WO2023218891A1 - 生体用電極装置 - Google Patents

生体用電極装置 Download PDF

Info

Publication number
WO2023218891A1
WO2023218891A1 PCT/JP2023/015730 JP2023015730W WO2023218891A1 WO 2023218891 A1 WO2023218891 A1 WO 2023218891A1 JP 2023015730 W JP2023015730 W JP 2023015730W WO 2023218891 A1 WO2023218891 A1 WO 2023218891A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode device
biological electrode
sheet
sensor module
biological
Prior art date
Application number
PCT/JP2023/015730
Other languages
English (en)
French (fr)
Inventor
浩孝 山口
龍二 上田
修 喜納
大蔵 植村
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2023218891A1 publication Critical patent/WO2023218891A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • A61B5/257Means for maintaining electrode contact with the body using adhesive means, e.g. adhesive pads or tapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/262Needle electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • A61B5/266Bioelectric electrodes therefor characterised by the electrode materials containing electrolytes, conductive gels or pastes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/271Arrangements of electrodes with cords, cables or leads, e.g. single leads or patient cord assemblies
    • A61B5/273Connection of cords, cables or leads to electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes

Definitions

  • the present invention relates to a biological electrode device.
  • devices have also been developed that allow patients to measure and analyze body fluids themselves without having to go to a medical institution. This not only makes it possible to speed up testing and analysis, but also can be used as a means to reduce medical costs in an aging society, as explained below.
  • Electrochemical methods are widely used for blood sugar level measurements, etc., because they can detect trace components with high sensitivity. Electrochemical methods have the advantage that biological information, which is a chemical characteristic, can be detected as an electrical signal, and therefore signals obtained using semiconductor devices or the like can be easily processed and analyzed. For this reason, new electrochemical sensing devices and sensing methods using the same are being actively developed worldwide.
  • a needle-like member having one or more minute needle-like protrusions that can puncture the skin is attached to the epidermis of the living body to puncture the stratum corneum, which is the outermost layer of the skin.
  • minute needle-like protrusions for example, microneedles
  • medicines are administered to living bodies, blood is sucked and extracted from living bodies, and the like.
  • Various sizes and shapes of needle-like members have been proposed, and they are expected to be used as a non-invasive method of administration and testing.
  • a needle-like member By using a needle-like member to penetrate the epidermis layer, which is the lower layer of the stratum corneum, and the dermis layer below that layer, and by reaching the tip of the needle-like member, it is possible to act on those layers. can.
  • a needle-like member or probe
  • it is also possible to obtain information on the subcutaneous layer by applying electrical signals and receiving responses using a needle-like member (or probe) as an electrode. It has also been proposed to apply a voltage between electrodes to allow the drug to penetrate.
  • Patent Documents 1 and 2 describe techniques related to biological sensing devices using needle-like members.
  • Patent Document 1 discloses a medical device for diagnosing a skin condition of a subject.
  • This medical device includes a conductive probe having a plurality of electrodes, and each electrode includes a plurality of microneedles.
  • each electrode has a base substrate formed of a silicon substrate.
  • the microneedles are integrally formed with the substrate, are arranged in laterally spaced relation to each other, and have a length sufficient to penetrate the stratum corneum.
  • the microneedles are configured to have an at least partially sloped shape.
  • the invention described in Patent Document 1 relates to a method for diagnosing a biological condition using electrodes for this device, an array of microneedles, and impedance measurement. This method of diagnosis is particularly relevant to cancer, preferably skin cancers that are basal cell carcinomas, malignant melanomas, squamous cell carcinomas, or precursors of such lesions.
  • Patent Document 2 discloses a biological monitoring device. The use of microneedles and flexible interfaces has been described, and techniques related to electrocardiography, sleep assessment, bruxism assessment, sleep apnea, and traumatic brain injury are disclosed.
  • the current direction of biological monitoring is that in electroencephalogram measurement, the contact impedance between the skin and electrodes cannot be reduced unless the subject is subjected to pre-measurement treatment such as exfoliation.
  • pre-measurement treatment such as exfoliation.
  • electrodes could be attached more easily directly to the stratum corneum and subcutaneous muscle layer, it would be possible to conduct biological monitoring such as brain waves while conducting electrical therapy, in which electric current is passed through the electrodes, and confirming the effectiveness of the treatment. It becomes possible to implement it in time.
  • noise When measuring bioelectrical signals on the skin, noise may occur in the measurement waveform. This effect may make it difficult to see the waveform that you originally want to see, which may adversely affect measurement. Since the cause of noise is thought to be the resistance of the stratum corneum of the skin, it is necessary to reduce the electrical resistance caused by the stratum corneum. Noise can also be caused by human movements or the moment of force caused by poor connection or poor adhesion between the sensor module and the electrodes when transmitting bioelectrical signals obtained from the skin from the electrodes to the sensor module. Therefore, the issue is how to bring the skin, electrodes, and sensor module into close contact.
  • a rivet-type stud type button-top, snap interconnection
  • the electrode that comes into contact with the skin is pasted with an adhesive layer that adheres to the skin or a base material with adhesive, conductive gel, etc., and the side of the pasted base material that is not on the skin side, that is, the adhesive Rivet-type studs are provided through the thickness of the substrate to provide electrical continuity to the sensor module located on the other side of the substrate that is free of layers, adhesives, conductive gels, etc. This makes it easy to replace the disposable stick-on electrode patch and sensor module.
  • the fact that the electrode patch and sensor module can be easily attached and detached means that the fixation between the electrode patch and the sensor module is unstable, and if the sensor module wobbles, there is a high risk of noise generation.
  • the sensor module In an embodiment in which the electrode position is in contact with the skin even when the sensor module is not in contact with the skin, and the sensor module is located away from the skin surface by the thickness of the base material, the sensor module is likely to swing due to the moment of force and there is a risk of noise generation. expensive.
  • the wiring from the conductive probe with needle-like electrodes or multiple electrodes to the sensor module must be made of conductive material such as silver, carbon, or PEDOT.
  • conductive material such as silver, carbon, or PEDOT.
  • the overall size of the needle-shaped electrode is several millimeters due to processing reasons, making it difficult to embed it in the electrode sheet and maintain conductivity on the electrode sheet. There were also problems.
  • the present invention has been made to solve the above-mentioned problems, and provides an electrode sheet structure with low resistance, strengthens the fixation of the electrode and sensor module to the skin, and reduces noise caused by the moment of force.
  • the aim is to reduce the discomfort experienced by subjects when applying the adhesive.
  • one of the typical bioelectrical electrode devices of the present invention includes at least one pair of electrodes that receive bioelectrical signals, a wiring member that transmits the received bioelectrical signals, and a bioelectrical A sensor module that outputs a signal related to the signal to the outside, a connection member that connects the transmitted bioelectrical signal to the sensor module, and a sheet member that supports the electrode, the wiring member, the sensor module, and the connection member. and an adhesive sheet that can be attached to a living body so as to cover the electrode sheet.
  • the present invention provides an electrode sheet structure with low resistance, strengthens the fixation of the electrode and sensor module to the skin, reduces noise caused by the moment of force, and reduces the feeling of wearing when applied to the subject. be able to.
  • FIG. 1 is a diagram showing an electrode sheet according to the first embodiment.
  • FIG. 2 is a diagram showing an electrode sheet according to the second embodiment.
  • FIG. 3 is a diagram showing the attachment of the electrode sheet to the forehead of the subject.
  • FIG. 4 is a diagram showing an interference fit.
  • FIG. 5 is a diagram showing a method of implementing the first embodiment on a subject.
  • FIG. 6 is a diagram showing a method of implementing the third embodiment on a subject.
  • FIG. 7 is a diagram showing a conventional mounting method.
  • FIG. 8 is a diagram showing a conventional mounting method.
  • FIG. 9 is a diagram showing an electrode sheet according to the fourth embodiment.
  • FIG. 10 is a diagram showing an electrode sheet according to the fifth embodiment.
  • FIG. 11 is a diagram showing an electrode sheet according to the sixth embodiment.
  • FIG. 12 is a diagram showing an electrode sheet according to the seventh embodiment.
  • FIG. 13 is a diagram showing the process of removing the formwork after printing the wiring member.
  • FIG. 14 is a diagram showing a process of forming a through hole using a punch after printing a wiring member.
  • FIG. 15 is a diagram showing an electrode sheet according to the eighth embodiment.
  • FIG. 16 is a diagram showing a manufacturing process of an electrode sheet according to the eighth embodiment.
  • FIG. 17 is a diagram showing a manufacturing process of an electrode sheet according to the eighth embodiment.
  • FIG. 18 is a diagram showing a manufacturing process of an electrode sheet according to the eighth embodiment.
  • FIG. 19 is a diagram showing an electrode according to the eighth embodiment.
  • FIG. 20 is a diagram showing an electrode according to the ninth embodiment.
  • FIG. 20 is a diagram showing an electrode according to the ninth embodiment.
  • FIG. 21 is a diagram showing an electrode sheet according to the eighth embodiment.
  • FIG. 22 is a diagram showing an electrode sheet according to the tenth embodiment.
  • FIG. 23 is a diagram showing an electrode sheet according to the tenth embodiment.
  • FIG. 24 is a schematic diagram of an electrode sheet according to the eleventh embodiment.
  • FIG. 25 is a schematic diagram of fixing electrodes on an electrode sheet according to the eleventh embodiment.
  • FIG. 26 is a schematic diagram of fixing the module or terminal of the electrode sheet according to the eleventh embodiment.
  • This embodiment has a structure in which conductive electrodes and a sensor module that directly or indirectly extract electrical signals generated from a living body are brought into close contact with human skin.
  • the electrodes and the sensor module are arranged and mounted on the same surface of the electrode sheet or on one side of the electrode sheet, and can be fixed with an adhesive sheet while the electrodes and the sensor module are in contact with the skin surface. Furthermore, by mounting on one side, it is possible to reduce the cost by reducing the amount of materials and the manufacturing process.
  • a needle-like member 101 comprising at least one pair of electrodes that contacts a living body and receives a bioelectrical signal, a wiring member 102 that transmits the received bioelectrical signal voltage, and a wiring member 102 that transmits the received bioelectrical signal voltage.
  • An electrode sheet 106 that has a connecting member 103 connected to a sensor module 105 that outputs to the outside, and integrates a needle member 101, a wiring member 102, an insulating film 108, a connecting member 103, a sheet member 104, and a sensor module 105.
  • the adhesive sheet 107 on the top layer is used to support the bonding with the skin so that the needle member 101 and the sensor module 105 are in contact with the living body, and at least the wiring member, the sheet member, and the top layer
  • the adhesive sheet is characterized by its stretchability and elasticity.
  • two connecting members 103 protrude symmetrically from the sensor module.
  • the voltage of the bioelectrical signal received from the needle member 101 is connected to each of these two connection members via the wiring member 102, and the sensor module receives the obtained voltage.
  • the more the path from the needle-like member 101 to the sensor module in this reception is integrated with the skin of the living body, the more it will be possible to suppress the generation of noise due to shaking and wobbling of the sensor module caused by movements of the living body. can.
  • the electrode sheet 106 is formed so that the tip of the needle-like member 101 and the sensor module 105 in FIG. 1 are located close to the skin surface.
  • an adhesive sheet is pasted on the tip of the needle-like member 101 and the surface opposite to the sensor module 105 so as to cover the electrode sheet 106 and the sensor module 105 entirely.
  • the area ratio of the adhesive sheet to the electrode sheet 106 and the sensor module 105 is such that when the area occupied by the electrode sheet 106 and the sensor module 105 is 1, the area of the adhesive sheet is preferably 5 to 6 or more. This realizes stable fixation of the electrode sheet 106 and the sensor module 105.
  • the needle-like member 101 may already have conductivity itself, or the entire surface of the needle-like member may be coated with a conductive layer.
  • the needle-like member 101 is arranged so that a needle-like projection (hereinafter simply referred to as a "needle”) can push against or puncture the patient's skin. Such pressure or puncture reduces the electrical resistance of the skin.
  • the needle member 101 is arranged so that a needle having a cross section on the order of several tens of micrometers can puncture living tissue without causing much trauma.
  • the needle-like member 101 has a support body 101a for arranging the needle.
  • the needle member 101 preferably has a plurality of needles protruding above the support 101a, and preferably has a length ranging from 50 microns to 300 microns, and furthermore, the outer circumference of the needles is 10 microns. It may have an outer diameter range of from 250 microns to 250 microns.
  • the length of the needle and the external shape range of the outer periphery of the needle depending on the method of fixing the needle-like member 101, the length of the needle may be insufficient. It is also possible to have an external shape range of the outer periphery of the needle of 250 microns or more.
  • the needle of the needle-like member 101 can take various shapes and forms.
  • the distal end may be pointed or non-pointed, and may have a beveled configuration, a parabolic configuration, a flat tip configuration, a pointed configuration, or a non-pointed configuration.
  • the shape may be rounded, tapered and/or tapered conical.
  • the needle-like members may be provided as a multidimensional array, as opposed to a device with a single needle or a single row of needles.
  • the needle-like member 101 can include a combination of needle area, orientation, height, or other parameters.
  • the larger the surface area of the conductive layer the larger the effective surface area as an electrode, which can reduce the electrical resistance of the skin.
  • the needle-like member 101 is designed to easily penetrate the skin and reduce electrical resistance, it is possible to reduce the area of the conductive layer.
  • the thickness of the conductive layer is preferably about 0.05 ⁇ m to 5 ⁇ m. If it is thinner than this, the conductivity will not be maintained, and if it is thicker than this, there is a concern that the adhesiveness with the base material will be impaired.
  • the needle-like member 101 is made by known microfabrication processes by making small mechanical structures from metals, polymers, and other materials. These microfabrication processes are based on established methods used to make integrated circuits, electronic packages, and other microelectronic devices, supplemented with additional methods used in the microfabrication field.
  • Microfabrication processes that can be utilized in manufacturing the needle member 101 disclosed herein include lithography, etching techniques such as wet etching, dry etching and photoresist removal, electroplating and electrodeless plating, and diffusion processes such as Boron diffusion, phosphorus diffusion, arsenic diffusion and antimony diffusion, ion implantation, film deposition such as evaporation (filament, electron beam, flash and shadowing step coverage), sputtering, chemical vapor deposition (CVD), epitaxy (vapor phase, liquid phase and molecular beams), electroplating, screen printing, lamination, stereolithography, laser machining and laser ablation (including projection ablation).
  • lithography etching techniques such as wet etching, dry etching and photoresist removal, electroplating and electrodeless plating, and diffusion processes such as Boron diffusion, phosphorus diffusion, arsenic diffusion and antimony diffusion, ion implantation, film deposition such as evaporation (filament, electron beam, flash and shadow
  • the needle-like member 101 is made from conductive materials in the following ranges, including, but not limited to, metals, ceramics, semiconductors, organics, polymers, and composites.
  • Preferred materials include nickel-titanium alloys, medical grade stainless steel, gold, titanium, nickel, iron, gold, platinum, tin, chromium, copper, alloys of these or other materials, silicon, silicon dioxide, capacitive carbon. carbon), graphite and polymers.
  • a specific example of the polymer is highly conductive PEDOT:PSS (a composite consisting of poly(3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonic acid (PSS)).
  • PEDOT:PSS a composite consisting of poly(3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonic acid (PSS)
  • Ideal embodiments use materials that are both electrically conductive and biocompatible, such as nickel titanium alloys, titanium or medical grade stainless steel,
  • a molded product of the needle-like member 101 can be produced by using the needle-like member 101 as an original plate and using a transfer molding technique using a copy plate.
  • a transfer molding technique using a copy plate.
  • thermal transfer molding, soft lithography molding, or injection molding may be used.
  • by coating with the above conductive material it is also possible to obtain a needle-like member whose base material is a transfer molded product and whose surface is conductive. It is desirable that the needle-like member molded product obtained by transfer molding be selected from polymers that ensure biosafety when puncturing the skin. For example, polycarbonate, polystyrene, epoxy resin, polyethylene, polymethyl methacrylate, polyglycolic acid, etc. are used.
  • the needle-like member 101 may comprise a shaft having a circular cross-section when viewed vertically, or this cross-section may be non-circular.
  • the cross-section of the needle-like member may be polygonal (e.g., star-shaped, square, triangular, circular), oval or another symmetrical or asymmetrical shape, or even the needle-like member may be pseudo-pyramidal.
  • the structure may include a body (a shape similar to a pyramid, such as a pyramid with a sharper tip or a partially concave shape), a cone, a polyhedron, a pyramid, or a prism.
  • the needle may be oriented perpendicularly or at another angle to the support 101a.
  • the needles are oriented perpendicular to the support 101a such that the density of needles per unit area of the support 101a is high.
  • the needle may include different orientations of the needle, different heights, or combinations of other parameters.
  • the lengths of the needles may or may not be the same between the needles.
  • the needles may have a certain needle density (number of needles within a certain area). For example, a useful range of needle-to-needle separation is 100 to 1400 microns, more preferably 100 to 400 microns.
  • the outer diameter and needle length mentioned above are also important, and in combination with the separation distance, it is critical whether the needle actually pierces the stratum corneum of the skin.
  • the needles have a needle density of at least about 10 needles/cm 2 , more preferably at least about 200-2000 needles/cm 2 . These needle densities also contribute to uniformity of the depth at which the skin is punctured by the needles.
  • the needle-like member may be flexible in order to be able to conform to the contours of the biological barrier to which it is applied, such as the skin.
  • Penetration into the skin is assumed to be limited by variations in the mounting surface of biological electrodes.
  • the surface of human skin is not flat due to wrinkles and body hair, which may prevent puncture into the skin. This is the reason why it is restricted.
  • Flexibility may mean distortion of 0.1 mm or more and 5 mm or less when a load of 4 kgf is applied to both ends of a 1 cm range.
  • the conductive member used in this embodiment is positioned as being inexpensive, whereas the needle-like member is expensive.
  • the needle-like member directly punctures the skin to acquire bioelectrical signals, but the conductive member is loaded onto the electrode sheet 106 in place of the needle-like member to create an electrolyte between the skin and the conductive member.
  • Bioelectrical signals are acquired by interposing a conductive gel containing .
  • the conductive member is made from conductive materials in the following ranges, including, but not limited to, metals, ceramics, semiconductors, organics, polymers, and composites.
  • Preferred materials include nickel-titanium alloys, medical grade stainless steel, gold, titanium, nickel, iron, gold, platinum, tin, chromium, copper, alloys of these or other materials, silicon, silicon dioxide, capacitive carbon. carbon), graphite and polymers.
  • a specific example of the polymer is highly conductive PEDOT:PSS (a composite consisting of poly(3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonic acid (PSS)).
  • PEDOT:PSS a composite consisting of poly(3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonic acid (PSS)
  • Ideal embodiments use materials that are both electrically conductive and biocompatible, such as nickel titanium alloys, titanium or medical grade stainless steel, silver/
  • the structure of the wiring member related to the biological electrode of this embodiment will be explained in detail.
  • the wiring member in this embodiment is formed using a screen printing method.
  • This screen printing method is explained in detail in the specification and drawings of Japanese Patent Application No. 2021-105169, which is an earlier application by the present applicant.
  • this embodiment may be realized by a printing method other than the screen printing method such as a rotary screen printing method, or a screen printing method other than the printing method shown in the specification of Japanese Patent Application No. 2021-105169.
  • This screen printing method which is used to form the wiring member of the biological electrode of this embodiment, is good at printing with a high aspect ratio (thick printing thickness), and is based on the specification of the earlier application, Japanese Patent Application No. 2021-105169. This was achieved by using a technology that simultaneously fills the via and prints high aspect ratio wiring, which is the characteristic shown in Figure 2.
  • the wiring member that can be used in this embodiment is a wiring member that is printed with a coating agent containing a mixture of filler and binder (main ingredient) and an additive that is incompatible with the main solvent, which is the binder solvent, as printing ink. be.
  • inorganic fillers and organic fillers can be used in the wiring member.
  • Inorganic fillers are classified into metals and nonmetals.
  • Organic fillers mainly refer to polymeric compositions.
  • Metals include noble metals and base metals.
  • noble metals include gold, silver, platinum, and palladium
  • base metals include iron, copper, nickel, aluminum, lead, zinc, tin, tungsten, molybdenum, tantalum, magnesium, cobalt, These include bismuth, cadmium, titanium, zirconium, antimony, manganese, beryllium, chromium, germanium, vanadium, gallium, hafnium, indium, niobium, rhenium, and thallium.
  • Gold, silver, and copper are particularly useful in this embodiment.
  • Nonmetals refer to elements other than the metals mentioned above.
  • reactive nonmetals include hydrogen, carbon, nitrogen, oxygen, fluorine, phosphorus, sulfur, chlorine, bromine, selenium, iodine, Astatine, noble gases such as helium, neon, argon, krypton, xenon, and radon; semimetals with nonmetallic chemical properties such as boron, silicon, germanium, arsenic, antimony, and tellurium.
  • inorganic fillers include substances in which multiple elements are chemically bonded, such as calcium carbonate, silica, carbon black, graphite, carbon nanotubes, alumina, aluminum nitride, boron nitride, beryllia, barium titanate, lead zirconate titanate. , ferrite, CMC (carboxymethyl cellulose), titanium oxide, glass beads, magnesium oxide, hydrotalcite, barium sulfate, titanium oxide, zinc oxide, iron oxide, calcium oxide, magnesium oxide, zeolite, calcium oxide, magnesium oxide, etc. It will be done.
  • the polymer compound that is an organic filler is a linear polymer formed into a thread or chain by chemically bonding the inorganic filler in a one-dimensional structure through a chemical reaction such as addition polymerization, condensation polymerization, addition condensation, or covalent bond.
  • a chemical reaction such as addition polymerization, condensation polymerization, addition condensation, or covalent bond.
  • Inorganic fillers used in wiring materials are inorganic compounds in which copper, silver, silicon, etc. are chemically bonded with oxygen, hydrogen, carbon, etc., and are based on metal atoms that have electrical and thermal conductivity. In particular, those having a siloxane bond are preferred.
  • the organic filler is a polymer having urethane bonds such as polyurethane, which is usually produced by polyaddition of a compound having an isocyanate group and a hydroxyl group, and has a bond mediated by urethane (-NH CO O-), or urethane resin.
  • Synthetic resins made of polymers of acrylic esters or methacrylic esters such as urethane rubber acrylic resins, polymer compounds with amide bonds (the same bonds as proteins), and highly conductive PEDOT:PSS (poly(3) , 4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonic acid (PSS).
  • the shape of the filler is spherical, flat, acicular, polygonal, etc., and the particle size is preferably from 0.1 ⁇ m to several tens of ⁇ m.
  • Binders that can be used for wiring members include thermosetting resins, photocuring resins, and thermoplastic resins.
  • Thermosetting resins are in a state before chemical reactions such as addition polymerization, condensation polymerization, addition condensation, and covalent bonding of the organic fillers, and a relatively low-molecular substance is heated to form a polymer three-dimensional crosslinked structure (network structure). ), such as phenolic resins, amino resins, unsaturated polyester resins, epoxy resins, and silicone rubbers.Once hardened, they do not soften again even when heated.
  • Thermosetting resins have various reaction temperature ranges from room temperature to high temperatures, and react through addition polymerization, condensation polymerization, addition condensation, covalent bonding, etc.
  • the main raw material for elastomers such as silicone rubber is polyorganosiloxane (silicone polymer) whose polymer skeleton (main chain) is siloxane bonds (Si-O-) in which silicon atoms and oxygen atoms are arranged alternately.
  • Si-O- siloxane bonds
  • the curing temperature for HTV is 140°C or higher, for LTV it is 40-140°C, and for RTV it is 0-40°C, but due to diversification, the boundary between HTV and LTV has disappeared, and it is simply heat curing and room temperature curing. They are often classified by type.
  • HCR Solid millable type
  • liquid type liquid type
  • LSR Liquid Silicone Rubber
  • RTV Reactive silicone Rubber
  • a linear gum with a degree of polymerization of about 5,000 to 10,000 is used, whereas in the case of liquid silicone rubber (LSR, RTV), the main component is a linear polymer with a degree of polymerization of about 100 to 2,000.
  • LSR liquid silicone rubber
  • it can be classified into peroxide curing, addition reaction curing, and condensation reaction curing, depending on the crosslinking mechanism.
  • a photocurable resin is a resin that is polymerized and cured by light of a specific wavelength.
  • the binder refers to a thermosetting resin, a photocurable resin, a thermoplastic resin, etc. before chemical reaction or fixation or adhesion as described above.
  • Binders used in wiring members are mainly composed of thermoplastic polyurethane elastomer, which is a block copolymer with urethane bonds, thermoplastic polyurethane, thermosetting urethane elastomer, polyester, acrylic rubber, polypropylene, and polyester. Rubber elastic and porous resins such as acrylic elastomers and thermoplastic elastomers containing block copolymers of methyl methacrylate and butyl acrylate can be used.
  • Siloxane refers to a state in which silicon (Si) and oxygen (O) are alternately bonded to form a polymer, and is the main skeleton of silicone called siloxane bonds.
  • a silicone elastomer having a siloxane compound as its backbone is highly effective in making the electrode flexible or stretchable.
  • the ink for pattern wiring printing that can form the wiring member that can be used in this embodiment is defined based on a completely different concept from the printing ink used for general printing purposes.
  • Typical printing inks are used by mixing binders contained in printing inks with small differences in solubility parameters (hereinafter abbreviated as SP values). Since two components with a small difference in SP value are easy to mix (high solubility), it is possible to ensure ease of handling during printing, smoothness of the printed matter, adhesion to the printed material, etc.
  • additives with a large difference in SP value are used for the inorganic filler or organic filler and/or binder contained in the printing ink. By doing so, it becomes possible to cause the additive to ooze out as a lubricant due to the filling pressure.
  • a silicone elastomer having a skeleton of a siloxane compound is used as a binder for printing ink
  • a water-soluble solvent since it is water-insoluble, it is preferable to use a water-soluble solvent as an additive.
  • the elastomer has rubber elasticity and porous properties, the water-soluble solvent penetrates into the pores and becomes impregnated.
  • the impregnated additives ooze out due to the pressure and shear applied to the printing ink, forming a film on the interface between the plate and the printing ink, and acting as a lubricant to improve slipperiness. is likely to occur.
  • a conductive material such as silver or carbon is used as a filler
  • a silicone polymer is used as a binder
  • a main solvent is a linear siloxane such as dimethylsiloxane or dodecamethylpentasiloxane.
  • cyclic siloxanes such as octadecamethylcyclononasiloxane), n-undecane, and other solvents containing aliphatic hydrogen as the main ingredient, and additives may be added.
  • the binder is water-insoluble
  • the additive is water-soluble.
  • the printing ink used in this embodiment will be explained using a mixture of rubber (binder) and oil (additive) as an example.
  • rubber (binder) and oil (additive) are mixed, the rubber swells. This is a phenomenon in which oil enters between the molecules of rubber. If the oil (additive) mixes easily with the rubber (binder), it will swell; if it does not, it will not swell. This means that it oozes out onto the rubber surface under conditions such as compression.
  • the binder of the printing ink is water-insoluble
  • adding a water-soluble solvent additive will prevent substances with different polarities and substances with large differences in SP value from mixing with each other.
  • a condition is formed in which the additive, which is a water-soluble solvent, oozes out onto the surface of the ink.
  • a water-insoluble solvent is used as an additive. Then, by the same mechanism as described above, the water-insoluble solvent oozes out onto the surface of the printing ink and acts as a lubricant.
  • non-water-soluble solvents and water-soluble solvents can be used as the main solvent and additives used in the printing ink.
  • fillers and solvents contained in printing inks used in printing methods compositions containing a compound represented by the following structural formula (1) (excluding monohydroxystearic acid) are Can be used.
  • solvent examples include n-heptane (SP value: 7.3), 2-(2-ethoxyethoxy)ethyl acetate (SP value: 9.0), and ethylene glycol monoethyl ether acetate (SP value: 8.
  • the SP value is only a reference for the solvent to be selected, and what is important is determining whether it is water-insoluble or water-soluble, and the combination of adding a solvent that is the exact opposite of the main solvent.
  • water-soluble liquids that are class 4 hazardous materials.
  • Class 4 dangerous goods are flammable liquids. They are further divided into (a) those that dissolve in water (water-soluble) and (b) those that do not dissolve in water (water-insoluble).
  • a water-soluble liquid is one that maintains a uniform appearance when mixed with the same volume of pure water at 1 atm and 20°C.
  • a water-insoluble liquid is something other than a water-soluble liquid; When mixed, it separates into two layers. If the specific gravity of the liquid is lower than water, a water-insoluble layer will be formed above the water layer, and if the specific gravity is higher than water, a water-insoluble layer will be formed below the water layer. In the case of water-soluble liquids, when mixed, the layers become uniform without separating. Although some substances are slightly soluble in water, such as diethyl ether, a special flammable substance, and ethyl acetate, a class 1 petroleum, they are classified as water-insoluble by definition.
  • water-soluble solvents include 2-(2-ethoxyethoxy)ethyl acetate (SP value: 9.0), ethylene glycol monoethyl ether acetate (SP value: 8.8), n-propanol (SP value: 11.8), 1,2,5,6-tetrahydrobenzyl alcohol (SP value: 11.3), diethylene glycol ethyl ether (SP value: 10.9), 3-methoxybutanol (SP value: 10.9), propylene glycol monomethyl ether (SP value: 10.2), ⁇ -butyrolactone (SP value: 9.9), propylene glycol-n-propyl ether (SP value: 9.8), dipropylene Glycol methyl ether (SP value: 9.7), lactic acid ethyl acetate (SP value: 9.6), ⁇ -caprolactone (SP value: 9.6), tripropylene glycol methyl ether (SP value: 9.4), Tripropylene glycol-
  • the water-insoluble solvents include undecane (SP value: 15.8), decane (SP value: 15.8), dodecane (SP value: 16.0), triacetin (SP value: 10.2), and cyclopentanone ( SP value: 10.0), cyclohexanone (SP value: 9.9), propylene glycol-n-butyl ether (SP value: 9.7), 1,4-butanediol diacetate (SP value: 9.6), 3-methoxybutyl acetate (SP value: 8.7), propylene glycol diacetate (SP value: 9.6), 1,3-butylene glycol diacetate (SP value: 9.5), dipropylene glycol-n- Propyl ether (SP value: 9.5), 1,6-hexanediol diacetate (SP value: 9.5), dipropylene glycol-n-butyl ether (SP value: 9.4), cyclohexanol acetate (SP value:9.2), diethylene glycol mono
  • the filler When the total weight of the filler and binder contained in the printing ink used in this embodiment is 100 parts, the filler may be 50 to 99.9 parts. Specifically, fillers, silver pastes, copper pastes, etc. used for printing purposes, etc. may be used as the main ingredient.
  • the additive of the printing ink in the range of 0.1 part to 50 parts when the total weight of the filler and binder contained in the coating agent is 100 parts.
  • the printing ink used in this embodiment may contain a compatible solvent that has good affinity with the binder.
  • a compatible solvent makes it possible to ensure adhesion, electrical conductivity, conductivity, etc. between the inorganic filler or organic filler and binder mixture (main ingredient) and the printing substrate. This is because slipperiness can be obtained while maintaining these properties. If the amount added is outside the above range, the chemical bonds of the elastomer, which is the main ingredient, will be damaged or separated, resulting in physical brittleness, making printing difficult. Even if it can be printed, it may lose its elasticity or significantly lose its electrical conductivity or thermal conductivity.
  • the printing ink used in this embodiment has the effect that the lubricant in the coating agent oozes out due to the pressure applied to the printing ink when sweeping with a squeegee. Therefore, the peeling of the coating agent from the mask interface is promoted and the coating agent is transferred to the base material without causing cohesive failure, resulting in a wiring member with a substantially rectangular cross-sectional shape and an opposing side surface standing up almost vertically.
  • the cross-sectional shape does not necessarily have to be substantially rectangular and the opposing side surfaces do not necessarily have to stand up substantially vertically.
  • sheet member A flexible sheet or stretchable sheet used as a sheet member on which a wiring pattern of a wiring member according to the present embodiment is printed will be described.
  • Flexible sheets or stretchable sheets that can be used in this embodiment include OPP (biaxially oriented polypropylene), CPP (unoriented polypropylene), HDPE (high density polyethylene), MDPE (medium density polyethylene), LDPE (low density polyethylene), L-LDPE (linear low-density polyethylene), PET (polyethylene terephthalate), PEN (polyethylene naphthalate), O-NY (nylon), PA (polyamide), EVAC (EVA resin), PVC (polyvinyl chloride), SAN (AS resin), ABS (ABS resin), PMMA (methacrylic resin), PVAL (polyvinyl alcohol), PVDC (vinylidene chloride resin), PC (polycarbonate), POM (acetal resin), PBT (polybutylene terephthalate), PTFE (fluororesin), PF (phenolic resin), MF (melamine resin), UF (urea resin), PUR (polyurethane), EP (epoxy resin), UP (
  • the sheet member 104 can arbitrarily take the form of a single layer or a laminated film of two or more layers.
  • a urethane-based film may be selected as the printing surface layer, and a PET film, for example, may be selected for the lower layer to provide rigidity.
  • a primer or an adhesive layer may be sandwiched between the urethane film and the PET film to improve adhesion.
  • other types of sheets, primers, and adhesive layers may be optionally laminated on the lower layer of the PET film.
  • a silicone-based film may be selected as the printing surface layer, and a PET film, for example, may be selected as the lower layer to provide rigidity.
  • a primer or an adhesive layer may be sandwiched between the silicone film and the PET film to improve adhesion.
  • other types of sheets, primers, and adhesive layers may be optionally laminated on the lower layer of the PET film.
  • a protective film may be provided in consideration of handling properties such as a base film required during film formation of the sheet member and stain resistance during printing, etc.
  • the material of the base film may be PET film, polyethylene film, etc. That's fine, there are no limitations.
  • through-holes such as vias or through-holes for inserting and fixing the needle-like member 101, the conductive member 201, and the connecting member 103 are made in the single-layer or laminated sheet member using a hole punch or punch. Drill holes where necessary. This hole is formed by injecting a wiring member into the hole and forming a conductive via or through hole, for example, by the screen printing method of the present invention, which will be described later.
  • the opening diameter of this via or through hole must have an interference tendency with respect to the diameter of the portion of the needle member 101, the conductive member 201, and the connecting member 103 to be inserted and fixed in the via or through hole.
  • the fit tolerance should be changed from zero tolerance, which is a "medium fit,” to a negative tolerance, which is an "tight fit.” This eliminates the wobbling of the needle member 101, the conductive member 201, and the connecting member 103, making it possible to ensure strong conductivity. In addition to this state, it is also possible to apply a conductive adhesive to further improve reliability.
  • the diameter of the via or through hole may be a diameter obtained by subtracting a ratio of -99.9% from -0% to the diameter of the fixed portion of the needle member 101, the conductive member 201, and the connecting member 103, and further It may be from 0% to -40%, or even from -0% to -15%.
  • the tips of the needle-like member 101, the conductive member 201, and the connecting member 103 may be shaped like needles and pierced.
  • connection member 103 of the sensor module can be directly inserted into a via or through hole that ensures conductivity, and therefore materials can be saved, so that the unit price of a disposable patch can be reduced. can.
  • the electrolyte-containing conductive gel used in this embodiment is a highly conductive gel that exhibits flexibility, plasticity, and adhesiveness in an electrolyte solution in which at least one of an amino acid, an organic salt, and an inorganic salt is dissolved. It is made by adding molecular materials and solidifying it into a gel-like state. Polymer materials that exhibit flexibility, plasticity, and adhesiveness are those that have a glass transition point below living temperature and a melting point above living temperature, such as acrylic and polyurethane materials. Conceivable. Furthermore, "living temperature” in this embodiment means a temperature in the range of 0 degrees to 40 degrees.
  • the insulating film that can be used in this embodiment is desirably made of a material that does not undergo strength deterioration, deformation, melting, deterioration, etc. during the desired usage time.
  • a sheet made of a polyester resin such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-terephthalate-isophthalate copolymer, polyarylate, etc., and preferably a non-stretched sheet can be used.
  • resin sheets made of polyvinyl fluoride, polyvinylidene fluoride, polytetrafluoroethylene, fluororesins such as ethylene-tetrafluoroethylene copolymers, polyimide resins, and RTV silicone rubber. UV-cured silicone rubber and the like can also be used.
  • insulating films can be bonded in a desired area by methods such as thermal fusion, dry lamination, and spray coating. Alternatively, it is also possible to coat the desired area by printing methods such as silk screen, gravure printing, flexographic printing, offset printing, and roll transfer printing.
  • resin binder of the ink used for example, acrylic resin, polyester resin, polyimide resin, silicone resin, etc. can be used. Note that the thickness of the insulating coating is usually preferably about 20 to 300 ⁇ m.
  • connection member that can be used in this embodiment is basically connected to or incorporated into the sensor module.
  • the material is made from conductive materials in the following ranges, including, but not limited to, metals, ceramics, semiconductors, organics, polymers, and composites.
  • Preferred materials include nickel-titanium alloys, medical grade stainless steel, gold, titanium, nickel, iron, gold, platinum, tin, chromium, copper, alloys of these or other materials, silicon, silicon dioxide, capacitive carbon. carbon), graphite and polymers.
  • a specific example of the polymer is highly conductive PEDOT:PSS (a composite consisting of poly(3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonic acid (PSS)).
  • PEDOT:PSS a composite consisting of poly(3,4-ethylenedioxythiophene) (PEDOT) and polystyrene sulfonic acid (PSS)
  • Ideal embodiments use materials that are both electrically conductive and biocompatible, such as nickel titanium alloys, titanium or medical grade stainless steel, silver/sil
  • connection member may be loaded and fixed inside the sensor module 105, or the connection member may be fixed on the electrode sheet 106 side and inserted into the sensor module 105 side for connection. good. There are no particular limitations on the external shape, function, etc. of the sensor module 105.
  • the electrode sheet of this embodiment when the electrode sheet of this embodiment is attached to a human's forehead, it may have the function of wirelessly transmitting and receiving between the sensor module side and a mobile phone, PC, radio wave transmitting/receiving base station, etc.
  • the sensor module 105 may be connected to a mobile phone, a PC, a measuring device, etc. by wire. In the former case, it may include a two-dimensional or three-dimensional antenna for transmitting and receiving radio waves.
  • the antenna may be placed along the wall of the module housing or embedded within it.
  • the antenna may be located within the module, or an antenna separately printed on an electrode sheet may be used, connected to the sensor module 105 via a connecting member if necessary.
  • This embodiment may also include connection with a plurality of electrodes through a connecting member as shown in FIG. 9 (connection with two or more, for example, four electrodes, connection with an external antenna, etc.).
  • the sensor module may include a signal generator and one or more bioamplifiers that generate a signal between two or more of the electrodes (e.g., typically between 1 Hz and 10 GHz, 1 kHz and 10 MHz). between 5 kHz and 1 MHz, at multiple frequencies, swept across different frequencies, etc.), the bioamplifier is configured to provide one configured to capture one or more signals.
  • a processor, gate array, digital signal processor, or associated microcircuit is configured to analyze the captured signals to determine the bioimpedance of nearby tissue.
  • the bioamplifier is configured to capture bioelectrical signals (e.g., EKG (ElektroKardioGramm), HR (HeartRate), EMG (ElectroMyoGraphy), EOG (ElectroOculoGraphy), EEG (ElectroEncephaloGraphy), ERG (ElectroRetinoGraphy), etc.) from the electrodes. be done.
  • the sensor module may also include a power source (eg, a primary battery, a secondary battery, an energy harvesting system, etc.). In particular, it is better to use a power source that can be replaced when replacing the electrode sheet and reusing the sensor module, such as a thin flexible battery.
  • each module may be a self-powered device.
  • the sensor module may include a processor and an internal power source.
  • a wired connection as shown in FIG. 6 may be used, and the functions of the sensor module 105 can be reduced, and functions such as the antenna and power source can be supplied from the outside, so the total weight of the electrode sheet 106 can be reduced. becomes lighter and reduces the discomfort of the subject.
  • Electrodes sheets for acquiring bioelectrical signals have been constructed by arranging the electrode sheet and the sensor module separately, and connecting the sensor module on top of the electrode sheet.
  • an adhesive sheet is attached to the top layer in a manner that completely envelops the electrodes and sensor module.
  • the sensor module is located on the same surface on which the needle-like member 101 that extracts bioelectrical signals from the electrode sheet, the conductive member 201, and the wiring member 102 are formed, and even when the wire is taken out from the sensor module, Similarly, noise can be reduced by fixing wires with adhesive sheets.
  • the needle-like member 101 and the sensor module come into direct contact with the living body surface, and the moment of force caused by the positional relationship between the electrode and the sensor module is minimized.
  • the basic size of the adhesive sheet member is about 150 mm in width and 50 mm in length, even if it is large, and its shape can be changed arbitrarily.
  • the adhesive sheet can be printed with conductive ink, and it is also possible to print patterns for electromagnetic shielding or decoration purposes, or to attach metal foil.
  • the pressure of the needle-like member or the conductive member on the skin increases.
  • This adhesive sheet has a base material/adhesive composition, and the adhesive is applied to the electrode and module fixing sides.
  • the thickness of the base material/adhesive composition is preferably 10 ⁇ m or more and 200 ⁇ m or less.
  • the base material contains a urethane resin, and may contain at least one selected from the group consisting of an ether polyurethane resin, an ester polyurethane resin, and a carbonate polyurethane resin, and has a thickness of 5 ⁇ m or more and 30 ⁇ m or less. It is preferable that
  • the adhesive is made of synthetic resin, preferably a urethane adhesive.
  • the thickness of the adhesive layer is preferably 5 ⁇ m or more and 25 ⁇ m or less.
  • the tensile elongation at break in the laminated adhesive sheet is 130% or more, and the tensile stress at 100% elongation is preferably 10 to 100 MPa, and more preferably 10 to 30 MPa. It has the effect of appropriately following the unevenness of the surface, expansion and contraction of the biological surface, etc. Further, it is preferable that the moisture permeability is 2000 g/m 2 ⁇ day or more, and within this range, there is a transpiration effect due to skin respiration, water vapor, and sweating of the living body.
  • the adhesive sheet may be porous. Furthermore, cuts or holes may be opened at arbitrary positions around the sensor module or around the electrode sheet for the purpose of further improving air permeability or releasing air around the sensor module or electrode sheet.
  • the adhesive sheet may be made of silicone-based material as long as the same effect can be obtained.
  • the test speed was set to 300 mm/min, the distance between gauge lines L0 was set to 25 mm, and the initial distance L between grips was set to 80 mm.
  • the tensile strain at break was calculated as the tensile elongation at break.
  • the nominal tensile strain at break was calculated as the tensile elongation at break.
  • the measurement was performed on a laminate formed only from the base material and the adhesive.
  • the most distinctive feature of this embodiment is that an adhesive sheet is placed on the top layer, but instead of this top layer adhesive sheet, a sheet coated with photocurable resin is used to tightly connect the skin, electrodes, and sensor module. It has also been found that dry fixing by curing by irradiation with light in a state in which the material has been dried is also effective in solving the problems of the present invention.
  • the electrode sheet is attached to the subject's skin to cover the entire sensor module, but instead of the adhesive sheet 107, a sheet in which a photocurable resin is applied to a porous film or a PET film is used.
  • Photocurable resins are photopolymerizable resins such as bisphenol A-glycidyl methacrylate adduct (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), other diacrylates, triacrylates, It may be a composite material (composite resin) that is a mixture of a mixture, an inorganic filler such as quartz, silicon nitride, or glass, or an organic composite filler including an organic substance, and the light source for curing is a halogen lamp, xenon lamp, UV lamp, or visible light LED. , UV light LED, etc. may be used.
  • a sheet in which a photocurable resin is applied to a porous film or a PET film is attached to the forehead, head, top of the head, torso, hands, and feet, and a light source is applied for several seconds to several tens of seconds.
  • a light source is applied for several seconds to several tens of seconds.
  • the thin film-like photocurable resin can be crushed with fingertips, and the electrode sheet can be removed without much pain during peeling.
  • Electrode sheet ⁇ Electrode sheet>
  • the electrode sheet according to this embodiment will be described using a plurality of embodiments. However, it goes without saying that the present invention is not limited to these embodiments.
  • components that are the same or equivalent to those already described are designated by the same reference numerals, and their explanations will be simplified or omitted.
  • FIG. 1 is a diagram showing an electrode sheet according to the first embodiment. The contents of the first embodiment will be described below in the order of manufacture.
  • the base material used in the first embodiment was the one shown in FIG. 1 in which a silicone sheet 104a was attached as an upper layer, an adhesive layer 104b was attached as a middle layer, and a PET film 104c was attached as a lower layer.
  • the bonded silicone sheet 104a, adhesive layer 104b, and PET film 104c will be collectively referred to as a sheet member 104.
  • this cylinder and metal plate will be collectively referred to as the formwork.
  • a metal mold is used, but engineering plastics such as polypropylene, polyethylene, polyimide, epoxy resin, acrylic resin, silicone, fluororesin, urethane resin, and UV-cured resin may also be used.
  • the technology shown in the specification of Japanese Patent Application No. 2021-105169 prints a wiring pattern using a conductive coating agent on a sheet to be printed that has via holes extending toward the front side and the back side. At the same time, this technology injects a conductive coating agent into the via hole (hole) and connects the front side and back side of the sheet with the conductive coating agent, forming a sheet that has conductivity on the front and back sides of the sheet. be.
  • the above printing creates electrical conductivity in the gap between the high aspect ratio wiring, the through hole with a diameter of 3 mm punched to insert the needle member 101 and the connecting member 103, and the cylinder with a diameter of 2.5 mm formed in the formwork.
  • the paste was printed and filled at the same time.
  • FIG. 13 is a diagram showing the process of removing the formwork after printing the wiring member.
  • FIG. 14 is a diagram showing a process of forming a through hole using a punch after printing a wiring member.
  • a cylindrical film of the conductive coating agent is formed on the wall surface of the through hole, which facilitates electrical connection when the needle-like member 101 and the connecting member 103 are loaded with a tight fit in the subsequent process. You can get the following effect.
  • the needle-shaped member 101 is loaded, but since it is essential that the support 101a has a large diameter and tightly fits into the through hole filled with the conductive coating agent, the support 101a must have a diameter of 3 mm.
  • the needle-like member 101 was selected.
  • the electrode sheet 106 and the support 101a of the needle-like member 101 were completely integrated by suctioning the needle tip of the needle-like member 101 with suction tweezers and loading it vertically into the through-hole with a tight fit. Confirmed by checking continuity using a tester.
  • the electrode sheet other than the sensor module 105 and the connecting member 103 is completed.
  • the two connecting members 103 were connected to the two remaining through holes of the electrode sheet 106 with a tight fit without any force.
  • An interference fit refers to a state in which the hole diameter 401 of the through hole and the shaft diameter 402 of the support body 101a of the needle-like member 101 are inserted in a relationship such that shaft diameter>hole diameter in the embodiment shown in FIG.
  • the elastic force of the electrode sheet 106, which is an elastic body, and the conductive wiring member 102 of this embodiment can provide the effect that the needle member 101 and the connecting member 103 are firmly fixed by tight fit.
  • This relationship is generally expressed as "interference” or “fitting tolerance,” but the difference in the diameters of both the shaft and the hole, or the fitting tolerance, varies depending on the material of the sheet, so it cannot be specified here.
  • the hole diameter is set to be 0 to minus (smaller) than the diameter of the support 101a.
  • the above electrode sheet was evenly pasted on the center of the subject's forehead 301, and the protective film on the surface of the adhesive sheet was peeled off.
  • the adhesive sheet was placed as the top layer of this embodiment.
  • a gap 302 formed at the interface between the forehead 301, the sensor module 105, the electrode sheet 106, and the adhesive sheet 107 may be formed to some extent.
  • the sense of unity with forehead 301 was maintained.
  • the form in which the needle of the needle-like member 101 stably sticks is such that the sensor module 105 is placed at the center of gravity of the adhesive sheet, that is, the center, and the electrode sheet 106 is wired symmetrically with respect to the center of gravity (center) of the sensor module.
  • the member 102 takes the shape of spread wings, and the needle-like member 101 is loaded at a position 2 cm or 3 cm farther from the connecting member 103 of the sensor module 105 than 1 cm, so that the adhesive sheet generated around the sensor module 105 is Since the influence of the gap 302 can be avoided, the needle can be inserted stably. Therefore, the height from the attachment surface of the sensor module 105 is 2 mm or 1 mm rather than 3 mm, so that the gap 302 between the adhesive sheets becomes smaller and the needle of the needle member 101 stably sticks therein.
  • the quality of the signal that can be obtained by the connection member 103 was evaluated.
  • the objective is to see how close the accuracy of the contact impedance transmitted from the needle-like member 101 to the connection member 103 of this embodiment can be compared to that of a medical needle electrode used in a medical field.
  • the measured resistance values for the medical needle electrode were a maximum resistance of 2.2K ⁇ (0.5Hz), a minimum resistance of 0.7K ⁇ (30KHz), and a resistance value of 1.0K ⁇ around 100Hz.
  • the electrode sheet 106 of this embodiment exhibited a maximum resistance value of 6.2 K ⁇ (0.5 Hz), a minimum resistance value of 3.5 K ⁇ (30 KHz), and a resistance value of 4.2 K ⁇ near 100 Hz.
  • the results obtained using the two-terminal method using three types of electrodes showed that the needle electrode had the lowest resistance value, and the electrode sheet of this embodiment was slightly larger than the needle electrode, but much larger than the gel electrode. It was small. Although the center frequency of bioelectrical signal measurement is approximately 1 Hz to 200 Hz, the electrode sheet of this embodiment had a much lower resistance value up to around 100 Hz than the gel electrode.
  • the electrode sheet of this embodiment was found to be an effective electrode.
  • FIG. 2 is a diagram showing an electrode sheet according to the second embodiment. The contents of the second embodiment will be described below in the order of manufacture.
  • the base material used in the second embodiment was the one shown in FIG. 2 in which a silicone sheet 104a was attached as an upper layer, an adhesive layer 104b was attached as a middle layer, and a PET film 104c was attached as a lower layer.
  • the bonded silicone sheet 104a, adhesive layer 104b, and PET film 104c will be collectively referred to as a sheet member 104.
  • a metal cylinder with a diameter of 2.5 mm and a metal plate with the lower bottom surface of the cylinder joined to a flat surface were superimposed so that the center of the through hole with a diameter of 3 mm coincided with the center of the cylinder with a diameter of 2.5 mm.
  • the height of this cylinder matches the height of the through hole in the sheet member 104.
  • the combination of this cylinder and metal plate will be collectively referred to as the formwork.
  • the material of the metal plate may be stainless steel, nickel, copper, aluminum, iron oxide, graphite, etc.
  • the above printing creates conductivity in the gap between the high aspect ratio wiring, the through hole with a diameter of 3 mm punched to insert the conductive member 201 and the connecting member 103, and the cylinder with a diameter of 2.5 mm formed in the formwork.
  • the paste was printed and filled at the same time.
  • FIG. 13 is a diagram showing the process of removing the formwork after printing the wiring member.
  • FIG. 14 is a diagram showing a process of forming a through hole using a punch after printing a wiring member.
  • the conductive member 201 is loaded, but it is essential that the support 201a has a large diameter and tightly fits into the through hole filled with the conductive paste. Member 201 was selected.
  • the conductive member 201 was suctioned with suction tweezers and vertically loaded into the through hole with a tight fit, and it was confirmed that the electrode sheet 206 and the support 201a of the conductive member 201 were completely integrated.
  • the electrode sheet other than the sensor module 105 and the connecting member 103 is completed.
  • the two connecting members 103 were connected to the remaining two through-holes of the electrode sheet 206 in the same manner as in the first embodiment with a tight fit.
  • a conductive gel 208 was attached so as to cover the entire exposed surface of the conductive member 201.
  • the above electrode sheet was evenly pasted on the center of the subject's forehead 301, and the protective film on the surface of the adhesive sheet was peeled off.
  • the adhesive sheet was placed as the top layer of this embodiment, We have completed a method that envelops the entire electrode sheet and sensor module.
  • an impedance measuring device (NF Circuit Design Co., Ltd. ZM2376) is connected to the sensor module with a conductive wire.
  • the bioelectrode device of this embodiment produced almost no noise and had a maximum resistance of 6.2 K ⁇ (0.5 Hz) and a minimum resistance of 3.5 K ⁇ (30 KHz). ), the resistance value near 100Hz was 4.2K ⁇ .
  • extreme noise was generated and measurements were impossible.
  • FIGS. 5 and 6 A method of mounting the first embodiment and the third embodiment on a subject is shown in FIGS. 5 and 6, and a conventional mounting method is shown in FIGS. 7 and 8. From the above content, it can be said that even if the chicken (thigh) is replaced with a human body, the effects of this embodiment are superior to the conventional mounting method.
  • FIG. 9 shows an embodiment in which bioelectrical signals of the electrode sheet according to the first embodiment are simultaneously acquired from two or more locations, that is, from multiple locations.
  • the electrode also serves as an electrode for performing electrical treatment by flowing current while simultaneously acquiring bioelectrical signals.
  • the basic manufacturing method is the same as the first embodiment, but in the first embodiment, four through holes were formed, so two pairs of the needle-like member 101 and the connecting member 103 were formed.
  • the number of through holes is eight, and four pairs of the needle member 101 and the connecting member 103 are formed.
  • This embodiment can also be applied to the second embodiment and the third embodiment. For example, it becomes possible to flow current using a needle-like member based on bioelectrical signals obtained from the conductive gel and conductive member according to the second embodiment. In that case, the wired method according to the third embodiment You can make it even more effective.
  • the wiring member 102 may have a meandering pattern as shown in FIG.
  • it may be a horseshoe-shaped continuous wiring that snakes regularly.
  • the wiring member 102 is formed on a flexible and stretchable base material and used as an electrode sheet, if there is a possibility that noise may be introduced due to the subject's movement, undulations, expansion/contraction, vibration of the attachment surface, etc., use the meandering pattern shown in FIG. 10.
  • 1001 may be formed.
  • slits 1002 may be cut in the electrode sheet at arbitrary locations in the meandering pattern for more flexible handling.
  • the sheet member 104 may be a single layer or a laminated sheet with two or more layers.
  • a structure using a PET base material was mainly shown in a three-layer structure.
  • This PET base material has a tensile strength of 48 MPa to 73 MPa, an elongation at break of 30 to 300%, and a tensile modulus of elasticity of 2,800 MPa to 4,200 MPa, which is stronger than elastomer materials such as silicone sheets, according to ASTM standard D638. . Therefore, by using such a material for a part of the sheet member 104, it is possible to obtain the advantage that delicate bioelectrical signals such as brain waves can be obtained without much distortion.
  • the first to fifth embodiments are designed to obtain such effects.
  • the sheet member 104 can be constructed by laminating an adhesive sheet 107 with a film (elastomer material 1101) such as a silicone sheet, or directly applying an elastomer to the adhesive sheet 107 by screen printing or the like.
  • a film elastomer material 1101
  • the adhesion with the adhesive sheet 107 tends to be weak due to surface energy, so a primer or adhesive 1102 is applied to the lower layer of the film to strengthen the adhesion with the adhesive sheet 107. may be adopted.
  • the primer may or may not be applied to the adhesive sheet 107 in advance.
  • the adhesive sheet 107 takes the form of being attached to the subject's skin in a manner that covers the entire electrode sheet and sensor module, as in the above embodiments. All or part of the bioelectrical signal data obtained by the sensor module is transmitted by radio waves, but the radio waves transmitted from the sensor module, radio waves entering from the outside, and electromagnetic waves affect the electrode sheets 106 and 206. It is also assumed that
  • a solid or mesh pattern can be printed on the adhesive sheet 107 using conductive ink using an inkjet method so as to cover at least the sheet member 104 without covering a part of the sensor module.
  • Solid is a printing term that refers to a state in which 100% of the entire surface is coated.
  • the mesh pattern is based on consideration of permeability, moisture permeability, design, etc.
  • conductive ink may be used to print a decorative image such as a pattern, a skin color that looks like it is integrated with the skin, etc. on the adhesive sheet 107.
  • These printing methods are not limited to inkjet, but may also use offset printing, screen printing, gravure printing, flexo printing, dispensers, and 3D printers.
  • metal foil such as copper or aluminum may be attached, which has a similar effect. This is what is called an electromagnetic shield.
  • FIG. 12 shows the mesh pattern on the adhesive sheet.
  • the mesh pattern 1202 may be printed on the entire surface 1210 of the adhesive sheet without covering a part 1201 of the sensor module, or may be printed on the entire surface 1210 of the adhesive sheet to cover only the electrode sheet, or only the wiring member portion.
  • a covering shape 1212 may also be used.
  • mesh patterns there is a tendency for mesh patterns to be as inconspicuous as possible, and the surface obtained by configuring fine lines with a line width of 30 ⁇ m or less, more preferably 15 to 20 ⁇ m or less, and a line thickness of 3 ⁇ m or less in a lattice shape with a pitch of 300 ⁇ m to 500 ⁇ m.
  • the resistivity is 40 ⁇ / ⁇ or less, and more preferably the surface resistivity is 1.2 ⁇ / ⁇ or less.
  • both the electrode sheets 106 and 206 are loaded into the vertical through-holes with tight fit, and the electrode sheets 106 and the support 101a of the needle-like member 101 and the conductive member 201 are completely separated.
  • One method is to ensure conductivity by integrating the support 201a and the connection member 103, but another method to ensure conductivity is to integrate the support 201a and the connection member 103 into one body.
  • 101b and the lower plane 101c are sandwiched between the wiring member 102 and the adhesive sheet 107 to ensure integration with the electrode sheet 106 and conductivity.
  • ink containing silver, copper, or carbon filler, or a conductive polymer such as PEDOT/PSS may be used.
  • an insulating film 112a is printed on a release film 111 except for a region 115 where a connecting member 103 is inserted in a later step.
  • the wiring member 102 is printed thereon.
  • the insulating film 112b is printed except for the area 114 where the needle-shaped member 101 will be inserted later. Drying and curing after printing in the above steps are performed as needed.
  • holes 211 for inserting the needle-like member 101 and the connecting member 103 are penetrated with a hole punch.
  • the needle-like member 101 is inserted into the hole 211 with the support 101a of the needle-like member 101 in contact with the wiring member 102 as shown in FIG. 18(a).
  • a conductive adhesive may be applied to the contact portion and its surroundings.
  • the adhesive sheet 107 is attached to the entire structure including the release film 111.
  • a separate film 107a is bonded to this adhesive sheet 107.
  • FIG. 19 shows that when the needle-like member 101 in this embodiment peels off the release film 111, it is exposed from the hole 211, and the needle-like member 101 is firmly attached and fixed to the electrode sheet 106 separated from the release film 111.
  • This figure shows that the needle-like member 101 is firmly sandwiched between the printed wiring member 102 and the adhesive sheet 107, and only the needle portion of the needle-like member 101 is exposed through the hole 211, creating a sense of unity.
  • the electrode sheet 106 is formed by integrating the release film 111, the insulating film 112a, the wiring member 102, the insulating film 112b, the needle member 101, the adhesive sheet 107, and the separate film 107a. Furthermore, depending on the convenience of handling and packaging capacity, the sheet may be divided into arbitrary shapes and sizes instead of a large-area sheet.
  • the connecting member 103 of the sensor module 105 When the subject inserts the connecting member 103 of the sensor module 105 into the hole 211 of the electrode sheet 106, the connecting member 103 may hit the separate film 107a and be difficult to insert. Therefore, the presence of the needle hole 515 allows the tip of the connecting member 103 to break a part of the separate film 107a using the needle hole 515 of the separate film 107a as a trigger, allowing it to come into closer contact with the hole 211. Become. This makes the conduction from the connecting member 103 to the needle member 101 more reliable.
  • the advantage of the needle holes 515 is that in the manufacturing process of the adhesive sheet 107, the adhesive sheet 107 and the separate film 107a are placed on a continuous line, such as roll-to-roll, using a rolling roll that is embossed with many pointed needles.
  • the needle hole 515 can be easily formed by passing the needle through a device that has been prepared.
  • the size and number of the needle holes 515 can be changed arbitrarily, and an opening in the shape of a circle or a polygon may be made instead of the needle hole.
  • FIG. 20 shows an example in which a conductive member 201 is used instead of the needle-like member 101 in FIG. 19 shown in the eighth embodiment. This structure enables the acquisition of biological signals.
  • an insulating film 112a is printed on the release film 111, except for the area 115 where the connecting member 103 is inserted in a later step, in the same manner as the procedure shown in the eighth embodiment.
  • the wiring member 102 is printed thereon.
  • an insulating film 112b is printed except for a region 114 where a conductive member 201 in place of the needle member 101 will be inserted later. Drying and curing after printing in the above steps are performed as needed.
  • a hole 211 for inserting the conductive member 201 instead of the needle-like member 101 and the connecting member 103 is penetrated with a hole punch.
  • the conductive member 201 is brought into contact with the wiring member 102 as shown in FIG.
  • the conductive member 201 is inserted inside the hole 211.
  • the wiring member 102 and the conductive member 201 are electrically connected, but if necessary, a conductive adhesive may be applied to the contact portion and its surrounding area.
  • the release film 111 is peeled off once before being supplied to the subject, and the conductive gel 208 containing electrolyte is removed. The process of pasting and re-pasting the release film is added.
  • the adhesive sheet 107 takes the form of being attached to the subject's skin in a manner that covers the entire electrode sheet 106 and sensor module 105 as in the above embodiments.
  • a sheet 221 in which a photocuring resin 222 is applied to a porous film or a PET film 223 may be used.
  • the photocurable resin 222 is a photopolymerizable resin, and includes bisphenol A-glycidyl methacrylate adduct (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), and other diacrylates and triacrylates. , mixtures, inorganic fillers such as quartz, silicon nitride, and glass, and composite materials (composite resins) containing organic composite fillers including organic materials may be used.
  • the light source for curing may be a halogen lamp, xenon lamp, UV lamp, or visible light. LEDs, UV light LEDs, etc. may also be used.
  • a sheet 221 in which a porous film or PET film 223 is coated with a photocuring resin 222 is pasted on the forehead, head, top of the head, body, hands, and feet.
  • the photocurable resin hardens, adheres, and holds the hair 232, thereby creating an anchor effect and achieving dry application.
  • the light source 231 may be pressed against the sheet 221 to irradiate the sheet 221, so that the photocurable resin 222 preferably becomes a thin film.
  • UV-A wavelength 315 to 400 nm
  • the necessary integrated light amount is preferably in the range of 1 mJ/cm 2 to 4000 mJ/cm 2 , more preferably in the range of 1 mJ/cm 2 to 2000 mJ/cm 2 , but ultimately an appropriate amount of light is selected in consideration of the effect on the human body. do.
  • the thin film-like photocurable resin can be crushed with fingertips, and the electrode sheet can be removed without much pain during peeling.
  • the tenth embodiment can be applied to fixing a bioelectrode device. This is particularly effective when the needle-like member is used as an electrode.
  • the electrode sheet 106 and the sensor module 105 are entirely covered, but by using the photocurable resin of the tenth embodiment, a needle-like shape is formed as shown in FIGS. 24 to 26.
  • the fixing 241 of the member and the fixing 242 of the sensor module 105 or the terminal 226 can be done separately using a sheet 221 in which a photocuring resin 222 is applied to a porous film or a PET film 223 in the same manner as in the tenth embodiment.
  • the eleventh embodiment is applicable not only to the tenth embodiment but also to fixation of a bioelectrode device. This is particularly effective when the needle-like member is used as an electrode.
  • the tenth embodiment or the eleventh embodiment can be attached to the forehead, head, top of the head, neck, trunk, hands, feet, etc., and can also be used as an electrode sheet for electrical therapy.
  • a biological electrode device comprising:
  • a biological electrode device comprising: The electrode sheet includes a sheet member that supports the electrode, the wiring member, the sensor module, and the connection member. Biological electrode device.
  • the biological electrode device according to aspect 1 or aspect 2,
  • the electrode is a needle-like member that is brought into contact with a living body and receives a bioelectrical signal.
  • Biological electrode device is a needle-like member that is brought into contact with a living body and receives a bioelectrical signal.
  • the biological electrode device according to aspect 1 or aspect 2,
  • the electrode sheet has at least a pair of conductive gels that are brought into contact with a living body and receive bioelectrical signals,
  • the electrode is a conductive member that receives bioelectrical signals from the conductive gel.
  • Biological electrode device is a conductive member that receives bioelectrical signals from the conductive gel.
  • a biological electrode device according to any one of aspects 1 to 4,
  • the sensor module wirelessly transmits a signal related to the bioelectrical signal to the outside.
  • Biological electrode device wirelessly transmits a signal related to the bioelectrical signal to the outside.
  • a biological electrode device according to any one of aspects 1 to 4,
  • the sensor module has a conductor that outputs a signal related to a bioelectrical signal to the outside,
  • the adhesive sheet is capable of fixing a part of the conductive wire to a living body, Biological electrode device.
  • a biological electrode device according to any one of aspects 1 to 6, comprising: The electrodes are arranged in a plurality of pairs and receive bioelectrical signals at a plurality of locations. Biological electrode device.
  • a biological electrode device according to any one of aspects 1 to 7, The electrodes are arranged in a plurality of pairs, and include electrodes for receiving bioelectrical signals and electrodes for electrical treatment that flow current through the living body. Biological electrode device.
  • a biological electrode device according to any one of aspects 1 to 8, comprising: the wiring member has a meandering pattern; Biological electrode device.
  • a biological electrode device according to any one of aspects 2 to 9, the wiring member has a meandering pattern; the sheet member has slits at arbitrary locations in the meandering pattern; Biological electrode device.
  • connection member is fixed to a portion where the wiring member is coated on the wall surface of the hole drilled in the sheet member with a fit tolerance of “medium fit” or “tight fit”; Biological electrode device.
  • a biological electrode device according to any one of aspects 1 to 10, The electrode is held between the wiring member and the adhesive sheet, and is fixed in such a manner that a protruding portion of the electrode is exposed through a hole made in the wiring member. Biological electrode device.
  • a biological electrode device according to any one of aspects 1 to 10 and 13, The connecting member is inserted and fixed into a hole drilled in the wiring member, Biological electrode device.
  • a biological electrode device according to any one of aspects 1 to 14, The adhesive sheet is porous. Biological electrode device.
  • a biological electrode device according to any one of aspects 1 to 16, The adhesive sheet has metal foil attached to it. Biological electrode device.
  • (Aspect 18) at least one pair of electrodes for receiving bioelectrical signals; a wiring member that transmits the received bioelectrical signal; a sensor module that outputs signals related to bioelectrical signals to the outside; a connecting member that connects the transmitted bioelectrical signal to the sensor module; an electrode sheet having a photocurable resin that can be attached to a living body in a manner that covers the electrode sheet;
  • a biological electrode device comprising:
  • Conductive gel 211... Hole, 221... Sheet, 222... Photocurable resin, 223... Porous Film or PET film, 226...Terminal, 231...Light source, 232...Hair, 241...Fixing of needle-like member, 242...Fixing of sensor module or terminal, 243...Wiring, 301...Forehead, 302...Gap, 401...Hole diameter , 402... Shaft diameter, 515... Needle hole, 901... Through hole, 1001... Meandering pattern, 1002... Slit, 1101... Elastomer material, 1102... Primer or adhesive, 1201... Part of sensor module, 1202... Mesh pattern, 1210...Full surface, 1211...Shape that covers only the electrode sheet portion, 1212...Shape that covers only the wiring member portion.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本発明は、低抵抗である電極シートの構造を提供し、皮膚と電極とセンサーモジュールの固定を強化して力のモーメントに起因するノイズを軽減するとともに、被験者の貼付時の装着感を軽減することを目的とする。このため、本発明の生体用電極装置は、生体電気信号を受信する少なくとも一対の電極と、受信した生体電気信号を伝達する配線部材と、生体電気信号に関連する信号を外部に出力するセンサーモジュールと、伝達した生体電気信号を前記センサーモジュールに接続する接続部材と、前記電極と前記配線部材と前記センサーモジュールと前記接続部材とを支持するシート部材とを有する電極シートと、前記電極シートを覆う形で生体に貼り付け可能な粘着シートとを備える。

Description

生体用電極装置
 本発明は、生体用電極装置に関する。
 現在、医療は高度に発達し、患者の血液、唾液、尿等の体液を分析することで、その容態を把握できるようになっている。例えば、唾液のpH測定によって虫歯の有無を判断することや、涙の血糖値を測定することで糖尿病の診断を行うこと等が研究されている。これらの検査は、例えば、患者が自身で体液を採取し、これを医療機関が測定及び解析することによって行われる。
 一方、患者が医療機関に出向くことなしに、自身で体液の測定及び解析を行うための装置も開発されている。これは、検査や解析の迅速化を可能とするのみならず、以下に説明するように、高齢化社会における医療コストを削減する手段として利用できる。
 一般に、体調不良を自己認識した後に、医療機関で診察を受ける。しかしながら、その段階では、末期的症状になっていることもある。この場合、高度な医療や高価な薬剤の投与が行われ、その結果、医療費負担が増大する。
 体調不良等を早期に発見することができれば、生活習慣を見直すこと等により、投薬等を必要としない軽度な治療で治癒できる可能性がある。そのため、健康保険組合が主催する予防医療として定期検診を実施する機関が増えてきている。
 しかしながら、定期検診は一般的に年1回から2回程度であるため、検診と検診との間に空白期間が生じ、この期間に発症した疾患については認識することができない。このように、現在の予防医療には限界がある。
 体液の測定及び解析を、医療機関に出向くことなしに、自身で行うことを可能とする装置を利用すれば、検査を高い頻度で行うことができる。それ故、体調の変化を、自覚する前に発見することが可能になる。従って、高度な医療や高価な薬剤の投与が必要な機会が減少し、医療コストの削減が可能になる。
 体液の情報を得るための方法としては、生体センサを皮膚や粘膜に貼り付けて、体内環境の情報をインビボ(生体内)で取得する方法がある。これによれば、生体の情報を時間差なしで取得できるが、生体に対してセンサを直接接触させるため、生体に及ぼす影響が大きく、装置として高い信頼性が必要である。
 生体センシングの手法としては、様々なものがあるが、血糖値の測定等では、微量成分を感度よく検出できるという理由で、電気化学的手法が広く用いられている。電気化学的手法では、化学的特性である生体情報を電気的信号として検出できるため、半導体デバイス等を用いて得られた信号を処理及び解析しやすいという利点がある。このため、新たな電気化学的センシング装置及びそれを用いたセンシング手法の開発が世界的に活発に行われている。
 一方、基板上に皮膚を穿刺可能な一または複数の微小な針状突起物(例えばマイクロニードル)を設けた針状部材を、生体の表皮に貼付して皮膚最外層である角質層を穿刺することにより、生体への医薬物の投与、または、生体からの血液の吸引抽出等も行われている。針状部材は様々なサイズや形状が提案されており、非侵襲的な投与方法・検査方法として期待されている。
 針状部材を用い、角質層の下層である表皮層,さらにはその下層の真皮層に穿刺させて、針状部材の先端部を到達させることで、それらの層に対して作用を行うことができる。医薬物の投与、または、生体からの血液の吸引抽出のほか、針状部材(またはプローブ)を電極として使用して、電気信号を印加し、応答を受信することで皮膚下層の情報を得ることや、また、電極間に電圧を印加して薬剤を浸透させることも提案されている。
 例えば、以下の特許文献1~2には、針状部材を用いた生体センシング装置に関する技術が記載されている。
 特許文献1では、被験者の皮膚の病状を診断するための医療装置が開示されている。この医療装置は、複数の電極を有した導電性のプローブを備えており、かつ、各電極は複数のマイクロニードルを具備している。このとき、各電極はシリコン基板で形成されたベース基板を有している。マイクロニードルは、この基板と一体に形成され、互いに横方向に間隔を空けた関係に配置され、角質層を貫通するのに十分な長さを有している。マイクロニードルは、少なくとも部分的に傾斜した形状に構成されている。さらに特許文献1に記載された発明は、この装置のための電極、マイクロニードルの配列、インピーダンス測定を用いた生物学的な状態の診断方法に関連している。この診断方法は癌、好ましくは基底細胞癌、悪性黒色腫、扁平上皮癌である皮膚癌、あるいはそのような病変の前駆体に特に関連している。
 特許文献2では、生物学的モニタリング装置が開示されている。マイクロニードルと可撓性のインターフェースを用いることが記載されおり、心電図、睡眠評価、歯ぎしり評価、睡眠時無呼吸、外傷性脳損傷に関連した技術が開示されている。
 昨今の生物学的モニタリングの方向性であるが、脳波計測においては、被験者の角質除去等の測定前処理を行わなければ、皮膚と電極間の接触インピーダンスの低減ができず、精度の上がった生体電気信号の取得が出来ないという課題に直面している。このことは、認知症、てんかん等の病気の予兆を早期にとらえたい被験者の心理的ストレス、物理的ストレスを伴うものでこれまで良い対策を打てていない。この心理的ストレス、物理的ストレスを極力削減できると、簡易的で精度が良く、ストレスフリーの脳波モニタリングが出来るというメリットが生まれる。また、角質層、皮下筋層へ直接、より簡易的に電極を装着することが出来ると、脳波などの生体モニタリングを行いながら、電気治療など逆に電極から電流を流し治療、効果の確認などオンタイムで実施することが可能となる。
特許第5001950号 特許第6606067号
 皮膚において生体電気信号を測定する際、測定波形には、ノイズが発生することがある。この影響により、本来見たい波形が見えにくくなり、測定に悪影響を及ぼす場合がある。ノイズの原因は、皮膚の角質層の抵抗にあると考えられることから、角質層に起因する電気抵抗を下げることが求められる。また、ノイズは、電極からその先のセンサーモジュールへ皮膚から得た生体電気信号を伝送する際に人間の動作やセンサーモジュールと電極の接続の不具合または密着不良によって生じる力のモーメントによっても発生することから、皮膚と電極とセンサーモジュールとをいかに密着させるかが課題である。
 特許文献2など、一般的に考慮されている態様によれば、リベット型スタッド形式(ボタン・トップ、スナップ相互接続)を採用している。リベット型スタッド形式では、皮膚に接触する電極を、肌に接着する接着剤層もしくは粘着剤、導電性ゲル等を伴う基材で貼り付けて、貼り付けた基材の肌側でない側つまり接着剤層もしくは粘着剤、導電性ゲル等が無いもう一つの基材面に配置したセンサーモジュールへ電気的導通を図る為に基材の厚さを貫通させてリベット型スタッドが設けられる。これにより、使い捨ての貼り付けタイプの電極パッチとセンサーモジュールの付け替えなどが容易にできている。
 しかしながら、電極パッチとセンサーモジュールの着脱が容易という事は、電極パッチとセンサーモジュールとの固定が不安定で、センサーモジュールのぐらつきなどがあるとノイズ発生のリスクが高くなるし、リベット型スタッド形式でなくても肌に接触する電極の位置と基材の厚さ分だけ肌の面から離れたセンサーモジュールの位置とを有する態様は、力のモーメント的にもセンサーモジュールが振れやすくノイズ発生のリスクが高い。
 さらに、リベット型スタッド形式の採用などにより、基材の表裏にセンサーモジュールや電極、配線などが混在すると、リベット型スタッドや積層材料、製造工程のコストがかさみ、使い捨ての貼り付けタイプを目指す上で大きなディスアドバンテージとなることは明らかである。
 また、装着性の観点からみると人間の皮膚に電極およびモジュールを貼り付けることは必須ではあるが、より強固に貼りつけることは、人間にとってより大きな装着感つまり不快感の増大につながる。従って、この不快感を軽減することも課題とされている。
 つまり、これらの課題を解決する為には、上述した針状の電極や複数の電極を有した導電性のプローブを配して角質層に起因する電気抵抗を下げることが出来ても針状の電極や複数の電極を有した導電性のプローブから取り出した生体電気信号を低抵抗のままで、センサーモジュールまで伝送することや、脳波計測に必要な多点計測を簡便に行う事や、被験者に電極を貼付した後の皮膚と貼付した電極界面で起きる蒸れや、皮膚との伸縮追従性、センサーモジュールとの一体感を同時に解決する電極シートが望まれており、そのような電極シートはいまだ開発途上である。
 特に、廉価な電極シートとなると量産性を考慮しなくてはならず、針状の電極や複数の電極を有した導電性のプローブからセンサーモジュールまでの配線を銀、カーボン、PEDOT等の導電性ペーストによる印刷技術に頼らざるを得ない。
 しかしながら、低抵抗の伸縮性のあるいわゆるストレッチャブル印刷配線となると配線一本を印刷できる印刷高さには限界があり、低抵抗の配線を維持する為に印刷線幅を拡大しなければならない。従って、少数の電極で生体電気信号を検出、モジュールまで伝送するのみであれば問題は無いのであるが、脳波計測等に必要な多点計測を行う為の電極シートを検討するとどうしても、印刷線幅が大きい為に面積の大きい電極シートとなり、例えば被験者の額に電極シートを貼ろうとしても貼れない事態や面積が大きい為に、皮膚との界面で蒸れが生じ不快感を与えることが予想される。
 また、針状の電極といっても、針状の電極の全体の大きさが加工の都合上数ミリの大きさとなり、電極シートへの埋め込みや電極シート上での導電性の維持が難しいという問題もあった。
 本発明は、上述の課題を解決するためになされたものであり、低抵抗である電極シートの構造を提供し、皮膚と電極とセンサーモジュールの固定を強化して力のモーメントに起因するノイズを軽減するとともに、被験者の貼付時の装着感を軽減することを目的とする。
 上記の課題を解決するために、代表的な本発明の生体用電極装置の一つは、生体電気信号を受信する少なくとも一対の電極と、受信した生体電気信号を伝達する配線部材と、生体電気信号に関連する信号を外部に出力するセンサーモジュールと、伝達した生体電気信号を前記センサーモジュールに接続する接続部材と、前記電極と前記配線部材と前記センサーモジュールと前記接続部材とを支持するシート部材とを有する電極シートと、前記電極シートを覆う形で生体に貼り付け可能な粘着シートとを備えるものである。
 本発明により、低抵抗である電極シートの構造を提供し、皮膚と電極とセンサーモジュールの固定を強化して力のモーメントに起因するノイズを軽減するとともに、被験者の貼付時の装着感を軽減することができる。
 上記した以外の課題、構成および効果は、以下の発明を実施するための形態における説明により明らかにされる。
図1は、第1実施形態に係る電極シートを示した図である。 図2は、第2実施形態に係る電極シートを示した図である。 図3は、被験者の額への電極シートの貼りつけを示した図である。 図4は、しまりバメを示した図である。 図5は、第1実施形態の被験者への実装方法を示した図である。 図6は、第3実施形態の被験者への実装方法を示した図である。 図7は、従来の装着方法を示した図である。 図8は、従来の装着方法を示した図である。 図9は、第4実施形態に係る電極シートを示した図である。 図10は、第5実施形態に係る電極シートを示した図である。 図11は、第6実施形態に係る電極シートを示した図である。 図12は、第7実施形態に係る電極シートを示した図である。 図13は、配線部材を印刷した後、型枠を取り外す工程を示した図である。 図14は、配線部材を印刷した後、パンチやポンチを使って貫通孔を形成する工程を示した図である。 図15は、第8実施形態に係る電極シートを示した図である。 図16は、第8実施形態に係る電極シートの製造工程を示した図である。 図17は、第8実施形態に係る電極シートの製造工程を示した図である。 図18は、第8実施形態に係る電極シートの製造工程を示した図である。 図19は、第8実施形態に係る電極を示した図である。 図20は、第9実施形態に係る電極を示した図である。 図21は、第8実施形態に係る電極シートを示した図である。 図22は、第10実施形態に係る電極シートを示した図である。 図23は、第10実施形態に係る電極シートを示した図である。 図24は、第11実施形態に係る電極シートの概要図である。 図25は、第11実施形態に係る電極シートの電極固定の概要図である。 図26は、第11実施形態に係る電極シートのモジュールまたはターミナル固定の概要図である。
 以下、図面を参照して、本発明の実施形態について説明する。なお、この実施形態により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。
 本実施形態は、生体から発生する電気信号を直接または間接的に取り出す導電性のある電極とセンサーモジュールを人間の肌に密着させる構造である。
 本実施形態は、電極とセンサーモジュールが、電極シートの同一面にもしくは電極シート片側に配置され、実装されることとなり、肌面に電極とセンサーモジュールが接触した状態で、粘着シートで固定できる。また、片側に実装することによる材料の軽減、製造工程の節減によるコスト減が図れる。
 図1に示す様に、生体に接触させ生体電気信号を受信する少なくとも1対の電極組からなる針状部材101と、受信した生体電気信号電圧を伝達する配線部材102と、前記生体電気信号電圧を外部に出力するセンサーモジュール105に接続された接続部材103を有し、針状部材101、配線部材102、絶縁膜108、接続部材103、シート部材104、センサーモジュール105を一体とした電極シート106を最上層の粘着シート107にて、全て覆う形で皮膚との貼合支持を行い、針状部材101とセンサーモジュール105が生体に接触した状態となり、少なくとも前記配線部材と、シート部材、最上層の粘着シートが伸縮性と弾性を有することが特徴である。
 具体的には、図1に示す電極シート106においては、センサーモジュールから接続部材103が、2本左右対称で突出している。この2本の接続部材それぞれに対し、針状部材101から受信した生体電気信号の電圧が配線部材102を経由して接続され、センサーモジュールが得られた電圧を受信する。この受信における針状部材101からセンサーモジュールまでの経路が生体の皮膚と一体感を得れば得るほど生体の運動などによる動作が原因によるセンサーモジュールの揺動、グラツキによるノイズの発生を抑えることができる。
 そこで、前記センサーモジュール105と針状部材101が皮膚に密着するように、図1の針状部材101先端とセンサーモジュール105が皮膚表面に近い位置になるように電極シート106を形成し、生体肌面に貼りつけた後、針状部材101先端とセンサーモジュール105とは反対の面に粘着シートを電極シート106、センサーモジュール105の全体を覆う形で貼り付ける。この時の電極シート106およびセンサーモジュール105に対する粘着シートの面積比は、電極シート106とセンサーモジュール105が占める面積を1とした場合、粘着シートの面積は、5から6以上であることが望ましく、これにより電極シート106とセンサーモジュール105の安定した固定が実現する。
(針状部材)
 針状部材101は、針状部材自体が導電性を既に持っているものでもよいし、針状部材表面全面に導電層を被覆してもよい。
 針状部材101には、針状突起物(以下、単に「針」という。)が患者の皮膚を押し又はこの中に穿刺できるように配置されている。かかる押圧又は穿刺は、皮膚の電気抵抗を減少させる。針状部材101には、数十μmオーダーの断面を備えた針がそれほどの外傷を生じさせないで生きている組織を穿刺することができるように配置されている。
 針状部材101は、針を配置する為の支持体101aを有するのが好ましい。また、針状部材101は、支持体101aの上方に突き出た複数本の針があることが望ましく、50ミクロンから300ミクロンまでの範囲にわたる長さを有するのが良く、更に、針外周は10ミクロンから250ミクロンまでの外径範囲を有するのが良い。針の長さ、および針外周の外形範囲については、針状部材101の固定方法によって、針の長さが足らなくなることもあり、300ミクロン以上、例えば800ミクロン以上の長さを有しても良く、かつそれに伴う針外周の外形範囲についても250ミクロン以上を有しても良い。
 針状部材101の針は、種々の形状及び形態を取ることができる。例えば、遠位端は、尖っていても良く、或いは尖っていなくても良く、又、斜切形態、放物線形態、先端部が平坦な形態、先端部が尖った形態、先端部が尖っていない形態、先端部が丸みを帯びた形態、テーパ付き形態及び/又はテーパ付きの円錐状の形態を取ることができる。針状部材は、単一の針又は単一の列をなす針を備えた器具とは対照的に、多次元アレイとして提供されてもよい。
 針状部材101は、針の面積、向き、高さ又は他のパラメーターを組み合わせた形態を含むことができる。例えば、導電層は、その表面積が大きいほど、電極としての有効表面積がそれだけ大きくなり、それにより、皮膚の電気抵抗を減少させることができる。また、針状部材101が皮膚に刺さりやすく、電気抵抗を減少させやすくしてあれば、導電層の面積を小さく工夫することも可能である。導電層の厚みとしては、約0.05μm~5μmであることが好ましい。これより薄いと、導電性が保たれず、これより厚いと、基材との密着性が損なわれる懸念が生じる。
 針状部材101は、小さな機械的構造体を金属、ポリマー及び他の材料で作ることにより公知の微細加工プロセスによって作られる。これら微細加工プロセスは、集積回路、電子パッケージ及び他のマイクロ電子デバイスを作製するために用いられる確立された方法を微細加工分野で用いられている追加の方法で補ったやり方に基づいている。
 本明細書において開示する針状部材101の製作の際に利用できる微細加工プロセスとしては、リソグラフィ、エッチング技術、例えばウェットエッチング、ドライエッチング及びフォトレジスト除去、電気メッキ及び無電極メッキ、拡散プロセス、例えば硼素拡散、リン拡散、砒素拡散及びアンチモン拡散、イオン打ち込み、膜被着、例えば蒸着(フィラメント、電子ビーム、フラッシュ及びシャドーイング・ステップカバレージ)、スパッタリング、化学蒸着(CVD)、エピタキシー(気相、液相及び分子ビーム)、電気めっき、スクリーン印刷、貼り合わせ、光造形、レーザ加工及びレーザアブレーション(投影アブレーションを含む)が挙げられる。
 針状部材101は、以下の範囲に属する導電性材料から作られ、かかる導電性材料としては、金属、セラミック、半導体、有機物、ポリマー及び複合材が挙げられるが、これらには限定されない。好ましい材料としてはニッケルチタン合金、医用ステンレス鋼、金、チタン、ニッケル、鉄、金、白金、錫、クロム、銅、これらの材料又は他の材料の合金、珪素、二酸化珪素、容量性炭素(capacitive carbon)、黒鉛及びポリマーが挙げられる。ポリマーについては、具体的には、高導電性PEDOT:PSS(ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)とポリスチレンスルホン酸(PSS)から成る複合物)が挙げられる。理想的な実施形態としては、導電性材料であり、かつ生体適合性材料でもある材料、例えばニッケルチタン合金、チタン又は医用ステンレス鋼、銀/塩化銀、塩化銀を用いる。
 さらに、針状部材101を原版とし、複製版を介した転写成形技術により、針状部材101の成形品を作製することができる。成形方法の一例として、熱転写成形、ソフトリソグラフィ成形や射出成形を用いても良い。さらに上記導電性材料をコーティングすることによって、基材は転写成形品で、表面は導電性の針状部材を得ることも可能である。転写成形により得られた針状部材の成形品については、皮膚を穿刺する上で生体安全性が担保されたポリマーの中から選択されることが望ましい。例えば、ポリカーボネート、ポリスチレン、エポキシ樹脂、ポリエチレン、ポリメチルメタクリレート、ポリグリコール酸などが用いられる。
 上述の例示の針状部材101に加えて、針状部材101は、垂直に見て円形断面を有するシャフトを備えることができ又はこの断面は、非円形であっても良い。例えば、針状部材の断面は、多角形(例えば、星形、正方形、三角形、円形)、長円形又は別の対称若しくは非対称の形状であってもよく、又はそれどころか、針状部材は、擬似角錐体(角錐の先端部をより尖らしたり、一部を凹ましたりした、角錐に類似した形状)、円錐体、多面体、角錐(ピラミッド)、角柱(プリズム)を含む構造であっても良い。
 ほとんどの実施形態では、針は、支持体101aに対して垂直に又は別の角度をなして差し向けられるのが良い。好ましくは、針は、支持体101aの単位面積当たりの針の密度が高くなるよう支持体101aに垂直に差し向けられる。しかしながら、針は、針の種々の向き、種々の高さ又は他のパラメーターの組み合わせを含むのが良い。さらに、針の長さは、針間において、同一であっても良いし、同一でなくとも良い。
 針は、特定の針密度(特定の領域内の針の本数)を有しても良い。例えば、針相互間の離隔距離の有用な範囲は、100~1400ミクロン、より好ましくは100~400ミクロンである。上述の外径及び針の長さも又、重要であり、離隔距離との組み合わせにより、針が実際に皮膚の角質層を穿刺するかどうかが極めて重要である。実施形態の一例としては、針は、少なくとも約10本/cm、より好ましくは少なくとも約200~2000本/cmの針密度を有する。また、こられの針密度は、皮膚に針が穿刺される深さを均一にすることに寄与する。
 本実施形態では、針状部材を当てる生物学的バリア、例えば皮膚の輪郭形状に合うことができるようにするために柔軟性を有していても良い。皮膚への穿刺は、生体用電極の取り付け面のばらつきによって制限される場合が想定され、例えば、人間の皮膚の表面は、しわや、体毛に起因して平坦ではないことが皮膚への穿刺が制限される理由である。柔軟性とは、1cmの範囲の両端に4kgfの荷重をかけたときに、0.1mm以上5mm以下歪むことであってもよい。
(導電性部材)
 本実施形態に使用する導電性部材は、針状部材が高価であるとすると廉価な位置づけで使用する。針状部材は、皮膚に直接穿刺し、生体電気信号を取得するが、導電性部材は、針状部材の部分と置き換わる形で電極シート106に装填されて、皮膚と導電性部材の間に電解質を含んだ導電性ゲルを介在させて、生体電気信号を取得する。
 導電性部材は、以下の範囲に属する導電性材料から作られ、かかる導電性材料としては、金属、セラミック、半導体、有機物、ポリマー及び複合材が挙げられるが、これらには限定されない。好ましい材料としてはニッケルチタン合金、医用ステンレス鋼、金、チタン、ニッケル、鉄、金、白金、錫、クロム、銅、これらの材料又は他の材料の合金、珪素、二酸化珪素、容量性炭素(capacitive carbon)、黒鉛及びポリマーが挙げられる。ポリマーについては、具体的には、高導電性PEDOT:PSS(ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)とポリスチレンスルホン酸(PSS)から成る複合物)が挙げられる。理想的な実施形態としては、導電性材料であり、かつ生体適合性材料でもある材料、例えばニッケルチタン合金、チタン又は医用ステンレス鋼、銀/塩化銀、塩化銀を用いる。
(配線部材)
 本実施形態の生体用電極に係る配線部材の構造について詳細に説明する。本実施形態における配線部材は、スクリーン印刷法を使用して形成される。本スクリーン印刷法は、本出願人による先願である特願2021-105169号の明細書および図面において詳細に説明されている。ただし、ロータリースクリーン印刷法などのスクリーン印刷法以外の印刷法、特願2021-105169号の明細書に示す印刷法以外のスクリーン印刷法で本実施形態を実現しても良い。
 本実施形態の生体用電極の配線部材の形成に係る、本スクリーン印刷法は、高いアスペクト比(印刷の厚みが厚い)の印刷を得意とし、先願である特願2021-105169号の明細書に示す特徴であるビア内への充填と高アスペクト比の配線印刷を同時に行う技術を使うことによって、今回実現した。
 本実施形態に使用できる配線部材は、フィラーとバインダーの混合物(主剤)とバインダーの溶剤である主溶剤に対し、非相溶の添加剤を含んだ塗布剤を印刷用インキとして印刷した配線部材である。
 配線部材に使用できるフィラーは、無機フィラーと有機フィラーが本実施形態において使用できる。無機フィラーとは、金属と非金属に分類される。有機フィラーとは、主に高分子組成物のことである。
 金属には、貴金属、卑金属があり、例えば貴金属では、金、銀、白金、パラジウムがあり、卑金属は鉄、銅、ニッケル、アルミニウム、鉛、亜鉛、すず、タングステン、モリブデン、タンタル、マグネシウム、コバルト、ビスマス、カドミウム、チタン、ジルコニウム、アンチモン、マンガン、ベリリウム、クロム、ゲルマニウム、バナジウム、ガリウム、ハフニウム、インジウム、ニオブ、レニウム、タリウムがある。特に金、銀、銅が本実施形態に有用である。非金属は、前記金属以外の元素のことであるが、例えば、反応性による分類では、反応性非金属として水素、炭素、窒素、酸素、フッ素、リン、硫黄、塩素、臭素、セレン、ヨウ素、アスタチン、貴ガスとしてヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン、非金属のような化学的性質をもつ半金属としてホウ素、ケイ素、ゲルマニウム、ヒ素、アンチモン、テルルなどがある。
 ただし、無機フィラーには、複数の元素が化学結合した物質例えば、炭酸カルシウム、シリカ、カーボンブラック、黒鉛、カーボンナノチューブ、アルミナ、窒化アルミニウム、窒化ホウ素、べリリア、チタン酸バリウム、チタン酸ジルコン酸鉛、フェライト、CMC(carboxymethyl cellulose)、酸化チタン、ガラスビーズ、酸化マグネシウム、ハイドロタルサイト、硫酸バリウム、酸化チタン、酸化亜鉛、酸化鉄、酸化カルシウム、酸化マグネシウム、ゼオライト、酸化カルシウム、酸化マグネシウムなども含まれる。
 有機フィラーである高分子化合物は、前記無機フィラーを化学的に、付加重合、縮合重合、付加縮合、共有結合といった化学反応によって一次元構造的に結合し糸状又は鎖状に形成された線状高分子化合物や三次元構造的に共有結合等で結ばれた構造を持つ網目状高分子化合物などがある。
 配線部材に使用する無機フィラーは、銅、銀、ケイ素、などが酸素、水素、炭素などと化学結合をした無機化合物であって、電気導電性、熱伝導性を有する金属原子を基軸としたものを指し、特にシロキサン結合などを有するものが好ましい。
 有機フィラーとしては、ポリウレタンなどウレタン結合を有する重合体で、通常イソシアネート基と水酸基を有する化合物の重付加により生成され、ウレタン(-NH・CO・O-)が介する結合を持ったウレタン樹脂、またはウレタンゴムアクリル樹脂など、アクリル酸エステルあるいはメタクリル酸エステルの重合体でできた合成樹脂、アミド結合(たんぱく質と同じ結合)を持つ高分子化合物、高分子化合物の高導電性PEDOT:PSS(ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)とポリスチレンスルホン酸(PSS)から成る複合物)などが使われる。
 フィラーの形状は、球形状、扁平状、針状、多角形などであり、粒径が0.1μmから数十μmであることが好ましい。
 配線部材に使用できるバインダーとは、熱硬化性樹脂や光硬化樹脂、熱可塑性樹脂がある。
 熱硬化性樹脂は、前記有機フィラーの付加重合、縮合重合、付加縮合、共有結合といった化学反応前の状態のもので、比較的低分子の物質が加熱により高分子の三次元架橋構造(網状構造)となるフェノール樹脂、アミノ樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、シリコーンゴムといったもので、一度硬化したあとは加熱しても再び軟化することが無い樹脂である。
 熱硬化性樹脂は、常温から高温まで反応温度帯が様々で、付加重合、縮合重合、付加縮合、共有結合等によって反応する。例えば、シリコーンゴムといったエラストマーは、ケイ素原子と酸素原子が交互に並んだシロキサン結合(Si-O-)をポリマー骨格(主鎖)とするポリオルガノシロキサン(シリコーンポリマー)が主原料であるが、HTV(High Temperature Vulcanizing rubber、高温硬化ゴム)、LTV(Low Temperature Vulcanizing rubber、低温硬化ゴム)、RTV(Room Temperature Vulcanizing rubber、室温硬化ゴム)に分けることができる。HTVの硬化温度は140℃以上、LTVは、40-140℃、RTVは0-40℃となっているが、多様化によりHTV、LTVの境界がなくなっており、単純に、加熱硬化と室温硬化タイプで分けることが多くなっている。
 また、硬化前の性状により固形状のミラブルタイプ(HCR;High Consistency Rubber)と液状タイプに分けることができ、液状タイプにはLSR(Liquid Silicone Rubber、液状シリコーンゴム)とRTVの製品群が含まれる。HCRでは重合度5000~10000程度の直鎖状ガムが使用されるのに対し、液状シリコーンゴム(LSR、RTV)の場合は重合度100~2000程度の直鎖状ポリマーを主成分としている。さらに、架橋機構により過酸化物硬化、付加反応硬化、縮合反応硬化に分類できる。
 光硬化樹脂とは特定の波長の光によって重合、硬化する樹脂のことである。要するに、バインダーは前記のような化学反応または固着や接着前の熱硬化性樹脂、光硬化樹脂、熱可塑性樹脂等のことである。
 配線部材に使用するバインダーとして、ウレタン結合を有するブロック共重合体であるポリウレタン系熱可塑性エラストマー、熱可塑性ポリウレタン、熱硬化性ウレタンエラストマー、ポリエステル系、アクリルゴムとポリプロピレン、ポリエステルを主成分として構成されるアクリル系エラストマー、メタクリル酸メチルとアクリル酸ブチルのブロック共重合体を有する熱可塑性エラストマーなど、ゴム弾性的かつ多孔質性を有する樹脂が適用できる。
 さらに好ましくは、シロキサンを含む材料を用いることが好ましい。シロキサンは、ケイ素(Si)と酸素(O)が交互に結合してポリマーが形成された状態のことをいい、シロキサン結合と呼ばれるシリコーンの主骨格となっている。特に、シロキサン化合物を骨格としたシリコーンエラストマーは、電極のフレキシブルまたはストレッチャブルな特徴をより有効にする要素が高い。
 本実施形態に使用できる配線部材を形成できるパターン配線印刷用インキは、一般的な印刷用途で使用する印刷用インキと全く異なる考え方で定義する。一般的な印刷用インキは、印刷用インキに含まれているバインダーに対し、溶解性パラメーター(Solubility Parameter:以下SP値と略す。)の差が小さいものを混合させ使用されている。SP値の差が小さい2つの成分は混ざりやすい(溶解度が大きい)ため、印刷時の取り扱い性や、印刷物の平滑性、被印刷物との密着性等を担保することができる。
 しかしながら、本実施形態においては、一般的な印刷用インキの概念とは異なり、印刷用インキに含まれている無機フィラーまたは有機フィラーもしくは/およびバインダーに対し、SP値の差が大きい添加剤を使用することにより、充填圧力により添加剤を滑剤として滲みださせることが可能となる。
 前述のように、印刷用インキのバインダーとして、シロキサン化合物を骨格としたシリコーンエラストマーを使用した場合は、非水溶性であるため、水溶性溶剤を添加剤として用いることが好ましい。さらに、エラストマーというゴム弾性的かつ多孔質性を有することから、多孔質内に水溶性溶剤が浸透、含浸した状態となる。このような印刷用インキを印刷に使う事で、印刷用インキに加えられる圧力、せん断によって含浸された添加剤が染み出し、版と印刷用インキとの界面に被膜を形成し、滑剤として滑り性を発現しやすい。
 本実施形態に使用する印刷用インキの構成の例として、銀、カーボンといった導電性を有する材料をフィラーにもちい、シリコーンポリマーをバインダー、主溶剤(例えばジメチルシロキサン、ドデカメチルペンタシロキサン等の鎖状シロキサン、オクタデカメチルシクロノナシロキサン等の環状シロキサン)もしくはノルマルウンデカン他、脂肪族水素等を主体とする溶剤を主剤とし、添加剤を添加した構成があげられる。この場合、バインダーが非水溶性であるので、添加剤は水溶性とする。
 ゴム(バインダー)と油(添加剤)の混合を例にして、本実施形態に使用する印刷用インキについて説明を行う。ゴム(バインダー)と油(添加剤)を混合した場合、ゴムは膨潤する。これは、ゴムの分子間に油が入り込む現象で、油(添加剤)がゴム(バインダー)と混ざりやすければ膨潤し、混ざり難ければ膨潤し難く、ゴム(バインダー)の分子間に入り込んだとしても圧縮などの環境下などではゴム表面に滲み出てしまうという事になる。
 つまり、印刷用インキのバインダーが非水溶性の場合、水溶性溶剤の添加剤を添加することで、極性の異なる物質、SP値の差が大きい物質同士は、お互いに混ざり難いという事から、印刷用インキ表面に水溶性溶剤である添加剤が染み出す状態が形成される。
 印刷用インキのバインダーが水溶性の場合には、添加剤として非水溶性溶剤を用いる。すると、前述と同じメカニズムにより、印刷用インキ表面に非水溶性溶剤が染み出し、滑剤として作用する。
 印刷用インキに使用する主溶剤および添加剤には、非水溶性溶剤、水溶性溶剤が使用できる。一般的に充填剤、印刷法などで使用される印刷用インキに含まれる溶剤としては、以下の構造式(1)で表される化合物(但し、モノヒドロキシステアリン酸を除く)を含む組成物が使用できる。
  R1-CH-R2 (1)
(式中、R1はモノヒドロキシアルキル基を示し、R2はカルボキシル基(C(=O)OH)又はアミド基(C(=O)NH)を示す)
 溶剤として具体的には、n-ヘプタン(SP値:7.3)、酢酸2-(2-エトキシエトキシ)エチル(SP値:9.0)、エチレングリコールモノエチルエーテルアセテート(SP値:8.8)、n-プロパノール(SP値:11.8)、1,2,5,6-テトラヒドロベンジルアルコール(SP値:11.3)、ジエチレングリコールエチルエーテル(SP値:10.9)、3-メトキシブタノール(SP値:10.9)、トリアセチン(SP値:10.2)、プロピレングリコールモノメチルエーテル(SP値:10.2)、シクロペンタノン(SP値:10.0)、γ-ブチロラクトン(SP値:9.9)、シクロヘキサノン(SP値:9.9)、プロピレングリコール-n-プロピルエーテル(SP値:9.8)、プロピレングリコール-n-ブチルエーテル(SP値:9.7)、ジプロピレングリコールメチルエーテル(SP値:9.7)、1,4-ブタンジオールジアセテート(SP値:9.6)、3-メトキシブチルアセテート(SP値:8.7)、プロピレングリコールジアセテート(SP値:9.6)、乳酸エチルアセテート(SP値:9.6)、ε-カプロラクトン(SP値:9.6)、1,3-ブチレングリコールジアセテート(SP値:9.5)、ジプロピレングリコール-n-プロピルエーテル(SP値:9.5)、1,6-ヘキサンジオールジアセテート(SP値:9.5)、ジプロピレングリコール-n-ブチルエーテル(SP値:9.4)、トリプロピレングリコールメチルエーテル(SP値:9.4)、トリプロピレングリコール-n-ブチルエーテル(SP値:9.3)、ウンデカン(SP値:15.8)、デカン(SP値:15.8)、ドデカン(SP値:16.0)、シクロヘキサノールアセテート(SP値:9.2)、ジエチレングリコールモノエチルエーテルアセテート(SP値:9.0)、エチレングリコールメチルエーテルアセテート(SP値:9.0)、ジエチレングリコールモノブチルエーテルアセテート(SP値:8.9)、エチレングリコールモノブチルエーテルアセテート(SP値:8.9)、メチルアセテート(SP値:8.8)、エチルアセテート(SP値:8.7)、プロピレングリコールモノメチルエーテルアセテート(SP値:8.7)、n-プロピルアセテート(SP値:8.7)、ジプロピレングリコールメチルエーテルアセテート(SP値:8.7)、3-メトキシブタノールアセテート(SP値:8.7)、ブチルアセテート(SP値:8.7)、イソプロピルアセテート(SP値:8.5)、テトラヒドロフラン(SP値:8.3)、ジプロピレングリコールメチル-n-ブチルエーテル(SP値:8.0)、ジプロピレングリコールメチル-n-プロピルエーテル(SP値:8.0)、ジプロピレングリコールジメチルエーテル(SP値:7.9)、プロピレングリコールメチル-n-ブチルエーテル(SP値:7.8)、プロピレングリコールメチル-n-プロピルエーテル(SP値:7.8)、ジメチルシロキサン(SP値:7.5)等を挙げることができる。
 本実施形態においては、SP値は選択する溶剤の参考とした位置づけでしかなく、重要なのは非水溶性か水溶性かを判断し、主溶剤の真逆の溶剤を添加する組み合わせである。
 非水溶性と水溶性の定義であるが、第4類危険物の水溶性液体についての定義を示す。第4類危険物は、引火性液体である。さらに(a)水に溶けるもの(水溶性)、(b)水に溶けないもの(非水溶性)に分けられる。
 これらは政令上、次のように定義されている。水溶性液体は、1気圧20℃で同容量の純水との混合液が均一な外観を維持するもので、非水溶性液体は水溶性液体以外のものとし、非水溶性の液体は、水と混合したときふたつの層に分かれる。液体の比重が水より小さければ水の層の上に、比重が水より大きければ水の層より下に、非水溶性の層ができる。水溶性液体の場合、混合すると層が分かれることなく均一になる。特殊引火物のジエチルエーテルや第1石油類の酢酸エチルなどのように水にわずかに溶けるものもあるが、定義上、非水溶性に分類される。
 従って、上記定義をもとに分類すると、水溶性溶剤は、酢酸2-(2-エトキシエトキシ)エチル(SP値:9.0)、エチレングリコールモノエチルエーテルアセテート(SP値:8.8)、n-プロパノール(SP値:11.8)、1,2,5,6-テトラヒドロベンジルアルコール(SP値:11.3)、ジエチレングリコールエチルエーテル(SP値:10.9)、3-メトキシブタノール(SP値:10.9)、プロピレングリコールモノメチルエーテル(SP値:10.2)、γ-ブチロラクトン(SP値:9.9)、プロピレングリコール-n-プロピルエーテル(SP値:9.8)、ジプロピレングリコールメチルエーテル(SP値:9.7)、乳酸エチルアセテート(SP値:9.6)、ε-カプロラクトン(SP値:9.6)、トリプロピレングリコールメチルエーテル(SP値:9.4)、トリプロピレングリコール-n-ブチルエーテル(SP値:9.3)、ジエチレングリコールモノエチルエーテルアセテート(SP値:9.0)、エチレングリコールメチルエーテルアセテート(SP値:9.0)、酢酸ジエチルエーテル(SP値:9.0)テトラヒドロフラン(SP値:8.3)、ジプロピレングリコールメチル-n-ブチルエーテル(SP値:8.0)、ジプロピレングリコールメチル-n-プロピルエーテル(SP値:8.0)、ジプロピレングリコールジメチルエーテル(SP値:7.9)、プロピレングリコールメチル-n-プロピルエーテル(SP値:7.8)である。
 非水溶性溶剤は、ウンデカン(SP値:15.8)、デカン(SP値:15.8)、ドデカン(SP値:16.0)、トリアセチン(SP値:10.2)、シクロペンタノン(SP値:10.0)、シクロヘキサノン(SP値:9.9)、プロピレングリコール-n-ブチルエーテル(SP値:9.7)、1,4-ブタンジオールジアセテート(SP値:9.6)、3-メトキシブチルアセテート(SP値:8.7)、プロピレングリコールジアセテート(SP値:9.6)、1,3-ブチレングリコールジアセテート(SP値:9.5)、ジプロピレングリコール-n-プロピルエーテル(SP値:9.5)、1,6-ヘキサンジオールジアセテート(SP値:9.5)、ジプロピレングリコール-n-ブチルエーテル(SP値:9.4)、シクロヘキサノールアセテート(SP値:9.2)、ジエチレングリコールモノブチルエーテルアセテート(SP値:8.9)、エチレングリコールモノブチルエーテルアセテート(SP値:8.9)、メチルアセテート(SP値:8.8)、エチルアセテート(SP値:8.7)、プロピレングリコールモノメチルエーテルアセテート(SP値:8.7)、n-プロピルアセテート(SP値:8.7)、ジプロピレングリコールメチルエーテルアセテート(SP値:8.7)、3-メトキシブタノールアセテート(SP値:8.7)、ブチルアセテート(SP値:8.7)、イソプロピルアセテート(SP値:8.5)、プロピレングリコールメチル-n-ブチルエーテル(SP値:7.8)、ジメチルシロキサン(SP値:7.5)である。
 本実施形態に使用する印刷用インキに含まれるフィラーとバインダーの総重量を100部とした場合、フィラーが50~99.9部であってもよい。具体的には、充填剤、印刷用途などに使用される銀ペースト、銅ペースト等を主剤としても良い。
 印刷用インキの添加剤は、塗布剤に含まれるフィラーとバインダーの総重量100部とした場合、0.1部から50部の範囲で調整を行うことが好ましい。
 本実施形態に使用される印刷用インキには、バインダーと親和性の良い相溶性のある溶剤が存在していてもよい。相溶性のある溶剤が存在する事で、無機フィラーまたは有機フィラーとバインダーの混合物(主剤)と被印刷物との密着性、導電性、導通性等を担保することが可能となる。それらの性質を維持したまま、滑り性が得られるからである。添加量が上記範囲外であると、主剤であるエラストマーなどの化学結合が、損傷、分離し、物理的に脆い性質となり、印刷が困難となる。仮に印刷できたとしても弾性力を失ったり、導電性や熱伝導性を著しく失うことがある。
 本実施形態に使用される印刷用インキは、スキージ掃引の際の印刷用インキへの加圧により塗布剤内の滑剤が滲み出るという作用が生ずる。従って、マスク界面からの塗布剤の剥離が促され、塗布剤が凝集破壊を起こさずに基材に転写されるので、断面形状が略矩形で対向側面がほぼ垂直に立ち上がった配線部材が得られる。ただし、本実施形態では必ずしも断面形状が略矩形で対向側面がほぼ垂直に立ち上がらなくても良い。
(シート部材)
 本実施形態に係る配線部材の配線パターンを印刷する対象となるシート部材に用いるフレキシブルシートまたはストレッチャブルシートについて説明する。
 本実施形態に使用できるフレキシブルシートまたはストレッチャブルシートは、OPP(2軸延伸ポリプロピレン)、CPP(無延伸ポリプロピレン)、HDPE(高密度ポリエチレン)、MDPE(中密度ポリエチレン)、LDPE(低密度ポリエチレン)、L-LDPE(直鎖状低密度ポリエチレン)、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、O-NY(ナイロン)、PA(ポリアミド)、EVAC(EVA樹脂)、PVC(ポリ塩化ビニル)、SAN(AS樹脂)、ABS(ABS樹脂)、PMMA(メタクリル樹脂)、PVAL(ポリビニルアルコール)、PVDC(塩化ビニリデン樹脂)、PC(ポリカーボネート)、POM(アセタール樹脂)、PBT(ポリブチレンテレフタレート)、PTFE(ふっ素樹脂)、PF(フェノール樹脂)、MF(メラミン樹脂)、UF(ユリア樹脂)、PUR(ポリウレタン)、EP(エポキシ樹脂)、UP(不飽和ポリエステル樹脂)、PS(ポリスチレン)、KOP(ポリ塩化ビニリデンコートOPP)、AL(アルミニウム箔)、AOP(PVAコートOPP/トーセロ)、PTセロハン(plain transparent、普通のセロハン)、MSTセロハン(moisture proof cellophane、防湿セロハン、PVCをコートしたもの)、Kセロハン(PVDCをコートしたもの)、VM(アルミ蒸着フィルム、透明蒸着フィルム)、共押出しフィルム(コ・エクストルージョンフィルム)、不織布、NR(天然ゴム)、IR(イソプレンゴム)、BR(ブタジェンゴム)、SBR(スチレン・ブタジェンゴム)、IIR(ブチルゴム)、NBR(ニトリルゴム)、EPM(ethylene-propylene rubber)、EP(epoxy resin)、EPDM(エチレン・プロピレンゴム)、CR(クロロプレンゴム)、ACM(Acrylic rubber、エチルアクリレートとクロロメチルビニルエーテルの共重合体)、ANM(Acrylic rubber、n-ブチルアクリレートとアクリロニトリルの共重合体)、CSM(クロロスルホン化ポリエチレンゴム)、PUR(polyurethane resin)、U(ウレタンゴム)、Si(silicone resin)、Q(シリコーンゴム)、VMQ(ビニル基とメチル基が付いたシリコーンゴム)、SR(シリコーンゴム)、FKM(fluororubber、フッ化ビニリデン系ゴム)、FPM(フッ素ゴム)、EVA(エチレン・酢酸ビニルゴム)、CO(Epichlorohydrin rubber、エピクロロヒドリンの単独重合体)、ECO(エピクロルヒドリンゴム)、T(多流化ゴム)、銅箔などから構成され、単層または2層以上の貼合フィルムの形態で用いることができる。
 なお、以下の開示において、フレキシブルシートについて言及する場合は、特段の事由がない限り、当該フレキシブルシートをストレッチャブルシートに置き換えることが可能である。そして、本実施形態においてもシート部材104は単層または2層以上の貼合フィルムの形態を任意にとることができる。
 例えば、配線部材がウレタン系の印刷用インキでパターン印刷される場合は、印刷表層にウレタン系のフィルムを選択し、その下層に剛性を持たせる為に例えばPETフィルムを選択することが出来る。ここでウレタン系のフィルムとPETフィルムの間に密着性を向上するプライマー、接着層を挟んでも良い。さらに、PETフィルムの下層にも他の種類のシートやプライマー、接着層を任意に積層しても良い。配線部材がシリコーン系の印刷インキでパターン印刷される場合は、印刷表層にシリコーン系のフィルムを選択し、その下層に剛性を持たせる為に例えばPETフィルムを選択することが出来る。ここでシリコーン系のフィルムとPETフィルムの間に密着性を向上するプライマー、接着層を挟んでも良い。さらに、PETフィルムの下層にも他の種類のシートやプライマー、接着層を任意に積層しても良い。
 ここで、上記シート部材の製膜時に必要なベースとなるフィルムや印刷時などの取り扱い性、防汚性を考慮した保護フィルムを設けても良く、ベースフィルムの素材は、PETフィルム、ポリエチレンフィルムなどでよく、限定はしない。
 上記要領で、単層または積層したシート部材に対し、針状部材101、導電性部材201、接続部材103を挿入、固定する為のビアまたはスルーホールと言った貫通孔を穴あけ用パンチやポンチで必要な個所に孔をあける。この孔は、例えば後述する本件のスクリーン印刷法によって、この孔の中への配線部材の注入および導電性のあるビアまたはスルーホールが形成される。
 このビアまたはスルーホールの開口径は、針状部材101、導電性部材201、接続部材103のビアまたはスルーホールに挿入、固定する部分の直径に対し、しめしろ傾向でなければならない。つまり、針状部材101、導電性部材201、接続部材103の固定する部分の直径に対し、はめあい公差が「中ばめ」であるゼロ公差から、「しまりばめ」であるマイナス公差にすることで、針状部材101、導電性部材201、接続部材103のぐらつきを無くし、強い導電性の確保が可能となる。この状態に追加して、導電性接着剤を塗布してより信頼性を向上することもできる。
 ビアまたはスルーホールの直径は、針状部材101、導電性部材201、接続部材103の固定する部分の直径に対し、マイナス0%からマイナス99.9%の割合を差し引いた直径でも良く、さらにマイナス0%からマイナス40%、さらにはマイナス0%からマイナス15%でも良い。究極は、針状部材101、導電性部材201、接続部材103の先端を針形状にし、突き刺しても良い。
 特に従来のセンサーモジュールと電極との接続に使用されているリベット型スタッド形式(ボタン・トップ、スナップ相互接続)やマグネット接続等でのセンサーシートへの電気的接続は、汎用性としては簡便であるが、使い捨て電極シートの材料費を押し上げる一つの要因であった。しかしながら、本発明の態様は、センサーモジュールの接続部材103を直接、導電性を確保したビアまたはスルーホールに挿入できる効果が得られ、材料を節約できるため、使い捨てのパッチとしての単価を抑えることができる。
(電解質を含んだ導電性ゲル)
 本実施形態に使用する電解質を含んだ導電性ゲルは、少なくとも、アミノ酸、有機塩、及び、無機塩のいずれかが溶解された電解質溶液に、柔軟性、可塑性、及び、粘着性を発揮する高分子材料を加えてゲル状に固めものである。柔軟性、可塑性、及び、粘着性を発揮する高分子材料としては、生活温度以下のガラス転移点、及び、生活温度以上の融点を有するものが用いられ、例えば、アクリル系やポリウレタン系のものが考えられる。また、本実施の形態における「生活温度」とは、0度~40度の範囲の温度を意味する。
(絶縁膜)
 本実施形態に使用できる絶縁膜は、所望の使用時間の間に強度劣化、変形、溶融、変質、等の生じない材料で構成することが望ましい。例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、エチレン-テレフタレート-イソフタレート共重合体、ポリアリレート等のポリエステル樹脂からなるシートで、好ましくは、無延伸シートを用いることができる。或いは、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリ4フッ化エチレン、エチレン-4フッ化エチレン共重合体等のフッ素樹脂、ポリイミド樹脂等からなる樹脂シート、RTVシリコーンゴム。UV硬化シリコーンゴム等も使用できる。
 これらの絶縁膜は、熱融着、ドライラミネーション、スプレーコーティング等の方法により所望の範囲に接着することができる。或いは、シルクスクリーン、グラビア印刷、フレキソ印刷、オフセット印刷、ロール転写印刷等の印刷法により、所望の範囲に被覆することも可能である。なお、使用するインキの樹脂バインダーとしては、例えば、アクリル樹脂、ポリエステル樹脂、ポリイミド樹脂、シリコーン樹脂等を使用することができる。なお、絶縁被覆の厚みは、通常20~300μm程度が好ましい。
(接続部材)
 本実施形態に使用できる接続部材は、基本的にはセンサーモジュールに接続するもしくは組み込まれている。
 素材としては、以下の範囲に属する導電性材料から作られ、かかる導電性材料としては、金属、セラミック、半導体、有機物、ポリマー及び複合材が挙げられるが、これらには限定されない。好ましい材料としてはニッケルチタン合金、医用ステンレス鋼、金、チタン、ニッケル、鉄、金、白金、錫、クロム、銅、これらの材料又は他の材料の合金、珪素、二酸化珪素、容量性炭素(capacitive carbon)、黒鉛及びポリマーが挙げられる。ポリマーについては、具体的には、高導電性PEDOT:PSS(ポリ(3,4-エチレンジオキシチオフェン)(PEDOT)とポリスチレンスルホン酸(PSS)から成る複合物)が挙げられる。理想的な実施形態としては、導電性材料であり、かつ生体適合性材料でもある材料、例えばニッケルチタン合金、チタン又は医用ステンレス鋼、銀/塩化銀、塩化銀を用いる。
(センサーモジュール)
 本実施形態に使用するセンサーモジュール105は、接続部材がセンサーモジュール105内に装填、固定されていてもよく、あるいは電極シート106側に固定し、センサーモジュール105側に、挿入して接続しても良い。センサーモジュール105の外形、機能等については、特に限定はしない。
 例えば、図5に示す様に、人間の額に本実施形態の電極シートを装着した場合、センサーモジュール側とモバイルフォンやPC、電波送受信基地局などと無線で送受信する機能をもっても良く、または図6に示す様にセンサーモジュール105とモバイルフォンやPC、計測装置などと有線で接続してもよい。前者の場合は、電波送受信用の二次元または三次元アンテナを含み得る。このアンテナは、モジュール・ハウジングの壁に沿って配置されてもよいし、これに埋め込まれてもよい。アンテナは、モジュール内に位置しても良く、またはセンサーモジュール105に必要であれば接続部材を介して接続された、電極シートに別途印刷したアンテナを使用しても良い。
 本実施形態は、図9に示すような複数の電極と接続部材を通して接続すること(2つ以上たとえば4つの電極との接続、外部アンテナとの接続など)も含み得る。センサーモジュールは、信号発生器と1つまたは複数の生体アンプとを含んでもよく、この信号発生器は、電極のうち2つ以上の間に信号(たとえば、一般に1Hzと10GHzの間、1kHzと10MHzの間、5kHzと1MHzの間などの周波数範囲内の、複数の周波数における、さまざまな周波数にわたって掃引されるなど)を提供するように構成され、生体アンプは、電極のうちの2つ以上から1つまたは複数の信号を捕捉するように構成される。プロセッサ、ゲート・アレイ、デジタル・シグナル・プロセッサ、または関連付けられた超小型回路は、捕捉された信号を分析して、近くの組織の生体インピーダンスを決定するように構成される。
 生体アンプは、電極から生体電気信号(たとえば、EKG(ElektroKardioGramm)、HR(HeartRate)、EMG(ElectroMyoGraphy)、EOG(ElectroOculoGraphy)、EEG(ElectroEncephaloGraphy)、ERG(ElectroRetinoGraphy)、など)を捕捉するように構成される。またセンサーモジュールは、電源(たとえば、一次電池、二次電池、エネルギー・ハーベスト式システムなど)を含み得る。特に、フレキシブルな薄形フレキシブル電池など、電極シート交換とセンサーモジュールの再利用などの機会に交換可能な電源であるとなおよい。よって、各モジュールは、自己動力(self-powered)デバイスであってよい。センサーモジュールは、プロセッサと、内部電源とを含み得る。
 図6に示すような、有線による接続であってもよく、センサーモジュール105の機能を減らす事が可能となり、アンテナ、電源などの機能を外部から供給することができる為、電極シート106の総重量が軽くなり被験者の違和感を軽減する。
(最上層の粘着シート部材)
 本実施形態で最も特徴的なのが最上層に粘着シートを配置することである。
 これまでの生体電気信号取得用電極シートは、電極シートとセンサーモジュールをセパレートで配置し、電極シートの上にセンサーモジュールを接続する方法がとられてきた。
 しかしながら、一例であるが、図7の無線仕様や図8の有線仕様で示す様に、電極からその先のセンサーモジュールへ皮膚から得た生体電気信号を伝送する際に人間の動作やセンサーモジュールと電極の接続の不具合または密着不良、位置関係によって生じる力のモーメントが大きくなり、ノイズが発生し易いことが問題点として挙げられる。また、電極シートから引き出し線を出し、折り返してセンサーモジュールに接続する形で、電極シートとセンサーモジュールが個々独立して重ねて装着しているものが大半であった。
 そこで本実施形態は、これらの問題を解決すべく鋭意検討した結果、電極とセンサーモジュールを全て包み込む形で最上層に粘着シートを貼り付ける仕様を採用した。つまり、電極シートの生体電気信号を取り出す針状部材101や導電性部材201および配線部材102が形成されている同一面にセンサーモジュールがある形を特徴として、センサーモジュールから有線を出した場合も、同様に有線を粘着シートで固定することでノイズの軽減が図れる。結果的に、針状部材101とセンサーモジュールが、生体面に直接接触する形となり、電極とセンサーモジュールの位置関係によって生じる力のモーメントを最小限に抑える形となる。粘着シート部材の基本的な大きさは、大きなものでも横幅150mm、縦幅50mm程度とし、その形状は任意に変更できる。
 さらに、粘着シートには導電性インクによる印刷も可能で、電磁シールドや加飾目的のパターン印刷または金属箔の貼合も可能である。
 また、針状部材や導電性部材の皮膚への圧着力も増大する。
 この粘着シートは、基材/粘着剤の構成であり、電極およびモジュール固定側に粘着剤が塗布されている。基材/粘着剤の構成での厚さは、10μm以上200μm以下が良い。基材は、ウレタン樹脂を含むものであって、エーテル系ポリウレタン樹脂、エステル系ポリウレタン樹脂およびカーボネート系ポリウレタン樹脂から構成される群から選択される少なくとも1つを含んでもよく、厚みは5μm以上30μm以下であることが好ましい。
 粘着剤は、合成樹脂製によって形成され、ウレタン系粘着剤によって形成されることが好ましい。粘着層の厚さは5μm以上25μm以下であることが好ましい。
 積層された粘着シートにおける引張破断伸度が130%以上であり、かつ100%伸び引張応力が10から100MPaがよく、さらに10から30MPaであることが好ましく、この範囲だと生体貼つけ時の生体面の凹凸、生体面の伸縮などに適宜追従する効果がある。また、透湿度が2000g/m・day以上であると好ましく、この範囲だと、生体の皮膚呼吸や水蒸気、発汗による蒸散効果がある。粘着シートは、多孔質であってもよい。さらに、通気性のさらなる向上、センサーモジュールや電極シート周辺のエアー抜き効果を目的としたセンサーモジュール周辺や電極シート周辺など任意の位置に切れ込みまたは穴を開口しても良い。
 なお、粘着シートは、シリコーン系材料であっても同様の効果が得られるなら使用しても良い。
[評価方法]
[引張破断伸度]
 JIS K7127:1999(ISO 527-3:1995)の「プラスチック-引張特性の試験方法-第3部:フィルム及びシートの試験条件」、および、JIS K7161-1:2014(ISO 527-1:2012)の「プラスチック-引張特性の求め方-第1部:通則」に準拠する方法によって、引張破断伸度を測定した。引張破断伸度の測定に際して、粘着シートをダンベル形状(試験片タイプ5)に型抜きし、引張試験機((株)島津製作所製、AGS-X 5kN)を用いて引張破断強度を測定した。試験速度を300mm/minに設定し、標線間距離L0を25mmに設定し、初めのつかみ具間距離Lを80mmに設定した。試験片が降伏点を有しない場合には、引張破壊ひずみを引張破断伸度として算出した。一方で、試験片が降伏点を有する場合には、引張破壊呼びひずみを引張破断伸度として算出した。なお、引張破断伸度を測定する際には、基材と粘着剤とのみから形成される積層体に対して、測定を実施した。
[100%伸び引張応力]
 引張破断伸度を測定するときと同様に、JIS K7127:1999(ISO 527-3:1995)の「プラスチック-引張特性の試験方法-第3部:フィルム及びシートの試験方法」に準拠し、試験片を準備した。そして、JIS K7161-1:2014(ISO 527-1:2012)の「プラスチック-引張特性の求め方-第1部:通則」に準拠して、ひずみが100%に達したときの応力として100%伸び引張応力を算出した。
(光硬化樹脂を塗布したシート)
 本実施形態で最も特徴的なのが最上層に粘着シートを配置することであるが、この最上層の粘着シートの替わりに、光硬化樹脂を塗布したシートを用い、皮膚と電極とセンサーモジュールを密着させた状態で光照射によって、硬化させることによりドライで固定する手段も本発明の課題解決に有効であることが判った。電極シート、センサーモジュール全体を覆う形で、被験者の皮膚に貼り付ける形態をとるが、粘着シート107の替わりに光硬化樹脂を多孔質フィルムまたはPETフィルムに塗布したシートを用いる。
 光硬化樹脂は、光重合性レジンの事でビスフェノールA-グリシジルメタクリレート付加物(Bis-GMA)、トリエチレングリコールジメタクリレート(TEGDMA)、ウレタンジメタクリレート(UDMA)、その他ジアクリレート、トリアクリレートの単体、混合体、石英、窒化ケイ素、ガラス等の無機フィラー、有機質を含めた有機複合フィラーなどを混合した複合材料(コンポジットレジン)でもよく、硬化させる光源はハロゲンランプ、キセノンランプ、UVランプ、可視光LED、UV光LEDなどを使ってもよい。額、頭部、頭頂部、胴体、手、足に、本実施形態の粘着シート107の替わりに光硬化樹脂を多孔質フィルムやPETフィルムに塗布したシートを貼り付け、光源を数秒から数十秒照射することで、光硬化樹脂が硬化、密着、毛髪をホールドすることでアンカー効果も発現し、被験者へのドライな貼付けを実現した。
 信号計測を終了した後は、薄いフィルム状になった光硬化樹脂を指先で破砕することが可能で、剥離時の痛みもあまり出ずに電極シートを除去できる。
<電極シート>
 以下に、本実施形態例に係る電極シートについて、複数の実施形態により説明する。ただしこれらの実施形態により本発明が限定されるものではないことは言うまでもない。また、図面の記載において、既述の構成と同一又は同等のものについては同一の符号を付し、その説明を簡略又は省略する。
[第1実施形態]
 図1は、第1実施形態に係る電極シートを示した図である。以下、第1実施形態について、製造の順にしたがって、その内容を説明する。
 まず、第1実施形態に用いる基材は、図1の上層にシリコーンシート104a、中層に粘着層104b、下層にPETフィルム104cを貼合したものを使用した。この実施形態において、貼合状態のシリコーンシート104a、粘着層104b、PETフィルム104cを総称してシート部材104と称することにする。
 次に、針状部材101および接続部材103を挿入する為の貫通孔を直径3mmで4か所パンチで開けた。4か所のパンチで開けた貫通孔の中心間の距離は直線的に20mm、20mm、20mmの等間隔に配置した。この実施形態では、PETフィルムを使用しているが、配線形成環境、例えば熱収縮率などに臨機応変に対応する為に、ポリエチレンナフタレート、ウレタンシート、ポリイミドシートなど前記した材料も使用できる。
 次に、図13に示すように、シート部材104にパンチで直線的に20mm、20mm、20mmの等間隔に開けた4つの貫通孔の配置に一致する様に、4か所の直径2.5mmの金属円柱と円柱下底面が平面に接合された金属プレートを直径3mmの貫通孔の中心と直径2.5mmの円柱の中心とが一致する様に重ね合わせた。シート部材104にパンチで直線的に20mm、20mm、20mmの等間隔に開けた貫通孔に直径2.5mmの金属円柱が挿入される形となる。この円柱高さはシート部材104の貫通孔高さと一致する。
 この円柱と金属プレートの組み合わせを総称して型枠と称することにする。この実施形態では、金属の型枠を使用しているが、ポリプロピレン、ポリエチレン、ポリイミド、エポキシ樹脂、アクリル樹脂、シリコーン、フッ素樹脂、ウレタン樹脂、UV硬化樹脂などのエンジニアリングプラスチックを使用しても良い。
 次に本実施形態に使用する印刷法である高いアスペクト比の印刷を得意とし、先願である特願2021-105169号の明細書に示す特徴であるビア内への充填と高アスペクト比の配線印刷を同時に行う技術を使って配線部材102を印刷する。
 特願2021-105169号の明細書に示す技術は、表面側と裏面側に向かって延びるビアホール(穴)を有している印刷対象となるシートに導電性塗布剤を使った配線パターンを印刷すると同時にビアホール(穴)に導電性の塗布剤を注入し、導電性の塗布剤によってシート表面側と裏面側とを連絡させて、シートの表面と裏面に導電性を持たせるシートを形成する技術である。
 上記印刷によって、アスペクト比の高い配線と針状部材101と接続部材103を挿入する為にパンチで開口した直径3mmの貫通孔と型枠に形成された直径2.5mmの円柱との隙間に導電性ペーストが同時に印刷、充填された。
 次に、恒温槽160℃で乾燥し、表面にプラズマ処理を行った。その後、絶縁膜としてPVCシリコーンゴムを吹き付けて乾燥させた。
 次に、シートから型枠を取り外す。図13は、配線部材を印刷した後、型枠を取り外す工程を示した図である。
 また、型枠以外に貫通孔を形成する方法として、パンチやポンチを使った方法を使用しても良い。図14は、配線部材を印刷した後、パンチやポンチを使って貫通孔を形成する工程を示した図である。これによって、貫通孔の壁面に導電性塗布剤の膜が筒状に形成されるため、後工程の針状部材101、接続部材103がしまりバメで装填された際に、電気的接続が容易となる効果が得られる。
 次に、針状部材101を装填するのであるが、支持体101aが、導電性塗布剤が充填された貫通孔に対し、直径が大きいしまりバメになることが必須なので、支持体直径が3mmの針状部材101を選択した。
 吸着ピンセットで針状部材101の針先が傷つかない様に吸着し、垂直に貫通孔にしまりバメで装填して、完全に電極シート106と針状部材101の支持体101aが一体となったことをテスターによる導通確認によって確認した。
 ここまでの一連の工程でセンサーモジュール105および接続部材103以外の電極シートが出来上がる。
 次に、あらかじめ用意しておいた直径3mm、高さ2mmの円柱状の接続部材103とセンサーモジュール105が一体となったものを電極シート106に装填した。
 2本の接続部材103が電極シート106の残った貫通孔2つに、無理なくしまりバメで接続された。
(しまりバメ)
 しまりバメとは、図4の実施形態において貫通孔の穴径401と針状部材101の支持体101aの軸径402との関係が軸径>穴径の関係で挿入されている状態を言う。本実施形態の弾性体である電極シート106および導電性のある配線部材102の弾性力によって、しまりバメによって強固に針状部材101および接続部材103が固定される効果を得ることができる。この関係を一般的に「しめしろ」、「はめあい公差」と表現することがあるが、軸と穴の両方の直径の差つまりはめあい公差は、シートの材質等によって変化する為、ここでは特定できなが、穴径は支持体101aの直径より0からマイナス(小さい)にする。
 次に、裏面の保護フィルムと電極シート106との貼付け面109に粘着層が塗布された粘着シート107を用意し、粘着シートの粘着層側にPETフィルム104cが合わさる要領で粘着シート107の中心に電極シート106が位置する様に貼り付けた。
 次に、図3に示す様に被験者の額301中央に上記、電極シートを均等に貼りつけ、粘着シートの表面の保護フィルムを剥がした結果、本実施形態の最上層に粘着シートを配し、電極シートおよびセンサーモジュール全体を包み込む様式を完成した。額301とセンサーモジュール105と電極シート106と粘着シート107との界面で形成される隙間302は、多少形成されてもよく、電極シート106とセンサーモジュール105を粘着シートで大きく覆う事で、被験者の額301との一体感は維持された。また、一体感を維持することによって、被験者の額301の角質層へ針状部材101の針が安定して刺さることが可能となった。
 具体的に安定して針状部材101の針が刺さる形態は、センサーモジュール105を粘着シートの重心、つまり中央に配置させ、電極シート106は、センサーモジュールの重心(中央)に対し左右対称に配線部材102が翼を広げた形をとり、針状部材101においては、センサーモジュール105の接続部材103から1cmよりも2cm、3cmと遠い位置に装填することによって、センサーモジュール105周辺で発生する粘着シートの隙間302の影響を回避できる為、安定して針が刺さる。よって、センサーモジュール105の貼りつけ面からの高さにおいても、3mmよりも2mm、1mmとなることで、粘着シートの隙間302が小さくなり、針状部材101の針が安定して刺さる。
 第1実施形態について、接続部材103で取得できる信号の品質評価を実施した。目的は、本実施形態の針状部材101から接続部材103に送信される接触インピーダンスが医療現場で使用されている医療用針電極に比べどこまで、精度を近づけることが可能かである。
 そこで日本光電製NE224S電極2本と本実施形態の電極シート106を用意し、皮つき鶏肉(もも)に実装し、インピーダンス測定装置(エヌエフ回路設計社ZM2376)を用い、2端子法で測定を行った。測定抵抗値は、医療用針電極においては抵抗最大値2.2KΩ(0.5Hz)、抵抗最小値0.7KΩ(30KHz)、100Hz付近の抵抗値1.0KΩとなったのに対し、本実施形態の電極シート106は、抵抗最大値6.2KΩ(0.5Hz)、抵抗最小値3.5KΩ(30KHz)、100Hz付近の抵抗値4.2KΩを示した。ちなみに、電解液を使った医療用ゲル電極(日本光電製Vitrode F)2本も同条件で測定した結果を示すと、最大抵抗値727KΩ(0.5Hz)、最低抵抗値2.7KΩ(30KHz)、100Hz付近の抵抗値101KΩであった。
 結果的に、3種類の電極の2端子法による結果は、針電極が最も抵抗値が小さく、本実施形態の電極シートは、針電極に比べてはやや大きかったが、ゲル電極に比べはるかに小さかった。生体電気信号測定の中心周波数は1Hz~200Hz程度であるが、~100Hz付近まで、ゲル電極に比して、本実施形態の電極シートははるかに抵抗値が低かった。
 従って、本実施形態の電極シートは、有効な電極であることが判った。
[第2実施形態]
 図2は、第2実施形態に係る電極シートを示した図である。以下、第2実施形態について、製造の順にしたがって、その内容を説明する。
 まず、第2実施形態に用いる基材は、図2の上層にシリコーンシート104a、中層に粘着層104b、下層にPETフィルム104cを貼合したものを使用した。この実施形態において、貼合状態のシリコーンシート104a、粘着層104b、PETフィルム104cを総称してシート部材104と称することにする。
 次に、導電性部材201および接続部材103を挿入する為の貫通孔を直径3mmで4か所パンチで開けた。
 次に、直径2.5mmの金属円柱と円柱下底面が平面に接合された金属プレートを直径3mmの貫通孔の中心と直径2.5mmの円柱の中心とが一致する様に重ね合わせた。この円柱高さはシート部材104の貫通孔高さと一致する。
 この円柱と金属プレートの組み合わせを総称して型枠と称することにする。金属プレートの材質は、ステンレス、ニッケル、銅、アルミ、酸化鉄、黒鉛などを使用しても良い。
 次に本実施形態に使用する印刷法である高いアスペクト比の印刷を得意とし、先願である特願2021-105169号の明細書に示す特徴であるビア内への充填と高アスペクト比の配線印刷を同時に行う技術を使って配線部材102を印刷する。
 上記印刷によって、アスペクト比の高い配線と導電性部材201と接続部材103を挿入する為にパンチで開口した直径3mmの貫通孔と型枠に形成された直径2.5mmの円柱との隙間に導電性ペーストが同時に印刷、充填された。
 次に、恒温槽160℃で乾燥し、表面にプラズマ処理を行った。その後、絶縁膜としてPVCシリコーンゴムを吹き付けて乾燥させた。
 次に、シートから型枠を取り外す。図13は、配線部材を印刷した後、型枠を取り外す工程を示した図である。
 また、型枠以外に貫通孔を形成する方法として、パンチやポンチを使った方法を使用しても良い。図14は、配線部材を印刷した後、パンチやポンチを使って貫通孔を形成する工程を示した図である。
 次に、導電性部材201を装填するのであるが、支持体201aが、導電ペーストが充填された貫通孔に対し、直径が大きいしまりバメになることが必須なので、支持体直径が3mmの導電性部材201を選択した。
 吸着ピンセットで導電性部材201を吸着し、垂直に貫通孔にしまりバメで装填して、完全に電極シート206と導電性部材201の支持体201aが一体となったことを確認した。
 ここまでの一連の工程でセンサーモジュール105および接続部材103以外の電極シートが出来上がる。
 次に、あらかじめ用意しておいた直径3mm、高さ2mmの円柱状の接続部材103とセンサーモジュール105が一体となったものを電極シート106に装填した。
 2本の接続部材103が電極シート206の残った貫通孔2つに、第1実施形態の要領で無理なくしまりバメで接続した。
 次に、導電性部材201の露出面全体を覆う様に、導電性ゲル208を貼り付けた。
 次に、裏面の保護フィルムと電極シート206との貼付け面109に粘着層が塗布された粘着シート107を用意し、粘着シートの粘着層側にPETフィルム104cが合わさる要領で粘着シート107の中心に電極シート206が位置する様に貼り付けた。
 次に、図3に示す様に被験者の額301中央に上記、電極シートを均等に貼りつけ、粘着シートの表面の保護フィルムを剥がした結果、本実施形態の最上層に粘着シートを配し、電極シートおよびセンサーモジュール全体を包み込む様式を完成した。
 この実施形態については、第1実施形態が高価仕様の位置づけとすると廉価仕様となる。
 導電性ゲルを使う事から、第1実施形態よりも性能的に劣るが、本実施形態の最大の特徴である最後に、粘着シートで全面に覆ってしまう構成を採用していることから、接触インピーダンスの精度よりは、電極およびセンサーモジュールの装着性が良いことに特化したものとなる。
 第1実施形態および第2実施形態における装着性については、センサーモジュールを粘着シートの外に出したものと本実施形態であるセンサーモジュールを粘着シートの中に含ませたときの被験者の違和感の有無と接続部から測定した抵抗値変動を確認した。
 当然ながら被験者の違和感に関しては、本実施形態の一体感が勝ったのは言うまでもなく、抵抗値の変動も、本実施形態が小さかった。
[第3実施形態]
 第1実施形態において、接続部材103で取得できる信号の品質評価を皮付き鶏肉(もも)をつかって実施した内容に引き続き、インピーダンス測定装置(エヌエフ回路設計社ZM2376)を導線でセンサーモジュールへつなげる有線仕様として、導線を1Hz、振幅20cmで揺すってみたところ、本実施形態の生体電極装置は、殆どノイズが入らず抵抗最大値6.2KΩ(0.5Hz)、抵抗最小値3.5KΩ(30KHz)、100Hz付近の抵抗値4.2KΩを示した。逆にセンサーモジュールを外に接続し、導線を同様に揺すると極端なノイズが入り計測不能となった。
 つまり、最後に粘着シートで電極シートとセンサーモジュール全体を覆う形で導線も一部固定できたことが、ノイズの有無に直結し、本実施形態の有効性が示されたといってよい。
 このことから第2実施形態の導電性ゲルを使用する廉価仕様も同様であるといえる。
 第1実施形態および第3実施形態の被験者への実装方法を図5および図6に示し、従来の装着方法を図7および図8に示す。上記の内容から、鶏肉(もも)が人体に変わっても本実施形態の効果は、少なからず従来の実装方法より優れているといえる。
[第4実施形態]
 図9は、第1実施形態に係る電極シートの生体電気信号を2つ以上、つまり複数の箇所を同時に取得する実施形態を示す。または、生体電気信号を取得しながら、同時に電流を流す電気治療をする電極も兼ねた実施形態を示す。基本的な製作方法は第1実施形態と変わらないが、第1実施形態は貫通孔を4か所開けたことで、針状部材101と接続部材103の対が2本形成されていたのに対し、本実施形態は貫通孔の数を8個開けて針状部材101と接続部材103の対が4本形成されている。当然、さらに多くの貫通孔を開けることも可能で、これにより、例えば脳波計測点を、多点にしても良い。ただし、多点にすればするほど、電極シートに占める配線面積が増大する為、所々に、電極シートの配線と配線の間に測定に使わない貫通孔901を開けても良い。これにより被験者の皮膚と電極シートの界面の蒸れによる不快感を軽減することができる。
 この実施形態は、第2実施形態、第3実施形態にも応用できる。例えば第2実施形態である導電性ゲルと導電性部材より得られた生体電気信号を基に針状部材によって電流を流すといった事も可能となる、その場合第3実施形態による有線による方法が、さらに効果を上げる事ができる。
[第5実施形態]
 第1実施形態から第4実施形態までにおいて、図10の様に配線部材102は、そのパターンが蛇行しても良い。例えば規則正しく蛇行する馬蹄形の連続配線でも良い。フレキシブルおよびストレッチャブルな基材に配線部材102を形成し、電極シートとした場合、被験者の動きや貼付け面の起伏、伸縮、振動などによりノイズが入る可能性がある場合は、図10の蛇行パターン1001を形成してもよい。また、より柔軟に対応する様に蛇行パターンの任意の場所において電極シートにスリット1002を刻んでもよい。
[第6実施形態]
 第1実施形態から第5実施形態までにおいて、シート部材104は、単層または2層以上の貼合シートでもよい。第1実施形態から第5実施形態まででは主に3層構成でPET基材を使用した構成を示した。このPET基材は、一般的性能としてASTM規格D638において引張り強さ48MPaから73MPa、破断時伸び30~300%、引張弾性率2800MPaから4200MPaといったシリコーンシート等のエラストマー材料に比べ強じんな剛性をもっている。従って、このような素材をシート部材104の一部に使用することによって、脳波などの繊細な生体電気信号をあまり歪ませる事なく取得できる長所を得ることができる。第1実施形態から第5実施形態まではそのような効果も得ることを想定した構成となっている。
 しかしながら、昨今の計測および解析ソフトウエアの発展によって、たとえばシリコーンシートのようなエラストマーによる歪が大きく、得られる生体電気信号の歪が大きくなっても使用するエラストマーの伸縮率、歪率に対する生体電気信号の例えば接触抵抗値の変動の関数式をソフトウエア上で確立できた場合、シート部材104の層構成がエラストマーのみでも十分計測が可能となる。
 例えば図11の様に、シート部材104は粘着シート107とシリコーンシート等のフィルム(エラストマー材料1101)との貼合やスクリーン印刷等による粘着シート107へのエラストマーの直接塗布によって構成することも可能である。フィルムの貼合の場合は、表面エネルギーの関係で粘着シート107との接着が弱くなる傾向があるため、フィルムの下層に粘着シート107との接着を強固にするプライマーや粘着剤1102を塗布する構成を採用してもよい。また印刷等によるエラストマーの直接塗布の場合はプライマーを予め粘着シート107へ塗布しても、しなくても良い。
[第7実施形態]
 第1実施形態から第6実施形態までにおいて、粘着シート107は、上記実施形態の通り、電極シート、センサーモジュール全体を覆う形で、被験者の皮膚に貼り付ける形態をとる。センサーモジュールで得られた生体電気信号のすべてのデータもしくは一部のデータを電波で発信するわけであるが、センサーモジュールから発信する電波、外から侵入する電波、電磁波が電極シート106、206に影響することも想定される。
 そこで、粘着シート107に、インクジェットにて導電性インクをつかって、センサーモジュールの一部にはかからず、最低でもシート部材104を覆う様にベタまたはメッシュパターンを印刷することができる。ベタとは、印刷用語で100%全面に塗布された状態の事を言う。メッシュパターンは、透過性、透湿性、意匠性など考慮した場合である。ベタは、導電性インキを使って粘着シート107の上に、模様など意匠性のある絵柄、肌と一体化したように見せる肌色などの印刷をしてもよい。これらの印刷は、インクジェットに限定されるものではなく、オフセット印刷、スクリーン印刷、グラビア印刷、フレキソ印刷、ディスペンサー、3Dプリンターを使用してもよい。また、同様の効果のある銅、アルミなどの金属箔を貼り付けても良い。これはいわゆる電磁シールドとよばれるものである。
 これによって、センサーモジュールと外部との送受信や電極シートへの電磁波のアタックによるセンサーモジュールおよび電極シート内で発生する本来意図しない電流が誘導される現象を回避できる。図12に、粘着シートへのメッシュパターンを示す。メッシュパターン1202をセンサーモジュールの一部1201に掛からない様にパターンを印刷しない形で、粘着シートの全面1210を印刷したり、電極シートの部分のみをカバーする形1211や、配線部材の部分のみをカバーする形1212でもよい。
 メッシュパターンは、極力目立たないことが、好まれる傾向にあり、線幅30μm以下、より好ましくは15~20μm以下、線厚み3μm以下の細線をピッチ300μm~500μmの格子状に構成し、得られる表面抵抗率は、40Ω/□以下でより好ましくは、表面抵抗率が1.2Ω/□以下である。
[第8実施形態]
 第1実施形態から第7実施形態までは、電極シート106、206共に垂直な貫通孔にしまりバメで装填して、完全に電極シート106と針状部材101の支持体101aや導電性部材201の支持体201a、接続部材103を一体化することで、導電性を確保する方法であるが、もう一つの導電性を確保する方法として、図15に示す針状部材101の支持体101aの上部平面101bと下部平面101cの部分を配線部材102と粘着シート107の層で挟み込む形で電極シート106との一体化および導電性の確保をする。ここでいう配線部材は、銀、銅、カーボンフィラーを含むインキやPEDOT・PSSなどの導電性高分子を使用してもよい。
 実施形態に用いる基材は、図16において、まず離形フィルム111の上に、絶縁膜112aを後工程で接続部材103を挿入する範囲115を除いて印刷する。その上に配線部材102を印刷する。次に絶縁膜112bを後で針状部材101を挿入する範囲114を除いて印刷する。以上の工程における印刷後の乾燥、硬化は随時おこなう。
 次に、図17のように針状部材101および接続部材103を挿入するための孔211を穴あけパンチで貫通させる。
 次に針状部材101を図18(a)の様に配線部材102に針状部材101の支持体101aが接触し、孔211の内側に針状部材101を挿入した形をとる。この針状部材101を挿入した形で、配線部材102と針状部材101の導通が取れるが、必要に応じて導電性接着剤を接触部およびその周辺に塗布する形式をとってもよい。
 次に、図18(b)の様に粘着シート107を離形フィルム111を含めて全体に貼合する。この粘着シート107には、セパレートフィルム107aが貼合されている。
 図19は、この実施形態における針状部材101が離形フィルム111を剥がした時に、孔211から露出し、離形フィルム111から分離した電極シート106に針状部材101が、しっかり密着、固定されたことを示す図で、印刷による配線部材102と粘着シート107との間に針状部材101がしっかり挟み込まれ針状部材101の針の部分のみが孔211から顔を出す形で一体感を実現した本実施形態の特長をしめしている。これにより導通が強固となる。
 この工程によって、離形フィルム111、絶縁膜112a、配線部材102、絶縁膜112b、針状部材101、粘着シート107、セパレートフィルム107aが一体となった電極シート106となる。また、取り扱い、包装容量の都合などによって、大面積のシートではなく、任意の形状、大きさに分割加工してもよい。
 ここで使用する粘着シート107およびセパレートフィルム107aであるが、図21に示すように、一部または、全面に針孔515を予め複数任意の間隔で貫通させたものも使用できる。
 センサーモジュール105の接続部材103を被験者が電極シート106の孔211に挿入する際に、セパレートフィルム107aに接続部材103が当たり挿入し難いことがある。そこで針孔515があることで、接続部材103の先端がセパレートフィルム107aの針孔515をきっかけにセパレートフィルム107aの一部を破砕することができ、より孔211に密着、接触することが可能となる。これによって、接続部材103から針状部材101までの導通がより確かになる。針孔515の利点は、粘着シート107の製造工程において、粘着シート107とセパレートフィルム107aを例えばロールtoロールといった連続したライン上に多くの尖った針のようなエンボス加工を行った圧延ロールを設けた装置に流すことによって簡単に針孔515を付与できることである。
 この針孔515の大きさ、個数は任意に変えることができ、また針孔の代わりとなりうる円、多角形のような開口部を開けてもよい。
[第9実施形態]
 図20は、第8実施形態で示した、図19の針状部材101の代わりに、導電性部材201を用いたもので、針状部材101ではなく電解質を含んだ導電性ゲル208を介した生体信号の取得を可能とした構造である。
 製造プロセスは、第8実施形態で示した手順と同様に離形フィルム111の上に、絶縁膜112aを後工程で接続部材103を挿入する範囲115を除いて印刷する。その上に配線部材102を印刷する。次に絶縁膜112bを後で針状部材101の代わりの導電性部材201を挿入する範囲114を除いて印刷する。以上の工程における印刷後の乾燥、硬化は随時おこなう。次に、図17のように針状部材101の代わりの導電性部材201および接続部材103を挿入するための孔211を穴あけパンチで貫通させる。次に導電性部材201を図20の様に配線部材102に導電性部材201が接触し、孔211の内側に導電性部材201の一部が挿入される形をとる。この導電性部材201を挿入した形で、配線部材102と導電性部材201との導通が取れるが、必要に応じて導電性接着剤を接触部およびその周辺に塗布する形式をとってもよい。
 後の工程は、第8実施形態と同様であるが、第9実施形態の場合は、被験者側へ供給する前に、一度、離形フィルム111を剥離し、電解質を含んだ導電性ゲル208を貼り付けて、離形フィルムを改めて貼りなおす工程が追加される。
[第10実施形態]
 第1実施形態から第9実施形態までにおいて、粘着シート107は、上記実施形態の通り、電極シート106、センサーモジュール105全体を覆う形で、被験者の皮膚に貼り付ける形態をとるが、図22に示すように粘着シート107の替わりに光硬化樹脂222を多孔質フィルムやPETフィルム223に塗布したシート221を用いても良い。
 光硬化樹脂222は、光重合性レジンの事でビスフェノールA-グリシジルメタクリレート付加物(Bis-GMA)、トリエチレングリコールジメタクリレート(TEGDMA)、ウレタンジメタクリレート(UDMA)、その他ジアクリレート、トリアクリレートの単体、混合体、石英、窒化ケイ素、ガラス等の無機フィラー、有機質を含めた有機複合フィラーなどを混合した複合材料(コンポジットレジン)でもよく、硬化させる光源はハロゲンランプ、キセノンランプ、UVランプ、可視光LED、UV光LEDなどを使ってもよい。
 図23のように額、頭部、頭頂部、胴体、手、足に、本実施形態の粘着シート107の替わりに光硬化樹脂222を多孔質フィルムやPETフィルム223に塗布したシート221を貼り付け、光源231を数秒から数十秒照射することで、光硬化樹脂が硬化、密着、毛髪232をホールドすることでアンカー効果も発現し、ドライな貼付けを実現した。なお、光源231をシート221に押し付けて照射してもよく、それにより光硬化樹脂222の膜厚が薄いフィルム状になることが好ましい。基本的にはUV-A(波長315から400nm)を使用する。必要な積算光量は1mJ/cmから4000mJ/cmの範囲が好ましく、1mJ/cmから2000mJ/cmの範囲がより好ましいが、最終的に人体への影響を考慮した適度な光量を選択する。
 信号計測を終了した後は、薄いフィルム状になった光硬化樹脂を指先で破砕することが可能で、剥離時の痛みもあまり出ずに電極シートを除去できる。
 第10実施形態は、生体電極装置の固定に適用できる。特に、針状部材を電極とした場合には有効である。
[第11実施形態]
 第1実施形態から第10実施形態は、電極シート106、センサーモジュール105全体を覆う形であるが、第10実施形態の光硬化樹脂を使うことで、図24ないし図26に示すように針状部材の固定241と、センサーモジュール105またはターミナル226の固定242とを別々に光硬化樹脂222を多孔質フィルムやPETフィルム223に塗布したシート221を使って、第10実施形態の要領で固定できる。
 これにより、額に貼り付けた電極シート106または206と別に頭頂部周辺の毛髪が込み合った被計測部へ別途配線243し先端に針状部材を例えばサテライト状に固定することも可能となる。額に貼り付けた電極シート106または206と切り離し、針状部材を例えばサテライト状に固定した部分のみを単独で使用することもできる。これにより、国際脳波学会が推奨する「10/20法」に準じた19箇所の電極装着も可能となる。第11実施形態は、第10実施形態に限らず生体電極装置の固定に適用できる。特に、針状部材を電極とした場合には有効である。
[第12実施形態]
 第10実施形態または第11実施形態は、額、頭部、頭頂部、首、胴体、手、足などに装着し、電気治療の電極シートとしても使用できる。
 以上、本発明の実施形態について説明したが、本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
 本発明の内容となり得る態様を以下に述べる。ただしこれに限られるものではない。
(態様1)
 生体電気信号を受信する少なくとも一対の電極と、
 受信した生体電気信号を伝達する配線部材と、
 生体電気信号に関連する信号を外部に出力するセンサーモジュールと、
 伝達した生体電気信号を前記センサーモジュールに接続する接続部材と、
 を有する電極シートと、
 前記電極シートを覆う形で生体に貼り付け可能な粘着シートと、
 を備える生体用電極装置。
(態様2)
 態様1の生体用電極装置であって、
 前記電極シートは、前記電極と前記配線部材と前記センサーモジュールと前記接続部材とを支持するシート部材を有する、
 生体用電極装置。
(態様3)
 態様1または態様2の生体用電極装置であって、
 前記電極は、生体に接触させ生体電気信号を受信する針状部材である、
 生体用電極装置。
(態様4)
 態様1または態様2の生体用電極装置であって、
 前記電極シートは、生体に接触させ生体電気信号を受信する少なくとも一対の導電性ゲルを有し、
 前記電極は、前記導電性ゲルから生体電気信号を受信する導電性部材である、
生体用電極装置。
(態様5)
 態様1ないし態様4のいずれか一つの生体用電極装置であって、
 前記センサーモジュールは、生体電気信号に関連する信号を外部に無線送信する、
 生体用電極装置。
(態様6)
 態様1ないし態様4のいずれか一つの生体用電極装置であって、
 前記センサーモジュールは、生体電気信号に関連する信号を外部に出力する導線を有し、
 前記粘着シートは、前記導線の一部を生体に固定可能である、
 生体用電極装置。
(態様7)
 態様1ないし態様6のいずれか一つの生体用電極装置であって、
 前記電極は、複数対配置され、複数個所の生体電気信号を受信する、
 生体用電極装置。
(態様8)
 態様1ないし態様7のいずれか一つの生体用電極装置であって、
 前記電極は、複数対配置され、生体電気信号を受信する電極と生体に電流を流す電気治療用の電極とを有する、
 生体用電極装置。
(態様9)
 態様1ないし態様8のいずれか一つの生体用電極装置であって、
 前記配線部材は、蛇行パターンを有する、
 生体用電極装置。
(態様10)
 態様2ないし態様9のいずれか一つの生体用電極装置であって、
 前記配線部材は、蛇行パターンを有し、
 前記シート部材は、蛇行パターンの任意の場所にスリットを有する、
 生体用電極装置。
(態様11)
 態様2ないし態様10のいずれか一つの生体用電極装置であって、
 前記電極は、前記シート部材に開けられた穴の壁面に前記配線部材が被覆された箇所に、はめあい公差「中ばめ」または「しまりばめ」で固定されている、
 生体用電極装置。
(態様12)
 態様2ないし態様11のいずれか一つの生体用電極装置であって、
 前記接続部材は、前記シート部材に開けられた穴の壁面に前記配線部材が被覆された箇所に、はめあい公差「中ばめ」または「しまりばめ」で固定されている、
 生体用電極装置。
(態様13)
 態様1ないし態様10のいずれか一つの生体用電極装置であって、
 前記電極は、前記配線部材と前記粘着シートとの間に保持される形かつ前記配線部材に開けられた穴より前記電極の突出部分が露出する形で固定されている、
 生体用電極装置。
(態様14)
 態様1ないし態様10、態様13のいずれか一つの生体用電極装置であって、
 前記接続部材は、前記配線部材に開けられた穴に挿入、固定されている、
 生体用電極装置。
(態様15)
 態様1ないし態様14のいずれか一つの生体用電極装置であって、
 前記粘着シートは、多孔質である、
 生体用電極装置。
(態様16)
 態様1ないし態様15のいずれか一つの生体用電極装置であって、
 前記粘着シートは、導電性インクによる印刷が施されている、
 生体用電極装置。
(態様17)
 態様1ないし態様16のいずれか一つの生体用電極装置であって、
 前記粘着シートは、金属箔が貼り付けられている、
 生体用電極装置。
(態様18)
 生体電気信号を受信する少なくとも一対の電極と、
 受信した生体電気信号を伝達する配線部材と、
 生体電気信号に関連する信号を外部に出力するセンサーモジュールと、
 伝達した生体電気信号を前記センサーモジュールに接続する接続部材と、
 を有する電極シートと、
 前記電極シートを覆う形で生体に貼り付け可能な光硬化樹脂と、
 を備える生体用電極装置。
(態様19)
 態様18に記載の生体用電極装置であって、
 前記光硬化樹脂は、PETフィルムに塗布されている、
 生体用電極装置。
(態様20)
 態様18または態様19の生体用電極装置であって、
 前記光硬化樹脂は、前記電極と前記センサーモジュールとを別々に生体に貼り付け可能である、
 生体用電極装置。
(態様21)
 態様18ないし態様20のいずれか一つの生体用電極装置であって、
 前記電極の一部もしくはすべてを電気治療用の電極とする、
 生体用電極装置。
(態様22)
 態様1ないし態様21のいずれか一つの生体用電極装置であって、
 前記センサーモジュールが前記電極シートの生体側の面に配置される、
 生体用電極装置。
101…針状部材、101a…支持体、101b…上部平面、101c…下部平面、102…配線部材、103…接続部材、104…シート部材、104a…シリコーンシート、104b…粘着層、104c…PETフィルム、105…センサーモジュール、106…電極シート、107…粘着シート、107a…セパレートフィルム、108…絶縁膜、111…離形フィルム、112a…絶縁膜、112b…絶縁膜、114…針状部材または導電性部材を挿入する範囲、115…接続部材を挿入する範囲、201…導電性部材、206…電極シート、208…導電性ゲル、211…孔、221…シート、222…光硬化樹脂、223…多孔質フィルムやPETフィルム、226…ターミナル、231…光源、232…毛髪、241…針状部材の固定、242…センサーモジュールまたはターミナルの固定、243…配線、301…額、302…隙間、401…穴径、402…軸径、515…針孔、901…貫通孔、1001…蛇行パターン、1002…スリット、1101…エラストマー材料、1102…プライマーや粘着剤、1201…センサーモジュールの一部、1202…メッシュパターン、1210…全面、1211…電極シートの部分のみをカバーする形、1212…配線部材の部分のみをカバーする形。

Claims (22)

  1.  生体電気信号を受信する少なくとも一対の電極と、
     受信した生体電気信号を伝達する配線部材と、
     生体電気信号に関連する信号を外部に出力するセンサーモジュールと、
     伝達した生体電気信号を前記センサーモジュールに接続する接続部材と、
     を有する電極シートと、
     前記電極シートを覆う形で生体に貼り付け可能な粘着シートと、
     を備える生体用電極装置。
  2.  請求項1に記載の生体用電極装置であって、
     前記電極シートは、前記電極と前記配線部材と前記センサーモジュールと前記接続部材とを支持するシート部材を有する、
     生体用電極装置。
  3.  請求項1に記載の生体用電極装置であって、
     前記電極は、生体に接触させ生体電気信号を受信する針状部材である、
     生体用電極装置。
  4.  請求項1に記載の生体用電極装置であって、
     前記電極シートは、生体に接触させ生体電気信号を受信する少なくとも一対の導電性ゲルを有し、
     前記電極は、前記導電性ゲルから生体電気信号を受信する導電性部材である、
    生体用電極装置。
  5.  請求項1に記載の生体用電極装置であって、
     前記センサーモジュールは、生体電気信号に関連する信号を外部に無線送信する、
     生体用電極装置。
  6.  請求項1に記載の生体用電極装置であって、
     前記センサーモジュールは、生体電気信号に関連する信号を外部に出力する導線を有し、
     前記粘着シートは、前記導線の一部を生体に固定可能である、
     生体用電極装置。
  7.  請求項1に記載の生体用電極装置であって、
     前記電極は、複数対配置され、複数個所の生体電気信号を受信する、
     生体用電極装置。
  8.  請求項1に記載の生体用電極装置であって、
     前記電極は、複数対配置され、生体電気信号を受信する電極と生体に電流を流す電気治療用の電極とを有する、
     生体用電極装置。
  9.  請求項1に記載の生体用電極装置であって、
     前記配線部材は、蛇行パターンを有する、
     生体用電極装置。
  10.  請求項2に記載の生体用電極装置であって、
     前記配線部材は、蛇行パターンを有し、
     前記シート部材は、蛇行パターンの任意の場所にスリットを有する、
     生体用電極装置。
  11.  請求項2に記載の生体用電極装置であって、
     前記電極は、前記シート部材に開けられた穴の壁面に前記配線部材が被覆された箇所に、はめあい公差「中ばめ」または「しまりばめ」で固定されている、
     生体用電極装置。
  12.  請求項2に記載の生体用電極装置であって、
     前記接続部材は、前記シート部材に開けられた穴の壁面に前記配線部材が被覆された箇所に、はめあい公差「中ばめ」または「しまりばめ」で固定されている、
     生体用電極装置。
  13.  請求項1に記載の生体用電極装置であって、
     前記電極は、前記配線部材と前記粘着シートとの間に保持される形かつ前記配線部材に開けられた穴より前記電極の突出部分が露出する形で固定されている、
     生体用電極装置。
  14.  請求項1に記載の生体用電極装置であって、
     前記接続部材は、前記配線部材に開けられた穴に挿入、固定されている、
     生体用電極装置。
  15.  請求項1に記載の生体用電極装置であって、
     前記粘着シートは、多孔質である、
     生体用電極装置。
  16.  請求項1に記載の生体用電極装置であって、
     前記粘着シートは、導電性インクによる印刷が施されている、
     生体用電極装置。
  17.  請求項1に記載の生体用電極装置であって、
     前記粘着シートは、金属箔が貼り付けられている、
     生体用電極装置。
  18.  生体電気信号を受信する少なくとも一対の電極と、
     受信した生体電気信号を伝達する配線部材と、
     生体電気信号に関連する信号を外部に出力するセンサーモジュールと、
     伝達した生体電気信号を前記センサーモジュールに接続する接続部材と、
     を有する電極シートと、
     前記電極シートを覆う形で生体に貼り付け可能な光硬化樹脂と、
     を備える生体用電極装置。
  19.  請求項18に記載の生体用電極装置であって、
     前記光硬化樹脂は、PETフィルムに塗布されている、
     生体用電極装置。
  20.  請求項18に記載の生体用電極装置であって、
     前記光硬化樹脂は、前記電極と前記センサーモジュールとを別々に生体に貼り付け可能である、
     生体用電極装置。
  21.  請求項18に記載の生体用電極装置であって、
     前記電極の一部もしくはすべてを電気治療用の電極とする、
     生体用電極装置。
  22.  請求項1または請求項18に記載の生体用電極装置であって、
     前記センサーモジュールが前記電極シートの生体側の面に配置される、
     生体用電極装置。
PCT/JP2023/015730 2022-05-10 2023-04-20 生体用電極装置 WO2023218891A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-077435 2022-05-10
JP2022077435 2022-05-10
JP2022-199715 2022-12-14
JP2022199715 2022-12-14

Publications (1)

Publication Number Publication Date
WO2023218891A1 true WO2023218891A1 (ja) 2023-11-16

Family

ID=88730205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015730 WO2023218891A1 (ja) 2022-05-10 2023-04-20 生体用電極装置

Country Status (1)

Country Link
WO (1) WO2023218891A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040015058A1 (en) * 1993-09-04 2004-01-22 Motorola, Inc. Wireless medical diagnosis and monitoring equipment
JP2008532596A (ja) * 2005-03-09 2008-08-21 クティセンセ アクティーゼルスカブ マイクロ電子システムを内部に埋め込んだ三次元接着デバイス
KR101843162B1 (ko) * 2017-11-30 2018-03-27 위덕대학교 산학협력단 근육통 완화를 위한 테이핑 시스템 및 테이핑 방법
CN107892891A (zh) * 2017-05-04 2018-04-10 南京诺邦新材料有限公司 一种用于医用电极片的导电压敏胶及其制备方法
WO2019035420A1 (ja) * 2017-08-16 2019-02-21 東洋紡株式会社 生体情報計測用の電極部材、生体情報計測装置、生体情報計測用衣服、生体情報計測用の電極部材の取り付け方法および生体情報計測方法
WO2019188311A1 (ja) * 2018-03-28 2019-10-03 ニプロ株式会社 生体用電極パッド、生体信号処理装置およびそれらの組合せ
WO2020183356A1 (en) * 2019-03-11 2020-09-17 Nelson & Company S.R.L.S. Integrated device for electromyography and electrotherapy
WO2020262403A1 (ja) * 2019-06-27 2020-12-30 ニプロ株式会社 生体用電極パッド付き収納ケースおよび生体用電極パッド付き収納ケースを備えた生体信号処理装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040015058A1 (en) * 1993-09-04 2004-01-22 Motorola, Inc. Wireless medical diagnosis and monitoring equipment
JP2008532596A (ja) * 2005-03-09 2008-08-21 クティセンセ アクティーゼルスカブ マイクロ電子システムを内部に埋め込んだ三次元接着デバイス
CN107892891A (zh) * 2017-05-04 2018-04-10 南京诺邦新材料有限公司 一种用于医用电极片的导电压敏胶及其制备方法
WO2019035420A1 (ja) * 2017-08-16 2019-02-21 東洋紡株式会社 生体情報計測用の電極部材、生体情報計測装置、生体情報計測用衣服、生体情報計測用の電極部材の取り付け方法および生体情報計測方法
KR101843162B1 (ko) * 2017-11-30 2018-03-27 위덕대학교 산학협력단 근육통 완화를 위한 테이핑 시스템 및 테이핑 방법
WO2019188311A1 (ja) * 2018-03-28 2019-10-03 ニプロ株式会社 生体用電極パッド、生体信号処理装置およびそれらの組合せ
WO2020183356A1 (en) * 2019-03-11 2020-09-17 Nelson & Company S.R.L.S. Integrated device for electromyography and electrotherapy
WO2020262403A1 (ja) * 2019-06-27 2020-12-30 ニプロ株式会社 生体用電極パッド付き収納ケースおよび生体用電極パッド付き収納ケースを備えた生体信号処理装置

Similar Documents

Publication Publication Date Title
Zhang et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring
Wang et al. Skin bioelectronics towards long-term, continuous health monitoring
Ferrari et al. Ultraconformable temporary tattoo electrodes for electrophysiology
Kim et al. 2D materials for skin‐mountable electronic devices
Kim et al. Advances in soft and dry electrodes for wearable health monitoring devices
Yang et al. Non-invasive flexible and stretchable wearable sensors with nano-based enhancement for chronic disease care
JP6928117B2 (ja) センサシステムおよびその製造方法
Murphy et al. A gel-free Ti3C2Tx-based electrode array for high-density, high-resolution surface electromyography
Shen Recent advances of flexible sensors for biomedical applications
US12114982B2 (en) Skin-mountable electronic devices and methods of using and fabricating the same
Kisannagar et al. Fabrication of silver nanowire/polydimethylsiloxane dry electrodes by a vacuum filtration method for electrophysiological signal monitoring
US11684764B2 (en) Closed-loop actuating and sensing epidermal systems
CN101779949B (zh) 嵌入有微电子系统的三维粘合剂器件
Yao et al. Flexible bioelectronics for physiological signals sensing and disease treatment
Zhao et al. Flexible and stretchable electrochemical sensors for biological monitoring
Tang et al. In situ forming epidermal bioelectronics for daily monitoring and comprehensive exercise
Cheng et al. An elastic and damage-tolerant dry epidermal patch with robust skin adhesion for bioelectronic interfacing
WO2019119045A1 (en) Anisotropically conductive material for use with a biological surface
Liu et al. Breathable, self-adhesive dry electrodes for stable electrophysiological signal monitoring during exercise
CN105232036A (zh) 医用传感器及其制备方法
Zhang et al. Electrochemical and Electrical Biosensors for Wearable and Implantable Electronics Based on Conducting Polymers and Carbon-Based Materials
Dong et al. Fully integrated flexible long-term electrocardiogram recording patch with gel-less adhesive electrodes for arrhythmia detection
Li et al. E-Tattoos: Toward Functional but Imperceptible Interfacing with Human Skin
Wei et al. Ultraflexible tattoo electrodes for epidermal and in vivo electrophysiological recording
Xiao et al. High-adhesive flexible electrodes and their manufacture: A review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803373

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024520342

Country of ref document: JP

Kind code of ref document: A