本申请实施例不作限定。
S606,获取汤姆逊散射光的汤姆逊散射光谱。
其中,结合图1,可以通过接收处理设备获取汤姆逊散射光的汤姆逊散射光谱,汤姆逊散射光包括第一汤姆逊散射光和第二汤姆逊散射光,汤姆逊散射光谱包括第一汤姆逊散射光谱和第二汤姆逊散射光谱。
具体地,结合图5,可以通过第一凸透镜和第一光纤阵列获取第一汤姆逊散射光,进而通过光谱仪和相机获得第一汤姆逊散射光谱;以及,可以通过第二凸透镜和第二光纤阵列获取第二汤姆逊散射光,进而通过光谱仪和相机获得第二汤姆逊散射光谱。
需要说明的是,该第一汤姆逊散射光谱是以与激光器发出激光的发射方向的第一夹角的方向,收集的第一汤姆逊散射光的第一汤姆逊散射光谱;该第二汤姆逊散射光谱是以与激光器发出激光的发射方向的第二夹角的方向,收集的 第二汤姆逊散射光的第二汤姆逊散射光谱。
S608,对汤姆逊散射光谱进行分析,获得与触发延时相对应的等离子体参数。
本申请实施例中,等离子体参数可以用来研究电弧的物理过程,也可以应用于研究各种构型的高压气体开关、真空断路器的电弧产生机理与灭弧机理,而且,通过测量不同气体下的电弧的物性参数,使得可以根据实际的应用场景,基于该物性参数设计高压气体开关或真空断路器。
具体地,对汤姆逊散射光谱进行分析,获得与触发延时相对应的等离子体参数,包括:获取第一汤姆逊散射光谱上的第一数据点,查收与第一数据点最优平方逼近的第一理论光谱;将第一理论光谱对应的参数确定为等离子体的第一电子温度、第一电子密度以及第一电子速度;以及,获取第二汤姆逊散射光谱上的第二数据点,查收与第二数据点最优平方逼近的第二理论光谱;将第二理论光谱对应的参数确定为等离子体的第二电子温度、第二电子密度以及第二电子速度。
其中,第一电子温度和第二电子温度相同,第一电子密度和第二电子密度相同,第一电子速度和第二电子速度接近,因此,可以将第一电子温度和第二电子温度中的其中一个温度确定为等离子体的电子温度,可以将第一电子密度和第二电子密度中的其中一个密度确定为的等离子体的电子密度,可以将第一电子速度和第二电子速度中的其中一个速度确定为等离子体在平面上的电子速度。
而且,将第一电子速度和第二电子速度进行矢量运算后,可以得到等离子体沿平行于激光器发射激光的方向的轴向方向的速度,即等离子体的轴向速度。
具体地,第一电子速度和第二电子速度分别为等离子体轴向两侧对应的波矢差方向的速度分量,因此,将第一电子速度和第二电子速度进行矢量运算后,可以得到等离子体的轴向速度,例如,将第一电子速度和第二电子速度进行矢量运算后,可以得到激光和汤姆逊散射光所在平面的波矢,将汤姆逊散射光的波矢减去激光的波矢后,得到的波矢差对应的大小即为等离子体的轴向速度。
需要说明的是,将第一电子速度和第二电子速度进行矢量运算得到的电子 速度与第一电子速度或第二电子速度不同,第一电子速度或第二电子速度包含该轴向速度。
综上,在图1所示的实施例中,通过确定电弧发生装置和激光器之间的触发延,可以在触发电弧发生装置产生等离子体,并经过触发延时后,再触发激光器产生激光,使得等离子体和激光作用产生汤姆逊散射光,获取汤姆逊散射光的汤姆逊散射光谱,进而通过对汤姆逊散射光谱进行分析,可以获得与触发延时相对应的等离子体参数。由于基于汤姆逊散射光对等离子诊断的方法属于非侵入式诊断方法,不会对等离子体的运动状态产生影响,从而可以提高等离子参数测量的准确率。
需要说明的是,本申请提供的等离子体诊断方法的原理是基于光学诊断技术,通过激光和等离子体发生相互作用而产生的汤姆逊散射光,测量等离子体的电子密度、电子温度和电子速度。
其中,汤姆逊散射可以包括集体性散射和非集体性散射,汤姆逊散射的类型可以通过参数
Figure PCTCN2022099450-appb-000001
来确定,k为激光和汤姆逊散射光的波矢差,
Figure PCTCN2022099450-appb-000002
为电子德拜长度,
Figure PCTCN2022099450-appb-000003
T e为等离子体的电子温度,n e为等离子体的电子密度。
而且,由于等离子体自身的参数特性,α?1,本申请的汤姆逊散射表现为集体性散射,而且,本申请提出的等离子体诊断方法为非侵入式诊断方法,不会对等离子体的运动状态产生影响,从而可以提高得到的等离子体参数的准确率。
而且,本申请提出的等离子体诊断系统可同时、同区域测量等离子体的电子温度、电子密度和电子速度,例如,等离子体诊断系统中的第一光纤阵列和第二光纤阵列可以同时在两个方向收集汤姆逊散射光,而且,在不改变等离子体诊断系统中的其他设备的情况下,可在同一平面,通过改变电弧发生装置和激光器之间的触发延时,就可以实现对不同时刻的等离子体的诊断。
基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的等离子体诊断装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个等离子体诊断装置实施例中的具 体限定可以参见上文中对于等离子体诊断方法的限定,在此不再赘述。
在一个实施例中,如图7所示,提供了一种等离子体诊断装置的结构框图,该装置包括:确定模块702、光生成模块704、获取模块706和参数分析模块708。
确定模块,用于确定电弧发生装置和激光器之间的触发延时;
光生成模块,用于触发电弧发生装置产生等离子体,并经过触发延时后,触发所述激光器产生激光,使得等离子体和激光作用产生汤姆逊散射光;
获取模块,用于获取汤姆逊散射光的汤姆逊散射光谱;
参数分析模块,用于对汤姆逊散射光谱进行分析,获得与触发延时相对应的等离子体参数。
在其中一个实施例中,参数分析模块,还用于:
获取汤姆逊散射光谱上的数据点,查收与数据点最优平方逼近的理论光谱;
将理论光谱对应的参数确定为等离子体参数。
在其中一个实施例中,等离子体参数包括:等离子体的电子温度、电子密度以及电子速度。
在其中一个实施例中,获取模块,还用于:
获取以与激光器发出激光的发射方向的第一夹角的方向,收集的第一汤姆逊散射光的第一汤姆逊散射光谱;
获取以与激光器发出激光的发射方向的第二夹角的方向,收集的第二汤姆逊散射光的第二汤姆逊散射光谱;
汤姆逊散射光包括第一汤姆逊散射光和第二汤姆逊散射光,汤姆逊散射光谱包括第一汤姆逊散射光谱和第二汤姆逊散射光谱。
在其中一个实施例中,参数分析模块,还用于:
获取第一汤姆逊散射光谱上的第一数据点,查找与第一数据点最优平方逼近的第一理论光谱;
获取第二汤姆逊散射光谱上的第二数据点,查找与第二数据点最优平方逼近的第二理论光谱;
基于第一理论光谱对应的参数和第二理论光谱对应的参数,获得等离子体的电子温度、电子密度以及电子速度;
第一理论光谱对应的参数包括第一电子速度,第二理论光谱对应的参数包括第二电子速度;电子速度为对第一电子速度和第二电子速度进行矢量运算得到的等离子体沿平行于激光器发射激光的方向的轴向方向的速度。
在其中一个实施例中,第一理论光谱对应的参数还包括第一电子温度和第一电子密度,第二理论光谱对应的参数还包括第二电子温度和第二电子密度,参数分析模块,还用于:
将第一电子温度或第二电子温度中的其中一个温度确定为等离子体的电子温度,以及将第一电子密度或第二电子密度中的其中一个密度确定为等离子体的电子密度。
上述等离子体诊断装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图8所示。该计算机设备包括通过系统总线连接的处理器、存储器和网络接口。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质和内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种等离子体诊断方法。
本领域技术人员可以理解,图8中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,还提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述各方法实施例中的步骤。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。
在一个实施例中,提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。
需要说明的是,本申请所涉及的用户信息(包括但不限于用户设备信息、用户个人信息等)和数据(包括但不限于用于分析的数据、存储的数据、展示的数据等),均为经用户授权或者经过各方充分授权的信息和数据。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。本申请所提供的各实施例中所涉及的数据库可包括关系型数据库和非关系型数据库中至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本申请所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种等离子体诊断方法,其特征在于,所述方法包括:
    确定电弧发生装置和激光器之间的触发延时;
    触发所述电弧发生装置产生等离子体,并经过所述触发延时后,触发所述激光器产生激光,使得所述等离子体和所述激光作用产生汤姆逊散射光;
    获取所述汤姆逊散射光的汤姆逊散射光谱;
    对所述汤姆逊散射光谱进行分析,获得与所述触发延时相对应的等离子体参数。
  2. 根据权利要求1所述的方法,其特征在于,所述对所述汤姆逊散射光谱进行分析,获得与所述触发延时相对应的等离子体参数,包括:
    获取所述汤姆逊散射光谱上的数据点,查收与所述数据点最优平方逼近的理论光谱;
    将所述理论光谱对应的参数确定为所述等离子体参数。
  3. 根据权利要2所述的方法,其特征在于,所述等离子体参数包括:所述等离子体的电子温度、电子密度以及电子速度。
  4. 根据权利要求1所述的方法,其特征在于,所述获取所述汤姆逊散射光的汤姆逊散射光谱,包括:
    获取以与所述激光器发出激光的发射方向的第一夹角的方向,收集的第一汤姆逊散射光的第一汤姆逊散射光谱;
    获取以与所述激光器发出激光的发射方向的第二夹角的方向,收集的第二汤姆逊散射光的第二汤姆逊散射光谱;
    所述汤姆逊散射光包括所述第一汤姆逊散射光和所述第二汤姆逊散射光,所述汤姆逊散射光谱包括所述第一汤姆逊散射光谱和所述第二汤姆逊散射光谱。
  5. 根据权利要求4所述的方法,其特征在于,所述对所述汤姆逊散射光谱进行分析,获得与所述触发延时相对应的等离子体参数,包括:
    获取所述第一汤姆逊散射光谱上的第一数据点,查找与所述第一数据点最优平方逼近的第一理论光谱;
    获取所述第二汤姆逊散射光谱上的第二数据点,查找与所述第二数据点最优平方逼近的第二理论光谱;
    基于所述第一理论光谱对应的参数和所述第二理论光谱对应的参数,获得所述等离子体的电子温度、电子密度以及电子速度;
    所述第一理论光谱对应的参数包括第一电子速度,所述第二理论光谱对应的参数包括第二电子速度;所述电子速度为对所述第一电子速度和所述第二电子速度进行矢量运算得到的所述等离子体沿平行于所述激光器发射激光的方向的轴向方向的速度。
  6. 一种等离子体诊断系统,其特征在于,所述系统包括信号触发器、电弧发生装置、激光器和接收处理设备,所述信号触发器与所述电弧发生装置和所述激光器分别通信连接;
    所述信号触发器,用于确定所述电弧发生装置和所述激光器之间的触发延时;触发所述电弧发生装置产生等离子体,并经过所述触发延时后,触发所述激光器产生激光,使得所述等离子体和所述激光作用产生汤姆逊散射光;
    所述接收处理设备,用于获取所述汤姆逊散射光的汤姆逊散射光谱;对所述汤姆逊散射光谱进行分析,获得与所述触发延时相对应的所述等离子体参数。
  7. 根据权利要求6所述的系统,其特征在于,所述接收处理设备包括光成像装置、光谱获得装置和分析设备;
    所述光成像装置,用于收集所述汤姆逊散射光并入射至所述光谱获得装置;
    所述光谱获得装置,用于获得入射的所述汤姆逊散射光的汤姆逊散射光谱;
    所述分析设备,用于对所述汤姆逊散射光谱进行分析,获得与所述触发延时相对应的所述等离子体参数。
  8. 根据权利要求7所述的系统,其特征在于,所述光成像装置包括:第一凸透镜和第一光纤阵列;
    所述第一凸透镜,用于将第一汤姆逊散射光成像至所述第一光纤阵列;
    所述第一光纤阵列,用于将所述第一汤姆逊散射光入射至所述光谱获得装置;
    所述光谱获得装置,用于获得所述第一光纤阵列入射的所述第一汤姆逊散射光的第一汤姆逊散射光谱;
    所述汤姆逊散射光包括所述第一汤姆逊散射光,所述汤姆逊散射光谱包括 所述第一汤姆逊散射光谱。
  9. 根据权利要求8所述的系统,其特征在于,所述光成像装置还包括:第二凸透镜和第二光纤阵列;
    所述第二凸透镜,用于将第二汤姆逊散射光成像至所述第二光纤阵列;
    所述第二光纤阵列,用于将所述第二汤姆逊散射光入射至所述光谱获得装置;
    所述光谱获得装置,还用于获得所述第二光纤阵列入射的所述第二汤姆逊散射光的第二汤姆逊散射光谱;
    所述汤姆逊散射光包括所述第二汤姆逊散射光,所述汤姆逊散射光谱包括所述第二汤姆逊散射光谱。
  10. 根据权利要求9所述的系统,其特征在于,所述第二光纤阵列和所述第二凸透镜与所述第一光纤阵列和所述第一凸透镜分别位于所述电弧发生装置的相对的两侧,且所述第二光纤阵列与所述第一光纤阵列的连线与所述激光器发出激光的发射方向垂直,所述第二凸透镜与所述第一凸透镜的连线与所述激光器发出激光的发射方向垂直;
    所述第一光纤阵列收集所述第一汤姆逊散射光的方向,与所述激光器发出激光的发射方向存在第一夹角;所述第二光纤阵列收集所述第二汤姆逊散射光的方向,与所述激光器发出激光的发射方向存在第二夹角;
    所述分析设备,用于获取所述第一汤姆逊散射光谱上的第一数据点,查找与所述第一数据点最优平方逼近的第一理论光谱;获取所述第二汤姆逊散射光谱上的第二数据点,查找与所述第二数据点最优平方逼近的第二理论光谱;基于所述第一理论光谱对应的参数和所述第一理论光谱对应的参数,获得所述等离子体的电子温度、电子密度以及电子速度;
    其中,所述第一理论光谱对应的参数包括第一电子速度,所述第一理论光谱对应的参数包括第二电子速度;所述电子速度为对所述第一电子速度和所述第二电子速度进行矢量运算得到的所述等离子体沿平行于所述激光器发射激光的方向的轴向方向的速度。
PCT/CN2022/099450 2022-05-19 2022-06-17 等离子体诊断方法和系统 WO2023221222A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210543711.8A CN114916116B (zh) 2022-05-19 2022-05-19 等离子体诊断方法和系统
CN202210543711.8 2022-05-19

Publications (1)

Publication Number Publication Date
WO2023221222A1 true WO2023221222A1 (zh) 2023-11-23

Family

ID=82768757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099450 WO2023221222A1 (zh) 2022-05-19 2022-06-17 等离子体诊断方法和系统

Country Status (2)

Country Link
CN (1) CN114916116B (zh)
WO (1) WO2023221222A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117425260A (zh) * 2023-12-19 2024-01-19 哈尔滨工业大学 等离子体推进器羽流激发态离子速度分布的光谱监测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090127479A1 (en) * 2007-10-17 2009-05-21 Ushio Denki Kabushiki Kaisha Extreme ultraviolet light source device and a method for generating extreme ultraviolet radiation
CN104185353A (zh) * 2014-09-05 2014-12-03 中国人民解放军陆军军官学院 一种基于汤姆逊散射弱相干技术的聚变堆等离子体密度温度诊断方法
CN105486676A (zh) * 2015-12-25 2016-04-13 中国科学院合肥物质科学研究院 一种基于微波辅助的激光诱导击穿光谱装置
CN105979689A (zh) * 2016-01-12 2016-09-28 中国科学院等离子体物理研究所 适用于east边界汤姆逊散射诊断的光学定位系统
US20190239332A1 (en) * 2016-10-10 2019-08-01 University Of Strathclyde Plasma accelerator
US20190293488A1 (en) * 2017-01-17 2019-09-26 Gigaphoton Inc. Thomson scattering measurement system and euv light generation system
JP2020122904A (ja) * 2019-01-31 2020-08-13 国立大学法人九州大学 プラズマ分析システム
CN113396644A (zh) * 2019-02-08 2021-09-14 Asml荷兰有限公司 辐射系统
US20210410263A1 (en) * 2020-06-24 2021-12-30 The Texas A&M University System Systems and Methods for Thomson Scattering Background Interference Suppression

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090127479A1 (en) * 2007-10-17 2009-05-21 Ushio Denki Kabushiki Kaisha Extreme ultraviolet light source device and a method for generating extreme ultraviolet radiation
CN104185353A (zh) * 2014-09-05 2014-12-03 中国人民解放军陆军军官学院 一种基于汤姆逊散射弱相干技术的聚变堆等离子体密度温度诊断方法
CN105486676A (zh) * 2015-12-25 2016-04-13 中国科学院合肥物质科学研究院 一种基于微波辅助的激光诱导击穿光谱装置
CN105979689A (zh) * 2016-01-12 2016-09-28 中国科学院等离子体物理研究所 适用于east边界汤姆逊散射诊断的光学定位系统
US20190239332A1 (en) * 2016-10-10 2019-08-01 University Of Strathclyde Plasma accelerator
US20190293488A1 (en) * 2017-01-17 2019-09-26 Gigaphoton Inc. Thomson scattering measurement system and euv light generation system
JP2020122904A (ja) * 2019-01-31 2020-08-13 国立大学法人九州大学 プラズマ分析システム
CN113396644A (zh) * 2019-02-08 2021-09-14 Asml荷兰有限公司 辐射系统
US20210410263A1 (en) * 2020-06-24 2021-12-30 The Texas A&M University System Systems and Methods for Thomson Scattering Background Interference Suppression

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117425260A (zh) * 2023-12-19 2024-01-19 哈尔滨工业大学 等离子体推进器羽流激发态离子速度分布的光谱监测方法
CN117425260B (zh) * 2023-12-19 2024-04-19 哈尔滨工业大学 等离子体推进器羽流激发态离子速度分布的光谱监测方法

Also Published As

Publication number Publication date
CN114916116A (zh) 2022-08-16
CN114916116B (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
CN102841078B (zh) 一体化激光诱导增强等离子体光谱采集系统
CN202854037U (zh) 一体化激光诱导增强等离子体光谱采集系统
WO2023221222A1 (zh) 等离子体诊断方法和系统
Miles et al. Sources of error and uncertainty in the use of cavity ring down spectroscopy to measure aerosol optical properties
Claverie et al. Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed underwater electrical discharge
Kunieda et al. Visualization of electro-physical and chemical machining processes
Bujotzek et al. Experimental investigation of streamer radius and length in SF6
CN111289496A (zh) 一种远距离变焦距激光诱导击穿光谱的检测方法及装置
Martins et al. Electrical and hydrodynamic characterization of a high current pulsed arc
Han et al. Collisional radiative model for high-ionization-rate equilibrium argon plasma plume
Stoller et al. Speckle measurements of density and temperature profiles in a model gas circuit breaker
CN104931399A (zh) 一种集成式电容-激光测量粉尘浓度的装置
CN115002996B (zh) 一种适用于临近空间高气压强碰撞宽范围等离子体密度测量的三探针诊断系统及其使用方法
Wang et al. Measurement of discharge channel based on background oriented schlieren technique using an optimized algorithm
Sousa Martins et al. Analysis of energy exchanges during the interaction between pulsed lightning arcs and metallic plates
Han et al. High-resolution particle density measurement for argon plasma plume by image reconstruction and collisional-radiative model
Jarrett et al. Reflection of intense laser light from microstructured targets as a potential diagnostic of laser focus and plasma temperature
Yu et al. Plasma real-time diagnostics based on visual image recognition
CN117607178A (zh) 电弧作用下断路器触头材料烧蚀表征分析方法及相关设备
Ling et al. Volumetric Langmuir probe mapping of a transient pulsed plasma thruster plume
CN113310857B (zh) 湍流燃烧场四维碳烟颗粒初级粒径分布测量系统及其方法
KR101249240B1 (ko) Kstara 장치의 플라즈마 진단에 이용되는 스펙트로미터
Zhang et al. Study on the Electron Density Measurement of 1 m Rod-plate Gap Discharge Process under the Lightning Impulse
Gottfried et al. Electron Density and Temperature Measurements by Thomson Scattering in a High-Voltage Laser-Triggered Switch
Lin et al. The semi-quantitative analysis of hole defects in metal additive manufacturing components using LIBS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942254

Country of ref document: EP

Kind code of ref document: A1