WO2023219133A1 - Finless heat exchanger, and cooling system employing same - Google Patents

Finless heat exchanger, and cooling system employing same Download PDF

Info

Publication number
WO2023219133A1
WO2023219133A1 PCT/JP2023/017752 JP2023017752W WO2023219133A1 WO 2023219133 A1 WO2023219133 A1 WO 2023219133A1 JP 2023017752 W JP2023017752 W JP 2023017752W WO 2023219133 A1 WO2023219133 A1 WO 2023219133A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
curved
shape
finless heat
tube
Prior art date
Application number
PCT/JP2023/017752
Other languages
French (fr)
Japanese (ja)
Inventor
大地 山▲崎▼
Original Assignee
株式会社Afrex
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Afrex filed Critical 株式会社Afrex
Publication of WO2023219133A1 publication Critical patent/WO2023219133A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/06Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of metal tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies

Definitions

  • the present invention relates to a finless heat exchanger and a cooling system using the same.
  • finless heat exchangers are used as evaporators and condensers, for example in coolers for control panels and oil coolers. Finless heat exchangers do not have plate fins, so they have features such as high dust resistance, no need for maintenance, and less chance of air passage blockage due to frost.
  • Patent Document 1 discloses a finless heat exchanger in which the ends of the heat exchanger tubes are inserted into the header through insertion holes formed in the header, and the heat exchanger tubes and the header are closely abutted by brazing. .
  • Patent Document 2 discloses a fin-tube heat exchanger in which at least side plates or plate fins are arranged and fixed on a curved pipe part of a refrigerant tube, and plate fins are arranged and fixed on a straight pipe part of a refrigerant tube.
  • Patent Document 2 in order to fix the plate fins to the straight pipe portion of the refrigerant tube, it is necessary to apply high pressure to the refrigerant tube on the verge of rupture to expand the diameter, so failure of the refrigerant tube to burst occurs. There is a problem in that the yield rate decreases. Furthermore, when the material of the refrigerant tube is made of an aluminum alloy, there is also the problem that the yield rate further decreases.
  • an object of the present invention is to provide a finless heat exchanger in which a refrigerant tube is mechanically fixed to a side plate.
  • a finless heat exchanger includes: A refrigerant tube extending in a meandering manner and having a U-shaped curved tube portion and a straight tube portion connected to both ends of the curved tube portion; Equipped with a side plate having long holes,
  • the bent pipe portion includes a bent pipe end portion located on the side of the straight pipe portion, a main deformation portion curved in an arc shape, and a secondary deformation portion located between the bent pipe end portion and the main deformation portion.
  • the main deformation part has a flat part formed by pressing
  • the secondary deformation portion has a curved shape secondary to deformation due to the formation of the flat portion
  • the elongated hole has a central opening that receives the main deformation part, and a pair of end openings that are located at both ends of the central opening and partially receive the secondary deformation part and the bent pipe end
  • the refrigerant tube is fixed to the side plate by expanding the diameter of the curved tube portion with the curved tube portion inserted into the long hole and bringing the curved tube portion into close contact with the long hole. It is characterized by
  • the refrigerant tube can be mechanically fixed to the side plate by closely contacting the long hole and bulging out of the bent tube, thereby reducing costs and improving yield. realizable.
  • FIG. 1 is a schematic diagram showing the configuration of a cooling system using a finless heat exchanger according to the present invention.
  • FIG. 1 is a perspective view of a finless heat exchanger according to a first embodiment.
  • 3 is a side view of a side plate of the finless heat exchanger shown in FIG. 2.
  • FIG. 3 is a schematic front view of the finless heat exchanger shown in FIG. 2.
  • FIG. 5 is a schematic front view of the finless heat exchanger shown in FIG. 4 before diameter expansion treatment.
  • 6 is a side view of a refrigerant tube of the finless heat exchanger shown in FIG. 5.
  • FIG. (A) is a three-dimensional diagram
  • (B) is a diagram diagram.
  • FIG. 4 is an enlarged view of long holes in the side plate of the finless heat exchanger shown in FIG. 3.
  • FIG. 6 is an enlarged view of essential parts of the finless heat exchanger shown in FIG. 5.
  • FIG. (A) is a perspective view of a bent pipe portion of a press-processed refrigerant tube
  • (B) is a perspective view showing a state in which the bent pipe portion shown in (A) is inserted into a long hole in a side plate.
  • It is a figure which shows the size relationship between the curved pipe part of a press-processed refrigerant tube, and the long hole of a side plate.
  • (A) shows the long hole on the left side and the pressed bent pipe part of the refrigerant tube on the right side
  • (B) shows the state in which the bent pipe part shown in (A) is inserted into the long hole on the side plate. shows.
  • a finless heat exchanger 10 according to a first embodiment and a cooling system 1 using the finless heat exchanger 10 will be described with reference to FIGS. 1 to 9.
  • FIG. 1 is a schematic diagram showing the configuration of a cooling system 1 using a finless heat exchanger 10 according to the present invention.
  • FIG. 2 is a perspective view of the finless heat exchanger 10 according to the first embodiment.
  • FIG. 3 is a side view of the side plate 40 of the finless heat exchanger 10 shown in FIG. 2.
  • FIG. 4 is a schematic front view of the finless heat exchanger 10 shown in FIG. 2.
  • FIG. 5 is a schematic front view of the finless heat exchanger 10 shown in FIG. 4 before the diameter expansion process.
  • FIG. 6 is a side view of the refrigerant tubes 20 of the finless heat exchanger 10 shown in FIG. (A) is a three-dimensional diagram, and (B) is a diagram diagram.
  • FIG. 1 is a schematic diagram showing the configuration of a cooling system 1 using a finless heat exchanger 10 according to the present invention.
  • FIG. 2 is a perspective view of the finless heat exchanger 10 according to the first embodiment.
  • FIG. 3 is
  • FIG. 7 is an enlarged view of the long holes 41 in the side plate 40 of the finless heat exchanger 10 shown in FIG. 3.
  • FIG. 8 is an enlarged view of essential parts of the finless heat exchanger 10 shown in FIG. 5.
  • (A) is a perspective view of the bent pipe part 21 of the refrigerant tube 20 that has been press-processed
  • (B) is a perspective view of the bent pipe part 21 shown in (A) inserted into the long hole 41 of the side plate 40.
  • FIG. FIG. 9 is a diagram showing the size relationship between the curved pipe portion 21 of the pressed refrigerant tube 20 and the elongated hole 41 of the side plate 40. As shown in FIG.
  • (A) shows the elongated hole 41 on the left side and the pressed bent pipe part 21 of the refrigerant tube 20 on the right side
  • (B) shows the bent pipe part 21 shown in (A) with the long hole 41 on the side plate 40. A state inserted into the hole 41 is shown.
  • the cooling system 1 is used, for example, in the field of industrial equipment, such as a cooler for a control panel or an oil cooler. As shown in FIG. 1, the cooling system 1 includes, for example, a compressor 3, a condenser 4, a pressure reducing device 5, an evaporator 6, a blower 8 that blows air to the condenser 4, and a blower 8 that blows air to the evaporator 6. A blower 8 is provided. As the condenser 4 and/or the evaporator 6, a finless heat exchanger 10, which will be described later, is used.
  • the refrigerant compressed by the compressor 3 is supplied to the condenser 4.
  • the condenser 4 heat exchange is performed between air and refrigerant.
  • the refrigerant flowing out of the condenser 4 is supplied to a pressure reducing device 5.
  • the pressure of the refrigerant is reduced.
  • the refrigerant flowing out from the pressure reducing device 5 is supplied to the evaporator 6.
  • heat exchange is performed between the air and the refrigerant.
  • the refrigerant evaporates in the evaporator 6.
  • the refrigerant returns from the evaporator 6 to the compressor 3.
  • the control panel is provided with a finless heat exchanger 10 that functions as an evaporator 6 and a blower 8.
  • the finless heat exchanger 10 includes a refrigerant tube 20 through which the refrigerant flows, a pair of side plates 40, 40 that fixedly hold the refrigerant tube 20, and a connecting plate that connects the pair of side plates 40, 40. 60.
  • the refrigerant tube 20 has a circular tube shape and includes a U-shaped curved tube section 21 and a straight tube section 31 connected to both ends of the curved tube section 21 .
  • the refrigerant tube 20 extends in a meandering manner in multiple stages by a plurality of curved pipe sections 21 and a plurality of straight pipe sections 31.
  • the refrigerant tube 20 has tube ends 12 , 12 at both ends thereof, one tube end 12 being connected to the conduit of the cooling system 1 and the other tube end 12 being connected to the communication part 14 .
  • the refrigerant tube 20 is connected to another refrigerant tube 20 via the communication portion 14 . This allows the plurality of refrigerant tubes 20 to communicate with each other.
  • the refrigerant tube 20 is made of a metal material with high thermal conductivity, for example, a pure aluminum alloy (1000 series). This makes it possible to achieve lower costs and lighter weight than when using copper, which is expensive and has a large specific gravity. Further, the refrigerant tube 20 has a shape (for example, 6 mm in diameter and 0.6 mm in wall thickness) that can be deformed by a diameter expansion process described below.
  • a metal material with high thermal conductivity for example, a pure aluminum alloy (1000 series). This makes it possible to achieve lower costs and lighter weight than when using copper, which is expensive and has a large specific gravity.
  • the refrigerant tube 20 has a shape (for example, 6 mm in diameter and 0.6 mm in wall thickness) that can be deformed by a diameter expansion process described below.
  • the side plate 40 has a large number of elongated holes 41 and a plurality of extraction holes 51.
  • a large number of long holes 41 are arranged in a matrix in the vertical and horizontal directions of FIG.
  • the elongated hole 41 is a through hole configured so that a predetermined portion of the curved pipe portion 21 of the refrigerant tube 20 deformed by pressing can be inserted therethrough.
  • the elongated hole 41 in the first embodiment has a shape shown in FIG. 7, and details regarding the shape of the elongated hole 41 will be described later.
  • the extraction hole 51 is a through hole having a size that allows the tube end 12 of the straight pipe portion 31 of the refrigerant tube 20 to be inserted therethrough.
  • the side plate 40 is made of a metal material with high thermal conductivity, for example, a pure aluminum alloy (1000 series). This makes it possible to achieve lower costs and lighter weight than when using copper, which is expensive and has a large specific gravity. Further, the side plate 40 has a thickness that can ensure a predetermined strength. Note that the side plate 40 can also be made of an aluminum alloy (such as an Al-Mg alloy or an Al-Si alloy) having a composition different from that of the refrigerant tube 20.
  • an aluminum alloy such as an Al-Mg alloy or an Al-Si alloy
  • FIG. 4 is a schematic front view of a portion of the finless heat exchanger 10 shown in FIG. 2, after the diameter expansion process.
  • a pair of side plates 40, 40 are spaced apart in the left-right direction.
  • the straight pipe portion 31 of the refrigerant tube 20 extends in the left-right direction.
  • the curved tube portion 21 of the refrigerant tube 20 is curved in a U-shape so as to connect two adjacent straight tube portions 31, 31.
  • the bent pipe portion 21 before the diameter expansion process has a deformed portion that is crushed and deformed by the pressing process, and the deformed portion is inserted into the long hole 41 of the side plate 40 .
  • the outer part located outside the side plate 40 is expanded by applying hydraulic pressure to the refrigerant tube 20, so that the outside size of the straight tube section 31 is increased. bulges out to have a size approaching .
  • the curved tube portion 21 closely contacts the elongated hole 41 and the curved tube portion 21 expands, so that the refrigerant tube 20 is fixed to the side plate 40 .
  • the curved tube section 21 has a pair of curved tube ends 23, 23, a main deformation section 27, and a pair of sub-deformation sections 25, 25.
  • the bent pipe end portion 23 is an end located on the straight pipe portion 31 side.
  • the bent tube end portion 23 has approximately the same external size as the straight tube portion 31 and is slightly curved toward the main deformation portion 27 side.
  • the main deformation portion 27 has an arcuate shape.
  • the main deformation portion 27 has a flat portion 28 formed by pressing.
  • the thickness of the flat part 28 is, for example, 20% to 73%, preferably 45% to 72%, of the thickness before deformation by pressing (approximately the same external size as the straight pipe part 31), Preferably it is 68% to 71%.
  • the arc angle of the flat portion 28 is, for example, 70 degrees to 110 degrees, preferably 80 degrees to 100 degrees, and preferably 85 degrees to 95 degrees, when viewed from the front.
  • the secondary deformation section 25 is located between the bent tube end 23 and the main deformation section 27.
  • the secondary deformation portion 25 has a curved shape that is secondary deformed due to the formation of the flat portion 28 .
  • the curved shape of the sub-deformable portion 25 has a shape that connects the curved pipe end portion 23 and the flat portion 28 of the main deformable portion 27 .
  • the long hole 41 of the side plate 40 has a central opening 47 and a pair of end openings 43, 43.
  • the central opening 47 is configured to receive the main deformation section 27.
  • the central opening 47 has a rectangular shape defined by a pair of long sides 48, 48 that are spaced from each other and opposed to each other.
  • the long side 48 extends in the longitudinal direction (in other words, the vertical direction in FIG. 7, which is the direction in which the straight pipe portions 31 of the refrigerant tubes 20 are arranged).
  • a pair of long sides 48, 48 in the central opening 47 shown in FIG. 7 each have a central protrusion 49 at the central portion in the longitudinal direction.
  • the protrusion height (on one side only) of the central protrusion 49 is, for example, 0.05 mm to 1.6 mm, preferably 0.05 mm to 0.8 mm, and preferably 0.05 mm to 0.1 mm.
  • the pair of central protrusions 49, 49 have a shape that protrudes while curving toward each other. In other words, the central portion of the central opening 47 is narrowed by the pair of curved central projections 49, 49. Therefore, the central opening 47 shown in FIG. 7 has a curved narrow shape.
  • the pair of end openings 43 , 43 are located at both ends of the central opening 47 and are configured to partially receive the sub-deformation portion 25 and the bent pipe end portion 23 .
  • the end opening 43 is an arc defined by a circular arc side 44 extending from an end of one long side 48 of the pair of long sides 48, 48 to an end of the other long side 48 of the pair of long sides 48, 48. It has a shape. Specifically, the end opening 43 has a long axis extending along the long side 48, a short axis perpendicular to the long axis, a rounded blunt end located on the side of the border edge 45, and a border. It has an oval shape with a pointed tip located opposite the edge 45. Therefore, the end opening 43 shown in FIG. 7 has an oval shape.
  • a boundary edge 45 is formed at the boundary between the long side 48 that defines the central opening 47 and the arcuate side 44 that defines the end opening 43. Since the boundary edge 45 is a discontinuous transition from the long side 48 to the arcuate side 44, it has a pointed shape.
  • the bent pipe portion 21 and the elongated hole 41 configured as described above are set in the manner shown in FIGS. 8(B) and 9 before the diameter expansion process. That is, the rectangular center opening 47 receives the main deformation section 27, and the pair of arcuate end openings 43, 43 partially receives the sub-deformation section 25 and the curved pipe end 23.
  • the bent pipe portion 21 is inserted into the elongated hole 41. In the inserted state, there is a slight gap between the long side 48 of the central opening 47 and the flat part 28 of the main deformable part 27, while the arcuate side 44 of the end opening 43 It partially abuts against the sub-deformed portion 25 and the bent pipe end portion 23 of. Thereby, the bent pipe portion 21 inserted into the long hole 41 can be easily and accurately positioned with respect to the long hole 41.
  • the diameter expansion pressure applied only needs to expand the diameter of the deformed parts (main deformation part 27 and sub-deformation part 25) deformed by pressing in the bent pipe part 21, so it is more effective than when expanding the diameter of the straight pipe part 31. Also, low pressure is sufficient.
  • the diameter expansion pressure a pressure before the refrigerant tube 20 bursts is applied, and the diameter expansion pressure is, for example, 70% to 90% of the bursting pressure of the refrigerant tube 20, preferably 75% of the bursting pressure of the refrigerant tube 20. % to 88%, preferably 82% to 87% of the burst pressure of the refrigerant tube 20.
  • the largely deformed main deformed portion 27 attempts to return to its original shape with a smaller diameter expansion pressure than the slightly deformed auxiliary deformed portion 25.
  • the main deformation part 27 bulges out more easily than the sub-deformation part 25, so the main deformation part 27 is more mechanically fixed than the sub-deformation part 25.
  • the engagement of the pair of end openings 43, 43 with the sub-deformable portion 25 and the bent tube end portion 23 contributes to preventing the bent tube portion 21 from moving in the longitudinal direction of the elongated hole 41.
  • the outer portion located outside the inner edge of the elongated hole 41 bulges due to the application of diameter expansion pressure.
  • the outer portion bulges out to have a size that approaches the straight pipe portion 31. Since the risk of rupturing the refrigerant tube 20 increases as the diameter expansion pressure increases, the diameter expansion pressure within the above-mentioned predetermined pressure range is applied.
  • the portion of the bent tube portion 21 inserted into the elongated hole 41 that faces the elongated hole 41 is regulated by the elongated hole 41 and engages with the elongated hole 41 during the expansion process of the bent tube portion 21 .
  • the main deformation section 27 closely contacts the pair of long sides 48, 48 of the central opening 47, and the secondary deformation section 25 and the curved tube end 23 close to the pair of end openings. 43, 43 closely contacts a pair of arcuate sides 44, 44.
  • the refrigerant tube 20 can be mechanically fixed to the side plate 40 (attached in a fixed state) by the curved tube portion 21 closely contacting the elongated hole 41 and expanding the curved tube portion 21. Therefore, cost reduction and yield improvement can be realized.
  • the boundary edge 45 having a sharp shape engages with the sub-deformation portion 25 so as to bite into it. Thereby, the degree of mechanical fixation of the refrigerant tube 20 to the side plate 40 is improved.
  • the long hole 41 shown in FIG. 7 has a narrow curved central opening 47 and an egg-shaped end opening 43.
  • the narrow curved shape of the central opening 47 shown in FIG. This makes it possible to bite into the portion 28. Thereby, it is possible to reduce the chance of getting caught when inserting the main deformable portion 27 and to improve the degree of locking in the central opening 47.
  • the angle that the arcuate side 44 makes with the long side 48 becomes larger, so the boundary edge 45 becomes sharper. Therefore, during the expansion process of the curved pipe section 21, the contact area of the end opening 43 against the arcuate side 44 becomes larger, and the boundary edge 45 can bite into the sub-deformed section 25 or the end of the curved pipe. . Thereby, the degree of locking in the end opening 43 can be improved.
  • FIG. 10 is an enlarged view of the long holes 41 in the side plate 40 of the finless heat exchanger 10 according to the second embodiment.
  • the finless heat exchanger 10 according to the second embodiment is different from the first embodiment only in the shape of the long holes 41, and the other configurations are the same as the first embodiment. Therefore, the explanation will focus on the differences from the first embodiment.
  • the elongated hole 41 shown in FIG. 10 has a central opening 47 with an evenly spaced shape and a pair of long sides 48 extending in parallel, and an end opening 43 with a perfect circular shape.
  • the equally spaced shape of the central opening 47 shown in FIG. becomes easier. Thereby, smooth insertion of the main deformable portion 27 and cost reduction can be realized.
  • the arcuate side 44 of the end opening 43 shown in FIG. 10 is a portion of a perfect circle having a radius of curvature slightly smaller than the outer diameter of the straight pipe portion 31. Furthermore, since the boundary edge 45 is a discontinuous transition point from the long side 48 to the arcuate side 44 having a small radius of curvature, it has a shape that is more pointed than the oval-shaped arcuate side 44 described in the first embodiment. . Therefore, the end opening 43 can be easily processed, and the boundary edge 45 can bite into the sub-deformed portion 25 or the end of the curved pipe. This makes it possible to reduce costs and improve the degree of locking.
  • FIG. 11 is an enlarged view of the long holes 41 in the side plate 40 of the finless heat exchanger 10 according to the third embodiment.
  • the finless heat exchanger 10 according to the third embodiment is different from the first embodiment only in the shape of the long holes 41, and the other configurations are the same as the first embodiment. Therefore, the explanation will focus on the differences from the first embodiment.
  • the elongated hole 41 shown in FIG. 11 has a central opening 47 with an evenly spaced shape in which a pair of long sides 48, 48 extend in parallel, and an end opening 43 with an elliptical shape.
  • the equally spaced shape of the central opening 47 shown in FIG. 11 allows the flat part 28 to be held from the short side direction of the elongated hole 41 during the expansion process of the curved tube part 21, and also makes it possible to easily process the central opening 47. becomes easier. Thereby, smooth insertion of the main deformable portion 27 and cost reduction can be realized.
  • the arcuate side 44 of the end opening 43 shown in FIG. 11 is a part of an ellipse whose long axis extends along the long side 48 and whose short axis is slightly smaller than the outer diameter of the straight pipe portion 31.
  • the boundary edge 45 has a shape that is less sharp than the oval arcuate side 44 described in the first embodiment. Therefore, during the expansion process of the curved pipe portion 21, the contact area of the end opening 43 against the arcuate side 44 becomes larger, and the boundary edge 45 can gently bite into the sub-deformed portion 25 or the curved pipe end. Make it. Thereby, it is possible to improve the degree of locking in the end opening 43 and reduce damage caused by biting.
  • FIG. 12 is an enlarged view of the long holes 41 in the side plate 40 of the finless heat exchanger 10 according to the fourth embodiment.
  • the finless heat exchanger 10 according to the fourth embodiment is different from the first embodiment only in the shape of the long holes 41, and the other configurations are the same as the first embodiment. Therefore, the explanation will focus on the differences from the first embodiment.
  • the elongated hole 41 shown in FIG. 12 has a central opening 47 with an evenly spaced shape in which a pair of long sides 48, 48 extend in parallel, and an egg-shaped end opening 43.
  • the equally spaced shape of the central opening 47 shown in FIG. 12 makes it possible to hold the flat part 28 from the short side direction of the elongated hole 41 during the expansion process of the curved tube part 21, and also makes it possible to process the central opening 47. becomes easier. Thereby, smooth insertion of the main deformable portion 27 and cost reduction can be realized.
  • the arcuate side 44 in the end opening 43 shown in FIG. 12 is a part of the same oval shape as described in the first embodiment. Therefore, as in the first embodiment, during the expansion process of the curved pipe portion 21, the contact area of the end opening 43 with the arcuate side 44 becomes larger, and the boundary edge 45 is It allows you to dig into the parts. Thereby, the degree of locking in the end opening 43 can be improved.
  • FIG. 13 is an enlarged view of the long holes 41 in the side plate 40 of the finless heat exchanger 10 according to the fifth embodiment.
  • the finless heat exchanger 10 according to the fifth embodiment differs from the first embodiment only in the shape of the long holes 41, and the other configurations are the same as the first embodiment. Therefore, the explanation will focus on the differences from the first embodiment.
  • the elongated hole 41 shown in FIG. 13 has a central opening 47 with a narrow inclined width from which central protrusions 49 of a pair of long sides 48 and 48 protrude at an inclined angle, and an end opening 43 with a perfect circular shape.
  • the inclination angle is, for example, 0.5 degrees to 3 degrees, preferably 0.5 degrees to 2 degrees, and preferably 0.5 degrees to 1 degree.
  • the inclined narrow width shape of the central opening 47 shown in FIG. This allows the protruding portion 49 to strongly bite into the flat portion 28. Thereby, the degree of locking in the central opening 47 can be further improved.
  • the arcuate side 44 of the end opening 43 shown in FIG. 13 is a part of a perfect circle having a radius of curvature slightly smaller than the outer diameter of the straight pipe portion 31. Furthermore, since the boundary edge 45 is a discontinuous transition point from the long side 48 to the arcuate side 44 having a small radius of curvature, it has a shape that is more pointed than the oval-shaped arcuate side 44 described in the first embodiment. . Therefore, the end opening 43 can be easily processed, and the boundary edge 45 can bite into the sub-deformed portion 25 or the end of the curved pipe. This makes it possible to reduce costs and improve the degree of locking in the end opening 43.
  • FIG. 14 is an enlarged view of the long holes 41 in the side plate 40 of the finless heat exchanger 10 according to the sixth embodiment.
  • the finless heat exchanger 10 according to the sixth embodiment is different from the first embodiment only in the shape of the long holes 41, and the other configurations are the same as the first embodiment. Therefore, the explanation will focus on the differences from the first embodiment.
  • the elongated hole 41 shown in FIG. 14 has a narrow curved central opening 47 in which central protrusions 49 of a pair of long sides 48, 48 protrude while being curved, and an end opening 43 in a perfect circular shape.
  • the curved narrow shape of the central opening 47 shown in FIG. 14 has the same shape as described in the first embodiment. Therefore, similarly to the first embodiment, during the expansion process of the curved pipe portion 21, the flat portion 28 is held from the lateral direction of the elongated hole 41, and the curved central protrusion 49 bites into the flat portion 28. make it possible. Thereby, it is possible to reduce the chance of getting caught when inserting the main deformable portion 27 and to improve the degree of locking in the central opening 47.
  • the arcuate side 44 of the end opening 43 shown in FIG. 14 is a portion of a perfect circle having a radius of curvature slightly smaller than the outer diameter of the straight pipe portion 31. Furthermore, since the boundary edge 45 is a discontinuous transition point from the long side 48 to the arcuate side 44 having a small radius of curvature, it has a shape that is more pointed than the oval-shaped arcuate side 44 described in the first embodiment. . Therefore, the end opening 43 can be easily processed, and the boundary edge 45 can bite into the sub-deformed portion 25 or the end of the curved pipe. This makes it possible to reduce costs and improve the degree of locking in the end opening 43.
  • the central openings 47 may have an equally spaced shape, a curved narrow width shape, or an inclined narrow width shape, and the end openings 43 may have a perfect circular shape, an elliptical shape, or an oval shape, depending on the required specifications. They can be selected and combined as appropriate.
  • the central opening 47 has a narrow curved width and the end openings 43 have an elliptical shape, and the central opening 47 has a narrow sloped width and the end openings 43 have an elliptical shape.
  • the central opening 47 may have an inclined narrow shape and the end openings 43 may have an oval shape.
  • a pure aluminum-based alloy is illustrated as the refrigerant tube 20, but copper can also be used.
  • the finless heat exchanger 10 includes: A refrigerant tube 20 extending in a meandering manner and having a U-shaped curved tube section 21 and straight tube sections 31 connected to both ends of the curved tube section 21; A side plate 40 having a long hole 41,
  • the bent pipe portion 21 includes a bent pipe end portion 23 located on the side of the straight pipe portion 31, a main deformation portion 27 curved in an arc shape, and a portion between the bent pipe end portion 23 and the main deformation portion 27. and a sub-deformation portion 25 located therein.
  • the main deformation part 27 has a flat part 28 formed by pressing
  • the secondary deformation portion 25 has a curved shape secondary to deformation due to the formation of the flat portion 28,
  • the elongated hole 41 has a central opening 47 that receives the main deformable portion 27, and a pair of end openings 43 that are located at both ends of the central opening 47 and partially receive the secondary deformable portion 25 and the bent pipe end portion 23. , 43,
  • the refrigerant tube 20 is It is characterized in that it is fixed to the side plate 40.
  • the refrigerant tube 20 can be mechanically fixed to the side plate 40 by the curved tube portion 21 closely contacting the elongated hole 41 and the curved tube portion 21 expanding, thereby reducing costs. It is possible to realize improvements in production and yield.
  • the central opening 47 has a rectangular shape defined by a pair of long sides 48, 48 that are spaced apart from each other, and the end opening 43 is located at the end of one long side 48 of the pair of long sides 48, 48. It has an arcuate shape defined by an arcuate side 44 extending from the end of the pair of long sides 48 to the end of the other long side 48 of the pair of long sides 48, 48.
  • the bent pipe portion 21 inserted into the long hole 41 can be easily and accurately positioned with respect to the long hole 41.
  • the finless heat exchanger 10 has the following features in the second aspect:
  • the central opening 47 has a shape in which the pair of long sides 48, 48 extend in parallel at equal intervals, a curved narrow shape in which the central protrusion 49 of the pair of long sides 48, 48 protrudes while being curved, or,
  • the central protruding portion 49 of the pair of long sides 48, 48 has an inclined narrow shape that protrudes at an inclined angle.
  • the equally spaced shape makes it possible to smoothly insert the main deformable portion 27 and reduce costs, and the narrow curved shape reduces the possibility of getting caught during insertion, and The degree of locking can be improved, and the narrow slope shape can further improve the degree of locking at the central opening 47.
  • the finless heat exchanger 10 according to the fourth aspect has the following features in the second or third aspect:
  • the end opening 43 has a perfect circular shape, an elliptical shape, or an oval shape.
  • the perfect circular shape can reduce costs and improve the degree of locking at the end opening 43, and the elliptical shape can improve the degree of locking at the end opening 43 and reduce damage caused by locking.
  • the oval shape can improve the degree of locking at the end opening 43.
  • the finless heat exchanger 10 according to the fifth aspect has the following features in the first aspect:
  • the central opening 47 has a narrow curved shape in which the central protrusion 49 of the pair of long sides 48 and 48 protrudes while being curved, and the end opening 43 has an oval shape.
  • the curved and narrow shape of the central opening 47 reduces the possibility of getting caught during insertion and improves the degree of locking in the central opening 47, and the oval shape of the end opening 43 allows the end The degree of locking in the opening 43 can be improved.
  • the finless heat exchanger 10 has the following features in any of the first to fifth aspects:
  • the refrigerant tube 20 and the side plate 40 are made of aluminum alloy.
  • the cooling system 1 includes: A compressor, a condenser, a pressure reducing device, an evaporator, and a blower that provides forced ventilation to the condenser or the evaporator,
  • the condenser or the evaporator is the finless heat exchanger according to any one of the first to fifth aspects.
  • the refrigerant tube 20 can be mechanically fixed to the side plate 40 by the curved tube portion 21 closely contacting the elongated hole 41 and the curved tube portion 21 expanding, thereby reducing costs. It is possible to realize improvements in production and yield.
  • Cooling system 3 Compressor 4
  • Condenser 5 Pressure reducing device 6
  • Evaporator 8 Air blower 10
  • Finless heat exchanger 12 Tube end 14
  • Communication part 20 External to Air blower 10
  • Refrigerant tube 21 ... Bent pipe part 23
  • Bent pipe End portion 25 ... Secondary deformation portion 27
  • Main deformation portion 28 ... Flat portion 31
  • Straight pipe portion 40 Side plate 41
  • Long hole 43 ... End opening 44
  • Arc side 45 ... Boundary edge 47
  • Center opening 48 ... Long side 49... Central protrusion 51
  • Ejection hole 60 ...Connection plate

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Provided is a finless heat exchanger having side plates to which a refrigerant tube is mechanically affixed. The finless heat exchanger comprises a refrigerant tube 20 which extends in a meandering manner and which includes bent tube portions 21 curved in a U-shape, and straight tube portions 31 connected to both ends of the bent tube portions, and side plates 40 including elongated holes 41, wherein: each bent tube portion includes bent tube end portions 23 positioned on the straight tube portion sides of the bent tube portion, a main deformed portion 27 curved in an arc shape, and secondary deformed portions 25 positioned between the bent tube end portions and the main deformed portion; the main deformed portion includes a flat portion 28 formed by pressing; the secondary deformed portions have a curved shape that is secondarily deformed through the formation of the flat portion; the elongated holes have a central opening 47 for accepting the main deformed portions, and a pair of end openings 43 positioned at both ends of the central opening 47, for partially accepting the secondary deformed portions and the bent tube end portions; and the refrigerant tube is affixed to the side plates by diametrically expanding the bent tube portions with the bent tube portions inserted into the elongated holes, to cause the bent tube portions to come into close contact with the elongated holes.

Description

フィンレス熱交換器およびそれを用いた冷却システムFinless heat exchanger and cooling system using it
 この発明は、フィンレス熱交換器およびそれを用いた冷却システムに関する。 The present invention relates to a finless heat exchanger and a cooling system using the same.
 産業機器分野において、例えば制御盤用のクーラーやオイルクーラーなどにおいて、フィンレス熱交換器が、蒸発器や凝縮器として用いられる。フィンレス熱交換器は、プレートフィンを有さないため、耐埃性が高いこと、メンテナンスが不要であること、霜の付着による風路の閉塞が起こりにくいことなどの特長を有する。 In the field of industrial equipment, finless heat exchangers are used as evaporators and condensers, for example in coolers for control panels and oil coolers. Finless heat exchangers do not have plate fins, so they have features such as high dust resistance, no need for maintenance, and less chance of air passage blockage due to frost.
 例えば、特許文献1は、ヘッダに形成された挿し込み孔から伝熱管の端部が、ヘッダ内に挿入されて、伝熱管およびヘッダをロウ付けにより密着して当接するフィンレス熱交換器を開示する。 For example, Patent Document 1 discloses a finless heat exchanger in which the ends of the heat exchanger tubes are inserted into the header through insertion holes formed in the header, and the heat exchanger tubes and the header are closely abutted by brazing. .
 また、特許文献2は、少なくとも側板あるいはプレートフィンを冷媒チューブの曲管部に配置固定するとともに、プレートフィンを冷媒チューブの直管部に配置固定するフィンチューブ式の熱交換機を開示する。 Further, Patent Document 2 discloses a fin-tube heat exchanger in which at least side plates or plate fins are arranged and fixed on a curved pipe part of a refrigerant tube, and plate fins are arranged and fixed on a straight pipe part of a refrigerant tube.
特許第6821057号公報Patent No. 6821057 特開2011-21799号公報Japanese Patent Application Publication No. 2011-21799
 特許文献1のように、伝熱管およびヘッダをロウ材の加熱によって冶金的に密着して当接する場合、高価な大型熱処理設備が必要であること、ランニングコストが高いこと、小ロット生産には不向きであることなどの課題がある。 As in Patent Document 1, when heat transfer tubes and headers are metallurgically brought into close contact by heating the brazing material, expensive large-scale heat treatment equipment is required, running costs are high, and it is not suitable for small-lot production. There are issues such as being
 特許文献2の場合、プレートフィンを冷媒チューブの直管部に固定するために、破壊寸前の高圧力を冷媒チューブに印加して拡径させる必要があるので、冷媒チューブの破裂不良が発生して歩留まりが低下するという課題がある。さらに、冷媒チューブの材質をアルミニウム合金にすると、歩留まりがさらに低下するという課題もある。 In the case of Patent Document 2, in order to fix the plate fins to the straight pipe portion of the refrigerant tube, it is necessary to apply high pressure to the refrigerant tube on the verge of rupture to expand the diameter, so failure of the refrigerant tube to burst occurs. There is a problem in that the yield rate decreases. Furthermore, when the material of the refrigerant tube is made of an aluminum alloy, there is also the problem that the yield rate further decreases.
 そこで、この発明の課題は、冷媒チューブを側板に機械的に固設するフィンレス熱交換器を提供することである。 Therefore, an object of the present invention is to provide a finless heat exchanger in which a refrigerant tube is mechanically fixed to a side plate.
 上記課題を解決するため、この発明の一態様に係るフィンレス熱交換器は、
 U字状に湾曲した曲管部と、前記曲管部の両端に接続される直管部とを有して、蛇行状に延在する冷媒チューブと、
 長孔を有する側板とを備え、
 前記曲管部は、前記直管部の側に位置する曲管端部と、円弧状に湾曲した主変形部と、前記曲管端部および前記主変形部の間に位置する副変形部とを有し、
 前記主変形部は、押圧加工によって形成される扁平部を有し、
 前記副変形部は、前記扁平部の形成によって副次的に変形した湾曲形状を有し、
 前記長孔は、前記主変形部を受け入れる中央開口と、前記中央開口の両端に位置するとともに前記副変形部および前記曲管端部を部分的に受け入れる一対の端開口とを有し、
 前記曲管部を前記長孔に挿入した状態で前記曲管部を拡径させて前記曲管部を前記長孔に密着して当接させることによって、前記冷媒チューブを前記側板に固設することを特徴とする。
In order to solve the above problems, a finless heat exchanger according to one aspect of the present invention includes:
A refrigerant tube extending in a meandering manner and having a U-shaped curved tube portion and a straight tube portion connected to both ends of the curved tube portion;
Equipped with a side plate having long holes,
The bent pipe portion includes a bent pipe end portion located on the side of the straight pipe portion, a main deformation portion curved in an arc shape, and a secondary deformation portion located between the bent pipe end portion and the main deformation portion. has
The main deformation part has a flat part formed by pressing,
The secondary deformation portion has a curved shape secondary to deformation due to the formation of the flat portion,
The elongated hole has a central opening that receives the main deformation part, and a pair of end openings that are located at both ends of the central opening and partially receive the secondary deformation part and the bent pipe end,
The refrigerant tube is fixed to the side plate by expanding the diameter of the curved tube portion with the curved tube portion inserted into the long hole and bringing the curved tube portion into close contact with the long hole. It is characterized by
 この発明によれば、曲管部が長孔に密着して当接するとともに曲管部が膨出することによって、冷媒チューブを側板に機械的に固設できるので、低コスト化や歩留まりの向上を実現できる。 According to this invention, the refrigerant tube can be mechanically fixed to the side plate by closely contacting the long hole and bulging out of the bent tube, thereby reducing costs and improving yield. realizable.
この発明に係るフィンレス熱交換器を用いた冷却システムの構成を示す模式図である。1 is a schematic diagram showing the configuration of a cooling system using a finless heat exchanger according to the present invention. 第1実施形態に係るフィンレス熱交換器の斜視図である。FIG. 1 is a perspective view of a finless heat exchanger according to a first embodiment. 図2に示したフィンレス熱交換器の側板の側面図である。3 is a side view of a side plate of the finless heat exchanger shown in FIG. 2. FIG. 図2に示したフィンレス熱交換器の模式的正面図である。3 is a schematic front view of the finless heat exchanger shown in FIG. 2. FIG. 図4に示したフィンレス熱交換器の拡径処理前の模式的正面図である。FIG. 5 is a schematic front view of the finless heat exchanger shown in FIG. 4 before diameter expansion treatment. 図5に示したフィンレス熱交換器の冷媒チューブの側面図である。(A)は立体的に示す図であり、(B)は線図で示す図である。6 is a side view of a refrigerant tube of the finless heat exchanger shown in FIG. 5. FIG. (A) is a three-dimensional diagram, and (B) is a diagram diagram. 図3に示したフィンレス熱交換器の側板における長孔の拡大図である。4 is an enlarged view of long holes in the side plate of the finless heat exchanger shown in FIG. 3. FIG. 図5に示したフィンレス熱交換器における要部の拡大図である。(A)は、押圧加工された冷媒チューブの曲管部の斜視図であり、(B)は、(A)に示した曲管部を側板の長孔に挿入した状態を示す斜視図である。6 is an enlarged view of essential parts of the finless heat exchanger shown in FIG. 5. FIG. (A) is a perspective view of a bent pipe portion of a press-processed refrigerant tube, and (B) is a perspective view showing a state in which the bent pipe portion shown in (A) is inserted into a long hole in a side plate. . 押圧加工された冷媒チューブの曲管部と、側板の長孔との間でのサイズ関係を示す図である。(A)は、左側において長孔を示すとともに右側において押圧加工された冷媒チューブの曲管部を示し、(B)は、(A)に示した曲管部を側板の長孔に挿入した状態を示す。It is a figure which shows the size relationship between the curved pipe part of a press-processed refrigerant tube, and the long hole of a side plate. (A) shows the long hole on the left side and the pressed bent pipe part of the refrigerant tube on the right side, and (B) shows the state in which the bent pipe part shown in (A) is inserted into the long hole on the side plate. shows. 第2実施形態に係るフィンレス熱交換器の側板における長孔の拡大図である。It is an enlarged view of the long hole in the side plate of the finless heat exchanger based on 2nd Embodiment. 第3実施形態に係るフィンレス熱交換器の側板における長孔の拡大図である。It is an enlarged view of the long hole in the side plate of the finless heat exchanger based on 3rd Embodiment. 第4実施形態に係るフィンレス熱交換器の側板における長孔の拡大図である。It is an enlarged view of the long hole in the side plate of the finless heat exchanger based on 4th Embodiment. 第5実施形態に係るフィンレス熱交換器の側板における長孔の拡大図である。It is an enlarged view of the long hole in the side plate of the finless heat exchanger based on 5th Embodiment. 第6実施形態に係るフィンレス熱交換器の側板における長孔の拡大図である。It is an enlarged view of the long hole in the side plate of the finless heat exchanger based on 6th Embodiment.
 以下、図面を参照しながら、この発明に係る冷却システム1の実施の形態を説明する。なお、以下の説明では、必要に応じて特定の方向あるいは位置を示す用語(例えば、「上」、「下」、「右」、「左」、「前」、「後」を含む用語)を用いるが、それらの用語の使用は、図面を参照した本開示の理解を容易にするためであって、それらの用語の意味によって本開示の技術的範囲が限定されるものではない。また、以下の説明は、本質的に例示に過ぎず、本開示、その適用物、あるいは、その用途を制限することを意図するものではない。さらに、図面は模式的なものであり、各寸法の比率などは現実のものとは必ずしも合致するものではない。 Hereinafter, embodiments of a cooling system 1 according to the present invention will be described with reference to the drawings. In the following explanation, terms indicating specific directions or positions (for example, terms including "top", "bottom", "right", "left", "front", and "back") will be used as necessary. However, the use of these terms is to facilitate understanding of the present disclosure with reference to the drawings, and the technical scope of the present disclosure is not limited by the meanings of these terms. Further, the following description is essentially only an example, and is not intended to limit the present disclosure, its applications, or its uses. Furthermore, the drawings are schematic, and the proportions of each dimension do not necessarily match the reality.
 〔第1実施形態〕
 図1から図9を参照しながら、第1実施形態に係るフィンレス熱交換器10、および、該フィンレス熱交換器10を用いた冷却システム1を説明する。
[First embodiment]
A finless heat exchanger 10 according to a first embodiment and a cooling system 1 using the finless heat exchanger 10 will be described with reference to FIGS. 1 to 9.
 図1は、この発明に係るフィンレス熱交換器10を用いた冷却システム1の構成を示す模式図である。図2は、第1実施形態に係るフィンレス熱交換器10の斜視図である。図3は、図2に示したフィンレス熱交換器10の側板40の側面図である。図4は、図2に示したフィンレス熱交換器10の模式的正面図である。図5は、図4に示したフィンレス熱交換器10の拡径処理前の模式的正面図である。図6は、図5に示したフィンレス熱交換器10の冷媒チューブ20の側面図である。(A)は立体的に示す図であり、(B)は線図で示す図である。図7は、図3に示したフィンレス熱交換器10の側板40における長孔41の拡大図である。図8は、図5に示したフィンレス熱交換器10における要部の拡大図である。(A)は、押圧加工された冷媒チューブ20の曲管部21の斜視図であり、(B)は、(A)に示した曲管部21を側板40の長孔41に挿入した状態を示す斜視図である。図9は、押圧加工された冷媒チューブ20の曲管部21と、側板40の長孔41との間でのサイズ関係を示す図である。(A)は、左側において長孔41を示すとともに右側において押圧加工された冷媒チューブ20の曲管部21を示し、(B)は、(A)に示した曲管部21を側板40の長孔41に挿入した状態を示す。 FIG. 1 is a schematic diagram showing the configuration of a cooling system 1 using a finless heat exchanger 10 according to the present invention. FIG. 2 is a perspective view of the finless heat exchanger 10 according to the first embodiment. FIG. 3 is a side view of the side plate 40 of the finless heat exchanger 10 shown in FIG. 2. FIG. 4 is a schematic front view of the finless heat exchanger 10 shown in FIG. 2. FIG. 5 is a schematic front view of the finless heat exchanger 10 shown in FIG. 4 before the diameter expansion process. FIG. 6 is a side view of the refrigerant tubes 20 of the finless heat exchanger 10 shown in FIG. (A) is a three-dimensional diagram, and (B) is a diagram diagram. FIG. 7 is an enlarged view of the long holes 41 in the side plate 40 of the finless heat exchanger 10 shown in FIG. 3. FIG. 8 is an enlarged view of essential parts of the finless heat exchanger 10 shown in FIG. 5. (A) is a perspective view of the bent pipe part 21 of the refrigerant tube 20 that has been press-processed, and (B) is a perspective view of the bent pipe part 21 shown in (A) inserted into the long hole 41 of the side plate 40. FIG. FIG. 9 is a diagram showing the size relationship between the curved pipe portion 21 of the pressed refrigerant tube 20 and the elongated hole 41 of the side plate 40. As shown in FIG. (A) shows the elongated hole 41 on the left side and the pressed bent pipe part 21 of the refrigerant tube 20 on the right side, and (B) shows the bent pipe part 21 shown in (A) with the long hole 41 on the side plate 40. A state inserted into the hole 41 is shown.
 冷却システム1は、例えば、産業機器分野において、例えば制御盤用のクーラーやオイルクーラーに用いられる。図1に示すように、冷却システム1は、例えば、圧縮機3と、凝縮器4と、減圧装置5と、蒸発器6と、凝縮器4に送風する送風機8と、蒸発器6に送風する送風機8とを備える。凝縮器4および/または蒸発器6としては、後述するフィンレス熱交換器10が用いられる。 The cooling system 1 is used, for example, in the field of industrial equipment, such as a cooler for a control panel or an oil cooler. As shown in FIG. 1, the cooling system 1 includes, for example, a compressor 3, a condenser 4, a pressure reducing device 5, an evaporator 6, a blower 8 that blows air to the condenser 4, and a blower 8 that blows air to the evaporator 6. A blower 8 is provided. As the condenser 4 and/or the evaporator 6, a finless heat exchanger 10, which will be described later, is used.
 冷却システム1において、圧縮機3で圧縮された冷媒は、凝縮器4に供給される。凝縮器4では、空気と冷媒との間で熱交換が行われる。これにより、凝縮器4では冷媒が凝縮する。凝縮器4から流出した冷媒は、減圧装置5に供給される。減圧装置5では冷媒が減圧される。減圧装置5から流出した冷媒は蒸発器6に供給される。蒸発器6では、空気と冷媒との間で熱交換が行われる。これにより、蒸発器6では冷媒が蒸発する。その後、冷媒は、蒸発器6から圧縮機3に戻る。制御盤には、蒸発器6として働くフィンレス熱交換器10と、送風機8とが設けられる。 In the cooling system 1, the refrigerant compressed by the compressor 3 is supplied to the condenser 4. In the condenser 4, heat exchange is performed between air and refrigerant. As a result, the refrigerant is condensed in the condenser 4. The refrigerant flowing out of the condenser 4 is supplied to a pressure reducing device 5. In the pressure reducing device 5, the pressure of the refrigerant is reduced. The refrigerant flowing out from the pressure reducing device 5 is supplied to the evaporator 6. In the evaporator 6, heat exchange is performed between the air and the refrigerant. As a result, the refrigerant evaporates in the evaporator 6. Thereafter, the refrigerant returns from the evaporator 6 to the compressor 3. The control panel is provided with a finless heat exchanger 10 that functions as an evaporator 6 and a blower 8.
 図2に示すように、フィンレス熱交換器10は、冷媒が流れる冷媒チューブ20と、冷媒チューブ20を固定的に保持する一対の側板40,40と、一対の側板40,40を連結する連結板60とを備える。 As shown in FIG. 2, the finless heat exchanger 10 includes a refrigerant tube 20 through which the refrigerant flows, a pair of side plates 40, 40 that fixedly hold the refrigerant tube 20, and a connecting plate that connects the pair of side plates 40, 40. 60.
 冷媒チューブ20は、円管形状を有し、U字状に湾曲した曲管部21と、曲管部21の両端に接続される直管部31とを有する。冷媒チューブ20は、複数の曲管部21と、複数の直管部31とによって複数段に蛇行して延在する。冷媒チューブ20は、その両端においてチューブ端12,12を有し、一方のチューブ端12が、冷却システム1の管路に接続され、他方のチューブ端12が、連通部14に接続される。冷媒チューブ20は、連通部14を介して、他の冷媒チューブ20に接続される。これにより、複数の冷媒チューブ20が連通する。 The refrigerant tube 20 has a circular tube shape and includes a U-shaped curved tube section 21 and a straight tube section 31 connected to both ends of the curved tube section 21 . The refrigerant tube 20 extends in a meandering manner in multiple stages by a plurality of curved pipe sections 21 and a plurality of straight pipe sections 31. The refrigerant tube 20 has tube ends 12 , 12 at both ends thereof, one tube end 12 being connected to the conduit of the cooling system 1 and the other tube end 12 being connected to the communication part 14 . The refrigerant tube 20 is connected to another refrigerant tube 20 via the communication portion 14 . This allows the plurality of refrigerant tubes 20 to communicate with each other.
 冷媒チューブ20は、熱伝導率が高い金属材料、例えば、純アルミニウム系(1000系)合金からなる。これにより、高価であり且つ比重が大きい銅を用いる場合よりも、低コスト化および軽量化を実現できる。また、冷媒チューブ20は、後述する拡径処理によって変形可能な形状(例えば、直径が6mm、肉厚が0.6mm)を有する。 The refrigerant tube 20 is made of a metal material with high thermal conductivity, for example, a pure aluminum alloy (1000 series). This makes it possible to achieve lower costs and lighter weight than when using copper, which is expensive and has a large specific gravity. Further, the refrigerant tube 20 has a shape (for example, 6 mm in diameter and 0.6 mm in wall thickness) that can be deformed by a diameter expansion process described below.
 図3に示すように、側板40は、多数の長孔41と、複数の取り出し孔51を有する。多数の長孔41は、図3の上下方向および左右方向において、マトリックス状に配設される。長孔41は、押圧加工によって変形した冷媒チューブ20の曲管部21の所定部分が挿通可能であるように構成された貫通孔である。第1実施形態での長孔41は、図7に示す形状を有するが、長孔41の形状に関する詳細は後述する。取り出し孔51は、冷媒チューブ20の直管部31のチューブ端12が挿通可能なサイズを有する貫通孔である。 As shown in FIG. 3, the side plate 40 has a large number of elongated holes 41 and a plurality of extraction holes 51. A large number of long holes 41 are arranged in a matrix in the vertical and horizontal directions of FIG. The elongated hole 41 is a through hole configured so that a predetermined portion of the curved pipe portion 21 of the refrigerant tube 20 deformed by pressing can be inserted therethrough. The elongated hole 41 in the first embodiment has a shape shown in FIG. 7, and details regarding the shape of the elongated hole 41 will be described later. The extraction hole 51 is a through hole having a size that allows the tube end 12 of the straight pipe portion 31 of the refrigerant tube 20 to be inserted therethrough.
 側板40は、熱伝導率が高い金属材料、例えば、純アルミニウム系(1000系)合金からなる。これにより、高価であり且つ比重が大きい銅を用いる場合よりも、低コスト化および軽量化を実現できる。また、側板40は、所定の強度を確保できる板厚を有する。なお、側板40は、冷媒チューブ20と異なる組成のアルミニウム合金(Al-Mg系合金やAl-Si系合金など)からなることもできる。 The side plate 40 is made of a metal material with high thermal conductivity, for example, a pure aluminum alloy (1000 series). This makes it possible to achieve lower costs and lighter weight than when using copper, which is expensive and has a large specific gravity. Further, the side plate 40 has a thickness that can ensure a predetermined strength. Note that the side plate 40 can also be made of an aluminum alloy (such as an Al-Mg alloy or an Al-Si alloy) having a composition different from that of the refrigerant tube 20.
 図4は、図2に示すフィンレス熱交換器10の一部分であって、拡径処理後のフィンレス熱交換器10の模式的正面図である。図4において、一対の側板40,40は、左右方向において離間配置される。冷媒チューブ20の直管部31は、左右方向に延在する。冷媒チューブ20の曲管部21は、隣に位置する2つの直管部31,31をつなぐようにU字状に湾曲している。拡径処理前の曲管部21は、押圧加工によって押し潰されて変形した変形部分を有して、変形部分が側板40の長孔41に挿入される。これに対して、拡径処理後の曲管部21において、側板40よりも外側に位置する外側部分は、冷媒チューブ20への液圧の印加による拡径処理によって、直管部31の外形サイズに近づくサイズを有するように膨出する。これにより、曲管部21が長孔41に密着して当接するとともに曲管部21が膨出するので、冷媒チューブ20が側板40に固設される。 FIG. 4 is a schematic front view of a portion of the finless heat exchanger 10 shown in FIG. 2, after the diameter expansion process. In FIG. 4, a pair of side plates 40, 40 are spaced apart in the left-right direction. The straight pipe portion 31 of the refrigerant tube 20 extends in the left-right direction. The curved tube portion 21 of the refrigerant tube 20 is curved in a U-shape so as to connect two adjacent straight tube portions 31, 31. The bent pipe portion 21 before the diameter expansion process has a deformed portion that is crushed and deformed by the pressing process, and the deformed portion is inserted into the long hole 41 of the side plate 40 . On the other hand, in the curved tube section 21 after the diameter expansion process, the outer part located outside the side plate 40 is expanded by applying hydraulic pressure to the refrigerant tube 20, so that the outside size of the straight tube section 31 is increased. bulges out to have a size approaching . As a result, the curved tube portion 21 closely contacts the elongated hole 41 and the curved tube portion 21 expands, so that the refrigerant tube 20 is fixed to the side plate 40 .
 図5から図9を参照しながら、拡径処理前の曲管部21と長孔41との関係について説明する。 The relationship between the bent pipe portion 21 and the long hole 41 before the diameter expansion process will be described with reference to FIGS. 5 to 9.
 図5、図6および図8(A)に示すように、曲管部21は、一対の曲管端部23,23と、主変形部27と、一対の副変形部25,25とを有する。曲管端部23は、直管部31の側に位置する端部である。曲管端部23は、直管部31とほぼ同じ外形サイズを有するとともに、主変形部27の側に向けて僅かに湾曲している。 As shown in FIGS. 5, 6, and 8(A), the curved tube section 21 has a pair of curved tube ends 23, 23, a main deformation section 27, and a pair of sub-deformation sections 25, 25. . The bent pipe end portion 23 is an end located on the straight pipe portion 31 side. The bent tube end portion 23 has approximately the same external size as the straight tube portion 31 and is slightly curved toward the main deformation portion 27 side.
 主変形部27は、円弧状に湾曲した形状を有する。主変形部27は、押圧加工によって形成される扁平部28を有する。扁平部28の厚みは、押圧加工による変形前の厚み(直管部31の外形サイズとほぼ同じサイズ)に対して、例えば20%~73%であり、好ましくは45%~72%であり、好適には68%~71%である。扁平部28の円弧角度は、正面視で、例えば70度~110度であり、好ましくは80度~100度であり、好適には85度~95度である。 The main deformation portion 27 has an arcuate shape. The main deformation portion 27 has a flat portion 28 formed by pressing. The thickness of the flat part 28 is, for example, 20% to 73%, preferably 45% to 72%, of the thickness before deformation by pressing (approximately the same external size as the straight pipe part 31), Preferably it is 68% to 71%. The arc angle of the flat portion 28 is, for example, 70 degrees to 110 degrees, preferably 80 degrees to 100 degrees, and preferably 85 degrees to 95 degrees, when viewed from the front.
 副変形部25は、曲管端部23および主変形部27の間に位置する。副変形部25は、扁平部28の形成によって副次的に変形した湾曲形状を有する。言い換えると、副変形部25の湾曲形状は、曲管端部23と主変形部27の扁平部28とをつなぐ形状を有する。 The secondary deformation section 25 is located between the bent tube end 23 and the main deformation section 27. The secondary deformation portion 25 has a curved shape that is secondary deformed due to the formation of the flat portion 28 . In other words, the curved shape of the sub-deformable portion 25 has a shape that connects the curved pipe end portion 23 and the flat portion 28 of the main deformable portion 27 .
 図7に示すように、側板40の長孔41は、中央開口47と、一対の端開口43,43とを有する。 As shown in FIG. 7, the long hole 41 of the side plate 40 has a central opening 47 and a pair of end openings 43, 43.
 中央開口47は、主変形部27を受け入れるように構成されている。中央開口47は、離間して対向する一対の長辺48,48によって画定される矩形状を有する。長辺48は、長手方向(言い換えると、図7の上下方向であり、冷媒チューブ20の直管部31の配列方向)に延在する。 The central opening 47 is configured to receive the main deformation section 27. The central opening 47 has a rectangular shape defined by a pair of long sides 48, 48 that are spaced from each other and opposed to each other. The long side 48 extends in the longitudinal direction (in other words, the vertical direction in FIG. 7, which is the direction in which the straight pipe portions 31 of the refrigerant tubes 20 are arranged).
 図7に示す中央開口47における一対の長辺48,48は、長手方向の中央部分において、中央突出部49をそれぞれ有する。中央突出部49の突出高さ(片側のみ)は、例えば0.05mm~1.6mmであり、好ましくは0.05mm~0.8mmであり、好適には0.05mm~0.1mmである。一対の中央突出部49,49は、互いに接近するように湾曲しながら突出する形状を有する。言い換えると、一対の湾曲した中央突出部49,49によって、中央開口47の中央部分が幅狭になっている。したがって、図7に示す中央開口47は、湾曲幅狭形状を有する。 A pair of long sides 48, 48 in the central opening 47 shown in FIG. 7 each have a central protrusion 49 at the central portion in the longitudinal direction. The protrusion height (on one side only) of the central protrusion 49 is, for example, 0.05 mm to 1.6 mm, preferably 0.05 mm to 0.8 mm, and preferably 0.05 mm to 0.1 mm. The pair of central protrusions 49, 49 have a shape that protrudes while curving toward each other. In other words, the central portion of the central opening 47 is narrowed by the pair of curved central projections 49, 49. Therefore, the central opening 47 shown in FIG. 7 has a curved narrow shape.
 一対の端開口43,43は、中央開口47の両端に位置するとともに副変形部25および曲管端部23を部分的に受け入れるように構成されている。端開口43は、一対の長辺48,48における一方の長辺48の端部から一対の長辺48,48における他方の長辺48の端部に延在する円弧辺44によって画定される円弧形状を有する。具体的には、端開口43は、長辺48に沿って延在する長軸と、長軸に直交する短軸と、境界エッジ45の側に位置して丸みを持った鈍端と、境界エッジ45の反対側に位置して尖った尖端とを有する卵型形状を有する。したがって、図7に示す端開口43は、卵型形状を有する。 The pair of end openings 43 , 43 are located at both ends of the central opening 47 and are configured to partially receive the sub-deformation portion 25 and the bent pipe end portion 23 . The end opening 43 is an arc defined by a circular arc side 44 extending from an end of one long side 48 of the pair of long sides 48, 48 to an end of the other long side 48 of the pair of long sides 48, 48. It has a shape. Specifically, the end opening 43 has a long axis extending along the long side 48, a short axis perpendicular to the long axis, a rounded blunt end located on the side of the border edge 45, and a border. It has an oval shape with a pointed tip located opposite the edge 45. Therefore, the end opening 43 shown in FIG. 7 has an oval shape.
 中央開口47を画定する長辺48と端開口43を画定する円弧辺44との境界には、境界エッジ45が形成される。境界エッジ45は、長辺48から円弧辺44への不連続な変わり目であるため、尖った形状を有する。 A boundary edge 45 is formed at the boundary between the long side 48 that defines the central opening 47 and the arcuate side 44 that defines the end opening 43. Since the boundary edge 45 is a discontinuous transition from the long side 48 to the arcuate side 44, it has a pointed shape.
 以上のように構成された曲管部21および長孔41は、拡径処理前において、図8(B)および図9に示すような態様でセットされる。すなわち、矩形状に開口した中央開口47が主変形部27を受け入れるとともに、円弧状に開口した一対の端開口43,43が副変形部25および曲管端部23を部分的に受け入れるように、曲管部21が長孔41に挿入される。当該挿入状態では、中央開口47の長辺48と主変形部27の扁平部28との間には僅かな隙間が存在するのに対して、端開口43の円弧辺44が、曲管部21の副変形部25および曲管端部23に対して部分的に当接する。これにより、長孔41に挿入される曲管部21を、長孔41に対して容易に且つ正確に位置決めできる。 The bent pipe portion 21 and the elongated hole 41 configured as described above are set in the manner shown in FIGS. 8(B) and 9 before the diameter expansion process. That is, the rectangular center opening 47 receives the main deformation section 27, and the pair of arcuate end openings 43, 43 partially receives the sub-deformation section 25 and the curved pipe end 23. The bent pipe portion 21 is inserted into the elongated hole 41. In the inserted state, there is a slight gap between the long side 48 of the central opening 47 and the flat part 28 of the main deformable part 27, while the arcuate side 44 of the end opening 43 It partially abuts against the sub-deformed portion 25 and the bent pipe end portion 23 of. Thereby, the bent pipe portion 21 inserted into the long hole 41 can be easily and accurately positioned with respect to the long hole 41.
 曲管部21が長孔41に挿入された状態で、冷媒チューブ20のチューブ端12を通じて、液圧の拡径圧力が印加される。印加される拡径圧力は、曲管部21において押圧加工によって変形した変形部分(主変形部27および副変形部25)を拡径させるだけでよいので、直管部31を拡径させる場合よりも低い圧力でよい。拡径圧力として、冷媒チューブ20が破裂する手前の圧力が印加され、拡径圧力は、例えば、冷媒チューブ20の破裂圧力の70%から90%であり、好ましくは冷媒チューブ20の破裂圧力の75%から88%であり、好適には冷媒チューブ20の破裂圧力の82%~87%である。 With the bent pipe section 21 inserted into the elongated hole 41, hydraulic diameter expansion pressure is applied through the tube end 12 of the refrigerant tube 20. The diameter expansion pressure applied only needs to expand the diameter of the deformed parts (main deformation part 27 and sub-deformation part 25) deformed by pressing in the bent pipe part 21, so it is more effective than when expanding the diameter of the straight pipe part 31. Also, low pressure is sufficient. As the diameter expansion pressure, a pressure before the refrigerant tube 20 bursts is applied, and the diameter expansion pressure is, for example, 70% to 90% of the bursting pressure of the refrigerant tube 20, preferably 75% of the bursting pressure of the refrigerant tube 20. % to 88%, preferably 82% to 87% of the burst pressure of the refrigerant tube 20.
 大きく変形した主変形部27の方が、少し変形した副変形部25よりも、小さな拡径圧力で元の形状に戻ろうとする。言い換えると、或る拡径圧力を印加すると、主変形部27の方が、副変形部25よりも膨出しやすいので、主変形部27の方が、副変形部25よりも機械的な固設に寄与する。しかしながら、一対の端開口43,43が副変形部25および曲管端部23と係合することは、曲管部21が長孔41の長手方向に移動することを防止することに寄与する。 The largely deformed main deformed portion 27 attempts to return to its original shape with a smaller diameter expansion pressure than the slightly deformed auxiliary deformed portion 25. In other words, when a certain diameter expansion pressure is applied, the main deformation part 27 bulges out more easily than the sub-deformation part 25, so the main deformation part 27 is more mechanically fixed than the sub-deformation part 25. Contribute to However, the engagement of the pair of end openings 43, 43 with the sub-deformable portion 25 and the bent tube end portion 23 contributes to preventing the bent tube portion 21 from moving in the longitudinal direction of the elongated hole 41.
 長孔41に挿入された曲管部21では、拡径圧力の印加により、長孔41の内縁よりも外側に位置する外側部分が膨出する。拡径圧力が大きくなるほど、直管部31に近づくサイズを有するように外側部分が膨出する。拡径圧力が大きくなるほど、冷媒チューブ20を破裂させるリスクが増大するために、上記の所定圧力範囲内での拡径圧力が印加される。また、長孔41に挿入された曲管部21において長孔41に対面する部分は、曲管部21の膨出過程で、長孔41で規制されるとともに、長孔41に係合する。 In the curved pipe portion 21 inserted into the elongated hole 41, the outer portion located outside the inner edge of the elongated hole 41 bulges due to the application of diameter expansion pressure. As the diameter expansion pressure increases, the outer portion bulges out to have a size that approaches the straight pipe portion 31. Since the risk of rupturing the refrigerant tube 20 increases as the diameter expansion pressure increases, the diameter expansion pressure within the above-mentioned predetermined pressure range is applied. In addition, the portion of the bent tube portion 21 inserted into the elongated hole 41 that faces the elongated hole 41 is regulated by the elongated hole 41 and engages with the elongated hole 41 during the expansion process of the bent tube portion 21 .
 曲管部21の膨出過程で、主変形部27が中央開口47の一対の長辺48,48に密着して当接するとともに、副変形部25および曲管端部23が、一対の端開口43,43の一対の円弧辺44,44に密着して当接する。これにより、曲管部21が長孔41に密着して当接するとともに曲管部21が膨出することによって、冷媒チューブ20を側板40に機械的に固設できる(固着した状態に取り付けられる)ので、低コスト化や歩留まりの向上を実現できる。 During the expansion process of the curved tube section 21, the main deformation section 27 closely contacts the pair of long sides 48, 48 of the central opening 47, and the secondary deformation section 25 and the curved tube end 23 close to the pair of end openings. 43, 43 closely contacts a pair of arcuate sides 44, 44. As a result, the refrigerant tube 20 can be mechanically fixed to the side plate 40 (attached in a fixed state) by the curved tube portion 21 closely contacting the elongated hole 41 and expanding the curved tube portion 21. Therefore, cost reduction and yield improvement can be realized.
 また、曲管部21の膨出過程で、尖った形状を有する境界エッジ45は、副変形部25に対して食い込むように係合する。これにより、側板40に対する冷媒チューブ20の機械的な固設の度合いが向上する。 Further, during the expansion process of the curved pipe portion 21, the boundary edge 45 having a sharp shape engages with the sub-deformation portion 25 so as to bite into it. Thereby, the degree of mechanical fixation of the refrigerant tube 20 to the side plate 40 is improved.
 上述したように、図7に示す長孔41は、湾曲幅狭形状の中央開口47と、卵型形状の端開口43とを有する。図7に示す中央開口47における湾曲幅狭形状は、曲管部21の膨出過程で、扁平部28を長孔41の短手方向から挟持すること、および、湾曲した中央突出部49が扁平部28に食い込むことを可能にする。これにより、主変形部27を挿入するときの引っ掛かりの軽減と、中央開口47における係止度合いの向上とを実現できる。 As described above, the long hole 41 shown in FIG. 7 has a narrow curved central opening 47 and an egg-shaped end opening 43. The narrow curved shape of the central opening 47 shown in FIG. This makes it possible to bite into the portion 28. Thereby, it is possible to reduce the chance of getting caught when inserting the main deformable portion 27 and to improve the degree of locking in the central opening 47.
 図7に示す端開口43の円弧辺44は、長辺48に沿って延在する長軸と、長軸に直交する短軸と、境界エッジ45の側に位置して丸みを持った鈍端と、境界エッジ45の反対側に位置して尖った尖端とを有する卵型形状の一部分である。鈍端側では、円弧辺44が長辺48に対してなす角度が大きくなるので、境界エッジ45が先鋭になる。したがって、曲管部21の膨出過程で、端開口43の円弧辺44に対する当接領域が大きくなること、および、境界エッジ45が副変形部25または曲管端部に食い込むことを可能にする。これにより、端開口43における係止度合いの向上を実現できる。 The arcuate side 44 of the end opening 43 shown in FIG. and a pointed tip located opposite the bounding edge 45. On the obtuse end side, the angle that the arcuate side 44 makes with the long side 48 becomes larger, so the boundary edge 45 becomes sharper. Therefore, during the expansion process of the curved pipe section 21, the contact area of the end opening 43 against the arcuate side 44 becomes larger, and the boundary edge 45 can bite into the sub-deformed section 25 or the end of the curved pipe. . Thereby, the degree of locking in the end opening 43 can be improved.
 〔第2実施形態〕
 図10を参照しながら、第2実施形態に係るフィンレス熱交換器10を説明する。図10は、第2実施形態に係るフィンレス熱交換器10の側板40における長孔41の拡大図である。
[Second embodiment]
A finless heat exchanger 10 according to a second embodiment will be described with reference to FIG. 10. FIG. 10 is an enlarged view of the long holes 41 in the side plate 40 of the finless heat exchanger 10 according to the second embodiment.
 第2実施形態に係るフィンレス熱交換器10では、長孔41の形状が上記第1実施形態と相違しているだけであり、その他の構成は上記第1実施形態と同じである。したがって、上記第1実施形態との相違点を中心に説明する。 The finless heat exchanger 10 according to the second embodiment is different from the first embodiment only in the shape of the long holes 41, and the other configurations are the same as the first embodiment. Therefore, the explanation will focus on the differences from the first embodiment.
 図10に示す長孔41は、一対の長辺48,48が平行に延在する等間隔形状の中央開口47と、真円形状の端開口43とを有する。図10に示す中央開口47における等間隔形状は、曲管部21の膨出過程で、扁平部28を長孔41の短手方向から挟持することを可能にするとともに、中央開口47の加工が容易になる。これにより、主変形部27のスムーズな挿入と、低コスト化とを実現できる。 The elongated hole 41 shown in FIG. 10 has a central opening 47 with an evenly spaced shape and a pair of long sides 48 extending in parallel, and an end opening 43 with a perfect circular shape. The equally spaced shape of the central opening 47 shown in FIG. becomes easier. Thereby, smooth insertion of the main deformable portion 27 and cost reduction can be realized.
 図10に示す端開口43における円弧辺44は、直管部31の外径よりも少し小さな曲率半径を有する真円の一部分である。また、境界エッジ45は、長辺48から曲率半径の小さな円弧辺44への不連続な変わり目であるため、上記第1実施形態で説明した卵型形状の円弧辺44よりも尖った形状を有する。したがって、端開口43の加工が容易になるとともに、境界エッジ45が副変形部25または曲管端部に食い込むことを可能にする。これにより、低コスト化と、係止度合いの向上とを実現できる。 The arcuate side 44 of the end opening 43 shown in FIG. 10 is a portion of a perfect circle having a radius of curvature slightly smaller than the outer diameter of the straight pipe portion 31. Furthermore, since the boundary edge 45 is a discontinuous transition point from the long side 48 to the arcuate side 44 having a small radius of curvature, it has a shape that is more pointed than the oval-shaped arcuate side 44 described in the first embodiment. . Therefore, the end opening 43 can be easily processed, and the boundary edge 45 can bite into the sub-deformed portion 25 or the end of the curved pipe. This makes it possible to reduce costs and improve the degree of locking.
 〔第3実施形態〕
 図11を参照しながら、第3実施形態に係るフィンレス熱交換器10を説明する。図11は、第3実施形態に係るフィンレス熱交換器10の側板40における長孔41の拡大図である。
[Third embodiment]
A finless heat exchanger 10 according to a third embodiment will be described with reference to FIG. 11. FIG. 11 is an enlarged view of the long holes 41 in the side plate 40 of the finless heat exchanger 10 according to the third embodiment.
 第3実施形態に係るフィンレス熱交換器10では、長孔41の形状が上記第1実施形態と相違しているだけであり、その他の構成は上記第1実施形態と同じである。したがって、上記第1実施形態との相違点を中心に説明する。 The finless heat exchanger 10 according to the third embodiment is different from the first embodiment only in the shape of the long holes 41, and the other configurations are the same as the first embodiment. Therefore, the explanation will focus on the differences from the first embodiment.
 図11に示す長孔41は、一対の長辺48,48が平行に延在する等間隔形状の中央開口47と、楕円形状の端開口43とを有する。図11に示す中央開口47における等間隔形状は、曲管部21の膨出過程で、扁平部28を長孔41の短手方向から挟持することを可能にするとともに、中央開口47の加工が容易になる。これにより、主変形部27のスムーズな挿入と、低コスト化とを実現できる。 The elongated hole 41 shown in FIG. 11 has a central opening 47 with an evenly spaced shape in which a pair of long sides 48, 48 extend in parallel, and an end opening 43 with an elliptical shape. The equally spaced shape of the central opening 47 shown in FIG. 11 allows the flat part 28 to be held from the short side direction of the elongated hole 41 during the expansion process of the curved tube part 21, and also makes it possible to easily process the central opening 47. becomes easier. Thereby, smooth insertion of the main deformable portion 27 and cost reduction can be realized.
 図11に示す端開口43における円弧辺44は、長軸が長辺48に沿って延在するとともに短軸の長さが直管部31の外径よりも少し小さい楕円の一部分である。また、境界エッジ45は、上記第1実施形態で説明した卵型形状の円弧辺44よりも先鋭度が鈍った形状を有する。したがって、曲管部21の膨出過程で、端開口43の円弧辺44に対する当接領域が大きくなること、および、境界エッジ45が副変形部25または曲管端部にソフトに食い込むことを可能にする。これにより、端開口43における係止度合いの向上と、食い込みによるダメージの軽減とを実現できる。 The arcuate side 44 of the end opening 43 shown in FIG. 11 is a part of an ellipse whose long axis extends along the long side 48 and whose short axis is slightly smaller than the outer diameter of the straight pipe portion 31. Further, the boundary edge 45 has a shape that is less sharp than the oval arcuate side 44 described in the first embodiment. Therefore, during the expansion process of the curved pipe portion 21, the contact area of the end opening 43 against the arcuate side 44 becomes larger, and the boundary edge 45 can gently bite into the sub-deformed portion 25 or the curved pipe end. Make it. Thereby, it is possible to improve the degree of locking in the end opening 43 and reduce damage caused by biting.
 〔第4実施形態〕
 図12を参照しながら、第4実施形態に係るフィンレス熱交換器10を説明する。図12は、第4実施形態に係るフィンレス熱交換器10の側板40における長孔41の拡大図である。
[Fourth embodiment]
A finless heat exchanger 10 according to a fourth embodiment will be described with reference to FIG. 12. FIG. 12 is an enlarged view of the long holes 41 in the side plate 40 of the finless heat exchanger 10 according to the fourth embodiment.
 第4実施形態に係るフィンレス熱交換器10では、長孔41の形状が上記第1実施形態と相違しているだけであり、その他の構成は上記第1実施形態と同じである。したがって、上記第1実施形態との相違点を中心に説明する。 The finless heat exchanger 10 according to the fourth embodiment is different from the first embodiment only in the shape of the long holes 41, and the other configurations are the same as the first embodiment. Therefore, the explanation will focus on the differences from the first embodiment.
 図12に示す長孔41は、一対の長辺48,48が平行に延在する等間隔形状の中央開口47と、卵型形状の端開口43とを有する。図12に示す中央開口47における等間隔形状は、曲管部21の膨出過程で、扁平部28を長孔41の短手方向から挟持することを可能にするとともに、中央開口47の加工が容易になる。これにより、主変形部27のスムーズな挿入と、低コスト化とを実現できる。 The elongated hole 41 shown in FIG. 12 has a central opening 47 with an evenly spaced shape in which a pair of long sides 48, 48 extend in parallel, and an egg-shaped end opening 43. The equally spaced shape of the central opening 47 shown in FIG. 12 makes it possible to hold the flat part 28 from the short side direction of the elongated hole 41 during the expansion process of the curved tube part 21, and also makes it possible to process the central opening 47. becomes easier. Thereby, smooth insertion of the main deformable portion 27 and cost reduction can be realized.
 図12に示す端開口43における円弧辺44は、第1実施形態で説明したのと同じ卵型形状の一部分である。したがって、第1実施形態と同様に、曲管部21の膨出過程で、端開口43の円弧辺44に対する当接領域が大きくなること、および、境界エッジ45が副変形部25または曲管端部に食い込むことを可能にする。これにより、端開口43における係止度合いの向上を実現できる。 The arcuate side 44 in the end opening 43 shown in FIG. 12 is a part of the same oval shape as described in the first embodiment. Therefore, as in the first embodiment, during the expansion process of the curved pipe portion 21, the contact area of the end opening 43 with the arcuate side 44 becomes larger, and the boundary edge 45 is It allows you to dig into the parts. Thereby, the degree of locking in the end opening 43 can be improved.
 〔第5実施形態〕
 図13を参照しながら、第5実施形態に係るフィンレス熱交換器10を説明する。図13は、第5実施形態に係るフィンレス熱交換器10の側板40における長孔41の拡大図である。
[Fifth embodiment]
A finless heat exchanger 10 according to a fifth embodiment will be described with reference to FIG. 13. FIG. 13 is an enlarged view of the long holes 41 in the side plate 40 of the finless heat exchanger 10 according to the fifth embodiment.
 第5実施形態に係るフィンレス熱交換器10では、長孔41の形状が上記第1実施形態と相違しているだけであり、その他の構成は上記第1実施形態と同じである。したがって、上記第1実施形態との相違点を中心に説明する。 The finless heat exchanger 10 according to the fifth embodiment differs from the first embodiment only in the shape of the long holes 41, and the other configurations are the same as the first embodiment. Therefore, the explanation will focus on the differences from the first embodiment.
 図13に示す長孔41は、一対の長辺48,48の中央突出部49が傾斜角度を持って突出する傾斜幅狭形状の中央開口47と、真円形状の端開口43とを有する。傾斜角度は、例えば0.5度~3度であり、好ましくは0.5度~2度であり、好適には0.5度~1度である。図13に示す中央開口47における傾斜幅狭形状は、曲管部21の膨出過程で、扁平部28を長孔41の短手方向から挟持すること、および、傾斜角度を持って突出する中央突出部49が扁平部28に強く食い込むことを可能にする。これにより、中央開口47における係止度合いのさらなる向上を実現できる。 The elongated hole 41 shown in FIG. 13 has a central opening 47 with a narrow inclined width from which central protrusions 49 of a pair of long sides 48 and 48 protrude at an inclined angle, and an end opening 43 with a perfect circular shape. The inclination angle is, for example, 0.5 degrees to 3 degrees, preferably 0.5 degrees to 2 degrees, and preferably 0.5 degrees to 1 degree. The inclined narrow width shape of the central opening 47 shown in FIG. This allows the protruding portion 49 to strongly bite into the flat portion 28. Thereby, the degree of locking in the central opening 47 can be further improved.
 図13に示す端開口43における円弧辺44は、直管部31の外径よりも少し小さな曲率半径を有する真円の一部分である。また、境界エッジ45は、長辺48から曲率半径の小さな円弧辺44への不連続な変わり目であるため、上記第1実施形態で説明した卵型形状の円弧辺44よりも尖った形状を有する。したがって、端開口43の加工が容易になるとともに、境界エッジ45が副変形部25または曲管端部に食い込むことを可能にする。これにより、低コスト化と、端開口43における係止度合いの向上とを実現できる。 The arcuate side 44 of the end opening 43 shown in FIG. 13 is a part of a perfect circle having a radius of curvature slightly smaller than the outer diameter of the straight pipe portion 31. Furthermore, since the boundary edge 45 is a discontinuous transition point from the long side 48 to the arcuate side 44 having a small radius of curvature, it has a shape that is more pointed than the oval-shaped arcuate side 44 described in the first embodiment. . Therefore, the end opening 43 can be easily processed, and the boundary edge 45 can bite into the sub-deformed portion 25 or the end of the curved pipe. This makes it possible to reduce costs and improve the degree of locking in the end opening 43.
 〔第6実施形態〕
 図14を参照しながら、第6実施形態に係るフィンレス熱交換器10を説明する。図14は、第6実施形態に係るフィンレス熱交換器10の側板40における長孔41の拡大図である。
[Sixth embodiment]
A finless heat exchanger 10 according to a sixth embodiment will be described with reference to FIG. 14. FIG. 14 is an enlarged view of the long holes 41 in the side plate 40 of the finless heat exchanger 10 according to the sixth embodiment.
 第6実施形態に係るフィンレス熱交換器10では、長孔41の形状が上記第1実施形態と相違しているだけであり、その他の構成は上記第1実施形態と同じである。したがって、上記第1実施形態との相違点を中心に説明する。 The finless heat exchanger 10 according to the sixth embodiment is different from the first embodiment only in the shape of the long holes 41, and the other configurations are the same as the first embodiment. Therefore, the explanation will focus on the differences from the first embodiment.
 図14に示す長孔41は、一対の長辺48,48の中央突出部49が湾曲しながら突出する湾曲幅狭形状の中央開口47と、真円形状の端開口43とを有する。図14に示す中央開口47における湾曲幅狭形状は、第1実施形態で説明したのと同じ形状を有する。したがって、第1実施形態と同様に、曲管部21の膨出過程で、扁平部28を長孔41の短手方向から挟持すること、および、湾曲した中央突出部49が扁平部28に食い込むことを可能にする。これにより、主変形部27を挿入するときの引っ掛かりの軽減と、中央開口47における係止度合いの向上とを実現できる。 The elongated hole 41 shown in FIG. 14 has a narrow curved central opening 47 in which central protrusions 49 of a pair of long sides 48, 48 protrude while being curved, and an end opening 43 in a perfect circular shape. The curved narrow shape of the central opening 47 shown in FIG. 14 has the same shape as described in the first embodiment. Therefore, similarly to the first embodiment, during the expansion process of the curved pipe portion 21, the flat portion 28 is held from the lateral direction of the elongated hole 41, and the curved central protrusion 49 bites into the flat portion 28. make it possible. Thereby, it is possible to reduce the chance of getting caught when inserting the main deformable portion 27 and to improve the degree of locking in the central opening 47.
 図14に示す端開口43における円弧辺44は、直管部31の外径よりも少し小さな曲率半径を有する真円の一部分である。また、境界エッジ45は、長辺48から曲率半径の小さな円弧辺44への不連続な変わり目であるため、上記第1実施形態で説明した卵型形状の円弧辺44よりも尖った形状を有する。したがって、端開口43の加工が容易になるとともに、境界エッジ45が副変形部25または曲管端部に食い込むことを可能にする。これにより、低コスト化と、端開口43における係止度合いの向上とを実現できる。 The arcuate side 44 of the end opening 43 shown in FIG. 14 is a portion of a perfect circle having a radius of curvature slightly smaller than the outer diameter of the straight pipe portion 31. Furthermore, since the boundary edge 45 is a discontinuous transition point from the long side 48 to the arcuate side 44 having a small radius of curvature, it has a shape that is more pointed than the oval-shaped arcuate side 44 described in the first embodiment. . Therefore, the end opening 43 can be easily processed, and the boundary edge 45 can bite into the sub-deformed portion 25 or the end of the curved pipe. This makes it possible to reduce costs and improve the degree of locking in the end opening 43.
 この発明の具体的な実施の形態について説明したが、この発明は、上記実施形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。 Although specific embodiments of this invention have been described, this invention is not limited to the above embodiments, and can be implemented with various changes within the scope of this invention.
 側板40の長孔41において、中央開口47として等間隔形状、湾曲幅狭形状または傾斜幅狭形状を、端開口43として真円形状、楕円形状または卵型形状を、必要とされるスペックに応じて、それぞれ適宜に選択して組み合わせることができる。上記実施の形態以外の態様として、中央開口47が湾曲幅狭形状であり且つ端開口43が楕円形状である態様、中央開口47が傾斜幅狭形状であり且つ端開口43が楕円形状である態様、あるいは、中央開口47が傾斜幅狭形状であり且つ端開口43が卵型形状である態様にすることもできる。 In the elongated holes 41 of the side plate 40, the central openings 47 may have an equally spaced shape, a curved narrow width shape, or an inclined narrow width shape, and the end openings 43 may have a perfect circular shape, an elliptical shape, or an oval shape, depending on the required specifications. They can be selected and combined as appropriate. In addition to the embodiments described above, the central opening 47 has a narrow curved width and the end openings 43 have an elliptical shape, and the central opening 47 has a narrow sloped width and the end openings 43 have an elliptical shape. Alternatively, the central opening 47 may have an inclined narrow shape and the end openings 43 may have an oval shape.
 上記実施の形態では、冷媒チューブ20として純アルミニウム系合金を例示したが、銅を用いることができる。 In the above embodiment, a pure aluminum-based alloy is illustrated as the refrigerant tube 20, but copper can also be used.
 この発明および実施形態をまとめると、次のようになる。 The present invention and embodiments can be summarized as follows.
 この発明の第1態様に係るフィンレス熱交換器10は、
 U字状に湾曲した曲管部21と、前記曲管部21の両端に接続される直管部31とを有して、蛇行状に延在する冷媒チューブ20と、
 長孔41を有する側板40とを備え、
 前記曲管部21は、前記直管部31の側に位置する曲管端部23と、円弧状に湾曲した主変形部27と、前記曲管端部23および前記主変形部27の間に位置する副変形部25とを有し、
 前記主変形部27は、押圧加工によって形成される扁平部28を有し、
 前記副変形部25は、前記扁平部28の形成によって副次的に変形した湾曲形状を有し、
 前記長孔41は、前記主変形部27を受け入れる中央開口47と、前記中央開口47の両端に位置するとともに前記副変形部25および前記曲管端部23を部分的に受け入れる一対の端開口43,43とを有し、
 前記曲管部21を前記長孔41に挿入した状態で前記曲管部21を拡径させて前記曲管部21を前記長孔41に密着して当接させることによって、前記冷媒チューブ20を前記側板40に固設することを特徴とする。
The finless heat exchanger 10 according to the first aspect of the invention includes:
A refrigerant tube 20 extending in a meandering manner and having a U-shaped curved tube section 21 and straight tube sections 31 connected to both ends of the curved tube section 21;
A side plate 40 having a long hole 41,
The bent pipe portion 21 includes a bent pipe end portion 23 located on the side of the straight pipe portion 31, a main deformation portion 27 curved in an arc shape, and a portion between the bent pipe end portion 23 and the main deformation portion 27. and a sub-deformation portion 25 located therein.
The main deformation part 27 has a flat part 28 formed by pressing,
The secondary deformation portion 25 has a curved shape secondary to deformation due to the formation of the flat portion 28,
The elongated hole 41 has a central opening 47 that receives the main deformable portion 27, and a pair of end openings 43 that are located at both ends of the central opening 47 and partially receive the secondary deformable portion 25 and the bent pipe end portion 23. , 43,
By expanding the diameter of the curved tube portion 21 with the curved tube portion 21 inserted into the long hole 41 and bringing the curved tube portion 21 into close contact with the long hole 41, the refrigerant tube 20 is It is characterized in that it is fixed to the side plate 40.
 上記態様によれば、曲管部21が長孔41に密着して当接するとともに曲管部21が膨出することによって、冷媒チューブ20を側板40に機械的に固設できるので、低コスト化や歩留まりの向上を実現できる。 According to the above aspect, the refrigerant tube 20 can be mechanically fixed to the side plate 40 by the curved tube portion 21 closely contacting the elongated hole 41 and the curved tube portion 21 expanding, thereby reducing costs. It is possible to realize improvements in production and yield.
 また、第2態様に係るフィンレス熱交換器10は、上記第1態様において、
 前記中央開口47は、離間して対向する一対の長辺48,48によって画定される矩形状を有し、前記端開口43は、前記一対の長辺48,48における一方の長辺48の端部から前記一対の長辺48,48における他方の長辺48の端部に延在する円弧辺44によって画定される円弧形状を有する。
Furthermore, the finless heat exchanger 10 according to the second aspect has the following features in the first aspect:
The central opening 47 has a rectangular shape defined by a pair of long sides 48, 48 that are spaced apart from each other, and the end opening 43 is located at the end of one long side 48 of the pair of long sides 48, 48. It has an arcuate shape defined by an arcuate side 44 extending from the end of the pair of long sides 48 to the end of the other long side 48 of the pair of long sides 48, 48.
 上記態様によれば、長孔41に挿入される曲管部21を、長孔41に対して容易に且つ正確に位置決めできる。 According to the above aspect, the bent pipe portion 21 inserted into the long hole 41 can be easily and accurately positioned with respect to the long hole 41.
 また、第3態様に係るフィンレス熱交換器10は、上記第2態様において、
 前記中央開口47は、前記一対の長辺48,48が平行に延在する等間隔形状、前記一対の長辺48,48の中央突出部49が湾曲しながら突出する湾曲幅狭形状、または、前記一対の長辺48,48の中央突出部49が傾斜角度を持って突出する傾斜幅狭形状を有する。
Furthermore, the finless heat exchanger 10 according to the third aspect has the following features in the second aspect:
The central opening 47 has a shape in which the pair of long sides 48, 48 extend in parallel at equal intervals, a curved narrow shape in which the central protrusion 49 of the pair of long sides 48, 48 protrudes while being curved, or, The central protruding portion 49 of the pair of long sides 48, 48 has an inclined narrow shape that protrudes at an inclined angle.
 上記態様によれば、等間隔形状によって、主変形部27のスムーズな挿入と、低コスト化とを実現でき、湾曲幅狭形状によって、挿入するときの引っ掛かりが軽減されるとともに、中央開口47における係止度合いの向上を実現でき、傾斜幅狭形状によって、中央開口47における係止度合いのさらなる向上を実現できる。 According to the above aspect, the equally spaced shape makes it possible to smoothly insert the main deformable portion 27 and reduce costs, and the narrow curved shape reduces the possibility of getting caught during insertion, and The degree of locking can be improved, and the narrow slope shape can further improve the degree of locking at the central opening 47.
 また、第4態様に係るフィンレス熱交換器10は、上記第2または第3の態様において、
 前記端開口43は、真円形状、楕円形状または卵型形状を有する。
Furthermore, the finless heat exchanger 10 according to the fourth aspect has the following features in the second or third aspect:
The end opening 43 has a perfect circular shape, an elliptical shape, or an oval shape.
 上記態様によれば、真円形状によって、低コスト化と端開口43における係止度合いの向上とを実現でき、楕円形状によって、端開口43における係止度合いの向上と、係止によるダメージの軽減とを実現でき、卵型形状によって、端開口43における係止度合いの向上を実現できる。 According to the above aspect, the perfect circular shape can reduce costs and improve the degree of locking at the end opening 43, and the elliptical shape can improve the degree of locking at the end opening 43 and reduce damage caused by locking. The oval shape can improve the degree of locking at the end opening 43.
 また、第5態様に係るフィンレス熱交換器10は、上記第1態様において、
 前記中央開口47は、前記一対の長辺48,48の中央突出部49が湾曲しながら突出する湾曲幅狭形状を有するとともに、前記端開口43は、卵型形状を有する。
Furthermore, the finless heat exchanger 10 according to the fifth aspect has the following features in the first aspect:
The central opening 47 has a narrow curved shape in which the central protrusion 49 of the pair of long sides 48 and 48 protrudes while being curved, and the end opening 43 has an oval shape.
 上記態様によれば、中央開口47の湾曲幅狭形状によって、挿入するときの引っ掛かりが軽減されるとともに、中央開口47における係止度合いの向上を実現でき、端開口43の卵型形状によって、端開口43における係止度合いの向上を実現できる。 According to the above aspect, the curved and narrow shape of the central opening 47 reduces the possibility of getting caught during insertion and improves the degree of locking in the central opening 47, and the oval shape of the end opening 43 allows the end The degree of locking in the opening 43 can be improved.
 また、第6態様に係るフィンレス熱交換器10は、上記第1から第5の態様のいずれかにおいて、
 前記冷媒チューブ20および前記側板40は、アルミニウム合金である。
Furthermore, the finless heat exchanger 10 according to the sixth aspect has the following features in any of the first to fifth aspects:
The refrigerant tube 20 and the side plate 40 are made of aluminum alloy.
 上記態様によれば、低コスト化および軽量化を実現できる。 According to the above aspect, cost reduction and weight reduction can be achieved.
 また、第7態様に係る冷却システム1は、
 圧縮機と、凝縮器と、減圧装置と、蒸発器と、前記凝縮器または前記蒸発器に強制通風を行う送風機とを備え、
 前記凝縮器または前記蒸発器は、上記第1から第5の態様のいずれか1つのフィンレス熱交換器である。
Furthermore, the cooling system 1 according to the seventh aspect includes:
A compressor, a condenser, a pressure reducing device, an evaporator, and a blower that provides forced ventilation to the condenser or the evaporator,
The condenser or the evaporator is the finless heat exchanger according to any one of the first to fifth aspects.
 上記態様によれば、曲管部21が長孔41に密着して当接するとともに曲管部21が膨出することによって、冷媒チューブ20を側板40に機械的に固設できるので、低コスト化や歩留まりの向上を実現できる。 According to the above aspect, the refrigerant tube 20 can be mechanically fixed to the side plate 40 by the curved tube portion 21 closely contacting the elongated hole 41 and the curved tube portion 21 expanding, thereby reducing costs. It is possible to realize improvements in production and yield.
  1…冷却システム
  3…圧縮機
  4…凝縮器
  5…減圧装置
  6…蒸発器
  8…送風機
 10…フィンレス熱交換器
 12…チューブ端
 14…連通部
 20…冷媒チューブ
 21…曲管部
 23…曲管端部
 25…副変形部
 27…主変形部
 28…扁平部
 31…直管部
 40…側板
 41…長孔
 43…端開口
 44…円弧辺
 45…境界エッジ
 47…中央開口
 48…長辺
 49…中央突出部
 51…取り出し孔
 60…連結板
1... Cooling system 3... Compressor 4... Condenser 5... Pressure reducing device 6... Evaporator 8... Air blower 10... Finless heat exchanger 12... Tube end 14... Communication part 20... Refrigerant tube 21... Bent pipe part 23... Bent pipe End portion 25... Secondary deformation portion 27... Main deformation portion 28... Flat portion 31... Straight pipe portion 40... Side plate 41... Long hole 43... End opening 44... Arc side 45... Boundary edge 47... Center opening 48... Long side 49... Central protrusion 51...Ejection hole 60...Connection plate

Claims (7)

  1.  U字状に湾曲した曲管部と、前記曲管部の両端に接続される直管部とを有して、蛇行状に延在する冷媒チューブと、
     長孔を有する側板とを備え、
     前記曲管部は、前記直管部の側に位置する曲管端部と、円弧状に湾曲した主変形部と、前記曲管端部および前記主変形部の間に位置する副変形部とを有し、
     前記主変形部は、押圧加工によって形成される扁平部を有し、
     前記副変形部は、前記扁平部の形成によって副次的に変形した湾曲形状を有し、
     前記長孔は、前記主変形部を受け入れる中央開口と、前記中央開口の両端に位置するとともに前記副変形部および前記曲管端部を部分的に受け入れる一対の端開口とを有し、
     前記曲管部を前記長孔に挿入した状態で前記曲管部を拡径させて前記曲管部を前記長孔に密着して当接させることによって、前記冷媒チューブを前記側板に固設することを特徴とする、フィンレス熱交換器。
    A refrigerant tube extending in a meandering manner and having a U-shaped curved tube portion and a straight tube portion connected to both ends of the curved tube portion;
    Equipped with a side plate having long holes,
    The bent pipe portion includes a bent pipe end portion located on the side of the straight pipe portion, a main deformation portion curved in an arc shape, and a secondary deformation portion located between the bent pipe end portion and the main deformation portion. has
    The main deformation part has a flat part formed by pressing,
    The secondary deformation portion has a curved shape secondary to deformation due to the formation of the flat portion,
    The elongated hole has a central opening that receives the main deformation part, and a pair of end openings that are located at both ends of the central opening and partially receive the secondary deformation part and the bent pipe end,
    The refrigerant tube is fixed to the side plate by expanding the diameter of the curved tube portion with the curved tube portion inserted into the long hole and bringing the curved tube portion into close contact with the long hole. A finless heat exchanger characterized by:
  2.  前記中央開口は、離間して対向する一対の長辺によって画定される矩形状を有し、前記端開口は、前記一対の長辺における一方の長辺の端部から前記一対の長辺における他方の長辺の端部に延在する円弧辺によって画定される円弧形状を有することを特徴とする、請求項1に記載のフィンレス熱交換器。 The central opening has a rectangular shape defined by a pair of spaced and opposing long sides, and the end opening extends from the end of one of the pair of long sides to the other of the pair of long sides. The finless heat exchanger according to claim 1, characterized in that the finless heat exchanger has an arcuate shape defined by an arcuate side extending to an end of a long side of the finless heat exchanger.
  3.  前記中央開口は、前記一対の長辺が平行に延在する等間隔形状、前記一対の長辺の中央突出部が湾曲しながら突出する湾曲幅狭形状、または、前記一対の長辺の中央突出部が傾斜角度を持って突出する傾斜幅狭形状を有することを特徴とする、請求項2に記載のフィンレス熱交換器。 The central opening may have an evenly spaced shape in which the pair of long sides extend in parallel, a curved narrow shape in which the central protrusion of the pair of long sides protrudes while being curved, or a central opening in the pair of long sides. The finless heat exchanger according to claim 2, wherein the finless heat exchanger has an inclined narrow shape in which the portion protrudes at an inclined angle.
  4.  前記端開口は、真円形状、楕円形状または卵型形状を有することを特徴とする、請求項2または請求項3に記載のフィンレス熱交換器。 The finless heat exchanger according to claim 2 or 3, wherein the end opening has a perfect circular shape, an elliptical shape, or an oval shape.
  5.  前記中央開口は、前記一対の長辺の中央突出部が湾曲しながら突出する湾曲幅狭形状を有するとともに、前記端開口は、卵型形状を有することを特徴とする、請求項1に記載のフィンレス熱交換器。 2. The central opening has a narrow curved shape in which central protrusions on the pair of long sides protrude while being curved, and the end openings have an oval shape. Finless heat exchanger.
  6.  前記冷媒チューブおよび前記側板は、アルミニウム合金であることを特徴とする、請求項1から請求項5のいずれか1項に記載のフィンレス熱交換器。 The finless heat exchanger according to any one of claims 1 to 5, wherein the refrigerant tube and the side plate are made of an aluminum alloy.
  7.  圧縮機と、凝縮器と、減圧装置と、蒸発器と、前記凝縮器または前記蒸発器に強制通風を行う送風機とを備え、
     前記凝縮器または前記蒸発器は、請求項1から請求項6のいずれか1項に記載のフィンレス熱交換器であることを特徴とする、冷却システム。
    A compressor, a condenser, a pressure reducing device, an evaporator, and a blower that provides forced ventilation to the condenser or the evaporator,
    A cooling system, wherein the condenser or the evaporator is a finless heat exchanger according to any one of claims 1 to 6.
PCT/JP2023/017752 2022-05-13 2023-05-11 Finless heat exchanger, and cooling system employing same WO2023219133A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022079714 2022-05-13
JP2022-079714 2022-05-13

Publications (1)

Publication Number Publication Date
WO2023219133A1 true WO2023219133A1 (en) 2023-11-16

Family

ID=88730297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017752 WO2023219133A1 (en) 2022-05-13 2023-05-11 Finless heat exchanger, and cooling system employing same

Country Status (1)

Country Link
WO (1) WO2023219133A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201285A (en) * 1992-12-28 1994-07-19 Showa Alum Corp Cross-fin heat exchanger
US20030213259A1 (en) * 2002-04-30 2003-11-20 Upton Ronald D. Refrigerated merchandiser with foul-resistant condenser
JP2004003833A (en) * 2002-04-24 2004-01-08 Ebara Shinwa Ltd Heat exchanger for cooling tower, and heat exchanging body having heat exchanger, and cooling tower having heat exchanging body
JP2011021799A (en) * 2009-07-15 2011-02-03 Panasonic Corp Heat exchanger and article storage device including the same
JP2012202560A (en) * 2011-03-23 2012-10-22 Sanwa Thermotech Co Ltd Heat exchanger and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201285A (en) * 1992-12-28 1994-07-19 Showa Alum Corp Cross-fin heat exchanger
JP2004003833A (en) * 2002-04-24 2004-01-08 Ebara Shinwa Ltd Heat exchanger for cooling tower, and heat exchanging body having heat exchanger, and cooling tower having heat exchanging body
US20030213259A1 (en) * 2002-04-30 2003-11-20 Upton Ronald D. Refrigerated merchandiser with foul-resistant condenser
JP2011021799A (en) * 2009-07-15 2011-02-03 Panasonic Corp Heat exchanger and article storage device including the same
JP2012202560A (en) * 2011-03-23 2012-10-22 Sanwa Thermotech Co Ltd Heat exchanger and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US7699095B2 (en) Bendable core unit
US9322602B2 (en) Heat exchanger having a plurality of plate-like fins and a plurality of flat-shaped heat transfer pipes orthogonal to the plate-like fins
US6928833B2 (en) Finned tube for heat exchangers, heat exchanger, process for producing heat exchanger finned tube, and process for fabricating heat exchanger
EP1074807A2 (en) Folded tube for a heat exchanger and method of making same
US20030106677A1 (en) Split fin for a heat exchanger
JP6388670B2 (en) Refrigeration cycle equipment
US9874402B2 (en) Heat exchanger, refrigeration cycle apparatus, and method of manufacturing heat exchanger
EP2447656B1 (en) Heat Exchanger with louvered transversal fins
EP3644002B1 (en) Heat exchanger, refrigeration cycle device, and air conditioner
JP5627632B2 (en) Heat exchanger and heat pump device
EP2784427B1 (en) Heat transfer fin, fin-tube heat exchanger, and heat pump device
WO2023219133A1 (en) Finless heat exchanger, and cooling system employing same
JP6053693B2 (en) Air conditioner
JP6611101B2 (en) Refrigeration cycle equipment
JP7345648B2 (en) Heat exchanger and method for manufacturing heat exchanger
EP0325553A1 (en) Wavy plate-fin
US20110132589A1 (en) Heat exchanger grooved tube
JP4423096B2 (en) Manufacturing method of heat exchanger
CN220119610U (en) D-shaped surrounding evaporator
CN107436057A (en) The freezing of refrigerator auxiliary, refrigeration all-in-one formula evaporator
WO2024053317A1 (en) Finless heat exchanger, and cooling system employing same
JP2000199697A (en) Heat exchanger
CN116997760A (en) Microchannel heat exchanger for electric appliance condenser
JP2008076013A (en) Refrigerating cycle device
KR19990073205A (en) A heat exchanger and a manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803607

Country of ref document: EP

Kind code of ref document: A1