WO2021100535A1 - Silicone rubber composition for keypad production, and keypad - Google Patents

Silicone rubber composition for keypad production, and keypad Download PDF

Info

Publication number
WO2021100535A1
WO2021100535A1 PCT/JP2020/041810 JP2020041810W WO2021100535A1 WO 2021100535 A1 WO2021100535 A1 WO 2021100535A1 JP 2020041810 W JP2020041810 W JP 2020041810W WO 2021100535 A1 WO2021100535 A1 WO 2021100535A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
component
group
silicone rubber
Prior art date
Application number
PCT/JP2020/041810
Other languages
French (fr)
Japanese (ja)
Inventor
大地 轟
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2021100535A1 publication Critical patent/WO2021100535A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/057Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • C08K5/5445Silicon-containing compounds containing nitrogen containing at least one Si-N bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups

Definitions

  • the present invention relates to a silicone rubber composition having excellent dynamic fatigue durability and suitable as a keypad material, and a keypad obtained by curing and molding the composition.
  • Silicone rubber has excellent weather resistance, electrical properties, low compression permanent strain resistance, heat resistance, cold resistance, etc., so it can be used in various fields such as electrical equipment, automobiles, construction, medical care, and food. Widely used. For example, for remote controllers, typewriters, word processors, computer terminals, keypads used as rubber contacts for musical instruments, building gaskets, anti-vibration rubber for audio equipment, connector seals, automobile parts such as spark plug boots, and computers. Examples include packing for compact discs used, and applications such as bread and cake molds. At present, the demand for silicone rubber is increasing more and more, and the development of silicone rubber having excellent properties is desired.
  • the keypad material is widely used for keyboards of mobile phones, personal computers, etc., and as a characteristic required for these keypad materials, it is required that the load change when a key is pressed is small. Normally, when the molding key is repeatedly pressed, the load on the key decreases as the number of keystrokes increases. The smaller the decrease in the peak load, the better the key characteristics, and the material exhibiting such load characteristics is excellent as the keypad material.
  • Patent Document 1 proposes a silicone rubber composition for a keypad.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2009-275158 is for a key pad having excellent dynamic fatigue durability (keying durability) by using a phosphoric acid ester of an alkyl group partially substituted with chlorine.
  • a suitable silicone rubber composition has been proposed, it is not preferable because the keystroke durability is not sufficient and the manufacturing apparatus is corroded.
  • Patent Document 3 uses organodisilazane having an alkenyl group in the molecule and an ester of a fatty acid ester and / or an aliphatic alcohol.
  • a silicone rubber composition suitable for a key pad having excellent fatigue durability has been proposed.
  • Patent Document 4 instead of organodisilazane having an alkoxy group in the molecule, a vinyl group that is cheaper and suppresses catalytic poisoning and yellowing of a cured product during additional vulcanization.
  • a silicone rubber composition suitable for a key pad having excellent dynamic fatigue durability using the containing alkoxysilane has been proposed. However, there is no description about the durability under high temperature and high humidity, and the durability may be lowered under the condition of 50 ° C. and 50% RH or more.
  • the present invention has been made in view of the above circumstances, and is excellent in dynamic fatigue durability (keystroke durability) even under high temperature and high humidity, and cures a silicone rubber composition suitable as a keypad material and the composition. It is an object of the present invention to provide a molded keypad.
  • an alkenyl group-containing organopolysiloxane having a degree of polymerization of 100 or more, a reinforcing silica, an alkenyl group-containing organosilazane and / or an alkenyl group-containing alkoxysilane.
  • a silicone rubber composition containing hydrochloric acid, an ester of a fatty acid ester and / or an aliphatic alcohol, an organopolysiloxane containing a cerium element containing a carboxylate containing a cerium element, and a curing agent.
  • the present invention provides a keypad composed of the following silicone rubber composition for producing a keypad and a cured molded product of the composition.
  • A The following average composition formula (1) R 1 n SiO (4-n) / 2 (1)
  • R 1 is the same or different unsubstituted or substituted monovalent hydrocarbon group, and n is a positive number from 1.95 to 2.04.
  • Organopolysiloxane having at least two alkenyl groups in one molecule and having a degree of polymerization of 100 or more: 100 parts by mass
  • C The following (C-1) alkenyl group-containing organosilazane: 0.1 to 10 parts by mass and / or (C-2) alkenyl group-containing alkoxysilane: 0.1 to 10 parts by mass, and hydrochloric acid (however,
  • R 3 is the same or different monovalent hydrocarbon group, and M 2 is titanium or zirconium.
  • Titanium or zirconium compound represented by and / or its partially hydrolyzed condensate The mass conversion of titanium atom or zirconium atom is 0.01 to 5 times the mass of cerium atom of the above (Eb) component.
  • Uniform heat treatment reaction product of the mixture consisting of the amount: 0.01 to 5 parts by mass with respect to 100 parts by mass of the total of the components (A) to (D), and (F) curing agent: effective curing amount
  • a silicone rubber composition for producing a key pad which comprises.
  • a silicone rubber composition excellent in dynamic fatigue durability (keying durability) even under high temperature and high humidity and suitable as a keypad material, and a keypad obtained by curing and molding the composition can be obtained. ..
  • the silicone rubber composition for producing a keypad of the present invention contains the following components (A) to (F).
  • the organopolysiloxane of the component (A) is the main component (base polymer) of the present composition, and has an alkenyl group bonded to at least two silicon atoms in one molecule represented by the following average composition formula (1). It contains. R 1 n SiO (4-n) / 2 (1) (In the formula, R 1 is the same or different unsubstituted or substituted monovalent hydrocarbon group, and n is a positive number from 1.95 to 2.04.)
  • the monovalent hydrocarbon group represented by R 1 is usually a monovalent hydrocarbon group having 1 to 20, preferably 1 to 12, and more preferably 1 to 8 carbon atoms.
  • a monovalent hydrocarbon group having 1 to 20, preferably 1 to 12, and more preferably 1 to 8 carbon atoms.
  • an alkyl group such as a methyl group, an ethyl group, a propyl group or a butyl group, a cycloalkyl group such as a cyclohexyl group, an alkenyl group such as a vinyl group, an allyl group, a butenyl group or a hexenyl group, an aryl such as a phenyl group or a tolyl group.
  • Examples thereof include a cyanoethyl group.
  • a methyl group, a vinyl group, a phenyl group and a trifluoropropyl group are preferable, and a methyl group and a vinyl group are more preferable.
  • R 1 in the molecule 50 mol% or more is preferably a methyl group, more preferably 80 mol% or more is a methyl group, and further. preferably, all of R 1 other than the alkenyl group is a methyl group.
  • n is a positive number of 1.95 to 2.04, preferably a positive number of 1.98 to 2.02. Unless this n value is in the range of 1.95 to 2.04, the obtained cured product may not exhibit sufficient rubber elasticity.
  • the organopolysiloxane of the component (A) needs to have at least two alkenyl groups in one molecule, and in the above formula (1), 0.001 to 10 mol% of R 1, particularly 0. It is preferable that 0.01 to 5 mol% is an alkenyl group.
  • the alkenyl group is preferably a vinyl group and an allyl group, and particularly preferably a vinyl group.
  • the degree of polymerization of the organopolysiloxane of the component (A) is preferably 100 or more (usually 100 to 100,000), particularly preferably in the range of 1,000 to 100,000, and is in the range of 3,000 to 50,000. Is more preferable, and the range is particularly preferably in the range of 4,000 to 20,000. This degree of polymerization is determined as the polystyrene-equivalent weight average degree of polymerization in GPC (gel permeation chromatography) analysis.
  • the weight average molecular weight referred to in the present invention refers to the weight average molecular weight using polystyrene as a standard substance measured by gel permeation chromatography (GPC) under the following conditions.
  • the organopolysiloxane of the component (A) is not particularly limited as long as this condition is satisfied, but usually the main chain is a diorganosiloxane unit (R 1 2 SiO 2/2 , R 1 is the same as above, and below.
  • both molecular chain terminals are blocked with triorganosiloxy groups (R 1 3 SiO 1/2), is preferably a straight-chain diorganopolysiloxane with both molecular chain ends, It is preferably sealed with a trimethylsiloxy group, a dimethylvinylsiloxy group, a dimethylhydroxysiloxy group, a methyldivinylsiloxy group, a trivinylsiloxy group, etc., and in particular, it is sealed with a siloxy group having at least one vinyl group. Those are suitable. These organopolysiloxanes may be used alone or in combination of two or more having different degrees of polymerization and molecular structure.
  • the reinforcing silica of the component (B) acts as a component that imparts excellent mechanical properties to the obtained silicone rubber composition.
  • the reinforcing silica may be precipitated silica (wet silica) or fumed silica (dry silica), and has a large number of silanol groups (SiOH) present on the surface.
  • the specific surface area of the reinforcing silica of the component (B) by the BET method needs to be 50 m 2 / g or more, preferably 100 to 400 m 2 / g. If this specific surface area is less than 50 m 2 / g, the reinforcing effect of the component (B) may be insufficient.
  • the reinforcing silica of the component (B) even if it is used in an untreated state, if necessary, a silica that has been surface-treated with an organosilicon compound such as organopolysiloxane, organopolysilazane, chlorosilane, or alkoxysilane is used.
  • organosilicon compound such as organopolysiloxane, organopolysilazane, chlorosilane, or alkoxysilane.
  • the dispersibility of the reinforcing silica becomes better when used in combination with the components (C) and (D) described later, and the composition of the present invention can be used as a keypad. It is preferable because the keystroke durability is further improved when used.
  • These reinforcing silicas may be used alone or in combination of two or more.
  • the blending amount of the reinforcing silica of the component (B) is 10 to 100 parts by mass, preferably 10 to 80 parts by mass, and more preferably 20 to 70 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A). It is a department. If this blending amount deviates from the above range, not only the processability of the obtained silicone rubber composition is lowered, but also a machine such as tensile strength and tear strength of the silicone rubber cured product obtained by curing the silicone rubber composition. The target characteristics are insufficient.
  • the alkenyl group-containing organosilazane of the component (C-1) and / or the alkenyl group-containing alkoxysilane of the component (C-2) and hydrochloric acid are dispersibility improvers for reinforcing silica in the silicone rubber composition of the present invention.
  • the alkenyl groups in the organopolysiloxane which is the base polymer and the alkenyl groups in the alkenyl group-containing organosilazane and / or the alkenyl group-containing alkoxysilane are crosslinked to form the organopolysiloxane. It acts as a cross-linking point with silica.
  • Hydrochloric acid acts as a dispersibility improver for silica in the silicone rubber composition of the present invention.
  • the alkenyl group-containing organosilazane of the component (C-1) is not particularly limited, but is 1-vinylpentamethyldisilazane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, 1,3. -Dimethyl-1,1,3,3-tetravinyldisilazane, 1,3-divinyl-1,1,3,3-tetravinyldisilazane and the like are exemplified, but 1,3-divinyl-1,1 , 3,3-Tetramethyldisilazane is suitable.
  • the amount of the alkenyl group-containing organosilazane of the component (C-1) added is 0.1 to 10 parts by mass, preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the organopolysiloxane of the component (A) when added alone. It is 0.1 to 7 parts by mass, more preferably 0.1 to 5 parts by mass. If the amount added is less than 0.1 parts by mass, the effect of improving the dynamic fatigue durability of the obtained cured product of the silicone rubber composition cannot be obtained, and if it is more than 10 parts by mass, the obtained cured silicone rubber composition is cured. The hardness of the object becomes too high, which is also economically unfavorable.
  • the alkenyl group-containing alkoxysilane of the component (C-2) is not particularly limited, but vinyltriethoxysilane, vinyltrimethoxysilane, divinyldimethoxysilane, vinyltris (methoxyethoxy) silane and the like are preferable.
  • the amount of the alkenyl group-containing alkoxysilane added as the component (C-2) is 0.1 to 10 parts by mass, preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the organopolysiloxane of the component (A) when added alone. It is 0.1 to 7 parts by mass, more preferably 0.1 to 5 parts by mass. If the amount added is less than 0.1 parts by mass, the effect of improving the dynamic fatigue durability of the obtained cured product of the silicone rubber composition cannot be obtained, and if it is more than 10 parts by mass, the obtained cured silicone rubber composition is cured. The hardness of the object becomes too high, which is also economically unfavorable.
  • both the (C-1) component and the (C-2) component are expected to have the same effect. Therefore, when both the (C-1) component and the (C-2) component are blended, the same effect is expected.
  • the total amount added is 0.1 to 10 parts by mass, preferably 0.1 to 7 parts by mass, and more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A). can do.
  • Hydrochloric acid is used in combination with the component (C-1) and / or the component (C-2), but may not be used in combination with the component (C-1).
  • the concentration of hydrochloric acid is preferably 0.05 to 5N, more preferably 0.05 to 2N. If the concentration of hydrochloric acid is lower than 0.05N, the amount of hydrochloric acid added increases, which is not preferable. On the contrary, if the concentration of hydrochloric acid is higher than 5N, handling is dangerous and it is used when blending each component. It is not preferable because it may corrode the device.
  • hydrochloric acid usually refers to an aqueous hydrogen chloride solution prepared together with water such as deionized water, distilled water, and pure water.
  • the amount of hydrochloric acid added is 0.0001 to 0.2 parts by mass, preferably 0.0001 to 0.1, as the amount of hydrogen chloride in hydrochloric acid with respect to 100 parts by mass of the organopolysiloxane of the component (A). It is a mass part. If the amount of hydrochloric acid added is less than 0.0001 parts by mass as the amount of hydrogen chloride, the effect of improving dynamic fatigue durability may not be obtained. Further, even if the amount of hydrochloric acid added is more than 0.2 parts by mass as the amount of hydrogen chloride, it is not preferable because it becomes necessary to remove excess water.
  • the fatty acid ester and / or the fatty alcohol ester of the component (D) acts as a dynamic fatigue durability improver and a mold peelability improver of the cured product of the silicone rubber composition.
  • the fatty acid ester include lower saturated fatty acids having 4 to 9 carbon atoms such as butyric acid, caproic acid, conantic acid, capric acid, and pelargonic acid, and carbons such as capric acid, undecanoic acid, lauric acid, myristyl acid, palmitic acid, and stearic acid.
  • Esters derived from various fatty acids such as higher saturated fatty acids having several tens to 20s, unsaturated fatty acids having 14 to 18 carbon atoms such as myristoleic acid, oleic acid, and linoleic acid, and fatty acids having OH groups such as ricinolic acid and having 18 carbon atoms.
  • Compounds are exemplified. Examples thereof include ester compounds of these various fatty acids with lower alcohols (for example, lower alcohols having about 1 to 6 carbon atoms such as methanol and ethanol) and ester compounds with polyhydric alcohols such as sorbitan ester and glycerin ester. ..
  • Examples of the aliphatic alcohol ester include saturated alcohols having 8 to 18 carbon atoms such as caprylyl alcohols, capryl alcohols, lauryl alcohols, myristyl alcohols and stearyl alcohols, and oleyl alcohols, linoleil alcohols and linolene alcohols having 18 carbon atoms.
  • Ester compounds derived from various aliphatic alcohols such as unsaturated alcohols of the above are exemplified.
  • glutaric acid esters, dibasic acid esters such as suberic acid esters, and tribasic acid esters such as citric acid esters with these various fatty alcohols are exemplified.
  • the blending amount of the component (D) is 0.01 to 5 parts by mass, preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A). If the amount of the component (D) is less than 0.01 parts by mass, the mold peelability of the cured silicone rubber product is not improved, and if it is more than 5 parts by mass, discoloration of the cured silicone rubber product, compression set, etc. It is economically unfavorable because the characteristics deteriorate or the plastic return deteriorates.
  • the component (E) is a uniform heat treatment reaction product of a mixture consisting of the components (Ea), (Eb) and (Ec) described later.
  • the organopolysiloxane of the component (EA) is one of the unsubstituted or substituted organopolysiloxanes represented by the above average composition formula (1), in which R 1 has an aliphatic unsaturated bond such as an alkenyl group. Except for those that are valent hydrocarbon groups, it is a linear or branched organopolysiloxane that is liquid at room temperature and is substantially composed of repeating diorganopolysiloxane units (linear structure).
  • the viscosity of the component (Ea) is 10 to 10,000 mPa ⁇ s, preferably 50 to 1,000 mPa ⁇ s at 25 ° C.
  • the viscosity is less than 10 mPa ⁇ s, the amount of siloxane evaporated at a high temperature tends to increase, and the mass change may become large. Further, when it exceeds 10,000 mPa ⁇ s, it may be difficult to smoothly mix with the cerium compound described later.
  • the viscosity can be measured by the rotational viscometer described in JIS K 7117-1: 1999.
  • the cerium carboxylate of the component (Eb) is represented by the general formula (2).
  • (R 2 COO) m M 1 (2) (In the formula, R 2 is the same or different monovalent hydrocarbon group, M 1 is cerium or a mixture of rare earth elements containing cerium as a main component, and m is a positive number of 3 to 4.) It is represented by.
  • R 2 is the same or different monovalent hydrocarbon group represented by R 2 , specifically, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group and the like have 1 to 30 carbon atoms.
  • an alkyl group having 1 to 20 carbon atoms is exemplified.
  • the rare earth element mixture containing cerium as the main component specifically includes cerium, lanthanum, praseodymium, neodymium and the like.
  • a mixture containing rare earth elements is exemplified.
  • the "main component” means that the mixture of rare earth elements usually contains 50% by mass or more, preferably 60 to 99% by mass, and more preferably 80 to 99% by mass of cerium.
  • cerium carboxylic acid salt examples include salts of carboxylic acids such as 2-ethylhexanoic acid, naphthenic acid, oleic acid, lauric acid, and stearic acid and a mixture of cerium or a rare earth element containing cerium as a main component. Will be done.
  • the carboxylate of cerium may be used as an organic solvent solution in combination with an organic solvent because of its ease of handling and compatibility with the titanium compound or zirconium compound of the component (Ec) described later.
  • examples of the organic solvent include petroleum-based solvents such as standard solvent, mineral spirit, ligroin, tarpen, and petroleum ether, and aromatic solvents such as toluene and xylene.
  • the amount of the component (Eb) added is 0.05 to 5 parts by mass, preferably 0.1, based on 100 parts by mass of the component (Ea) in terms of mass of cerium atoms in the component. It is an amount of up to 3 parts by mass. If the amount added is less than 0.05 parts by mass, the expected keying durability under high temperature and high humidity may not be obtained. On the other hand, if the amount is more than 5 parts by mass, the cerium compound may become non-uniform in the component (Ea), and the expected keystroke durability may not be obtained.
  • the titanium compound or zirconium compound of the component (Ec) is represented by the general formula (3).
  • (R 3 O) 4 M 2 (3) (In the formula, R 3 is the same or different monovalent hydrocarbon group, and M 2 is titanium or zirconium.) It is represented by.
  • the same or different monohydric hydrocarbon group represented by R 3 the number of carbon atoms such as isopropyl group, n-butyl group, stearyl group and octyl group is preferably 1 to 30, and more preferably the number of carbon atoms. It is an alkyl group of 1 to 20.
  • Examples of such a compound include tetraalkoxytitanium and tetraalkoxyzirconium, but the compound may be a partially hydrolyzed condensate thereof.
  • the amount of the component (Ec) added is 0.01 to 5 times the mass of the cerium atom in the component (Eb) in terms of the mass of the titanium or zirconium atom in the component.
  • the amount is preferably 0.05 to 3 times. If the amount added is less than 0.01 times, it may be difficult to uniformly introduce the carboxylic acid salt of cerium, which is the component (Eb), into the organopolysiloxane, which is the component (Ea), which is 5 times. If it is more than that, the keystroke durability may decrease.
  • the component (E) is a uniform heat treatment reaction product of a mixture consisting of the components (Ea), (Eb) and (Ec). This mixture can be obtained by mixing the components (Ea), (Eb) and (Ec) and then heat-treating at a temperature of 150 ° C. or higher. If the heating temperature is less than 150 ° C, it is difficult to obtain a uniform composition, and if it exceeds 310 ° C, the thermal decomposition rate of the component (Ea) increases, so that it is preferably 150 to 310 ° C, more preferably 200 to 305 ° C. More preferably, the heat treatment is performed at 250 to 300 ° C.
  • these three components may be mixed at the same time, but the cerium carboxylate of the component (Eb) is used. Since it tends to be agglomerated, it is preferable to mix the component (Eb) and the component (Ec) in advance to obtain a uniform composition, and then mix the component (Ea).
  • the amount of the component (E) added is 0.01 to 5 parts by mass, preferably 0.05 to 2 parts by mass with respect to 100 parts by mass in total of the components (A) to (D). If the amount of the component (E) added is less than 0.01 parts by mass, the expected keying durability under high temperature and high humidity may not be obtained. Further, even if it exceeds 5 parts by mass, the expected keying durability under high temperature and high humidity may not be obtained.
  • the curing agent for the component (F) is not particularly limited as long as it can cure the component (A) described above.
  • the following (F-1) addition reaction curing agent and / or (F-2) organic peroxide can be used.
  • examples include oxide curing agents. That is, in the silicone rubber composition of the present invention, these curing agents react with the organopolysiloxane of the component (A) to form a crosslinked structure and give a cured product.
  • the addition reaction curing agent of the component (F-1) can be used in combination with an organohydrogenpolysiloxane and a hydrosilylation catalyst.
  • the organohydrogenpolysiloxane is linear or cyclic if it contains 2 or more, preferably 3 or more, more preferably 3 to 200, and further preferably about 4 to 100 SiH groups in one molecule. , Branched shape, for example, organohydrogenpolysiloxane represented by the following average composition formula (4) can be used.
  • R 4 represents an unsubstituted or substituted monovalent hydrocarbon group, which may be the same or different, and in particular, the one excluding the aliphatic unsaturated bond is preferable.
  • R 4 is usually preferably one having 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, and specifically, an alkyl group such as a methyl group, an ethyl group or a propyl group, a cycloalkyl group such as a cyclohexyl group, or phenyl.
  • Aryl groups such as groups and trill groups, aralkyl groups such as benzyl group, 2-phenylethyl group and 2-phenylpropyl group, and groups in which some or all of the hydrogen atoms of these groups are substituted with halogen atoms or the like, for example. , 3,3,3-trifluoropropyl group and the like.
  • p is 0 ⁇ p ⁇ 3, preferably 1 ⁇ p ⁇ 2.2
  • q is 0 ⁇ q ⁇ 3, preferably 0.002 ⁇ q ⁇ 1
  • p + q is 0. It is a positive number that satisfies ⁇ p + q ⁇ 3, preferably 1.002 ⁇ p + q ⁇ 3.
  • Organohydrogenpolysiloxane has two or more, preferably three or more SiH groups in one molecule, both at the end of the molecular chain and in the middle of the molecular chain. May be good. Further, the organohydrogenpolysiloxane preferably has a viscosity at 25 ° C. of 0.5 to 10,000 mPa ⁇ s, particularly preferably 1 to 300 mPa ⁇ s.
  • organohydrogenpolysiloxane examples include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, and tris (hydrogendimethylsiloxy).
  • k is an integer of 2 to 10, and s and t are integers of 0 to 10.
  • the blending amount of the organohydrogenpolysiloxane is preferably 0.1 to 40 parts by mass, more preferably 0.3 to 20 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A).
  • the organohydrogenpolysiloxane was bonded to a silicon atom in the organohydrogenpolysiloxane for an aliphatic unsaturated group such as an alkenyl group or a diene group bonded to a silicon atom in the component (A) and the component (C). It is desirable to mix in an amount such that the molar ratio of hydrogen atoms (that is, SiH groups) is preferably 0.5 to 10 mol / mol, more preferably 0.7 to 5 mol / mol.
  • cross-linking may not be sufficient and sufficient mechanical strength may not be obtained, and if it exceeds 10 mol / mol, the physical characteristics after curing deteriorate, and particularly heat resistance.
  • the compression set may deteriorate.
  • the hydrosilylation catalyst is a catalyst in which an alkenyl group bonded to a silicon atom in the components (A) and (C) is subjected to an addition reaction with a silicon atom-bonded hydrogen atom (SiH group) in the organohydrogenpolysiloxane.
  • the hydrosilylation catalyst include platinum group metal-based catalysts, which include platinum group metal alone and compounds thereof, and known catalysts for addition reaction curable silicone rubber compositions can be used. Examples thereof include fine particle platinum metal adsorbed on a carrier such as silica gel, alumina or silica gel, secondary platinum chloride, platinum chloride acid, alcohol solution of hexahydrate chloride platinum acid, palladium catalyst, rhodium catalyst and the like. Platinum or platinum compounds are preferred.
  • the amount of the hydrosilylation catalyst added may be such that the addition reaction can be promoted, and is usually used in the range of 1% by mass to 1% by mass with respect to the organopolysiloxane of the component (A) in terms of mass in terms of the amount of platinum-based metal. However, the range of 10 to 500 mass ppm is preferable. If the addition amount is less than 1% by mass, the addition reaction may not be sufficiently promoted and curing may be insufficient, while if the addition amount exceeds 1% by mass, the reactivity may be increased even if a larger amount is added. It has less impact and can be uneconomical.
  • a hydrosilylation reaction control agent such as an acetylene compound may be added to the addition reaction curing agent of the component (F-1), if necessary.
  • (F-2) Organic Peroxide Hardener
  • examples of the organic peroxide hardener as a component of (F-2) include benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, p-methylbenzoyl peroxide, and o. -Methylbenzoyl peroxide, 2,4-dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, di-t-butyl peroxide, t-butylperbenzoate, 1 , 6-Hexanediol-bis-t-butylperoxycarbonate and the like.
  • the amount of the organic peroxide curing agent added is preferably 0.1 to 10 parts by mass, particularly 0.2 to 5 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A). If the blending amount is less than 0.1 parts by mass, the curing of the silicone rubber composition may be insufficient, and conversely, if the blending amount is more than 10 parts by mass, the decomposition residue of the organic peroxide causes the silicone rubber. The cured product may turn yellow.
  • addition reaction curing and organic peroxide curing in which the component (F-1) and the component (F-2) are combined and blended within the above-mentioned blending amount with respect to the component (A). It can also be used as a co-vulcanized type silicone rubber composition in combination.
  • the silicone rubber composition of the present invention contains, if necessary, non-reinforcing silica such as quartz powder, crystalline silica, and diatomaceous earth, and carbon such as calcium carbonate, acetylene black, furnace black, and channel black.
  • Heat resistance improver such as black, colorant, red iron oxide, cerium oxide, flame retardant improver such as platinum, titanium oxide, triazole compound, thermal conductivity improver such as acid receiver, alumina, boron nitride, mold release agent , Dimethylpolysiloxane having silanol groups at both ends may be added as a dispersant.
  • the silicone rubber composition for producing a keypad of the present invention can be obtained by uniformly mixing each of the above components using a mixing device such as a two-roll mill, a Banbury mixer, or a dow mixer (kneader). It is desirable that the components (A), (B), (C), (D), (E) (and other optional components) are blended and mixed, and then the component (F) is blended.
  • a mixing device such as a two-roll mill, a Banbury mixer, or a dow mixer (kneader). It is desirable that the components (A), (B), (C), (D), (E) (and other optional components) are blended and mixed, and then the component (F) is blended.
  • the silicone rubber composition of the present invention is used for a keypad.
  • the silicone rubber composition can be molded at the same time as heat curing to obtain a molded product made of a rubber-like elastic body (silicone rubber cured product).
  • the method for curing the silicone rubber composition is not particularly limited, but any method may be used as long as sufficient heat is applied to the above-mentioned decomposition of the curing agent and vulcanization of the silicone rubber composition.
  • the temperature condition for curing depends on the curing method, but is usually 80 to 400 ° C.
  • the molding method is not particularly limited, and for example, a molding method such as continuous vulcanization by extrusion molding, press molding (pressure molding), or injection molding can be adopted. Further, if necessary, secondary vulcanization may be carried out at 150 to 250 ° C. for about 1 to 10 hours.
  • the viscosity is a value at 25 ° C. measured by a rotational viscometer described in JIS K 7117-1: 1999.
  • the method for measuring physical characteristics and the method for testing dynamic fatigue durability are shown below.
  • the silicone rubber composition was cured, and the hardness (durometer A) and tensile strength were measured according to JIS K 6249: 2003.
  • Dynamic Fatigue Durability Test Method Dynamic fatigue durability was measured by the following method.
  • Keystroke test method The silicone rubber composition is press-molded using a mold to prepare a molding key having the shape shown in FIG. 1, the molding key is fixed, a load of 1,200 g is applied from above, and a speed of 3 times per second is applied. I hit the key with. Keystrokes were made under the conditions of 23 ° C. and 50% RH and 85 ° C. and 85% RH.
  • Molding key load measurement method The load of the key was measured using a load measuring device (MODEL-1305-DS manufactured by Aiko Engineering Co., Ltd.). When the key is pressed and the displacement is applied, the click pattern shown in FIG. 2 is usually obtained.
  • Example 1 A terpenate solution of 2-ethylhexanoate (rare earth element content 6% by mass) of a mixture of rare earth elements containing cerium as the main component in 100 parts by mass of dimethylpolysiloxane with both ends of trimethylsiloxy group having a viscosity of 100 mPa ⁇ s (rare earth element content 6% by mass) 10% by mass
  • a mixture of parts (0.55 parts by mass of cerium) and 2.1 parts by mass of tetra-n-butyl titanate (titanium mass is 0.3 times the mass of cerium in the 2-ethylhexanate) is prepared in advance. When the mixture was added with sufficient stirring, a yellowish white dispersion was obtained.
  • the average degree of polymerization is 99.850 mol% of dimethylsiloxane unit and 0.125 mol% of methylvinylsiloxane unit as the diorganosiloxane unit constituting the main chain, and 0.025 mol% of dimethylvinylsiloxy group as the terminal group of the molecular chain.
  • Example 2 It was produced by the same method as in Example 1 except that the amount of the composition 1 corresponding to the component (E) of the present invention was 0.5 parts by mass. Table 1 shows the physical characteristics and the measurement results of the dynamic fatigue durability test.
  • Example 3 Example 1 except that the glycerin ester of ricinoleic acid (“Kaowax 85P” manufactured by Kao Corporation) was used instead of the citric acid ester of the fatty alcohol having 18 carbon atoms corresponding to the component (D) of the present invention. Manufactured by the same method as above. Table 1 shows the physical characteristics and the measurement results of the dynamic fatigue durability test.
  • Example 4 As a curing agent, not 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, but methylhydrogenpolysiloxane having a SiH group in the side chain (polymerization degree 38, SiH group 0.0074 mol / mol / 0.8 parts by mass of both-terminal trimethylsiloxy group-blocking dimethylsiloxane / methylhydrogensiloxane copolymer), 0.05 parts by mass of ethynylcyclohexanol as a reaction control agent, 0.1 mass% of platinum catalyst (Pt concentration 1% by mass) After adding parts by mass and mixing uniformly, precure was performed at 120 ° C. and 70 kgf / cm 2 for 10 minutes, and then post-cure was performed at 200 ° C. for 4 hours to prepare a test sheet. Table 1 shows the physical characteristics and the measurement results of the dynamic fatigue durability test.
  • Example 5 Same as in Example 1 except that 1,3-divinyl-1,1,3,3-tetramethyldisilazane was used instead of 1 part by mass of vinyltrimethoxysilane and 0.1 part by mass of 1N hydrochloric acid. Manufactured by the method. Table 1 shows the physical characteristics and the measurement results of the dynamic fatigue durability test.
  • Example 1 It was produced by the same method as in Example 1 except that the composition 1 corresponding to the component (E) of the present invention was not added.
  • Table 2 shows the physical characteristics and the measurement results of the dynamic fatigue durability test.
  • Example 2 It was produced by the same method as in Example 1 except that vinyltrimethoxysilane corresponding to the component (C) of the present invention was not added. Table 2 shows the physical characteristics and the measurement results of the dynamic fatigue durability test.
  • Example 3 It was produced by the same method as in Example 1 except that 1N hydrochloric acid corresponding to the component (C) of the present invention was not added. Table 2 shows the physical characteristics and the measurement results of the dynamic fatigue durability test.
  • Example 4 It was produced by the same method as in Example 1 except that a citric acid ester of an aliphatic alcohol having 18 carbon atoms corresponding to the component (D) of the present invention (“Kaowax 220” manufactured by Kao Corporation) was not added. .. Table 2 shows the physical characteristics and the measurement results of the dynamic fatigue durability test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present invention is to provide a silicone rubber composition suitable as a keypad material, said silicone rubber composition having exceptional dynamic fatigue durability (keystroke durability) even in high temperature/high humidity environments, and a keypad obtained by curing molding said silicone rubber composition. In the present invention, a silicone rubber composition is cured and molded, said silicone rubber composition containing an alkenyl-group-containing organopolysiloxane having a degree of polymerization of 100 or higher, reinforcing silica, an alkenyl-group-containing organosilazane and/or alkenyl-group-containing alkoxysilane, hydrochloric acid, a fatty acid ester and/or an ester of an aliphatic alcohol, a cerium-element-containing organopolysiloxane containing a carboxylate containing elemental cerium, and a curing agent.

Description

キーパッド作製用シリコーンゴム組成物及びキーパッドSilicone rubber composition for making keypads and keypads
 本発明は、動的疲労耐久性に優れ、キーパッド材料として好適なシリコーンゴム組成物及び該組成物を硬化成型してなるキーパッドに関する。 The present invention relates to a silicone rubber composition having excellent dynamic fatigue durability and suitable as a keypad material, and a keypad obtained by curing and molding the composition.
 シリコーンゴムは、優れた耐候性、電気特性、低圧縮永久歪性、耐熱性、耐寒性等の特性を有しているため、電気機器、自動車、建築、医療、食品を始めとして様々な分野で広く使用されている。例えば、リモートコントローラ、タイプライター、ワードプロセッサ、コンピュータ端末、楽器等のゴム接点として使用されるキーパッド、建築用ガスケット、オーディオ装置等の防振ゴム、コネクターシール、スパークプラグブーツ等の自動車部品、コンピュータに使用されるコンパクトディスク用パッキン、或いは、パンやケーキの型等の用途が挙げられる。現在シリコーンゴムの需要は益々高まっており、優れた特性を有するシリコーンゴムの開発が望まれている。 Silicone rubber has excellent weather resistance, electrical properties, low compression permanent strain resistance, heat resistance, cold resistance, etc., so it can be used in various fields such as electrical equipment, automobiles, construction, medical care, and food. Widely used. For example, for remote controllers, typewriters, word processors, computer terminals, keypads used as rubber contacts for musical instruments, building gaskets, anti-vibration rubber for audio equipment, connector seals, automobile parts such as spark plug boots, and computers. Examples include packing for compact discs used, and applications such as bread and cake molds. At present, the demand for silicone rubber is increasing more and more, and the development of silicone rubber having excellent properties is desired.
 その中でキーパッド材料は、携帯電話、パソコンのキーボード等に広く用いられており、これらキーパッド材料に要求される特性としては、キーを打鍵した時の荷重変化が少ないことが要求される。通常、成型キーの打鍵を繰り返すと、打鍵回数が増えるにつれキーの荷重は低下する。このピーク荷重の低下が少ないものほどキー特性としては良好であり、このような荷重特性を示す材料がキーパッド材料として優れている。 Among them, the keypad material is widely used for keyboards of mobile phones, personal computers, etc., and as a characteristic required for these keypad materials, it is required that the load change when a key is pressed is small. Normally, when the molding key is repeatedly pressed, the load on the key decreases as the number of keystrokes increases. The smaller the decrease in the peak load, the better the key characteristics, and the material exhibiting such load characteristics is excellent as the keypad material.
 このようなキーパッド材料としては、シリコーンゴム製のものが広く用いられている。特開2001-164111号公報(特許文献1)には、キーパッド用シリコーンゴム組成物が提案されている。 Silicone rubber is widely used as such a keypad material. Japanese Unexamined Patent Publication No. 2001-164111 (Patent Document 1) proposes a silicone rubber composition for a keypad.
 しかしながら、近年、成型されるキー形状の複雑化に伴い、キーにかかる歪自体もより大きなものとなってきており、更に近年使用される機器の小型化に伴い、材料により大きな歪がかかる形状のものが増えている。そのため、近年の厳しい要求に対し、動的疲労耐久性に関しては十分満足するものとなっていない。 However, in recent years, as the shape of the key to be molded has become more complicated, the strain itself applied to the key has become larger, and with the miniaturization of the equipment used in recent years, the shape of the material has a larger strain. Things are increasing. Therefore, the dynamic fatigue durability is not sufficiently satisfied in response to the strict demands of recent years.
 特開2009-275158号公報(特許文献2)には、一部が塩素置換されたアルキル基のリン酸エステルを使用することで、動的疲労耐久性(打鍵耐久性)に優れたキーパッド用として好適なシリコーンゴム組成物が提案されているが、打鍵耐久性が十分ではなく、製造装置が腐食してしまうため好ましくない。これを解決するために、特開2011-105782号公報(特許文献3)には、分子中にアルケニル基を有するオルガノジシラザンと脂肪酸エステル及び/又は脂肪族アルコールのエステルを使用することで、動的疲労耐久性に優れたキーパッド用として好適なシリコーンゴム組成物が提案されている。特開2017-218487号公報(特許文献4)では、分子中にアルケニル基を有するオルガノジシラザンの代わりに、より安価かつ付加加硫時の触媒毒や硬化物の黄変が抑制されるビニル基含有アルコキシシランを使用して、動的疲労耐久性に優れたキーパッド用として好適なシリコーンゴム組成物が提案されている。しかし、高温高湿下での耐久性についての記載はなく、50℃50%RH以上の条件下では、耐久性が低下してしまうおそれがある。 Japanese Patent Application Laid-Open No. 2009-275158 (Patent Document 2) is for a key pad having excellent dynamic fatigue durability (keying durability) by using a phosphoric acid ester of an alkyl group partially substituted with chlorine. Although a suitable silicone rubber composition has been proposed, it is not preferable because the keystroke durability is not sufficient and the manufacturing apparatus is corroded. In order to solve this problem, Japanese Patent Application Laid-Open No. 2011-105782 (Patent Document 3) uses organodisilazane having an alkenyl group in the molecule and an ester of a fatty acid ester and / or an aliphatic alcohol. A silicone rubber composition suitable for a key pad having excellent fatigue durability has been proposed. In Japanese Unexamined Patent Publication No. 2017-218487 (Patent Document 4), instead of organodisilazane having an alkoxy group in the molecule, a vinyl group that is cheaper and suppresses catalytic poisoning and yellowing of a cured product during additional vulcanization. A silicone rubber composition suitable for a key pad having excellent dynamic fatigue durability using the containing alkoxysilane has been proposed. However, there is no description about the durability under high temperature and high humidity, and the durability may be lowered under the condition of 50 ° C. and 50% RH or more.
特開2001-164111号公報Japanese Unexamined Patent Publication No. 2001-164111 特開2009-275158号公報Japanese Unexamined Patent Publication No. 2009-275158 特開2011-105782号公報Japanese Unexamined Patent Publication No. 2011-105782 特開2017-218487号公報JP-A-2017-218487
 本発明は、上記事情に鑑みてなされたものであり、高温高湿下においても動的疲労耐久性(打鍵耐久性)に優れ、キーパッド材料として好適なシリコーンゴム組成物及び該組成物を硬化成型してなるキーパッドを提供することを目的とする。 The present invention has been made in view of the above circumstances, and is excellent in dynamic fatigue durability (keystroke durability) even under high temperature and high humidity, and cures a silicone rubber composition suitable as a keypad material and the composition. It is an object of the present invention to provide a molded keypad.
 本発明者は、上記目的を達成するため鋭意検討を行った結果、重合度が100以上のアルケニル基含有オルガノポリシロキサンと、補強性シリカと、アルケニル基含有オルガノシラザン及び/又はアルケニル基含有アルコキシシランと、塩酸と、脂肪酸エステル及び/又は脂肪族アルコールのエステルと、セリウム元素含有のカルボン酸塩を含有するセリウム元素含有オルガノポリシロキサンと、硬化剤とを含有するシリコーンゴム組成物を硬化成型することにより、高温高湿下においても動的疲労耐久性に優れたキーパッドが得られることを知見し、本発明をなすに至った。 As a result of diligent studies to achieve the above object, the present inventor has made an alkenyl group-containing organopolysiloxane having a degree of polymerization of 100 or more, a reinforcing silica, an alkenyl group-containing organosilazane and / or an alkenyl group-containing alkoxysilane. To cure and mold a silicone rubber composition containing hydrochloric acid, an ester of a fatty acid ester and / or an aliphatic alcohol, an organopolysiloxane containing a cerium element containing a carboxylate containing a cerium element, and a curing agent. As a result, it has been found that a keypad having excellent dynamic fatigue durability can be obtained even under high temperature and high humidity, and the present invention has been made.
 従って、本発明は、下記のキーパッド作製用シリコーンゴム組成物及び該組成物の硬化成型物からなるキーパッドを提供する。
〔1〕
 (A)下記平均組成式(1)
   R1 nSiO(4-n)/2     (1)
(式中、R1は同一又は異なる非置換又は置換の1価炭化水素基であり、nは1.95~2.04の正数である。)
で表され、一分子中に少なくとも2個のアルケニル基を有する重合度が100以上のオルガノポリシロキサン:100質量部、
(B)BET法による比表面積が50m2/g以上の補強性シリカ:10~100質量部、
(C)下記
 (C-1)アルケニル基含有オルガノシラザン:0.1~10質量部、及び/又は
 (C-2)アルケニル基含有アルコキシシラン:0.1~10質量部、及び
塩酸(但し、(C-1)成分と併用しなくてもよい。):0.0001~0.2質量部、
(D)脂肪酸エステル及び/又は脂肪族アルコールのエステル:0.01~5質量部、
(E)下記
 (E-a)25℃における粘度が10~10,000mPa・sであるオルガノポリシロキサン:100質量部、
 (E-b)一般式(2)
   (R2COO)m1     (2)
(式中、R2は同一又は異なる一価炭化水素基、M1はセリウム又はセリウムを主成分とする希土類元素混合物であり、mは3~4の正数である。)
で表されるセリウムのカルボン酸塩:セリウム原子の質量換算として上記(E-a)成分100質量部に対して0.05~5質量部となる量、及び
 (E-c)一般式(3)
   (R3O)42     (3)
(式中、R3は同一又は異なる一価炭化水素基、M2はチタン又はジルコニウムである。)
で表されるチタン若しくはジルコニウム化合物及び/又はその部分加水分解縮合物:チタン原子若しくはジルコニウム原子の質量換算が上記(E-b)成分のセリウム原子の質量に対して0.01~5倍となる量
からなる混合物の均一な加熱処理反応生成物:(A)~(D)成分の合計100質量部に対して0.01~5質量部となる量、及び
(F)硬化剤:硬化有効量
を含有することを特徴とするキーパッド作製用シリコーンゴム組成物。
〔2〕
 (B)成分の補強性シリカが、未処理シリカである〔1〕記載のキーパッド作製用シリコーンゴム組成物。
〔3〕
 (F)成分の硬化剤が、オルガノハイドロジェンポリシロキサンとヒドロシリル化触媒との組み合わせ又は有機過酸化物である〔1〕又は〔2〕記載のキーパッド作製用シリコーンゴム組成物。
〔4〕
 〔1〕~〔3〕のいずれかに記載のシリコーンゴム組成物の硬化成型物からなるキーパッド。
Therefore, the present invention provides a keypad composed of the following silicone rubber composition for producing a keypad and a cured molded product of the composition.
[1]
(A) The following average composition formula (1)
R 1 n SiO (4-n) / 2 (1)
(In the formula, R 1 is the same or different unsubstituted or substituted monovalent hydrocarbon group, and n is a positive number from 1.95 to 2.04.)
Organopolysiloxane having at least two alkenyl groups in one molecule and having a degree of polymerization of 100 or more: 100 parts by mass,
(B) Reinforcing silica having a specific surface area of 50 m 2 / g or more by the BET method: 10 to 100 parts by mass,
(C) The following (C-1) alkenyl group-containing organosilazane: 0.1 to 10 parts by mass and / or (C-2) alkenyl group-containing alkoxysilane: 0.1 to 10 parts by mass, and hydrochloric acid (however, (C-1) It is not necessary to use it in combination with the component.): 0.0001 to 0.2 parts by mass,
(D) Fatty acid ester and / or aliphatic alcohol ester: 0.01 to 5 parts by mass,
(E) The following (EA) Organopolysiloxane having a viscosity at 25 ° C. of 10 to 10,000 mPa · s: 100 parts by mass,
(Eb) General formula (2)
(R 2 COO) m M 1 (2)
(In the formula, R 2 is the same or different monovalent hydrocarbon group, M 1 is cerium or a mixture of rare earth elements containing cerium as a main component, and m is a positive number of 3 to 4.)
Carboxylate of cerium represented by: 0.05 to 5 parts by mass with respect to 100 parts by mass of the above (EA) component in terms of mass of cerium atom, and (Ec) general formula (3). )
(R 3 O) 4 M 2 (3)
(In the formula, R 3 is the same or different monovalent hydrocarbon group, and M 2 is titanium or zirconium.)
Titanium or zirconium compound represented by and / or its partially hydrolyzed condensate: The mass conversion of titanium atom or zirconium atom is 0.01 to 5 times the mass of cerium atom of the above (Eb) component. Uniform heat treatment reaction product of the mixture consisting of the amount: 0.01 to 5 parts by mass with respect to 100 parts by mass of the total of the components (A) to (D), and (F) curing agent: effective curing amount A silicone rubber composition for producing a key pad, which comprises.
[2]
The silicone rubber composition for producing a keypad according to [1], wherein the reinforcing silica of the component (B) is untreated silica.
[3]
The silicone rubber composition for producing a keypad according to [1] or [2], wherein the curing agent of the component (F) is a combination of an organohydrogenpolysiloxane and a hydrosilylation catalyst or an organic peroxide.
[4]
A keypad made of a cured molded product of the silicone rubber composition according to any one of [1] to [3].
 本発明によれば、高温高湿下においても動的疲労耐久性(打鍵耐久性)に優れ、キーパッド材料として好適なシリコーンゴム組成物及び該組成物を硬化成型してなるキーパッドが得られる。 According to the present invention, a silicone rubber composition excellent in dynamic fatigue durability (keying durability) even under high temperature and high humidity and suitable as a keypad material, and a keypad obtained by curing and molding the composition can be obtained. ..
本発明に係るキーパッドの側面図である。It is a side view of the keypad which concerns on this invention. 本発明に係るキーパッドのクリックパターンである。This is a click pattern of the keypad according to the present invention.
<キーパッド作製用シリコーンゴム組成物>
 本発明のキーパッド作製用シリコーンゴム組成物は、以下の(A)~(F)成分を含有してなるものである。
 以下、本発明につき更に詳しく説明する。
[(A)オルガノポリシロキサン]
 (A)成分のオルガノポリシロキサンは、本組成物の主剤(ベースポリマー)であり、下記平均組成式(1)で表される、一分子中に少なくとも2個のケイ素原子に結合したアルケニル基を含有するものである。
   R1 nSiO(4-n)/2     (1)
(式中、R1は同一又は異なる非置換又は置換の1価炭化水素基であり、nは1.95~2.04の正数である。)
<Silicone rubber composition for making keypads>
The silicone rubber composition for producing a keypad of the present invention contains the following components (A) to (F).
Hereinafter, the present invention will be described in more detail.
[(A) Organopolysiloxane]
The organopolysiloxane of the component (A) is the main component (base polymer) of the present composition, and has an alkenyl group bonded to at least two silicon atoms in one molecule represented by the following average composition formula (1). It contains.
R 1 n SiO (4-n) / 2 (1)
(In the formula, R 1 is the same or different unsubstituted or substituted monovalent hydrocarbon group, and n is a positive number from 1.95 to 2.04.)
 上記平均組成式(1)中、R1で表される1価炭化水素基としては、通常、炭素原子数1~20、好ましくは1~12、より好ましくは1~8の1価炭化水素基である。例えば、メチル基,エチル基,プロピル基,ブチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、ビニル基,アリル基,ブテニル基,ヘキセニル基等のアルケニル基、フェニル基,トリル基等のアリール基、β-フェニルプロピル基等のアラルキル基、又は、これらの基の炭素原子に結合した水素原子の一部若しくは全部がハロゲン原子,シアノ基等で置換されたクロロメチル基,トリフルオロプロピル基,シアノエチル基等が挙げられる。これらの中でも、メチル基、ビニル基、フェニル基及びトリフルオロプロピル基が好ましく、より好ましくは、メチル基及びビニル基である。これらの中でも特に、分子中のR1で表される1価炭化水素基のうち、50モル%以上がメチル基であることが好ましく、より好ましくは、80モル%以上がメチル基であり、更に好ましくは、アルケニル基以外の全てのR1がメチル基である。 In the above average composition formula (1), the monovalent hydrocarbon group represented by R 1 is usually a monovalent hydrocarbon group having 1 to 20, preferably 1 to 12, and more preferably 1 to 8 carbon atoms. Is. For example, an alkyl group such as a methyl group, an ethyl group, a propyl group or a butyl group, a cycloalkyl group such as a cyclohexyl group, an alkenyl group such as a vinyl group, an allyl group, a butenyl group or a hexenyl group, an aryl such as a phenyl group or a tolyl group. A group, an aralkyl group such as a β-phenylpropyl group, or a chloromethyl group or a trifluoropropyl group in which a part or all of the hydrogen atom bonded to the carbon atom of these groups is substituted with a halogen atom, a cyano group, etc. Examples thereof include a cyanoethyl group. Among these, a methyl group, a vinyl group, a phenyl group and a trifluoropropyl group are preferable, and a methyl group and a vinyl group are more preferable. Among these, among the monovalent hydrocarbon groups represented by R 1 in the molecule, 50 mol% or more is preferably a methyl group, more preferably 80 mol% or more is a methyl group, and further. preferably, all of R 1 other than the alkenyl group is a methyl group.
 上記平均組成式(1)中、nは1.95~2.04の正数であり、好ましくは1.98~2.02の正数である。このn値が1.95~2.04の範囲でないと、得られる硬化物が十分なゴム弾性を示さないことがある。 In the above average composition formula (1), n is a positive number of 1.95 to 2.04, preferably a positive number of 1.98 to 2.02. Unless this n value is in the range of 1.95 to 2.04, the obtained cured product may not exhibit sufficient rubber elasticity.
 また、(A)成分のオルガノポリシロキサンは、一分子中に少なくとも2個のアルケニル基を有することが必要であり、上記式(1)中、R1の0.001~10モル%、特に0.01~5モル%がアルケニル基であることが好ましい。該アルケニル基としては、好ましくはビニル基及びアリル基であり、特に好ましくはビニル基である。 Further, the organopolysiloxane of the component (A) needs to have at least two alkenyl groups in one molecule, and in the above formula (1), 0.001 to 10 mol% of R 1, particularly 0. It is preferable that 0.01 to 5 mol% is an alkenyl group. The alkenyl group is preferably a vinyl group and an allyl group, and particularly preferably a vinyl group.
 (A)成分のオルガノポリシロキサンの重合度は、100以上(通常、100~100,000)、特に1,000~100,000の範囲であることが好ましく、3,000~50,000の範囲であることがより好ましく、4,000~20,000の範囲であることが特に好ましい。なお、この重合度は、GPC(ゲルパーミエーションクロマトグラフィ)分析におけるポリスチレン換算の重量平均重合度として求められる。 The degree of polymerization of the organopolysiloxane of the component (A) is preferably 100 or more (usually 100 to 100,000), particularly preferably in the range of 1,000 to 100,000, and is in the range of 3,000 to 50,000. Is more preferable, and the range is particularly preferably in the range of 4,000 to 20,000. This degree of polymerization is determined as the polystyrene-equivalent weight average degree of polymerization in GPC (gel permeation chromatography) analysis.
 なお、本発明中で言及する重量平均分子量とは、下記条件で測定したゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレンを標準物質とした重量平均分子量を指すこととする。 The weight average molecular weight referred to in the present invention refers to the weight average molecular weight using polystyrene as a standard substance measured by gel permeation chromatography (GPC) under the following conditions.
[測定条件]
・展開溶媒:トルエン
・流量:1mL/min
・検出器:示差屈折率検出器(RI)
・カラム:KF-805L×2本(Shodex社製)
・カラム温度:25℃
・試料注入量:30μL(濃度0.2質量%のトルエン溶液)
[Measurement condition]
-Development solvent: Toluene-Flow rate: 1 mL / min
-Detector: Differential refractometer (RI)
-Column: KF-805L x 2 (manufactured by Shodex)
-Column temperature: 25 ° C
-Sample injection amount: 30 μL (toluene solution with a concentration of 0.2% by mass)
 (A)成分のオルガノポリシロキサンとしては、この条件を満たしていれば特に限定されないが、通常は、主鎖がジオルガノシロキサン単位(R1 2SiO2/2、R1は上記と同じ、以下同様)の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基(R1 3SiO1/2)で封鎖された、直鎖状のジオルガノポリシロキサンであることが好ましく、分子鎖両末端が、トリメチルシロキシ基,ジメチルビニルシロキシ基,ジメチルヒドロキシシロキシ基,メチルジビニルシロキシ基,トリビニルシロキシ基等で封鎖されたものが好ましく、特に、少なくとも1つのビニル基を有しているシロキシ基で封鎖されたものが好適である。これらのオルガノポリシロキサンは、1種単独で用いても、重合度や分子構造の異なる2種以上を組み合わせて用いてもよい。 The organopolysiloxane of the component (A) is not particularly limited as long as this condition is satisfied, but usually the main chain is a diorganosiloxane unit (R 1 2 SiO 2/2 , R 1 is the same as above, and below. consists repetition of the same), both molecular chain terminals are blocked with triorganosiloxy groups (R 1 3 SiO 1/2), is preferably a straight-chain diorganopolysiloxane with both molecular chain ends, It is preferably sealed with a trimethylsiloxy group, a dimethylvinylsiloxy group, a dimethylhydroxysiloxy group, a methyldivinylsiloxy group, a trivinylsiloxy group, etc., and in particular, it is sealed with a siloxy group having at least one vinyl group. Those are suitable. These organopolysiloxanes may be used alone or in combination of two or more having different degrees of polymerization and molecular structure.
[(B)補強性シリカ]
 (B)成分の補強性シリカは、得られるシリコーンゴム組成物に対して優れた機械的特性を付与する成分として作用する。該補強性シリカは、沈降シリカ(湿式シリカ)でもヒュームドシリカ(乾式シリカ)でもよく、表面に多数のシラノール基(SiOH)が存在しているものである。本発明において、(B)成分の補強性シリカのBET法による比表面積は50m2/g以上であることが必要であり、好ましくは100~400m2/gである。この比表面積が50m2/g未満であると、(B)成分による補強効果が不十分となることがある。
[(B) Reinforcing silica]
The reinforcing silica of the component (B) acts as a component that imparts excellent mechanical properties to the obtained silicone rubber composition. The reinforcing silica may be precipitated silica (wet silica) or fumed silica (dry silica), and has a large number of silanol groups (SiOH) present on the surface. In the present invention, the specific surface area of the reinforcing silica of the component (B) by the BET method needs to be 50 m 2 / g or more, preferably 100 to 400 m 2 / g. If this specific surface area is less than 50 m 2 / g, the reinforcing effect of the component (B) may be insufficient.
 (B)成分の補強性シリカは、未処理の状態で使用しても、必要に応じて、オルガノポリシロキサン、オルガノポリシラザン、クロロシラン、アルコキシシラン等の有機ケイ素化合物で表面処理されたものを用いてもよいが、未処理のシリカを用いる方が、後述する(C)及び(D)成分との併用によって、該補強性シリカの分散性が良好になり、本発明の組成物をキーパッド用途に用いる際に打鍵耐久性能がより向上するため好ましい。これらの補強性シリカは、1種単独で用いても、2種以上を組み合わせて用いてもよい。 As the reinforcing silica of the component (B), even if it is used in an untreated state, if necessary, a silica that has been surface-treated with an organosilicon compound such as organopolysiloxane, organopolysilazane, chlorosilane, or alkoxysilane is used. However, when untreated silica is used, the dispersibility of the reinforcing silica becomes better when used in combination with the components (C) and (D) described later, and the composition of the present invention can be used as a keypad. It is preferable because the keystroke durability is further improved when used. These reinforcing silicas may be used alone or in combination of two or more.
 (B)成分の補強性シリカの配合量は、(A)成分のオルガノポリシロキサン100質量部に対して10~100質量部であり、好ましくは10~80質量部、より好ましくは20~70質量部である。この配合量が上記範囲を逸脱すると、得られるシリコーンゴム組成物の加工性が低下するだけでなく、該シリコーンゴム組成物を硬化して得られるシリコーンゴム硬化物の引張り強度や引き裂き強度等の機械的特性が不十分なものとなる。 The blending amount of the reinforcing silica of the component (B) is 10 to 100 parts by mass, preferably 10 to 80 parts by mass, and more preferably 20 to 70 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A). It is a department. If this blending amount deviates from the above range, not only the processability of the obtained silicone rubber composition is lowered, but also a machine such as tensile strength and tear strength of the silicone rubber cured product obtained by curing the silicone rubber composition. The target characteristics are insufficient.
[(C)アルケニル基含有オルガノシラザン及び/又はアルケニル基含有アルコキシシラン、及び塩酸]
 (C-1)成分のアルケニル基含有オルガノシラザン及び/又は(C-2)成分のアルケニル基含有アルコキシシラン、及び塩酸は、本発明のシリコーンゴム組成物において、補強性シリカの分散性向上剤(表面処理剤)として作用すると共に、硬化時にベースポリマーであるオルガノポリシロキサン中のアルケニル基と共にアルケニル基含有オルガノシラザン及び/又はアルケニル基含有アルコキシシラン中のアルケニル基が架橋することにより、オルガノポリシロキサンとシリカとの架橋点として作用する。塩酸は、本発明のシリコーンゴム組成物において、シリカの分散性向上剤として作用するものである。
[(C) Alkoxy group-containing organosilazane and / or alkenyl group-containing alkoxysilane, and hydrochloric acid]
The alkenyl group-containing organosilazane of the component (C-1) and / or the alkenyl group-containing alkoxysilane of the component (C-2) and hydrochloric acid are dispersibility improvers for reinforcing silica in the silicone rubber composition of the present invention. It acts as a surface treatment agent), and at the time of curing, the alkenyl groups in the organopolysiloxane which is the base polymer and the alkenyl groups in the alkenyl group-containing organosilazane and / or the alkenyl group-containing alkoxysilane are crosslinked to form the organopolysiloxane. It acts as a cross-linking point with silica. Hydrochloric acid acts as a dispersibility improver for silica in the silicone rubber composition of the present invention.
 (C-1)成分のアルケニル基含有オルガノシラザンとしては、特に制限されないが、1-ビニルペンタメチルジシラザン、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン、1,3-ジメチル-1,1,3,3-テトラビニルジシラザン、1,3-ジビニル-1,1,3,3-テトラビニルジシラザン等が例示されるが、1,3-ジビニル-1,1,3,3-テトラメチルジシラザンが好適である。 The alkenyl group-containing organosilazane of the component (C-1) is not particularly limited, but is 1-vinylpentamethyldisilazane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, 1,3. -Dimethyl-1,1,3,3-tetravinyldisilazane, 1,3-divinyl-1,1,3,3-tetravinyldisilazane and the like are exemplified, but 1,3-divinyl-1,1 , 3,3-Tetramethyldisilazane is suitable.
 (C-1)成分のアルケニル基含有オルガノシラザンの添加量は、単独添加する場合には、(A)成分のオルガノポリシロキサン100質量部に対して0.1~10質量部であり、好ましくは0.1~7質量部であり、より好ましくは0.1~5質量部である。添加量が0.1質量部より少ないと、得られるシリコーンゴム組成物の硬化物の動的疲労耐久性の向上効果が得られず、10質量部より多いと、得られるシリコーンゴム組成物の硬化物の硬度が高くなり過ぎ、また経済的にも好ましくない。 The amount of the alkenyl group-containing organosilazane of the component (C-1) added is 0.1 to 10 parts by mass, preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the organopolysiloxane of the component (A) when added alone. It is 0.1 to 7 parts by mass, more preferably 0.1 to 5 parts by mass. If the amount added is less than 0.1 parts by mass, the effect of improving the dynamic fatigue durability of the obtained cured product of the silicone rubber composition cannot be obtained, and if it is more than 10 parts by mass, the obtained cured silicone rubber composition is cured. The hardness of the object becomes too high, which is also economically unfavorable.
 (C-2)成分のアルケニル基含有アルコキシシランとしては、特に制限されないが、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ジビニルジメトキシシラン、ビニルトリス(メトキシエトキシ)シラン等が好適である。 The alkenyl group-containing alkoxysilane of the component (C-2) is not particularly limited, but vinyltriethoxysilane, vinyltrimethoxysilane, divinyldimethoxysilane, vinyltris (methoxyethoxy) silane and the like are preferable.
 (C-2)成分のアルケニル基含有アルコキシシランの添加量は、単独添加する場合には、(A)成分のオルガノポリシロキサン100質量部に対して0.1~10質量部であり、好ましくは0.1~7質量部であり、より好ましくは0.1~5質量部である。添加量が0.1質量部より少ないと、得られるシリコーンゴム組成物の硬化物の動的疲労耐久性の向上効果が得られず、10質量部より多いと、得られるシリコーンゴム組成物の硬化物の硬度が高くなり過ぎ、また経済的にも好ましくない。
 なお、上記の通り、(C-1)成分と(C-2)成分は共に同様な効果が期待されるので、(C-1)成分と(C-2)成分の両方配合する場合は、その合計の添加量は、(A)成分のオルガノポリシロキサン100質量部に対して0.1~10質量部、好ましくは0.1~7質量部、より好ましくは0.1~5質量部とすることができる。
The amount of the alkenyl group-containing alkoxysilane added as the component (C-2) is 0.1 to 10 parts by mass, preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the organopolysiloxane of the component (A) when added alone. It is 0.1 to 7 parts by mass, more preferably 0.1 to 5 parts by mass. If the amount added is less than 0.1 parts by mass, the effect of improving the dynamic fatigue durability of the obtained cured product of the silicone rubber composition cannot be obtained, and if it is more than 10 parts by mass, the obtained cured silicone rubber composition is cured. The hardness of the object becomes too high, which is also economically unfavorable.
As described above, both the (C-1) component and the (C-2) component are expected to have the same effect. Therefore, when both the (C-1) component and the (C-2) component are blended, the same effect is expected. The total amount added is 0.1 to 10 parts by mass, preferably 0.1 to 7 parts by mass, and more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A). can do.
 塩酸は、(C-1)成分及び/又は(C-2)成分と共に併用されるが、(C-1)成分とは併用しなくてもよい。
 塩酸の濃度としては、好ましくは0.05~5Nであり、より好ましくは0.05~2Nである。塩酸の濃度が0.05Nより薄いと、塩酸の添加量が増えてしまうため好ましくなく、逆に、塩酸の濃度が5Nより濃くなると、取扱いが危険であり、また、各成分の配合時に使用する装置が腐食するおそれがあるため好ましくない。
 なお、塩酸とは、通常、脱イオン水、蒸留水、純水等の水と共に調製される塩化水素水溶液のことを指す。
Hydrochloric acid is used in combination with the component (C-1) and / or the component (C-2), but may not be used in combination with the component (C-1).
The concentration of hydrochloric acid is preferably 0.05 to 5N, more preferably 0.05 to 2N. If the concentration of hydrochloric acid is lower than 0.05N, the amount of hydrochloric acid added increases, which is not preferable. On the contrary, if the concentration of hydrochloric acid is higher than 5N, handling is dangerous and it is used when blending each component. It is not preferable because it may corrode the device.
Note that hydrochloric acid usually refers to an aqueous hydrogen chloride solution prepared together with water such as deionized water, distilled water, and pure water.
 塩酸の添加量は、(A)成分のオルガノポリシロキサン100質量部に対して、塩酸中の塩化水素の量として0.0001~0.2質量部であり、好ましくは0.0001~0.1質量部である。塩酸の添加量が塩化水素の量として0.0001質量部より少ないと、動的疲労耐久性の向上効果が得られないことがある。また、塩酸の添加量を塩化水素の量として0.2質量部より多くしても、過剰の水を除去する必要が生じるため好ましくない。 The amount of hydrochloric acid added is 0.0001 to 0.2 parts by mass, preferably 0.0001 to 0.1, as the amount of hydrogen chloride in hydrochloric acid with respect to 100 parts by mass of the organopolysiloxane of the component (A). It is a mass part. If the amount of hydrochloric acid added is less than 0.0001 parts by mass as the amount of hydrogen chloride, the effect of improving dynamic fatigue durability may not be obtained. Further, even if the amount of hydrochloric acid added is more than 0.2 parts by mass as the amount of hydrogen chloride, it is not preferable because it becomes necessary to remove excess water.
[(D)脂肪酸エステル及び/又は脂肪族アルコールのエステル]
 (D)成分の脂肪酸エステル及び/又は脂肪族アルコールのエステルは、シリコーンゴム組成物の硬化物の動的疲労耐久性向上剤及び金型剥離性向上剤として作用する。
 脂肪酸エステルとしては、酪酸,カプロン酸,コナント酸,カプリル酸,ペラルゴン酸等の炭素数4~9の低級飽和脂肪酸、カプリン酸,ウンデカン酸,ラウリン酸,ミリスチル酸,パルミチン酸,ステアリン酸等の炭素数10~20の高級飽和脂肪酸、ミリストレイン酸,オレイン酸,リノール酸等の炭素数14~18の不飽和脂肪酸、リシノール酸等のOH基を有する炭素数18の脂肪酸等の各種脂肪酸由来のエステル化合物が例示される。
 これら各種脂肪酸と、特に低級アルコール(例えば、メタノールやエタノール等の炭素数1~6程度の低級アルコール)とのエステル化合物や、ソルビタンエステル,グリセリンエステル等の多価アルコールとのエステル化合物が例示される。
[(D) Fatty acid ester and / or aliphatic alcohol ester]
The fatty acid ester and / or the fatty alcohol ester of the component (D) acts as a dynamic fatigue durability improver and a mold peelability improver of the cured product of the silicone rubber composition.
Examples of the fatty acid ester include lower saturated fatty acids having 4 to 9 carbon atoms such as butyric acid, caproic acid, conantic acid, capric acid, and pelargonic acid, and carbons such as capric acid, undecanoic acid, lauric acid, myristyl acid, palmitic acid, and stearic acid. Esters derived from various fatty acids such as higher saturated fatty acids having several tens to 20s, unsaturated fatty acids having 14 to 18 carbon atoms such as myristoleic acid, oleic acid, and linoleic acid, and fatty acids having OH groups such as ricinolic acid and having 18 carbon atoms. Compounds are exemplified.
Examples thereof include ester compounds of these various fatty acids with lower alcohols (for example, lower alcohols having about 1 to 6 carbon atoms such as methanol and ethanol) and ester compounds with polyhydric alcohols such as sorbitan ester and glycerin ester. ..
 また、脂肪族アルコールのエステルとしては、カプリリルアルコール,カプリルアルコール,ラウリルアルコール,ミリスチルアルコール,ステアリルアルコール等の炭素数8~18の飽和アルコール、オレイルアルコール,リノレイルアルコール,リノレンアルコール等の炭素数18の不飽和アルコール等の各種脂肪族アルコール由来のエステル化合物が例示される。
 特に、これらの各種脂肪族アルコールとの、グルタル酸エステルや、スベリン酸エステルのような二塩基酸エステル、クエン酸エステル等の三塩基酸エステルなどが例示される。
Examples of the aliphatic alcohol ester include saturated alcohols having 8 to 18 carbon atoms such as caprylyl alcohols, capryl alcohols, lauryl alcohols, myristyl alcohols and stearyl alcohols, and oleyl alcohols, linoleil alcohols and linolene alcohols having 18 carbon atoms. Ester compounds derived from various aliphatic alcohols such as unsaturated alcohols of the above are exemplified.
In particular, glutaric acid esters, dibasic acid esters such as suberic acid esters, and tribasic acid esters such as citric acid esters with these various fatty alcohols are exemplified.
 これらの中でも、リシノール酸のグリセリンエステル又は炭素数1~20、好ましくは炭素数10~20の脂肪族アルコールのクエン酸エステルを採用することが好ましい。 Among these, it is preferable to use a glycerin ester of ricinoleic acid or a citric acid ester of an aliphatic alcohol having 1 to 20 carbon atoms, preferably 10 to 20 carbon atoms.
 (D)成分の配合量は、(A)成分のオルガノポリシロキサン100質量部に対して0.01~5質量部であり、好ましくは0.05~3質量部である。(D)成分の配合量が0.01質量部より少ないと、シリコーンゴム硬化物の金型剥離性が向上せず、5質量部より多いと、シリコーンゴム硬化物の変色、圧縮永久歪等の特性の悪化、或いは可塑戻りの悪化等が起こり、経済的にも好ましくない。 The blending amount of the component (D) is 0.01 to 5 parts by mass, preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A). If the amount of the component (D) is less than 0.01 parts by mass, the mold peelability of the cured silicone rubber product is not improved, and if it is more than 5 parts by mass, discoloration of the cured silicone rubber product, compression set, etc. It is economically unfavorable because the characteristics deteriorate or the plastic return deteriorates.
[(E)成分]
 (E)成分は、後述する(E-a)、(E-b)及び(E-c)成分からなる混合物の均一な加熱処理反応生成物である。
 (E-a)成分のオルガノポリシロキサンは、上記平均組成式(1)で表されるオルガノポリシロキサンのうち、特にR1がアルケニル基等の脂肪族不飽和結合を有する非置換又は置換の1価炭化水素基であるものを除き、実質的にジオルガノポリシロキサン単位の繰り返し(直鎖状構造)を主体とする常温で液状の直鎖状又は分岐状のオルガノポリシロキサンである。
 ここで、(E-a)成分の粘度は、25℃における粘度が10~10,000mPa・sであり、好ましくは50~1,000mPa・sである。粘度が10mPa・s未満の場合、高温でのシロキサン蒸発量が多くなり易く、質量変化が大きくなってしまうことがある。また、10,000mPa・sを超える場合、後述するセリウム化合物との混和が円滑に行われ難くなることがある。
 なお、粘度はJIS K 7117-1:1999に記載の回転粘度計により測定することができる。
[(E) component]
The component (E) is a uniform heat treatment reaction product of a mixture consisting of the components (Ea), (Eb) and (Ec) described later.
The organopolysiloxane of the component (EA) is one of the unsubstituted or substituted organopolysiloxanes represented by the above average composition formula (1), in which R 1 has an aliphatic unsaturated bond such as an alkenyl group. Except for those that are valent hydrocarbon groups, it is a linear or branched organopolysiloxane that is liquid at room temperature and is substantially composed of repeating diorganopolysiloxane units (linear structure).
Here, the viscosity of the component (Ea) is 10 to 10,000 mPa · s, preferably 50 to 1,000 mPa · s at 25 ° C. When the viscosity is less than 10 mPa · s, the amount of siloxane evaporated at a high temperature tends to increase, and the mass change may become large. Further, when it exceeds 10,000 mPa · s, it may be difficult to smoothly mix with the cerium compound described later.
The viscosity can be measured by the rotational viscometer described in JIS K 7117-1: 1999.
 (E-b)成分のセリウムのカルボン酸塩は、一般式(2)
   (R2COO)m1     (2)
(式中、R2は同一又は異なる一価炭化水素基、M1はセリウム又はセリウムを主成分とする希土類元素混合物であり、mは3~4の正数である。)
で表される。
 ここで、R2で表される同一又は異なる一価炭化水素基としては、具体的に、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基など、炭素原子数1~30、好ましくは炭素原子数1~20のアルキル基が例示される。また、M1で表されるセリウム又はセリウムを主成分とする希土類元素混合物のうち、特にセリウムを主成分とする希土類元素混合物としては、具体的に、セリウムの他、ランタン、プラセオジム、ネオジムなどの希土類元素を含む混合物が例示される。
 なお、「主成分」とは、希土類元素混合物中、通常50質量%以上、好ましくは60~99質量%、より好ましくは80~99質量%のセリウムを含むことを意味する。
 セリウムのカルボン酸塩としては、具体的に、2-エチルヘキサン酸、ナフテン酸、オレイン酸、ラウリン酸、ステアリン酸などのカルボン酸とセリウム又はセリウムを主成分とする希土類元素混合物との塩が例示される。
 なお、セリウムのカルボン酸塩は、その取扱いの容易さや後述する(E-c)成分のチタン化合物又はジルコニウム化合物との相溶性の面から、有機溶剤を併用した有機溶剤溶液として使用されることが好ましく、該有機溶剤としては、スタンダードソルベント、ミネラルスピリット、リグロイン、ターペン、石油エーテルなどの石油系溶剤、トルエン、キシレンなどの芳香族系溶剤が例示される。
 (E-b)成分の添加量は、該成分中のセリウム原子の質量換算として上記(E-a)成分100質量部に対して0.05~5質量部となる量、好ましくは0.1~3質量部となる量である。添加量が0.05質量部未満の場合、期待される高温高湿下の打鍵耐久性が得られないことがある。また、5質量部より多い場合、セリウム化合物が(E-a)成分中で不均一となり、期待される打鍵耐久性が得られないことがある。
The cerium carboxylate of the component (Eb) is represented by the general formula (2).
(R 2 COO) m M 1 (2)
(In the formula, R 2 is the same or different monovalent hydrocarbon group, M 1 is cerium or a mixture of rare earth elements containing cerium as a main component, and m is a positive number of 3 to 4.)
It is represented by.
Here, as the same or different monovalent hydrocarbon group represented by R 2 , specifically, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group and the like have 1 to 30 carbon atoms. Preferably, an alkyl group having 1 to 20 carbon atoms is exemplified. Further, among the cerium represented by M 1 or the rare earth element mixture containing cerium as the main component, the rare earth element mixture containing cerium as the main component specifically includes cerium, lanthanum, praseodymium, neodymium and the like. A mixture containing rare earth elements is exemplified.
The "main component" means that the mixture of rare earth elements usually contains 50% by mass or more, preferably 60 to 99% by mass, and more preferably 80 to 99% by mass of cerium.
Specific examples of the cerium carboxylic acid salt include salts of carboxylic acids such as 2-ethylhexanoic acid, naphthenic acid, oleic acid, lauric acid, and stearic acid and a mixture of cerium or a rare earth element containing cerium as a main component. Will be done.
The carboxylate of cerium may be used as an organic solvent solution in combination with an organic solvent because of its ease of handling and compatibility with the titanium compound or zirconium compound of the component (Ec) described later. Preferably, examples of the organic solvent include petroleum-based solvents such as standard solvent, mineral spirit, ligroin, tarpen, and petroleum ether, and aromatic solvents such as toluene and xylene.
The amount of the component (Eb) added is 0.05 to 5 parts by mass, preferably 0.1, based on 100 parts by mass of the component (Ea) in terms of mass of cerium atoms in the component. It is an amount of up to 3 parts by mass. If the amount added is less than 0.05 parts by mass, the expected keying durability under high temperature and high humidity may not be obtained. On the other hand, if the amount is more than 5 parts by mass, the cerium compound may become non-uniform in the component (Ea), and the expected keystroke durability may not be obtained.
 (E-c)成分のチタン化合物又はジルコニウム化合物は、一般式(3)
   (R3O)42     (3)
(式中、R3は同一又は異なる一価炭化水素基、M2はチタン又はジルコニウムである。)
で表される。
 ここで、R3で表される同一又は異なる一価炭化水素基としては、好ましくはイソプロピル基、n-ブチル基、ステアリル基、オクチル基などの炭素原子数1~30、より好ましくは炭素原子数1~20のアルキル基である。かかる化合物には、テトラアルコキシチタン、テトラアルコキシジルコニウムが例示されるが、その部分加水分解縮合物であってもよい。
 (E-c)成分の添加量は、該成分中のチタン又はジルコニウム原子の質量換算として上記(E-b)成分中のセリウム原子の質量に対して0.01~5倍となる量であり、好ましくは0.05~3倍となる量である。添加量が0.01倍未満の場合、(E-b)成分であるセリウムのカルボン酸塩の(E-a)成分であるオルガノポリシロキサンに対する均一な導入が困難になることがあり、5倍より多い場合、打鍵耐久性が低下することがある。
The titanium compound or zirconium compound of the component (Ec) is represented by the general formula (3).
(R 3 O) 4 M 2 (3)
(In the formula, R 3 is the same or different monovalent hydrocarbon group, and M 2 is titanium or zirconium.)
It is represented by.
Here, as the same or different monohydric hydrocarbon group represented by R 3 , the number of carbon atoms such as isopropyl group, n-butyl group, stearyl group and octyl group is preferably 1 to 30, and more preferably the number of carbon atoms. It is an alkyl group of 1 to 20. Examples of such a compound include tetraalkoxytitanium and tetraalkoxyzirconium, but the compound may be a partially hydrolyzed condensate thereof.
The amount of the component (Ec) added is 0.01 to 5 times the mass of the cerium atom in the component (Eb) in terms of the mass of the titanium or zirconium atom in the component. The amount is preferably 0.05 to 3 times. If the amount added is less than 0.01 times, it may be difficult to uniformly introduce the carboxylic acid salt of cerium, which is the component (Eb), into the organopolysiloxane, which is the component (Ea), which is 5 times. If it is more than that, the keystroke durability may decrease.
 (E)成分は、(E-a)、(E-b)及び(E-c)成分からなる混合物の均一な加熱処理反応生成物である。
 この混合物は、(E-a)、(E-b)及び(E-c)成分を混合後、150℃以上の温度で熱処理することによって得ることができる。加熱温度が150℃未満では均一な組成を得ることが難しく、310℃を超えると(E-a)成分の熱分解速度が大きくなるので、好ましくは150~310℃、より好ましくは200~305℃、更に好ましくは250~300℃で熱処理するのが望ましい。
 (E-a)、(E-b)及び(E-c)成分の混合には、これら3種の成分を同時に混合してもよいが、(E-b)成分のセリウムのカルボン酸塩が塊状となり易いので、(E-b)成分と(E-c)成分を予め混合し、均一な組成物とした後、(E-a)成分を混合することが好ましい。
 (E)成分の添加量は、(A)~(D)成分の合計100質量部に対して、0.01~5質量部、好ましくは0.05~2質量部である。(E)成分の添加量が0.01質量部未満の場合、期待される高温高湿下の打鍵耐久性が得られないことがある。また、5質量部を超えた場合も、期待される高温高湿下の打鍵耐久性が得られないことがある。
The component (E) is a uniform heat treatment reaction product of a mixture consisting of the components (Ea), (Eb) and (Ec).
This mixture can be obtained by mixing the components (Ea), (Eb) and (Ec) and then heat-treating at a temperature of 150 ° C. or higher. If the heating temperature is less than 150 ° C, it is difficult to obtain a uniform composition, and if it exceeds 310 ° C, the thermal decomposition rate of the component (Ea) increases, so that it is preferably 150 to 310 ° C, more preferably 200 to 305 ° C. More preferably, the heat treatment is performed at 250 to 300 ° C.
In the mixing of the components (Ea), (Eb) and (Ec), these three components may be mixed at the same time, but the cerium carboxylate of the component (Eb) is used. Since it tends to be agglomerated, it is preferable to mix the component (Eb) and the component (Ec) in advance to obtain a uniform composition, and then mix the component (Ea).
The amount of the component (E) added is 0.01 to 5 parts by mass, preferably 0.05 to 2 parts by mass with respect to 100 parts by mass in total of the components (A) to (D). If the amount of the component (E) added is less than 0.01 parts by mass, the expected keying durability under high temperature and high humidity may not be obtained. Further, even if it exceeds 5 parts by mass, the expected keying durability under high temperature and high humidity may not be obtained.
[(F)硬化剤]
 (F)成分の硬化剤は、上記(A)成分を硬化させ得るものであれば特に制限はなく、例えば、下記の(F-1)付加反応硬化剤及び/又は(F-2)有機過酸化物硬化剤が挙げられる。即ち、これらの硬化剤は、本発明のシリコーンゴム組成物において、(A)成分のオルガノポリシロキサンと反応して架橋構造を形成し、硬化物を与えるものである。
[(F) Hardener]
The curing agent for the component (F) is not particularly limited as long as it can cure the component (A) described above. For example, the following (F-1) addition reaction curing agent and / or (F-2) organic peroxide can be used. Examples include oxide curing agents. That is, in the silicone rubber composition of the present invention, these curing agents react with the organopolysiloxane of the component (A) to form a crosslinked structure and give a cured product.
(F-1)付加反応硬化剤
 (F-1)成分の付加反応硬化剤は、オルガノハイドロジェンポリシロキサンとヒドロシリル化触媒とを組み合わせて用いることができる。
(F-1) Addition reaction curing agent The addition reaction curing agent of the component (F-1) can be used in combination with an organohydrogenpolysiloxane and a hydrosilylation catalyst.
 オルガノハイドロジェンポリシロキサンは、一分子中に2個以上、好ましくは3個以上、より好ましくは3~200個、更に好ましくは4~100個程度のSiH基を含有すれば、直鎖状、環状、分枝状のいずれであってもよく、例えば、下記平均組成式(4)で表されるオルガノハイドロジェンポリシロキサンを用いることができる。 The organohydrogenpolysiloxane is linear or cyclic if it contains 2 or more, preferably 3 or more, more preferably 3 to 200, and further preferably about 4 to 100 SiH groups in one molecule. , Branched shape, for example, organohydrogenpolysiloxane represented by the following average composition formula (4) can be used.
   R4 pqSiO(4-p-q)/2     (4)
 上記平均組成式(4)中、R4は非置換又は置換の一価炭化水素基を示し、同一であっても異なっていてもよく、特に、脂肪族不飽和結合を除いたものが好ましい。R4は、通常、炭素数1~12、特に炭素数1~8のものが好ましく、具体的には、メチル基,エチル基,プロピル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基やトリル基等のアリール基、ベンジル基,2-フェニルエチル基,2-フェニルプロピル基等のアラルキル基、及びこれらの基の水素原子の一部又は全部をハロゲン原子等で置換した基、例えば、3,3,3-トリフロロプロピル基等が挙げられる。なお、上記平均組成式(4)中、pは0≦p<3、好ましくは1≦p≦2.2、qは0<q≦3、好ましくは0.002≦q≦1、p+qは0<p+q≦3、好ましくは1.002≦p+q≦3を満たす正数である。
R 4 p H q SiO (4-pq) / 2 (4)
In the above average composition formula (4), R 4 represents an unsubstituted or substituted monovalent hydrocarbon group, which may be the same or different, and in particular, the one excluding the aliphatic unsaturated bond is preferable. R 4 is usually preferably one having 1 to 12 carbon atoms, particularly preferably 1 to 8 carbon atoms, and specifically, an alkyl group such as a methyl group, an ethyl group or a propyl group, a cycloalkyl group such as a cyclohexyl group, or phenyl. Aryl groups such as groups and trill groups, aralkyl groups such as benzyl group, 2-phenylethyl group and 2-phenylpropyl group, and groups in which some or all of the hydrogen atoms of these groups are substituted with halogen atoms or the like, for example. , 3,3,3-trifluoropropyl group and the like. In the average composition formula (4), p is 0 ≦ p <3, preferably 1 ≦ p ≦ 2.2, q is 0 <q ≦ 3, preferably 0.002 ≦ q ≦ 1, and p + q is 0. It is a positive number that satisfies <p + q ≦ 3, preferably 1.002 ≦ p + q ≦ 3.
 オルガノハイドロジェンポリシロキサンは、SiH基を一分子中に2個以上、好ましくは3個以上有するが、これは分子鎖末端にあっても、分子鎖の途中にあっても、その両方にあってもよい。また、このオルガノハイドロジェンポリシロキサンとしては、25℃における粘度が0.5~10,000mPa・s、特に1~300mPa・sであることが好ましい。 Organohydrogenpolysiloxane has two or more, preferably three or more SiH groups in one molecule, both at the end of the molecular chain and in the middle of the molecular chain. May be good. Further, the organohydrogenpolysiloxane preferably has a viscosity at 25 ° C. of 0.5 to 10,000 mPa · s, particularly preferably 1 to 300 mPa · s.
 このようなオルガノハイドロジェンポリシロキサンとして、具体的には、例えば、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、トリス(ハイドロジェンジメチルシロキシ)メチルシラン、トリス(ハイドロジェンジメチルシロキシ)フェニルシラン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン・ジメチルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・ジフェニルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・メチルフェニルシロキサン共重合体、(CH32HSiO1/2単位と(CH33SiO1/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位とからなる共重合体、(CH32HSiO1/2単位とSiO4/2単位と(C653SiO1/2単位とからなる共重合体などや、上記例示化合物において、メチル基の一部又は全部を他のアルキル基や、フェニル基等に置換したものなどが挙げられる他、下記構造式の化合物を例示することができる。 Specific examples of such organohydrogenpolysiloxane include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, and tris (hydrogendimethylsiloxy). ) Methylsilane, Tris (hydrogendimethylsiloxy) phenylsilane, methylhydrogencyclopolysiloxane, methylhydrogensiloxane / dimethylsiloxane cyclic copolymer, both-terminal trimethylsiloxy group blockage methylhydrogenpolysiloxane, both-terminal trimethylsiloxy group blockade Dimethylsiloxane / methylhydrogensiloxane copolymer, both-terminal dimethylhydrogensiloxy group-blocking dimethylpolysiloxane, both-terminal dimethylhydrogensiloxy group-blocking dimethylsiloxane / methylhydrogensiloxane copolymer, both-terminal trimethylsiloxy group-blocking methylhydro Gensiloxane / diphenylsiloxane copolymer, both-terminal trimethylsiloxy group-blocked methylhydrogensiloxane / diphenylsiloxane / dimethylsiloxane copolymer, both-terminal trimethylsiloxy group-blocked methylhydrogensiloxane / methylphenylsiloxane / dimethylsiloxane copolymer, Both-terminal dimethylhydrogensiloxy group-blocked methylhydrogensiloxane / dimethylsiloxane / diphenylsiloxane copolymer, both-terminal dimethylhydrogensiloxy group-blocked methylhydrogensiloxane / dimethylsiloxane / methylphenylsiloxane copolymer, (CH 3 ) 2 HSiO 1/2 unit and (CH 3 ) 3 Siloxane 1/2 unit and SiO 4/2 unit, (CH 3 ) 2 HSiO 1/2 unit and SiO 4/2 unit Combined, a copolymer consisting of (CH 3 ) 2 HSiO 1/2 units, SiO 4/2 units and (C 6 H 5 ) 3 SiO 1/2 units, etc., and some of the methyl groups in the above-exemplified compounds. Alternatively, examples thereof include those in which all of them are replaced with other alkyl groups, phenyl groups, etc., and compounds having the following structural formulas can be exemplified.
Figure JPOXMLDOC01-appb-C000001
(式中、kは2~10の整数、s及びtは0~10の整数である。)
Figure JPOXMLDOC01-appb-C000001
(In the formula, k is an integer of 2 to 10, and s and t are integers of 0 to 10.)
 オルガノハイドロジェンポリシロキサンの配合量は、(A)成分のオルガノポリシロキサン100質量部に対して0.1~40質量部が好ましく、より好ましくは0.3~20質量部である。 The blending amount of the organohydrogenpolysiloxane is preferably 0.1 to 40 parts by mass, more preferably 0.3 to 20 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A).
 また、オルガノハイドロジェンポリシロキサンは、(A)成分及び(C)成分中のケイ素原子に結合したアルケニル基やジエン基等の脂肪族不飽和基に対するオルガノハイドロジェンポリシロキサン中のケイ素原子に結合した水素原子(即ち、SiH基)のモル比が好ましくは0.5~10モル/モル、より好ましくは0.7~5モル/モルとなるような量で配合することが望ましい。0.5モル/モル未満であると架橋が十分でなく、十分な機械的強度が得られないことがあり、また10モル/モルを超えると硬化後の物理特性が低下し、特に耐熱性と圧縮永久歪性が悪くなることがある。 Further, the organohydrogenpolysiloxane was bonded to a silicon atom in the organohydrogenpolysiloxane for an aliphatic unsaturated group such as an alkenyl group or a diene group bonded to a silicon atom in the component (A) and the component (C). It is desirable to mix in an amount such that the molar ratio of hydrogen atoms (that is, SiH groups) is preferably 0.5 to 10 mol / mol, more preferably 0.7 to 5 mol / mol. If it is less than 0.5 mol / mol, cross-linking may not be sufficient and sufficient mechanical strength may not be obtained, and if it exceeds 10 mol / mol, the physical characteristics after curing deteriorate, and particularly heat resistance. The compression set may deteriorate.
 ヒドロシリル化触媒は、(A)成分及び(C)成分中のケイ素原子に結合したアルケニル基とオルガノハイドロジェンポリシロキサン中のケイ素原子結合水素原子(SiH基)とを付加反応させる触媒である。
 ヒドロシリル化触媒としては、白金族金属系触媒が挙げられ、白金族の金属単体とその化合物があり、付加反応硬化型シリコーンゴム組成物の触媒として公知のものが使用できる。例えば、シリカ、アルミナ又はシリカゲルのような担体に吸着させた微粒子状白金金属、塩化第二白金、塩化白金酸、塩化白金酸6水塩のアルコール溶液、パラジウム触媒、ロジウム触媒等が挙げられるが、白金又は白金化合物が好ましい。
The hydrosilylation catalyst is a catalyst in which an alkenyl group bonded to a silicon atom in the components (A) and (C) is subjected to an addition reaction with a silicon atom-bonded hydrogen atom (SiH group) in the organohydrogenpolysiloxane.
Examples of the hydrosilylation catalyst include platinum group metal-based catalysts, which include platinum group metal alone and compounds thereof, and known catalysts for addition reaction curable silicone rubber compositions can be used. Examples thereof include fine particle platinum metal adsorbed on a carrier such as silica gel, alumina or silica gel, secondary platinum chloride, platinum chloride acid, alcohol solution of hexahydrate chloride platinum acid, palladium catalyst, rhodium catalyst and the like. Platinum or platinum compounds are preferred.
 ヒドロシリル化触媒の添加量は、付加反応を促進できればよく、通常、白金系金属量に質量換算して、(A)成分のオルガノポリシロキサンに対して1質量ppm~1質量%の範囲で使用されるが、10~500質量ppmの範囲が好ましい。添加量が1質量ppm未満であると、付加反応が十分促進されず、硬化が不十分になることがある、一方、添加量が1質量%を超えると、これより多く加えても反応性に対する影響が少なくなり、不経済となることがある。 The amount of the hydrosilylation catalyst added may be such that the addition reaction can be promoted, and is usually used in the range of 1% by mass to 1% by mass with respect to the organopolysiloxane of the component (A) in terms of mass in terms of the amount of platinum-based metal. However, the range of 10 to 500 mass ppm is preferable. If the addition amount is less than 1% by mass, the addition reaction may not be sufficiently promoted and curing may be insufficient, while if the addition amount exceeds 1% by mass, the reactivity may be increased even if a larger amount is added. It has less impact and can be uneconomical.
 (F-1)成分の付加反応硬化剤には、必要に応じて、アセチレン化合物等のヒドロシリル化反応制御剤を添加してもよい。 A hydrosilylation reaction control agent such as an acetylene compound may be added to the addition reaction curing agent of the component (F-1), if necessary.
(F-2)有機過酸化物硬化剤
 (F-2)成分の有機過酸化物硬化剤としては、例えば、ベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、p-メチルベンゾイルパーオキサイド、o-メチルベンゾイルパーオキサイド、2,4-ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキサイド、t-ブチルパーベンゾエート、1,6-ヘキサンジオール-ビス-t-ブチルパーオキシカーボネート等が挙げられる。
(F-2) Organic Peroxide Hardener Examples of the organic peroxide hardener as a component of (F-2) include benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, p-methylbenzoyl peroxide, and o. -Methylbenzoyl peroxide, 2,4-dicumyl peroxide, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, di-t-butyl peroxide, t-butylperbenzoate, 1 , 6-Hexanediol-bis-t-butylperoxycarbonate and the like.
 有機過酸化物硬化剤の添加量は、(A)成分のオルガノポリシロキサン100質量部に対して0.1~10質量部、特に0.2~5質量部が好ましい。配合量が0.1質量部より少ないと、シリコーンゴム組成物の硬化が不十分となることがあり、逆に、配合量が10質量部より多いと、有機過酸化物の分解残渣によりシリコーンゴム硬化物が黄変することがある。 The amount of the organic peroxide curing agent added is preferably 0.1 to 10 parts by mass, particularly 0.2 to 5 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A). If the blending amount is less than 0.1 parts by mass, the curing of the silicone rubber composition may be insufficient, and conversely, if the blending amount is more than 10 parts by mass, the decomposition residue of the organic peroxide causes the silicone rubber. The cured product may turn yellow.
 なお、(A)成分に対して、(F-1)成分と(F-2)成分とを、それぞれ上記配合量の範囲内で組み合わせて配合した、付加反応硬化と有機過酸化物硬化とを併用した共加硫型のシリコーンゴム組成物とすることもできる。 In addition, addition reaction curing and organic peroxide curing in which the component (F-1) and the component (F-2) are combined and blended within the above-mentioned blending amount with respect to the component (A). It can also be used as a co-vulcanized type silicone rubber composition in combination.
[その他の任意成分]
 本発明のシリコーンゴム組成物には、上述した成分に加え、必要に応じて、石英粉末、結晶性シリカ、珪藻土等の非補強性シリカ、炭酸カルシウム、アセチレンブラック、ファーネスブラック、チャンネルブラック等のカーボンブラック、着色剤、ベンガラ、酸化セリウム等の耐熱性向上剤、白金、酸化チタン、トリアゾール化合物等の難燃性向上剤、受酸剤、アルミナ、窒化ホウ素等の熱伝導率向上剤、離型剤、分散剤として両末端にシラノール基を有するジメチルポリシロキサン等を添加してもよい。
[Other optional ingredients]
In addition to the above-mentioned components, the silicone rubber composition of the present invention contains, if necessary, non-reinforcing silica such as quartz powder, crystalline silica, and diatomaceous earth, and carbon such as calcium carbonate, acetylene black, furnace black, and channel black. Heat resistance improver such as black, colorant, red iron oxide, cerium oxide, flame retardant improver such as platinum, titanium oxide, triazole compound, thermal conductivity improver such as acid receiver, alumina, boron nitride, mold release agent , Dimethylpolysiloxane having silanol groups at both ends may be added as a dispersant.
<キーパッド作製用シリコーンゴム組成物の調製及び成形等>
 本発明のキーパッド作製用シリコーンゴム組成物は、上記の各成分を、二本ロールミル、バンバリーミキサー、ダウミキサー(ニーダー)等の混合装置を用いて均一に混合することにより得ることができるが、(A)、(B)、(C)、(D)、(E)成分(及びその他の任意成分)を配合し混合した後、(F)成分を配合することが望ましい。
<Preparation and molding of silicone rubber composition for making keypads>
The silicone rubber composition for producing a keypad of the present invention can be obtained by uniformly mixing each of the above components using a mixing device such as a two-roll mill, a Banbury mixer, or a dow mixer (kneader). It is desirable that the components (A), (B), (C), (D), (E) (and other optional components) are blended and mixed, and then the component (F) is blended.
 本発明のシリコーンゴム組成物は、キーパッド用として用いられる。かかるキーパッドを形成するために、上記シリコーンゴム組成物は、加熱硬化と同時に成形することにより、ゴム状の弾性体(シリコーンゴム硬化物)からなる成形体を得ることができる。 The silicone rubber composition of the present invention is used for a keypad. In order to form such a key pad, the silicone rubber composition can be molded at the same time as heat curing to obtain a molded product made of a rubber-like elastic body (silicone rubber cured product).
 シリコーンゴム組成物を硬化させる方法については、特に制限はないが、上述した硬化剤の分解及びシリコーンゴム組成物の加硫に十分な熱をかける方法であればよい。硬化の温度条件については、硬化方法にも依るが、通常80~400℃である。また、その成形方法については、特に制限はなく、例えば、押し出し成形による連続加硫、プレス成形(加圧成形)、インジェクション成形等の成形方法を採用することができる。更に、必要に応じて、150~250℃で1~10時間程度で二次加硫してもよい。 The method for curing the silicone rubber composition is not particularly limited, but any method may be used as long as sufficient heat is applied to the above-mentioned decomposition of the curing agent and vulcanization of the silicone rubber composition. The temperature condition for curing depends on the curing method, but is usually 80 to 400 ° C. The molding method is not particularly limited, and for example, a molding method such as continuous vulcanization by extrusion molding, press molding (pressure molding), or injection molding can be adopted. Further, if necessary, secondary vulcanization may be carried out at 150 to 250 ° C. for about 1 to 10 hours.
 以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は以下の実施例に制限されるものではない。粘度はJIS K 7117-1:1999に記載の回転粘度計により測定した25℃における値である。物性特性測定方法、動的疲労耐久性試験方法について下記に示す。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. The viscosity is a value at 25 ° C. measured by a rotational viscometer described in JIS K 7117-1: 1999. The method for measuring physical characteristics and the method for testing dynamic fatigue durability are shown below.
物性特性測定方法
 シリコーンゴム組成物を硬化させ、JIS K 6249:2003に準じて、硬さ(デュロメータA)及び引張り強さを測定した。
Method for measuring physical characteristics The silicone rubber composition was cured, and the hardness (durometer A) and tensile strength were measured according to JIS K 6249: 2003.
動的疲労耐久性試験方法
 動的疲労耐久性は、以下の方法により測定した。
[打鍵試験方法]
 シリコーンゴム組成物を、金型を用いてプレス成型し、図1に示される形状の成型キーを調製し、この成型キーを固定し、上方より1,200gの荷重をかけ、毎秒3回の速度で打鍵した。23℃50%RHの条件下と85℃85%RHの条件下で打鍵した。
〔成型キーの荷重測定方法〕
 荷重測定器(アイコーエンジニアリング(株)製MODEL-1305-DS)を用いてキーの荷重を測定した。キーを押し、変位をかけると、通常、図2で示すクリックパターンが得られる。クリックパターンのF1を、ピーク荷重として測定した。
〔成型キーの打鍵疲労耐久性の評価方法〕
 上記打鍵試験方法によって、20万回打鍵前後のピーク荷重変化を、下記式で求めた。
 ピーク荷重変化(%)
   =[打鍵試験前F1値-打鍵試験後F1値]/打鍵試験前F1値
    ×100
Dynamic Fatigue Durability Test Method Dynamic fatigue durability was measured by the following method.
[Keystroke test method]
The silicone rubber composition is press-molded using a mold to prepare a molding key having the shape shown in FIG. 1, the molding key is fixed, a load of 1,200 g is applied from above, and a speed of 3 times per second is applied. I hit the key with. Keystrokes were made under the conditions of 23 ° C. and 50% RH and 85 ° C. and 85% RH.
[Molding key load measurement method]
The load of the key was measured using a load measuring device (MODEL-1305-DS manufactured by Aiko Engineering Co., Ltd.). When the key is pressed and the displacement is applied, the click pattern shown in FIG. 2 is usually obtained. The click pattern F1 was measured as a peak load.
[Evaluation method of keystroke fatigue durability of molded keys]
By the above keystroke test method, the peak load change before and after 200,000 keystrokes was calculated by the following formula.
Peak load change (%)
= [F1 value before keystroke test-F1 value after keystroke test] / F1 value before keystroke test x 100
  [実施例1]
 粘度が100mPa・sの両末端トリメチルシロキシ基封鎖ジメチルポリシロキサン100質量部に、セリウムを主成分とする希土類元素混合物の2-エチルヘキサン酸塩のターペン溶液(希土類元素含有量6質量%)10質量部(セリウム量として0.55質量部)とテトラ-n-ブチルチタネート2.1質量部(チタン質量が前記2-エチルヘキサン酸塩中のセリウム質量の0.3倍)を予め混合したものを十分に撹拌しながら添加したところ、黄白色の分散液が得られた。これに窒素ガスを少量流通させながら、加熱してターペンを流出させ、次いで300℃で1時間加熱したところ、濃赤褐色でほぼ透明な組成物1が得られた。
 主鎖を構成するジオルガノシロキサン単位としてジメチルシロキサン単位99.850モル%とメチルビニルシロキサン単位0.125モル%、分子鎖末端基としてジメチルビニルシロキシ基0.025モル%を含有する平均重合度が約6,000である直鎖状オルガノポリシロキサン(生ゴム)60質量部、主鎖を構成するジオルガノシロキサン単位としてジメチルシロキサン単位99.475モル%とメチルビニルシロキサン単位0.50モル%、分子鎖末端基としてジメチルビニルシロキシ基0.025モル%を含有する平均重合度が約6,000である直鎖状オルガノポリシロキサン(生ゴム)40質量部、BET比表面積300m2/gのヒュームドシリカ(商品名「アエロジル300」日本アエロジル(株)製)32質量部、分散剤として両末端シラノール基を有し、平均重合度15、25℃における粘度が30mPa・sであるジメチルポリシロキサン6質量部、ビニルトリメトキシシラン1質量部、1N塩酸0.1質量部をニーダーにて混練りし、170℃にて2時間加熱処理して「コンパウンド1」を調製した。該「コンパウンド1」100質量部に対し、炭素数18の脂肪族アルコールのクエン酸エステル(花王(株)製の「カオーワックス220」)を0.4質量部、組成物1を0.1質量部、硬化剤として2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン0.4質量部を添加し、均一に混合した後、165℃、70kgf/cm2の条件で10分間プレスキュアーを行い、次いで200℃で4時間ポストキュアーを行い、試験用シートを作製した。このシートの物性特性及び動的疲労耐久性試験の測定結果を表1に示す。
[Example 1]
A terpenate solution of 2-ethylhexanoate (rare earth element content 6% by mass) of a mixture of rare earth elements containing cerium as the main component in 100 parts by mass of dimethylpolysiloxane with both ends of trimethylsiloxy group having a viscosity of 100 mPa · s (rare earth element content 6% by mass) 10% by mass A mixture of parts (0.55 parts by mass of cerium) and 2.1 parts by mass of tetra-n-butyl titanate (titanium mass is 0.3 times the mass of cerium in the 2-ethylhexanate) is prepared in advance. When the mixture was added with sufficient stirring, a yellowish white dispersion was obtained. A small amount of nitrogen gas was circulated through the mixture to allow the turpen to flow out, and then the mixture was heated at 300 ° C. for 1 hour to obtain a dark reddish brown, almost transparent composition 1.
The average degree of polymerization is 99.850 mol% of dimethylsiloxane unit and 0.125 mol% of methylvinylsiloxane unit as the diorganosiloxane unit constituting the main chain, and 0.025 mol% of dimethylvinylsiloxy group as the terminal group of the molecular chain. 60 parts by mass of linear organopolysiloxane (raw rubber), which is about 6,000, dimethylsiloxane unit 99.475 mol% and methylvinylsiloxane unit 0.50 mol% as diorganosiloxane units constituting the main chain, molecular chain Fumed silica (raw rubber) containing 0.025 mol% of dimethylvinylsiloxy group as a terminal group and having an average degree of polymerization of about 6,000, having 40 parts by mass of linear organopolysiloxane (raw rubber) and a BET specific surface area of 300 m 2 / g. Product name "Aerozil 300" manufactured by Nippon Aerozil Co., Ltd. 32 parts by mass, 6 parts by mass of dimethylpolysiloxane having both-terminal silanol groups as a dispersant and a viscosity of 30 mPa · s at an average degree of polymerization of 15 and 25 ° C. 1 part by mass of vinyltrimethoxysilane and 0.1 part by mass of 1N hydrochloric acid were kneaded with a kneader and heat-treated at 170 ° C. for 2 hours to prepare "Compound 1". For 100 parts by mass of the "compound 1", 0.4 parts by mass of a citrate ester of an aliphatic alcohol having 18 carbon atoms ("Kaowax 220" manufactured by Kao Corporation) and 0.1 parts by mass of composition 1. Add 0.4 parts by mass of 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane as a curing agent, mix uniformly, and then 10 at 165 ° C. and 70 kgf / cm 2. Pre-cure was performed for 1 minute, and then post-cure was performed at 200 ° C. for 4 hours to prepare a test sheet. Table 1 shows the physical characteristics of this sheet and the measurement results of the dynamic fatigue durability test.
  [実施例2]
 本発明の(E)成分に相当する組成物1の添加量を0.5質量部とした以外は、実施例1と同様の方法により製造した。その物性特性及び動的疲労耐久性試験の測定結果を表1に示す。
[Example 2]
It was produced by the same method as in Example 1 except that the amount of the composition 1 corresponding to the component (E) of the present invention was 0.5 parts by mass. Table 1 shows the physical characteristics and the measurement results of the dynamic fatigue durability test.
  [実施例3]
 本発明の(D)成分に相当する炭素数18の脂肪族アルコールのクエン酸エステルではなく、リシノール酸のグリセリンエステル(花王(株)製の「カオーワックス85P」)とした以外は、実施例1と同様の方法により製造した。その物性特性及び動的疲労耐久性試験の測定結果を表1に示す。
[Example 3]
Example 1 except that the glycerin ester of ricinoleic acid (“Kaowax 85P” manufactured by Kao Corporation) was used instead of the citric acid ester of the fatty alcohol having 18 carbon atoms corresponding to the component (D) of the present invention. Manufactured by the same method as above. Table 1 shows the physical characteristics and the measurement results of the dynamic fatigue durability test.
  [実施例4]
 硬化剤として、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサンではなく、側鎖にSiH基を有するメチルハイドロジェンポリシロキサン(重合度38、SiH基が0.0074mol/gの両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体)0.8質量部、反応制御剤としてエチニルシクロヘキサノール0.05質量部、白金触媒(Pt濃度1質量%)0.1質量部を添加し、均一に混合した後、120℃、70kgf/cm2の条件で10分間プレスキュアーを行い、次いで200℃で4時間ポストキュアーを行い、試験用シートを作製した。物性特性及び動的疲労耐久性試験の測定結果を表1に示す。
[Example 4]
As a curing agent, not 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, but methylhydrogenpolysiloxane having a SiH group in the side chain (polymerization degree 38, SiH group 0.0074 mol / mol / 0.8 parts by mass of both-terminal trimethylsiloxy group-blocking dimethylsiloxane / methylhydrogensiloxane copolymer), 0.05 parts by mass of ethynylcyclohexanol as a reaction control agent, 0.1 mass% of platinum catalyst (Pt concentration 1% by mass) After adding parts by mass and mixing uniformly, precure was performed at 120 ° C. and 70 kgf / cm 2 for 10 minutes, and then post-cure was performed at 200 ° C. for 4 hours to prepare a test sheet. Table 1 shows the physical characteristics and the measurement results of the dynamic fatigue durability test.
  [実施例5]
 ビニルトリメトキシシラン1質量部、1N塩酸0.1質量部ではなく、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン3質量部にした以外は、実施例1と同様の方法により製造した。その物性特性及び動的疲労耐久性試験の測定結果を表1に示す。
[Example 5]
Same as in Example 1 except that 1,3-divinyl-1,1,3,3-tetramethyldisilazane was used instead of 1 part by mass of vinyltrimethoxysilane and 0.1 part by mass of 1N hydrochloric acid. Manufactured by the method. Table 1 shows the physical characteristics and the measurement results of the dynamic fatigue durability test.
  [比較例1]
 本発明の(E)成分に相当する組成物1を添加しない以外は、実施例1と同様の方法により製造した。物性特性及び動的疲労耐久性試験の測定結果を表2に示す。
[Comparative Example 1]
It was produced by the same method as in Example 1 except that the composition 1 corresponding to the component (E) of the present invention was not added. Table 2 shows the physical characteristics and the measurement results of the dynamic fatigue durability test.
  [比較例2]
 本発明の(C)成分に相当するビニルトリメトキシシランを添加しない以外は、実施例1と同様の方法により製造した。物性特性及び動的疲労耐久性試験の測定結果を表2に示す。
[Comparative Example 2]
It was produced by the same method as in Example 1 except that vinyltrimethoxysilane corresponding to the component (C) of the present invention was not added. Table 2 shows the physical characteristics and the measurement results of the dynamic fatigue durability test.
  [比較例3]
 本発明の(C)成分に相当する塩酸1Nを添加しない以外は、実施例1と同様の方法により製造した。物性特性及び動的疲労耐久性試験の測定結果を表2に示す。
[Comparative Example 3]
It was produced by the same method as in Example 1 except that 1N hydrochloric acid corresponding to the component (C) of the present invention was not added. Table 2 shows the physical characteristics and the measurement results of the dynamic fatigue durability test.
  [比較例4]
 本発明の(D)成分に相当する炭素数18の脂肪族アルコールのクエン酸エステル(花王(株)製の「カオーワックス220」)を添加しない以外は、実施例1と同様の方法により製造した。物性特性及び動的疲労耐久性試験の測定結果を表2に示す。
[Comparative Example 4]
It was produced by the same method as in Example 1 except that a citric acid ester of an aliphatic alcohol having 18 carbon atoms corresponding to the component (D) of the present invention (“Kaowax 220” manufactured by Kao Corporation) was not added. .. Table 2 shows the physical characteristics and the measurement results of the dynamic fatigue durability test.
  [比較例5]
 本発明の(E)成分に相当する組成物1を添加しない以外は、実施例4と同様の方法により製造した。物性特性及び動的疲労耐久性試験の測定結果を表2に示す。
[Comparative Example 5]
It was produced by the same method as in Example 4 except that the composition 1 corresponding to the component (E) of the present invention was not added. Table 2 shows the physical characteristics and the measurement results of the dynamic fatigue durability test.
  [比較例6]
 本発明の(E)成分に相当する組成物1を添加しない以外は、実施例5と同様の方法により製造した。物性特性及び動的疲労耐久性試験の測定結果を表2に示す。
[Comparative Example 6]
It was produced by the same method as in Example 5 except that the composition 1 corresponding to the component (E) of the present invention was not added. Table 2 shows the physical characteristics and the measurement results of the dynamic fatigue durability test.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (4)

  1.  (A)下記平均組成式(1)
       R1 nSiO(4-n)/2     (1)
    (式中、R1は同一又は異なる非置換又は置換の1価炭化水素基であり、nは1.95~2.04の正数である。)
    で表され、一分子中に少なくとも2個のアルケニル基を有する重合度が100以上のオルガノポリシロキサン:100質量部、
    (B)BET法による比表面積が50m2/g以上の補強性シリカ:10~100質量部、
    (C)下記
     (C-1)アルケニル基含有オルガノシラザン:0.1~10質量部、及び/又は
     (C-2)アルケニル基含有アルコキシシラン:0.1~10質量部、及び
    塩酸(但し、(C-1)成分と併用しなくてもよい。):0.0001~0.2質量部、
    (D)脂肪酸エステル及び/又は脂肪族アルコールのエステル:0.01~5質量部、
    (E)下記
     (E-a)25℃における粘度が10~10,000mPa・sであるオルガノポリシロキサン:100質量部、
     (E-b)一般式(2)
       (R2COO)m1     (2)
    (式中、R2は同一又は異なる一価炭化水素基、M1はセリウム又はセリウムを主成分とする希土類元素混合物であり、mは3~4の正数である。)
    で表されるセリウムのカルボン酸塩:セリウム原子の質量換算として上記(E-a)成分100質量部に対して0.05~5質量部となる量、及び
     (E-c)一般式(3)
       (R3O)42     (3)
    (式中、R3は同一又は異なる一価炭化水素基、M2はチタン又はジルコニウムである。)
    で表されるチタン若しくはジルコニウム化合物及び/又はその部分加水分解縮合物:チタン原子若しくはジルコニウム原子の質量換算が上記(E-b)成分のセリウム原子の質量に対して0.01~5倍となる量
    からなる混合物の均一な加熱処理反応生成物:(A)~(D)成分の合計100質量部に対して0.01~5質量部となる量、及び
    (F)硬化剤:硬化有効量
    を含有することを特徴とするキーパッド作製用シリコーンゴム組成物。
    (A) The following average composition formula (1)
    R 1 n SiO (4-n) / 2 (1)
    (In the formula, R 1 is the same or different unsubstituted or substituted monovalent hydrocarbon group, and n is a positive number from 1.95 to 2.04.)
    Organopolysiloxane having at least two alkenyl groups in one molecule and having a degree of polymerization of 100 or more: 100 parts by mass,
    (B) Reinforcing silica having a specific surface area of 50 m 2 / g or more by the BET method: 10 to 100 parts by mass,
    (C) The following (C-1) alkenyl group-containing organosilazane: 0.1 to 10 parts by mass and / or (C-2) alkenyl group-containing alkoxysilane: 0.1 to 10 parts by mass, and hydrochloric acid (however, (C-1) It is not necessary to use it in combination with the component.): 0.0001 to 0.2 parts by mass,
    (D) Fatty acid ester and / or aliphatic alcohol ester: 0.01 to 5 parts by mass,
    (E) The following (EA) Organopolysiloxane having a viscosity at 25 ° C. of 10 to 10,000 mPa · s: 100 parts by mass,
    (Eb) General formula (2)
    (R 2 COO) m M 1 (2)
    (In the formula, R 2 is the same or different monovalent hydrocarbon group, M 1 is cerium or a mixture of rare earth elements containing cerium as a main component, and m is a positive number of 3 to 4.)
    Carboxylate of cerium represented by: 0.05 to 5 parts by mass with respect to 100 parts by mass of the above (EA) component in terms of mass of cerium atom, and (Ec) general formula (3). )
    (R 3 O) 4 M 2 (3)
    (In the formula, R 3 is the same or different monovalent hydrocarbon group, and M 2 is titanium or zirconium.)
    Titanium or zirconium compound represented by and / or its partially hydrolyzed condensate: The mass conversion of titanium atom or zirconium atom is 0.01 to 5 times the mass of cerium atom of the above (Eb) component. Uniform heat treatment reaction product of the mixture consisting of the amount: 0.01 to 5 parts by mass with respect to 100 parts by mass of the total of the components (A) to (D), and (F) curing agent: effective curing amount A silicone rubber composition for producing a key pad, which comprises.
  2.  (B)成分の補強性シリカが、未処理シリカである請求項1記載のキーパッド作製用シリコーンゴム組成物。 The silicone rubber composition for producing a keypad according to claim 1, wherein the reinforcing silica of the component (B) is untreated silica.
  3.  (F)成分の硬化剤が、オルガノハイドロジェンポリシロキサンとヒドロシリル化触媒との組み合わせ又は有機過酸化物である請求項1又は2記載のキーパッド作製用シリコーンゴム組成物。 The silicone rubber composition for producing a keypad according to claim 1 or 2, wherein the curing agent of the component (F) is a combination of an organohydrogenpolysiloxane and a hydrosilylation catalyst or an organic peroxide.
  4.  請求項1~3のいずれか1項記載のシリコーンゴム組成物の硬化成型物からなるキーパッド。 A keypad made of a cured molded product of the silicone rubber composition according to any one of claims 1 to 3.
PCT/JP2020/041810 2019-11-22 2020-11-10 Silicone rubber composition for keypad production, and keypad WO2021100535A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-211264 2019-11-22
JP2019211264A JP7484140B2 (en) 2019-11-22 2019-11-22 Silicone rubber composition for producing keypads and keypads

Publications (1)

Publication Number Publication Date
WO2021100535A1 true WO2021100535A1 (en) 2021-05-27

Family

ID=75964243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041810 WO2021100535A1 (en) 2019-11-22 2020-11-10 Silicone rubber composition for keypad production, and keypad

Country Status (2)

Country Link
JP (1) JP7484140B2 (en)
WO (1) WO2021100535A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218904A1 (en) * 2022-05-13 2023-11-16 信越化学工業株式会社 Millable silicone rubber composition and cured product of same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163966A (en) * 1984-02-06 1985-08-26 Shin Etsu Chem Co Ltd Heat-resistant organopolysiloxane composition
JP2011105782A (en) * 2009-11-12 2011-06-02 Shin-Etsu Chemical Co Ltd Silicone rubber composition and keypad
WO2017081850A1 (en) * 2015-11-13 2017-05-18 信越化学工業株式会社 Addition-curable silicone resin composition, method for producing said composition, and optical semiconductor device
JP2017218487A (en) * 2016-06-06 2017-12-14 信越化学工業株式会社 Silicone rubber composition for preparing keypad and keypad

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60163966A (en) * 1984-02-06 1985-08-26 Shin Etsu Chem Co Ltd Heat-resistant organopolysiloxane composition
JP2011105782A (en) * 2009-11-12 2011-06-02 Shin-Etsu Chemical Co Ltd Silicone rubber composition and keypad
WO2017081850A1 (en) * 2015-11-13 2017-05-18 信越化学工業株式会社 Addition-curable silicone resin composition, method for producing said composition, and optical semiconductor device
JP2017218487A (en) * 2016-06-06 2017-12-14 信越化学工業株式会社 Silicone rubber composition for preparing keypad and keypad

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218904A1 (en) * 2022-05-13 2023-11-16 信越化学工業株式会社 Millable silicone rubber composition and cured product of same

Also Published As

Publication number Publication date
JP2021080415A (en) 2021-05-27
JP7484140B2 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
JP4905626B2 (en) Insulating silicone rubber composition and cured product thereof
EP2554585B1 (en) Silicone Rubber Composition Having Excellent Heat Resistance
JP5835100B2 (en) Antistatic silicone rubber composition and method for inhibiting yellowing of cured antistatic silicone rubber
JP5510148B2 (en) Method for producing millable silicone rubber composition
CN107459822B (en) Silicone rubber composition for preparing key pad and key pad
EP3533838B1 (en) Heat-resistant millable silicone rubber composition
JP2007186544A (en) Electroconductive silicone rubber composition
WO2021100535A1 (en) Silicone rubber composition for keypad production, and keypad
CN105273406B (en) Curable silicone rubber composition and silicone rubber member
JP6107741B2 (en) Millable type silicone rubber compound and method for producing millable type silicone rubber composition
JP2015131978A (en) Method for improving dynamic fatigue durability of silicone rubber cured product
JP6024427B2 (en) Millable silicone rubber compound and method for producing silicone rubber composition
JP6919634B2 (en) Silicone rubber composition for making keypads and keypads
JP2020094139A (en) Antistatic silicone rubber composition and antistatic carrier plate
JP6738776B2 (en) Silicone rubber composition
JP2009275158A (en) Silicone rubber composition and keypad
JP4395355B2 (en) Silicone rubber composition
JP2021038352A (en) Millable silicone rubber composition and cured product thereof
JP4725713B2 (en) Silicone rubber composition and method for improving heat resistance of cured product of silicone rubber composition
JPH07242825A (en) Electrically conductive silicone rubber composition and its production
JPH0643555B2 (en) Method for producing fluorosilicone rubber composition
JP2013221090A (en) Silicone rubber composition
JP2024047797A (en) Millable type silicone rubber compound, millable type silicone rubber composition, and method for producing millable type silicone rubber composition
JP2022132904A (en) Heat-resistant millable silicone rubber composition
JP2005029664A (en) Silicone rubber composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20888969

Country of ref document: EP

Kind code of ref document: A1