WO2023218904A1 - Millable silicone rubber composition and cured product of same - Google Patents

Millable silicone rubber composition and cured product of same Download PDF

Info

Publication number
WO2023218904A1
WO2023218904A1 PCT/JP2023/015873 JP2023015873W WO2023218904A1 WO 2023218904 A1 WO2023218904 A1 WO 2023218904A1 JP 2023015873 W JP2023015873 W JP 2023015873W WO 2023218904 A1 WO2023218904 A1 WO 2023218904A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone rubber
parts
component
mass
rubber composition
Prior art date
Application number
PCT/JP2023/015873
Other languages
French (fr)
Japanese (ja)
Inventor
大地 轟
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2023218904A1 publication Critical patent/WO2023218904A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/011Crosslinking or vulcanising agents, e.g. accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to a millable silicone rubber composition and a cured product thereof.
  • Silicone rubber has properties such as excellent weather resistance, electrical properties, low compression set, heat resistance, and cold resistance.
  • the silicone rubber composition can be molded and cured by conventional methods, and the molding method can be selected from injection molding, transfer molding, injection molding, compression molding, etc., depending on the purpose. .
  • heat treatment primary vulcanization
  • secondary vulcanization post-cure
  • 40 to 230°C for about 10 minutes to 24 hours.
  • Patent Document 1 describes that the heat resistance and compression set of silicone rubber are improved by containing hydrous cerium oxide and hydrous zirconium oxide. However, there is no specific description that good compression set characteristics can be obtained only by primary vulcanization, and the above problem has not been solved.
  • Patent Document 2 describes that when a sulfur-containing compound is used, a cured silicone rubber product having excellent compression set properties can be obtained even by primary vulcanization alone. However, when a sulfur-containing compound is used, addition cure inhibition may occur and the vulcanization properties may deteriorate.
  • Patent Document 3 states that a silicone rubber cured product containing a reinforcing filler whose surface is treated with a benzotriazole derivative has a low compression set. Although there are descriptions that deterioration in vulcanization properties can also be suppressed, none of these methods have reached a level that can withstand actual use.
  • an object of the present invention is to provide a millable silicone rubber composition that produces a cured silicone rubber product with low compression set only by primary vulcanization without deteriorating curability.
  • the present inventors have discovered that by adding a specific carboxylic acid, a millable silicone rubber composition that can reduce the compression set of the cured product can be obtained. That is, the present invention provides the following millable silicone rubber composition and cured product thereof.
  • the present invention can provide a millable silicone rubber composition that results in a silicone rubber cured product with low compression set only by primary vulcanization without deteriorating curability. Therefore, the cured product of the millable silicone rubber composition of the present invention is useful for applications such as gaskets such as O-rings and packings.
  • a mixture of component (A), component (B), and component (C), which will be described later, before blending component (D) is referred to as a (millable type) silicone rubber compound, and this silicone rubber compound A mixture containing component (D) is called a (millable type) silicone rubber composition.
  • component (A) is a raw rubber-like organopolysiloxane having an alkenyl group bonded to two or more silicon atoms in one molecule and having a weight average degree of polymerization of 1,000 to 100,000. This is the base polymer (main ingredient) of the composition according to the invention.
  • the organopolysiloxane as component (A) has two or more alkenyl groups in one molecule, preferably 2 to 50, particularly 2 to 20. Note that this alkenyl group may be bonded to a silicon atom at the end of the molecular chain, or may be bonded to a silicon atom in the middle of the molecular chain (non-terminal of the molecular chain), or both; Those bonded to the silicon atom at the end of the chain are preferred.
  • alkenyl group bonded to the silicon atom in component (A) examples include those having usually 2 to 8 carbon atoms, preferably 2 to 4 carbon atoms.
  • Alkenyl groups such as a vinyl group, allyl group, propenyl group, butenyl group, and hexenyl group; and cycloalkenyl groups such as a cyclohexenyl group are mentioned, with vinyl groups and allyl groups being preferred, and vinyl groups being particularly preferred.
  • groups other than alkenyl groups include alkyl groups having 1 to 10 carbon atoms, cycloalkyl groups having 5 to 10 carbon atoms, aryl groups having 6 to 10 carbon atoms, and aralkyl groups having 7 to 10 carbon atoms.
  • alkyl groups such as methyl group, ethyl group, propyl group, butyl group, hexyl group, and octyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; aryl groups such as phenyl group and tolyl group; benzyl group , aralkyl groups such as 2-phenylethyl group, and the like.
  • methyl group and phenyl group are preferred, and methyl group is particularly preferred.
  • the molecular structure of the organopolysiloxane (A) component is preferably linear or linear having a partially branched structure.
  • the repeating structure of the diorganosiloxane units (R 1 2 SiO 2/2 , R 1 is the same as above, and the same applies hereinafter) constituting the main chain of the organopolysiloxane is formed by repeating only dimethylsiloxane units.
  • Diphenylsiloxane units, methylphenylsiloxane units, methylvinylsiloxane units having phenyl groups, vinyl groups, etc. as substituents as part of the dimethylpolysiloxane structure consisting of repeating dimethylsiloxane units that constitute the main chain.
  • diorganosiloxane units such as the following are introduced are suitable.
  • both ends of the molecular chain are preferably blocked with a triorganosiloxy group such as a trimethylsiloxy group, dimethylphenylsiloxy group, vinyldimethylsiloxy group, divinylmethylsiloxy group, or trivinylsiloxy group.
  • a triorganosiloxy group such as a trimethylsiloxy group, dimethylphenylsiloxy group, vinyldimethylsiloxy group, divinylmethylsiloxy group, or trivinylsiloxy group.
  • Such organopolysiloxanes can be produced, for example, by (co)hydrolyzing and condensing one or more organohalogenosilanes, or by forming cyclic polysiloxanes (siloxane trimers, tetramers, etc.). It can be obtained by ring-opening polymerization using an alkaline or acidic catalyst.
  • the degree of polymerization of the organopolysiloxane is 1,000 to 100,000, preferably 2,000 to 100,000, more preferably 2,000 to 50,000, particularly preferably 3,000 to 20, 000, and is characterized by being so-called raw rubber-like (non-liquid) without self-flowing properties at room temperature (25°C). If the degree of polymerization is less than 1,000, problems such as roll adhesion will occur when a silicone rubber compound is produced, resulting in poor roll workability.
  • the degree of polymerization is determined as a weight-average degree of polymerization from the weight-average molecular weight in terms of polystyrene determined by gel permeation chromatography (GPC) analysis measured under the following conditions.
  • Component (A) may be used alone or in a mixture of two or more types having different molecular weights (degrees of polymerization) and molecular structures.
  • the millable silicone rubber composition of the present invention may contain at least two alkenyl groups in one molecule at 25°C for the purpose of adjusting the viscosity of the composition and the physical properties of the rubber.
  • Liquid organopolysiloxane may be added.
  • the degree of polymerization of the liquid organopolysiloxane is preferably 100 or more and less than 1,000, more preferably 100 to 800.
  • Examples of the alkenyl group and groups other than the alkenyl group in the liquid organopolysiloxane include those exemplified for component (A).
  • the organopolysiloxane preferably has a viscosity at 25° C.
  • the viscosity is a value measured using a rotational viscometer at 25° C. as described in JIS K7117-1:1999 (the same applies hereinafter).
  • the amount of the liquid organopolysiloxane blended is preferably 0 to 20 parts by weight per 100 parts by weight of component (A).
  • the reinforcing silica as component (B) acts as a component that imparts excellent mechanical properties to the resulting silicone rubber composition.
  • the reinforcing silica may be precipitated silica (wet silica) or fumed silica (dry silica), and has a large number of silanol groups (SiOH) on its surface.
  • the specific surface area of the reinforcing silica as component (B) determined by the BET method must be 50 m 2 /g or more, preferably 100 to 400 m 2 /g. If this specific surface area is less than 50 m 2 /g, the reinforcing effect of component (B) will be insufficient.
  • the reinforcing silica of component (B) may be used in an untreated state, or if necessary, the surface may be treated with an organosilicon compound such as an organopolysiloxane containing a silanol group, an organopolysilazane, a chlorosilane, or an alkoxysilane. A processed one may also be used. When it is desired to reduce the amount of low-molecular-weight siloxane generated from silicone rubber during or after curing, it is preferable to use an organosilicon compound such as organopolysilazane, chlorosilane, or alkoxysilane. These reinforcing silicas may be used alone or in combination of two or more.
  • the amount of reinforcing silica as component (B) is 10 to 100 parts by weight, preferably 15 to 80 parts by weight, more preferably 20 to 70 parts by weight based on 100 parts by weight of organopolysiloxane as component (A). Department. If the blending amount deviates from the above range, not only the processability of the silicone rubber composition will be reduced, but also the mechanical properties of the cured silicone rubber product will be insufficient.
  • Component (C) is a saturated aliphatic carboxylic acid, and can reduce the compression set of the primary vulcanized cured product.
  • the saturated aliphatic carboxylic acid of component (C) preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms. Specific examples include formic acid, acetic acid, propionic acid, butyric acid, caproic acid, 2-ethylhexanoic acid, lauric acid, myristic acid, and the like. Among these, acetic acid and 2-ethylhexanoic acid are preferred. These saturated aliphatic carboxylic acids may be used alone or in combination of two or more.
  • the amount of the saturated aliphatic carboxylic acid as component (C) is 0.1 to 5 parts by weight, preferably 0.3 to 3 parts by weight, per 100 parts by weight of the organopolysiloxane as component (A). .
  • the curing agent is not particularly limited as long as it can cure the silicone rubber compound, but examples include (D-1) addition reaction curing agent and (D-2) organic peroxide curing agent shown below.
  • Addition reaction curing agent (D-1) As the addition reaction curing agent, an organohydrogenpolysiloxane and a hydrosilylation catalyst are used in combination.
  • the organohydrogenpolysiloxane has 2 or more, preferably 3 or more, more preferably 3 to 200, and even more preferably 4 to 100 hydrogen atoms bonded to silicon atoms (i.e., hydrosilyl) in one molecule. As long as it contains a group), it may have a linear, cyclic, branched, or three-dimensional network structure, and a known organohydrogenpolysiloxane is used as a crosslinking agent for addition reaction-curable silicone rubber compositions.
  • organohydrogenpolysiloxane represented by the following average composition formula (1) can be used.
  • R 1 a H b SiO (4-ab)/2 (1)
  • R 1 is independently a monovalent hydrocarbon group having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms, and preferably does not have an aliphatic unsaturated bond.
  • alkyl groups such as methyl, ethyl, and propyl groups; cycloalkyl groups such as cyclohexyl; aryl groups such as phenyl and tolyl; benzyl, 2-phenylethyl, and 2-phenylpropyl groups; and groups in which some or all of the hydrogen atoms of these groups are substituted with halogen atoms, etc., such as 3,3,3-trifluoropropyl groups.
  • a is 0 ⁇ a ⁇ 3, preferably 0.5 ⁇ a ⁇ 2.2, and more preferably 1.0 ⁇ a ⁇ 2.0.
  • b is 0 ⁇ b ⁇ 3, preferably 0.002 ⁇ b ⁇ 1.1, and more preferably 0.005 ⁇ b ⁇ 1. Further, it is a positive number satisfying 0 ⁇ a+b ⁇ 3, preferably 1 ⁇ a+b ⁇ 3, more preferably 1.002 ⁇ a+b ⁇ 2.7.
  • Organohydrogenpolysiloxane has two or more, preferably three or more, hydrosilyl groups in one molecule, and these may be located at the end of the molecular chain, in the middle of the molecular chain, or both. Good too.
  • the organohydrogenpolysiloxane preferably has a viscosity of 0.5 to 10,000 mPa ⁇ s, particularly 1 to 300 mPa ⁇ s at 25°C.
  • organohydrogenpolysiloxanes include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, and tris(hydrogendimethylsiloxane).
  • the amount of the organohydrogenpolysiloxane blended is preferably 0.1 to 40 parts by weight based on 100 parts by weight of the silicone rubber compound (total amount of components (A), (B), and (C)).
  • the ratio of silicon-bonded hydrogen atoms (hydrosilyl groups) to one aliphatic unsaturated bond (alkenyl group, diene group, etc.) in component (A) is preferably in the range of 0.5 to 10.
  • a suitable range is preferably 0.7 to 5. If it is 0.5 or more, crosslinking will be sufficient and sufficient mechanical strength will be obtained, and if it is 10 or less, the physical properties after curing will not deteriorate, especially heat resistance will deteriorate, and compression permanent There is no possibility of large distortion.
  • the hydrosilylation catalyst is a catalyst that causes a hydrosilylation addition reaction between the alkenyl group of component (A) and the silicon-bonded hydrogen atom (hydrosilyl group) of the organohydrogenpolysiloxane.
  • the hydrosilylation catalyst include platinum group metal catalysts, including simple platinum group metals and compounds thereof, and those conventionally known as catalysts for addition reaction-curing silicone rubber compositions can be used.
  • platinum group metal catalysts including simple platinum group metals and compounds thereof, and those conventionally known as catalysts for addition reaction-curing silicone rubber compositions can be used.
  • a carrier such as silica, alumina or silica gel
  • platinum catalyst such as platinum chloride, chloroplatinic acid, alcoholic solution of chloroplatinic acid hexahydrate, palladium catalyst, rhodium catalyst, etc.
  • platinum or a platinum compound (platinum catalyst) is preferred.
  • the amount of catalyst added is sufficient as long as it can promote the addition reaction, and is usually used in the range of 1 ppm to 1% by mass in terms of platinum group metal based on the silicone rubber compound, but 10 to 500 ppm by mass is used. A range is preferred. If the addition amount is 1 mass ppm or more, the addition reaction is sufficiently promoted and curing is sufficient, whereas if it is 1 mass % or less, it has sufficient reactivity and is not uneconomical.
  • an addition reaction control agent may be used depending on the purpose of the present invention for the purpose of adjusting the curing rate.
  • Specific examples thereof include acetylene alcohol control agents such as ethynylcyclohexanol, tetracyclomethylvinyl polysiloxane, and the like.
  • the addition reaction control agent may be used alone or in combination of two or more.
  • Organic peroxide curing agent (D-2)
  • organic peroxide curing agent examples include benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, p-methylbenzoyl peroxide, o-methyl Benzoyl peroxide, 2,4-dicumyl peroxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane, di-t-butyl peroxide, t-butyl perbenzoate, 1,6 -hexanediol-bis-t-butylperoxycarbonate and the like.
  • the amount of the organic peroxide curing agent added is preferably 0.1 to 10 parts by mass, particularly 0.1 to 10 parts by mass, based on 100 parts by mass of the silicone rubber compound (total amount of components (A), (B), and (C)). 2 to 5 parts by mass is preferred. If the amount is 0.1 parts by mass or more, curing will not be insufficient, and if it is 10 parts by mass or less, the silicone rubber cured product will not yellow due to decomposition residue of the organic peroxide curing agent. .
  • component (A) was combined with component (D-1) and component (D-2) within the above blending amounts.
  • component (D-1) was combined with component (D-2) within the above blending amounts.
  • It can also be a co-vulcanized millable silicone rubber composition.
  • the millable silicone rubber composition of the present invention may optionally contain fillers such as crushed quartz, crystalline silica, diatomaceous earth, and calcium carbonate, colorants, tear strength improvers, acid acceptors, Heat curing of various alkoxysilanes, especially phenyl group-containing alkoxysilanes and their hydrolysates, diphenylsilane diol, carbon functional silane, etc., as thermal conductivity improvers such as alumina and boron nitride, mold release agents, and dispersants for fillers. It is optional to add fillers and additives known in the art to silicone rubber compositions.
  • fillers such as crushed quartz, crystalline silica, diatomaceous earth, and calcium carbonate, colorants, tear strength improvers, acid acceptors, Heat curing of various alkoxysilanes, especially phenyl group-containing alkoxysilanes and their hydrolysates, diphenylsilane diol, carbon functional silane, etc.,
  • the millable silicone rubber composition of the present invention can be obtained by mixing the components constituting the composition in a known kneader such as a kneader, Banbury mixer, or two-roll kneader.
  • a composition containing the components (A) to (D) as the millable silicone rubber composition
  • add (C) to the mixture.
  • a mixture is prepared by mixing the components (A), (B), and (C) with the other components.
  • the mixture may be heated and mixed.
  • the millable silicone rubber composition of the present invention can be cured by a known curing method under known curing conditions. Specifically, the composition can be cured by heating usually at 25 to 200°C, preferably 80 to 160°C. The heating time may be about 0.5 minutes to 5 hours, particularly about 1 minute to 3 hours. In addition, when curing the millable silicone rubber composition of the present invention, it may be cured by applying pressure.
  • component (A) Dimethylsiloxane/methylvinylpolysiloxane copolymer with a weight average degree of polymerization of about 8,000, which has both ends blocked with dimethylvinylsiloxane units and has 10 methylvinylsiloxane units.
  • component (B) The following components were used as component (B).
  • component (C) 2-ethylhexanoic acid
  • C-2 Acetic acid
  • C-3 Ethyl acetate (for comparative example)
  • D-1-2 Platinum catalyst (dimethylpolysiloxane solution containing 1% by mass of chloroplatinic acid/1,3-divinyltetramethyldisiloxane complex as platinum atom content)
  • D-2) 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane
  • Example 1 After mixing in a kneader 100 parts by mass of component (A-1) as component (A) and 35 parts by mass of component (B-1) as component (B), (C-1) as component (C). ) component: 0.3 parts by mass was added and further mixed using a kneader. Thereafter, a heat treatment was performed at 170° C. for 2 hours to prepare a base compound (1).
  • the obtained composition was pre-cured for 15 minutes at 120°C and 6.86 MN/ m2 , and the cured product for compression set measurement (1) (dimensions: diameter 29.0 ⁇ 0.5 mm, Thickness: 12.5 ⁇ 0.5 mm) was produced, and the compression set was measured.
  • the results are shown in Table 1.
  • Examples 2-3, Comparative Examples 1-2 A silicone rubber composition was prepared using the formulation shown in Table 1 in the same manner as in Example 1, and test sheets and cured products were prepared from the resulting composition, and various physical properties were evaluated. The results are shown in Table 1.
  • Example 4 After mixing in a kneader 100 parts by mass of component (A-1) as component (A) and 40 parts by mass of component (B-1) as component (B), component (C-2) as component (C). :0.3 part by mass was added and further mixed using a kneader. Thereafter, heat treatment was performed at 170° C. for 2 hours to prepare a base compound (6).
  • a silicone rubber composition was obtained by mixing 0.4 parts by mass of component (D-2) as component (D) with 100 parts by mass of base compound (6).
  • the obtained composition was press-cured for 10 minutes at 165°C and 6.86 MN/m 2 to form a test sheet (6) (dimensions: 150 x 170 mm, thickness: 2.0 ⁇ 0.2 mm).
  • the hardness (durometer A), tensile strength, and elongation at break were measured. The results are shown in Table 2.
  • the obtained composition was press-cured for 15 minutes at 165°C and 6.86 MN/ m2 , and the cured product for compression set measurement (6) (dimensions: diameter 29.0 ⁇ 0.5 mm, Thickness: 12.5 ⁇ 0.5 mm) was produced, and the compression set was measured.
  • Table 2 The results are shown in Table 2.
  • Example 5 Comparative Examples 3-4
  • a silicone rubber composition was prepared using the formulation shown in Table 2 in the same manner as in Example 4, and test sheets and cured products were prepared from the resulting composition, and various physical properties were evaluated. The results are shown in Table 2.
  • component (A) As component (A), component (A-1): 100 parts by mass; as component (B), component (B-2): 40 parts by mass; as a surface treatment agent for component (B), having silanol groups at both ends; , 4 parts by mass of dimethylpolysiloxane having a weight average degree of polymerization of 4 and a viscosity at 25°C of 15 mPa ⁇ s were mixed in a kneader, and then 0.3 parts by mass of component (C-1) was added and mixed in a kneader. Mixed. Thereafter, heat treatment was performed at 170° C. for 2 hours to prepare a base compound (10).
  • the obtained composition was press-cured for 15 minutes at 120°C and 6.86 MN/ m2 , and the cured product for compression set measurement (10) (dimensions: diameter 29.0 ⁇ 0.5 mm, Thickness: 12.5 ⁇ 0.5 mm) was produced, and the compression set was measured.
  • the results are shown in Table 3.
  • test sheet (11) and a cured product for compression set measurement (11) were prepared in the same manner as in Example 6, except that component (C) was not added, and various physical properties were measured. The results are shown in Table 3.
  • Component (B-2) 100 parts by mass was mixed with 10 parts by mass of a benzotriazole derivative represented by the following chemical formula in a sealed mechanical kneading device at normal pressure at room temperature. After mixing and drying, a reinforcing filler surface-treated with a benzotriazole derivative was obtained.
  • the curability of the silicone rubber compositions prepared in Example 1, Comparative Example 1, and Comparative Example 6 at 120° C. was measured using a rheometer MDR2000 (manufactured by Alpha Technologies).
  • the values in the table are the time (seconds) when the T10 value gives a torque value of 10% of the maximum torque value in 6 minutes from the start of measurement at 120°C, and the time (seconds) when the T90 value gives a torque value of 10% of the maximum torque value in 6 minutes from the start of measurement at 120°C. Indicates the time (seconds) when applying a torque value of 90% of the maximum torque value.

Abstract

Provided is a millable silicone rubber composition that forms a silicone rubber cured product having a low permanent compression set with primary vulcanization only, without causing a deterioration in curing properties. This millable silicone rubber composition contains: 100 parts by mass of (A) a crude rubber-like organopolysiloxane which has two or more silicon atom-bonded alkenyl groups per molecule and has a weight average degree of polymerization of 1000-100,000; 10-100 parts by mass of (B) reinforcing silica having a BET specific surface area of 50 m2/g or more; (C) a saturated aliphatic carboxylic acid at a quantity of 0.1-5 parts by mass relative to 100 parts by mass of component (A); an effective quantity of (D) a curing agent.

Description

ミラブル型シリコーンゴム組成物及びその硬化物Millable silicone rubber composition and cured product thereof
 本発明は、ミラブル型シリコーンゴム組成物及びその硬化物に関する。 The present invention relates to a millable silicone rubber composition and a cured product thereof.
 シリコーンゴムは、優れた耐候性、電気特性、低圧縮永久歪、耐熱性、耐寒性等の特性を有している。 Silicone rubber has properties such as excellent weather resistance, electrical properties, low compression set, heat resistance, and cold resistance.
 シリコーンゴム組成物は、常法により、成形、硬化することができ、成形方法として、射出成形、トランスファー成形、注入成形、圧縮成形等から目的にあった最適な方法を選択することが可能である。硬化方法としては、40~230℃で3秒間~160分間程度の加熱処理(一次加硫)条件を採用し得る。また更に、圧縮永久ひずみを低減させるために、40~230℃で10分間~24時間程度の二次加硫(ポストキュア)を行っている。 The silicone rubber composition can be molded and cured by conventional methods, and the molding method can be selected from injection molding, transfer molding, injection molding, compression molding, etc., depending on the purpose. . As a curing method, heat treatment (primary vulcanization) conditions at 40 to 230° C. for about 3 seconds to 160 minutes can be adopted. Further, in order to reduce compression set, secondary vulcanization (post-cure) is performed at 40 to 230°C for about 10 minutes to 24 hours.
 近年、カーボンニュートラルの観点から、電力使用の削減が望まれている。しかし、二次加硫を行わないと、圧縮永久ひずみが十分に小さいものが得られないという問題がある。 In recent years, there has been a desire to reduce electricity usage from the perspective of carbon neutrality. However, there is a problem in that unless secondary vulcanization is performed, a material with a sufficiently small compression set cannot be obtained.
 特許文献1には、含水酸化セリウム及び含水酸化ジルコニウムを含有することで、シリコーンゴムの耐熱性と圧縮永久ひずみが向上する旨の記載がある。しかし、一次加硫のみで良好な圧縮永久ひずみ特性を得られるという具体的な記載はなく、上記の問題は解決されていない。 Patent Document 1 describes that the heat resistance and compression set of silicone rubber are improved by containing hydrous cerium oxide and hydrous zirconium oxide. However, there is no specific description that good compression set characteristics can be obtained only by primary vulcanization, and the above problem has not been solved.
 特許文献2には、イオウ含有化合物を使用すると、一次加硫のみでも優れた圧縮永久ひずみ特性を有するシリコーンゴム硬化物が得られるという記載がある。しかし、イオウ含有化合物を使用すると、付加硬化阻害が起こり、加硫特性が悪化する場合がある。 Patent Document 2 describes that when a sulfur-containing compound is used, a cured silicone rubber product having excellent compression set properties can be obtained even by primary vulcanization alone. However, when a sulfur-containing compound is used, addition cure inhibition may occur and the vulcanization properties may deteriorate.
 特許文献3には、ベンゾトリアゾール誘導体で表面処理された補強性充填材を含有するシリコーンゴム硬化物は、圧縮永久ひずみが低くなるという記載がある。加硫特性の低下も抑制できるとの記載もあるが、いずれも実使用に耐え得るレベルには至っていない。 Patent Document 3 states that a silicone rubber cured product containing a reinforcing filler whose surface is treated with a benzotriazole derivative has a low compression set. Although there are descriptions that deterioration in vulcanization properties can also be suppressed, none of these methods have reached a level that can withstand actual use.
特開2014-031408号公報Japanese Patent Application Publication No. 2014-031408 特開2016-196591号公報Japanese Patent Application Publication No. 2016-196591 特開2017-165931号公報JP2017-165931A
 従って、本発明は、硬化性を悪化させることなく、一次加硫のみでの圧縮永久ひずみが小さいシリコーンゴム硬化物となるミラブル型シリコーンゴム組成物を提供することを目的とする。 Therefore, an object of the present invention is to provide a millable silicone rubber composition that produces a cured silicone rubber product with low compression set only by primary vulcanization without deteriorating curability.
 本発明者は、上記課題について鋭意研究を重ねた結果、特定のカルボン酸を添加することで、硬化物の圧縮永久ひずみを低減できるミラブル型シリコーンゴム組成物が得られることを見出した。
 すなわち、本発明は、下記のミラブル型シリコーンゴム組成物及びその硬化物を提供するものである。
As a result of extensive research into the above-mentioned problem, the present inventors have discovered that by adding a specific carboxylic acid, a millable silicone rubber composition that can reduce the compression set of the cured product can be obtained.
That is, the present invention provides the following millable silicone rubber composition and cured product thereof.
[1]
(A)1分子中に2個以上のケイ素原子に結合したアルケニル基を有する、重量平均重合度が1,000~100,000の生ゴム状オルガノポリシロキサン;100質量部、
(B)BET法による比表面積が50m2/g以上の補強性シリカ;10~100質量部、
(C)飽和脂肪族カルボン酸;(A)成分100質量部に対して0.1~5質量部、及び、
(D)硬化剤;有効量
を含有するものであるミラブル型シリコーンゴム組成物。

[2]
 (D)成分が、オルガノハイドロジェンポリシロキサンとヒドロシリル化触媒とを組み合わせた付加反応硬化剤である[1]に記載のミラブル型シリコーンゴム組成物。

[3]
 (D)成分が有機過酸化物硬化剤である[1]に記載のミラブル型シリコーンゴム組成物。

[4]
 [1]~[3]のいずれか1項に記載のミラブル型シリコーンゴム組成物の硬化物。
[1]
(A) a raw rubber-like organopolysiloxane having an alkenyl group bonded to two or more silicon atoms in one molecule and having a weight average degree of polymerization of 1,000 to 100,000; 100 parts by mass;
(B) Reinforcing silica with a specific surface area of 50 m 2 /g or more by BET method; 10 to 100 parts by mass,
(C) Saturated aliphatic carboxylic acid; 0.1 to 5 parts by mass per 100 parts by mass of component (A), and
(D) Curing agent: A millable silicone rubber composition containing an effective amount.

[2]
The millable silicone rubber composition according to [1], wherein component (D) is an addition reaction curing agent that combines an organohydrogenpolysiloxane and a hydrosilylation catalyst.

[3]
The millable silicone rubber composition according to [1], wherein component (D) is an organic peroxide curing agent.

[4]
A cured product of the millable silicone rubber composition according to any one of [1] to [3].
 本発明は、硬化性を悪化させることなく、一次加硫のみでの圧縮永久ひずみが小さいシリコーンゴム硬化物となるミラブル型シリコーンゴム組成物を提供することができる。したがって、本発明のミラブル型シリコーンゴム組成物の硬化物は、Oリングやパッキンなどのガスケット等の用途に有用である。 The present invention can provide a millable silicone rubber composition that results in a silicone rubber cured product with low compression set only by primary vulcanization without deteriorating curability. Therefore, the cured product of the millable silicone rubber composition of the present invention is useful for applications such as gaskets such as O-rings and packings.
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be explained in detail, but the present invention is not limited thereto.
 本明細書において、後述する(A)成分、(B)成分及び(C)成分を配合し、(D)成分を配合する前の混合物を(ミラブル型)シリコーンゴムコンパウンドと称し、このシリコーンゴムコンパウンドに(D)成分を配合した混合物を(ミラブル型)シリコーンゴム組成物と称する。 In this specification, a mixture of component (A), component (B), and component (C), which will be described later, before blending component (D) is referred to as a (millable type) silicone rubber compound, and this silicone rubber compound A mixture containing component (D) is called a (millable type) silicone rubber composition.
[(A)成分]
 本発明において、(A)成分は、1分子中に2個以上のケイ素原子に結合したアルケニル基を有する、重量平均重合度が1,000~100,000の生ゴム状オルガノポリシロキサンであり、本発明にかかる組成物のベースポリマー(主剤)である。
[(A) Component]
In the present invention, component (A) is a raw rubber-like organopolysiloxane having an alkenyl group bonded to two or more silicon atoms in one molecule and having a weight average degree of polymerization of 1,000 to 100,000. This is the base polymer (main ingredient) of the composition according to the invention.
 (A)成分としてのオルガノポリシロキサンは、1分子中にアルケニル基が2個以上であり、2~50個、特に2~20個を有するものが好ましい。なお、このアルケニル基は、分子鎖末端でケイ素原子に結合していても、分子鎖の途中(分子鎖非末端)のケイ素原子に結合していても、その両方であってもよいが、分子鎖末端のケイ素原子に結合しているものが好ましい。 The organopolysiloxane as component (A) has two or more alkenyl groups in one molecule, preferably 2 to 50, particularly 2 to 20. Note that this alkenyl group may be bonded to a silicon atom at the end of the molecular chain, or may be bonded to a silicon atom in the middle of the molecular chain (non-terminal of the molecular chain), or both; Those bonded to the silicon atom at the end of the chain are preferred.
 (A)成分中のケイ素原子に結合したアルケニル基としては、例えば、通常、炭素数2~8、好ましくは2~4のものが挙げられる。ビニル基、アリル基、プロペニル基、ブテニル基、ヘキセニル基等のアルケニル基;シクロヘキセニル基等のシクロアルケニル基が挙げられ、ビニル基、アリル基が好ましく、ビニル基が特に好ましい。
 また、アルケニル基以外の基としては、炭素数1~10のアルキル基、炭素数5~10のシクロアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基などが挙げられる。具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基等のアリール基;ベンジル基、2-フェニルエチル基等のアラルキル基等が挙げられる。上記のものの中では、メチル基、フェニル基が好ましく、特にメチル基が好ましい。
Examples of the alkenyl group bonded to the silicon atom in component (A) include those having usually 2 to 8 carbon atoms, preferably 2 to 4 carbon atoms. Alkenyl groups such as a vinyl group, allyl group, propenyl group, butenyl group, and hexenyl group; and cycloalkenyl groups such as a cyclohexenyl group are mentioned, with vinyl groups and allyl groups being preferred, and vinyl groups being particularly preferred.
Examples of groups other than alkenyl groups include alkyl groups having 1 to 10 carbon atoms, cycloalkyl groups having 5 to 10 carbon atoms, aryl groups having 6 to 10 carbon atoms, and aralkyl groups having 7 to 10 carbon atoms. . Specifically, alkyl groups such as methyl group, ethyl group, propyl group, butyl group, hexyl group, and octyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; aryl groups such as phenyl group and tolyl group; benzyl group , aralkyl groups such as 2-phenylethyl group, and the like. Among the above, methyl group and phenyl group are preferred, and methyl group is particularly preferred.
 (A)成分であるオルガノポリシロキサンの分子構造は、直鎖状、又は一部分岐構造を有する直鎖状であることが好ましい。具体的には、該オルガノポリシロキサンの主鎖を構成するジオルガノシロキサン単位(R1 2SiO2/2、R1は上記と同じ、以下同様)の繰り返し構造が、ジメチルシロキサン単位のみの繰り返しからなるもの、又はこの主鎖を構成するジメチルシロキサン単位の繰り返しからなるジメチルポリシロキサン構造の一部として、フェニル基、ビニル基等を置換基として有するジフェニルシロキサン単位、メチルフェニルシロキサン単位、メチルビニルシロキサン単位等のジオルガノシロキサン単位を導入したもの等が好適である。 The molecular structure of the organopolysiloxane (A) component is preferably linear or linear having a partially branched structure. Specifically, the repeating structure of the diorganosiloxane units (R 1 2 SiO 2/2 , R 1 is the same as above, and the same applies hereinafter) constituting the main chain of the organopolysiloxane is formed by repeating only dimethylsiloxane units. Diphenylsiloxane units, methylphenylsiloxane units, methylvinylsiloxane units having phenyl groups, vinyl groups, etc. as substituents as part of the dimethylpolysiloxane structure consisting of repeating dimethylsiloxane units that constitute the main chain. Those into which diorganosiloxane units such as the following are introduced are suitable.
 また、分子鎖両末端は、例えば、トリメチルシロキシ基、ジメチルフェニルシロキシ基、ビニルジメチルシロキシ基、ジビニルメチルシロキシ基、トリビニルシロキシ基等のトリオルガノシロキシ基などで封鎖されていることが好ましい。 Furthermore, both ends of the molecular chain are preferably blocked with a triorganosiloxy group such as a trimethylsiloxy group, dimethylphenylsiloxy group, vinyldimethylsiloxy group, divinylmethylsiloxy group, or trivinylsiloxy group.
 このようなオルガノポリシロキサンは、例えば、オルガノハロゲノシランの1種又は2種以上を(共)加水分解し、縮合することにより、あるいは環状ポリシロキサン(シロキサンの3量体、4量体等)をアルカリ性又は酸性の触媒を用いて開環重合することによって得ることができる。 Such organopolysiloxanes can be produced, for example, by (co)hydrolyzing and condensing one or more organohalogenosilanes, or by forming cyclic polysiloxanes (siloxane trimers, tetramers, etc.). It can be obtained by ring-opening polymerization using an alkaline or acidic catalyst.
 なお、上記オルガノポリシロキサンの重合度は1,000~100,000であり、好ましくは2,000~100,000、より好ましくは2,000~50,000、特に好ましくは3,000~20,000であり、室温(25℃)において自己流動性のない、いわゆる生ゴム状(非液状)であることが特徴である。重合度が1,000未満であるとシリコーンゴムコンパウンドとした際に、ロール粘着等の問題が生じ、ロール作業性が悪化する。なお、この重合度は、下記条件で測定したゲルパーミエーションクロマトグラフィ(GPC)分析によるポリスチレン換算の重量平均分子量から、重量平均重合度として求められる。
[測定条件]
展開溶媒:トルエン
流量:0.35mL/min
検出器:示差屈折率検出器(RI)
カラム:TSK Guardcolumn SuperH-L
    TSKgel SuperH4000(6.0mmI.D.×15cm×1)
    TSKgel SuperH3000(6.0mmI.D.×15cm×1)
    TSKgel SuperH2000(6.0mmI.D.×15cm×2)
    (いずれも東ソー社製)
カラム温度:40℃
試料注入量:10μL(濃度0.5質量%のトルエン溶液)
The degree of polymerization of the organopolysiloxane is 1,000 to 100,000, preferably 2,000 to 100,000, more preferably 2,000 to 50,000, particularly preferably 3,000 to 20, 000, and is characterized by being so-called raw rubber-like (non-liquid) without self-flowing properties at room temperature (25°C). If the degree of polymerization is less than 1,000, problems such as roll adhesion will occur when a silicone rubber compound is produced, resulting in poor roll workability. The degree of polymerization is determined as a weight-average degree of polymerization from the weight-average molecular weight in terms of polystyrene determined by gel permeation chromatography (GPC) analysis measured under the following conditions.
[Measurement condition]
Developing solvent: toluene Flow rate: 0.35mL/min
Detector: Differential refractive index detector (RI)
Column:TSK Guardcolumn SuperHL-L
TSKgel SuperH4000 (6.0mm I.D. x 15cm x 1)
TSKgel SuperH3000 (6.0mm I.D. x 15cm x 1)
TSKgel SuperH2000 (6.0mm I.D. x 15cm x 2)
(Both manufactured by Tosoh Corporation)
Column temperature: 40℃
Sample injection amount: 10 μL (toluene solution with a concentration of 0.5% by mass)
 (A)成分は、1種を単独で用いても、分子量(重合度)や分子構造の異なる2種以上の混合物であってもよい。 Component (A) may be used alone or in a mixture of two or more types having different molecular weights (degrees of polymerization) and molecular structures.
 なお、本発明のミラブル型シリコーンゴム組成物には、前記(A)成分の他に組成物粘度やゴム物性の調整などを目的として、1分子中に2個以上のアルケニル基を含有する25℃で液状のオルガノポリシロキサンを追加してもよい。
 前記液状のオルガノポリシロキサンの重合度は、100以上1,000未満が好ましく、100~800がより好ましい。
 前記液状のオルガノポリシロキサンのアルケニル基、及びアルケニル基以外の基としては、前記(A)成分で例示されたものと同様のものが例示できる。
 また、このオルガノポリシロキサンは、25℃における粘度が10~120,000mPa・s、特に100~100,000mPa・sであることが好ましい。
 なお、本発明において、粘度はJIS K7117-1:1999に記載の25℃における回転粘度計により測定した値である(以下、同じ)。
 前記液状のオルガノポリシロキサンの配合量は、(A)成分100質量部に対し、0~20質量部が好ましい。
In addition to component (A), the millable silicone rubber composition of the present invention may contain at least two alkenyl groups in one molecule at 25°C for the purpose of adjusting the viscosity of the composition and the physical properties of the rubber. Liquid organopolysiloxane may be added.
The degree of polymerization of the liquid organopolysiloxane is preferably 100 or more and less than 1,000, more preferably 100 to 800.
Examples of the alkenyl group and groups other than the alkenyl group in the liquid organopolysiloxane include those exemplified for component (A).
Further, the organopolysiloxane preferably has a viscosity at 25° C. of 10 to 120,000 mPa·s, particularly 100 to 100,000 mPa·s.
In the present invention, the viscosity is a value measured using a rotational viscometer at 25° C. as described in JIS K7117-1:1999 (the same applies hereinafter).
The amount of the liquid organopolysiloxane blended is preferably 0 to 20 parts by weight per 100 parts by weight of component (A).
[(B)補強性シリカ]
 (B)成分の補強性シリカは、得られるシリコーンゴム組成物に優れた機械的特性を付与する成分として作用する。該補強性シリカは、沈降シリカ(湿式シリカ)でもヒュームドシリカ(乾式シリカ)でもよく、表面に多数のシラノール基(SiOH)が存在しているものである。本発明において(B)成分の補強性シリカのBET法による比表面積は、50m2/g以上であることが必要であり、好ましくは100~400m2/gである。この比表面積が50m2/g未満であると、(B)成分による補強効果が不十分となる。
[(B) Reinforcing silica]
The reinforcing silica as component (B) acts as a component that imparts excellent mechanical properties to the resulting silicone rubber composition. The reinforcing silica may be precipitated silica (wet silica) or fumed silica (dry silica), and has a large number of silanol groups (SiOH) on its surface. In the present invention, the specific surface area of the reinforcing silica as component (B) determined by the BET method must be 50 m 2 /g or more, preferably 100 to 400 m 2 /g. If this specific surface area is less than 50 m 2 /g, the reinforcing effect of component (B) will be insufficient.
 (B)成分の補強性シリカは、未処理の状態で使用してもよいし、必要に応じて、シラノール基を含有するオルガノポリシロキサン;オルガノポリシラザン;クロロシラン;アルコキシシラン等の有機ケイ素化合物で表面処理されたものを用いてもよい。硬化時や硬化後のシリコーンゴムから発生する低分子シロキサン量を低減したい場合は、オルガノポリシラザン、クロロシラン、アルコキシシラン等の有機ケイ素化合物を用いることが好ましい。これらの補強性シリカは、1種単独で用いても、2種以上を組み合わせて用いてもよい。 The reinforcing silica of component (B) may be used in an untreated state, or if necessary, the surface may be treated with an organosilicon compound such as an organopolysiloxane containing a silanol group, an organopolysilazane, a chlorosilane, or an alkoxysilane. A processed one may also be used. When it is desired to reduce the amount of low-molecular-weight siloxane generated from silicone rubber during or after curing, it is preferable to use an organosilicon compound such as organopolysilazane, chlorosilane, or alkoxysilane. These reinforcing silicas may be used alone or in combination of two or more.
 (B)成分の補強性シリカの配合量は、(A)成分のオルガノポリシロキサン100質量部に対して10~100質量部であり、好ましくは15~80質量部、より好ましくは20~70質量部である。この配合量が上記範囲を逸脱すると、シリコーンゴム組成物の加工性が低下するだけでなく、シリコーンゴム硬化物の機械的特性が不十分なものとなる。 The amount of reinforcing silica as component (B) is 10 to 100 parts by weight, preferably 15 to 80 parts by weight, more preferably 20 to 70 parts by weight based on 100 parts by weight of organopolysiloxane as component (A). Department. If the blending amount deviates from the above range, not only the processability of the silicone rubber composition will be reduced, but also the mechanical properties of the cured silicone rubber product will be insufficient.
[(C)成分]
 (C)成分は飽和脂肪族カルボン酸であり、一次加硫した硬化物の圧縮永久ひずみを低減することができる。
[(C) Component]
Component (C) is a saturated aliphatic carboxylic acid, and can reduce the compression set of the primary vulcanized cured product.
 (C)成分の飽和脂肪族カルボン酸は、炭素数1~20のものが好ましく、炭素数1~10のものがより好ましい。具体的には、ギ酸、酢酸、プロピオン酸、酪酸、カプロン酸、2-エチルヘキサン酸、ラウリン酸、ミリスチン酸などが挙げられる。中でも、酢酸、2-エチルヘキサン酸が好ましい。これら飽和脂肪族カルボン酸は、1種単独で用いても、2種以上を組み合わせて用いてもよい。 The saturated aliphatic carboxylic acid of component (C) preferably has 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms. Specific examples include formic acid, acetic acid, propionic acid, butyric acid, caproic acid, 2-ethylhexanoic acid, lauric acid, myristic acid, and the like. Among these, acetic acid and 2-ethylhexanoic acid are preferred. These saturated aliphatic carboxylic acids may be used alone or in combination of two or more.
 (C)成分の飽和脂肪族カルボン酸の配合量は、(A)成分のオルガノポリシロキサン100質量部に対して0.1~5質量部であり、好ましくは0.3~3質量部である。 The amount of the saturated aliphatic carboxylic acid as component (C) is 0.1 to 5 parts by weight, preferably 0.3 to 3 parts by weight, per 100 parts by weight of the organopolysiloxane as component (A). .
[(D)成分]
 硬化剤としては、シリコーンゴムコンパウンドを硬化させ得るものであれば特に限定されないが、下記の(D-1)付加反応硬化剤と(D-2)有機過酸化物硬化剤とが挙げられる。
[(D) Component]
The curing agent is not particularly limited as long as it can cure the silicone rubber compound, but examples include (D-1) addition reaction curing agent and (D-2) organic peroxide curing agent shown below.
(D-1)付加反応硬化剤
 (D-1)付加反応硬化剤としては、オルガノハイドロジェンポリシロキサンとヒドロシリル化触媒とを組み合わせて用いる。
(D-1) Addition reaction curing agent (D-1) As the addition reaction curing agent, an organohydrogenpolysiloxane and a hydrosilylation catalyst are used in combination.
 オルガノハイドロジェンポリシロキサンとしては、1分子中に2個以上、好ましくは3個以上、より好ましくは3~200個、更に好ましくは4~100個程度のケイ素原子に結合した水素原子(即ち、ヒドロシリル基)を含有すれば、直鎖状、環状、分枝状、三次元網状構造のいずれであってもよく、付加反応硬化型シリコーンゴム組成物の架橋剤として公知のオルガノハイドロジェンポリシロキサンを用いることができ、例えば、下記平均組成式(1)で表されるオルガノハイドロジェンポリシロキサンを用いることができる。
  R1 abSiO(4-a-b)/2   (1)
The organohydrogenpolysiloxane has 2 or more, preferably 3 or more, more preferably 3 to 200, and even more preferably 4 to 100 hydrogen atoms bonded to silicon atoms (i.e., hydrosilyl) in one molecule. As long as it contains a group), it may have a linear, cyclic, branched, or three-dimensional network structure, and a known organohydrogenpolysiloxane is used as a crosslinking agent for addition reaction-curable silicone rubber compositions. For example, organohydrogenpolysiloxane represented by the following average composition formula (1) can be used.
R 1 a H b SiO (4-ab)/2 (1)
 上記平均組成式(1)中、R1は独立して、炭素数1~12、好ましくは1~8の1価炭化水素基であり、脂肪族不飽和結合を有しないものが好ましい。具体的には、メチル基、エチル基、プロピル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基等のアリール基;ベンジル基、2-フェニルエチル基、2-フェニルプロピル基等のアラルキル基;及びこれらの基の水素原子の一部又は全部をハロゲン原子等で置換した基、例えば、3,3,3-トリフルオロプロピル基等が挙げられる。 In the above average compositional formula (1), R 1 is independently a monovalent hydrocarbon group having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms, and preferably does not have an aliphatic unsaturated bond. Specifically, alkyl groups such as methyl, ethyl, and propyl groups; cycloalkyl groups such as cyclohexyl; aryl groups such as phenyl and tolyl; benzyl, 2-phenylethyl, and 2-phenylpropyl groups; and groups in which some or all of the hydrogen atoms of these groups are substituted with halogen atoms, etc., such as 3,3,3-trifluoropropyl groups.
 なお、aは、0<a<3、好ましくは0.5≦a≦2.2、より好ましくは1.0≦a≦2.0である。また、bは、0<b≦3、好ましくは0.002≦b≦1.1、より好ましくは0.005≦b≦1である。さらに、0<a+b≦3、好ましくは1≦a+b≦3、より好ましくは1.002≦a+b≦2.7を満たす正数である。 Note that a is 0<a<3, preferably 0.5≦a≦2.2, and more preferably 1.0≦a≦2.0. Further, b is 0<b≦3, preferably 0.002≦b≦1.1, and more preferably 0.005≦b≦1. Further, it is a positive number satisfying 0<a+b≦3, preferably 1≦a+b≦3, more preferably 1.002≦a+b≦2.7.
 オルガノハイドロジェンポリシロキサンは、ヒドロシリル基を1分子中に2個以上、好ましくは3個以上有するが、これは分子鎖末端にあっても、分子鎖の途中にあっても、その両方にあってもよい。また、このオルガノハイドロジェンポリシロキサンとしては、25℃における粘度が0.5~10,000mPa・s、特に1~300mPa・sであることが好ましい。 Organohydrogenpolysiloxane has two or more, preferably three or more, hydrosilyl groups in one molecule, and these may be located at the end of the molecular chain, in the middle of the molecular chain, or both. Good too. The organohydrogenpolysiloxane preferably has a viscosity of 0.5 to 10,000 mPa·s, particularly 1 to 300 mPa·s at 25°C.
 このようなオルガノハイドロジェンポリシロキサンとして、具体的には、例えば、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、トリス(ハイドロジェンジメチルシロキシ)メチルシラン、トリス(ハイドロジェンジメチルシロキシ)フェニルシラン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン・ジメチルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・ジフェニルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・メチルフェニルシロキサン共重合体、(CH32HSiO1/2単位と(CH33SiO1/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位と(C653SiO1/2単位とからなる共重合体などや、上記例示化合物において、メチル基の一部又は全部を他のアルキル基や、フェニル基等に置換したものなどが挙げられる。 Specific examples of such organohydrogenpolysiloxanes include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, and tris(hydrogendimethylsiloxane). ) Methylsilane, tris(hydrogendimethylsiloxy)phenylsilane, methylhydrogencyclopolysiloxane, methylhydrogensiloxane/dimethylsiloxane cyclic copolymer, methylhydrogenpolysiloxane blocked with trimethylsiloxy groups at both ends, trimethylsiloxy group blocked at both ends Dimethylsiloxane/methylhydrogensiloxane copolymer, dimethylpolysiloxane blocked with dimethylhydrogensiloxy groups at both ends, dimethylsiloxane/methylhydrogensiloxane copolymer blocked with dimethylhydrogensiloxy groups at both ends, methylhydro blocked at both ends with trimethylsiloxy groups gensiloxane/diphenylsiloxane copolymer, methylhydrogensiloxane/diphenylsiloxane/dimethylsiloxane copolymer blocked with trimethylsiloxy groups at both ends, methylhydrogensiloxane/methylphenylsiloxane/dimethylsiloxane copolymer blocked with trimethylsiloxy groups at both ends, Methylhydrogensiloxane/dimethylsiloxane/diphenylsiloxane copolymer blocked with dimethylhydrogensiloxy groups at both ends, methylhydrogensiloxane/dimethylsiloxane/methylphenylsiloxane copolymer blocked with dimethylhydrogensiloxy groups at both ends, (CH 3 ) 2 Copolymer consisting of HSiO 1/2 units, (CH 3 ) 3 SiO 1/2 units and SiO 4/2 units, Copolymer consisting of (CH 3 ) 2 HSiO 1/2 units and SiO 4/2 units In the above - mentioned exemplified compounds , some of the methyl groups are Alternatively, examples include those in which all groups are substituted with other alkyl groups, phenyl groups, etc.
 上記オルガノハイドロジェンポリシロキサンの配合量は、シリコーンゴムコンパウンド((A)、(B)、(C)成分の合計量)100質量部に対し0.1~40質量部が好ましい。また、(A)成分中の脂肪族不飽和結合(アルケニル基及びジエン基等)1個に対し、ケイ素原子に結合した水素原子(ヒドロシリル基)の割合が0.5~10個の範囲が適当であり、好ましくは0.7~5個となるような範囲が適当である。0.5個以上であれば架橋が十分であり、十分な機械的強度が得られ、また10個以下であれば硬化後の物理特性が低下せず、特に耐熱性が悪くなったり、圧縮永久ひずみが大きくなったりすることがない。 The amount of the organohydrogenpolysiloxane blended is preferably 0.1 to 40 parts by weight based on 100 parts by weight of the silicone rubber compound (total amount of components (A), (B), and (C)). In addition, the ratio of silicon-bonded hydrogen atoms (hydrosilyl groups) to one aliphatic unsaturated bond (alkenyl group, diene group, etc.) in component (A) is preferably in the range of 0.5 to 10. A suitable range is preferably 0.7 to 5. If it is 0.5 or more, crosslinking will be sufficient and sufficient mechanical strength will be obtained, and if it is 10 or less, the physical properties after curing will not deteriorate, especially heat resistance will deteriorate, and compression permanent There is no possibility of large distortion.
 ヒドロシリル化触媒は、(A)成分のアルケニル基と、上記オルガノハイドロジェンポリシロキサンのケイ素原子結合水素原子(ヒドロシリル基)とをヒドロシリル化付加反応させる触媒である。ヒドロシリル化触媒としては、白金族金属系触媒が挙げられ、白金族金属の単体とその化合物があり、これには従来、付加反応硬化型シリコーンゴム組成物の触媒として公知のものが使用できる。例えば、シリカ、アルミナ又はシリカゲルのような担体に吸着させた粒子状白金金属、塩化第二白金、塩化白金酸、塩化白金酸6水塩のアルコール溶液等の白金触媒、パラジウム触媒、ロジウム触媒等が挙げられるが、白金又は白金化合物(白金触媒)が好ましい。 The hydrosilylation catalyst is a catalyst that causes a hydrosilylation addition reaction between the alkenyl group of component (A) and the silicon-bonded hydrogen atom (hydrosilyl group) of the organohydrogenpolysiloxane. Examples of the hydrosilylation catalyst include platinum group metal catalysts, including simple platinum group metals and compounds thereof, and those conventionally known as catalysts for addition reaction-curing silicone rubber compositions can be used. For example, particulate platinum metal adsorbed on a carrier such as silica, alumina or silica gel, platinum catalyst such as platinum chloride, chloroplatinic acid, alcoholic solution of chloroplatinic acid hexahydrate, palladium catalyst, rhodium catalyst, etc. Although platinum or a platinum compound (platinum catalyst) is preferred.
 触媒の添加量は、付加反応を促進できればよく、通常、シリコーンゴムコンパウンドに対して白金族金属量に換算して1質量ppm~1質量%の範囲で使用されるが、10~500質量ppmの範囲が好ましい。添加量が1質量ppm以上であれば、付加反応が十分促進され、硬化が十分となり、一方、1質量%以下であれば、十分な反応性を有するため、不経済となることがない。 The amount of catalyst added is sufficient as long as it can promote the addition reaction, and is usually used in the range of 1 ppm to 1% by mass in terms of platinum group metal based on the silicone rubber compound, but 10 to 500 ppm by mass is used. A range is preferred. If the addition amount is 1 mass ppm or more, the addition reaction is sufficiently promoted and curing is sufficient, whereas if it is 1 mass % or less, it has sufficient reactivity and is not uneconomical.
 また、上記の触媒のほかに硬化速度を調整する目的で、本発明の目的に応じて付加反応制御剤を使用してもよい。その具体例としては、エチニルシクロヘキサノール等のアセチレンアルコール系制御剤、テトラシクロメチルビニルポリシロキサン等が挙げられる。付加反応制御剤は、1種単独で用いても2種以上を併用してもよい。 In addition to the above-mentioned catalysts, an addition reaction control agent may be used depending on the purpose of the present invention for the purpose of adjusting the curing rate. Specific examples thereof include acetylene alcohol control agents such as ethynylcyclohexanol, tetracyclomethylvinyl polysiloxane, and the like. The addition reaction control agent may be used alone or in combination of two or more.
(D-2)有機過酸化物硬化剤
 (D-2)有機過酸化物硬化剤としては、例えば、ベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、p-メチルベンゾイルパーオキサイド、o-メチルベンゾイルパーオキサイド、2,4-ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキサイド、t-ブチルパーベンゾエート、1,6-ヘキサンジオール-ビス-t-ブチルパーオキシカーボネート等が挙げられる。
(D-2) Organic peroxide curing agent (D-2) Examples of the organic peroxide curing agent include benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, p-methylbenzoyl peroxide, o-methyl Benzoyl peroxide, 2,4-dicumyl peroxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane, di-t-butyl peroxide, t-butyl perbenzoate, 1,6 -hexanediol-bis-t-butylperoxycarbonate and the like.
 有機過酸化物硬化剤の添加量は、シリコーンゴムコンパウンド((A)、(B)、(C)成分の合計量)100質量部に対して0.1~10質量部が好ましく、特に0.2~5質量部が好ましい。配合量が0.1質量部以上であれば硬化が不十分となることがなく、10質量部以下であれば有機過酸化物硬化剤の分解残渣によりシリコーンゴム硬化物が黄変することがない。 The amount of the organic peroxide curing agent added is preferably 0.1 to 10 parts by mass, particularly 0.1 to 10 parts by mass, based on 100 parts by mass of the silicone rubber compound (total amount of components (A), (B), and (C)). 2 to 5 parts by mass is preferred. If the amount is 0.1 parts by mass or more, curing will not be insufficient, and if it is 10 parts by mass or less, the silicone rubber cured product will not yellow due to decomposition residue of the organic peroxide curing agent. .
 なお、(A)成分に、(D-1)成分と(D-2)成分とを、それぞれ上記配合量の範囲内で組み合せて配合した、付加反応硬化と有機過酸化物硬化とを併用した共加硫型のミラブル型シリコーンゴム組成物とすることもできる。 In addition, addition reaction curing and organic peroxide curing were used in combination, in which component (A) was combined with component (D-1) and component (D-2) within the above blending amounts. It can also be a co-vulcanized millable silicone rubber composition.
[その他の成分]
 本発明のミラブル型シリコーンゴム組成物には、上記成分に加え、必要に応じて、粉砕石英、結晶性シリカ、珪藻土、炭酸カルシウム等の充填材、着色剤、引き裂き強度向上剤、受酸剤、アルミナや窒化硼素等の熱伝導率向上剤、離型剤、充填材用分散剤として各種アルコキシシラン、特にフェニル基含有アルコキシシラン及びその加水分解物、ジフェニルシランジオール、カーボンファンクショナルシランなどの熱硬化型のシリコーンゴム組成物における公知の充填材や添加剤を添加することは任意である。
[Other ingredients]
In addition to the above-mentioned components, the millable silicone rubber composition of the present invention may optionally contain fillers such as crushed quartz, crystalline silica, diatomaceous earth, and calcium carbonate, colorants, tear strength improvers, acid acceptors, Heat curing of various alkoxysilanes, especially phenyl group-containing alkoxysilanes and their hydrolysates, diphenylsilane diol, carbon functional silane, etc., as thermal conductivity improvers such as alumina and boron nitride, mold release agents, and dispersants for fillers. It is optional to add fillers and additives known in the art to silicone rubber compositions.
[組成物の製造方法]
 本発明のミラブル型シリコーンゴム組成物は、該組成物を構成する成分をニーダー、バンバリーミキサー、二本ロール等の公知の混練機で混合することにより得ることができる。該ミラブル型シリコーンゴム組成物として前記(A)~(D)成分を含有する組成物を用いる場合、(A)成分、(B)成分を混合して混合物を得た後、該混合物に(C)成分を混合し、その後、(D)成分の硬化剤を添加することが好ましい。前記(A)~(D)成分を含有する組成物が更にその他の成分を含む場合には、(A)成分、(B)成分及び(C)成分と、その他の成分とを混合して混合物を得た後、該混合物に(D)成分の硬化剤を添加することが好ましい。
 なお、本発明のミラブル型シリコーンゴム組成物の調製時には、加熱して混合してもよい。
[Method for producing composition]
The millable silicone rubber composition of the present invention can be obtained by mixing the components constituting the composition in a known kneader such as a kneader, Banbury mixer, or two-roll kneader. When using a composition containing the components (A) to (D) as the millable silicone rubber composition, after mixing the components (A) and (B) to obtain a mixture, add (C) to the mixture. It is preferable to mix the components () and then add the curing agent as component (D). When the composition containing the components (A) to (D) above further contains other components, a mixture is prepared by mixing the components (A), (B), and (C) with the other components. After obtaining, it is preferable to add a curing agent as component (D) to the mixture.
In addition, when preparing the millable silicone rubber composition of the present invention, the mixture may be heated and mixed.
[硬化条件]
 本発明のミラブル型シリコーンゴム組成物は、公知の硬化方法により公知の硬化条件下で硬化させることができる。具体的には、通常、25~200℃、好ましくは80~160℃で加熱することにより、組成物を硬化させることができる。加熱時間は、0.5分間~5時間程度、特に1分間~3時間程度でよい。
 なお、本発明のミラブル型シリコーンゴム組成物の硬化時には、加圧して硬化してもよい。
[Curing conditions]
The millable silicone rubber composition of the present invention can be cured by a known curing method under known curing conditions. Specifically, the composition can be cured by heating usually at 25 to 200°C, preferably 80 to 160°C. The heating time may be about 0.5 minutes to 5 hours, particularly about 1 minute to 3 hours.
In addition, when curing the millable silicone rubber composition of the present invention, it may be cured by applying pressure.
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
 下記実施例及び比較例で調製したシリコーンゴム組成物の硬化物について、JIS K 6249:2003に基づき、硬さ(デュロメーターA)、引張強さ、切断時伸び、JIS K 6262に基づき、圧縮永久ひずみ(150℃/22時間、25%圧縮)を測定した。なお、粘度はJIS K7117-1:1999に記載の25℃における回転粘度計により測定した値である。 Regarding the cured products of silicone rubber compositions prepared in the following Examples and Comparative Examples, hardness (durometer A), tensile strength, elongation at break, based on JIS K 6249:2003, and compression set based on JIS K 6262. (150°C/22 hours, 25% compression) was measured. Note that the viscosity is a value measured using a rotational viscometer at 25° C. as described in JIS K7117-1:1999.
 (A)成分として、次の成分を用いた。
 (A-1):両末端がジメチルビニルシロキサン単位で封鎖され、メチルビニルシロキサン単位を10個有する、重量平均重合度が約8,000であるジメチルシロキサン・メチルビニルポリシロキサン共重合体
The following components were used as component (A).
(A-1): Dimethylsiloxane/methylvinylpolysiloxane copolymer with a weight average degree of polymerization of about 8,000, which has both ends blocked with dimethylvinylsiloxane units and has 10 methylvinylsiloxane units.
(B)成分として、次の成分を用いた。
 (B-1):比表面積が110m2/gであるヒュームドシリカ(商品名:アエロジルR972、日本アエロジル(株)製)
 (B-2):比表面積が200m2/gであるヒュームドシリカ(商品名:アエロジル200、日本アエロジル(株)製)
The following components were used as component (B).
(B-1): Fumed silica with a specific surface area of 110 m 2 /g (trade name: Aerosil R972, manufactured by Nippon Aerosil Co., Ltd.)
(B-2): Fumed silica with a specific surface area of 200 m 2 /g (product name: Aerosil 200, manufactured by Nippon Aerosil Co., Ltd.)
 (C)成分として、次の成分を用いた。
 (C-1):2-エチルヘキサン酸
 (C-2):酢酸
 (C-3):酢酸エチル(比較例用)
The following components were used as component (C).
(C-1): 2-ethylhexanoic acid (C-2): Acetic acid (C-3): Ethyl acetate (for comparative example)
 (D)成分として、次の成分を用いた。
 (D-1-1):側鎖にヒドロシリル基を有するメチルハイドロジェン-ジメチルポリシロキサン(分子鎖両末端がトリメチルシロキシ基で封鎖された重量平均重合度38、前記式(1)において、a=1.55、b=0.5、R1=CH3、ヒドロシリル基の数:20個)
 (D-1-2):白金触媒(塩化白金酸/1,3-ジビニルテトラメチルジシロキサン錯体を白金原子含有量として1質量%含有するジメチルポリシロキサン溶液)
 (D-2):2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン
The following components were used as component (D).
(D-1-1): Methylhydrogen-dimethylpolysiloxane having a hydrosilyl group in the side chain (weight average polymerization degree of 38 with both ends of the molecular chain blocked with trimethylsiloxy groups, in the above formula (1), a= 1.55, b=0.5, R 1 = CH 3 , number of hydrosilyl groups: 20)
(D-1-2): Platinum catalyst (dimethylpolysiloxane solution containing 1% by mass of chloroplatinic acid/1,3-divinyltetramethyldisiloxane complex as platinum atom content)
(D-2): 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane
 付加反応制御剤として、次の成分を用いた。
 エチニルシクロヘキサノール
The following components were used as addition reaction control agents.
ethynylcyclohexanol
[実施例1]
 (A)成分として、(A-1)成分:100質量部、(B)成分として、(B-1)成分:35質量部をニーダーで混合した後、(C)成分として、(C-1)成分:0.3質量部を添加して、ニーダーでさらに混合した。この後、170℃で2時間熱処理し、ベースコンパウンド(1)を調製した。
[Example 1]
After mixing in a kneader 100 parts by mass of component (A-1) as component (A) and 35 parts by mass of component (B-1) as component (B), (C-1) as component (C). ) component: 0.3 parts by mass was added and further mixed using a kneader. Thereafter, a heat treatment was performed at 170° C. for 2 hours to prepare a base compound (1).
 前記ベースコンパウンド(1)100質量部に、硬化剤として(D-1-1)成分:0.9質量部、付加反応制御剤としてエチニルシクロヘキサノール0.04質量部、(D-1-2)成分:0.05質量部を二本ロールで混合してシリコーンゴム組成物を得た。
 得られた組成物を、120℃、6.86MN/m2の条件で10分間プレスキュアーを行い、試験用シート(1)(寸法:150×170mm、厚さ:2.0±0.2mm)を作製し、硬さ(デュロメーターA)、引張強さ及び切断時伸びを測定した。結果を表1に示す。
 また、得られた組成物を、120℃、6.86MN/m2の条件で15分間プレスキュアーを行い、圧縮永久ひずみ測定用硬化物(1)(寸法:直径29.0±0.5mm、厚さ:12.5±0.5mm)を作製し、圧縮永久ひずみを測定した。結果を表1に示す。
100 parts by mass of the base compound (1), 0.9 parts by mass of component (D-1-1) as a curing agent, 0.04 parts by mass of ethynylcyclohexanol as an addition reaction control agent, (D-1-2) Components: 0.05 parts by mass were mixed using two rolls to obtain a silicone rubber composition.
The obtained composition was pre-cured for 10 minutes at 120°C and 6.86 MN/m 2 to form a test sheet (1) (dimensions: 150 x 170 mm, thickness: 2.0 ± 0.2 mm). was prepared, and its hardness (durometer A), tensile strength, and elongation at break were measured. The results are shown in Table 1.
In addition, the obtained composition was pre-cured for 15 minutes at 120°C and 6.86 MN/ m2 , and the cured product for compression set measurement (1) (dimensions: diameter 29.0 ± 0.5 mm, Thickness: 12.5±0.5 mm) was produced, and the compression set was measured. The results are shown in Table 1.
[実施例2~3、比較例1~2]
 表1に記載した配合で、実施例1と同様の方法でシリコーンゴム組成物を調製し、得られた組成物から試験用シート及び硬化物を作製し、各種物性を評価した。結果を表1に示す。
[Examples 2-3, Comparative Examples 1-2]
A silicone rubber composition was prepared using the formulation shown in Table 1 in the same manner as in Example 1, and test sheets and cured products were prepared from the resulting composition, and various physical properties were evaluated. The results are shown in Table 1.
[実施例4]
 (A)成分として、(A-1)成分:100質量部、(B)成分として(B-1)成分:40質量部をニーダーで混合した後、(C)成分として(C-2)成分:0.3質量部を添加して、ニーダーでさらに混合した。この後、170℃で2時間熱処理し、ベースコンパウンド(6)を調製した。
[Example 4]
After mixing in a kneader 100 parts by mass of component (A-1) as component (A) and 40 parts by mass of component (B-1) as component (B), component (C-2) as component (C). :0.3 part by mass was added and further mixed using a kneader. Thereafter, heat treatment was performed at 170° C. for 2 hours to prepare a base compound (6).
 ベースコンパウンド(6)100質量部に(D)成分として(D-2)成分:0.4質量部を混合してシリコーンゴム組成物を得た。
 得られた組成物を、165℃、6.86MN/m2の条件で10分間プレスキュアーを行い試験用シート(6)(寸法:150×170mm、厚さ:2.0±0.2mm)を作製し、硬さ(デュロメーターA)、引張強さ及び切断時伸びを測定した。結果を表2に示す。
 また、得られた組成物を、165℃、6.86MN/m2の条件で15分間プレスキュアーを行い、圧縮永久ひずみ測定用硬化物(6)(寸法:直径29.0±0.5mm、厚さ:12.5±0.5mm)を作製し、圧縮永久ひずみを測定した。結果を表2に示す。
A silicone rubber composition was obtained by mixing 0.4 parts by mass of component (D-2) as component (D) with 100 parts by mass of base compound (6).
The obtained composition was press-cured for 10 minutes at 165°C and 6.86 MN/m 2 to form a test sheet (6) (dimensions: 150 x 170 mm, thickness: 2.0 ± 0.2 mm). The hardness (durometer A), tensile strength, and elongation at break were measured. The results are shown in Table 2.
In addition, the obtained composition was press-cured for 15 minutes at 165°C and 6.86 MN/ m2 , and the cured product for compression set measurement (6) (dimensions: diameter 29.0 ± 0.5 mm, Thickness: 12.5±0.5 mm) was produced, and the compression set was measured. The results are shown in Table 2.
[実施例5、比較例3~4]
 表2に記載した配合で、実施例4と同様の方法でシリコーンゴム組成物を調製し、得られた組成物から試験用シート及び硬化物を作製し、各種物性を評価した。結果を表2に示す。
[Example 5, Comparative Examples 3-4]
A silicone rubber composition was prepared using the formulation shown in Table 2 in the same manner as in Example 4, and test sheets and cured products were prepared from the resulting composition, and various physical properties were evaluated. The results are shown in Table 2.
[実施例6]
 (A)成分として、(A-1)成分:100質量部、(B)成分として(B-2)成分:40質量部、(B)成分の表面処理剤として、両末端シラノール基を有し、重量平均重合度が4、25℃における粘度が15mPa・sであるジメチルポリシロキサン4質量部をニーダーで混合した後、(C-1)成分:0.3質量部を添加して、ニーダーで混合した。この後、170℃で2時間熱処理し、ベースコンパウンド(10)を調製した。
[Example 6]
As component (A), component (A-1): 100 parts by mass; as component (B), component (B-2): 40 parts by mass; as a surface treatment agent for component (B), having silanol groups at both ends; , 4 parts by mass of dimethylpolysiloxane having a weight average degree of polymerization of 4 and a viscosity at 25°C of 15 mPa·s were mixed in a kneader, and then 0.3 parts by mass of component (C-1) was added and mixed in a kneader. Mixed. Thereafter, heat treatment was performed at 170° C. for 2 hours to prepare a base compound (10).
 ベースコンパウンド(10)100質量部に(D)成分として(D-1-1)成分:0.9質量部、付加反応制御剤としてエチニルシクロヘキサノール0.04質量部、(D-1-2)成分:0.05質量部を二本ロールで混合してシリコーンゴム組成物を得た。
 得られた組成物を、120℃、6.86MN/m2の条件で10分間プレスキュアーを行い、試験用シート(10)(寸法:150×170mm、厚さ:2.0±0.2mm)を作製し、硬さ(デュロメーターA)、引張強さ及び切断時伸びを測定した。結果を表3に示す。
 また、得られた組成物を、120℃、6.86MN/m2の条件で15分間プレスキュアーを行い、圧縮永久ひずみ測定用硬化物(10)(寸法:直径29.0±0.5mm、厚さ:12.5±0.5mm)を作製し、圧縮永久ひずみを測定した。結果を表3に示す。
100 parts by mass of base compound (10), 0.9 parts by mass of component (D-1-1) as component (D), 0.04 parts by mass of ethynylcyclohexanol as addition reaction control agent, (D-1-2) Components: 0.05 parts by mass were mixed using two rolls to obtain a silicone rubber composition.
The obtained composition was precured for 10 minutes at 120°C and 6.86 MN/m 2 to form a test sheet (10) (dimensions: 150 x 170 mm, thickness: 2.0 ± 0.2 mm). was prepared, and its hardness (durometer A), tensile strength, and elongation at break were measured. The results are shown in Table 3.
In addition, the obtained composition was press-cured for 15 minutes at 120°C and 6.86 MN/ m2 , and the cured product for compression set measurement (10) (dimensions: diameter 29.0 ± 0.5 mm, Thickness: 12.5±0.5 mm) was produced, and the compression set was measured. The results are shown in Table 3.
[比較例5]
 (C)成分を添加しない以外は、実施例6と同様にして試験用シート(11)と圧縮永久ひずみ測定用硬化物(11)を作製し、各種物性を測定した。結果を表3に示す。
[Comparative example 5]
A test sheet (11) and a cured product for compression set measurement (11) were prepared in the same manner as in Example 6, except that component (C) was not added, and various physical properties were measured. The results are shown in Table 3.
[比較例6]
 下記化学式で示されるベンゾトリアゾール誘導体10質量部に(B-2)成分:100質量部を常圧で密閉された機械混練装置で室温にて混合処理した。混合後、乾燥することによりベンゾトリアゾール誘導体で表面処理された補強性充填材を得た。
Figure JPOXMLDOC01-appb-C000001
 
[Comparative example 6]
Component (B-2): 100 parts by mass was mixed with 10 parts by mass of a benzotriazole derivative represented by the following chemical formula in a sealed mechanical kneading device at normal pressure at room temperature. After mixing and drying, a reinforcing filler surface-treated with a benzotriazole derivative was obtained.
Figure JPOXMLDOC01-appb-C000001
 (C)成分のかわりに、上記で調製した補強性充填材を1.1質量部(ベンゾトリアゾール誘導体/白金原子=88モル/モル)を添加した以外は、実施例1と同様にして、ベースコンパウンドを調製した後、試験用シート(12)と圧縮永久ひずみ測定用硬化物(12)を作製し、各種物性を測定した。結果を表4に示す。 The base was prepared in the same manner as in Example 1, except that 1.1 parts by mass (benzotriazole derivative/platinum atom = 88 mol/mol) of the reinforcing filler prepared above was added instead of component (C). After preparing the compound, a test sheet (12) and a cured product for compression set measurement (12) were prepared, and various physical properties were measured. The results are shown in Table 4.
 また、実施例1、比較例1及び比較例6で調製したシリコーンゴム組成物の120℃における硬化性をレオメーターMDR2000(アルファテクノロジーズ社製)により測定した。表の値は、T10の値が120℃において測定開始から6分間における最大トルク値に対する10%のトルク値を与える時の時間(秒)を、T90の値が120℃において測定開始から6分間における最大トルク値に対する90%のトルク値を与える時の時間(秒)を示し、T10の値が小さいほど、硬化開始までの時間が短く、T90-T10の値が小さいほど、硬化し始めてから完全硬化するまでの時間が短いことを示し、組成物の硬化性が良好であるということになる。結果を表4に示す。 Furthermore, the curability of the silicone rubber compositions prepared in Example 1, Comparative Example 1, and Comparative Example 6 at 120° C. was measured using a rheometer MDR2000 (manufactured by Alpha Technologies). The values in the table are the time (seconds) when the T10 value gives a torque value of 10% of the maximum torque value in 6 minutes from the start of measurement at 120°C, and the time (seconds) when the T90 value gives a torque value of 10% of the maximum torque value in 6 minutes from the start of measurement at 120°C. Indicates the time (seconds) when applying a torque value of 90% of the maximum torque value. The smaller the T10 value, the shorter the time until the start of curing, and the smaller the T90-T10 value, the longer it will take to completely cure after the start of curing. This shows that the time required for the composition to harden is short, indicating that the composition has good curability. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (4)

  1. (A)1分子中に2個以上のケイ素原子に結合したアルケニル基を有する、重量平均重合度が1,000~100,000の生ゴム状オルガノポリシロキサン;100質量部、
    (B)BET法による比表面積が50m2/g以上の補強性シリカ;10~100質量部、
    (C)飽和脂肪族カルボン酸;(A)成分100質量部に対して0.1~5質量部、及び、
    (D)硬化剤;有効量
    を含有するものであるミラブル型シリコーンゴム組成物。
    (A) a raw rubber-like organopolysiloxane having an alkenyl group bonded to two or more silicon atoms in one molecule and having a weight average degree of polymerization of 1,000 to 100,000; 100 parts by mass;
    (B) Reinforcing silica with a specific surface area of 50 m 2 /g or more by BET method; 10 to 100 parts by mass,
    (C) Saturated aliphatic carboxylic acid; 0.1 to 5 parts by mass per 100 parts by mass of component (A), and
    (D) Curing agent: A millable silicone rubber composition containing an effective amount.
  2.  (D)成分が、オルガノハイドロジェンポリシロキサンとヒドロシリル化触媒とを組み合わせた付加反応硬化剤である請求項1に記載のミラブル型シリコーンゴム組成物。 The millable silicone rubber composition according to claim 1, wherein component (D) is an addition reaction curing agent that combines an organohydrogenpolysiloxane and a hydrosilylation catalyst.
  3.  (D)成分が有機過酸化物硬化剤である請求項1に記載のミラブル型シリコーンゴム組成物。 The millable silicone rubber composition according to claim 1, wherein component (D) is an organic peroxide curing agent.
  4.  請求項1~3のいずれか1項に記載のミラブル型シリコーンゴム組成物の硬化物。 A cured product of the millable silicone rubber composition according to any one of claims 1 to 3.
PCT/JP2023/015873 2022-05-13 2023-04-21 Millable silicone rubber composition and cured product of same WO2023218904A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-079553 2022-05-13
JP2022079553A JP2023167978A (en) 2022-05-13 2022-05-13 Millable type silicone rubber composition and cured product thereof

Publications (1)

Publication Number Publication Date
WO2023218904A1 true WO2023218904A1 (en) 2023-11-16

Family

ID=88730213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015873 WO2023218904A1 (en) 2022-05-13 2023-04-21 Millable silicone rubber composition and cured product of same

Country Status (2)

Country Link
JP (1) JP2023167978A (en)
WO (1) WO2023218904A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281572A (en) * 1990-03-29 1991-12-12 Shin Etsu Chem Co Ltd Silicone rubber composition and its preparation and cured product
JPH11148014A (en) * 1997-09-10 1999-06-02 General Electric Co <Ge> Additive system for improving adhesion of silicone elastomer and stability of the same elastomer to hydrolysis
JP2014224193A (en) * 2013-05-16 2014-12-04 信越化学工業株式会社 Adhesion method of silicone rubber composition, and composite molded article
CN106967299A (en) * 2017-05-09 2017-07-21 江苏天辰新材料股份有限公司 A kind of low compression set silicon rubber and preparation method thereof
JP2017218487A (en) * 2016-06-06 2017-12-14 信越化学工業株式会社 Silicone rubber composition for preparing keypad and keypad
WO2021100535A1 (en) * 2019-11-22 2021-05-27 信越化学工業株式会社 Silicone rubber composition for keypad production, and keypad

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03281572A (en) * 1990-03-29 1991-12-12 Shin Etsu Chem Co Ltd Silicone rubber composition and its preparation and cured product
JPH11148014A (en) * 1997-09-10 1999-06-02 General Electric Co <Ge> Additive system for improving adhesion of silicone elastomer and stability of the same elastomer to hydrolysis
JP2014224193A (en) * 2013-05-16 2014-12-04 信越化学工業株式会社 Adhesion method of silicone rubber composition, and composite molded article
JP2017218487A (en) * 2016-06-06 2017-12-14 信越化学工業株式会社 Silicone rubber composition for preparing keypad and keypad
CN106967299A (en) * 2017-05-09 2017-07-21 江苏天辰新材料股份有限公司 A kind of low compression set silicon rubber and preparation method thereof
WO2021100535A1 (en) * 2019-11-22 2021-05-27 信越化学工業株式会社 Silicone rubber composition for keypad production, and keypad

Also Published As

Publication number Publication date
JP2023167978A (en) 2023-11-24

Similar Documents

Publication Publication Date Title
JP6344333B2 (en) Addition-curing silicone rubber composition
JP6572634B2 (en) Addition-curable silicone rubber composition and cured product
WO2017159047A1 (en) Addition-curable silicone rubber composition and cured product
WO2019031245A1 (en) Addition-curable silicone composition and cured silicone rubber
JP5510148B2 (en) Method for producing millable silicone rubber composition
JP6274082B2 (en) Addition-curing silicone rubber composition
JP6957960B2 (en) Transparent silicone rubber composition and its cured product
JP5888076B2 (en) Method for improving plastic return resistance of silicone rubber compound, method for improving compression set resistance of cured silicone rubber, and method for reducing hardness difference
JP5553076B2 (en) Silicone rubber composition
JP5527309B2 (en) Millable silicone rubber compound and method for producing silicone rubber composition
JP2019085532A (en) Addition-curable liquid silicone rubber composition
JP6107741B2 (en) Millable type silicone rubber compound and method for producing millable type silicone rubber composition
JP6184091B2 (en) Millable silicone rubber composition and cured product thereof
WO2018198830A1 (en) Addition-curable silicone rubber composition
JP6380466B2 (en) Method for reducing the dynamic friction coefficient
JP7156216B2 (en) Millable type silicone rubber composition, cured product thereof, and silicone rubber compound for millable type silicone rubber composition
WO2022113696A1 (en) Millable-type silicone rubber composition and silicone rubber cured product
JP2016002103A (en) Addition-curable silicone rubber composition for manufacturing medical balloon catheter
WO2023218904A1 (en) Millable silicone rubber composition and cured product of same
TW202212478A (en) Two-pack type addition curable silicone rubber composition
JP7004936B2 (en) Silicone gel composition and its cured product and power module
WO2022234770A1 (en) Fluorosilicone rubber composition and cured molded product
WO2022249858A1 (en) Millable-type silicone rubber composition and silicone rubber cured product
JP2023064167A (en) Millable type silicone rubber composition and silicone rubber cured product
JP2022132904A (en) Heat-resistant millable silicone rubber composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803386

Country of ref document: EP

Kind code of ref document: A1