WO2023219129A1 - Work machine and work machine system - Google Patents

Work machine and work machine system Download PDF

Info

Publication number
WO2023219129A1
WO2023219129A1 PCT/JP2023/017715 JP2023017715W WO2023219129A1 WO 2023219129 A1 WO2023219129 A1 WO 2023219129A1 JP 2023017715 W JP2023017715 W JP 2023017715W WO 2023219129 A1 WO2023219129 A1 WO 2023219129A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection
power supply
section
voltage
supply device
Prior art date
Application number
PCT/JP2023/017715
Other languages
French (fr)
Japanese (ja)
Inventor
智明 須藤
堅一 星野
恭嗣 中野
Original Assignee
工機ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工機ホールディングス株式会社 filed Critical 工機ホールディングス株式会社
Publication of WO2023219129A1 publication Critical patent/WO2023219129A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a work machine to which a power supply device such as a battery pack can be connected, and a work machine system including the power supply device.
  • Patent Document 1 The work machine described in Patent Document 1 below includes a motor driven by power from a battery pack and a charging circuit that charges the battery pack by power from a commercial power source.
  • variable voltage battery packs There are battery packs (hereinafter referred to as “variable voltage battery packs”) that have different terminal voltages when connected to a working machine with a load and when connected to a charger with a charging circuit.
  • a work machine like Patent Document 1 when a variable voltage battery pack is connected, appropriate charging cannot be performed unless the voltage between the terminals of the battery pack is made different during discharging and charging. For this reason, it is difficult to automatically switch from the state of being connected to a load to the state of charging, and there is room for improvement in workability.
  • fixed voltage battery packs hereinafter referred to as “fixed voltage battery packs” in which the voltage between terminals is constant regardless of the device to which they are connected. When the voltage between the terminals of the battery pack is configured to be different during discharging and charging, workability is poor if a fixed voltage battery pack is connected and neither discharge nor charge can be performed.
  • An object of the present invention is to provide a working machine and a working machine system with improved workability.
  • An embodiment of the present invention is a working machine.
  • This work machine is connected to a first connection part to which a first power supply device is connected, in which the voltage between the terminals during discharging is a first voltage value, and the voltage between the terminals during charging is a second voltage value, and to a commercial power supply. and a circuit section connected to the first connection section and the second connection section, wherein the circuit section receives the power input to the first connection section.
  • This work machine includes a first power supply device capable of switching a voltage between terminals between a first voltage value and a second voltage value, and a voltage between the terminals that is one of the first voltage value and the second voltage value.
  • a second power supply device a first connection portion to which the second power supply device is selectively connected and input power; a second connection portion connected to a commercial power source and input power; a circuit section connected to the second connection section, the circuit section configured to consume the power input to the first connection section; a charging unit capable of outputting power to the first connection unit, the circuit unit configured to charge the load of the power input to the first connection unit when the first power supply device is connected to the first connection unit; consumption by the load unit and the output of the charging unit, and when the second power supply device is connected to the first connection unit, the load unit consumes the power input to the first connection unit and the charging unit disable any of the outputs of the section.
  • This work equipment system includes a first power supply device capable of switching a voltage between terminals between a first voltage value and a second voltage value; It has a second power supply device and a working machine.
  • the work machine has a first connection part to which the first power supply device and the second power supply device are selectively connected to input power, and a second connection part to which the first power supply device and the second power supply device are connected to input power. and a circuit section connected to the first connection section and the second connection section.
  • the circuit section includes a load section that can consume power input to the first connection section, and a charging section that can output power input from the second connection section to the first connection section.
  • the circuit section allows consumption of power input to the first connection section by the load section and output from the charging section when the first power supply device is connected to the first connection section; When the second power supply device is connected to the first connection part, either consumption of the power input to the first connection part by the load part or output of the charging part is prohibited.
  • a first power supply device whose inter-terminal voltage is the first voltage value and a second power supply device whose inter-terminal voltage is the second voltage value are alternatively connected to receive power.
  • a first connection part connected to a commercial power source and into which electric power is input; and a circuit part connected to the first connection part and the second connection part, the circuit part , a load section capable of consuming power input to the first connection section, and a charging section capable of outputting power input from the second connection section to the first connection section; , when the first power supply device is connected to the first connection portion, consumption of the power input to the first connection portion by the load section is allowed, and the second power supply device is connected to the first connection portion. When connected, consumption of the power input to the first connection part by the load part is prohibited, and output of the charging part is allowed.
  • the present invention may be expressed as an "electrical device” or “electrical device system,” and such expressions are also effective as aspects of the present invention.
  • FIGS. 2(A) and 2(B) are external views of the working machine.
  • 3(A) and 3(B) are external views of the working machine.
  • FIG. 3 is an external perspective view of the working machine with the cover removed.
  • 5(A) and 5(B) are external views of the working machine with the cover removed.
  • 6(A) and 6(B) are external views of the working machine with the cover removed.
  • 7(A) is a cross-sectional view of the working machine along line AA in FIG. 6(A)
  • FIG. 7(B) is a cross-sectional view of the working machine along line BB in FIG. 6(A).
  • FIG. 8(A) is an external view of the tank, FIG.
  • FIG. 8(B) is an enlarged sectional view of a part of the tank
  • FIG. 8(C) is an enlarged sectional view of a part of a modified tank.
  • FIG. 2 is an overall circuit block diagram of the work machine.
  • FIG. 2 is a circuit block diagram showing an enlarged main body circuit section of the overall circuit block diagram.
  • FIG. 2 is a circuit block diagram showing an enlarged portion of the entire circuit block diagram, which is an auxiliary circuit section that performs power assist using a battery pack and includes an assist power supply section.
  • FIG. 2 is a circuit block diagram showing an enlarged portion of the auxiliary circuit section including a charging section.
  • the air compressor described below is a reciprocating air compressor that has a compressed air generation section that compresses air in two stages.
  • the use of the air compressor is not particularly limited, it is suitable for use as a supply source for supplying compressed air to an air tool that uses the pressure of compressed air to drive nails or screws into workpieces such as wood.
  • FIG. 1 is an external perspective view of a working machine (air compressor) 1.
  • 2(A) is an external view of the air compressor 1 seen from the arrow AR1 in FIG. 1
  • FIG. 2(B) is an external view of the air compressor 1 seen from the arrow AR2 in FIG.
  • (A) is an external view of the air compressor 1 seen from arrow AR4 in FIG.
  • FIG. 3(B) is an external view of the air compressor 1 seen from arrow AR3 in FIG.
  • the air compressor 1 includes a cover 2, a plurality of tanks 51, 52, 53, and 54, and a power cord 58 connected to an external commercial power source (AC power source).
  • Tanks 51, 52, 53, 54 have substantially the same shape and dimensions.
  • the tanks 51, 52, 53, and 54 may be collectively referred to as the tank 50.
  • the cover 2 covers a gap in a tank 50 surrounding the structure of the air compressor 1, as will be described later.
  • the cover 2 is made of metal or resin, for example, and includes four side covers 2a, 2b, 2c, and 2d, a top cover 2e, and a bottom cover 2f.
  • the side cover 2a is provided between the tank 51 and the tank 52 (see FIGS. 1, 2(A), and 3(A)).
  • the side cover 2b is provided between the tank 52 and the tank 53 (see FIGS. 1, 2(B), and 3(A)).
  • the side cover 2c is provided between the tank 53 and the tank 54 (see FIGS. 3(A) and 3(B)).
  • the side cover 2d is provided between the tank 54 and the tank 51 (see FIG. 3(A)).
  • the tank 50 is partially exposed between the four side covers 2a, 2b, 2c, and 2d.
  • the four side covers 2a, 2b, 2c, 2d and the tank 50 are arranged so as to overlap in the front, back, right and left directions with respect to the entire compressed air generation section 10, and the four side covers
  • the compressed air generation unit 10 is not visible when viewed from the outside of the tanks 2a, 2b, 2c, 2d and the tank 50 in the front, rear, left and right directions.
  • openings are appropriately formed in the cover 2 to ensure the operator's access to a coupler 61, a pressure reducing valve 62, a pressure gauge 63, battery packs 67, 68, etc., which will be described in detail later.
  • the top cover 2e is provided at the top end of the tank 50.
  • the top cover 2e is provided with an operation section 2g for operating the air compressor 1, switching operation modes, etc., and a display section 2h for displaying the pressure inside the tank 50, etc. (FIGS. 1 and 3(A)) reference).
  • the lower cover 2f is provided at the lower ends of the side covers 2a, 2b, 2c, and 2d and at the lower end of the tank 50. Note that the top cover 2e is arranged to vertically overlap the entire compressed air generation section 10, which will be described later, and the compressed air generation section 10 is not visible from above the top cover 2e. Similarly, the lower cover 2f is arranged to vertically overlap the entire compressed air generating section 10, which will be described later, and the compressed air generating section 10 is not visible from below the lower cover 2f.
  • the side where the side cover 2a is provided is the front or front
  • the side where the side cover 2b is provided is the left or left side
  • the side where the side cover 2c is provided is the rear or rear
  • the side where the side cover 2d is provided. is called the right side or right side.
  • the side where the top cover 2e is provided is called the top surface or upper side
  • the side where the bottom cover 2f is provided is called the bottom surface or bottom.
  • FIG. 4 is an external perspective view of the air compressor 1 shown in FIG. 1 with the cover 2 removed.
  • 5(A) is an external view of the air compressor 1 shown in FIG. 4 when viewed from the front
  • FIG. 5(B) is an external view of the air compressor 1 shown in FIG. 4 when viewed from the left side.
  • It is a diagram. 6(A) is an external view of the air compressor 1 shown in FIG. 4 when viewed from above
  • FIG. 6(B) is an external view of the air compressor 1 shown in FIG. 4 when viewed from the rear.
  • 7(A) is a sectional view of the air compressor 1 taken along the line AA in FIG. 6(A)
  • FIG. 7(B) is a sectional view of the air compressor 1 taken along the line BB in FIG. 6A. It is.
  • the air compressor 1 includes a compressed air generation section 10, a control section 17, a power control section 18, a coupler 61, connecting sections 64 and 65, and a drain discharge mechanism 70. .
  • the compressed air generation section 10 includes a first compression section 11, a second compression section 12, a crankcase 13, It has a motor 14 and a propeller fan 15.
  • the compressed air generation section 10 is arranged so as to be surrounded by the tanks 51, 52, 53, 54 by connecting the support member 59 attached below the crankcase 13 with each tank 51, 52, 53, 54. Ru.
  • the motor 14 is a brushless motor having a rotor 14a and a stator 14b, and is a drive unit that generates driving force by rotation of the rotor 14a.
  • a rotor 14a of the motor 14 is attached to an output shaft 14c.
  • the output shaft 14c is rotatably supported in the front-rear direction on a plane parallel to the mounting surface (ground or floor surface).
  • the first compression section 11 compresses outside air
  • the second compression section 12 further compresses the outside air (air) compressed by the first compression section 11. That is, the first compression section 11 is a compression section for low pressure, and the second compression section 12 is a compression section for high pressure.
  • the first compression section 11 and the second compression section 12 are located at positions facing each other across the output shaft 14c of the motor 14 passing through the crankcase 13 (i.e., the output shaft 14c (in the left and right direction). More specifically, the first compression section 11 and the second compression section 12 are arranged at 180 degrees different positions in the rotational direction of the output shaft 14c, and face each other with the crankcase 13 in between. In other words, the crankcase 13 is provided between the first compression section 11 and the second compression section 12.
  • the output shaft 14c passing through the crankcase 13 is rotatably supported by a plurality of bearings. As shown in FIG. 7(B), the propeller fan 15 is attached to one end (rear side) of the output shaft 14c protruding from the crankcase 13.
  • the propeller fan 15 mainly generates cooling air for cooling the compressed air generating section 10 (motor 14, crankcase 13, etc.).
  • the first compression section 11 includes a first cylinder 20, a first cylinder head 21, and a The first piston 22 is reciprocatably housed in the first piston 22 .
  • the second compression section 12 includes a second cylinder 30, a second cylinder head 31, and a second piston 32 reciprocatably housed within the second cylinder 30.
  • the first piston 22 included in the first compression section 11 and the second piston 32 included in the second compression section 12 are driven by the motor 14. That is, the motor 14 is a common driving source for the first compression section 11 and the second compression section 12.
  • first connecting rod 23 In order for the output shaft 14c to convert rotational motion into reciprocating motion of the first piston 22, one end side of a first connecting rod 23 is coupled to the first piston 22, and the other end side of the first connecting rod 23 is an output shaft. It is rotatably coupled to an eccentric cam provided on shaft 14c. That is, the first connecting rod 23 spans the crankcase 13 and the first cylinder 20, and connects the output shaft 14c and the first piston 22.
  • one end side of a second connecting rod 33 is connected to the second piston 32, and the other end side of the second connecting rod 33 is connected to the second piston 32. It is rotatably coupled to another eccentric cam provided on the output shaft 14c. That is, the second connecting rod 33 spans the crankcase 13 and the second cylinder 30, and connects the output shaft 14c and the second piston 32.
  • the above two eccentric cams are eccentric in the same direction relative to the moving direction of the first piston 22 and the second piston 32. Therefore, when the first piston 22 moves in a direction that compresses the upper chamber of the first cylinder 20, the second piston 32 moves in a direction that causes gas (air) to flow into the upper chamber of the second cylinder 30. On the other hand, when the second piston 32 moves in a direction that compresses the upper chamber of the second cylinder 30, the first piston 22 moves in a direction that allows gas (air) to flow into the upper chamber of the first cylinder 20.
  • Buffer chambers are provided inside the first cylinder head 21 and the second cylinder head 31, respectively. Further, check valves are provided between the upper chamber of the first cylinder 20 and the buffer chamber in the first cylinder head 21, and between the second cylinder 30 and the buffer chamber in the second cylinder head 31. ing. When the first piston 22 moves in the direction of compressing the upper chamber of the first cylinder 20 and the pressure of the air in the upper chamber becomes higher than a predetermined pressure, the air is between the upper chamber of the first cylinder 20 and the buffer chamber. The check valve opens. Then, the air compressed by the first piston 22 is sent to the upper chamber of the second cylinder 30 via the pipe that communicates the first cylinder 20 and the second cylinder 30.
  • FIG. 8(A) is an external view of the tank 50
  • FIG. 8(B) is an enlarged sectional view of the lower part of the tank 50.
  • each tank 50 has a pair of end walls 50a, 50b and a side wall 50c.
  • the side wall 50c is formed into a cylindrical shape, and a hemispherical end wall 50a is provided at one end of the side wall 50c, and a hemispherical end wall 50b is provided at the other end.
  • the central axis 57 of the side wall 50c is set to pass through the center (top) of the pair of end walls 50a, 50b.
  • the tank 50 is arranged along the central axis 57 in the vertical direction.
  • the side wall 50c has a cylindrical shape extending in the vertical direction, that is, a shape in which the length in the vertical direction is larger than the width in the front, rear, left and right directions.
  • a pair of end walls 50a and 50b close the side wall 50c in the vertical direction.
  • the end wall 50a is provided such that the hemispherical top is on the opposite side of the side wall 50c, thereby closing the lower side of the side wall 50c, and the top protrudes downward.
  • the end wall 50b is provided so that the hemispherical top is on the opposite side of the side wall 50c, thereby closing the upper side of the side wall 50c, and the top projects upward.
  • a leg portion 80 is provided near the top of the end wall 50a (ie, at the lower end of the tank 50).
  • the four tanks 51, 52, 53, 54 are arranged around the compressed air generation unit 10 with their respective central axes 57a, 57b, 57c, 57d parallel or substantially parallel to each other, It surrounds the compressed air generation section 10.
  • the central axis 57a of the tank 51 is approximately parallel to the central axes 57b, 57c, and 57d of the other tanks 52, 53, and 54, respectively.
  • the central axis 57b of the tank 52 is approximately parallel to the central axes 57a, 57c, and 57d of the other tanks 51, 53, and 54, respectively.
  • the central axis 57c of the tank 53 is approximately parallel to the central axes 57a, 57b, and 57d of the other tanks 51, 52, and 54, respectively.
  • the center axis 57d of the tank 54 is approximately parallel to the center axes 57a, 57b, 57c of the other tanks 51, 52, 53, respectively.
  • the central axes 57a and 57d of the tanks 51 and 54 are perpendicular to the output shaft 14c of the motor 14. That is, the central axes 57a and 57d are along the vertical direction.
  • the central axes 57b, 57c of the tanks 52, 53 are also perpendicular to the output shaft 14c of the motor 14, that is, along the vertical direction.
  • the central axes 57a, 57b, 57c, and 57d of all the tanks 51, 52, 53, and 54 are perpendicular to the output shaft 14c and extend in the vertical direction.
  • the tanks 51, 52, 53, and 54 are arranged so as to protrude below and above the compressed air generation section 10 having the first compression section 11 and the second compression section 12.
  • the tank 51 is arranged on the front side of the first compression section 11, and the tank 54 is arranged on the rear side of the first compression section 11. In other words, the first compression section 11 is arranged between the adjacent tanks 51 and 54.
  • the tank 52 is disposed further forward than the second compression section 12, and as shown in FIG. 7(B).
  • the tank 53 is arranged on the rear side of the second compression section 12. In other words, the second compression section 12 is arranged between the adjacent tanks 52 and 53.
  • the virtual rectangle 60 is defined by a first virtual line A1 circumscribing the tanks 51 and 52, a second virtual line A2 circumscribing the tanks 52 and 53, and a second virtual line A2 circumscribing the tanks 53 and 54. , and a fourth imaginary line A4 that circumscribes the tanks 54 and 51.
  • This virtual rectangle 60 is an area surrounded by four tanks 51, 52, 53, and 54 when viewed in the vertical direction. In other words, the virtual rectangle 60 corresponds to the occupied area when the air compressor 1 is placed on the mounting surface.
  • the first compression section 11 and the second compression section 12 are arranged between the adjacent tanks 50, the first compression section 11 and the second compression section 12 are arranged inside the virtual rectangle 60. It can be said that it is placed in In other words, the first compression section 11 and the second compression section 12 are arranged so as to be surrounded by the tank 50 when viewed in the vertical direction. Further, the configuration that the air compressor 1 has is arranged inside the virtual rectangle 60. That is, the configuration of the air compressor 1 is arranged so as to be surrounded by the tank 50 when viewed in the vertical direction.
  • the tanks 51, 52, 53, and 54 arranged as described above are connected directly or indirectly via a plurality of connection frames.
  • the tank 51 and the tank 52 are connected to each other via a connection frame 55a.
  • the tank 52 and the tank 53 are connected to each other via a pair of connection frames 55b and 55c.
  • the tank 53 and the tank 54 are connected to each other via a connecting frame 55d.
  • Tank 54 and tank 51 are connected to each other via a connection frame in the same way as tank 52 and tank 53 shown in FIG. 5(B).
  • legs 80 are provided on the lower surface of the lower end wall 50a of the tank 50.
  • the leg portion 80 has a mounting portion 81, a fixing portion 82, and a rubber leg 83.
  • the mounting part 81 is a cylindrical member such as a metal boss, for example, and is fixed by welding to an opening formed in the center of the end wall 50a of the tank 50 in the left-right and front-back directions (i.e., the position through which the central axis 57 passes). be done.
  • the mounting portion 81 has grooves and holes that communicate between the outer surface and the inner surface. Further, a thread groove is formed on the inner surface of the mounting portion 81.
  • the fixing part 82 is, for example, a metal coupler, and is screwed into and fixed to the inner surface of the attachment part 81 via a sealing member such as an O-ring.
  • the rubber leg 83 is formed of an elastic member such as rubber, and is attached to the lower side of the fixing part 82 by screwing or the like. That is, the attachment part 81 and the fixing part 82 are fixing members that attach the rubber leg 83 to the end wall 50a.
  • rubber legs 83 are provided on the lower end walls 50a of the four tanks 51, 52, 53, and 54, four rubber legs 83 are provided on the bottom of the air compressor 1. become. Thereby, the rubber legs 83 are attached to the lower surface of the end wall 50a and elastically abut against the mounting surface (ground or floor surface). Usually, the air compressor 1 is placed vertically so that the four rubber legs 83 are in contact with a mounting surface (ground, floor, etc.). In this case, as shown in FIG. 7(A), the reciprocating direction (sliding direction) of the first piston 22 and the second piston 32 is parallel or substantially parallel to the mounting surface.
  • the control unit 17 includes a control board housed in a metal box provided below the crankcase 13.
  • the control board includes an inverter circuit necessary for inverter control of the motor 14, a booster circuit that boosts the voltage supplied from the commercial power source via the power cord 58, and supplies the air compressor 1 to the inverter circuit. It is equipped with various electronic components necessary for comprehensive control.
  • the control unit 17 is provided between the tank 51 and the tank 52 and between the tank 53 and the tank 54 in the left-right direction.
  • the box of the control unit 17 is bolted to the lower side of the support member 59.
  • control unit 17 is arranged inside the virtual rectangle 60, that is, surrounded by the plurality of tanks 51, 52, 53, and 54 when viewed in the vertical direction. Further, the control section 17 is arranged such that the plurality of tanks 51, 52, 53, and 54 protrude below the control section 17.
  • the power control unit 18 includes a circuit board housed in a metal box provided above the crankcase 13.
  • the circuit board of the power control unit 18 is provided with a battery power supply circuit that controls the battery packs 67 and 68.
  • a booster circuit that boosts the power supplied from the battery packs 67 and 68, It includes a charging circuit that charges battery packs 67 and 68 with power supplied from a commercial power source via a power cord 58, a booster circuit, and a control board that controls the charging circuit.
  • the power control unit 18 is provided between the tank 51 and the tank 52 and between the tank 53 and the tank 54 in the left-right direction.
  • the box of the power control unit 18 is bolted to the connection frame 55d.
  • the air compressor 1 has a coupler 61 on its front side, which is an air outlet through which compressed air is taken out from the tank 50 to the air tool.
  • Coupler 61 is provided between tank 51 and tank 52.
  • the coupler 61 is arranged so that its front end is located on the rear side of the first imaginary line A1 shown in FIG. 6(A), that is, on the inside of the imaginary rectangle 60. That is, the coupler 61 is surrounded by the plurality of tanks 51, 52, 53, and 54 when viewed in the vertical direction.
  • the coupler 61 is arranged such that the plurality of tanks 51, 52, 53, and 54 protrude above the coupler 61 (Fig. 5(A), Fig. 5(B), Fig. 6(B), Fig. 7 (A), see FIG. 7(B)).
  • Coupler 61 is connected to tank 51 via piping 95. Compressed air is taken out from the tank 51 via the coupler 61.
  • FIG. 5A shows a case in which four couplers 61 are arranged in the vertical direction, the number of couplers 61 is not limited to four, and a plurality of couplers 61 may be arranged in the vertical direction. The direction in which 61 is arranged is not limited to the vertical direction.
  • a pressure reducing valve 62 is provided near the coupler 61, which is an adjustment section that adjusts the pressure of compressed air discharged from the coupler 61.
  • the pressure reducing valve 62 is arranged so that its front end is located on the rear side of the first imaginary line A1, that is, inside the imaginary rectangle 60. That is, the pressure reducing valve 62 is surrounded by the plurality of tanks 51, 52, 53, and 54 when viewed in the vertical direction. Further, the pressure reducing valve 62 is arranged such that the plurality of tanks 51, 52, 53, 54 protrude above the pressure reducing valve 62 (FIG. 5(A), FIG. 5(B), FIG. 6(B), (See FIGS. 7(A) and 7(B)).
  • the pressure of the compressed air regulated by the pressure reducing valve 62 is measured and displayed by a pressure gauge 63 provided near the pressure reducing valve 62.
  • the air compressor 1 has two connecting parts 64 and 65 on its front side, which are connectors for connecting to an external work machine (air compressor).
  • the connecting parts 64 and 65 are arranged side by side in the left-right direction between the tank 51 and the tank 52, and are connected to the tank 51 by a pipe 96.
  • a flow path (for example, a hose, etc.) through which compressed air supplied from an external working machine or compressed air provided to an external working machine passes is connected to the connecting part 64.
  • a flow path (for example, a hose, etc.) through which compressed air supplied from another external working machine or compressed air provided to another external working machine passes is connected to the connecting portion 65.
  • the air compressor 1 can be connected to two different external working machines by having the two connecting parts 64 and 65.
  • the air compressor 1 is not limited to having two connecting portions 64 and 65, and may have three or more connecting portions. Thereby, one air compressor 1 can be connected to three or more external working machines depending on the scale and content of the work.
  • connection part only two air compressors can be connected. Specifically, for example, when a first air compressor and a second air compressor each having only one connection part are prepared, the connection part of the first air compressor is connected to the second air compressor. Only machines can be connected.
  • air compressors can be connected without any restriction in number. Specifically, for example, when first to fifth air compressors each having two connecting portions 64 and 65 are prepared, the connecting portion of the first air compressor is connected to the second air compressor and the second air compressor. 3 air compressors can be connected.
  • a fourth air compressor can be connected to the connection portion of the second air compressor.
  • a fifth air compressor can be connected to the third air compressor.
  • a switching cock 66 is provided near the connecting portions 64, 65 to switch between communicating or blocking the connection between the connecting portions 64, 65 and the tank 51.
  • the air compressor 1 uses battery packs (batteries) 67 and 68 (FIGS. 4 and 5A) which are DC power sources. , FIG. 5(B), FIG. 6(A), and FIG. 6(B)).
  • the battery pack 67 is removably attached to a mounting portion provided between the tank 51 and the tank 54 on the right side of the air compressor 1.
  • the battery pack 68 is removably attached to an attachment portion provided between the tank 52 and the tank 53 on the left side of the air compressor 1.
  • the power of the battery packs 67 and 68 is boosted by a booster circuit of the power control section 18 and supplied to the control board of the control section 17 .
  • the output terminal of the boost circuit of the control unit 17 and the output terminal of the boost circuit of the electronic control unit 18 are electrically connected in parallel to the input terminal of the inverter circuit.
  • the boost circuit of the control unit 17 and the boost circuit of the power control unit 18 are controlled so that their respective output voltages are approximately the same, so that the power supplied via the power cord 58 and the battery pack 67, The electric power of 68 is supplied to the compressed air generation section 10 in a combined state.
  • the tanks 51, 52, 53, and 54 communicate with each other via piping.
  • the tank 51 and the tank 52 are connected to each other via a piping 90
  • the tank 52 and the tank 53 are connected to each other via a piping 91.
  • the tank 53 and the tank 54 communicate with each other via a pipe 92.
  • Piping 90 is provided below the front of the air compressor 1
  • pipe 91 is provided below the left side of the air compressor 1
  • pipe 92 is provided below the rear of the air compressor 1
  • the tank 51 and the tank 54 are also communicated through a pipe provided below the right side of the air compressor 1.
  • the compressed air generated by the compressed air generation unit 10 is introduced into the tank 51 via the pipe 19, and is transferred to the tank 51 through the pipes 90, 91, 92 and the pipe provided below the right side of the air compressor 1. are automatically and simultaneously introduced into tanks 52, 53, and 54.
  • the drain discharge mechanism 70 discharges the drain in the tank 50.
  • the drain discharge mechanism 70 includes a drain suction pipe 71 provided inside each tank 50, and a drain drain provided outside the tank 50. It has a cock 72 and a drain pipe 73.
  • one end of the drain suction pipe 71 is inserted from above into the inside of the attachment part 81 attached to the lower end wall 50a of the tank 50. That is, one end of the drain suction pipe 71 is located at the center of the end wall 50a of the tank 50 in the longitudinal and lateral directions.
  • the end wall 50a of the tank 50 has a hemispherical shape, and the tank 50 is arranged so that the top of the end wall 50a faces downward. Therefore, the drain in the tank 50 accumulates near the top of the lowest part of the end wall 50a. As described above, since the mounting portion 81 is formed with a groove or a hole that communicates the outer surface and the inner surface, the drain in the tank 50 flows into the inner side of the mounting portion 81 .
  • the other end of the drain suction pipe 71 is connected to piping for communicating with another tank 50.
  • the other end of the drain suction pipe 71 provided in the tank 51 is connected to the piping 90
  • the other end of the drain suction pipe 71 provided in the tank 52 is connected to the piping 91
  • the other end of the drain suction pipe 71 provided in the tank 53 is connected to the piping 90.
  • the other end of the pipe 71 is connected to a pipe 92
  • the other end of the suction pipe 71 provided in the tank 54 is connected to the pipe 92.
  • the drain cock 72 shown in FIGS. 6(B) and 7(B) is provided near the connection between the tank 53 and the pipe 92.
  • the drain in the tank 50 is discharged together with compressed air. That is, the drain that has flowed into the inside of the attachment portion 81 flows into the drain suction pipe 71 that is inserted inside the attachment portion 81 .
  • the drain cock 72 is operated, the drain in the tank 51 flows into the tank 52 via the pipe 90. Drain in the tank 52 flows into the tank 53 via piping 91. Drain in the tank 53 passes through a drain suction pipe 71 and is discharged from the drain pipe 73. Further, the drain in the tank 51 also flows into the tank 54 via a pipe provided below the right side of the air compressor 1. The drain in the tank 54 passes through the pipe 93 and is discharged from the drain pipe 73.
  • the drain suction pipe 71 is located near the lowest part of the lower end wall 50a of the tank 50, the generation of drain remaining in the tank 50 can be suppressed. Further, since the drain is discharged from near the bottom of the tank 50, there is no need for the operator to change the posture of the tank 50 or the air compressor 1, such as tilting it.
  • the air compressor 1 has a plurality of tanks 50 into which gas discharged from the first compression section 11 and the second compression section 12 flows.
  • the plurality of tanks 50 are provided so as to surround the first compression section 11 and the second compression section 12 when viewed in the vertical direction.
  • Each of the plurality of tanks 50 has a shape in which the length in the up-down direction is larger than the width in the left-right direction. Thereby, the area occupied by the air compressor 1 on the mounting surface can be reduced compared to the case where the tank 50 of the same capacity is arranged so that its longitudinal direction is parallel to the mounting surface.
  • Each of the plurality of tanks 50 has a cylindrical side wall 50c extending in the vertical direction, and a pair of end walls 50a and 50b that close the vertical direction of the side wall 50c formed in a hemispherical shape, and a first It is arranged so as to protrude below the compression part 11 and the second compression part 12. This prevents the air compressor 1 from becoming larger than the length of the tank 50 in the longitudinal direction, contributing to downsizing of the air compressor 1 in the vertical direction.
  • Each of the plurality of tanks 50 has a leg portion 80 attached to the lower surface of the end wall 50a and elastically abutting against the mounting surface. Thereby, it is possible to suppress vibrations from being transmitted from the mounting surface to the tank 50 via the leg portions 80, so that the durability of the air compressor 1 can be improved.
  • the leg portion 80 is fixed to the end wall 50a by a mounting portion 81 and a fixing portion 82 that penetrate the end wall 50a. Thereby, the leg portion 80 can be attached to the tank 50 using a simple method.
  • drain suction pipes 71 for discharging the drain accumulated inside each of the plurality of tanks 50, and the ends of the drain suction pipes 71 are located at the center of the end wall 50a in the longitudinal and lateral directions. Thereby, the drain can be stored in the lower part of the tank 50 and discharged to the outside of the tank 50 without changing the attitude of the air compressor 1, thereby improving work efficiency.
  • the control unit 17 that controls the tank 17 is surrounded by a plurality of tanks 50 when viewed from the top and bottom. As a result, the area occupied by the air compressor 1 becomes smaller than the area of the virtual rectangle 60 circumscribing the plurality of tanks 50, which contributes to miniaturization of the air compressor 1.
  • connection parts 64 and 65 that connect flow paths through which compressed air supplied from an external working machine or compressed air provided to an external working machine passes. Thereby, one air compressor 1 can be connected to three or more external working machines depending on the scale and content of the work.
  • the leg portion 80 is not limited to being attached to the end wall 50a of the tank 50 as shown in FIG. 8(B).
  • the leg portion 80 includes a rubber leg 83, a mounting portion 84 formed from a metal plate, and a fixing member 85.
  • the attachment portion 84 is fixed by welding to the center portion of the lower surface of the end of the end wall 50a in the longitudinal and lateral directions (that is, the position through which the central axis 57 passes).
  • the fixing member 85 is, for example, a screw, and fixes the rubber leg 83 by passing through the attachment hole formed in the attachment part 84 through the rubber leg 83. Thereby, the same effect as the leg portion 80 of the embodiment can be obtained.
  • tank 50 consists of four tanks 51, 52, 53, and 54 was explained, but the number of tanks 50 may be three or five or more. good.
  • the circuit configuration of the air compressor 1 will be mainly described below.
  • the air compressor 1 has battery pack connections 47 and 48 as first connections.
  • battery packs 67 and 68 are connected (attached) to battery pack connection parts 47 and 48, respectively.
  • the air compressor 1 with a battery pack connected to the battery pack connections 47 and 48 is an example of a working machine system.
  • the air compressor 1 has a commercial power supply connection part 49 as a second connection part connected to a commercial power supply 139 and into which electric power is input.
  • the air compressor 1 includes a motor 14 that rotates the first compression section 11 and the second compression section 12 to feed compressed air into the tank 50.
  • the motor 14 is a load unit that can consume the power input to the battery pack connections 47 and 48 (power of the battery packs 67 and 68).
  • the air compressor 1 includes a main body circuit section 200 for driving the motor 14 using a commercial power source 139 (commercial AC power source), which is an external AC power source, and a power assist system using two battery packs 67 and 68.
  • auxiliary circuit section 300 for driving the motor 14 using a commercial power source 139 (commercial AC power source), which is an external AC power source, and a power assist system using two battery packs 67 and 68.
  • the air compressor 1 has 18/36V switching circuits 121 and 122 as switching sections.
  • the 18/36V switching circuits 121 and 122 are circuits that can switch the voltage between the terminals of the battery packs 67 and 68 between 18V and 36V.
  • the 18/36V switching circuits 121 and 122 consume power input to the battery pack connections 47 and 48 by the motor 14 as a load unit when the air compressor 1 receives power from the battery packs 67 and 68.
  • the voltage between the terminals of the battery packs 67 and 68 is set to 36V.
  • the 18/36V switching circuits 121 and 122 set the voltage between the terminals of the battery packs 67 and 68 to 18V when the air compressor 1 charges the battery packs 67 and 68.
  • the main circuit unit 200 is configured to rectify and drive the motor 14 by receiving a commercial power supply 139 (AC 100V: for example, maximum rated current of 15A of an outlet), which is an external AC power supply.
  • a commercial power supply 139 AC 100V: for example, maximum rated current of 15A of an outlet
  • section 131 AC side power booster circuit 132 as a second power supply section
  • inverter section 133 AC side power booster circuit 132
  • main control section 140 for controlling the inverter section 133 .
  • a noise filter 134 is inserted between the commercial power supply 139 and the rectifier 131.
  • a smoothing capacitor 135 is connected to the rectifier output side of the rectifier 131 .
  • AC power from a commercial power supply 139 is rectified by a rectifier 131, and DC power smoothed by a smoothing capacitor 135 is supplied to an AC side power supply booster circuit 132.
  • a current detection resistor 136 is inserted into the connection line between the rectifier 131 and the AC side power supply booster circuit 132.
  • the AC side load current detection section 137 detects (monitors) the AC load current based on the voltage drop across the current detection resistor 136 and outputs an AC load current detection signal to the main control section 140.
  • the AC side power supply booster circuit 132 includes a booster circuit such as a DC-DC converter, and the DC power boosted here is supplied to the motor 14 via an inverter section 133.
  • the rectifying section 131, the AC side power supply booster circuit 132, and the smoothing capacitor 135 are examples of an AC side power supply section.
  • the AC side power supply booster circuit 132 is a chopper type DC-DC converter having a choke coil 321, a switching element 322, a diode 323, and a capacitor 324, and a boost voltage controller 325 that controls the switching operation of the switching element 322. has.
  • a boosted voltage detection section 138 is provided on the boosted output side of the AC side power supply booster circuit 132.
  • the main control unit 140 receives a boost voltage monitoring signal from the boost voltage detection unit 138, a rotation detection signal from the rotation sensor 141 that detects the rotation of the motor 14, and a pressure detection signal from the pressure sensor 142 that detects the pressure inside the tank. is input.
  • the main control section 140 outputs a boost voltage control signal to the AC side power supply boost circuit 132 (boost voltage control section 325), and also outputs an inverter control signal to the inverter section 133.
  • boost voltage control signal to the AC side power supply boost circuit 132 (boost voltage control section 325)
  • boost voltage control section 325 boost voltage control section 325
  • an inverter control signal to the inverter section 133.
  • the first compression section 11 and the second compression section 12 are rotationally driven by a motor 14, and the air discharged from the first compression section 11 and the second compression section 12 is sent to the tank 50.
  • the operation panel section 196 includes a display panel 191 that displays warnings such as tank internal pressure and overload, an operation button 192 that switches the power on and off, a charge button 193 that instructs charging of the battery packs 67 and 68, and an operation button 192 that displays warnings such as tank internal pressure and overload. It has a mode switching button 194 for instructing mode switching, and an assist button 195 for instructing power assist using battery packs 67 and 68, and a switch panel control section 190 is provided to control these. Switch panel control section 190 is connected to main control section 140 via communication circuit 197.
  • a circuit power supply section 290 is provided to supply stabilized DC voltage to the main control section 140, the operation panel section 196, the communication circuit 197, and the like.
  • the circuit power supply section 290 uses the DC output of the rectification section 131 to supply a power supply voltage Vcc (A) to the main control section 140 and the like, and a power supply voltage Vcc (C) to the switch panel control section 190, the communication circuit 197, etc. do.
  • the circuit power supply unit 290 includes a step-down transformer 291 having one primary winding and two secondary windings, a switching element 292 that switches the primary side of the transformer, and a circuit power supply drive circuit that outputs a drive signal to the switching element 292.
  • the DC output voltage of the rectifier and smoothing circuit 294 is supplied as Vcc(A) to the main control unit 140, etc.
  • the DC output voltage of the rectifier and smoothing circuit 295 is supplied as Vcc(C) to the switch panel control unit 190, the communication circuit 197, etc. Ru.
  • the auxiliary circuit section 300 includes an assist power source section 150 as a first power source section for assisting the drive of the motor 14 using a battery power source (DC power source), and an assist power source section 150 as a battery power source. It has a charging section 170 for charging the battery packs 67 and 68, a sub-control section 180, a circuit power supply section 110, and a communication circuit 100.
  • the sub-control unit 180 includes a control circuit such as a CPU, and controls the operations of the assist power supply unit 150 and the charging unit 170 in cooperation with the main control unit 140.
  • the circuit power supply unit 110 supplies a stabilized DC voltage to the sub-control unit 180, the communication circuit 100, and the like.
  • the communication circuit 100 constitutes an electrically insulated communication line between the main control section 140 and the sub-control section 180.
  • battery voltage detection units 146 and 147 are provided, respectively. Battery voltage detection signals from each battery voltage detection section 146, 147 are supplied to a sub-control section 180, respectively. Battery packs 67 and 68 can each communicate with sub-control unit 180. The sub-control unit 180 acquires battery information (rated voltage, battery temperature, etc.) from the battery packs 67 and 68, respectively.
  • the assist power supply unit 150 includes a boosting DC-DC converter as a boosting circuit.
  • the assist power supply unit 150 includes switching elements (for example, MOSFETs) 152 and 153 that are push-pull connected to the primary side of the step-up transformer 151, an assist power supply drive circuit 154 that alternately switches the switching elements 152 and 153, and a secondary side of the step-up transformer 151. It has a rectifier 155, a choke coil 163, a smoothing capacitor 156, and an assist current controller 157 connected to the side.
  • the duty of PWM control of the switching elements 152 and 153 (hereinafter referred to as " Even when the output voltage of the assist power supply section 150 is small, pulsations in the output voltage of the assist power supply section 150 can be reduced. As a result, when setting a high assist output voltage, voltage is applied to the smoothing capacitor 156 via the choke coil 163, which is advantageous in terms of the withstand voltage of the smoothing capacitor 156 (the withstand voltage can be lower than when there is no choke coil). .
  • a current detection resistor 158 is inserted into the connection line between the rectifying section 155 and the inverter section 133.
  • the assist current control section 157 detects (monitors) the output current (also referred to as "assist output current") of the assist power supply section 150 from the voltage drop across the current detection resistor 158, and controls the photocoupler 159 as a feedback circuit.
  • the assist current detection signal is fed back to the assist power supply drive circuit 154 via the assist current detection signal.
  • the photocoupler 159 is used to electrically interconnect the main circuit section 200 electrically connected to the commercial power source 139 and the auxiliary circuit section 300 electrically connected to the battery packs 67 and 68. This is for insulation, and the reason why a photocoupler is used in the following explanation is also the same.
  • DC power from one or both of the battery packs 67 and 68 is supplied to the primary side of the step-up transformer 151 of the assist power supply section 150.
  • An assist voltage detection section 160 for detecting the output voltage (also referred to as "assist output voltage") of the assist power supply section 150 is provided on the output side of the rectification section 155 of the assist power supply section 150, and also controls the assist output voltage. In order to do this, an assist voltage control section 161 is provided.
  • the DC output power of the assist power supply section 150 is supplied to the inverter section 133 via the series diode 182 (combined with the DC output power of the AC side power supply booster circuit 132).
  • the sub-control unit 180 outputs an output current control signal to the assist current control unit 157 of the assist power supply unit 150 via the photocoupler 162, and outputs an output current control signal to the assist voltage control unit 161 via the photocoupler 164 to control the output voltage of the assist power supply 50. Output a signal.
  • the output terminal of the assist power supply unit 150 is connected in parallel to the output terminal of the AC side power supply booster circuit 132 via a series diode 182 . That is, the AC side power supply booster circuit 132 and the assist power supply unit 150 are electrically connected in parallel to the motor 14 .
  • the assist power supply section 150 receives the output current control signal and the output voltage control signal from the sub-control section 180, controls the drive signal of the assist power supply drive circuit 154, and alternately switches the switching elements 152 and 153. By changing the duty when switching, voltage variable control can be performed to increase or decrease the DC voltage across the smoothing capacitor 156 on the output side. In other words, the assist power supply section 150 can drive the motor 14 using PAM control that increases or decreases the voltage supplied to the inverter 33 section. Further, an assist power supply on/off signal is supplied from the sub-control unit 180 to the assist power supply drive circuit 154 of the assist power supply unit 150 .
  • the assist power source drive circuit 154 When the assist power on/off signal instructs "assist power on”, the assist power source drive circuit 154 is activated to enable switching, and when the assist power source on/off signal instructs "assist power off", the operation of the assist power source drive circuit 154 is stopped. .
  • the charging unit 170 is a circuit that can output power input from the commercial power supply connection unit 49 to the battery pack connection units 47 and 48, that is, a circuit for charging the battery packs 67 and 68 with the power of the commercial power supply 139.
  • Charging section 170 includes the configuration of a step-down DC-DC converter.
  • the charging unit 170 includes a rectifying unit 171 that receives a supply of commercial power 139 via a noise filter 134, a smoothing capacitor 172, a step-down transformer 173, a switching element 174 that switches the primary side of the transformer, and a charging unit that drives the switching element 174 on and off. It includes a power supply drive circuit 175, a diode 176 and a smoothing capacitor 177 as a rectifying and smoothing circuit that rectifies and smoothes the secondary output of the transformer 173, a charging current control section 178, and a charging voltage control section 179.
  • a current detection resistor 181 is inserted into a connection line between the rectifying and smoothing circuit on the secondary side of the transformer 173 and the battery packs 67 and 68.
  • the charging current control unit 178 detects (monitors) the charging current from the voltage drop across the current detection resistor 181.
  • the charging current detection signal from the charging current control section 178 and the charging voltage control signal from the charging voltage control section 179 are fed back to the charging power supply drive circuit 175 via a photocoupler 182 as a feedback circuit.
  • the circuit power supply unit 110 uses the DC output of the rectifier 171 of the charging unit 170 to supply a power supply voltage Vcc (B) to the sub-control unit 180 and the like, and also to a photocoupler 185 that transmits a charging power on/off signal. Provides power supply.
  • the circuit power supply section 110 includes a step-down transformer 111 having one primary winding and two secondary windings, a switching element 112 that switches the primary side of the transformer, and a circuit power supply drive circuit that outputs a drive signal to the switching element 112. 113, and rectifying and smoothing circuits 114 and 115 respectively provided in the two secondary windings.
  • the DC output voltage of the rectifying and smoothing circuit 114 is supplied as Vcc(B) to the sub-control unit 180, photocoupler 182, etc.
  • the DC output voltage of the rectifying and smoothing circuit 115 is supplied to the photocoupler 185.
  • Photocoupler 185 transmits a charging power supply on/off signal from sub-control unit 180 to charging power supply drive circuit 175 .
  • the charging power supply on/off signal instructs "charging power on”
  • the charging power supply drive circuit 175 is activated to switch the switching element 174, and when the charging power supply on/off signal instructs "charging power supply OFF", the charging power supply driving circuit 175 operates. stop.
  • a relay 186 (first cutoff circuit) is provided to turn on and off the connection between the battery pack 68 (battery pack connection section 48) and the charging section 170.
  • a relay 187 (second cutoff circuit) is provided to turn on and off the connection between the battery pack 67 (battery pack connection section 47) and the charging section 170.
  • a relay 188 is provided to turn on and off the connection between the battery pack 68 (battery pack connection section 48) and the assist power supply section 150.
  • a relay 189 is provided to turn on and off the connection between the battery pack 67 (battery pack connection section 47) and the assist power supply section 150. Relays 186 to 189 are controlled on and off by relay on/off signals from sub-control unit 180, respectively.
  • the communication circuit 100 has two photocouplers 101 and 102, and constitutes an electrically insulated communication line between the main control section 140 and the sub-control section 180.
  • Photocoupler 101 transmits an information signal from main control section 140 to sub-control section 180
  • photocoupler 102 transmits an information signal from sub-control section 180 to main control section 140.
  • the switching elements 152 and 153 of the assist power supply unit 150 are provided with a thermistor Th3 for temperature detection.
  • the temperature monitoring signal of thermistor Th3 is output to the sub-control unit 180. If the temperature rise of the battery packs 67, 68, switching elements 152, 153, etc. exceeds a permissible range, the sub-control unit 180 stops the operation.
  • the display panel 191 is a display section that displays various information from the main control section 140.
  • the operation button 192 is a switch for instructing the air compressor 1 to start and stop operating.
  • the charging button 193 is a switch for instructing permission to charge the battery packs 67 and 68 and stopping charging.
  • the mode switching button 194 is a switching switch that switches the operating mode of the air compressor 1.
  • the assist button 195 is a changeover switch between a mode that uses power assist using a battery pack and a mode that does not use power assist.
  • the air compressor 1 is used while being connected to a commercial power source 139 (AC 100V). Since the main circuit unit 200 receives power from the commercial power supply 139, it is controlled by the main control unit 140 based on the value of the AC side load current detection unit 137 so that the input current from the commercial power supply 139 is 15 A or less. . This is because the maximum rated current of an AC outlet is generally 15A.
  • the main control unit 140 lowers the target rotation speed of the motor 14.
  • the target rotation speed also changes depending on the load on the inverter section 133 and the pressure inside the tank 50. Specifically, it is set high when the load is light, and set low when the pressure inside the tank increases or when the amount of compressed air used is large.
  • the assist power supply section 150 When the assist power supply section 150 is operated for electric power assist, the AC current value decreases when the target rotation speed is reached, so the main control section 140 increases the target rotation speed so as to maintain the AC load current value of 15A. Therefore, the insufficient power can be supplied from one or both of the battery packs 67 and 68.
  • the sub-control unit 180 can keep the rotational speed of the motor 14 within a certain range by limiting the supply current or power from the battery packs 67 and 68.
  • the AC side power supply booster circuit 132 performs feedback control so that the boosted voltage becomes a target value, but when the series diode 323A is not inserted, especially when the assist voltage from the assist power supply section 150 is too high, the booster voltage It controls the voltage to be low.
  • the boosted voltage decreases, the current supply from the commercial power supply 139 decreases, so the current supply from the battery packs 67 and 68 becomes excessive, resulting in a reduction in the power assist time.
  • the assist output voltage output voltage of the assist power supply unit 150
  • the series diode 323A can be omitted.
  • the series diode 323A when inserting the series diode 323A, it is necessary to provide a voltage junction electrolytic capacitor 324A at a location where the boost voltage and the assist voltage are connected. This is to absorb surge energy generated when the motor 14 is stopped, and a large product with a large capacity and high withstand voltage is used.
  • the electrolytic capacitor 324 of the AC side power supply booster circuit 132 can be used instead, so the voltage junction electrolytic capacitor can also be omitted. This not only reduces the area on the board and the cost of electronic components, but also improves efficiency loss due to diode loss and voltage drop.
  • backflow prevention diodes 148 and 149 are required to prevent backflow current between the battery packs.
  • a predetermined potential difference value for example, 0.5V
  • the reverse current between the battery packs can be reduced by the charging current. It can be suppressed to a certain extent. For this reason, diodes 148 and 149 may be deleted. This makes it possible to eliminate the problems of output reduction due to the resistance of the diodes 148 and 149 and heat generation caused by the diodes 148 and 149.
  • FIG. 13 is a circuit block diagram related to charging and discharging battery packs 67 and 68 in air compressor 1.
  • the charging/discharging circuit 400 in FIG. 13 is an example of a circuit section, and corresponds to the entire circuit in the air compressor 1 other than the battery packs 67 and 68 and the battery pack connection sections 47 and 48 in FIG.
  • Each of the battery packs 67 and 68 is an example of a first power supply device that can switch the voltage between terminals between a first voltage value and a second voltage value.
  • the first voltage value will be 36V and the second voltage value will be 18V.
  • the battery packs 67 and 68 have the same configuration.
  • the battery pack connections 47, 48 and the battery packs 67, 68 of the air compressor 1 each have an upper C+ terminal, a lower C+ terminal, an upper + terminal, a lower + terminal, an upper-terminal, and a lower-terminal. Terminals of the battery pack connecting portion 47 and the battery pack 67 having the same name are connected to each other. Terminals of the battery pack connecting portion 48 and the battery pack 68 having the same name are connected to each other. The voltage between the terminals of the battery packs 67 and 68 is the voltage between the upper C+ terminal, the upper + terminal, and the lower - terminal.
  • Each terminal of the battery pack connection parts 47 and 48 is an example of a connection part terminal set.
  • Each of the battery packs 67 and 68 has an 18V battery cell set 211 and 212, and when the battery cell sets 211 and 212 are connected in series with each other depending on the configuration of the connected device, the voltage between the terminals becomes the first voltage value (36V ), and when the battery cell sets 211 and 212 are connected in parallel with each other due to the configuration of the connected device, the voltage between the terminals becomes the second voltage value (18V).
  • the positive electrode of the battery cell set 211 is connected to the upper C+ terminal and the upper + terminal.
  • the negative electrode of the battery cell set 211 is connected to the upper terminal.
  • the positive electrode of the battery cell set 212 is connected to the lower C+ terminal and the lower + terminal.
  • the negative electrode of the battery cell set 212 is connected to the lower terminal.
  • the 36V input power tool has a shorting bar (shorting member) that shorts the lower + terminal and upper - terminal of the connected battery pack 67 (or 68). It is configured so that the input voltage is 36V appearing between the terminal and the terminal.
  • the charger has a terminal structure in which the upper C+ terminal and lower C+ terminal of the connected battery pack 67 (or 68) are short-circuited, and the upper-terminal and lower-terminal are short-circuited, and the voltage between the terminals is 18V. It is configured so that Thereby, the charger can charge the battery packs 67 and 68 with the same circuit configuration as a battery pack in which the inter-terminal voltage is fixed at 18V (hereinafter referred to as "18V battery pack").
  • Air compressor 1 has 18/36V switching circuits 121 and 122 between battery packs 67 and 68 and charge/discharge circuit 400, respectively.
  • the 18/36V switching circuits 121 and 122 have a first state in which the voltage between the terminals of the battery packs 67 and 68 is a first voltage value (36V), and a second state in which the voltage between the terminals of the battery packs 67 and 68 is a second voltage value (18V). ) is a circuit that can be switched between a second state and a second state.
  • the 18/36V switching circuits 121 and 122 have switches 123 to 125.
  • the switches 123 to 125 are composed of, for example, semiconductor switching elements or relays.
  • the on/off state of the switches 123 to 125 is controlled by the charging/discharging circuit 400 (for example, controlled by the aforementioned sub-control unit 180).
  • Switch 123 is provided between the upper C+ terminal and the lower C+ terminal.
  • Switch 124 is provided between the lower + terminal and the upper - terminal.
  • a switch 125 is provided between the upper terminal and the lower terminal.
  • the switches 123 and 125 are turned off when the battery packs 67 and 68 are being charged, and turned on when they are being discharged.
  • the switch 124 is turned on when the battery packs 67 and 68 are being charged, and turned off when the battery packs 67 and 68 are being discharged.
  • the voltage between the terminals of the battery packs 67 and 68 becomes 18V when charging, and the voltage between the terminals becomes 36V when discharging.
  • the charging/discharging circuit 400 includes a charging + terminal that applies a charging voltage to the upper C+ terminals of the battery packs 67 and 68, a battery voltage monitor terminal that monitors the voltage of the upper C+ terminals of the battery packs 67 and 68, and a battery voltage monitor terminal that monitors the voltage of the upper C+ terminals of the battery packs 67 and 68.
  • FIG. 14 is a circuit block diagram in which the battery packs 67 and 68 in FIG. 13 are replaced with a battery pack 69.
  • the battery pack 69 is an 18V battery pack, and is an example of a second power supply device whose inter-terminal voltage is a second voltage value (18V).
  • a battery pack 69 can also be connected to the battery pack connections 47 and 48.
  • the battery pack 69 has a C+ terminal, a + terminal, and a - terminal.
  • the C+ terminal is connected to the upper C+ terminal of the battery pack connection parts 47 and 48.
  • the + terminal is connected to the upper + terminal of the battery pack connection parts 47 and 48.
  • the ⁇ terminal is connected to the lower ⁇ terminal of the battery pack connection portions 47, 48.
  • the battery pack 69 has a set of 18V battery cells 213 and 214 connected in parallel to each other.
  • the positive electrodes of the battery cell sets 213 and 214 are connected to the C+ terminal and the + terminal.
  • the negative electrodes of the battery cell sets 213 and 214 are connected to the - terminal.
  • FIG. 15 is a circuit block diagram in which the battery packs 67 and 68 in FIG. 13 are replaced with a battery pack 74.
  • the battery pack 74 is a battery pack whose inter-terminal voltage is fixed at 36V (hereinafter referred to as a "36V battery pack"), and is an example of a second power supply device whose inter-terminal voltage is a first voltage value (36V).
  • a battery pack 74 can also be connected to the battery pack connections 47 and 48 .
  • the battery pack 74 has a C+ terminal, a + terminal, and a - terminal.
  • the C+ terminal is connected to the upper C+ terminal of the battery pack connection parts 47 and 48.
  • the + terminal is connected to the upper + terminal of the battery pack connection parts 47 and 48.
  • the ⁇ terminal is connected to the lower ⁇ terminal of the battery pack connection portions 47, 48.
  • the battery pack 74 has a 36V battery cell set 215.
  • the positive electrode of the battery cell set 215 is connected to the C+ terminal and the + terminal.
  • the negative electrode of the battery cell set 215 is connected to the - terminal.
  • FIG. 16 is a flowchart of charge/discharge control in the air compressor 1.
  • the user connects the battery pack to at least one of the battery pack connectors 47 and 48 (S1).
  • the sub-control unit 180 communicates with the battery pack (hereinafter referred to as “connected battery pack”) connected to at least one of the battery pack connection units 47 and 48, and determines the type of the connected battery pack, that is, the rated voltage, etc. (S3) .
  • the sub-control unit 180 stops charging by the charging/discharging circuit 400 or maintains the charging in the stopped state (S7), and enters the discharging mode or maintains the discharging mode (S9). ).
  • the sub-control unit 180 switches the switches 123 to 125 to 36V discharge or (S11), and allows discharge from the connected battery pack (S15). If the discharge flag is "H” (Yes in S17), the sub-control unit 180 discharges the connected battery pack (S19). If the discharge flag is not "H” (No in S17), the sub-control unit 180 stops discharging from the connected battery pack or maintains it in the stopped state (S23). The discharge flag is set to "H” if no abnormality such as over-discharge or high temperature is detected, and is set to "L” if any abnormality is detected.
  • the sub-control unit 180 prohibits discharging (S21), and stops discharging from the connected battery pack or maintains it in a stopped state (S23).
  • the battery packs 67, 68, and 74 are examples of 36V dischargeable battery packs.
  • Battery pack 69 is an example of a battery pack that is not a 36V dischargeable battery pack.
  • the sub-control unit 180 stops discharging from the connected battery pack or maintains it in a stopped state (S27), and enters or maintains the charging mode (S29). ).
  • the sub-control unit 180 switches the switches 123 to 125 to 18V charging or switches the switches 123 to 125 to 18V charging. (S31), and allows charging of the connected battery pack (S35). If the connected battery pack is fully charged (Yes in S37), the sub-control unit 180 stops charging the connected battery pack or maintains it in a stopped state (S39). If the connected battery pack is not fully charged (No in S37), the sub-control unit 180 charges the connected battery pack (S41).
  • the sub-control unit 180 prohibits charging (S43).
  • the battery packs 67, 68, and 69 are examples of 18V rechargeable battery packs.
  • Battery pack 74 is an example of a battery pack that is not an 18V rechargeable battery pack.
  • the battery packs 67 and 68 are 36V dischargeable battery packs and 18V rechargeable battery packs, and will hereinafter be referred to as "18/36V switchable battery packs.”
  • the charging/discharging circuit 400 allows discharging from the connected battery pack to the motor 14 and charging the connected battery pack.
  • the charging/discharging circuit 400 prohibits discharging from the connected battery pack to the motor 14 and allows charging to the connected battery pack.
  • the charging/discharging circuit 400 allows discharging from the connected battery pack to the motor 14 and prohibits charging to the connected battery pack.
  • the charging/discharging circuit 400 has a configuration in which the voltage between the terminals of the connected battery pack is different when discharging and charging the connected battery pack, so that it is possible to appropriately charge and discharge the 18/36V switchable battery pack. Workability is good because it is possible to charge the battery pack and discharge from the 36V battery pack.
  • the air compressor 1 is set to a first state in which the voltage between the terminals of the battery packs 67 and 68 is a first voltage value (36V) and a terminal of the battery packs 67 and 68 by the 18/36V switching circuits 121 and 122. It is possible to switch between a second state in which the inter-voltage voltage becomes a second voltage value (18V). Therefore, the battery packs 67 and 68, which are 18/36V switchable battery packs, can be appropriately charged and discharged.
  • the 18/36V switching circuits 121 and 122 switch the connection state between each terminal of the battery pack connection parts 47 and 48 (connection part terminal group) and the charging/discharging circuit 400, thereby switching between the first state and the above-mentioned state. Switching between the second state and the second state is performed. Therefore, for the battery packs 67 and 68 of the type in which the voltage between the terminals is switched between the first voltage value (36V) and the second voltage value (18V) depending on the terminal configuration of the connected device, the first state and the second state can be appropriately switched.
  • the battery pack 75 is of a type in which the voltage between its terminals is switched between a first voltage value (36V) and a second voltage value (18V) depending on the state of its internal circuit.
  • Battery pack 75 has switching member 128.
  • the state of the switching member 128 is switched as shown in FIGS. 17(A) and 17(B) by engagement with a connected device.
  • the interconnection of the battery cell sets 217 and 218 of the battery pack 75 is switched between series connection and parallel connection as shown in FIGS. 17(C) and 17(D), and the voltage between the terminals becomes the first voltage value (36V). It switches between the second voltage value (18V).
  • the working machine has solenoid actuators 126 and 127 as switching parts, and the solenoid actuators 126 and 127 cause the battery pack 75 to change when charging and discharging, as shown in FIG. 17(A). ), (B), the state of the switching member 128 is switched (switching the internal circuit of the battery pack 75), and the voltage between the terminals of the battery pack 75 becomes the first voltage value (36V), and the battery pack Switching is performed between the second state in which the voltage between the terminals of 75 becomes the second voltage value (18V).
  • the solenoid actuators 126 and 127 are members that replace the switches 123 to 125 in FIG.
  • the solenoid actuators 126, 127 switch between the first state and the second state by switching the internal circuit of the battery pack 75. Therefore, for the battery pack 75 of the type in which the voltage between the terminals is switched between the first voltage value (36V) and the second voltage value (18V) depending on the state of its own internal circuit, the first state and the second voltage value (18V) are It is possible to appropriately switch between the two states.
  • the number of battery pack connection parts that the working machine has is not limited to two, but may be one or three or more.
  • the working machine is not limited to an air compressor, and may be any working machine that can discharge from and charge the battery pack.
  • the first voltage value, second voltage value, voltage and number of battery cell sets, etc., which are exemplified as specific numerical values in the embodiments, do not limit the scope of the invention in any way, and may be arbitrary according to the required specifications. can be changed to
  • the first power supply device is a 36V battery pack whose terminal voltage cannot be switched from the first voltage value (36V)
  • the second power supply device is a 18V battery pack whose terminal voltage cannot be switched from the second voltage value (18V).
  • the circuit section may be configured to allow power consumption by the load section when a 36V battery pack is connected to the first connection section, and allow only charging and prohibit power consumption when an 18V battery pack is connected. good.
  • connection section commercial power supply connection section (second connection section) , 50, 51, 52, 53, 54...Tank, 50a, 50b...End wall, 50c...Side wall, 61...Coupler, 62...Reducing valve, 64, 65...Connection part, 67, 68, 69...Battery pack (battery) ), 70...Drain discharge mechanism, 71...Drain suction pipe, 74, 75...Battery pack (battery) ⁇ 80...Legs, 81, 84...Mounting part, 82...Fixing part, 83...Rubber legs, 85...Fixing member , 121, 122... 18/36V switching circuit, 123-125... switch, 126, 127... solenoid actuator, 400... charging/discharging circuit (circuit section).

Abstract

Provided are a work machine and a work machine system with improved workability. In this work machine, when a connected battery pack is a battery pack capable of 18/36 V switching, a charge/discharge circuit 400 allows discharging from the connected battery pack to a motor 14, and charging to the connected battery pack. When the connected battery pack is an 18 V battery pack, the charge/discharge circuit 400 prohibits discharging from the connected battery pack to the motor 14, and allows charging to the connected battery pack. When the connected battery pack is a 36 V battery pack, the charge/discharge circuit 400 allows discharging from the connected battery pack to the motor 14, and prohibits charging to the connected battery pack. 18/36 V switching circuits 121, 122 make it possible to switch between a first state in which a voltage across terminals of battery packs 67, 68 is a first voltage value (36 V), and a second state in which the voltage across terminals of the battery packs 67, 68 is a second voltage value (18 V).

Description

作業機及び作業機システムWork equipment and work equipment systems
本発明は、電池パック等の電源装置を接続可能な作業機、並びに電源装置を含む作業機システムに関する。 The present invention relates to a work machine to which a power supply device such as a battery pack can be connected, and a work machine system including the power supply device.
下記特許文献1に記載の作業機は、電池パックの電力によって駆動するモータと、商用電源の電力によって電池パックを充電する充電回路と、を有する。 The work machine described in Patent Document 1 below includes a motor driven by power from a battery pack and a charging circuit that charges the battery pack by power from a commercial power source.
国際公開第2021/220704号International Publication No. 2021/220704
負荷を有する作業機に接続されたときと、充電回路を有する充電器に接続されたときとで、端子間電圧が異なる電池パック(以下「電圧可変電池パック」)が存在する。特許文献1のような作業機では、電圧可変電池パックを接続した場合、放電時と充電時で当該電池パックの端子間電圧を異ならせなければ、適切な充電ができない。このため、負荷に接続した状態から充電を行う状態への切替を自動的に行うことが困難であり、作業性に改善の余地があった。また、接続先の機器によらず端子間電圧が一定の電池パック(以下「電圧固定電池パック」)も存在する。放電時と充電時で当該電池パックの端子間電圧を異ならせる構成とした場合、電圧固定電池パックを接続して放電も充電もできないとすると、作業性が悪かった。 There are battery packs (hereinafter referred to as "variable voltage battery packs") that have different terminal voltages when connected to a working machine with a load and when connected to a charger with a charging circuit. In a work machine like Patent Document 1, when a variable voltage battery pack is connected, appropriate charging cannot be performed unless the voltage between the terminals of the battery pack is made different during discharging and charging. For this reason, it is difficult to automatically switch from the state of being connected to a load to the state of charging, and there is room for improvement in workability. There are also battery packs (hereinafter referred to as "fixed voltage battery packs") in which the voltage between terminals is constant regardless of the device to which they are connected. When the voltage between the terminals of the battery pack is configured to be different during discharging and charging, workability is poor if a fixed voltage battery pack is connected and neither discharge nor charge can be performed.
本発明の目的は、作業性を向上させた作業機及び作業機システムを提供することである。 An object of the present invention is to provide a working machine and a working machine system with improved workability.
本発明のある態様は、作業機である。この作業機は、放電時の端子間電圧が第1電圧値であり、充電時の端子間電圧が第2電圧値である第1電源装置が接続される第1接続部と、商用電源に接続されて電力が入力される第2接続部と、前記第1接続部及び前記第2接続部に接続される回路部と、を備え、前記回路部は、前記第1接続部に入力された電力を消費可能な負荷部と、前記第2接続部から入力された電力を前記第1接続部に出力可能な充電部と、を備え、前記第1電源装置の端子間電圧が前記第1電圧値となる第1状態と、前記第1電源装置の端子間電圧が前記第2電圧値となる第2状態と、の間で切替可能な切替部を有する。本発明の別の態様は、作業機である。この作業機は、端子間電圧を第1電圧値と第2電圧値とに切替可能な第1電源装置と、端子間電圧が前記第1電圧値及び前記第2電圧値の何れか一方である第2電源装置と、が択一的に接続されて電力が入力される第1接続部と、商用電源に接続されて電力が入力される第2接続部と、前記第1接続部及び前記第2接続部に接続される回路部と、を備え、前記回路部は、前記第1接続部に入力された電力を消費可能な負荷部と、前記第2接続部から入力された電力を前記第1接続部に出力可能な充電部と、を備え、前記回路部は、前記第1接続部に前記第1電源装置が接続されたときに、前記第1接続部に入力された電力の前記負荷部による消費及び前記充電部の出力を許容し、前記第1接続部に前記第2電源装置が接続されたときに、前記第1接続部に入力された電力の前記負荷部による消費及び前記充電部の出力のいずれかを禁止する。 An embodiment of the present invention is a working machine. This work machine is connected to a first connection part to which a first power supply device is connected, in which the voltage between the terminals during discharging is a first voltage value, and the voltage between the terminals during charging is a second voltage value, and to a commercial power supply. and a circuit section connected to the first connection section and the second connection section, wherein the circuit section receives the power input to the first connection section. a load section capable of consuming power, and a charging section capable of outputting power input from the second connection section to the first connection section, wherein the voltage between terminals of the first power supply device is set to the first voltage value. and a second state in which the inter-terminal voltage of the first power supply device becomes the second voltage value. Another aspect of the invention is a working machine. This work machine includes a first power supply device capable of switching a voltage between terminals between a first voltage value and a second voltage value, and a voltage between the terminals that is one of the first voltage value and the second voltage value. a second power supply device; a first connection portion to which the second power supply device is selectively connected and input power; a second connection portion connected to a commercial power source and input power; a circuit section connected to the second connection section, the circuit section configured to consume the power input to the first connection section; a charging unit capable of outputting power to the first connection unit, the circuit unit configured to charge the load of the power input to the first connection unit when the first power supply device is connected to the first connection unit; consumption by the load unit and the output of the charging unit, and when the second power supply device is connected to the first connection unit, the load unit consumes the power input to the first connection unit and the charging unit disable any of the outputs of the section.
本発明の別の態様は、作業機システムである。この作業機システムは、端子間電圧を第1電圧値と第2電圧値とに切替可能な第1電源装置と、端子間電圧が前記第1電圧値及び前記第2電圧値の何れか一方である第2電源装置と、作業機と、を有する。前記作業機は、前記第1電源装置と前記第2電源装置とが択一的に接続されて電力が入力される第1接続部と、商用電源に接続されて電力が入力される第2接続部と、前記第1接続部及び前記第2接続部に接続される回路部と、を備える。前記回路部は、前記第1接続部に入力された電力を消費可能な負荷部と、前記第2接続部から入力された電力を前記第1接続部に出力可能な充電部と、を備える。前記回路部は、前記第1接続部に前記第1電源装置が接続されたときに、前記第1接続部に入力された電力の前記負荷部による消費及び前記充電部の出力を許容し、前記第1接続部に前記第2電源装置が接続されたときに、前記第1接続部に入力された電力の前記負荷部による消費及び前記充電部の出力のいずれかを禁止する。 Another aspect of the invention is a work machine system. This work equipment system includes a first power supply device capable of switching a voltage between terminals between a first voltage value and a second voltage value; It has a second power supply device and a working machine. The work machine has a first connection part to which the first power supply device and the second power supply device are selectively connected to input power, and a second connection part to which the first power supply device and the second power supply device are connected to input power. and a circuit section connected to the first connection section and the second connection section. The circuit section includes a load section that can consume power input to the first connection section, and a charging section that can output power input from the second connection section to the first connection section. The circuit section allows consumption of power input to the first connection section by the load section and output from the charging section when the first power supply device is connected to the first connection section; When the second power supply device is connected to the first connection part, either consumption of the power input to the first connection part by the load part or output of the charging part is prohibited.
本発明の別の態様は、作業機である。この作業機は、端子間電圧が第1電圧値である第1電源装置と、端子間電圧が前記第2電圧値である第2電源装置と、が択一的に接続されて電力が入力される第1接続部と、商用電源に接続されて電力が入力される第2接続部と、前記第1接続部及び前記第2接続部に接続される回路部と、を備え、前記回路部は、前記第1接続部に入力された電力を消費可能な負荷部と、前記第2接続部から入力された電力を前記第1接続部に出力可能な充電部と、を備え、前記回路部は、前記第1接続部に前記第1電源装置が接続されたときに、前記第1接続部に入力された電力の前記負荷部による消費を許容し、前記第1接続部に前記第2電源装置が接続されたときに、前記第1接続部に入力された電力の前記負荷部による消費を禁止し、前記充電部の出力を許容する。 Another aspect of the invention is a working machine. In this work machine, a first power supply device whose inter-terminal voltage is the first voltage value and a second power supply device whose inter-terminal voltage is the second voltage value are alternatively connected to receive power. a first connection part connected to a commercial power source and into which electric power is input; and a circuit part connected to the first connection part and the second connection part, the circuit part , a load section capable of consuming power input to the first connection section, and a charging section capable of outputting power input from the second connection section to the first connection section; , when the first power supply device is connected to the first connection portion, consumption of the power input to the first connection portion by the load section is allowed, and the second power supply device is connected to the first connection portion. When connected, consumption of the power input to the first connection part by the load part is prohibited, and output of the charging part is allowed.
本発明は「電気機器」や「電気機器システム」等と表現されてもよく、そのように表現されたものも本発明の態様として有効である。 The present invention may be expressed as an "electrical device" or "electrical device system," and such expressions are also effective as aspects of the present invention.
本発明によれば、作業性を向上させた作業機及び作業機システムを提供することができる。 According to the present invention, it is possible to provide a working machine and a working machine system with improved workability.
作業機の外観斜視図である。It is an external perspective view of a work machine. 図2(A),図2(B)は、作業機の外観図である。FIGS. 2(A) and 2(B) are external views of the working machine. 図3(A),図3(B)は、作業機の外観図である。3(A) and 3(B) are external views of the working machine. カバーを外した状態の作業機の外観斜視図である。FIG. 3 is an external perspective view of the working machine with the cover removed. 図5(A),図5(B)は、カバーを外した状態の作業機の外観図である。5(A) and 5(B) are external views of the working machine with the cover removed. 図6(A),図6(B)は、カバーを外した状態の作業機の外観図である。6(A) and 6(B) are external views of the working machine with the cover removed. 図7(A)は図6(A)のA-A線に沿う作業機の断面図であり、図7(B)は図6(A)のB-B線に沿う作業機の断面図である。7(A) is a cross-sectional view of the working machine along line AA in FIG. 6(A), and FIG. 7(B) is a cross-sectional view of the working machine along line BB in FIG. 6(A). be. 図8(A)はタンクの外観図であり、図8(B)はタンクの一部を拡大した断面図であり、図8(C)は変形例のタンクの一部を拡大した断面図である。FIG. 8(A) is an external view of the tank, FIG. 8(B) is an enlarged sectional view of a part of the tank, and FIG. 8(C) is an enlarged sectional view of a part of a modified tank. be. 作業機の全体回路ブロック図である。FIG. 2 is an overall circuit block diagram of the work machine. 全体回路ブロック図のうちの本体回路部を拡大して示す回路ブロック図である。FIG. 2 is a circuit block diagram showing an enlarged main body circuit section of the overall circuit block diagram. 全体回路ブロック図のうち、電池パックを用いた電力アシストを行う補助回路部であって、アシスト電源部を含む部分を拡大して示す回路ブロック図である。FIG. 2 is a circuit block diagram showing an enlarged portion of the entire circuit block diagram, which is an auxiliary circuit section that performs power assist using a battery pack and includes an assist power supply section. 補助回路部のうち充電部を含む部分を拡大して示す回路ブロック図である。FIG. 2 is a circuit block diagram showing an enlarged portion of the auxiliary circuit section including a charging section. 作業機における電池パックの充放電に係る回路ブロック図であり、端子間電圧を第1電圧値(36V)と第2電圧値(18V)とに切替可能な電池パックが接続されている場合の回路ブロック図である。It is a circuit block diagram related to charging and discharging of a battery pack in a work machine, and is a circuit when a battery pack that can switch the voltage between terminals between a first voltage value (36V) and a second voltage value (18V) is connected. It is a block diagram. 作業機における電池パックの充放電に係る回路ブロック図であり、端子間電圧が第2電圧値(18V)である電池パックが接続されている場合の回路ブロック図である。It is a circuit block diagram related to charging and discharging of a battery pack in a working machine, and is a circuit block diagram when a battery pack whose inter-terminal voltage is a second voltage value (18V) is connected. 作業機における電池パックの充放電に係る回路ブロック図であり、端子間電圧が第1電圧値(36V)である電池パックが接続されている場合の回路ブロック図である。It is a circuit block diagram concerning charging and discharging of the battery pack in a work machine, and is a circuit block diagram when the battery pack whose voltage between terminals is a 1st voltage value (36V) is connected. 作業機における充放電制御のフローチャートである。It is a flowchart of charge/discharge control in a working machine. 他の実施の形態の説明図である。It is an explanatory view of other embodiments.
図面を参照しながら、実施の形態の作業機である空気圧縮機について説明する。以下で説明する空気圧縮機は、空気を2段階で圧縮する圧縮空気生成部を有するレシプロ型エアコンプレッサである。空気圧縮機の用途は特に限定されないが、圧縮空気の圧力によって釘やねじを木材等の被加工物に打ち込む空気工具に圧縮空気を供給する供給源としての利用に適している。 An air compressor that is a working machine according to an embodiment will be described with reference to the drawings. The air compressor described below is a reciprocating air compressor that has a compressed air generation section that compresses air in two stages. Although the use of the air compressor is not particularly limited, it is suitable for use as a supply source for supplying compressed air to an air tool that uses the pressure of compressed air to drive nails or screws into workpieces such as wood.
<全体構成について>図1は、作業機(空気圧縮機)1の外観斜視図である。図2(A)は図1の矢印AR1から見た空気圧縮機1の外観図であり、図2(B)は図1の矢印AR2から見た空気圧縮機1の外観図であり、図3(A)は図1の矢印AR4から見た空気圧縮機1の外観図であり、図3(B)は図1の矢印AR3から見た空気圧縮機1の外観図である。 <About the overall configuration> FIG. 1 is an external perspective view of a working machine (air compressor) 1. 2(A) is an external view of the air compressor 1 seen from the arrow AR1 in FIG. 1, FIG. 2(B) is an external view of the air compressor 1 seen from the arrow AR2 in FIG. (A) is an external view of the air compressor 1 seen from arrow AR4 in FIG. 1, and FIG. 3(B) is an external view of the air compressor 1 seen from arrow AR3 in FIG.
空気圧縮機1は、カバー2と、複数のタンク51,52,53,54と、外部の商用電源(AC電源)のコンセントに接続される電源コード58とを有する。タンク51,52,53,54は、実質的に同一の形状及び寸法を有する。尚、以下の説明では、タンク51,52,53,54を特に区別しないときには、タンク50として総称する場合がある。 The air compressor 1 includes a cover 2, a plurality of tanks 51, 52, 53, and 54, and a power cord 58 connected to an external commercial power source (AC power source). Tanks 51, 52, 53, 54 have substantially the same shape and dimensions. In addition, in the following description, when the tanks 51, 52, 53, and 54 are not particularly distinguished, they may be collectively referred to as the tank 50.
カバー2は、後述するように空気圧縮機1が有する構成を取り囲むタンク50の隙間を覆っている。カバー2は、例えば金属製あるいは樹脂製のカバーであり、4つの側面カバー2a,2b,2c,2dと、上面カバー2eと、下面カバー2fとを有する。側面カバー2aは、タンク51とタンク52との間に設けられる(図1,図2(A),図3(A)参照)。側面カバー2bは、タンク52とタンク53との間に設けられる(図1,図2(B),図3(A)参照)。側面カバー2cは、タンク53とタンク54との間に設けられる(図3(A),図3(B)参照)。側面カバー2dは、タンク54とタンク51との間に設けられる(図3(A)参照)。換言すると、4つの側面カバー2a,2b,2c,2dの間からタンク50が部分的に露出している。一方で、4つの側面カバー2a,2b,2c,2dとタンク50とは協働して、圧縮空気生成部10の全体に対して前後左右方向に重なるように配置されており、4つの側面カバー2a,2b,2c,2d及びタンク50の外側から前後左右方向視で圧縮空気生成部10は視認不能である。尚、カバー2には、詳細を後述するカプラ61、減圧弁62、圧力計63、電池パック67,68等に対する作業者のアクセスを確保する開口部が適宜形成されている。 The cover 2 covers a gap in a tank 50 surrounding the structure of the air compressor 1, as will be described later. The cover 2 is made of metal or resin, for example, and includes four side covers 2a, 2b, 2c, and 2d, a top cover 2e, and a bottom cover 2f. The side cover 2a is provided between the tank 51 and the tank 52 (see FIGS. 1, 2(A), and 3(A)). The side cover 2b is provided between the tank 52 and the tank 53 (see FIGS. 1, 2(B), and 3(A)). The side cover 2c is provided between the tank 53 and the tank 54 (see FIGS. 3(A) and 3(B)). The side cover 2d is provided between the tank 54 and the tank 51 (see FIG. 3(A)). In other words, the tank 50 is partially exposed between the four side covers 2a, 2b, 2c, and 2d. On the other hand, the four side covers 2a, 2b, 2c, 2d and the tank 50 are arranged so as to overlap in the front, back, right and left directions with respect to the entire compressed air generation section 10, and the four side covers The compressed air generation unit 10 is not visible when viewed from the outside of the tanks 2a, 2b, 2c, 2d and the tank 50 in the front, rear, left and right directions. Note that openings are appropriately formed in the cover 2 to ensure the operator's access to a coupler 61, a pressure reducing valve 62, a pressure gauge 63, battery packs 67, 68, etc., which will be described in detail later.
上面カバー2eは、タンク50の上端に設けられる。上面カバー2eには、空気圧縮機1の運転や動作モードの切り替え等を行う操作部2gと、タンク50内の圧力等を表示する表示部2hとが設けられる(図1,図3(A)参照)。下面カバー2fは、側面カバー2a,2b,2c,2dの下端及びタンク50の下端に設けられる。尚、上面カバー2eは後述する圧縮空気生成部10の全体に対して上下方向に重なるように配置されており、上面カバー2eの上方から圧縮空気生成部10は視認不能である。同様に、下面カバー2fは後述する圧縮空気生成部10の全体に対して上下方向に重なるように配置されており、下面カバー2fの下方から圧縮空気生成部10は視認不能である。 The top cover 2e is provided at the top end of the tank 50. The top cover 2e is provided with an operation section 2g for operating the air compressor 1, switching operation modes, etc., and a display section 2h for displaying the pressure inside the tank 50, etc. (FIGS. 1 and 3(A)) reference). The lower cover 2f is provided at the lower ends of the side covers 2a, 2b, 2c, and 2d and at the lower end of the tank 50. Note that the top cover 2e is arranged to vertically overlap the entire compressed air generation section 10, which will be described later, and the compressed air generation section 10 is not visible from above the top cover 2e. Similarly, the lower cover 2f is arranged to vertically overlap the entire compressed air generating section 10, which will be described later, and the compressed air generating section 10 is not visible from below the lower cover 2f.
尚、以下の説明では、側面カバー2aが設けられる側を前面あるいは前方、側面カバー2bが設けられる側を左面あるいは左側、側面カバー2cが設けられる側を後面あるいは後方、側面カバー2dが設けられる側を右面あるいは右側と呼ぶ。また、上面カバー2eが設けられる側を上面あるいは上方、下面カバー2fが設けられる側を下面あるいは下方と呼ぶ。 In the following description, the side where the side cover 2a is provided is the front or front, the side where the side cover 2b is provided is the left or left side, the side where the side cover 2c is provided is the rear or rear, and the side where the side cover 2d is provided. is called the right side or right side. Further, the side where the top cover 2e is provided is called the top surface or upper side, and the side where the bottom cover 2f is provided is called the bottom surface or bottom.
図4は、図1の空気圧縮機1からカバー2を外した状態の空気圧縮機1の外観斜視図である。図5(A)は図4に示される空気圧縮機1を前方から見たときの外観図であり、図5(B)は図4に示される空気圧縮機1を左側から見たときの外観図である。図6(A)は図4に示される空気圧縮機1を上方から見たときの外観図であり、図6(B)は図4に示される空気圧縮機1を後方から見たときの外観図である。図7(A)は図6(A)のA-A線に沿う空気圧縮機1の断面図であり、図7(B)は図6AのB-B線に沿う空気圧縮機1の断面図である。 FIG. 4 is an external perspective view of the air compressor 1 shown in FIG. 1 with the cover 2 removed. 5(A) is an external view of the air compressor 1 shown in FIG. 4 when viewed from the front, and FIG. 5(B) is an external view of the air compressor 1 shown in FIG. 4 when viewed from the left side. It is a diagram. 6(A) is an external view of the air compressor 1 shown in FIG. 4 when viewed from above, and FIG. 6(B) is an external view of the air compressor 1 shown in FIG. 4 when viewed from the rear. It is a diagram. 7(A) is a sectional view of the air compressor 1 taken along the line AA in FIG. 6(A), and FIG. 7(B) is a sectional view of the air compressor 1 taken along the line BB in FIG. 6A. It is.
空気圧縮機1は、上記のタンク50に加えて、圧縮空気生成部10と、制御部17と、電力制御部18と、カプラ61と、連結部64,65と、ドレン排出機構70とを有する。 In addition to the tank 50 described above, the air compressor 1 includes a compressed air generation section 10, a control section 17, a power control section 18, a coupler 61, connecting sections 64 and 65, and a drain discharge mechanism 70. .
<圧縮空気生成部について>図7(A),図7(B)に示されるように、圧縮空気生成部10は、第1圧縮部11と、第2圧縮部12と、クランクケース13と、モータ14と、プロペラファン15とを有する。圧縮空気生成部10は、クランクケース13の下方に取り付けられた支持部材59が各タンク51,52,53,54と連結することにより、タンク51,52,53,54に取り囲まれるように配置される。 <About the compressed air generation section> As shown in FIGS. 7(A) and 7(B), the compressed air generation section 10 includes a first compression section 11, a second compression section 12, a crankcase 13, It has a motor 14 and a propeller fan 15. The compressed air generation section 10 is arranged so as to be surrounded by the tanks 51, 52, 53, 54 by connecting the support member 59 attached below the crankcase 13 with each tank 51, 52, 53, 54. Ru.
モータ14は、ロータ14aとステータ14bとを有するブラシレスモータであり、ロータ14aの回転により駆動力を発生させる駆動部である。モータ14のロータ14aは出力軸14cに取り付けられている。出力軸14cは、載置面(地面や床面)に平行な平面上で前後方向に沿って回転可能に支持されている。 The motor 14 is a brushless motor having a rotor 14a and a stator 14b, and is a drive unit that generates driving force by rotation of the rotor 14a. A rotor 14a of the motor 14 is attached to an output shaft 14c. The output shaft 14c is rotatably supported in the front-rear direction on a plane parallel to the mounting surface (ground or floor surface).
第1圧縮部11は外気を圧縮し、第2圧縮部12は第1圧縮部11により圧縮された外気(空気)をさらに圧縮する。すなわち、第1圧縮部11は低圧用の圧縮部であり、第2圧縮部12は高圧用の圧縮部である。 The first compression section 11 compresses outside air, and the second compression section 12 further compresses the outside air (air) compressed by the first compression section 11. That is, the first compression section 11 is a compression section for low pressure, and the second compression section 12 is a compression section for high pressure.
第1圧縮部11と第2圧縮部12とは、図7(A)に示されるように、クランクケース13を貫通するモータ14の出力軸14cを挟んで互いに対向する位置(すなわち、出力軸14cを挟んで左右方向)に設けられている。より具体的には、第1圧縮部11と第2圧縮部12とは、出力軸14cの回転方向において180度異なる位置に配置され、クランクケース13を挟んで互いに対向している。換言すると、第1圧縮部11と第2圧縮部12との間にクランクケース13が設けられている。 As shown in FIG. 7A, the first compression section 11 and the second compression section 12 are located at positions facing each other across the output shaft 14c of the motor 14 passing through the crankcase 13 (i.e., the output shaft 14c (in the left and right direction). More specifically, the first compression section 11 and the second compression section 12 are arranged at 180 degrees different positions in the rotational direction of the output shaft 14c, and face each other with the crankcase 13 in between. In other words, the crankcase 13 is provided between the first compression section 11 and the second compression section 12.
クランクケース13を貫通している出力軸14cは、複数の軸受けによって回転自在に支持されている。図7(B)に示されるように、プロペラファン15は、クランクケース13から突出している出力軸14cの一端(後方側)に装着される。プロペラファン15は、主に圧縮空気生成部10(モータ14やクランクケース13等)を冷却するための冷却風を生成する。 The output shaft 14c passing through the crankcase 13 is rotatably supported by a plurality of bearings. As shown in FIG. 7(B), the propeller fan 15 is attached to one end (rear side) of the output shaft 14c protruding from the crankcase 13. The propeller fan 15 mainly generates cooling air for cooling the compressed air generating section 10 (motor 14, crankcase 13, etc.).
<第1圧縮部及び第2圧縮部の構成について>図7(A)に示されるように、第1圧縮部11は、第1シリンダ20と、第1シリンダヘッド21と、第1シリンダ20内に往復可能に収容された第1ピストン22と、を含む。第2圧縮部12は、第2シリンダ30と、第2シリンダヘッド31と、第2シリンダ30内に往復可能に収容された第2ピストン32と、を含む。第1圧縮部11に含まれる第1ピストン22と、第2圧縮部12に含まれる第2ピストン32とは、モータ14によって駆動される。つまり、モータ14は、第1圧縮部11及び第2圧縮部12の共通の駆動源である。 <Regarding the configuration of the first compression section and the second compression section> As shown in FIG. 7(A), the first compression section 11 includes a first cylinder 20, a first cylinder head 21, and a The first piston 22 is reciprocatably housed in the first piston 22 . The second compression section 12 includes a second cylinder 30, a second cylinder head 31, and a second piston 32 reciprocatably housed within the second cylinder 30. The first piston 22 included in the first compression section 11 and the second piston 32 included in the second compression section 12 are driven by the motor 14. That is, the motor 14 is a common driving source for the first compression section 11 and the second compression section 12.
出力軸14cは回転運動を第1ピストン22の往復運動に変換するために、第1ピストン22には、第1コネクティングロッド23の一端側が結合されており、第1コネクティングロッド23の他端側が出力軸14c上に設けられている偏心カムに回転可能に結合されている。すなわち、第1コネクティングロッド23は、クランクケース13と第1シリンダ20とに跨り、出力軸14cと第1ピストン22とを連結している。 In order for the output shaft 14c to convert rotational motion into reciprocating motion of the first piston 22, one end side of a first connecting rod 23 is coupled to the first piston 22, and the other end side of the first connecting rod 23 is an output shaft. It is rotatably coupled to an eccentric cam provided on shaft 14c. That is, the first connecting rod 23 spans the crankcase 13 and the first cylinder 20, and connects the output shaft 14c and the first piston 22.
出力軸14cの回転運動を第2ピストン32の往復運動に変換するために、第2ピストン32には、第2コネクティングロッド33の一端側が結合されており、第2コネクティングロッド33の他端側は出力軸14c上に設けられている他の偏心カムに回転可能に結合されている。すなわち、第2コネクティングロッド33は、クランクケース13と第2シリンダ30とに跨り、出力軸14cと第2ピストン32とを連結している。 In order to convert the rotational motion of the output shaft 14c into reciprocating motion of the second piston 32, one end side of a second connecting rod 33 is connected to the second piston 32, and the other end side of the second connecting rod 33 is connected to the second piston 32. It is rotatably coupled to another eccentric cam provided on the output shaft 14c. That is, the second connecting rod 33 spans the crankcase 13 and the second cylinder 30, and connects the output shaft 14c and the second piston 32.
<第1圧縮部及び第2圧縮部の動作について>モータ14の出力軸14cの回転運動は、上記偏心カムやコネクティングロッド等からなる変換機構によって往復運動に変換されて第1ピストン22及び第2ピストン32に伝達される。換言すると、モータ14から出力される回転運動力は、変換機構によって往復運動に変換され、第1ピストン22及び第2ピストン32に入力される。この結果、第1ピストン22及び第2ピストン32は、出力軸14cの方向(前後方向)と交差する方向(左右方向)に往復運動する。 <Regarding the operation of the first compression section and the second compression section> The rotational motion of the output shaft 14c of the motor 14 is converted into a reciprocating motion by the conversion mechanism consisting of the eccentric cam, connecting rod, etc. is transmitted to the piston 32. In other words, the rotational force output from the motor 14 is converted into reciprocating motion by the conversion mechanism, and is input to the first piston 22 and the second piston 32. As a result, the first piston 22 and the second piston 32 reciprocate in a direction (left-right direction) that intersects the direction of the output shaft 14c (front-back direction).
上記の2つの偏心カムは、第1ピストン22及び第2ピストン32の移動方向に対して互いに同じ向きに偏心している。したがって、第1ピストン22が第1シリンダ20の上室を圧縮する方向に移動するとき、第2ピストン32は第2シリンダ30の上室に気体(空気)が流入する方向に移動する。一方、第2ピストン32が第2シリンダ30の上室を圧縮する方向に移動するとき、第1ピストン22は第1シリンダ20の上室に気体(空気)が流入される方向に移動する。 The above two eccentric cams are eccentric in the same direction relative to the moving direction of the first piston 22 and the second piston 32. Therefore, when the first piston 22 moves in a direction that compresses the upper chamber of the first cylinder 20, the second piston 32 moves in a direction that causes gas (air) to flow into the upper chamber of the second cylinder 30. On the other hand, when the second piston 32 moves in a direction that compresses the upper chamber of the second cylinder 30, the first piston 22 moves in a direction that allows gas (air) to flow into the upper chamber of the first cylinder 20.
第1シリンダヘッド21及び第2シリンダヘッド31の内部には、それぞれバッファ室が設けられている。さらに、第1シリンダ20の上室と第1シリンダヘッド21内のバッファ室との間、第2シリンダ30と第2シリンダヘッド31内のバッファ室との間には、それぞれ逆止弁が設けられている。第1ピストン22が第1シリンダ20の上室を圧縮する方向に移動し、当該上室の空気の圧力が所定圧力よりも高くなると、第1シリンダ20の上室とバッファ室との間にある逆止弁が開く。すると、第1ピストン22によって圧縮された空気は、第1シリンダ20と第2シリンダ30とを連通させている配管を介して第2シリンダ30の上室に送られる。 Buffer chambers are provided inside the first cylinder head 21 and the second cylinder head 31, respectively. Further, check valves are provided between the upper chamber of the first cylinder 20 and the buffer chamber in the first cylinder head 21, and between the second cylinder 30 and the buffer chamber in the second cylinder head 31. ing. When the first piston 22 moves in the direction of compressing the upper chamber of the first cylinder 20 and the pressure of the air in the upper chamber becomes higher than a predetermined pressure, the air is between the upper chamber of the first cylinder 20 and the buffer chamber. The check valve opens. Then, the air compressed by the first piston 22 is sent to the upper chamber of the second cylinder 30 via the pipe that communicates the first cylinder 20 and the second cylinder 30.
その後、第2ピストン32が第2シリンダ30の上室を圧縮する方向に移動し、当該上室内の空気の圧力が所定圧力よりも高くなると、第2シリンダ30の上室とバッファ室との間にある逆止弁が開く。すると、第2ピストン32によって圧縮された空気は、第2シリンダ30とタンク51とを連通させている配管19(図5(A),図6(A),図7(B)参照)を介してタンク51へ送られる。尚、4本のタンク51,52,53、54は、配管を介して互いに連通している。よって、圧縮空気生成部10によって生成された圧縮空気は、タンク51に送られた後、他のタンク52,53,54に自動的かつ同時に分配される。この結果、全てのタンク50の内圧は均等に保たれる。尚、各タンク50を接続する配管の詳細については後述する。 Thereafter, when the second piston 32 moves in the direction of compressing the upper chamber of the second cylinder 30 and the pressure of the air in the upper chamber becomes higher than a predetermined pressure, the gap between the upper chamber of the second cylinder 30 and the buffer chamber increases. The check valve at opens. Then, the air compressed by the second piston 32 flows through the pipe 19 (see FIGS. 5(A), 6(A), and 7(B)) that communicates the second cylinder 30 and the tank 51. and sent to tank 51. Note that the four tanks 51, 52, 53, and 54 communicate with each other via piping. Therefore, the compressed air generated by the compressed air generation unit 10 is sent to the tank 51 and then automatically and simultaneously distributed to the other tanks 52, 53, and 54. As a result, the internal pressures of all tanks 50 are kept equal. Note that the details of the piping connecting each tank 50 will be described later.
<タンクについて>図8(A)は、タンク50の外観図であり、図8(B)はタンク50の下部を拡大した断面図である。図8(A)に示されるように、それぞれのタンク50は、一対の端壁50a,50bと、側壁50cとを有する。側壁50cは筒状に形成され、側壁50cの一方側の端部には半球状の端壁50aが設けられ、他方側の端部には半球状の端壁50bが設けられる。 <About the tank> FIG. 8(A) is an external view of the tank 50, and FIG. 8(B) is an enlarged sectional view of the lower part of the tank 50. As shown in FIG. 8(A), each tank 50 has a pair of end walls 50a, 50b and a side wall 50c. The side wall 50c is formed into a cylindrical shape, and a hemispherical end wall 50a is provided at one end of the side wall 50c, and a hemispherical end wall 50b is provided at the other end.
タンク50では、側壁50cの中心軸57は一対の端壁50a、50bの中心(頂部)を通るように設定される。タンク50は、この中心軸57を上下方向に沿うように配置される。これにより、側壁50cは、上下方向に延びる筒状形状、すなわち上下方向の長さが前後左右方向の幅よりも大きい形状を有することとなる。 In the tank 50, the central axis 57 of the side wall 50c is set to pass through the center (top) of the pair of end walls 50a, 50b. The tank 50 is arranged along the central axis 57 in the vertical direction. Thereby, the side wall 50c has a cylindrical shape extending in the vertical direction, that is, a shape in which the length in the vertical direction is larger than the width in the front, rear, left and right directions.
一対の端壁50a,50bは側壁50cの上下方向を閉塞する。具体的には、端壁50aは、半球状の頂部が側壁50cの逆側となるように設けられることにより、側壁50cの下方側を閉塞し、その頂部が下方に突出する。端壁50bは、半球状の頂部が側壁50cの逆側となるように設けられることにより、側壁50cの上方側を閉塞し、その頂部は上方に突出する。端壁50aの頂部近傍(すなわち、タンク50の下端)には、脚部80が設けられる。 A pair of end walls 50a and 50b close the side wall 50c in the vertical direction. Specifically, the end wall 50a is provided such that the hemispherical top is on the opposite side of the side wall 50c, thereby closing the lower side of the side wall 50c, and the top protrudes downward. The end wall 50b is provided so that the hemispherical top is on the opposite side of the side wall 50c, thereby closing the upper side of the side wall 50c, and the top projects upward. A leg portion 80 is provided near the top of the end wall 50a (ie, at the lower end of the tank 50).
図4に示されるように、4本のタンク51,52,53,54は、それぞれの中心軸57a,57b,57c,57dが互いに平行又は略平行に圧縮空気生成部10の周囲に配置され、圧縮空気生成部10を取り囲んでいる。具体的には、タンク51の中心軸57aは、他のタンク52,53,54のそれぞれの中心軸57b,57c,57dと略平行である。同様に、タンク52の中心軸57bは、他のタンク51,53,54のそれぞれの中心軸57a,57c,57dと略平行である。タンク53の中心軸57cは、他のタンク51,52,54のそれぞれの中心軸57a,57b,57dと略平行である。タンク54の中心軸57dは、他のタンク51,52,53のそれぞれの中心軸57a,57b,57cと略平行である。 As shown in FIG. 4, the four tanks 51, 52, 53, 54 are arranged around the compressed air generation unit 10 with their respective central axes 57a, 57b, 57c, 57d parallel or substantially parallel to each other, It surrounds the compressed air generation section 10. Specifically, the central axis 57a of the tank 51 is approximately parallel to the central axes 57b, 57c, and 57d of the other tanks 52, 53, and 54, respectively. Similarly, the central axis 57b of the tank 52 is approximately parallel to the central axes 57a, 57c, and 57d of the other tanks 51, 53, and 54, respectively. The central axis 57c of the tank 53 is approximately parallel to the central axes 57a, 57b, and 57d of the other tanks 51, 52, and 54, respectively. The center axis 57d of the tank 54 is approximately parallel to the center axes 57a, 57b, 57c of the other tanks 51, 52, 53, respectively.
また、タンク51,54の中心軸57a,57dは、モータ14の出力軸14cに対して直交する。すなわち、中心軸57a,57dは、上下方向に沿っている。このことは、タンク52,53の中心軸57b,57cもモータ14の出力軸14cに直交する、すなわち上下方向に沿っていることを意味する。すなわち、全てのタンク51,52,53,54の中心軸57a,57b,57c,57dは、出力軸14cと直交し、上下方向に沿っている。 Further, the central axes 57a and 57d of the tanks 51 and 54 are perpendicular to the output shaft 14c of the motor 14. That is, the central axes 57a and 57d are along the vertical direction. This means that the central axes 57b, 57c of the tanks 52, 53 are also perpendicular to the output shaft 14c of the motor 14, that is, along the vertical direction. That is, the central axes 57a, 57b, 57c, and 57d of all the tanks 51, 52, 53, and 54 are perpendicular to the output shaft 14c and extend in the vertical direction.
タンク51,52,53,54は、第1圧縮部11及び第2圧縮部12を有する圧縮空気生成部10よりも下方及び上方に突出するように配置される。 The tanks 51, 52, 53, and 54 are arranged so as to protrude below and above the compressed air generation section 10 having the first compression section 11 and the second compression section 12.
図7(A)に示されるように、タンク51は第1圧縮部11よりも前方側に配置され、タンク54は第1圧縮部11よりも後方側に配置される。換言すると、第1圧縮部11は、隣り合うタンク51とタンク54との間に配置される。また、図7(A)に示されるように、タンク52は第2圧縮部12よりも前方側に配置され、図7(B)に示されるように。タンク53は第2圧縮部12よりも後方側に配置される。換言すると、第2圧縮部12は、隣り合うタンク52とタンク53との間に配置される。 As shown in FIG. 7(A), the tank 51 is arranged on the front side of the first compression section 11, and the tank 54 is arranged on the rear side of the first compression section 11. In other words, the first compression section 11 is arranged between the adjacent tanks 51 and 54. Further, as shown in FIG. 7(A), the tank 52 is disposed further forward than the second compression section 12, and as shown in FIG. 7(B). The tank 53 is arranged on the rear side of the second compression section 12. In other words, the second compression section 12 is arranged between the adjacent tanks 52 and 53.
また、図6(A)に示されるように、仮想矩形60を、タンク51,52に外接する第1仮想線A1と、タンク52,53に外接する第2仮想線A2と、タンク53,54に外接する第3仮想線A3と、タンク54,51に外接する第4仮想線A4からなるものとする。この仮想矩形60は、上下方向視において4本のタンク51,52,53,54で囲まれる領域である。換言すると、仮想矩形60が、空気圧縮機1を載置面に載置したときの占有領域に相当する領域となる。 Further, as shown in FIG. 6A, the virtual rectangle 60 is defined by a first virtual line A1 circumscribing the tanks 51 and 52, a second virtual line A2 circumscribing the tanks 52 and 53, and a second virtual line A2 circumscribing the tanks 53 and 54. , and a fourth imaginary line A4 that circumscribes the tanks 54 and 51. This virtual rectangle 60 is an area surrounded by four tanks 51, 52, 53, and 54 when viewed in the vertical direction. In other words, the virtual rectangle 60 corresponds to the occupied area when the air compressor 1 is placed on the mounting surface.
上述したように、第1圧縮部11及び第2圧縮部12は、隣り合うタンク50の間に配置されていることから、第1圧縮部11及び第2圧縮部12は、仮想矩形60の内部に配置される、と言うことができる。換言すると、第1圧縮部11及び第2圧縮部12は、上下方向視でタンク50に取り囲まれるように配置される。また、空気圧縮機1が有する構成は、仮想矩形60の内部に配置される。すなわち、空気圧縮機1が有する構成は、上下方向視でタンク50に取り囲まれるように配置される。 As described above, since the first compression section 11 and the second compression section 12 are arranged between the adjacent tanks 50, the first compression section 11 and the second compression section 12 are arranged inside the virtual rectangle 60. It can be said that it is placed in In other words, the first compression section 11 and the second compression section 12 are arranged so as to be surrounded by the tank 50 when viewed in the vertical direction. Further, the configuration that the air compressor 1 has is arranged inside the virtual rectangle 60. That is, the configuration of the air compressor 1 is arranged so as to be surrounded by the tank 50 when viewed in the vertical direction.
上記のように配置されているタンク51,52,53,54は、複数の連結フレームを介して、直接的または間接的に連結されている。図5(A)に示されるように、タンク51とタンク52とは、連結フレーム55aを介して互いに連結されている。図5(B)に示されるように、タンク52とタンク53とは、一対の連結フレーム55b,55cを介して互いに連結されている。図6(B)に示されるように、タンク53とタンク54とは、連結フレーム55dを介して互いに連結されている。タンク54とタンク51とは、図5(B)に示されるタンク52及びタンク53と同様にして、連結フレームを介して互いに連結されている。 The tanks 51, 52, 53, and 54 arranged as described above are connected directly or indirectly via a plurality of connection frames. As shown in FIG. 5(A), the tank 51 and the tank 52 are connected to each other via a connection frame 55a. As shown in FIG. 5(B), the tank 52 and the tank 53 are connected to each other via a pair of connection frames 55b and 55c. As shown in FIG. 6(B), the tank 53 and the tank 54 are connected to each other via a connecting frame 55d. Tank 54 and tank 51 are connected to each other via a connection frame in the same way as tank 52 and tank 53 shown in FIG. 5(B).
<脚部について>図8(B)に示されるように、タンク50の下方側の端壁50aの下面には、脚部80が設けられる。脚部80は、取付部81と、固定部82と、ゴム脚83とを有する。取付部81は、例えば金属製のボス等の筒状の部材であり、タンク50の端壁50a左右前後方向の中央部(すなわち、中心軸57が通過する位置)に形成された開口に溶接固定される。取付部81には、外側面と内側面とを連通する溝や穴が形成されている。また、取付部81の内側面にはねじ溝が形成されている。固定部82は、例えば金属製のカプラであり、取付部81の内側面に、例えばOリング等のシール部材を介してねじ込まれて固定される。ゴム脚83は、例えばゴム等の弾性部材により形成され、固定部82の下方側にねじ留め等により装着される。すなわち、取付部81と固定部82とは、ゴム脚83を端壁50aに取り付ける固定部材である。 <Regarding Legs> As shown in FIG. 8(B), legs 80 are provided on the lower surface of the lower end wall 50a of the tank 50. The leg portion 80 has a mounting portion 81, a fixing portion 82, and a rubber leg 83. The mounting part 81 is a cylindrical member such as a metal boss, for example, and is fixed by welding to an opening formed in the center of the end wall 50a of the tank 50 in the left-right and front-back directions (i.e., the position through which the central axis 57 passes). be done. The mounting portion 81 has grooves and holes that communicate between the outer surface and the inner surface. Further, a thread groove is formed on the inner surface of the mounting portion 81. The fixing part 82 is, for example, a metal coupler, and is screwed into and fixed to the inner surface of the attachment part 81 via a sealing member such as an O-ring. The rubber leg 83 is formed of an elastic member such as rubber, and is attached to the lower side of the fixing part 82 by screwing or the like. That is, the attachment part 81 and the fixing part 82 are fixing members that attach the rubber leg 83 to the end wall 50a.
4つのタンク51,52,53,54の下方側の端壁50aにはそれぞれゴム脚83が設けられていることから、空気圧縮機1の底部には4つのゴム脚83が設けられていることになる。これにより、ゴム脚83は、端壁50aの下面に取り付けられて載置面(地面や床面)に対して弾性的に当接する。通常、空気圧縮機1は、4つのゴム脚83が載置面(地面や床等)に接するように縦置きされる。この場合、図7(A)に示すように、第1ピストン22及び第2ピストン32の往復運動方向(摺動方向)は、載置面に対して平行又は略平行となる。 Since rubber legs 83 are provided on the lower end walls 50a of the four tanks 51, 52, 53, and 54, four rubber legs 83 are provided on the bottom of the air compressor 1. become. Thereby, the rubber legs 83 are attached to the lower surface of the end wall 50a and elastically abut against the mounting surface (ground or floor surface). Usually, the air compressor 1 is placed vertically so that the four rubber legs 83 are in contact with a mounting surface (ground, floor, etc.). In this case, as shown in FIG. 7(A), the reciprocating direction (sliding direction) of the first piston 22 and the second piston 32 is parallel or substantially parallel to the mounting surface.
<制御部について>図7(A)に示されるように、制御部17は、クランクケース13の下方に設けられた金属製のボックス内に収容されている制御基板を有する。制御基板には、モータ14をインバータ制御するために必要なインバータ回路の他、電源コード58を介して商用電源から供給される電圧を昇圧してインバータ回路に供給する昇圧回路、空気圧縮機1を統括的に制御するために必要な各種電子部品等が搭載されている。制御部17は、左右方向において、タンク51とタンク52との間、及びタンク53とタンク54との間に設けられる。制御部17のボックスは、支持部材59の下方側にボルト留めされている。これにより、制御部17は、仮想矩形60の内側、すなわち上下方向視で複数のタンク51,52,53,54に取り囲まれて配置される。また、複数のタンク51,52,53,54が制御部17よりも下方に突出するように制御部17が配置される。 <About the Control Unit> As shown in FIG. 7(A), the control unit 17 includes a control board housed in a metal box provided below the crankcase 13. The control board includes an inverter circuit necessary for inverter control of the motor 14, a booster circuit that boosts the voltage supplied from the commercial power source via the power cord 58, and supplies the air compressor 1 to the inverter circuit. It is equipped with various electronic components necessary for comprehensive control. The control unit 17 is provided between the tank 51 and the tank 52 and between the tank 53 and the tank 54 in the left-right direction. The box of the control unit 17 is bolted to the lower side of the support member 59. Thereby, the control unit 17 is arranged inside the virtual rectangle 60, that is, surrounded by the plurality of tanks 51, 52, 53, and 54 when viewed in the vertical direction. Further, the control section 17 is arranged such that the plurality of tanks 51, 52, 53, and 54 protrude below the control section 17.
<電力制御部18について>図6(A)に示されるように、電力制御部18は、クランクケース13の上方に設けられた金属製のボックス内に収容されている回路基板を含む。電力制御部18の回路基板には、電池パック67,68を制御する電池用電源回路が設けられており、具体的には、電池パック67,68から供給された電力を昇圧する昇圧回路と、電源コード58を介して商用電源から供給される電力によって電池パック67,68を充電する充電回路、昇圧回路及び前記充電回路を制御する制御基板とを含む。電力制御部18は、左右方向において、タンク51とタンク52との間、及びタンク53とタンク54との間に設けられる。電力制御部18のボックスは、連結フレーム55dにボルト留めされている。 <About the power control unit 18> As shown in FIG. 6(A), the power control unit 18 includes a circuit board housed in a metal box provided above the crankcase 13. The circuit board of the power control unit 18 is provided with a battery power supply circuit that controls the battery packs 67 and 68. Specifically, a booster circuit that boosts the power supplied from the battery packs 67 and 68, It includes a charging circuit that charges battery packs 67 and 68 with power supplied from a commercial power source via a power cord 58, a booster circuit, and a control board that controls the charging circuit. The power control unit 18 is provided between the tank 51 and the tank 52 and between the tank 53 and the tank 54 in the left-right direction. The box of the power control unit 18 is bolted to the connection frame 55d.
<カプラについて>図5(A)に示されるように、空気圧縮機1は、その前方側に、タンク50から空気工具へ圧縮空気が取り出される空気取出口であるカプラ61を有する。カプラ61は、タンク51とタンク52との間に設けられる。カプラ61は、その前方端部が図6(A)に示される第1仮想線A1よりも後方側、すなわち仮想矩形60の内側に位置するように配置される。すなわち、カプラ61は、上下方向視で複数のタンク51,52,53,54に取り囲まれて配置される。また、複数のタンク51,52,53,54がカプラ61よりも上方に突出するようにカプラ61が配置される(図5(A),図5(B),図6(B)、図7(A),図7(B)参照)。 <About the coupler> As shown in FIG. 5(A), the air compressor 1 has a coupler 61 on its front side, which is an air outlet through which compressed air is taken out from the tank 50 to the air tool. Coupler 61 is provided between tank 51 and tank 52. The coupler 61 is arranged so that its front end is located on the rear side of the first imaginary line A1 shown in FIG. 6(A), that is, on the inside of the imaginary rectangle 60. That is, the coupler 61 is surrounded by the plurality of tanks 51, 52, 53, and 54 when viewed in the vertical direction. In addition, the coupler 61 is arranged such that the plurality of tanks 51, 52, 53, and 54 protrude above the coupler 61 (Fig. 5(A), Fig. 5(B), Fig. 6(B), Fig. 7 (A), see FIG. 7(B)).
カプラ61は配管95によってタンク51と接続されている。このカプラ61を介して、タンク51から圧縮空気が取り出される。尚、図5(A)には、4個のカプラ61が上下方向に沿って配置されている場合が示されているが、カプラ61の個数は4個に限定されず、また、複数のカプラ61が配置される方向は上下方向に限定されない。 Coupler 61 is connected to tank 51 via piping 95. Compressed air is taken out from the tank 51 via the coupler 61. Although FIG. 5A shows a case in which four couplers 61 are arranged in the vertical direction, the number of couplers 61 is not limited to four, and a plurality of couplers 61 may be arranged in the vertical direction. The direction in which 61 is arranged is not limited to the vertical direction.
カプラ61の近傍には、カプラ61から吐出される圧縮空気の圧力を調節する調整部である減圧弁62が設けられている。減圧弁62は、その前方端部が第1仮想線A1よりも後方側、すなわち仮想矩形60の内側に位置するように配置される。すなわち、減圧弁62は、上下方向視で複数のタンク51,52,53,54に取り囲まれて配置される。また、複数のタンク51,52,53,54が減圧弁62よりも上方に突出するように減圧弁62が配置される(図5(A),図5(B),図6(B)、図7(A),図7(B)参照)。減圧弁62により調節された圧縮空気の圧力は、減圧弁62の近傍に設けられている圧力計63によって計測され、表示される。 A pressure reducing valve 62 is provided near the coupler 61, which is an adjustment section that adjusts the pressure of compressed air discharged from the coupler 61. The pressure reducing valve 62 is arranged so that its front end is located on the rear side of the first imaginary line A1, that is, inside the imaginary rectangle 60. That is, the pressure reducing valve 62 is surrounded by the plurality of tanks 51, 52, 53, and 54 when viewed in the vertical direction. Further, the pressure reducing valve 62 is arranged such that the plurality of tanks 51, 52, 53, 54 protrude above the pressure reducing valve 62 (FIG. 5(A), FIG. 5(B), FIG. 6(B), (See FIGS. 7(A) and 7(B)). The pressure of the compressed air regulated by the pressure reducing valve 62 is measured and displayed by a pressure gauge 63 provided near the pressure reducing valve 62.
<連結部について>図5(A)に示されるように、空気圧縮機1は、その前方側に、外部の作業機(空気圧縮機)と連結するコネクタである2つの連結部64,65を有する。連結部64,65は、タンク51とタンク52との間に左右方向に並んで配置され、配管96によってタンク51に接続される。連結部64には、外部の作業機から供給される圧縮空気、あるいは外部の作業機へ提供する圧縮空気が通過する流路(例えばホース等)が接続される。連結部65には、外部の他の作業機から供給される圧縮空気、あるいは外部の他の作業機へ提供する圧縮空気が通過する流路(例えばホース等)が接続される。すなわち、空気圧縮機1は2つの連結部64,65を有することにより、異なる2つの外部の作業機と接続することができる。尚、空気圧縮機1は2つの連結部64,65を有するものに限定されず、3個以上の連結部を有していてもよい。これにより、作業の規模や作業内容に応じて、1つの空気圧縮機1を3個以上の外部の作業機と接続させることができる。 <About connecting parts> As shown in FIG. 5(A), the air compressor 1 has two connecting parts 64 and 65 on its front side, which are connectors for connecting to an external work machine (air compressor). have The connecting parts 64 and 65 are arranged side by side in the left-right direction between the tank 51 and the tank 52, and are connected to the tank 51 by a pipe 96. A flow path (for example, a hose, etc.) through which compressed air supplied from an external working machine or compressed air provided to an external working machine passes is connected to the connecting part 64. A flow path (for example, a hose, etc.) through which compressed air supplied from another external working machine or compressed air provided to another external working machine passes is connected to the connecting portion 65. That is, the air compressor 1 can be connected to two different external working machines by having the two connecting parts 64 and 65. Note that the air compressor 1 is not limited to having two connecting portions 64 and 65, and may have three or more connecting portions. Thereby, one air compressor 1 can be connected to three or more external working machines depending on the scale and content of the work.
仮に連結部が1つのみの場合、2つの空気圧縮機のみしか連結することができない。具体的には、例えばそれぞれ1つの連結部のみを有する第1の空気圧縮機と第2の空気圧縮機とを用意したときに、第1の空気圧縮機の連結部には第2の空気圧縮機しか連結できない。一方で、実施の形態のように2つの連結部64,65が設けられる場合、数量の制限なく空気圧縮機を連結することができる。具体的には、例えばそれぞれ2つの連結部64,65を有する第1~第5の空気圧縮機を用意したときに、第1の空気圧縮機の連結部には第2の空気圧縮機と第3の空気圧縮機とを連結することができる。第2の空気圧縮機の連結部には、第1の空気圧縮機に加えて、第4の空気圧縮機を連結することができる。第3の空気圧縮機には、第1の空気圧縮機に加えて、第5の空気圧縮機を連結することができる。このように数量の制限なく空気圧縮機を連結することができることで、空気圧縮機1に連結されるタンク容量を増やし、使用可能な空気の量を増やすことが可能である。 If there is only one connection part, only two air compressors can be connected. Specifically, for example, when a first air compressor and a second air compressor each having only one connection part are prepared, the connection part of the first air compressor is connected to the second air compressor. Only machines can be connected. On the other hand, when two connecting portions 64 and 65 are provided as in the embodiment, air compressors can be connected without any restriction in number. Specifically, for example, when first to fifth air compressors each having two connecting portions 64 and 65 are prepared, the connecting portion of the first air compressor is connected to the second air compressor and the second air compressor. 3 air compressors can be connected. In addition to the first air compressor, a fourth air compressor can be connected to the connection portion of the second air compressor. In addition to the first air compressor, a fifth air compressor can be connected to the third air compressor. By being able to connect air compressors without any limit in number, it is possible to increase the capacity of the tank connected to the air compressor 1 and increase the amount of usable air.
連結部64,65の近傍には、連結部64,65とタンク51との間を、連通させる、あるいは遮断させるかを切り替える切替コック66が設けられる。これにより、切替コック66により連結部64,65とタンク51との間を遮断させた状態で空気圧縮機1に外部の作業機を接続させることが可能となる。この結果、外部の作業機と接続する際に、タンク50内の圧縮空気を一旦排出する必要がなくなるので、作業性を向上させることができる。 A switching cock 66 is provided near the connecting portions 64, 65 to switch between communicating or blocking the connection between the connecting portions 64, 65 and the tank 51. Thereby, it becomes possible to connect an external working machine to the air compressor 1 with the switching cock 66 blocking the connections between the connecting parts 64 and 65 and the tank 51. As a result, there is no need to temporarily discharge the compressed air in the tank 50 when connecting to an external work machine, so work efficiency can be improved.
<電源部について>空気圧縮機1は、上述した電源コード58を介して商用電源から取得する電力に加えて、DC電源である電池パック(バッテリー)67,68(図4,図5(A),図5(B)、図6(A),図6(B)参照)から電力を得ることができる。電池パック67は、空気圧縮機1の右側面のタンク51とタンク54との間に設けられた取付部に着脱可能に取り付けられる。電池パック68は、空気圧縮機1の左側面のタンク52とタンク53との間に設けられた取付部に着脱可能に取り付けられる。電池パック67,68の電力は、電力制御部18の昇圧回路により昇圧されて、制御部17の制御基板に供給される。制御部17の制御基板において、制御部17の昇圧回路の出力端と電子制御部18の昇圧回路の出力端は電気的に並列な状態でインバータ回路の入力端に接続されている。制御部17の昇圧回路と電力制御部18の昇圧回路は、各々の出力電圧が同程度となるように制御されており、これにより電源コード58を介して供給される電力と、電池パック67,68の電力は合成された状態で圧縮空気生成部10に供給される。 <About the power supply unit> In addition to the power obtained from the commercial power supply via the power cord 58 described above, the air compressor 1 uses battery packs (batteries) 67 and 68 (FIGS. 4 and 5A) which are DC power sources. , FIG. 5(B), FIG. 6(A), and FIG. 6(B)). The battery pack 67 is removably attached to a mounting portion provided between the tank 51 and the tank 54 on the right side of the air compressor 1. The battery pack 68 is removably attached to an attachment portion provided between the tank 52 and the tank 53 on the left side of the air compressor 1. The power of the battery packs 67 and 68 is boosted by a booster circuit of the power control section 18 and supplied to the control board of the control section 17 . In the control board of the control unit 17, the output terminal of the boost circuit of the control unit 17 and the output terminal of the boost circuit of the electronic control unit 18 are electrically connected in parallel to the input terminal of the inverter circuit. The boost circuit of the control unit 17 and the boost circuit of the power control unit 18 are controlled so that their respective output voltages are approximately the same, so that the power supplied via the power cord 58 and the battery pack 67, The electric power of 68 is supplied to the compressed air generation section 10 in a combined state.
<配管について>上述した通り、タンク51,52,53,54は、配管を介して互いに連通している。具体的には、図5(A),図5(B),図6(B)に示されるように、タンク51とタンク52とは配管90を介して、タンク52とタンク53とは配管91を介して、タンク53とタンク54とは配管92を介して連通している。配管90は空気圧縮機1の前方の下方に設けられ、配管91は空気圧縮機1の左側の下方に設けられ、配管92は空気圧縮機1の後方の下方に設けられる。また、タンク51及びタンク54も、空気圧縮機1の右側の下方に設けられた配管によって連通している。これにより、圧縮空気生成部10によって生成された圧縮空気は、配管19を介してタンク51に導入され、配管90,91,92及び空気圧縮機1の右側の下方に設けられた配管により、他のタンク52,53,54に自動的かつ同時に導入される。 <Regarding Piping> As described above, the tanks 51, 52, 53, and 54 communicate with each other via piping. Specifically, as shown in FIGS. 5(A), 5(B), and 6(B), the tank 51 and the tank 52 are connected to each other via a piping 90, and the tank 52 and the tank 53 are connected to each other via a piping 91. The tank 53 and the tank 54 communicate with each other via a pipe 92. Piping 90 is provided below the front of the air compressor 1 , pipe 91 is provided below the left side of the air compressor 1 , and pipe 92 is provided below the rear of the air compressor 1 . Further, the tank 51 and the tank 54 are also communicated through a pipe provided below the right side of the air compressor 1. As a result, the compressed air generated by the compressed air generation unit 10 is introduced into the tank 51 via the pipe 19, and is transferred to the tank 51 through the pipes 90, 91, 92 and the pipe provided below the right side of the air compressor 1. are automatically and simultaneously introduced into tanks 52, 53, and 54.
<ドレン排出機構について>ドレン排出機構70は、タンク50内のドレンを排出させる。図6(B),図7(B),図8(B)に示されるように、ドレン排出機構70は、各タンク50内に設けられるドレン吸い上げ管71と、タンク50の外部に設けられるドレンコック72と、ドレン管73とを有する。図8(B)に示されるように、ドレン吸い上げ管71の一端は、タンク50の下方側の端壁50aに取り付けられた取付部81の内側に上方から挿入される。すなわち、ドレン吸い上げ管71の一端は、タンク50の端壁50aの前後左右方向の中央部に位置する。 <About the drain discharge mechanism> The drain discharge mechanism 70 discharges the drain in the tank 50. As shown in FIG. 6(B), FIG. 7(B), and FIG. 8(B), the drain discharge mechanism 70 includes a drain suction pipe 71 provided inside each tank 50, and a drain drain provided outside the tank 50. It has a cock 72 and a drain pipe 73. As shown in FIG. 8(B), one end of the drain suction pipe 71 is inserted from above into the inside of the attachment part 81 attached to the lower end wall 50a of the tank 50. That is, one end of the drain suction pipe 71 is located at the center of the end wall 50a of the tank 50 in the longitudinal and lateral directions.
上述したように、タンク50の端壁50aは半球状であり、端壁50aの頂部が下方となるようにタンク50が配置されている。このため、タンク50内のドレンは端壁50aの最下部の頂部付近に溜まる。上述したように、取付部81には外側面と内側面とを連通する溝や穴が形成されているため、タンク50内のドレンは取付部81の内側に流入する。 As described above, the end wall 50a of the tank 50 has a hemispherical shape, and the tank 50 is arranged so that the top of the end wall 50a faces downward. Therefore, the drain in the tank 50 accumulates near the top of the lowest part of the end wall 50a. As described above, since the mounting portion 81 is formed with a groove or a hole that communicates the outer surface and the inner surface, the drain in the tank 50 flows into the inner side of the mounting portion 81 .
ドレン吸い上げ管71の他端は、他のタンク50と連通するための配管に接続される。具体的には、タンク51に設けられるドレン吸い上げ管71の他端は配管90に接続され、タンク52に設けられるドレン吸い上げ管71の他端は配管91に接続され、タンク53に設けられるドレン吸い上げ管71の他端は配管92に接続され、タンク54に設けられる吸い上げ管71の他端は配管92に接続される。 The other end of the drain suction pipe 71 is connected to piping for communicating with another tank 50. Specifically, the other end of the drain suction pipe 71 provided in the tank 51 is connected to the piping 90, the other end of the drain suction pipe 71 provided in the tank 52 is connected to the piping 91, and the other end of the drain suction pipe 71 provided in the tank 53 is connected to the piping 90. The other end of the pipe 71 is connected to a pipe 92, and the other end of the suction pipe 71 provided in the tank 54 is connected to the pipe 92.
図6(B),図7(B)に示されるドレンコック72は、タンク53と配管92との接続部近傍に設けられる。ドレンコック72が操作されると、タンク50内のドレンが圧縮空気と一緒に排出される。すなわち、取付部81の内側に流入したドレンは、取付部81の内側に挿入されたドレン吸い上げ管71に流入する。ドレンコック72が操作されると、タンク51内のドレンは、配管90を介してタンク52内に流入する。タンク52内のドレンは、配管91を介してタンク53に流入する。タンク53内のドレンは、ドレン吸い上げ管71を通過してドレン管73から排出される。また、タンク51内のドレンは、空気圧縮機1の右側の下方に設けられた配管を介してタンク54内にも流入する。タンク54内のドレンは、配管93を通過してドレン管73から排出される。 The drain cock 72 shown in FIGS. 6(B) and 7(B) is provided near the connection between the tank 53 and the pipe 92. When the drain cock 72 is operated, the drain in the tank 50 is discharged together with compressed air. That is, the drain that has flowed into the inside of the attachment portion 81 flows into the drain suction pipe 71 that is inserted inside the attachment portion 81 . When the drain cock 72 is operated, the drain in the tank 51 flows into the tank 52 via the pipe 90. Drain in the tank 52 flows into the tank 53 via piping 91. Drain in the tank 53 passes through a drain suction pipe 71 and is discharged from the drain pipe 73. Further, the drain in the tank 51 also flows into the tank 54 via a pipe provided below the right side of the air compressor 1. The drain in the tank 54 passes through the pipe 93 and is discharged from the drain pipe 73.
上述したように、タンク50の下方の端壁50aの最下部付近にドレン吸い上げ管71の一端が位置していることから、タンク50内に残留するドレンの発生を抑制することができる。また、タンク50の最下部近傍からドレンを排出するので、タンク50や空気圧縮機1を傾ける等の姿勢変更を作業者が行う必要がなくなる。 As described above, since one end of the drain suction pipe 71 is located near the lowest part of the lower end wall 50a of the tank 50, the generation of drain remaining in the tank 50 can be suppressed. Further, since the drain is discharged from near the bottom of the tank 50, there is no need for the operator to change the posture of the tank 50 or the air compressor 1, such as tilting it.
ここまで空気圧縮機1の機械構成を中心に説明した。この機械構成によれば、以下の作用効果が得られる。 Up to this point, the mechanical configuration of the air compressor 1 has been mainly explained. According to this mechanical configuration, the following effects can be obtained.
(1)空気圧縮機1は、第1圧縮部11及び第2圧縮部12から排出された気体が流入する複数のタンク50を有する。複数のタンク50は、上下方向視で第1圧縮部11及び第2圧縮部12を取り囲むように設けられる。複数のタンク50の各々は、上下方向の長さが左右方向の幅よりも大きい形状を有する。これにより、同容量のタンク50の長手方向を載置面に平行となるように配置する場合と比較して、空気圧縮機1が載置面上で占有する占有面積を小さくすることができる。 (1) The air compressor 1 has a plurality of tanks 50 into which gas discharged from the first compression section 11 and the second compression section 12 flows. The plurality of tanks 50 are provided so as to surround the first compression section 11 and the second compression section 12 when viewed in the vertical direction. Each of the plurality of tanks 50 has a shape in which the length in the up-down direction is larger than the width in the left-right direction. Thereby, the area occupied by the air compressor 1 on the mounting surface can be reduced compared to the case where the tank 50 of the same capacity is arranged so that its longitudinal direction is parallel to the mounting surface.
(2)上下方向視で第1圧縮部11及び第2圧縮部12を取り囲むように4つのタンク51,52,53,54が設けられる。これにより、空気圧縮機1を載置面に安定した状態で載置することができる。 (2) Four tanks 51, 52, 53, and 54 are provided so as to surround the first compression section 11 and the second compression section 12 when viewed in the vertical direction. Thereby, the air compressor 1 can be placed on the placement surface in a stable state.
(3)複数のタンク50の各々は、上下方向に延びる筒状の側壁50cと、半球状に形成された側壁50cの上下方向を閉塞する一対の端壁50a,50bとを有し、第1圧縮部11及び第2圧縮部12よりも下方に突出するように配置される。これにより、タンク50の長手方向の長さよりも空気圧縮機1が大きくならないので、空気圧縮機1の上下方向の小型化に寄与する。 (3) Each of the plurality of tanks 50 has a cylindrical side wall 50c extending in the vertical direction, and a pair of end walls 50a and 50b that close the vertical direction of the side wall 50c formed in a hemispherical shape, and a first It is arranged so as to protrude below the compression part 11 and the second compression part 12. This prevents the air compressor 1 from becoming larger than the length of the tank 50 in the longitudinal direction, contributing to downsizing of the air compressor 1 in the vertical direction.
(4)複数のタンク50の各々は、端壁50aの下面に取り付けられて載置面に対して弾性的に当接する脚部80を有する。これにより、載置面から脚部80を介して振動がタンク50に伝わることを抑制することができるので、空気圧縮機1の耐久性を向上させることができる。 (4) Each of the plurality of tanks 50 has a leg portion 80 attached to the lower surface of the end wall 50a and elastically abutting against the mounting surface. Thereby, it is possible to suppress vibrations from being transmitted from the mounting surface to the tank 50 via the leg portions 80, so that the durability of the air compressor 1 can be improved.
(5)脚部80は、端壁50aを貫通する取付部81及び固定部82によって端壁50aに固定される。これにより、簡易な方法にて脚部80をタンク50に取り付けることができる。 (5) The leg portion 80 is fixed to the end wall 50a by a mounting portion 81 and a fixing portion 82 that penetrate the end wall 50a. Thereby, the leg portion 80 can be attached to the tank 50 using a simple method.
(6)複数のタンク50の各々の内部に蓄積するドレンを排出する複数のドレン吸い上げ管71を有し、ドレン吸い上げ管71の端部は、端壁50aの前後左右方向中央部に位置する。これにより、空気圧縮機1の姿勢を変更する等の作業を行うことなく、タンク50内の下部にドレンを貯留させ、タンク50の外部に排出することができるので、作業性が向上する。 (6) It has a plurality of drain suction pipes 71 for discharging the drain accumulated inside each of the plurality of tanks 50, and the ends of the drain suction pipes 71 are located at the center of the end wall 50a in the longitudinal and lateral directions. Thereby, the drain can be stored in the lower part of the tank 50 and discharged to the outside of the tank 50 without changing the attitude of the air compressor 1, thereby improving work efficiency.
(7)外部の空気工具へ圧縮された空気を取り出すカプラ61と、カプラ61を通過する圧縮された空気の圧力を調整する減圧弁62と、第1圧縮部11及び第2圧縮部12の駆動を制御する制御部17とは、上下方向視で複数のタンク50に取り囲まれて配置される。これにより、空気圧縮機1の占有面積が複数のタンク50に外接する仮想矩形60の面積よりも小さくなるので、空気圧縮機1の小型化に寄与する。 (7) Drive of the coupler 61 that takes out compressed air to an external air tool, the pressure reducing valve 62 that adjusts the pressure of the compressed air passing through the coupler 61, and the first compression section 11 and the second compression section 12 The control unit 17 that controls the tank 17 is surrounded by a plurality of tanks 50 when viewed from the top and bottom. As a result, the area occupied by the air compressor 1 becomes smaller than the area of the virtual rectangle 60 circumscribing the plurality of tanks 50, which contributes to miniaturization of the air compressor 1.
(8)外部の作業機から供給される圧縮された空気、あるいは外部の作業機へ提供する圧縮された空気が通過する流路を接続する連結部64,65を有する。これにより、作業の規模や作業内容に応じて、1つの空気圧縮機1を3個以上の外部の作業機と接続させることができる。 (8) It has connection parts 64 and 65 that connect flow paths through which compressed air supplied from an external working machine or compressed air provided to an external working machine passes. Thereby, one air compressor 1 can be connected to three or more external working machines depending on the scale and content of the work.
上述した機械構成を次のように変形できる。 The mechanical configuration described above can be modified as follows.
(1)図8(B)に示されるようにして脚部80がタンク50の端壁50aへ取り付けられる場合に限定されない。例えば、図8(C)に示されるように、脚部80は、ゴム脚83と、金属製のプレートから形成される取付部84と、固定部材85とを有する。取付部84は、端壁50aの端部下面の前後左右方向の中央部(すなわち中心軸57が通過する位置)に溶接により固定される。固定部材85は、例えばねじであり、ゴム脚83を介して取付部84に形成された取付孔に貫通することで、ゴム脚83を固定する。これにより、実施の形態の脚部80と同様の作用効果を得ることができる。 (1) The leg portion 80 is not limited to being attached to the end wall 50a of the tank 50 as shown in FIG. 8(B). For example, as shown in FIG. 8(C), the leg portion 80 includes a rubber leg 83, a mounting portion 84 formed from a metal plate, and a fixing member 85. The attachment portion 84 is fixed by welding to the center portion of the lower surface of the end of the end wall 50a in the longitudinal and lateral directions (that is, the position through which the central axis 57 passes). The fixing member 85 is, for example, a screw, and fixes the rubber leg 83 by passing through the attachment hole formed in the attachment part 84 through the rubber leg 83. Thereby, the same effect as the leg portion 80 of the embodiment can be obtained.
(2)上述した実施の形態では、タンク50は4個のタンク51,52,53,54からなる場合を説明したが、タンク50の個数は3個でもよいし、5個以上であってもよい。 (2) In the embodiment described above, the case where the tank 50 consists of four tanks 51, 52, 53, and 54 was explained, but the number of tanks 50 may be three or five or more. good.
以下、空気圧縮機1の回路構成を中心に説明する。 The circuit configuration of the air compressor 1 will be mainly described below.
図9に示すように、空気圧縮機1は、第1接続部としての電池パック接続部47、48を有する。図9の例では、電池パック接続部47、48に、それぞれ電池パック67、68が接続(装着)される。電池パック接続部47、48に電池パックが接続された状態の空気圧縮機1は、作業機システムの例示である。空気圧縮機1は、商用電源139に接続されて電力が入力される第2接続部としての商用電源接続部49を有する。 As shown in FIG. 9, the air compressor 1 has battery pack connections 47 and 48 as first connections. In the example of FIG. 9, battery packs 67 and 68 are connected (attached) to battery pack connection parts 47 and 48, respectively. The air compressor 1 with a battery pack connected to the battery pack connections 47 and 48 is an example of a working machine system. The air compressor 1 has a commercial power supply connection part 49 as a second connection part connected to a commercial power supply 139 and into which electric power is input.
空気圧縮機1は、第1圧縮部11及び第2圧縮部12を回転駆動してタンク50に圧縮空気を送り込むためのモータ14を有する。モータ14は、電池パック接続部47、48に入力された電力(電池パック67、68の電力)を消費可能な負荷部である。空気圧縮機1は、外部の交流電源である商用電源139(商用交流電源)を用いてモータ14を駆動するための本体回路部200と、2個の電池パック67、68を用いた電力アシスト用の補助回路部300と、を備える。 The air compressor 1 includes a motor 14 that rotates the first compression section 11 and the second compression section 12 to feed compressed air into the tank 50. The motor 14 is a load unit that can consume the power input to the battery pack connections 47 and 48 (power of the battery packs 67 and 68). The air compressor 1 includes a main body circuit section 200 for driving the motor 14 using a commercial power source 139 (commercial AC power source), which is an external AC power source, and a power assist system using two battery packs 67 and 68. auxiliary circuit section 300.
空気圧縮機1は、切替部としての18/36V切替回路121、122を有する。18/36V切替回路121、122は、電池パック67、68の端子間電圧を18Vと36Vとの間で切替可能な回路である。 The air compressor 1 has 18/ 36V switching circuits 121 and 122 as switching sections. The 18/ 36V switching circuits 121 and 122 are circuits that can switch the voltage between the terminals of the battery packs 67 and 68 between 18V and 36V.
18/36V切替回路121、122は、空気圧縮機1が電池パック67、68から電力供給を受けるとき、すなわち電池パック接続部47、48に入力された電力を負荷部としてのモータ14で消費するときは、電池パック67、68の端子間電圧を36Vとする。18/36V切替回路121、122は、空気圧縮機1が電池パック67、68を充電するときは、電池パック67、68の端子間電圧を18Vとする。 The 18/ 36V switching circuits 121 and 122 consume power input to the battery pack connections 47 and 48 by the motor 14 as a load unit when the air compressor 1 receives power from the battery packs 67 and 68. In this case, the voltage between the terminals of the battery packs 67 and 68 is set to 36V. The 18/ 36V switching circuits 121 and 122 set the voltage between the terminals of the battery packs 67 and 68 to 18V when the air compressor 1 charges the battery packs 67 and 68.
図9及び図10に示すように、本体回路部200は、外部の交流電源である商用電源139(AC100V:例えばコンセントの最大定格電流15A)の供給を受けてモータ14を駆動するために、整流部131、第2電源部としてのAC側電源昇圧回路132、インバータ部133、及びインバータ部133を制御するための主制御部140を具備する。 As shown in FIGS. 9 and 10, the main circuit unit 200 is configured to rectify and drive the motor 14 by receiving a commercial power supply 139 (AC 100V: for example, maximum rated current of 15A of an outlet), which is an external AC power supply. section 131 , an AC side power booster circuit 132 as a second power supply section, an inverter section 133 , and a main control section 140 for controlling the inverter section 133 .
商用電源139と整流部131との間にはノイズフィルタ134が挿入される。整流部131の整流出力側に平滑コンデンサ135が接続される。商用電源139からの交流電力は整流部131で整流され、平滑コンデンサ135で平滑された直流電力がAC側電源昇圧回路132に供給される。整流部131とAC側電源昇圧回路132との間の接続線路には電流検出用抵抗136が挿入される。AC側負荷電流検出部137は、電流検出用抵抗136の両端の電圧降下を基にAC負荷電流を検出し(モニタし)、AC負荷電流検出信号を主制御部140に出力する。 A noise filter 134 is inserted between the commercial power supply 139 and the rectifier 131. A smoothing capacitor 135 is connected to the rectifier output side of the rectifier 131 . AC power from a commercial power supply 139 is rectified by a rectifier 131, and DC power smoothed by a smoothing capacitor 135 is supplied to an AC side power supply booster circuit 132. A current detection resistor 136 is inserted into the connection line between the rectifier 131 and the AC side power supply booster circuit 132. The AC side load current detection section 137 detects (monitors) the AC load current based on the voltage drop across the current detection resistor 136 and outputs an AC load current detection signal to the main control section 140.
AC側電源昇圧回路132は、DC-DCコンバータ等の昇圧回路を含み、ここで昇圧された直流電力がインバータ部133を介してモータ14に供給される。整流部131、AC側電源昇圧回路132、及び平滑コンデンサ135は、交流側電源部の一例である。 The AC side power supply booster circuit 132 includes a booster circuit such as a DC-DC converter, and the DC power boosted here is supplied to the motor 14 via an inverter section 133. The rectifying section 131, the AC side power supply booster circuit 132, and the smoothing capacitor 135 are examples of an AC side power supply section.
AC側電源昇圧回路132は、図示の場合、チョークコイル321、スイッチング素子322、ダイオード323及びコンデンサ324を有するチョッパ型DC-DCコンバータであり、スイッチング素子322のスイッチング動作を制御する昇圧電圧制御部325を有する。AC側電源昇圧回路132の昇圧出力側に昇圧電圧検出部138が設けられる。 In the illustrated case, the AC side power supply booster circuit 132 is a chopper type DC-DC converter having a choke coil 321, a switching element 322, a diode 323, and a capacitor 324, and a boost voltage controller 325 that controls the switching operation of the switching element 322. has. A boosted voltage detection section 138 is provided on the boosted output side of the AC side power supply booster circuit 132.
主制御部140には、昇圧電圧検出部138の昇圧電圧監視信号、モータ14の回転を検出する回転センサ141の回転検出信号、及び、タンク内圧力を検出する圧力センサ142の圧力検出信号がそれぞれ入力される。主制御部140は、昇圧電圧制御信号をAC側電源昇圧回路132(昇圧電圧制御部325)に出力するとともに、インバータ制御信号をインバータ部133に出力し、AC側電源昇圧回路132で昇圧された直流電力をインバータ部133を介してモータ14に供給することで、例えばPWM制御等でモータ14の回転制御を行う。第1圧縮部11及び第2圧縮部12はモータ14で回転駆動され、第1圧縮部11及び第2圧縮部12から吐出された空気がタンク50に送られる The main control unit 140 receives a boost voltage monitoring signal from the boost voltage detection unit 138, a rotation detection signal from the rotation sensor 141 that detects the rotation of the motor 14, and a pressure detection signal from the pressure sensor 142 that detects the pressure inside the tank. is input. The main control section 140 outputs a boost voltage control signal to the AC side power supply boost circuit 132 (boost voltage control section 325), and also outputs an inverter control signal to the inverter section 133. By supplying DC power to the motor 14 via the inverter section 133, the rotation of the motor 14 is controlled by, for example, PWM control. The first compression section 11 and the second compression section 12 are rotationally driven by a motor 14, and the air discharged from the first compression section 11 and the second compression section 12 is sent to the tank 50.
操作パネル部196は、タンク内圧力や過負荷等の警告等を表示する表示パネル191、電源オン・オフの切替を行う運転ボタン192、電池パック67、68の充電を指示する充電ボタン193、運転モード切替を指示するモード切替ボタン194、及び電池パック67、68を用いた電力アシストを指示するアシストボタン195を有し、これらを制御するためにスイッチパネル制御部190が設けられる。スイッチパネル制御部190は通信回路197を介して主制御部140に接続される。 The operation panel section 196 includes a display panel 191 that displays warnings such as tank internal pressure and overload, an operation button 192 that switches the power on and off, a charge button 193 that instructs charging of the battery packs 67 and 68, and an operation button 192 that displays warnings such as tank internal pressure and overload. It has a mode switching button 194 for instructing mode switching, and an assist button 195 for instructing power assist using battery packs 67 and 68, and a switch panel control section 190 is provided to control these. Switch panel control section 190 is connected to main control section 140 via communication circuit 197.
主制御部140や操作パネル部196、通信回路197等に安定化された直流電圧を供給するために、回路電源部290が設けられる。回路電源部290は、整流部131の直流出力を利用して主制御部140等に電源電圧Vcc(A)を、スイッチパネル制御部190や通信回路197等に電源電圧Vcc(C)をそれぞれ供給する。回路電源部290は、1個の一次巻線と2個の二次巻線とを有する降圧トランス291、トランス一次側をスイッチングするスイッチング素子292、スイッチング素子292に駆動信号を出力する回路電源駆動回路293、及び、2個の二次巻線にそれぞれ設けられた整流平滑回路294、295を有する。整流平滑回路294の直流出力電圧はVcc(A)として主制御部140等に供給され、整流平滑回路295の直流出力電圧はVcc(C)としてスイッチパネル制御部190や通信回路197等に供給される。 A circuit power supply section 290 is provided to supply stabilized DC voltage to the main control section 140, the operation panel section 196, the communication circuit 197, and the like. The circuit power supply section 290 uses the DC output of the rectification section 131 to supply a power supply voltage Vcc (A) to the main control section 140 and the like, and a power supply voltage Vcc (C) to the switch panel control section 190, the communication circuit 197, etc. do. The circuit power supply unit 290 includes a step-down transformer 291 having one primary winding and two secondary windings, a switching element 292 that switches the primary side of the transformer, and a circuit power supply drive circuit that outputs a drive signal to the switching element 292. 293, and rectifying and smoothing circuits 294 and 295 respectively provided in the two secondary windings. The DC output voltage of the rectifier and smoothing circuit 294 is supplied as Vcc(A) to the main control unit 140, etc., and the DC output voltage of the rectifier and smoothing circuit 295 is supplied as Vcc(C) to the switch panel control unit 190, the communication circuit 197, etc. Ru.
図9、図11及び図12に示すように、補助回路部300は、電池電源(直流電源)でモータ14の駆動アシストを行うための第1電源部としてのアシスト電源部150、電池電源としての電池パック67、68を充電するための充電部170、副制御部180、回路電源部110、及び通信回路100を有する。副制御部180はCPU等の制御回路を含む構成であり、主制御部140と連携してアシスト電源部150と充電部170の動作を制御する。回路電源部110は、副制御部180や通信回路100等に安定化された直流電圧を供給する。通信回路100は主制御部140と副制御部180間の電気的に絶縁された通信回線を構成する。 As shown in FIGS. 9, 11, and 12, the auxiliary circuit section 300 includes an assist power source section 150 as a first power source section for assisting the drive of the motor 14 using a battery power source (DC power source), and an assist power source section 150 as a battery power source. It has a charging section 170 for charging the battery packs 67 and 68, a sub-control section 180, a circuit power supply section 110, and a communication circuit 100. The sub-control unit 180 includes a control circuit such as a CPU, and controls the operations of the assist power supply unit 150 and the charging unit 170 in cooperation with the main control unit 140. The circuit power supply unit 110 supplies a stabilized DC voltage to the sub-control unit 180, the communication circuit 100, and the like. The communication circuit 100 constitutes an electrically insulated communication line between the main control section 140 and the sub-control section 180.
電池パック67、68の各電圧(以下、それぞれ「電池電圧」)を検出するために、電池電圧検出部146、147がそれぞれ設けられる。各電池電圧検出部146、147からの電池電圧検出信号はそれぞれ副制御部180に供給される。電池パック67、68は、それぞれ副制御部180と通信できる。副制御部180は、電池パック67、68から電池情報(定格電圧や電池温度等)をそれぞれ取得する。 In order to detect each voltage of the battery packs 67 and 68 (hereinafter referred to as "battery voltage"), battery voltage detection units 146 and 147 are provided, respectively. Battery voltage detection signals from each battery voltage detection section 146, 147 are supplied to a sub-control section 180, respectively. Battery packs 67 and 68 can each communicate with sub-control unit 180. The sub-control unit 180 acquires battery information (rated voltage, battery temperature, etc.) from the battery packs 67 and 68, respectively.
アシスト電源部150は、昇圧回路としての昇圧用DC-DCコンバータの構成を含む。アシスト電源部150は、昇圧トランス151の一次側にプッシュプル接続されたスイッチング素子(例えばMOSFET)152、153、スイッチング素子152、153を交互にスイッチングするアシスト電源駆動回路154、昇圧トランス151の二次側に接続された整流部155、チョークコイル163、平滑コンデンサ156、及びアシスト電流制御部157を有する。整流部155の出力側に平滑用のチョークコイル163を設けて、チョークコイル163と平滑コンデンサ156とでチョーク入力型平滑回路を構成することで、スイッチング素子152、153のPWM制御のデューティ(以下「デューティ」)が小さい場合であってもアシスト電源部150の出力電圧の脈動を減じることができる。これにより、高いアシスト出力電圧に設定する場合に、チョークコイル163を介して平滑コンデンサ156に電圧が加わるため平滑コンデンサ156の耐圧の点で有利である(チョークコイル無しのときより耐圧を低くできる)。 The assist power supply unit 150 includes a boosting DC-DC converter as a boosting circuit. The assist power supply unit 150 includes switching elements (for example, MOSFETs) 152 and 153 that are push-pull connected to the primary side of the step-up transformer 151, an assist power supply drive circuit 154 that alternately switches the switching elements 152 and 153, and a secondary side of the step-up transformer 151. It has a rectifier 155, a choke coil 163, a smoothing capacitor 156, and an assist current controller 157 connected to the side. By providing a smoothing choke coil 163 on the output side of the rectifier 155 and configuring a choke input type smoothing circuit with the choke coil 163 and the smoothing capacitor 156, the duty of PWM control of the switching elements 152 and 153 (hereinafter referred to as " Even when the output voltage of the assist power supply section 150 is small, pulsations in the output voltage of the assist power supply section 150 can be reduced. As a result, when setting a high assist output voltage, voltage is applied to the smoothing capacitor 156 via the choke coil 163, which is advantageous in terms of the withstand voltage of the smoothing capacitor 156 (the withstand voltage can be lower than when there is no choke coil). .
整流部155とインバータ部133との間の接続線路に電流検出用抵抗158が挿入される。アシスト電流制御部157は、電流検出用抵抗158の両端の電圧降下からアシスト電源部150の出力電流(「アシスト出力電流」とも表記)を検出し(モニタし)、フィードバック回路としてのフォトカプラ159を介しアシスト電流検出信号をアシスト電源駆動回路154にフィードバックする。ここで、フォトカプラ159を用いるのは、商用電源139に電気的に接続される本体回路部200と、電池パック67、68に電気的に接続される補助回路部300とを相互に電気的に絶縁するためであり、以後の説明でフォトカプラを用いるのも同様の理由である。 A current detection resistor 158 is inserted into the connection line between the rectifying section 155 and the inverter section 133. The assist current control section 157 detects (monitors) the output current (also referred to as "assist output current") of the assist power supply section 150 from the voltage drop across the current detection resistor 158, and controls the photocoupler 159 as a feedback circuit. The assist current detection signal is fed back to the assist power supply drive circuit 154 via the assist current detection signal. Here, the photocoupler 159 is used to electrically interconnect the main circuit section 200 electrically connected to the commercial power source 139 and the auxiliary circuit section 300 electrically connected to the battery packs 67 and 68. This is for insulation, and the reason why a photocoupler is used in the following explanation is also the same.
電池パック67、68の一方又は両方の直流電力は、アシスト電源部150の昇圧トランス151の一次側に供給される。アシスト電源部150の整流部155の出力側に、アシスト電源部150の出力電圧(「アシスト出力電圧」とも表記)を検出するためのアシスト電圧検出部160が設けられ、また、アシスト出力電圧を制御するためにアシスト電圧制御部161が設けられる。アシスト電源部150の直流出力電力はシリーズダイオード182を介してインバータ部133に供給される(AC側電源昇圧回路132の直流出力電力と合成される)。 DC power from one or both of the battery packs 67 and 68 is supplied to the primary side of the step-up transformer 151 of the assist power supply section 150. An assist voltage detection section 160 for detecting the output voltage (also referred to as "assist output voltage") of the assist power supply section 150 is provided on the output side of the rectification section 155 of the assist power supply section 150, and also controls the assist output voltage. In order to do this, an assist voltage control section 161 is provided. The DC output power of the assist power supply section 150 is supplied to the inverter section 133 via the series diode 182 (combined with the DC output power of the AC side power supply booster circuit 132).
副制御部180は、フォトカプラ162を介してアシスト電源部150のアシスト電流制御部157に出力電流制御信号を出力し、フォトカプラ164を介してアシスト電圧制御部161にアシスト電源50の出力電圧制御信号を出力する。 The sub-control unit 180 outputs an output current control signal to the assist current control unit 157 of the assist power supply unit 150 via the photocoupler 162, and outputs an output current control signal to the assist voltage control unit 161 via the photocoupler 164 to control the output voltage of the assist power supply 50. Output a signal.
AC側電源昇圧回路132の出力端子に対してアシスト電源部150の出力端子はシリーズダイオード182を介して並列接続される。つまり、モータ14に対してAC側電源昇圧回路132及びアシスト電源部150が電気的に並列に接続される。 The output terminal of the assist power supply unit 150 is connected in parallel to the output terminal of the AC side power supply booster circuit 132 via a series diode 182 . That is, the AC side power supply booster circuit 132 and the assist power supply unit 150 are electrically connected in parallel to the motor 14 .
具体的に言えば、アシスト電源部150においては、副制御部180からの出力電流制御信号及び出力電圧制御信号を受けてアシスト電源駆動回路154の駆動信号を制御し、スイッチング素子152、153を交互にスイッチングするときのデューティを変化させることで、出力側の平滑コンデンサ156両端の直流電圧を増減する電圧可変制御を行うことができる。換言すれば、アシスト電源部150はインバータ33部への供給電圧を増減するPAM制御でモータ14を駆動可能である。また、アシスト電源部150のアシスト電源駆動回路154には副制御部180からアシスト電源オン・オフ信号が供給される。アシスト電源オン・オフ信号が「アシスト電源オン」を指示したときはアシスト電源駆動回路154を作動させてスイッチング可能とし、「アシスト電源オフ」を指示したときはアシスト電源駆動回路154の動作を停止する。 Specifically, the assist power supply section 150 receives the output current control signal and the output voltage control signal from the sub-control section 180, controls the drive signal of the assist power supply drive circuit 154, and alternately switches the switching elements 152 and 153. By changing the duty when switching, voltage variable control can be performed to increase or decrease the DC voltage across the smoothing capacitor 156 on the output side. In other words, the assist power supply section 150 can drive the motor 14 using PAM control that increases or decreases the voltage supplied to the inverter 33 section. Further, an assist power supply on/off signal is supplied from the sub-control unit 180 to the assist power supply drive circuit 154 of the assist power supply unit 150 . When the assist power on/off signal instructs "assist power on", the assist power source drive circuit 154 is activated to enable switching, and when the assist power source on/off signal instructs "assist power off", the operation of the assist power source drive circuit 154 is stopped. .
充電部170は、商用電源接続部49から入力された電力を電池パック接続部47、48に出力可能な回路、すなわち商用電源139の電力により電池パック67、68を充電するための回路である。充電部170は、降圧用DC-DCコンバータの構成を含む。 The charging unit 170 is a circuit that can output power input from the commercial power supply connection unit 49 to the battery pack connection units 47 and 48, that is, a circuit for charging the battery packs 67 and 68 with the power of the commercial power supply 139. Charging section 170 includes the configuration of a step-down DC-DC converter.
充電部170は、商用電源139の供給をノイズフィルタ134を介して受ける整流部171、平滑コンデンサ172、降圧トランス173、トランス一次側をスイッチングするスイッチング素子174、スイッチング素子174をオン・オフ駆動する充電電源駆動回路175、トランス173の二次側出力を整流、平滑する整流平滑回路としてのダイオード176及び平滑コンデンサ177、充電電流制御部178、並びに充電電圧制御部179を有する。 The charging unit 170 includes a rectifying unit 171 that receives a supply of commercial power 139 via a noise filter 134, a smoothing capacitor 172, a step-down transformer 173, a switching element 174 that switches the primary side of the transformer, and a charging unit that drives the switching element 174 on and off. It includes a power supply drive circuit 175, a diode 176 and a smoothing capacitor 177 as a rectifying and smoothing circuit that rectifies and smoothes the secondary output of the transformer 173, a charging current control section 178, and a charging voltage control section 179.
トランス173の二次側の整流平滑回路と電池パック67、68間の接続線路には電流検出用抵抗181が挿入される。充電電流制御部178は、電流検出用抵抗181の両端の電圧降下から充電電流を検出する(モニタする)。充電電流制御部178からの充電電流検出信号及び充電電圧制御部179からの充電電圧制御信号は、フィードバック回路としてのフォトカプラ182を介し充電電源駆動回路175にフィードバックされる。 A current detection resistor 181 is inserted into a connection line between the rectifying and smoothing circuit on the secondary side of the transformer 173 and the battery packs 67 and 68. The charging current control unit 178 detects (monitors) the charging current from the voltage drop across the current detection resistor 181. The charging current detection signal from the charging current control section 178 and the charging voltage control signal from the charging voltage control section 179 are fed back to the charging power supply drive circuit 175 via a photocoupler 182 as a feedback circuit.
回路電源部110は、充電部170の整流部171の直流出力を利用して副制御部180等に電源電圧Vcc(B)を供給するとともに、充電電源オン・オフ信号を伝達するフォトカプラ185への電源供給を行う。回路電源部110は、1個の一次巻線と2個の二次巻線とを有する降圧トランス111、トランス一次側をスイッチングするスイッチング素子112、スイッチング素子112に駆動信号を出力する回路電源駆動回路113、及び2個の二次巻線にそれぞれ設けられた整流平滑回路114、115を有する。整流平滑回路114の直流出力電圧はVcc(B)として副制御部180、フォトカプラ182等に供給される。整流平滑回路115の直流出力電圧は、フォトカプラ185に供給される。フォトカプラ185は、副制御部180の充電電源オン・オフ信号を充電電源駆動回路175に伝達する。充電電源オン・オフ信号が「充電電源オン」を指示したときは充電電源駆動回路175を作動させてスイッチング素子174をスイッチングし、「充電電源オフ」を指示したときは充電電源駆動回路175の動作を停止する。 The circuit power supply unit 110 uses the DC output of the rectifier 171 of the charging unit 170 to supply a power supply voltage Vcc (B) to the sub-control unit 180 and the like, and also to a photocoupler 185 that transmits a charging power on/off signal. Provides power supply. The circuit power supply section 110 includes a step-down transformer 111 having one primary winding and two secondary windings, a switching element 112 that switches the primary side of the transformer, and a circuit power supply drive circuit that outputs a drive signal to the switching element 112. 113, and rectifying and smoothing circuits 114 and 115 respectively provided in the two secondary windings. The DC output voltage of the rectifying and smoothing circuit 114 is supplied as Vcc(B) to the sub-control unit 180, photocoupler 182, etc. The DC output voltage of the rectifying and smoothing circuit 115 is supplied to the photocoupler 185. Photocoupler 185 transmits a charging power supply on/off signal from sub-control unit 180 to charging power supply drive circuit 175 . When the charging power supply on/off signal instructs "charging power on", the charging power supply drive circuit 175 is activated to switch the switching element 174, and when the charging power supply on/off signal instructs "charging power supply OFF", the charging power supply driving circuit 175 operates. stop.
電池パック68(電池パック接続部48)と充電部170との接続をオン・オフするためにリレー186(第1の遮断回路)が設けられる。電池パック67(電池パック接続部47)と充電部170との接続をオン・オフするためにリレー187(第2の遮断回路)が設けられる。電池パック68(電池パック接続部48)とアシスト電源部150との接続をオン・オフするためにリレー188が設けられる。電池パック67(電池パック接続部47)とアシスト電源部150との接続をオン・オフするためにリレー189が設けられる。リレー186~189はそれぞれ副制御部180からのリレーオン・オフ信号によってオン・オフ制御される。 A relay 186 (first cutoff circuit) is provided to turn on and off the connection between the battery pack 68 (battery pack connection section 48) and the charging section 170. A relay 187 (second cutoff circuit) is provided to turn on and off the connection between the battery pack 67 (battery pack connection section 47) and the charging section 170. A relay 188 is provided to turn on and off the connection between the battery pack 68 (battery pack connection section 48) and the assist power supply section 150. A relay 189 is provided to turn on and off the connection between the battery pack 67 (battery pack connection section 47) and the assist power supply section 150. Relays 186 to 189 are controlled on and off by relay on/off signals from sub-control unit 180, respectively.
通信回路100は2つのフォトカプラ101、102を有し、主制御部140と副制御部180との間の電気的に絶縁された通信回線を構成する。フォトカプラ101は主制御部140からの情報信号を副制御部180へ伝達し、フォトカプラ102は副制御部180からの情報信号を主制御部140へ伝達する。 The communication circuit 100 has two photocouplers 101 and 102, and constitutes an electrically insulated communication line between the main control section 140 and the sub-control section 180. Photocoupler 101 transmits an information signal from main control section 140 to sub-control section 180, and photocoupler 102 transmits an information signal from sub-control section 180 to main control section 140.
アシスト電源部150のスイッチング素子152、153に、温度検出のためのサーミスタTh3が設けられる。サーミスタTh3の温度監視信号は副制御部180に出力される。電池パック67、68やスイッチング素子152、153等の温度上昇が許容範囲を超えると副制御部180によって動作停止となる。 The switching elements 152 and 153 of the assist power supply unit 150 are provided with a thermistor Th3 for temperature detection. The temperature monitoring signal of thermistor Th3 is output to the sub-control unit 180. If the temperature rise of the battery packs 67, 68, switching elements 152, 153, etc. exceeds a permissible range, the sub-control unit 180 stops the operation.
図10の操作パネル部196において、表示パネル191は、主制御部140からの各種情報を表示する表示部である。運転ボタン192は、空気圧縮機1の運転開始、運転停止を指示するスイッチである。充電ボタン193は、電池パック67、68の充電許可、充電停止を指示するスイッチである。モード切替ボタン194は、空気圧縮機1の運転モードの切替を行う切替スイッチである。アシストボタン195は、電池パックを用いる電力アシストを併用するモードと電力アシストを使用しないモードとの切替スイッチである。 In the operation panel section 196 in FIG. 10, the display panel 191 is a display section that displays various information from the main control section 140. The operation button 192 is a switch for instructing the air compressor 1 to start and stop operating. The charging button 193 is a switch for instructing permission to charge the battery packs 67 and 68 and stopping charging. The mode switching button 194 is a switching switch that switches the operating mode of the air compressor 1. The assist button 195 is a changeover switch between a mode that uses power assist using a battery pack and a mode that does not use power assist.
図9から図12の回路構成において、空気圧縮機1は商用電源139(AC100V)に接続された状態において使用される。本体回路部200は、商用電源139より電力供給を受けるため、AC側負荷電流検出部137の値に基づき、商用電源139からの入力電流が15A以下となるように主制御部140により制御される。これは、一般的にACコンセントの最大定格電流が15Aとなっているからである。 In the circuit configurations shown in FIGS. 9 to 12, the air compressor 1 is used while being connected to a commercial power source 139 (AC 100V). Since the main circuit unit 200 receives power from the commercial power supply 139, it is controlled by the main control unit 140 based on the value of the AC side load current detection unit 137 so that the input current from the commercial power supply 139 is 15 A or less. . This is because the maximum rated current of an AC outlet is generally 15A.
通常動作時は、AC負荷電流値が15Aを超えそうになると主制御部140はモータ14の目標回転数を下げる。目標回転数はインバータ部133の負荷やタンク50内の圧力によっても変わってくる。具体的には、軽負荷の場合には高く、タンク内圧力が高まってきた場合や圧縮空気の使用量が多い場合には低く設定する。 During normal operation, when the AC load current value is about to exceed 15 A, the main control unit 140 lowers the target rotation speed of the motor 14. The target rotation speed also changes depending on the load on the inverter section 133 and the pressure inside the tank 50. Specifically, it is set high when the load is light, and set low when the pressure inside the tank increases or when the amount of compressed air used is large.
アシスト電源部150を作動させる電力アシスト時は、目標回転数に達するとAC電流値が下がってくるため、主制御部140はAC負荷電流値15Aを維持するように目標回転数を上げていくことで、足りない電力を電池パック67、68の一方又は両方から供給することが出来る。この時、副制御部180は電池パック67、68からの供給電流あるいは供給電力による制限を加えることでモータ14の回転数を一定範囲内に収めることができる。 When the assist power supply section 150 is operated for electric power assist, the AC current value decreases when the target rotation speed is reached, so the main control section 140 increases the target rotation speed so as to maintain the AC load current value of 15A. Therefore, the insufficient power can be supplied from one or both of the battery packs 67 and 68. At this time, the sub-control unit 180 can keep the rotational speed of the motor 14 within a certain range by limiting the supply current or power from the battery packs 67 and 68.
ここで、以下の点に注意する。AC側電源昇圧回路132は、昇圧電圧が目標値となるようにフィードバック制御しているが、シリーズダイオード323Aを挿入しない場合において、特にアシスト電源部150からのアシスト電圧が高すぎる場合には、昇圧電圧を低くするように制御してしまう。昇圧電圧が低下すると商用電源139からの電流供給が低下するため、電池パック67、68からの電流供給が過大になり、結果的に電力アシスト時間の減少につながってしまう。この場合、アシスト出力電圧(アシスト電源部150の出力電圧)をシリーズダイオード182の順方向電圧降下程度(1V~2V)大きくなるように制御すれば、シリーズダイオード323Aを省略できる。 Here, please note the following points. The AC side power supply booster circuit 132 performs feedback control so that the boosted voltage becomes a target value, but when the series diode 323A is not inserted, especially when the assist voltage from the assist power supply section 150 is too high, the booster voltage It controls the voltage to be low. When the boosted voltage decreases, the current supply from the commercial power supply 139 decreases, so the current supply from the battery packs 67 and 68 becomes excessive, resulting in a reduction in the power assist time. In this case, if the assist output voltage (output voltage of the assist power supply unit 150) is controlled to be as large as the forward voltage drop of the series diode 182 (1V to 2V), the series diode 323A can be omitted.
一方で、シリーズダイオード323Aを挿入する場合には、昇圧電圧とアシスト電圧を接続する箇所に電圧合流部電解コンデンサ324Aを設ける必要がある。これは、モータ14を停止した場合に発生するサージエネルギーを吸収するためであり、大容量且つ高耐圧の大型品を使用する。しかし、上記のようにシリーズダイオード323Aを省略した場合には、AC側電源昇圧回路132の電解コンデンサ324により代用することができるため、電圧合流部電解コンデンサも省略することができる。これにより、基板上の面積や電子部品コスト削減はもちろん、ダイオードの損失や電圧降下による効率低下を改善することができる。 On the other hand, when inserting the series diode 323A, it is necessary to provide a voltage junction electrolytic capacitor 324A at a location where the boost voltage and the assist voltage are connected. This is to absorb surge energy generated when the motor 14 is stopped, and a large product with a large capacity and high withstand voltage is used. However, if the series diode 323A is omitted as described above, the electrolytic capacitor 324 of the AC side power supply booster circuit 132 can be used instead, so the voltage junction electrolytic capacitor can also be omitted. This not only reduces the area on the board and the cost of electronic components, but also improves efficiency loss due to diode loss and voltage drop.
一般に、複数の電池パックを並列接続して用いる場合、電池パック同士の逆流電流を防止するために図11中点線表記の逆流防止用ダイオード148、149が必要となる。しかし、電池パック67、68の電位差が所定電位差値(例えば0.5Vとする)以内になるように電池パックを交互に充電していくことで、実用上、電池パック同士の逆流電流を充電電流程度に抑えることが出来る。このため、ダイオード148、149は削除してもよい。これにより、ダイオード148、149の抵抗分に起因する出力低下やダイオード148、149による発熱の問題を解消できる。 In general, when a plurality of battery packs are connected in parallel and used, backflow prevention diodes 148 and 149, indicated by dotted lines in FIG. 11, are required to prevent backflow current between the battery packs. However, by charging the battery packs alternately so that the potential difference between the battery packs 67 and 68 is within a predetermined potential difference value (for example, 0.5V), in practice, the reverse current between the battery packs can be reduced by the charging current. It can be suppressed to a certain extent. For this reason, diodes 148 and 149 may be deleted. This makes it possible to eliminate the problems of output reduction due to the resistance of the diodes 148 and 149 and heat generation caused by the diodes 148 and 149.
電池パック67、68を並列接続した電力アシスト中に電池パック67、68の電位差が所定電位差値(0.5V)を超えて開いた場合でも、片方の電池電圧がアシスト停止電圧V1を下回るまではアシストを継続する。 Even if the potential difference between the battery packs 67 and 68 exceeds a predetermined potential difference value (0.5V) during power assist when the battery packs 67 and 68 are connected in parallel, the voltage of one of the batteries will not exceed the assist stop voltage V1. Continue assisting.
電力アシスト期間中に電池パック67、68の一方だけアシストを停止しようとすると、停止と同時に電池パック67、68の他方の放電電流が過大になってしまうため、モータ14の目標回転数を下げるなど、電流値を減らしておく必要がある。実際停止するには通電中にリレー188又は189をオフする必要がある。接点故障を抑制する観点では、一方の電池電圧がアシスト停止電圧V1を下回った時点でアシストそのものを停止するとよい。この理由は、両方の電池電圧がアシスト停止電圧V1を下回るまでアシストを継続しようとすると、先に低下した方の電池パックの消費電流が大きくなり、電圧低下と発熱が加速してしまうため、再充電と再アシストのサイクルが遅くなってしまうからである。 If you try to stop assisting only one of the battery packs 67 and 68 during the power assist period, the discharge current of the other battery pack 67 and 68 will become excessive at the same time as the stop, so it is necessary to lower the target rotation speed of the motor 14, etc. , it is necessary to reduce the current value. To actually stop it, it is necessary to turn off the relay 188 or 189 while the power is on. From the viewpoint of suppressing contact failure, it is preferable to stop the assist itself when the voltage of one battery falls below the assist stop voltage V1. The reason for this is that if you try to continue assisting until both battery voltages fall below the assist stop voltage V1, the current consumption of the battery pack that dropped first will increase, accelerating the voltage drop and heat generation. This is because the charging and re-assist cycle becomes slow.
以下、空気圧縮機1における電池パック67、68の充放電について説明する。 Charging and discharging of the battery packs 67 and 68 in the air compressor 1 will be described below.
図13は、空気圧縮機1における電池パック67、68の充放電に係る回路ブロック図である。図13の充放電回路400は、回路部の例示であり、空気圧縮機1における、図9の電池パック67、68及び電池パック接続部47、48以外の回路全体に対応する。 FIG. 13 is a circuit block diagram related to charging and discharging battery packs 67 and 68 in air compressor 1. The charging/discharging circuit 400 in FIG. 13 is an example of a circuit section, and corresponds to the entire circuit in the air compressor 1 other than the battery packs 67 and 68 and the battery pack connection sections 47 and 48 in FIG.
電池パック67、68の各々は、端子間電圧を第1電圧値と第2電圧値とに切替可能な第1電源装置の例示である。以下、一例として、第1電圧値を36V、第2電圧値を18Vとする。電池パック67、68は、互いに同一構成である。 Each of the battery packs 67 and 68 is an example of a first power supply device that can switch the voltage between terminals between a first voltage value and a second voltage value. Hereinafter, as an example, the first voltage value will be 36V and the second voltage value will be 18V. The battery packs 67 and 68 have the same configuration.
空気圧縮機1の電池パック接続部47、48及び電池パック67、68は、それぞれ上C+端子、下C+端子、上+端子、下+端子、上-端子、下-端子を有する。電池パック接続部47と電池パック67の同名の端子同士が互いに接続される。電池パック接続部48と電池パック68の同名の端子同士が互いに接続される。電池パック67、68の端子間電圧は、上C+端子及び上+端子と、下-端子と、の間の電圧である。電池パック接続部47、48の各端子は、接続部端子組の例示である。 The battery pack connections 47, 48 and the battery packs 67, 68 of the air compressor 1 each have an upper C+ terminal, a lower C+ terminal, an upper + terminal, a lower + terminal, an upper-terminal, and a lower-terminal. Terminals of the battery pack connecting portion 47 and the battery pack 67 having the same name are connected to each other. Terminals of the battery pack connecting portion 48 and the battery pack 68 having the same name are connected to each other. The voltage between the terminals of the battery packs 67 and 68 is the voltage between the upper C+ terminal, the upper + terminal, and the lower - terminal. Each terminal of the battery pack connection parts 47 and 48 is an example of a connection part terminal set.
電池パック67、68の各々は、18Vの電池セル組211、212を有し、接続先の機器の構成により電池セル組211、212が互いに直列接続になると端子間電圧が第1電圧値(36V)となり、接続先の機器の構成により電池セル組211、212が互いに並列接続になると端子間電圧が第2電圧値(18V)となる。 Each of the battery packs 67 and 68 has an 18V battery cell set 211 and 212, and when the battery cell sets 211 and 212 are connected in series with each other depending on the configuration of the connected device, the voltage between the terminals becomes the first voltage value (36V ), and when the battery cell sets 211 and 212 are connected in parallel with each other due to the configuration of the connected device, the voltage between the terminals becomes the second voltage value (18V).
電池セル組211の正極は上C+端子及び上+端子に接続される。電池セル組211の負極は上-端子に接続される。電池セル組212の正極は下C+端子及び下+端子に接続される。電池セル組212の負極は下-端子に接続される。 The positive electrode of the battery cell set 211 is connected to the upper C+ terminal and the upper + terminal. The negative electrode of the battery cell set 211 is connected to the upper terminal. The positive electrode of the battery cell set 212 is connected to the lower C+ terminal and the lower + terminal. The negative electrode of the battery cell set 212 is connected to the lower terminal.
図示は省略するが、36V入力の電動工具は、接続した電池パック67(又は68)の下+端子と上-端子とを短絡するショートバー(短絡部材)を有し、上+端子と下-端子との間に現れる36Vを入力電圧とするよう構成される。 Although not shown, the 36V input power tool has a shorting bar (shorting member) that shorts the lower + terminal and upper - terminal of the connected battery pack 67 (or 68). It is configured so that the input voltage is 36V appearing between the terminal and the terminal.
一方、充電器は、接続した電池パック67(又は68)の上C+端子と下C+端子とを短絡し、上-端子と下-端子とを短絡する端子構造を有し、端子間電圧を18Vとするよう構成される。これにより充電器は、電池パック67、68を、端子間電圧が18Vに固定された電池パック(以下「18V電池パック」)と同じ回路構成で充電できる。 On the other hand, the charger has a terminal structure in which the upper C+ terminal and lower C+ terminal of the connected battery pack 67 (or 68) are short-circuited, and the upper-terminal and lower-terminal are short-circuited, and the voltage between the terminals is 18V. It is configured so that Thereby, the charger can charge the battery packs 67 and 68 with the same circuit configuration as a battery pack in which the inter-terminal voltage is fixed at 18V (hereinafter referred to as "18V battery pack").
空気圧縮機1は、電池パック67、68と充放電回路400との間に、それぞれ18/36V切替回路121、122を有する。18/36V切替回路121、122は、電池パック67、68の端子間電圧が第1電圧値(36V)となる第1状態と、電池パック67、68の端子間電圧が第2電圧値(18V)となる第2状態と、の間で切替可能な回路である。 Air compressor 1 has 18/ 36V switching circuits 121 and 122 between battery packs 67 and 68 and charge/discharge circuit 400, respectively. The 18/ 36V switching circuits 121 and 122 have a first state in which the voltage between the terminals of the battery packs 67 and 68 is a first voltage value (36V), and a second state in which the voltage between the terminals of the battery packs 67 and 68 is a second voltage value (18V). ) is a circuit that can be switched between a second state and a second state.
18/36V切替回路121、122は、スイッチ123~125を有する。スイッチ123~125は、例えば半導体スイッチング素子やリレーで構成される。スイッチ123~125のオンオフは、充放電回路400により制御される(例えば前述の副制御部180により制御される)。 The 18/ 36V switching circuits 121 and 122 have switches 123 to 125. The switches 123 to 125 are composed of, for example, semiconductor switching elements or relays. The on/off state of the switches 123 to 125 is controlled by the charging/discharging circuit 400 (for example, controlled by the aforementioned sub-control unit 180).
スイッチ123は、上C+端子と下C+端子との間に設けられる。スイッチ124は、下+端子と上-端子との間に設けられる。スイッチ125は、上-端子と下-端子との間に設けられる。 Switch 123 is provided between the upper C+ terminal and the lower C+ terminal. Switch 124 is provided between the lower + terminal and the upper - terminal. A switch 125 is provided between the upper terminal and the lower terminal.
スイッチ123、125は、電池パック67、68の充電時にはオフ、放電時にはオンとなる。スイッチ124は、電池パック67、68の充電時にはオン、放電時にはオフとなる。これにより、電池パック67、68は、充電時には端子間電圧が18V、放電時には端子間電圧が36Vとなる。 The switches 123 and 125 are turned off when the battery packs 67 and 68 are being charged, and turned on when they are being discharged. The switch 124 is turned on when the battery packs 67 and 68 are being charged, and turned off when the battery packs 67 and 68 are being discharged. As a result, the voltage between the terminals of the battery packs 67 and 68 becomes 18V when charging, and the voltage between the terminals becomes 36V when discharging.
充放電回路400は、電池パック67、68の上C+端子に充電電圧を印加する充電用+端子、電池パック67、68の上C+端子の電圧を監視する電池電圧モニタ端子、電池パック67、68の上+端子から放電電圧が入力される放電用+端子、充電時にスイッチ123、125にオン信号を印加する18V接続信号出力端子、放電時にスイッチ124にオン信号を印加する36V接続信号出力端子、電池パック67、68の上-端子の電圧を監視する上バンク-側電圧モニタ端子、電池パック67、68の下-端子に接続される-端子を有する。 The charging/discharging circuit 400 includes a charging + terminal that applies a charging voltage to the upper C+ terminals of the battery packs 67 and 68, a battery voltage monitor terminal that monitors the voltage of the upper C+ terminals of the battery packs 67 and 68, and a battery voltage monitor terminal that monitors the voltage of the upper C+ terminals of the battery packs 67 and 68. A discharge + terminal into which the discharge voltage is input from the upper + terminal, an 18V connection signal output terminal that applies an on signal to the switches 123 and 125 during charging, a 36V connection signal output terminal that applies an on signal to the switch 124 during discharge, It has an upper bank side voltage monitor terminal for monitoring the voltage at the upper terminals of the battery packs 67, 68, and a terminal connected to the lower terminals of the battery packs 67, 68.
図14は、図13において電池パック67、68を電池パック69に置換した回路ブロック図である。電池パック69は、18V電池パックであり、端子間電圧が第2電圧値(18V)である第2電源装置の例示である。電池パック接続部47、48には、電池パック69も接続可能である。 FIG. 14 is a circuit block diagram in which the battery packs 67 and 68 in FIG. 13 are replaced with a battery pack 69. The battery pack 69 is an 18V battery pack, and is an example of a second power supply device whose inter-terminal voltage is a second voltage value (18V). A battery pack 69 can also be connected to the battery pack connections 47 and 48.
電池パック69は、C+端子、+端子、-端子を有する。C+端子は電池パック接続部47、48の上C+端子に接続される。+端子は、電池パック接続部47、48の上+端子に接続される。-端子は、電池パック接続部47、48の下-端子に接続される。 The battery pack 69 has a C+ terminal, a + terminal, and a - terminal. The C+ terminal is connected to the upper C+ terminal of the battery pack connection parts 47 and 48. The + terminal is connected to the upper + terminal of the battery pack connection parts 47 and 48. The − terminal is connected to the lower − terminal of the battery pack connection portions 47, 48.
電池パック69は、互いに並列接続された18Vの電池セル組213、214を有する。電池セル組213、214の正極はC+端子及び+端子に接続される。電池セル組213、214の負極は-端子に接続される。電池パック接続部47、48に電池パック69が接続された場合、スイッチ123~125は、いずれもオフとされる。 The battery pack 69 has a set of 18V battery cells 213 and 214 connected in parallel to each other. The positive electrodes of the battery cell sets 213 and 214 are connected to the C+ terminal and the + terminal. The negative electrodes of the battery cell sets 213 and 214 are connected to the - terminal. When the battery pack 69 is connected to the battery pack connections 47 and 48, all of the switches 123 to 125 are turned off.
図15は、図13において電池パック67、68を電池パック74に置換した回路ブロック図である。電池パック74は、端子間電圧が36Vに固定された電池パック(以下「36V電池パック」)であり、端子間電圧が第1電圧値(36V)である第2電源装置の例示である。電池パック接続部47、48には、電池パック74も接続可能である。 FIG. 15 is a circuit block diagram in which the battery packs 67 and 68 in FIG. 13 are replaced with a battery pack 74. The battery pack 74 is a battery pack whose inter-terminal voltage is fixed at 36V (hereinafter referred to as a "36V battery pack"), and is an example of a second power supply device whose inter-terminal voltage is a first voltage value (36V). A battery pack 74 can also be connected to the battery pack connections 47 and 48 .
電池パック74は、C+端子、+端子、-端子を有する。C+端子は電池パック接続部47、48の上C+端子に接続される。+端子は、電池パック接続部47、48の上+端子に接続される。-端子は、電池パック接続部47、48の下-端子に接続される。 The battery pack 74 has a C+ terminal, a + terminal, and a - terminal. The C+ terminal is connected to the upper C+ terminal of the battery pack connection parts 47 and 48. The + terminal is connected to the upper + terminal of the battery pack connection parts 47 and 48. The − terminal is connected to the lower − terminal of the battery pack connection portions 47, 48.
電池パック74は、36Vの電池セル組215を有する。電池セル組215の正極はC+端子及び+端子に接続される。電池セル組215の負極は-端子に接続される。電池パック接続部47、48に電池パック74が接続された場合、スイッチ123~125は、いずれもオフとされる。 The battery pack 74 has a 36V battery cell set 215. The positive electrode of the battery cell set 215 is connected to the C+ terminal and the + terminal. The negative electrode of the battery cell set 215 is connected to the - terminal. When the battery pack 74 is connected to the battery pack connectors 47 and 48, the switches 123 to 125 are all turned off.
図16は、空気圧縮機1における充放電制御のフローチャートである。ユーザは、電池パック接続部47、48の少なくとも一方に電池パックを接続する(S1)。副制御部180は、電池パック接続部47、48の少なくとも一方に接続された電池パック(以下「接続電池パック」)と通信し、接続電池パックの種類、すなわち定格電圧等を判別する(S3)。 FIG. 16 is a flowchart of charge/discharge control in the air compressor 1. The user connects the battery pack to at least one of the battery pack connectors 47 and 48 (S1). The sub-control unit 180 communicates with the battery pack (hereinafter referred to as “connected battery pack”) connected to at least one of the battery pack connection units 47 and 48, and determines the type of the connected battery pack, that is, the rated voltage, etc. (S3) .
副制御部180は、モータ14が運転中の場合(S5のYes)、充放電回路400による充電を停止し又は停止状態に維持し(S7)、放電モードとなる又は放電モードを維持する(S9)。 When the motor 14 is in operation (Yes in S5), the sub-control unit 180 stops charging by the charging/discharging circuit 400 or maintains the charging in the stopped state (S7), and enters the discharging mode or maintains the discharging mode (S9). ).
副制御部180は、接続電池パックが36Vでの放電が可能な電池パック(以下「36V放電可能電池パック」)の場合(S10のYes)、スイッチ123~125を36V放電用に切り替え又は36V放電用に維持し(S11)、接続電池パックからの放電を許可する(S15)。副制御部180は、放電フラグが「H」であれば(S17のYes)、接続電池パックからの放電を行う(S19)。副制御部180は、放電フラグが「H」でなければ(S17のNo)、接続電池パックからの放電を停止し又は停止状態に維持する(S23)。放電フラグは、過放電や高温等の異常が検出されていない場合は「H」にセットされ、異常が検出されている場合は「L」にセットされる。 When the connected battery pack is a battery pack capable of discharging at 36V (hereinafter referred to as a "36V dischargeable battery pack") (Yes in S10), the sub-control unit 180 switches the switches 123 to 125 to 36V discharge or (S11), and allows discharge from the connected battery pack (S15). If the discharge flag is "H" (Yes in S17), the sub-control unit 180 discharges the connected battery pack (S19). If the discharge flag is not "H" (No in S17), the sub-control unit 180 stops discharging from the connected battery pack or maintains it in the stopped state (S23). The discharge flag is set to "H" if no abnormality such as over-discharge or high temperature is detected, and is set to "L" if any abnormality is detected.
副制御部180は、接続電池パックが36V放電可能電池パックでない場合(S10のNo)、放電を禁止し(S21)、接続電池パックからの放電を停止し又は停止状態に維持する(S23)。なお、電池パック67、68、74は36V放電可能電池パックの例示である。電池パック69は、36V放電可能電池パックでない電池パックの例示である。 If the connected battery pack is not a 36V dischargeable battery pack (No in S10), the sub-control unit 180 prohibits discharging (S21), and stops discharging from the connected battery pack or maintains it in a stopped state (S23). Note that the battery packs 67, 68, and 74 are examples of 36V dischargeable battery packs. Battery pack 69 is an example of a battery pack that is not a 36V dischargeable battery pack.
副制御部180は、モータ14が運転中でない場合(S5のNo)、接続電池パックからの放電を停止し又は停止状態に維持し(S27)、充電モードとなる又は充電モードを維持する(S29)。 If the motor 14 is not in operation (No in S5), the sub-control unit 180 stops discharging from the connected battery pack or maintains it in a stopped state (S27), and enters or maintains the charging mode (S29). ).
副制御部180は、接続電池パックが18Vでの充電が可能な電池パック(以下「18V充電可能電池パック」)の場合(S30のYes)、スイッチ123~125を18V充電用に切り替え又は18V充電用に維持し(S31)、接続電池パックへの充電を許可する(S35)。副制御部180は、接続電池パックが満充電であれば(S37のYes)、接続電池パックへの充電を停止し又は停止状態に維持する(S39)。副制御部180は、接続電池パックが満充電でなければ(S37のNo)、接続電池パックへの充電を行う(S41)。 If the connected battery pack is a battery pack that can be charged at 18V (hereinafter referred to as "18V rechargeable battery pack") (Yes in S30), the sub-control unit 180 switches the switches 123 to 125 to 18V charging or switches the switches 123 to 125 to 18V charging. (S31), and allows charging of the connected battery pack (S35). If the connected battery pack is fully charged (Yes in S37), the sub-control unit 180 stops charging the connected battery pack or maintains it in a stopped state (S39). If the connected battery pack is not fully charged (No in S37), the sub-control unit 180 charges the connected battery pack (S41).
副制御部180は、接続電池パックが18V充電可能電池パックでない場合(S30のNo)、充電を禁止する(S43)。なお、電池パック67、68、69は18V充電可能電池パックの例示である。電池パック74は、18V充電可能電池パックでない電池パックの例示である。電池パック67、68は、36V放電可能電池パックであり、かつ18V充電可能電池パックでり、以下「18/36V切替可能電池パック」と表記する。 If the connected battery pack is not a 18V rechargeable battery pack (No in S30), the sub-control unit 180 prohibits charging (S43). Note that the battery packs 67, 68, and 69 are examples of 18V rechargeable battery packs. Battery pack 74 is an example of a battery pack that is not an 18V rechargeable battery pack. The battery packs 67 and 68 are 36V dischargeable battery packs and 18V rechargeable battery packs, and will hereinafter be referred to as "18/36V switchable battery packs."
空気圧縮機1の上記回路構成及び充放電制御によれば、以下の作用効果が得られる。 According to the above circuit configuration and charge/discharge control of the air compressor 1, the following effects can be obtained.
(1)充放電回路400は、接続電池パックが18/36V切替可能電池パックの場合、接続電池パックからモータ14への放電、及び接続電池パックへの充電を許容する。充放電回路400は、接続電池パックが18V電池パックの場合、接続電池パックからモータ14への放電を禁止し、接続電池パックへの充電を許容する。充放電回路400は、接続電池パックが36V電池パックの場合、接続電池パックからモータ14への放電を許容し、接続電池パックへの充電を禁止する。このため、充放電回路400は、接続電池パックの放電時と充電時で接続電池パックの端子間電圧を異ならせる構成として18/36V切替可能電池パックの充放電を適切に実行可能としつつ、18V電池パックの充電と36V電池パックからの放電が可能なため、作業性が良い。 (1) When the connected battery pack is a 18/36V switchable battery pack, the charging/discharging circuit 400 allows discharging from the connected battery pack to the motor 14 and charging the connected battery pack. When the connected battery pack is an 18V battery pack, the charging/discharging circuit 400 prohibits discharging from the connected battery pack to the motor 14 and allows charging to the connected battery pack. When the connected battery pack is a 36V battery pack, the charging/discharging circuit 400 allows discharging from the connected battery pack to the motor 14 and prohibits charging to the connected battery pack. For this reason, the charging/discharging circuit 400 has a configuration in which the voltage between the terminals of the connected battery pack is different when discharging and charging the connected battery pack, so that it is possible to appropriately charge and discharge the 18/36V switchable battery pack. Workability is good because it is possible to charge the battery pack and discharge from the 36V battery pack.
(2)空気圧縮機1は、18/36V切替回路121、122により、電池パック67、68の端子間電圧が第1電圧値(36V)となる第1状態と、電池パック67、68の端子間電圧が第2電圧値(18V)となる第2状態と、の間で切替可能である。このため、18/36V切替可能電池パックである電池パック67、68の充放電を適切に行える。 (2) The air compressor 1 is set to a first state in which the voltage between the terminals of the battery packs 67 and 68 is a first voltage value (36V) and a terminal of the battery packs 67 and 68 by the 18/ 36V switching circuits 121 and 122. It is possible to switch between a second state in which the inter-voltage voltage becomes a second voltage value (18V). Therefore, the battery packs 67 and 68, which are 18/36V switchable battery packs, can be appropriately charged and discharged.
(3)18/36V切替回路121、122は、電池パック接続部47、48の各端子(接続部端子組)と、充放電回路400との接続状態を切り替えることで、前記第1状態と前記第2状態との間の切替を行う。このため、接続先の機器の端子構成により端子間電圧が第1電圧値(36V)と第2電圧値(18V)との間で切り替わるタイプの電池パック67、68に対して、前記第1状態と前記第2状態との間の切替を適切に行える。 (3) The 18/ 36V switching circuits 121 and 122 switch the connection state between each terminal of the battery pack connection parts 47 and 48 (connection part terminal group) and the charging/discharging circuit 400, thereby switching between the first state and the above-mentioned state. Switching between the second state and the second state is performed. Therefore, for the battery packs 67 and 68 of the type in which the voltage between the terminals is switched between the first voltage value (36V) and the second voltage value (18V) depending on the terminal configuration of the connected device, the first state and the second state can be appropriately switched.
図17(A)~(D)は、本発明の他の実施の形態の作業機に関する。以下、前述の実施の形態との相違点を中心に説明する。電池パック75は、自身の内部回路の状態により端子間電圧が第1電圧値(36V)と第2電圧値(18V)との間で切り替わるタイプである。 17(A) to (D) relate to a working machine according to another embodiment of the present invention. Hereinafter, differences from the above-described embodiments will be mainly explained. The battery pack 75 is of a type in which the voltage between its terminals is switched between a first voltage value (36V) and a second voltage value (18V) depending on the state of its internal circuit.
電池パック75は、切替部材128を有する。切替部材128は、接続先の機器との係合により図17(A),(B)のように状態が切り替えられる。これにより、図17(C),(D)のように電池パック75の電池セル組217、218の相互接続が直列接続と並列接続とで切り替わり、端子間電圧が第1電圧値(36V)と第2電圧値(18V)との間で切り替わる。 Battery pack 75 has switching member 128. The state of the switching member 128 is switched as shown in FIGS. 17(A) and 17(B) by engagement with a connected device. As a result, the interconnection of the battery cell sets 217 and 218 of the battery pack 75 is switched between series connection and parallel connection as shown in FIGS. 17(C) and 17(D), and the voltage between the terminals becomes the first voltage value (36V). It switches between the second voltage value (18V).
このような電池パック75に対応して、作業機は、切替部としてのソレノイドアクチュエータ126、127を有し、ソレノイドアクチュエータ126、127により、電池パック75の充電時と放電時とで図17(A),(B)のように切替部材128の状態を切り替え(電池パック75の内部回路を切り替え)、電池パック75の端子間電圧が第1電圧値(36V)となる第1状態と、電池パック75の端子間電圧が第2電圧値(18V)となる第2状態と、の間の切替を行う。ソレノイドアクチュエータ126、127は、図13のスイッチ123~125に替わる部材である。 Corresponding to such a battery pack 75, the working machine has solenoid actuators 126 and 127 as switching parts, and the solenoid actuators 126 and 127 cause the battery pack 75 to change when charging and discharging, as shown in FIG. 17(A). ), (B), the state of the switching member 128 is switched (switching the internal circuit of the battery pack 75), and the voltage between the terminals of the battery pack 75 becomes the first voltage value (36V), and the battery pack Switching is performed between the second state in which the voltage between the terminals of 75 becomes the second voltage value (18V). The solenoid actuators 126 and 127 are members that replace the switches 123 to 125 in FIG.
他の実施の形態によれば、ソレノイドアクチュエータ126、127は、電池パック75の内部回路を切り替えることで、前記第1状態と前記第2状態との間の切替を行う。このため、自身の内部回路の状態により端子間電圧が第1電圧値(36V)と第2電圧値(18V)との間で切り替わるタイプの電池パック75に対して、前記第1状態と前記第2状態との間の切替を適切に行える。 According to another embodiment, the solenoid actuators 126, 127 switch between the first state and the second state by switching the internal circuit of the battery pack 75. Therefore, for the battery pack 75 of the type in which the voltage between the terminals is switched between the first voltage value (36V) and the second voltage value (18V) depending on the state of its own internal circuit, the first state and the second voltage value (18V) are It is possible to appropriately switch between the two states.
以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。 Although the present invention has been described above using the embodiments as examples, those skilled in the art will understand that various modifications can be made to each component and each processing process of the embodiments within the scope of the claims. By the way. Modifications will be discussed below.
作業機が有する電池パック接続部の個数は、2個に限定されず、1個又は3個以上でもよい。作業機は、空気圧縮機に限定されず、電池パックからの放電と電池パックへの充電が可能な任意の作業機でよい。実施の形態で具体的な数値として例示した第1電圧値や第2電圧値、電池セル組の電圧や個数等は、発明の範囲を何ら限定するものではなく、要求される仕様に合わせて任意に変更できる。 The number of battery pack connection parts that the working machine has is not limited to two, but may be one or three or more. The working machine is not limited to an air compressor, and may be any working machine that can discharge from and charge the battery pack. The first voltage value, second voltage value, voltage and number of battery cell sets, etc., which are exemplified as specific numerical values in the embodiments, do not limit the scope of the invention in any way, and may be arbitrary according to the required specifications. can be changed to
また、第1電源装置を端子間電圧が第1電圧値(36V)から切替不能な36V電池パックとし、第2電源装置を端子間電圧が第2電圧値(18V)から切替不能な18V電池パックとし、回路部は第1接続部に36V電池パックが接続されたときに負荷部による電力の消費を許容し、18V電池パックが接続されたときには充電のみ許容し電力の消費を禁止する構成としてもよい。 Further, the first power supply device is a 36V battery pack whose terminal voltage cannot be switched from the first voltage value (36V), and the second power supply device is a 18V battery pack whose terminal voltage cannot be switched from the second voltage value (18V). The circuit section may be configured to allow power consumption by the load section when a 36V battery pack is connected to the first connection section, and allow only charging and prohibit power consumption when an 18V battery pack is connected. good.
1…作業機(空気圧縮機)、2…カバー、10…圧縮空気生成部、11…第1圧縮部、12…第2圧縮部、13…クランクケース、14…モータ、14a…ロータ、14b…ステータ、14c…出力軸、15…プロペラファン、17…制御部、18…電力制御部、47,48…電池パック接続部(第1接続部)、49…商用電源接続部(第2接続部)、50,51,52,53,54…タンク、50a,50b…端壁、50c…側壁、61…カプラ、62…減圧弁、64,65…連結部、67,68,69…電池パック(バッテリー)、70…ドレン排出機構、71…ドレン吸い上げ管、74,75…電池パック(バッテリー)<80…脚部、81,84…取付部、82…固定部、83…ゴム脚、85…固定部材、121,122…18/36V切替回路、123~125…スイッチ、126,127…ソレノイドアクチュエータ、400…充放電回路(回路部)。 DESCRIPTION OF SYMBOLS 1... Work equipment (air compressor), 2... Cover, 10... Compressed air generation part, 11... First compression part, 12... Second compression part, 13... Crank case, 14... Motor, 14a... Rotor, 14b... Stator, 14c... Output shaft, 15... Propeller fan, 17... Control section, 18... Power control section, 47, 48... Battery pack connection section (first connection section), 49... Commercial power supply connection section (second connection section) , 50, 51, 52, 53, 54...Tank, 50a, 50b...End wall, 50c...Side wall, 61...Coupler, 62...Reducing valve, 64, 65...Connection part, 67, 68, 69...Battery pack (battery) ), 70...Drain discharge mechanism, 71...Drain suction pipe, 74, 75...Battery pack (battery) <80...Legs, 81, 84...Mounting part, 82...Fixing part, 83...Rubber legs, 85...Fixing member , 121, 122... 18/36V switching circuit, 123-125... switch, 126, 127... solenoid actuator, 400... charging/discharging circuit (circuit section).

Claims (9)

  1.  放電時の端子間電圧が第1電圧値であり、充電時の端子間電圧が第2電圧値である第1電源装置が接続される第1接続部と、
     商用電源に接続されて電力が入力される第2接続部と、
     前記第1接続部及び前記第2接続部に接続される回路部と、を備え、
     前記回路部は、
      前記第1接続部に入力された電力を消費可能な負荷部と、
      前記第2接続部から入力された電力を前記第1接続部に出力可能な充電部と、を備え、
     前記第1電源装置の端子間電圧が前記第1電圧値となる第1状態と、前記第1電源装置の端子間電圧が前記第2電圧値となる第2状態と、の間で切替可能な切替部を有する、作業機。
    A first connection portion to which a first power supply device is connected, in which the voltage between the terminals during discharging is a first voltage value, and the voltage between the terminals during charging is a second voltage value;
    a second connection part connected to a commercial power source and into which electric power is input;
    a circuit section connected to the first connection section and the second connection section,
    The circuit section includes:
    a load section capable of consuming the power input to the first connection section;
    a charging unit capable of outputting power input from the second connection unit to the first connection unit,
    Switchable between a first state in which the voltage across the terminals of the first power supply device is the first voltage value, and a second state in which the voltage across the terminals of the first power supply device is the second voltage value. A work machine that has a switching section.
  2.  前記第1接続部は、前記第1電源装置と、放電時であるか充電時であるかに関わらず端子間電圧が前記第1電圧値及び前記第2電圧値の何れか一方である第2電源装置と、が択一的に接続され、
     前記回路部は、
      前記第1接続部に前記第1電源装置が接続されたときに、前記第1接続部に入力された電力の前記負荷部による消費及び前記充電部の出力を許容し、
      前記第1接続部に前記第2電源装置が接続されたときに、前記第1接続部に入力された電力の前記負荷部による消費及び前記充電部の出力のいずれかを禁止する、請求項1に記載の作業機。
    The first connection unit connects the first power supply unit to a second power supply unit, the voltage between the terminals of which is one of the first voltage value and the second voltage value, regardless of whether it is during discharging or charging. the power supply device is alternatively connected,
    The circuit section includes:
    When the first power supply device is connected to the first connection part, consumption of the power input to the first connection part by the load part and output of the charging part are allowed,
    Claim 1: When the second power supply device is connected to the first connection part, either consumption of the power input to the first connection part by the load part or output of the charging part is prohibited. Work equipment described in.
  3.  前記回路部は、前記第1接続部に前記第2電源装置が接続されたときに、前記充電部の出力を禁止する、請求項2に記載の作業機。 The working machine according to claim 2, wherein the circuit section prohibits output of the charging section when the second power supply device is connected to the first connection section.
  4.  前記第2電源装置の端子間電圧は第1電圧値であり、
     前記第1電圧値は、前記第2電圧値よりも大きい、請求項3に記載の作業機。
    The voltage between the terminals of the second power supply device is a first voltage value,
    The working machine according to claim 3, wherein the first voltage value is larger than the second voltage value.
  5.  前記第1接続部は、前記第1電源装置の端子組と接続する接続部端子組を有し、
     前記切替部は、前記接続部端子組と前記回路部との接続状態を切り替えることで前記第1状態と前記第2状態との間の切替を行う、請求項1に記載の作業機。
    The first connection part has a connection part terminal set that connects to a terminal set of the first power supply device,
    The working machine according to claim 1, wherein the switching unit switches between the first state and the second state by switching a connection state between the connection terminal set and the circuit unit.
  6.  前記切替部は、前記第1電源装置の内部回路を切り替えることで前記第1状態と前記第2状態との間の切替を行う、請求項1に記載の作業機。 The working machine according to claim 1, wherein the switching unit switches between the first state and the second state by switching an internal circuit of the first power supply device.
  7.  端子間電圧を第1電圧値と第2電圧値とに切替可能な第1電源装置と、端子間電圧が前記第1電圧値及び前記第2電圧値の何れか一方である第2電源装置と、が択一的に接続されて電力が入力される第1接続部と、
     商用電源に接続されて電力が入力される第2接続部と、
     前記第1接続部及び前記第2接続部に接続される回路部と、を備え、
     前記回路部は、
      前記第1接続部に入力された電力を消費可能な負荷部と、
      前記第2接続部から入力された電力を前記第1接続部に出力可能な充電部と、を備え、
     前記回路部は、
      前記第1接続部に前記第1電源装置が接続されたときに、前記第1接続部に入力された電力の前記負荷部による消費及び前記充電部の出力を許容し、
      前記第1接続部に前記第2電源装置が接続されたときに、前記第1接続部に入力された電力の前記負荷部による消費及び前記充電部の出力のいずれかを禁止する、作業機。
    a first power supply device capable of switching an inter-terminal voltage between a first voltage value and a second voltage value; and a second power supply device whose inter-terminal voltage is one of the first voltage value and the second voltage value. , a first connection part to which is alternatively connected and power is input;
    a second connection part connected to a commercial power source and into which electric power is input;
    a circuit section connected to the first connection section and the second connection section,
    The circuit section includes:
    a load section capable of consuming the power input to the first connection section;
    a charging unit capable of outputting power input from the second connection unit to the first connection unit,
    The circuit section includes:
    When the first power supply device is connected to the first connection part, consumption of the power input to the first connection part by the load part and output of the charging part are allowed,
    A working machine, when the second power supply device is connected to the first connection part, either consumption of the power input to the first connection part by the load part or output of the charging part is prohibited.
  8.  端子間電圧を第1電圧値と第2電圧値とに切替可能な第1電源装置と、
     端子間電圧が前記第1電圧値及び前記第2電圧値の何れか一方である第2電源装置と、
     作業機と、を有し、
     前記作業機は、
      前記第1電源装置と前記第2電源装置とが択一的に接続されて電力が入力される第1接続部と、
      商用電源に接続されて電力が入力される第2接続部と、
      前記第1接続部及び前記第2接続部に接続される回路部と、を備え、
     前記回路部は、
      前記第1接続部に入力された電力を消費可能な負荷部と、
      前記第2接続部から入力された電力を前記第1接続部に出力可能な充電部と、を備え、
     前記回路部は、
      前記第1接続部に前記第1電源装置が接続されたときに、前記第1接続部に入力された電力の前記負荷部による消費及び前記充電部の出力を許容し、
      前記第1接続部に前記第2電源装置が接続されたときに、前記第1接続部に入力された電力の前記負荷部による消費及び前記充電部の出力のいずれかを禁止する、作業機システム。
    a first power supply device capable of switching the inter-terminal voltage between a first voltage value and a second voltage value;
    a second power supply device whose inter-terminal voltage is either one of the first voltage value and the second voltage value;
    It has a working machine,
    The work machine is
    a first connection part to which the first power supply device and the second power supply device are selectively connected and power is input;
    a second connection part connected to a commercial power source and into which electric power is input;
    a circuit section connected to the first connection section and the second connection section,
    The circuit section includes:
    a load section capable of consuming the power input to the first connection section;
    a charging unit capable of outputting power input from the second connection unit to the first connection unit,
    The circuit section includes:
    When the first power supply device is connected to the first connection part, consumption of the power input to the first connection part by the load part and output of the charging part are allowed,
    A work machine system that prohibits either consumption of the power input to the first connection part by the load part or output of the charging part when the second power supply device is connected to the first connection part. .
  9.  端子間電圧が第1電圧値である第1電源装置と、端子間電圧が前記第2電圧値である第2電源装置と、が択一的に接続されて電力が入力される第1接続部と、
     商用電源に接続されて電力が入力される第2接続部と、
     前記第1接続部及び前記第2接続部に接続される回路部と、を備え、
     前記回路部は、
      前記第1接続部に入力された電力を消費可能な負荷部と、
      前記第2接続部から入力された電力を前記第1接続部に出力可能な充電部と、を備え、
     前記回路部は、
      前記第1接続部に前記第1電源装置が接続されたときに、前記第1接続部に入力された電力の前記負荷部による消費を許容し、
      前記第1接続部に前記第2電源装置が接続されたときに、前記第1接続部に入力された電力の前記負荷部による消費を禁止し、前記充電部の出力を許容する、作業機。
    A first connection portion to which a first power supply device having an inter-terminal voltage of a first voltage value and a second power supply device having an inter-terminal voltage of the second voltage value are selectively connected and to which power is input. and,
    a second connection part connected to a commercial power source and into which electric power is input;
    a circuit section connected to the first connection section and the second connection section,
    The circuit section includes:
    a load section capable of consuming the power input to the first connection section;
    a charging unit capable of outputting power input from the second connection unit to the first connection unit,
    The circuit section includes:
    When the first power supply device is connected to the first connection unit, allowing the load unit to consume the power input to the first connection unit,
    A working machine that, when the second power supply device is connected to the first connection part, prohibits consumption of the power input to the first connection part by the load part, and allows output of the charging part.
PCT/JP2023/017715 2022-05-13 2023-05-11 Work machine and work machine system WO2023219129A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-079293 2022-05-13
JP2022079293 2022-05-13

Publications (1)

Publication Number Publication Date
WO2023219129A1 true WO2023219129A1 (en) 2023-11-16

Family

ID=88730325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017715 WO2023219129A1 (en) 2022-05-13 2023-05-11 Work machine and work machine system

Country Status (1)

Country Link
WO (1) WO2023219129A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185748A1 (en) * 2015-05-20 2016-11-24 シャープ株式会社 Electrical device
WO2018079725A1 (en) * 2016-10-31 2018-05-03 日立工機株式会社 Battery pack, and electric appliance using battery pack
WO2021220704A1 (en) * 2020-04-28 2021-11-04 工機ホールディングス株式会社 Work machine
JP2021191113A (en) * 2020-05-29 2021-12-13 工機ホールディングス株式会社 Work machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185748A1 (en) * 2015-05-20 2016-11-24 シャープ株式会社 Electrical device
WO2018079725A1 (en) * 2016-10-31 2018-05-03 日立工機株式会社 Battery pack, and electric appliance using battery pack
WO2021220704A1 (en) * 2020-04-28 2021-11-04 工機ホールディングス株式会社 Work machine
JP2021191113A (en) * 2020-05-29 2021-12-13 工機ホールディングス株式会社 Work machine

Similar Documents

Publication Publication Date Title
JP5553677B2 (en) Output controller for hybrid generator
KR101273995B1 (en) Power source device
US7057376B2 (en) Power management system for vehicles
US20050151509A1 (en) Electrical system control for a vehicle
CN100474732C (en) Power supply apparatus
CN108933469B (en) Electrical System
EP1643631A1 (en) Power supply circuit for an air conditioner
KR20040081376A (en) Power generating device
US8653679B2 (en) Portable power supply having both inverter power supply and traditional power supply receptacles
US20110203779A1 (en) Uninterruptible cooling system and apparatus
WO2021220704A1 (en) Work machine
US11626807B2 (en) DC power supply device
WO2023219129A1 (en) Work machine and work machine system
US9379536B2 (en) Control means for an electrically adjustable piece of furniture
KR100439483B1 (en) Anti-Power Turbulence System
JP2021191113A (en) Work machine
CN110061559A (en) Off-line type uninterruptible power supply and its control method
CN114949414A (en) ECMO equipment system power supply abnormity automatic switching power supply method and system
WO2023032708A1 (en) Work machine
JP2022189304A (en) work machine
JP2022189303A (en) electrical equipment
JP2022102573A (en) Work machine
WO2022130934A1 (en) Work machine
JP2003274574A (en) Stabilizing dc power unit
CN220421665U (en) Body-building apparatus control circuit and body-building apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803603

Country of ref document: EP

Kind code of ref document: A1