WO2023221027A1 - Câble optique composite optoélectronique à âme fendue ramifiée à nombre de fibres ultra-élevé enroulé et procédé de production - Google Patents

Câble optique composite optoélectronique à âme fendue ramifiée à nombre de fibres ultra-élevé enroulé et procédé de production Download PDF

Info

Publication number
WO2023221027A1
WO2023221027A1 PCT/CN2022/093776 CN2022093776W WO2023221027A1 WO 2023221027 A1 WO2023221027 A1 WO 2023221027A1 CN 2022093776 W CN2022093776 W CN 2022093776W WO 2023221027 A1 WO2023221027 A1 WO 2023221027A1
Authority
WO
WIPO (PCT)
Prior art keywords
skeleton
optical cable
winding
tank
optical
Prior art date
Application number
PCT/CN2022/093776
Other languages
English (en)
Chinese (zh)
Inventor
张成龙
Original Assignee
南京华信藤仓光通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京华信藤仓光通信有限公司 filed Critical 南京华信藤仓光通信有限公司
Priority to PCT/CN2022/093776 priority Critical patent/WO2023221027A1/fr
Priority to DE212022000147.8U priority patent/DE212022000147U1/de
Publication of WO2023221027A1 publication Critical patent/WO2023221027A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4407Optical cables with internal fluted support member
    • G02B6/4408Groove structures in support members to decrease or harmonise transmission losses in ribbon cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4489Manufacturing methods of optical cables of central supporting members of lobe structure

Definitions

  • the invention relates to the technical field of optical cables, and in particular to a winding super large core number branch type skeleton type photoelectric composite optical cable and a production method.
  • the size of the optical cable skeleton trough with a large number of cores is large, and it completely relies on mesh optical fiber ribbon products to increase the fiber density.
  • the size of the central reinforcement is too large, resulting in a large structural size of the optical cable, which is not suitable for current pipelines.
  • optical cable cannot meet the requirements of optical fiber communication and have electrical signal communication capabilities. At the same time, the optical cable itself is too rigid and has poor bending performance. It is not suitable for various comprehensive wiring scenarios and the integrated network of current data centers.
  • the present invention provides a winding ultra-large core number branch type skeleton type optoelectronic composite optical cable and production methods.
  • a kind of winding super-large core count branch type skeleton type optoelectronic composite optical cable From the inside to the outside, the optical cable is composed of a skeleton tank, a skeleton tank base filled with optical communication units, a slot grid, reinforcements, water-blocking tapes, and parallel reinforcements. Outer sheath; the optical communication unit includes optical fiber ribbons, mesh optical fiber ribbons, optical fiber bundles, and tight-buffered optical fibers; the groove grid is set between each tank of the skeleton tank, and the skeleton tank is continuously wound from the center to the outside Form a winding tank frame.
  • the optical communication unit is made of flexible material, and the flexible material is one or more of rubber, PE, TPEE, PP, nylon, and TPU; the slot grid is made of rigid material, and the rigid material is modified PE, modified PBT, modified One or more of plastic PET and modified PP.
  • the skeleton-type tank body is designed in the form of hollow holes at a certain pitch in the longitudinal direction between the tank bodies.
  • steel wires or communication copper wires are embedded in the trench grid as tensile components and energizing components of the optical cable respectively.
  • the number of optical communication units is multiple, and the multiple optical communication units serve as an optical fiber sub-unit and are branched through the slot grid intervals between the slots.
  • a production method for winding an ultra-large core count branch type skeleton type optoelectronic composite optical cable including the following steps:
  • Step 1 Use a double extrusion process to extrude the skeleton groove.
  • the first extrusion is to extrude the skeleton groove base.
  • the skeleton groove base is produced with modified flexible materials.
  • holes are drilled on the skeleton groove base at fixed intervals through drilling equipment;
  • Secondary extrusion is used to extrude the groove grid on the skeleton groove base, which is produced using rigid materials, with reinforcements and copper wires embedded in the tapered design at the top of the groove grid;
  • Step 2 The optical communication unit including optical fiber bundles, optical fiber ribbons, and mesh optical fiber ribbons are placed into the gaps between the slot grids of the parallel skeleton tank through a pay-off machine;
  • Step 3 Apply adhesive glue to the top of the groove grid
  • Step 4 The flexible parallel skeleton tank body is rolled and formed through a circular forming transition mold. At the same time, the adhesive glue coated on the top of the slot grid is bonded to the bottom of the tank body during the winding process to complete the packaging of a single tank body;
  • Step 5 After the tank is completely formed, wrap the water-blocking tape on the surface as the water-blocking material for the optical cable;
  • Step 6 Extrude the outer sheath of the optical cable on the surface of the tank covered with water-blocking tape, and embed parallel FRP as the tensile element of the optical cable to complete the production of the entire winding large core count branch type skeleton type optoelectronic composite optical cable.
  • the fixed spacing of the drilling equipment in step one is 3-5 mm
  • the shape of the holes on the skeleton groove base is circular or square.
  • the outer protective layer is PE
  • the parallel FRP is peeled fiber reinforced plastic.
  • the ultra-large core number of the present invention can increase the length of the skeleton groove body according to the design requirements, infinite winding superposition, increase the number of filling cores of the optical communication unit, and the overall outer diameter of the optical cable can be reduced by 30%-40 under the same number of cores. %, so the fiber density of this type of optical cable with the same size can be increased from 2.5 f/mm ⁇ 2 to 4.5f/mm ⁇ 2 or even higher, which is suitable for the current laying environment where pipeline resources are tight;
  • optical and electrical composite design of this optical cable is more suitable for the integrated network of the current data center and is the development trend of ultra-large core number optical cables in the future.
  • Figure 1 is a cross-sectional view of a winding ultra-large core number branch type skeleton type optoelectronic composite optical cable according to the present invention
  • Figure 2 is a cross-sectional view of a parallel state skeleton-type trough of a winding super-large core number branch type skeleton-type optoelectronic composite optical cable according to the present invention
  • Figure 3 is a parallel state skeleton trough view of a winding super large core number branch type skeleton type optoelectronic composite optical cable according to the present invention
  • Figure 4 is a hollow design diagram of a parallel state skeleton type trough body of a winding super large core number branch type skeleton type optoelectronic composite optical cable according to the present invention
  • Figure 5 is the bottom of a hollow design diagram of a parallel state skeleton type trough of a winding branch type skeleton type optoelectronic composite optical cable with a large number of cores according to the present invention.
  • the present invention provides a winding ultra-large core count branch type skeleton type optoelectronic composite optical cable.
  • the optical cable is composed of a skeleton tank 1, a skeleton tank base 2 filled with optical communication units, and a slot.
  • the optical communication unit includes optical fiber ribbons, mesh optical fiber ribbons, optical fiber bundles, and tight-buffered optical fibers;
  • the groove grid 3 is set in a skeleton groove
  • the skeleton type tank body 2 is continuously rolled from the center to the outside to form a rolling tank body frame.
  • the ultra-large number of cores can increase the length of the skeleton groove body according to the design requirements, infinite winding superposition, increase the number of filling cores of the optical communication unit, and reduce the overall outer diameter of the optical cable, thereby increasing the fiber density of this type of optical cable with the same size, and is suitable for The current laying environment where pipeline resources are tight;
  • the optical communication unit is made of flexible material, and the flexible material is one or more of rubber, PE, TPEE, PP, nylon, and TPU; the slot grid is made of rigid material, and the rigid material is modified PE, modified PBT, modified One or more of plastic PET and modified PP.
  • the design of the flexible base body of the skeleton trough body 1 combined with the rigid groove grid facilitates optical cable molding and subsequent optical cable branch stripping construction.
  • the spaced hollow design of the skeleton trough base body allows manual longitudinal tearing and stripping for subsequent optical cable construction. , greatly improving the branch construction performance and construction efficiency of optical cables;
  • the longitudinal direction between the troughs of the skeleton type trough 1 is designed in the form of hollow holes at a certain pitch.
  • the spaced hollow design of the skeleton groove base 2 allows manual longitudinal tearing and peeling of the subsequent optical cable construction, which greatly improves the branch construction performance and construction efficiency of the optical cable.
  • steel wires or communication copper wires are embedded in the trench grid 3 as tensile components and energizing components of the optical cable respectively.
  • the number of optical communication units is multiple, and the multiple optical communication units serve as an optical fiber sub-unit and are branched through the slot grid intervals between the slots.
  • a production method for winding an ultra-large core count branch type skeleton type optoelectronic composite optical cable including the following steps:
  • Step 1 Use a double extrusion process to extrude the skeleton groove.
  • the first extrusion is to extrude the skeleton groove base 2.
  • the skeleton groove base 2 is produced using modified flexible materials.
  • holes are drilled on the skeleton groove base 2 at fixed intervals through drilling equipment.
  • the second extrusion is to extrude the groove grid on the skeleton groove base, which is produced with rigid materials, and the reinforcement and copper wire are embedded in the tapered design at the top of the groove grid.
  • the cable's skeleton design gives the cable extremely high mechanical strength.
  • Step 2 The optical communication unit including optical fiber bundles, optical fiber ribbons, and mesh optical fiber ribbons are placed into the gaps between the slot grids 3 of the parallel skeleton tank through a pay-off machine.
  • Step 3 Apply adhesive glue to the top of the groove grate 3; the bonding design at the top of the skeleton groove grate 3 stabilizes the strength of the skeleton groove body and is separable, providing convenient conditions for branching during construction.
  • Step 4 Use the circular forming transition mold to roll and shape the flexible parallel skeleton tank body.
  • the adhesive glue coated on the top of the slot grid 3 is bonded to the bottom of the tank body during the winding process to complete the packaging of a single tank body; to prevent production The optical communication unit overflowed during the process.
  • Step 5 After the tank is completely formed, wrap the water-blocking tape on the surface as the water-blocking material for the optical cable;
  • Step 6 Extrude the outer sheath 7 of the optical cable on the surface of the tank after being covered with the water-blocking tape 5, and embed parallel FRP as the tensile element of the optical cable to complete the entire winding of the large core count branch type skeleton type photoelectric composite optical cable. Production.
  • the fixed spacing of the drilling equipment is 3-5 mm
  • the shape of the holes on the skeleton tank base 2 is round or square, which facilitates subsequent manual separation of the skeleton tank body.
  • step six the outer sheath 7 is PE, and the parallel FRP is peeled fiber reinforced plastic.
  • Test items unit Optical cable of the present invention Optical cable with the same core number in the prior art outer diameter Mm 22mm >30mm Fiber density f/mm ⁇ 2 4.5 or above 2.5 Mechanical properties strength N 5000 and above 2700
  • the ultra-large core number of the present invention can increase the length of the skeleton groove body according to the design requirements, infinite winding superposition, increase the number of filling cores of the optical communication unit, and the overall outer diameter of the optical cable can be reduced by 30% under the same number of cores. 40%, so the fiber density of this type of optical cable with the same size can be increased from 2.5 f/mm ⁇ 2 to 4.5f/mm ⁇ 2 or even higher, which is suitable for the current laying environment with tight pipeline resources;
  • the skeleton design of this optical cable gives the optical cable extremely high mechanical performance strength, which is 2 times or more higher than that of conventional optical cables.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Communication Cables (AREA)

Abstract

L'invention concerne un câble optique composite optoélectronique à âme fendue ramifiée à nombre de fibres ultra-élevé enroulé, comprenant un squelette d'âme fendue (1), des fentes (2) remplies d'unités de communication optique, des dents (3), un élément de renforcement (4), une bande de blocage d'eau (5), des éléments de renforcement parallèles (6) et une gaine externe (7) de l'intérieur vers l'extérieur. Le squelette d'âme fendue (1) s'enroule en continu du centre vers le côté externe pour former un cadre de squelette d'âme fendue. Un procédé de production du câble optique comprend les étapes suivantes : étape 1, former des fentes (2) au moyen d'une extrusion, et poinçonner des fentes (2) au moyen d'un dispositif de poinçonnage ; former les dents (3) au moyen d'une extrusion secondaire, et incorporer l'élément de renforcement (4) et les fils de cuivre dans la conception conique au niveau des extrémités supérieures des dents (3) ; étape 2, placer les unités de communication optique dans des espaces entre les dents (3) au moyen d'une machine de pose de fils ; étape 3, revêtir les extrémités supérieures des dents (3) avec un adhésif ; étape 4, enrouler le squelette d'âme fendue parallèle (1), et revêtir et lier les extrémités supérieures des dents (3) pour achever l'emballage d'un squelette d'âme fendue unique ; étape 5, envelopper la bande de blocage d'eau (5) autour de la surface ; et étape 6, former une couche de protection externe (7) sur la surface du squelette d'âme fendue au moyen d'une extrusion, et incorporer les éléments de renforcement parallèles (6) pour achever la production d'un câble optique composite. Selon le câble optique composite, la taille structurale d'un câble optique à nombre de fibres élevé est réduite et la densité de fibre optique est améliorée.
PCT/CN2022/093776 2022-05-19 2022-05-19 Câble optique composite optoélectronique à âme fendue ramifiée à nombre de fibres ultra-élevé enroulé et procédé de production WO2023221027A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/093776 WO2023221027A1 (fr) 2022-05-19 2022-05-19 Câble optique composite optoélectronique à âme fendue ramifiée à nombre de fibres ultra-élevé enroulé et procédé de production
DE212022000147.8U DE212022000147U1 (de) 2022-05-19 2022-05-19 Verzweigtes skelettartiges optoelektronisches optisches Verbundkabel vom Wickeltyp mit extrem grosser Aderzahl

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/093776 WO2023221027A1 (fr) 2022-05-19 2022-05-19 Câble optique composite optoélectronique à âme fendue ramifiée à nombre de fibres ultra-élevé enroulé et procédé de production

Publications (1)

Publication Number Publication Date
WO2023221027A1 true WO2023221027A1 (fr) 2023-11-23

Family

ID=88834281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093776 WO2023221027A1 (fr) 2022-05-19 2022-05-19 Câble optique composite optoélectronique à âme fendue ramifiée à nombre de fibres ultra-élevé enroulé et procédé de production

Country Status (2)

Country Link
DE (1) DE212022000147U1 (fr)
WO (1) WO2023221027A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2427150A1 (de) * 1974-06-05 1976-01-02 Ruthenberg Gmbh Waermetechnik Faserlichtleitung
GB2157018A (en) * 1984-04-02 1985-10-16 Telephone Cables Ltd Optical fibre cables
US4952020A (en) * 1989-08-09 1990-08-28 Amp Incorporated Ribbon cable with optical fibers and electrical conductors
DE3917950C1 (en) * 1989-05-30 1990-10-31 Rauch, Bernhard, 1000 Berlin, De Fibre=optic cable protective conduit - contains several tubes of extruded plastics material connected by strips facing sheath
US5671313A (en) * 1994-01-12 1997-09-23 Siemens Aktiengesellschaft Optical cable and method for the manufacture thereof
US6321013B1 (en) * 1999-09-15 2001-11-20 Lucent Technologies, Inc. Stacks of optical fiber ribbons closely bound by respective buffer encasements, associated methods, and associated fiber optic cables
CN113196126A (zh) * 2020-08-24 2021-07-30 常熟高通智能装备有限公司 一种卷绕光缆及电缆及光电复合缆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2427150A1 (de) * 1974-06-05 1976-01-02 Ruthenberg Gmbh Waermetechnik Faserlichtleitung
GB2157018A (en) * 1984-04-02 1985-10-16 Telephone Cables Ltd Optical fibre cables
DE3917950C1 (en) * 1989-05-30 1990-10-31 Rauch, Bernhard, 1000 Berlin, De Fibre=optic cable protective conduit - contains several tubes of extruded plastics material connected by strips facing sheath
US4952020A (en) * 1989-08-09 1990-08-28 Amp Incorporated Ribbon cable with optical fibers and electrical conductors
US5671313A (en) * 1994-01-12 1997-09-23 Siemens Aktiengesellschaft Optical cable and method for the manufacture thereof
US6321013B1 (en) * 1999-09-15 2001-11-20 Lucent Technologies, Inc. Stacks of optical fiber ribbons closely bound by respective buffer encasements, associated methods, and associated fiber optic cables
CN113196126A (zh) * 2020-08-24 2021-07-30 常熟高通智能装备有限公司 一种卷绕光缆及电缆及光电复合缆

Also Published As

Publication number Publication date
DE212022000147U1 (de) 2024-02-12

Similar Documents

Publication Publication Date Title
EP1760505B1 (fr) Cable de connexion
US8175433B2 (en) Fiber optic cables coupling and methods therefor
JPH0768674B2 (ja) 引張りケーブル
CN108107528B (zh) 一种多芯数微型抗弯防鼠咬螺旋铠甲光缆及其制作方法
CN104062732A (zh) 一种易于组装的自承式电缆
CN113406756B (zh) 一种阻燃低释放物层绞光缆及其制备方法
JP3612451B2 (ja) 光ファイバケーブル及びその製造方法
CN211014742U (zh) 一种全介质多用途室外光缆
CN113782267A (zh) 一种光纤复合海底电缆及其制备方法
US20090034919A1 (en) Fiber optic cables using dry inserts for coupling and methods therefor
WO2023221027A1 (fr) Câble optique composite optoélectronique à âme fendue ramifiée à nombre de fibres ultra-élevé enroulé et procédé de production
JP2001318286A (ja) 光ファイバケーブル及び電力・光複合線
JP2000206382A (ja) マルチコアタイトバッファ光繊維及びこれを用いた多心光ケ―ブル
CN116908976A (zh) 一种卷绕超大芯数分支型骨架式光电复合光缆及生产方法
WO2020050180A1 (fr) Ruban et câble stratifiés
JP2001051169A (ja) 光ケーブル
CN107015330B (zh) 一种骨架式光电混合缆及其制造方法
JPH10148739A (ja) 架空集合屋外用光ケーブル
CN217060591U (zh) 带状光缆
CN116184592B (zh) 海底光缆及其制备方法
CN115527715B (zh) 一种快速开剥全干式光电复合带缆及其制造方法
JPH09145968A (ja) 光ファイバケーブルおよびその製造方法
JPS59213647A (ja) 光フアイバ心線の製造方法
CN105845275A (zh) 一种海底电缆生产装置及方法
JP2001116965A (ja) 海底光ケーブル及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 212022000147

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942069

Country of ref document: EP

Kind code of ref document: A1