WO2023218732A1 - Steel sheet, member, and methods for producing same - Google Patents

Steel sheet, member, and methods for producing same Download PDF

Info

Publication number
WO2023218732A1
WO2023218732A1 PCT/JP2023/006926 JP2023006926W WO2023218732A1 WO 2023218732 A1 WO2023218732 A1 WO 2023218732A1 JP 2023006926 W JP2023006926 W JP 2023006926W WO 2023218732 A1 WO2023218732 A1 WO 2023218732A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel plate
steel sheet
layer
content
Prior art date
Application number
PCT/JP2023/006926
Other languages
French (fr)
Japanese (ja)
Inventor
芳怡 王
由康 川崎
達也 中垣内
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023565463A priority Critical patent/JPWO2023218732A1/ja
Publication of WO2023218732A1 publication Critical patent/WO2023218732A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to steel plates, members made from the steel plates, and methods of manufacturing them.
  • Patent Document 1 as a steel plate that is a material for such automobile parts, C is 0.04 to 0.22%, Si is 1.0% or less, and Mn is 3.0%. % or less, P is 0.05% or less, S is 0.01% or less, Al is 0.01-0.1%, and N is 0.001-0.005%, with the balance being Fe and unavoidable impurities. It is composed of a ferrite phase as a main phase and a martensite phase as a second phase, and the maximum grain size of the martensite phase is 2 ⁇ m or less and its area ratio is 5% or more.
  • a high-strength steel plate with excellent stretch flangeability and collision resistance characteristics is disclosed.
  • Patent Document 2 describes a cold-rolled steel sheet whose surface layer has been polished to a thickness of 0.1 ⁇ m or more and which is pre-plated with Ni at 0.2 g/m2 or more and 2.0 g/m2 or less .
  • Containing two or more types of martensite [3] of three types of martensite [1], [2], and [3], 1% or more of bainite, and 0 to 10% of pearlite, and containing the three types of martensite [1], [2], and [3] are volume fractions, respectively: martensite [1]: 0% or more, 50% or less, martensite [2]: 0% or more, less than 20%, martensite [3] : 1% or more and 30% or less, and has a hot-dip galvanized layer containing less than 7% Fe, with the remainder consisting of Zn, Al and inevitable impurities, and has a tensile strength TS (MPa), Plating adhesion characterized by having a total elongation rate EL (%) and a hole expansion rate ⁇ (%) of TS x EL of 18000 MPa % or more, TS x ⁇ of 35000 MPa % or more, and a tensile strength of 980 MP
  • High-strength hot-dip galvanized steel sheet with excellent formability (martensite [1]: C concentration (CM1) is less than 0.8%, hardness Hv1 is Hv1/(-982.1 ⁇ CM1 2 +1676 ⁇ CM1+189) ⁇ 0.60, martensite [2]: C concentration (CM2) is 0.8% or more, hardness Hv2 is Hv2/(-982.1 ⁇ CM2 2 +1676 ⁇ CM2+189) ⁇ 0.60, martensite [3]: It is disclosed that the C concentration (CM3) is 0.8% or more and the hardness Hv3 is Hv3/(-982.1 ⁇ CM3 2 +1676 ⁇ CM3+189) ⁇ 0.80.
  • Patent Document 3 in mass %, C: 0.15% or more and 0.25% or less, Si: 0.50% or more and 2.5% or less, Mn: 2.3% or more and 4.0% or less. , P: 0.100% or less, S: 0.02% or less, Al: 0.01% or more and 2.5% or less, with the balance consisting of Fe and unavoidable impurities.
  • Martensite phase 30% or more and 73% or less, ferrite phase: 25% or more and 68% or less, retained austenite phase: 2% or more and 20% or less, other phases: 10% or less (including 0%), and The other phases include martensitic phase: 3% or less (including 0%), bainitic ferrite phase: less than 5% (including 0%), and the average grain size of the tempered martensitic phase is 8 ⁇ m.
  • YS yield stress
  • impact absorbed energy absorbed energy during impact
  • TS and YS of a steel sheet are increased, press formability, particularly properties such as ductility, hole expandability, and bendability are generally reduced. Therefore, if we assume that a steel plate with high TS and YS is to be applied to the above-mentioned impact energy absorbing member of an automobile, it will not only be difficult to press-form, but also the member will be difficult to perform in an axial crush test simulating a crash test. In other words, the actual impact absorption energy is not as high as expected from the value of YS. Therefore, at present, the impact energy absorbing member described above is limited to steel plates having a TS of 590 MPa class.
  • the steel sheets disclosed in Patent Documents 1 to 3 also have a TS of 1180 MPa or more, a high YS, excellent press formability (ductility, hole expandability, and bendability), and rupture resistance during crushing. (bending rupture characteristics and axial crushing characteristics).
  • the present invention was developed in view of the above-mentioned current situation, and has a tensile strength TS of 1180 MPa or more, a high yield stress YS, and excellent press formability (ductility, hole expandability, and bendability). It is an object of the present invention to provide a steel plate having fracture resistance properties (bending fracture properties and axial crush properties) during crushing, together with an advantageous manufacturing method thereof. Another object of the present invention is to provide a member made of the above-mentioned steel plate and a method for manufacturing the same.
  • the steel sheet referred to herein also includes a galvanized steel sheet, and the galvanized steel sheet is a hot-dip galvanized steel sheet (hereinafter also referred to as GI) or an alloyed hot-dip galvanized steel sheet (hereinafter also referred to as GA).
  • GI hot-dip galvanized steel sheet
  • GA alloyed hot-dip galvanized steel sheet
  • the tensile strength TS is measured by a tensile test based on JIS Z 2241 (2011).
  • having a high yield stress YS, excellent press formability (ductility, hole expandability, and bendability), and fracture resistance during crushing (bending fracture properties and axial crush properties) means that the following are satisfied.
  • High yield stress YS means that YS measured in a tensile test based on JIS Z 2241 (2011) satisfies the following formula (A) or (B) depending on the TS measured in the tensile test. refers to doing.
  • B) If 1320MPa ⁇ TS, 850MPa ⁇ YS
  • the total elongation (El) measured in a tensile test based on JIS Z 2241 (2011) is the following (A) or (B) depending on the TS measured in the tensile test. ) refers to satisfying the formula.
  • excellent hole expansion property refers to a critical hole expansion rate ( ⁇ ) of 30% or more measured in a hole expansion test based on JIS Z 2256 (2020).
  • excellent bendability means that the bending angle ( ⁇ ) at the maximum load measured in a bending test based on the VDA standard (VDA238-100) specified by the German Automobile Manufacturers Association is 80° or more. Point.
  • excellent bending and breaking properties means that the stroke at maximum load (S Fmax ) measured by the V-VDA bending test is 26.0 mm or more.
  • the above El, ⁇ , and ⁇ are characteristics that indicate the ease of forming a steel plate during press forming.
  • the V-VDA bending test is a test that simulates the deformation and fracture behavior of the bending ridge line part in a collision test, and the stroke at the maximum load (S Fmax ) measured in the V-VDA bending test This is a characteristic that indicates shadyness.
  • the present inventors have made extensive studies to achieve the above object.
  • the composition of the base steel plate of the steel plate was adjusted appropriately, and the steel structure of the base steel plate of the steel plate was such that the area ratio of bainitic ferrite was 3.0% or more and 20.0% or less, and tempered martensite.
  • the base steel sheet has a diffusible hydrogen content of 0.50 mass ppm or less, and the V-VDA bending test is performed up to the maximum load point, and the L In the cross section, the crack length is 400 ⁇ m or less, and furthermore, from each position of the start line that extends from the bending apex on the outside of the VDA bending to a position of 50 ⁇ m in the plate thickness direction, on both sides of the start line in the vertical direction Regarding the average grain size in the plate thickness direction of bainitic ferrite in the regions formed up to 50 ⁇ m in each region, the ratio of the average grain size before processing to the
  • a steel plate comprising a base steel plate, the base steel plate comprising: In mass%, C: 0.050% or more and 0.400% or less, Si: more than 0.75% and 3.00% or less, Mn: 2.00% or more and less than 3.50%, P: 0.001% or more and 0.100% or less, S: 0.0001% or more and 0.0200% or less, Contains Al: 0.010% or more and 2.000% or less and N: 0.0100% or less, with the remainder consisting of Fe and inevitable impurities,
  • the base steel plate is Area ratio of bainitic ferrite: 3.0% or more and 20.0% or less, Area ratio of tempered martensite: 40.0% or more and 90.0% or less, Area ratio of retained austenite: more than 3.0% and less than 15.0%, Carbon concentration in retained austenite: 0.60% by mass or more and 1.30% by mass or less, Fresh martensite area ratio: 10.0% or less, Density of carb
  • the composition of the base steel sheet further includes, in mass%, Nb: 0.200% or less, Ti: 0.200% or less, V: 0.200% or less, B: 0.0100% or less, Cr: 1.000% or less, Ni: 1.000% or less, Mo: 1.000% or less, Sb: 0.200% or less, Sn: 0.200% or less, Cu: 1.000% or less, Ta: 0.100% or less, W: 0.500% or less, Mg: 0.0200% or less, Zn: 0.0200% or less, Co: 0.0200% or less, Zr: 0.1000% or less, Ca: 0.0200% or less, Se: 0.0200% or less, Te: 0.0200% or less, Ge: 0.0200% or less, As: 0.0500% or less, Sr: 0.0200% or less, Cs: 0.0200% or less, Hf: 0.0200% or less, Pb: 0.0200% or less, The steel plate according to [1] above, containing at least one
  • the surface layer has a soft surface layer whose Vickers hardness is 85% or less with respect to the Vickers hardness at the 1/4 position of the plate thickness, Nano hardness of 300 points or more in a 50 ⁇ m x 50 ⁇ m area of the plate surface at 1/4 position and 1/2 depth in the plate thickness direction of the surface soft layer from the surface of the base steel plate, respectively.
  • the proportion of measurements where the nano-hardness of the plate surface at 1/4 of the depth in the thickness direction of the soft surface layer from the surface of the base steel sheet is 7.0 GPa or more is 1/4 of the depth in the thickness direction of the soft surface layer. 0.10 or less for the total number of measurements at 4 positions, Furthermore, the standard deviation ⁇ of the nano-hardness of the plate surface at a position 1/4 of the thickness direction depth of the surface soft layer from the base steel plate surface is 1.8 GPa or less, Furthermore, any one of [1] to [3] above, wherein the standard deviation ⁇ of nano-hardness of the plate surface at a position 1/2 the thickness direction depth of the surface soft layer from the base steel plate surface is 2.2 GPa or less. Steel plate described in Crab.
  • a second cooling step in which a process is performed in which two or more passes are applied while contacting for two rounds;
  • the steel plate after the second cooling step is heated to a tempering temperature range of more than 300°C and 500°C or less, and is heated in the temperature range for a tempering time of 20 seconds or more and 900 seconds or less, and
  • a reheating step in which the carbide control parameter CP shown by the following formula (1) is set to 10,000 or more and 15,000 or less
  • the method for producing a steel plate further includes a cold rolling process of cold rolling the steel plate after the pickling process and before the annealing process to obtain a cold rolled steel plate.
  • CP (T+273) ⁇ (k+1.2 ⁇ logt)...Formula (1)
  • T tempering temperature (°C)
  • k material constant depending on C content
  • t tempering time (seconds)
  • k -6 ⁇ C M +17.8,
  • CM Carbon content (mass%) in martensite produced in the second cooling step.
  • the steel plate according to [7] which includes a galvanizing process of subjecting the steel plate after the first cooling process and before the second cooling process to form a galvanized layer on the steel plate. manufacturing method.
  • a method for producing a member comprising the step of subjecting the steel plate according to any one of [1] to [5] to at least one of forming and joining to produce a member.
  • the tensile strength TS is 1180 MPa or more, the high yield stress YS, the excellent press formability (ductility, hole expandability, and bendability), and the rupture resistance property at the time of crushing (bending rupture A steel plate having the following properties is obtained.
  • the member made of the steel plate of the present invention has high strength and excellent impact resistance, so it can be extremely advantageously applied to impact energy absorbing members of automobiles.
  • FIG. 1 is a tissue image taken by SEM to explain tissue identification.
  • FIG. 2-1(a) is a diagram for explaining the V-bending process (primary bending process) in the V-VDA bending test of the example.
  • FIG. 2-1(b) is a diagram for explaining VDA bending (secondary bending) in the V-VDA bending test of the example.
  • FIG. 2-2(c) is a perspective view showing a test piece subjected to V-bending (primary bending) in V-VDA.
  • FIG. 2-2(d) is a perspective view showing a test piece subjected to VDA bending (secondary bending) in V-VDA.
  • FIG. 2-3(e) is a perspective view showing a test piece subjected to VDA bending (secondary bending) in V-VDA and an L cross-sectional observation surface.
  • Figure 2-3(f) shows the change in grain size in the thickness direction of bainitic ferrite before and after processing on the L cross-section observation surface of a test piece subjected to VDA bending (secondary bending) in V-VDA.
  • FIG. 3 is a cross-sectional view showing locations where quantities are measured.
  • FIG. 2-4 is a schematic diagram for explaining the AB area.
  • FIG. 3 is a schematic diagram of the stroke-load curve obtained when performing the V-VDA test.
  • FIG. 4 is a tissue image taken by SEM to explain the measurement of the length of a crack specified in the present invention (Example No. 36 of the present invention).
  • FIG. 5(a) is a structure image taken by SEM to explain the method for measuring the grain size of bainitic ferrite before deformation by processing specified in the present invention (invention example No. 35).
  • FIG. 5(b) is a structure image taken by SEM to explain the method for measuring the grain size of bainitic ferrite after deformation due to processing specified in the present invention (invention example No. 35).
  • FIG. 6-1(a) is a front view of a test member made by spot welding a hat-shaped member and a steel plate, which was manufactured for the axial crush test of the example.
  • FIG. 6-1(b) is a perspective view of the test member shown in FIG. 6-1(a).
  • FIG. 6-2(c) is a schematic diagram for explaining the axial crush test of the example.
  • the steel plate of the present invention is a steel plate comprising a base steel plate, in which the base steel plate includes, in mass %, C: 0.050% or more and 0.400% or less, Si: more than 0.75% and 3.00% or less, Mn : 2.00% or more and less than 3.50%, P: 0.001% or more and 0.100% or less, S: 0.0001% or more and 0.0200% or less, Al: 0.010% or more and 2.000% or less and N: 0.0100% or less, with the remainder consisting of Fe and unavoidable impurities, and the base steel sheet has a bainitic ferrite area ratio of 3.0% or more and 20.0% or less, Area ratio of tempered martensite: 40.0% to 90.0%, area ratio of retained austenite: more than 3.0% to 15.0%, carbon concentration in retained austenite: 0.60% by mass or more1.
  • It has a steel structure of 30% by mass or less, area ratio of fresh martensite: 10.0% or less, density of carbides in tempered martensite: 8.0 pieces/ ⁇ m 2 or less, and diffusible hydrogen of the base steel sheet.
  • the amount is 0.50 mass ppm or less, and the V-VDA bending test is performed up to the maximum load point, and the crack length is 400 ⁇ m or less in the L section, and the bending apex on the outside of the VDA bending is 0.50 mass ppm or less.
  • the average grain size of bainitic ferrite in the thickness direction is determined from each position of the starting line that extends up to 50 ⁇ m in the thickness direction from Regarding the diameter, the ratio of the average particle size before processing to the average particle size after processing is 5.0 or less, and the tensile strength is 1180 MPa or more.
  • the steel plate may have a galvanized layer as the outermost layer on one or both sides of the steel plate.
  • the steel sheet having a galvanized layer may be a galvanized steel sheet.
  • compositions First, the composition of the base steel sheet of the steel sheet according to one embodiment of the present invention will be described. Note that the units in the component compositions are all "% by mass”, but hereinafter, unless otherwise specified, they will be simply expressed as "%".
  • C 0.050% or more and 0.400% or less C produces appropriate amounts of fresh martensite, tempered martensite, bainitic ferrite, and retained austenite to ensure tensile strength TS of 1180 MPa or more and high YS. It is an effective element for Here, if the C content is less than 0.050%, the area ratio of ferrite increases, making it difficult to increase the TS to 1180 MPa or more. It also causes a decrease in YS. On the other hand, when the C content exceeds 0.400%, the carbon concentration in retained austenite increases excessively.
  • the C content is set to 0.050% or more and 0.400% or less.
  • the C content is preferably 0.100% or more. Further, the C content is preferably 0.300% or less.
  • Si More than 0.75% and 3.00% or less Si suppresses the formation of carbides during cooling and holding after annealing and promotes the formation of retained austenite. That is, Si is an element that affects the volume fraction of retained austenite and the carbon concentration in retained austenite.
  • Si content if the Si content is 0.75% or less, the volume fraction of retained austenite decreases and ductility decreases.
  • the Si content exceeds 3.00%, the area ratio of ferrite increases excessively, making it difficult to increase the TS to 1180 MPa or more. It also causes a decrease in YS.
  • the carbon concentration in the austenite during annealing increases too much and the desired ⁇ and SFmax cannot be achieved. Therefore, the Si content is set to more than 0.75% and 3.00% or less.
  • the Si content is preferably 2.00% or less.
  • Mn 2.00% or more and less than 3.50%
  • Mn is an element that adjusts the area ratio of bainitic ferrite, tempered martensite, and the like.
  • the Mn content is less than 2.00%, the area ratio of ferrite increases excessively, making it difficult to increase the TS to 1180 MPa or more. It also causes a decrease in YS.
  • the Mn content is 3.50% or more, the martensite transformation start temperature Ms (hereinafter also simply referred to as the Ms point or Ms) decreases, and the martensite generated in the second cooling step decreases.
  • the Mn content is set to 2.00% or more and less than 3.50%.
  • the Mn content is preferably 2.50% or more. Further, the Mn content is preferably 3.20% or less.
  • P 0.001% or more and 0.100% or less
  • P is an element that has a solid solution strengthening effect and increases the TS and YS of the steel sheet.
  • the P content is set to 0.001% or more.
  • P segregates at prior austenite grain boundaries and embrittles the grain boundaries. Therefore, after punching a steel plate or V-bending in a V-VDA bending test, the amount of voids increases, making it impossible to achieve the desired ⁇ and S Fmax . Therefore, the P content is set to 0.001% or more and 0.100% or less.
  • the P content is preferably 0.030% or less.
  • S 0.0001% or more and 0.0200% or less S exists as a sulfide in steel.
  • the S content exceeds 0.0200%, the amount of voids increases after punching a steel plate or V-bending in a V-VDA bending test, and the desired ⁇ and S Unable to achieve Fmax . Therefore, the S content is set to 0.0200% or less.
  • the S content is preferably 0.0080% or less. Note that the lower limit of the S content is set to 0.0001% or more due to constraints on production technology.
  • Al 0.010% or more and 2.000% or less
  • Al suppresses the formation of carbides during cooling and holding after annealing, and also promotes the formation of retained austenite. That is, Al is an element that affects the volume fraction of retained austenite and the carbon concentration in retained austenite. In order to obtain such an effect, the Al content is set to 0.010% or more.
  • the Al content exceeds 2.000%, the area ratio of ferrite increases excessively, making it difficult to increase the TS to 1180 MPa or more. It also causes a decrease in YS.
  • the C concentration in the austenite during annealing increases too much, making it impossible to achieve the desired ⁇ and SFmax . Therefore, the Al content is set to 0.010% or more and 2.000% or less. Al content is preferably 0.015% or more. Further, the Al content is preferably 1.000% or less.
  • N 0.0100% or less N exists as a nitride in steel.
  • the N content exceeds 0.0100%, the amount of voids generated increases after punching a steel plate or V-bending in a V-VDA bending test, and the desired ⁇ and S Unable to achieve Fmax . Therefore, the N content is set to 0.0100% or less. Further, the N content is preferably 0.0050% or less. Note that, although the lower limit of the N content is not particularly specified, it is preferable that the N content is 0.0005% or more due to constraints on production technology.
  • the basic component composition of the base steel plate of the steel plate according to one embodiment of the present invention has been described above.
  • the base steel plate of the steel plate according to one embodiment of the present invention contains the above basic components, and the remainder other than the above basic components is Fe. (iron) and unavoidable impurities.
  • the base steel sheet of the steel sheet according to one embodiment of the present invention contains the above-mentioned basic components, with the remainder consisting of Fe and inevitable impurities.
  • the base steel sheet of the steel sheet according to an embodiment of the present invention may contain at least one selected from the following optional components.
  • the effects of the present invention can be obtained for the optional components shown below as long as they are contained in amounts below the upper limit shown below, so there is no particular lower limit set.
  • the following arbitrary elements are contained below the preferable lower limit value mentioned later, the said elements shall be contained as an unavoidable impurity.
  • Nb 0.200% or less
  • Ti 0.200% or less
  • V 0.200% or less
  • B 0.0100% or less
  • Cr 1.000% or less
  • Ni 1.000% or less
  • Mo 1.000% or less
  • Sb 0.200% or less
  • Sn 0.200% or less
  • Cu 1.000% or less
  • Ta 0.100% or less
  • W 0.500% or less
  • Mg 0.200% or less
  • Nb 0.200% or less
  • Nb increases TS and YS by forming fine carbides, nitrides, or carbonitrides during hot rolling or annealing.
  • the Nb content is 0.001% or more.
  • the Nb content is more preferably 0.005% or more.
  • the Nb content exceeds 0.200%, large amounts of coarse precipitates and inclusions may be produced. In such a case, coarse precipitates and inclusions become the starting point of cracks during the hole expansion test, VDA bending test, or V-VDA bending test, and the desired ⁇ , ⁇ , and S Fmax may not be achieved. Therefore, when Nb is contained, the Nb content is preferably 0.200% or less.
  • the Nb content is more preferably 0.060% or less.
  • Ti 0.200% or less Like Nb, Ti increases TS and YS by forming fine carbides, nitrides, or carbonitrides during hot rolling or annealing. In order to obtain such an effect, it is preferable that the Ti content is 0.001% or more. The Ti content is more preferably 0.005% or more. On the other hand, if the Ti content exceeds 0.200%, large amounts of coarse precipitates and inclusions may be generated. In such a case, coarse precipitates and inclusions become the starting point of cracks during the hole expansion test, VDA bending test, or V-VDA bending test, and the desired ⁇ , ⁇ , and S Fmax may not be achieved. Therefore, when containing Ti, the Ti content is preferably 0.200% or less. The Ti content is more preferably 0.060% or less.
  • V 0.200% or less Like Nb and Ti, V increases TS and YS by forming fine carbides, nitrides, or carbonitrides during hot rolling or annealing. In order to obtain such an effect, it is preferable that the V content is 0.001% or more. The V content is more preferably 0.005% or more. The V content is more preferably 0.010% or more, and even more preferably 0.030% or more. On the other hand, when the V content exceeds 0.200%, large amounts of coarse precipitates and inclusions may be generated.
  • the V content is preferably 0.200% or less.
  • the V content is more preferably 0.060% or less.
  • B 0.0100% or less
  • B is an element that improves hardenability by segregating at austenite grain boundaries. Further, B is an element that suppresses the formation of ferrite and grain growth during cooling after annealing. In order to obtain such an effect, it is preferable that the B content is 0.0001% or more.
  • the B content is more preferably 0.0002% or more.
  • the B content is more preferably 0.0005% or more, and even more preferably 0.0007% or more.
  • the B content exceeds 0.0100%, cracks may occur inside the steel sheet during hot rolling.
  • the B content is preferably 0.0100% or less.
  • the B content is more preferably 0.0050% or less.
  • the Cr content is preferably 0.0005% or more. Further, the Cr content is more preferably 0.010% or more. The Cr content is more preferably 0.030% or more, and even more preferably 0.050% or more. On the other hand, when the Cr content exceeds 1.000%, the area ratio of hard fresh martensite increases excessively, and fresh martensite becomes the starting point for void formation in the hole expansion test, VDA bending test, or V-VDA bending test.
  • the Cr content is preferably 1.000% or less. Further, the Cr content is more preferably 0.800% or less, still more preferably 0.700% or less.
  • Ni 1.000% or less
  • Ni is an element that improves hardenability, so adding Ni generates a large amount of tempered martensite, ensuring a TS of 1180 MPa or more and a high YS.
  • the Ni content is more preferably 0.020% or more.
  • the Ni content is more preferably 0.040% or more, and even more preferably 0.060% or more.
  • the Ni content exceeds 1.000%, the area ratio of fresh martensite increases excessively, and fresh martensite becomes the starting point for void formation in the hole expansion test, VDA bending test, or V-VDA bending test.
  • the Ni content is preferably 1.000% or less.
  • the Ni content is more preferably 0.800% or less.
  • the Ni content is more preferably 0.600% or less, and even more preferably 0.400% or less.
  • Mo 1.000% or less
  • Mo is an element that improves hardenability, so adding Mo generates a large amount of tempered martensite, ensuring a TS of 1180 MPa or more and a high YS.
  • the Mo content is 0.010% or more.
  • Mo content is more preferably 0.030% or more.
  • the Mo content exceeds 1.000%, the area ratio of fresh martensite increases excessively, and fresh martensite becomes the starting point for void formation in the hole expansion test, VDA bending test, or V-VDA bending test.
  • the Mo content is preferably 1.000% or less.
  • the Mo content is more preferably 0.500% or less, still more preferably 0.450% or less, even more preferably 0.400% or less.
  • the Mo content is more preferably 0.350% or less, and even more preferably 0.300% or less.
  • Sb 0.200% or less
  • Sb is an effective element for suppressing the diffusion of C near the surface of the steel sheet during annealing and controlling the formation of a soft layer near the surface of the steel sheet. If the soft layer increases excessively near the surface of the steel sheet, it becomes difficult to increase the TS to 1180 MPa or more. It also causes a decrease in YS. Therefore, it is preferable that the Sb content is 0.002% or more. The Sb content is more preferably 0.005% or more. On the other hand, when the Sb content exceeds 0.200%, a soft layer is not formed near the surface of the steel sheet, which may lead to a decrease in hole expandability and bendability. Therefore, when Sb is contained, the Sb content is preferably 0.200% or less. The Sb content is more preferably 0.020% or less.
  • Sn 0.200% or less
  • Sn is an effective element for suppressing the diffusion of C near the surface of the steel sheet during annealing and controlling the formation of a soft layer near the surface of the steel sheet. If the soft layer increases excessively near the surface of the steel sheet, it becomes difficult to increase the TS to 1180 MPa or more. It also causes a decrease in YS. Therefore, it is preferable that the Sn content is 0.002% or more. The Sn content is more preferably 0.005% or more. On the other hand, if the Sn content exceeds 0.200%, a soft layer will not be formed near the surface of the steel sheet, which may lead to a decrease in hole expandability and bendability. Therefore, when Sn is contained, the Sn content is preferably 0.200% or less. The Sn content is more preferably 0.020% or less.
  • Cu 1.000% or less
  • Cu is an element that improves hardenability, so adding Cu generates a large amount of tempered martensite, ensuring a TS of 1180 MPa or more and a high YS.
  • the Cu content is 0.005% or more.
  • the Cu content is more preferably 0.008% or more, and even more preferably 0.010% or more.
  • the Cu content is more preferably 0.020% or more.
  • the Cu content exceeds 1.000%, the area ratio of fresh martensite increases excessively, and a large amount of coarse precipitates and inclusions may be generated.
  • the Cu content is preferably 1.000% or less.
  • the Cu content is more preferably 0.200% or less.
  • Ta 0.100% or less Like Ti, Nb, and V, Ta increases TS and YS by forming fine carbides, nitrides, or carbonitrides during hot rolling or annealing. In addition, Ta is partially dissolved in Nb carbides and Nb carbonitrides to form composite precipitates such as (Nb, Ta) (C, N). This suppresses coarsening of precipitates and stabilizes precipitation strengthening. This further improves TS and YS. In order to obtain such an effect, the Ta content is preferably 0.001% or more. The Ta content is more preferably 0.002% or more, and even more preferably 0.004% or more. On the other hand, if the Ta content exceeds 0.100%, large amounts of coarse precipitates and inclusions may be produced.
  • the Ta content is preferably 0.100% or less.
  • the Ta content is more preferably 0.090% or less, and even more preferably 0.080% or less.
  • W 0.500% or less
  • W is an element that improves hardenability, so the addition of W generates a large amount of tempered martensite, ensuring a TS of 1180 MPa or more and a high YS.
  • the W content is 0.001% or more.
  • the W content is more preferably 0.030% or more.
  • the W content exceeds 0.500%, the area ratio of hard fresh martensite increases excessively, and fresh martensite becomes the starting point for void formation in the hole expansion test, VDA bending test, or V-VDA bending test. Therefore, there is a possibility that the desired ⁇ , ⁇ , and S Fmax cannot be achieved. Therefore, when W is contained, the W content is preferably 0.500% or less.
  • the W content is more preferably 0.450% or less, still more preferably 0.400% or less. It is even more preferable that the W content is 0.300% or less.
  • Mg 0.0200% or less
  • Mg is an effective element for making inclusions such as sulfides and oxides spheroidal and improving the hole expandability of the steel sheet.
  • the Mg content is 0.0001% or more.
  • the Mg content is more preferably 0.0005% or more, and even more preferably 0.0010% or more.
  • the Mg content exceeds 0.0200%, large amounts of coarse precipitates and inclusions may be formed. In such a case, coarse precipitates and inclusions become the starting point of cracks during the hole expansion test, VDA bending test, or V-VDA bending test, and there is a possibility that the desired ⁇ , ⁇ , and S Fmax cannot be achieved. Therefore, when Mg is contained, the Mg content is preferably 0.0200% or less.
  • the Mg content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
  • Zn 0.0200% or less
  • Zn is an effective element for spheroidizing the shape of inclusions and improving the hole expandability of the steel sheet.
  • the Zn content is preferably 0.0010% or more.
  • the Zn content is more preferably 0.0020% or more, and even more preferably 0.0030% or more.
  • the Zn content exceeds 0.0200%, large amounts of coarse precipitates and inclusions may be formed. In such cases, coarse precipitates and inclusions may become starting points for cracks during the hole expansion test, VDA bending test, or V-VDA bending test, and the desired ⁇ , ⁇ , and S Fmax may not be achieved. Therefore, when Zn is contained, the Zn content is preferably 0.0200% or less.
  • the Zn content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
  • Co 0.0200% or less
  • Co is an effective element for spheroidizing the shape of inclusions and improving the hole expandability of the steel sheet.
  • the Co content is preferably 0.0010% or more.
  • the Co content is more preferably 0.0020% or more, and even more preferably 0.0030% or more.
  • the Co content exceeds 0.0200%, large amounts of coarse precipitates and inclusions may be formed. In such a case, coarse precipitates and inclusions become the starting point of cracks during the hole expansion test, VDA bending test, or V-VDA bending test, and there is a possibility that the desired ⁇ , ⁇ , and S Fmax cannot be achieved. Therefore, when Co is contained, the Co content is preferably 0.0200% or less.
  • the Co content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
  • Zr 0.1000% or less
  • Zr is an effective element for making the shape of inclusions spherical and improving the hole expandability of the steel sheet.
  • the Zr content is preferably 0.0010% or more.
  • the Zr content exceeds 0.1000%, large amounts of coarse precipitates and inclusions may be formed. In such a case, coarse precipitates and inclusions become the starting point of cracks during the hole expansion test, VDA bending test, or V-VDA bending test, and the desired ⁇ , ⁇ , and S Fmax may not be achieved. Therefore, when containing Zr, the Zr content is preferably 0.1000% or less.
  • the Zr content is more preferably 0.0300% or less, and even more preferably 0.0100% or less.
  • Ca 0.0200% or less Ca exists as inclusions in steel.
  • the Ca content is preferably 0.0200% or less.
  • the Ca content is preferably 0.0020% or less.
  • the Ca content is more preferably 0.0019% or less, and even more preferably 0.0018% or less.
  • the lower limit of the Ca content is not particularly limited, but the Ca content is preferably 0.0005% or more.
  • the Ca content is more preferably 0.0010% or more.
  • Se 0.0200% or less, Te: 0.0200% or less, Ge: 0.0200% or less, As: 0.0500% or less, Sr: 0.0200% or less, Cs: 0.0200% or less, Hf: 0.0200% or less, Pb: 0.0200% or less, Bi: 0.0200% or less, REM: 0.0200% or less Se, Te, Ge, As, Sr, Cs, Hf, Pb, Bi, and REM are all is also an effective element for improving the hole expandability of steel sheets. In order to obtain such an effect, it is preferable that the content of Se, Te, Ge, As, Sr, Cs, Hf, Pb, Bi, and REM is each 0.0001% or more.
  • the content of REM is preferably 0.0200% or less, and the content of As is preferably 0.0500% or less.
  • the Se content is more preferably 0.0005% or more, and even more preferably 0.0008% or more.
  • the Se content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
  • the Te content is more preferably 0.0005% or more, and even more preferably 0.0008% or more.
  • the Te content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
  • the Ge content is more preferably 0.0005% or more, and even more preferably 0.0008% or more.
  • the Ge content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
  • As content it is more preferred that it is 0.0010% or more, and it is still more preferred that it is 0.0015% or more.
  • As content it is more preferred that it is 0.0400% or less, and it is still more preferred that it is 0.0300% or less.
  • the Sr content is more preferably 0.0005% or more, and even more preferably 0.0008% or more.
  • the Sr content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
  • the Cs content is more preferably 0.0005% or more, and even more preferably 0.0008% or more.
  • the Cs content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
  • the Hf content is more preferably 0.0005% or more, and even more preferably 0.0008% or more.
  • the Hf content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
  • the Pb content is more preferably 0.0005% or more, and even more preferably 0.0008% or more.
  • the Pb content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
  • the Bi content is more preferably 0.0005% or more, and even more preferably 0.0008% or more.
  • the Bi content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
  • the REM content is more preferably 0.0005% or more, and even more preferably 0.0008% or more.
  • the REM content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
  • REM as used in the present invention refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanum (La) with atomic number 57 to lutetium (Lu) with atomic number 71. Refers to lanthanoids.
  • the REM concentration in the present invention is the total content of one or more elements selected from the above-mentioned REMs. REM is not particularly limited, but preferably Sc, Y, Ce, and La.
  • the base steel plate of the steel plate according to an embodiment of the present invention has, in mass %, C: 0.050% or more and 0.400% or less, Si: more than 0.75% and 3.00% or less, and Mn: 2.00. % or more and less than 3.50%, P: 0.001% or more and 0.100% or less, S: 0.0001% or more and 0.0200% or less, Al: 0.010% or more and 2.000% or less, and N: 0 .0100% or less, optionally Nb: 0.200% or less, Ti: 0.200% or less, V: 0.200% or less, B: 0.0100% or less, Cr: 1.000% or less, Ni: 1.000% or less, Mo: 1.000% or less, Sb: 0.200% or less, Sn: 0.200% or less, Cu: 1.000% or less, Ta: 0.100% or less, W: 0.500% or less, Mg: 0.0200% or less, Zn: 0.0200% or less, Co: 0.0200
  • the steel structure of the base steel sheet of the steel sheet according to an embodiment of the present invention has an area ratio of bainitic ferrite of 3.0% to 20.0% and an area ratio of tempered martensite (excluding retained austenite) of 40.
  • the density of carbides in the tempered martensite is 8.0 pieces/ ⁇ m 2 or less
  • the amount of diffusible hydrogen in the base steel sheet is 0.50 mass ppm or less
  • the V-VDA bending test was performed up to the maximum load point, and the crack length was 400 ⁇ m or less in the L cross section, and furthermore, the crack length was 400 ⁇ m or less in the VDA bending
  • the ratio of the average particle size before processing to the average particle size is 5.0 or less.
  • Area ratio of bainitic ferrite 3.0% or more and 20.0% or less
  • Bainitic ferrite has an intermediate hardness compared to soft ferrite and hard fresh martensite, and has good hole expandability. , is an important phase to ensure bendability, bending rupture properties and axial crush properties. Bainitic ferrite is also a useful phase for obtaining an appropriate amount of retained austenite area ratio and carbon concentration in retained austenite by utilizing the diffusion of C from bainitic ferrite to untransformed austenite. be. Therefore, the area ratio of bainitic ferrite is set to 3.0% or more.
  • the area ratio of bainitic ferrite is preferably 5.0% or more, more preferably 8.0% or more.
  • the area ratio of bainitic ferrite is set to 20.0% or less.
  • the area ratio of bainitic ferrite is preferably 18.0% or less, more preferably 15.0% or less.
  • bainitic ferrite is upper bainitic bainite that is generated in a relatively high temperature range and has few carbides.
  • Tempered martensite (excluding retained austenite): 40.0% or more and 90.0% or less Tempered martensite has an intermediate hardness compared to soft ferrite and hard fresh martensite. It is an important phase for ensuring good hole expandability, bendability, bending rupture properties, and axial crushing properties. Furthermore, tempered martensite is effective in improving TS. Therefore, the area ratio of tempered martensite is set to 40.0% or more. The area ratio of tempered martensite is preferably 60.0% or more. On the other hand, when the area ratio of tempered martensite increases excessively, ductility decreases. Therefore, the area ratio of tempered martensite is 90.0% or less. The area ratio of tempered martensite is preferably 85.0% or less, more preferably 80.0% or less.
  • the area ratio of retained austenite is set to be more than 3.0%.
  • the area ratio of retained austenite is preferably 5.0% or more.
  • the area ratio of retained austenite increases excessively, fresh martensite generated by deformation-induced transformation occurs when a steel plate undergoes punching in a hole expansion test or V-bending in a V-VDA test. This becomes a starting point for void generation, making it impossible to achieve the desired ⁇ and S Fmax . Therefore, the area ratio of retained austenite is set to 15.0% or less.
  • the area ratio of retained austenite is preferably 12.0% or less, more preferably 10.0% or less.
  • the area ratio of retained austenite can be suppressed to 15.0% or less by controlling the tension during the second cooling step in the manufacturing method described below.
  • a tension of 2.0 kgf/ mm2 or more is applied at least once, and then the steel plate is is applied for 4 passes or more while contacting a roll with a diameter of 500 mm or more and 1500 mm or less for 1/4 rotation per pass, and a process of applying the steel plate to a roll with a diameter of 500 mm or more and 1500 mm or less per pass for 1/2 rotation of the roll.
  • the unstable residual austenite undergoes deformation-induced transformation and becomes fresh martensite, which is then tempered during cooling and finally becomes tempered martensite. .
  • Carbon concentration in retained austenite 0.60% by mass or more and 1.30% by mass or less
  • the carbon concentration in retained austenite is an index that affects the stability with which retained austenite transforms into martensite during deformation. If the carbon concentration in the retained austenite is less than 0.60% by mass, the retained austenite is unstable and deformation-induced martensitic transformation occurs after stress is applied but before plastic deformation occurs, making it impossible to obtain the required elongation. On the other hand, if the carbon concentration in the retained austenite exceeds 1.30% by mass, fresh carbon is generated from the retained austenite when the steel plate is punched in the hole expansion test or when it is subjected to V-bending in the V-VDA test.
  • the carbon concentration in the retained austenite is set to 0.60% by mass or more and 1.30% by mass or less.
  • the carbon concentration in the retained austenite is preferably 0.80% by mass or more. Further, the carbon concentration in the retained austenite is preferably 1.20% by mass or less.
  • Fresh martensite area ratio 10.0% or less (including 0.0%) If the area ratio of fresh martensite increases excessively, fresh martensite becomes the starting point for void formation in the hole expansion test, VDA bending test, or V-VDA bending test, making it impossible to achieve the desired ⁇ , ⁇ , and S Fmax . Furthermore, as the fresh martensite area ratio increases, the amount of diffusible hydrogen in the steel sheet increases, and the hole expandability and bendability further decrease. From the viewpoint of ensuring good hole expandability and bendability, the area ratio of fresh martensite is 10.0% or less, preferably 5.0% or less. Note that the lower limit of the area ratio of fresh martensite is not particularly limited, and may be 0.0%. Note that fresh martensite is martensite that is still quenched (not tempered).
  • Density of carbides in tempered martensite (number density): 8.0 pieces/ ⁇ m 2 or less
  • the density of carbides in tempered martensite is set to 8.0 carbides/ ⁇ m 2 or less.
  • the density of carbides in the tempered martensite is preferably 7.0 pieces/ ⁇ m 2 or less, more preferably 6.0 pieces/ ⁇ m 2 or less.
  • the density of carbides in the tempered martensite is preferably 1.0 pieces/ ⁇ m 2 or more, more preferably 2.0 pieces/ ⁇ m 2 or more.
  • examples of residual structures other than those mentioned above include carbides such as ferrite, lower bainite, pearlite, and cementite.
  • the area ratio of pearlite is preferably 5.0% or less.
  • the type of residual tissue can be confirmed, for example, by observation using a scanning electron microscope (SEM).
  • the area ratio of bainitic ferrite, tempered martensite, and hard second phase is measured as follows at a position of 1/4 of the thickness of the base steel plate. That is, a sample is cut out from the base steel plate so that the plate thickness cross section parallel to the rolling direction of the base steel plate serves as the observation surface. Next, the observation surface of the sample is mirror-polished using diamond paste. Then, after final polishing the observation surface of the sample using colloidal silica, 3vol. Etch with % nital to reveal the tissue.
  • Bainitic ferrite A black to dark gray region, with a lumpy or irregular shape. Also, it does not contain iron-based carbides or contains relatively few iron-based carbides. Tempered martensite: A gray area with an amorphous shape. It also contains a relatively large number of iron-based carbides. Hard second phase (retained austenite + fresh martensite): This is a white to light gray region with an amorphous shape. Also, it does not contain iron-based carbides. Note that when the size is relatively large, the color becomes gradually darker as it moves away from the interface with other tissues, and the inside may take on a dark gray color. Ferrite: A black region with a block-like shape. In addition, it contains almost no iron-based carbide.
  • the area of the iron-based carbide is also included in the area of ferrite.
  • Cementite A white region with a dotted or linear shape. Enclosed in tempered martensite, bainitic ferrite, and ferrite. Lower bainite, pearlite, etc.: Their forms are known.
  • the region of each phase identified in the tissue image is calculated using the following method.
  • a 20 x 20 grid with equal spacing is placed over an area of actual length 23.1 ⁇ m x 17.6 ⁇ m, and bainitic processing is performed using a point counting method that counts the number of points on each phase.
  • the area ratio is the average value of three area ratios obtained from separate SEM images with a magnification of 5000 times.
  • the area ratio of retained austenite is measured as follows. That is, the base steel plate is mechanically ground in the thickness direction (depth direction) to a position of 1/4 of the plate thickness, and then chemically polished with oxalic acid to form an observation surface. Then, the observation surface is observed by X-ray diffraction. MoK ⁇ rays were used for the incident X-rays, and the diffraction intensity of the (200), (211) and (220) planes of BCC iron was compared with the (200), (220) and (311) planes of FCC iron (austenite). The ratio of the diffraction intensities of each surface is determined, and the volume fraction of retained austenite is calculated from the ratio of the diffraction intensities of each surface. Then, assuming that the retained austenite is three-dimensionally homogeneous, the volume fraction of the retained austenite is defined as the area fraction of the retained austenite.
  • the lattice constant of the retained austenite is determined using the diffraction peak of the (220) plane of FCC iron (austenite) measured by the above-mentioned X-ray diffraction method.
  • the carbon concentration in the retained austenite is determined from the following formula.
  • C ⁇ ((A-(3.572+0.0012 ⁇ [Mn%]-0.00157 ⁇ [Si%]+0.0056 ⁇ [Al%]))/0.033
  • A lattice constant of retained austenite
  • C ⁇ carbon concentration in retained austenite
  • [Mn%], [Si%], [Al%] content (mass%) of Mn, Si, and Al in the steel sheet, respectively.
  • the area ratio of fresh martensite is determined by subtracting the area ratio of retained austenite from the area ratio of the hard second phase determined as described above.
  • [Area ratio of fresh martensite (%)] [Area ratio of hard second phase (%)] - [Area ratio of retained austenite (%)]
  • the area ratio of the residual structure is determined by subtracting the area ratio of bainitic ferrite, the area ratio of tempered martensite, and the area ratio of the hard second phase determined as described above from 100.0%.
  • [Area ratio of residual structure (%)] 100.0 - [Area ratio of bainitic ferrite (%)] - [Area ratio of tempered martensite (%)] - [Area ratio of hard second phase (%) )]
  • the density of carbides in tempered martensite is measured as follows. Tempered martensite and carbide are extracted by color from the SEM microstructure image used for the above-mentioned microstructure fraction measurement by hand painting, and an image of only the tempered martensite or carbide is obtained. Here, carbides with a diameter (circular equivalent diameter) of 100 nm or more are targeted. Thereafter, the area of the tempered martensite and the number of carbides in the tempered martensite are determined using open source ImageJ. The value obtained by dividing the number of carbides in tempered martensite by the area of the tempered martensite is the density of carbides in tempered martensite, and is averaged by randomly extracting 10 tempered martensite from separate SEM images.
  • the value be the density of carbides in tempered martensite.
  • a granular region whose outer periphery is surrounded by tempered martensite and is integrally formed without interruption is measured as one.
  • the amount of diffusible hydrogen in the base steel sheet is preferably 0.50 mass ppm or less. Further, the amount of diffusible hydrogen in the base steel sheet is more preferably 0.30 mass ppm or less. Note that the lower limit of the amount of diffusible hydrogen in the base steel sheet is not particularly specified, and may be 0 mass ppm. Further, due to constraints on production technology, the amount of diffusible hydrogen in the base steel sheet is more preferably 0.01 mass ppm or more.
  • the amount of diffusible hydrogen in the base steel sheet is measured as follows.
  • a test piece with a length of 30 mm and a width of 5 mm is taken from a steel plate, and if a galvanized layer is formed on the steel plate, the galvanized layer is removed with alkali.
  • the amount of hydrogen released from the test piece is measured by temperature programmed desorption analysis. Specifically, the test piece is continuously heated from room temperature (-5 to 55°C) to 300°C at a heating rate of 200°C/h, and then cooled to room temperature. At this time, the amount of hydrogen released from the test piece (cumulative amount of hydrogen) is measured in the temperature range from room temperature to 210° C. during the continuous heating.
  • the measured amount of hydrogen is divided by the mass of the test piece (the test piece after removing the galvanized layer and before continuous heating), and the value converted to mass ppm is taken as the amount of diffusible hydrogen in the base steel sheet. It is preferable to measure the amount of diffusible hydrogen after the production of the steel sheet is completed. It is more preferable to measure the amount of hydrogen within one week after the completion of manufacturing the steel sheet.
  • the room temperature should be within the range of local temperature changes over a one-year period, taking into account production in various countries around the world. Generally, the temperature is preferably in the range of 10 to 50°C.
  • test pieces are cut out from the product in a general usage environment and the amount of diffusible hydrogen in the base steel plate is measured in the same manner as above. is measured, and if the value is 0.50 mass ppm or less, it can be considered that the amount of diffusible hydrogen in the base steel sheet of the steel sheet at the raw material stage before forming or joining processing is also 0.50 mass ppm or less.
  • the base steel sheet of the steel plate according to one embodiment of the present invention preferably has a soft surface layer on the surface of the base steel sheet.
  • the soft surface layer contributes to suppressing the propagation of bending cracks during press molding and car body collisions, further improving the bending fracture resistance.
  • the surface soft layer means a decarburized layer, and is a surface layer region having a Vickers hardness of 85% or less of the Vickers hardness of the cross section at the 1/4 thickness position.
  • the surface soft layer is formed in an area of 200 ⁇ m or less in the thickness direction from the surface of the base steel sheet.
  • the area where the surface soft layer is formed is preferably 150 ⁇ m or less, more preferably 120 ⁇ m or less in the thickness direction from the base steel plate surface.
  • the thickness of the soft surface layer is preferably 8 ⁇ m or more, more preferably 11 ⁇ m or more.
  • the surface soft layer preferably has a thickness of 30 ⁇ m or more, more preferably 40 ⁇ m or more.
  • the position of 1/4 of the thickness of the base steel plate at which the Vickers hardness is measured is a non-surface soft layer (a layer that does not satisfy the hardness conditions of the surface soft layer defined in the present invention). Vickers hardness is measured based on JIS Z 2244-1 (2020) with a load of 10 gf.
  • Nano-hardness of surface soft layer 300 points in an area of 50 ⁇ m x 50 ⁇ m on the plate surface at 1/4 position and 1/2 depth in the thickness direction of the surface soft layer from the surface of the base steel plate, respectively.
  • the proportion of measurements where the nanohardness of the plate surface at 1/4 of the depth in the thickness direction of the surface soft layer from the surface of the base steel sheet was 7.0 GPa or more was determined by the thickness of the surface soft layer.
  • the standard deviation ⁇ of the nano-hardness of the plate surface at a position 1/4 of the depth in the thickness direction of the surface soft layer from the steel plate surface is 1.8 GPa or less, and The standard deviation ⁇ of the nanohardness of the plate surface at the 1/2 position is 2.2 GPa or less.
  • the standard deviation ⁇ of the nano-hardness of the plate surface at 1/4 of the depth in the thickness direction of the soft layer is 1.8 GPa or less, and furthermore, the standard deviation ⁇ of the nanohardness of the plate surface at 1/4 of the depth in the thickness direction of the surface soft layer from the steel plate surface is 1/2 of the depth in the thickness direction of the surface soft layer.
  • the standard deviation ⁇ of the nanohardness of the plate surface is 2.2 GPa or less.
  • the standard deviation ⁇ of the nano-hardness of the plate surface at a position 1/4 of the depth in the thickness direction of the surface soft layer from the steel plate surface is 1.8 GPa or less, and If the standard deviation ⁇ of the nanohardness of the plate surface at the 1/2 position is 2.2 GPa or less, it means that the difference in the structure hardness in the micro region is small. It becomes possible to further suppress the generation and connection of voids and the propagation of cracks during a collision, resulting in excellent R/t, ⁇ , and SFmax .
  • the preferred range of the standard deviation ⁇ of the nano-hardness of the plate surface at a position 1/4 of the thickness direction depth of the surface soft layer from the base steel plate surface is preferably 1.7 GPa or less.
  • the standard deviation ⁇ of the nanohardness of the plate surface at a position of 1/4 of the thickness direction depth of the surface soft layer from the base steel plate surface is more preferably 1.3 GPa or less.
  • the standard deviation ⁇ of the nanohardness of the plate surface at a position 1/4 of the thickness direction depth of the surface soft layer from the base steel plate surface may be 0.5 GPa or more.
  • a more preferable range of the standard deviation ⁇ of the nano-hardness of the plate surface at 1/2 the thickness direction depth of the surface soft layer from the base steel plate surface is 2.1 GPa or less.
  • the standard deviation ⁇ of the nanohardness of the plate surface at a position 1/2 the thickness direction depth of the surface soft layer from the base steel plate surface is more preferably 1.7 GPa or less.
  • the lower limit is not particularly limited, the standard deviation ⁇ of the nanohardness of the plate surface at 1/2 the thickness direction depth of the surface soft layer from the base steel plate surface may be 0.6 GPa or more.
  • the nanohardness of the plate surface at the 1/4 position and 1/2 position of the depth in the thickness direction is the hardness measured by the following method. If a plating layer is formed, after peeling off the plating layer, mechanical polishing is performed from the surface of the base steel sheet to a position 1/4 of the depth in the thickness direction of the surface soft layer - 5 ⁇ m, and the base steel sheet is polished. Buff polishing with diamond and alumina is performed from the surface to 1/4 of the depth in the thickness direction of the surface soft layer, and further polishing with colloidal silica is performed.
  • the plating layer to be peeled off is a galvanized layer if a galvanized layer is formed, a metal plating layer if a metal plating layer is formed, and a galvanized layer and a metal plating layer. If it is formed, it is a zinc plating layer and a metal plating layer.
  • Nanohardness is measured using Hysitron's tribo-950 with a Berkovich-shaped diamond indenter under the conditions of load: 500 ⁇ N, measurement area: 50 ⁇ m ⁇ 50 ⁇ m, and dot spacing: 2 ⁇ m. Next, mechanical polishing, buff polishing with diamond and alumina, and colloidal silica polishing are performed to 1/2 the depth of the surface soft layer in the thickness direction.
  • Nanohardness is measured using Hysitron's tribo-950 with a Berkovich-shaped diamond indenter under the conditions of load: 500 ⁇ N, measurement area: 50 ⁇ m ⁇ 50 ⁇ m, and dot spacing: 2 ⁇ m. Nanohardness is measured at 300 or more points at a position of 1/4 of the depth in the thickness direction, and nanohardness at 300 or more points is also measured at a position of 1/2 of the depth in the thickness direction. For example, when the soft surface layer thickness is 100 ⁇ m, the 1/4 position is 25 ⁇ m from the surface of the soft surface layer, and the 1/2 position is 50 ⁇ m from the surface of the soft surface layer. Nanohardness is measured at 300 or more points at this 25 ⁇ m position, and nanohardness at 300 or more points is also measured at the 50 ⁇ m position.
  • the steel sheet according to an embodiment of the present invention has a metal plating layer (first plating layer, pre-plating layer) (in addition, a metal plating layer (first plating layer) on one or both surfaces of the base steel sheet). , a hot-dip galvanized layer, and an alloyed hot-dip galvanized layer (excluding the galvanized layer).
  • the metal plating layer is preferably a metal electroplating layer, and below, the metal electroplating layer will be explained as an example.
  • the metal electroplating layer on the outermost layer contributes to suppressing the occurrence of bending cracks during press forming and when a vehicle body collides, so that the bending rupture resistance is further improved.
  • the dew point to more than -5°C
  • the thickness of the soft layer can be increased, and the axial crushing properties can be made very excellent.
  • the dew point can be set to ⁇ 5° C. or less, and even if the soft layer thickness is small, the same axial crushing characteristics as when the soft layer thickness is large can be obtained.
  • the metal species of the metal electroplating layer include Cr, Mn, Fe, Co, Ni, Cu, Ga, Ge, As, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Os, Ir, Rt, Any of Au, Hg, Ti, Pb, and Bi may be used, but Fe is more preferable.
  • an Fe-based electroplated layer will be explained as an example, but the following conditions for Fe can be similarly adopted for other metal types.
  • the amount of the Fe-based electroplated layer deposited is more than 0 g/m 2 , preferably 2.0 g/m 2 or more.
  • the upper limit of the amount of the Fe-based electroplated layer per side is not particularly limited, but from the viewpoint of cost, it is preferable that the amount of the Fe-based electroplated layer applied per side is 60 g/m 2 or less.
  • the amount of the Fe-based electroplated layer deposited is preferably 50 g/m 2 or less, more preferably 40 g/m 2 or less, and even more preferably 30 g/m 2 or less.
  • the adhesion amount of the Fe-based electroplating layer is measured as follows. A sample with a size of 10 x 15 mm is taken from a Fe-based electroplated steel plate and embedded in resin to form a cross-sectional embedded sample. Three arbitrary points on the same cross section were observed using a scanning electron microscope (SEM) at an accelerating voltage of 15 kV and a magnification of 2,000 to 10,000 times depending on the thickness of the Fe-based plating layer. By multiplying the average value by the specific gravity of iron, it is converted into the amount of Fe-based electroplating layer deposited on one side.
  • SEM scanning electron microscope
  • Fe-based electroplating layers include Fe-B alloy, Fe-C alloy, Fe-P alloy, Fe-N alloy, Fe-O alloy, Fe-Ni alloy, Fe-Mn alloy, Fe- An alloy plating layer such as Mo alloy or Fe-W alloy can be used.
  • the composition of the Fe-based electroplated layer is not particularly limited, but 1 selected from the group consisting of B, C, P, N, O, Ni, Mn, Mo, Zn, W, Pb, Sn, Cr, V, and Co.
  • the composition contains two or more elements in a total of 10% by mass or less, with the remainder consisting of Fe and unavoidable impurities.
  • the C content is preferably 0.08% by mass or less.
  • the above-mentioned steel plate with a crack length exceeding 400 ⁇ m is susceptible to the formation and propagation of voids in the steel plate structure.
  • the bending resistance to breakage decreases quickly. Therefore, the above crack length is set to 400 ⁇ m or less.
  • the above crack length is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less. Although the lower limit is not particularly limited, this value may be 0 ⁇ m.
  • the V-VDA bending test was performed up to the maximum load point, and on the L cross section, from each position of the starting line that existed up to a position of 50 ⁇ m in the plate thickness direction, starting from the bending apex on the outside of the VDA bending, on both sides of the starting line in the vertical direction
  • the ratio of the average grain size before processing to the average grain size after processing (the average grain size before and after processing ): 5.0 or less
  • the symbol BF indicates bainitic ferrite
  • the symbol F indicates ferrite
  • the symbol TM indicates tempered martensite.
  • ⁇ (TM) indicates a carbide in tempered martensite
  • H1 indicates a hard second phase
  • X1(BF) indicates an island-like second phase in bainitic ferrite.
  • island-like retained austenite is formed inside the bainitic ferrite BF in the steel sheet structure due to carbon distribution.
  • the bainitic ferrite BF When the bainitic ferrite BF is deformed by processing, voids are likely to occur at the boundaries between the bainitic ferrite BF and the hard fresh martensite generated by the processing-induced transformation between the bainitic ferrite BF and the island-like residual austenite. If the amount of change in the average grain size in the thickness direction of the bainitic ferrite BF before and after processing exceeds 5.0, the bainitic ferrite BF will be subjected to tensile stress in the rolling direction, resulting in an increase in the number of voids. The initiation and propagation of cracks is promoted, resulting in a decrease in bending rupture resistance.
  • the amount of change in the average grain size in the plate thickness direction of the bainitic ferrite before and after processing is set to be 5.0 or less.
  • the amount of change is preferably 4.8 or less, more preferably 4.5 or less.
  • the amount of change in the average grain size of bainitic ferrite before and after processing is less than 0.2, in bainitic ferrite subjected to compressive stress, island-like residual austenite inside the bainitic ferrite will be formed.
  • the amount of change in the average grain size of the bainitic ferrite in the plate thickness direction before and after processing is preferably 0.2 or more.
  • the amount of change is preferably 0.3 or more, more preferably 0.5 or more.
  • the above V-VDA bending test is conducted as follows.
  • a 60 mm x 65 mm test piece is taken from the obtained steel plate by shearing.
  • the 60 mm side is parallel to the rolling (L) direction.
  • a test piece is prepared by performing a 90° bending process (primary bending process) in the rolling (L) direction with the width (C) direction as an axis at a radius of curvature/plate thickness of 4.2.
  • a punch B1 is pushed into a steel plate placed on a die A1 having a V groove to obtain a test piece T1.
  • FIG. 3 shows a schematic diagram of the stroke-load curve obtained when performing the V-VDA test.
  • the V-VDA test was performed up to the maximum load point P, and then, when the load reached 94.9 to 99.9% of the maximum load (see symbol R in Figure 3), the sample was unloaded and subjected to V-VDA bending. This will be used as an evaluation sample in the test.
  • FIG. 2-2(c) a test piece T1 obtained by subjecting a steel plate to V-bending (primary bending) is shown in FIG. 2-2(c). Further, a test piece T2 obtained by subjecting the test piece T1 to VDA bending (secondary bending) is shown in FIG. 2-2(d).
  • the position indicated by the broken line in test piece T2 in Figure 2-2(d) is the above-mentioned V-bending ridgeline, and the position indicated by the broken line in test piece T1 in Figure 2-2(c) before VDA bending. corresponds to the position.
  • the overlapping region of the V-bending ridgeline and the VDA-bending ridgeline is the center position of the VDA bending apex and the broken line shown as a in FIG. 2-2(d).
  • the V-bending ridgeline portion refers to a region extending in the width direction from the V-bending corner (apex) to 5 mm on both sides.
  • the area other than the V-bending ridgeline portion is a V-bending flat portion.
  • the VDA bending ridgeline portion refers to an area extending 5 mm on both sides from the VDA bending corner (apex) that is subjected to VDA bending and extends in the rolling direction.
  • FIG. 2-3(e) shows the positional relationship between the L cross section AL of the V bending ridgeline part and the VDA bending ridgeline part and the test piece T2.
  • FIG. 2-3(f) shows the L cross section AL when the D2 direction is perpendicular to the paper surface and the D1 direction is parallel to the paper surface.
  • the V-VDA bending test is performed up to the maximum load point, and the length of the crack in the L cross section (hereinafter also referred to as the AL plane) in the overlapping region of the V bending ridgeline and the VDA bending ridgeline is determined as follows.
  • a sample is cut out from the base steel plate so that the AL surface of the steel plate subjected to the V-VDA bending test up to the maximum load point becomes the observation surface.
  • the observation surface of the sample is mirror-polished using diamond paste.
  • 3vol. Etch with % nital to reveal the tissue.
  • FIG. 4 shows an example of an image of a crack that was actually measured.
  • the symbol D2 indicates the rolling (L) direction
  • the symbol D4 indicates the plate thickness direction.
  • the symbol L indicates the length of the crack.
  • FIG. 2-4 is a schematic diagram for explaining the AB area. As shown in FIG .
  • the AB region starts from the bending apex t 0 on the outside of VDA bending and extends from each position of the starting line L 0 that extends to a position of 50 ⁇ m in the plate thickness direction. This refers to a region formed at a distance of up to 50 ⁇ m on each side in the vertical direction.
  • the value obtained by dividing the diameter by the average grain size in the thickness direction of the bainitic ferrite after deformation ratio of the average grain size before processing to the average grain size after processing: average grain size before processing (nm) / after processing
  • the average grain size (nm) of bainitic ferrite be the amount of change in the average grain size in the thickness direction of the bainitic ferrite before and after processing.
  • FIG. 5 shows an example of images of bainitic ferrite before deformation and bainitic ferrite after deformation.
  • the symbol BF1 indicates bainitic ferrite before deformation
  • the symbol BF2 indicates bainitic ferrite after deformation.
  • one piece of bainitic ferrite in the SEM image, a granular region whose outer periphery is surrounded by other structures and is integrally formed without interruption is measured as one piece.
  • Tensile strength (TS) 1180 MPa or more
  • the tensile strength TS of the steel plate according to one embodiment of the present invention is 1180 MPa or more. Although the upper limit is not particularly defined, the tensile strength TS is preferably less than 1470 MPa.
  • the yield stress (YS), total elongation (El), critical hole expansion rate ( ⁇ ), critical bending angle ( ⁇ ) in the VDA bending test, and critical bending angle ( ⁇ ) in the V-VDA bending test of the steel plate according to an embodiment of the present invention are The reference value of the stroke at maximum load (S Fmax ) and the presence or absence of axial crush fracture are as described above.
  • tensile strength (TS), yield stress (YS), and total elongation (El) are measured by a tensile test based on JIS Z 2241 (2011), which will be described later in Examples.
  • the critical hole expansion rate ( ⁇ ) is measured by a hole expansion test based on JIS Z 2256 (2020), which will be described later in Examples.
  • the limit bending angle ( ⁇ ) in the VDA bending test is measured by the VDA bending test in accordance with VDA238-100, which will be described later in Examples.
  • the stroke at maximum load (S Fmax ) in the V-VDA bending test is measured by the V-VDA bending test described later in the Examples.
  • the presence or absence of axial crush fracture is determined by the axial crush test described later in Examples.
  • the steel sheet according to an embodiment of the present invention has a galvanized layer formed on the base steel sheet (on the surface of the base steel sheet or on the surface of the metal plating layer if a metal plating layer is formed) as the outermost layer.
  • this galvanized layer may be provided only on one surface of the base steel sheet, or may be provided on both surfaces. That is, the steel sheet of the present invention has a base steel plate, and a second plating layer (galvanized layer) may be formed on the base steel plate, and also has a base steel plate, and may have a metal plating layer on the base steel plate.
  • the layer (first plating layer (excluding the second plating layer of the galvanized layer)) and the second plating layer (zinc plating layer) may be formed in this order.
  • the steel sheet having a galvanized layer may be a galvanized steel sheet.
  • the galvanized layer here refers to a plating layer containing Zn as a main component (Zn content is 50.0% or more), and includes, for example, a hot-dip galvanized layer and an alloyed hot-dip galvanized layer.
  • the hot-dip galvanized layer is preferably composed of, for example, Zn, 20.0% by mass or less of Fe, and 0.001% by mass or more and 1.0% by mass or less of Al.
  • the hot-dip galvanized layer may optionally include one selected from the group consisting of Pb, Sb, Si, Sn, Mg, Mn, Ni, Cr, Co, Ca, Cu, Li, Ti, Be, Bi, and REM.
  • the total content of a species or two or more elements may be 0.0% by mass or more and 3.5% by mass or less.
  • the Fe content of the hot-dip galvanized layer is more preferably less than 7.0% by mass. Note that the remainder other than the above elements are unavoidable impurities.
  • the alloyed hot-dip galvanized layer is preferably composed of, for example, Zn, 20.0% by mass or less of Fe, and 0.001% by mass or more and 1.0% by mass or less of Al. Additionally, the alloyed hot-dip galvanized layer may optionally be selected from the group consisting of Pb, Sb, Si, Sn, Mg, Mn, Ni, Cr, Co, Ca, Cu, Li, Ti, Be, Bi, and REM. One or more types of elements may be contained in a total amount of 0.0% by mass or more and 3.5% by mass or less.
  • the Fe content of the alloyed hot-dip galvanized layer is more preferably 7.0% by mass or more, and still more preferably 8.0% by mass or more. Further, the Fe content of the alloyed hot-dip galvanized layer is more preferably 15.0% by mass or less, still more preferably 12.0% by mass or less. Note that the remainder other than the above elements are unavoidable impurities.
  • the amount of plating deposited on one side of the galvanized layer is not particularly limited, but is preferably 20 g/m 2 or more. Further, the amount of plating deposited on one side of the galvanized layer is preferably 80 g/m 2 or less.
  • the plating adhesion amount of the galvanized layer is measured as follows. That is, a treatment solution is prepared by adding 0.6 g of a corrosion inhibitor for Fe (Ivit 700BK (registered trademark) manufactured by Asahi Chemical Co., Ltd.) to 1 L of a 10% by mass hydrochloric acid aqueous solution. Next, a steel plate serving as a test material is immersed in the treatment liquid to dissolve the galvanized layer. Then, by measuring the amount of mass loss of the test material before and after melting, and dividing that value by the surface area of the base steel sheet (the surface area of the part covered with plating), the amount of plating coating (g/m 2 ) is calculated.
  • a corrosion inhibitor for Fe Ivit 700BK (registered trademark) manufactured by Asahi Chemical Co., Ltd.
  • the thickness of the steel plate according to an embodiment of the present invention is not particularly limited, but is preferably 0.5 mm or more, more preferably 0.6 mm or more.
  • the plate thickness is more preferably over 0.8 mm.
  • the plate thickness is more preferably 0.9 mm or more.
  • the plate thickness is more preferably 1.0 mm or more.
  • the plate thickness is more preferably 1.2 mm or more.
  • the thickness of the steel plate is preferably 3.5 mm or less.
  • the plate thickness is more preferably 2.3 mm or less.
  • the width of the steel plate of the present invention is not particularly limited, but is preferably 500 mm or more, more preferably 750 mm or more.
  • the width of the steel plate is preferably 1600 mm or less, more preferably 1450 mm or less.
  • a method for producing a steel plate according to an embodiment of the present invention includes a hot rolling process in which a steel slab having the above-mentioned composition is hot rolled to produce a hot rolled steel plate, and a pickling process in which the hot rolled steel plate is pickled. and an annealing step in which the steel plate after the pickling step is annealed at an annealing temperature of (Ac 1 +0.4 ⁇ (Ac 3 ⁇ Ac 1 ))° C. or higher and 900° C.
  • the steel plate is cooled at an average cooling rate of 25.0°C/sec or less, and during cooling, a tension of 2.0kgf/mm2 or more is applied to the steel plate at least once in a temperature range of 300°C or more and 450°C or less.
  • the steel plate is applied with a roll having a diameter of 500 mm or more and 1500 mm or less for 4 passes or more while contacting the roll for 1/4 of the roll per pass, and the steel plate is applied to a roll 1 of rolls with a diameter of 500 mm or more and 1500 mm or less per pass.
  • a second cooling step in which the steel plate is subjected to two passes or more while being in contact for two turns, and the steel plate after the second cooling step is heated to a tempering temperature range of more than 300°C and less than 500°C, and A reheating step in which a reheating treatment is performed in the above temperature range for a tempering time of 20 seconds or more and 900 seconds or less, and during the reheating treatment, the carbide control parameter CP shown by the following formula (1) is set to 10,000 or more and 15,000 or less. or further includes a cold rolling process of cold rolling the steel plate after the pickling process and before the annealing process to obtain a cold rolled steel plate.
  • CP (T+273) ⁇ (k+1.2 ⁇ logt)...Formula (1)
  • T tempering temperature (°C)
  • k material constant depending on C content
  • t tempering time (seconds)
  • k -6 ⁇ C M +17.8
  • CM Carbon content (mass%) in martensite produced in the second cooling step.
  • each temperature mentioned above means the surface temperature of a steel slab and a steel plate unless otherwise specified.
  • a steel slab having the above-mentioned composition is prepared.
  • a steel material is melted to obtain molten steel having the above-mentioned composition.
  • the melting method is not particularly limited, and known melting methods such as converter furnace melting and electric furnace melting can be used.
  • the obtained molten steel is solidified to form a steel slab.
  • the method for obtaining a steel slab from molten steel is not particularly limited, and for example, a continuous casting method, an ingot forming method, a thin slab casting method, etc. can be used. From the viewpoint of preventing macro segregation, continuous casting is preferred.
  • Hot rolling process the steel slab is hot rolled to form a hot rolled steel plate.
  • Hot rolling may be performed by applying an energy saving process.
  • Energy-saving processes include direct rolling (a method in which the steel slab is charged into a heating furnace as hot pieces without being cooled to room temperature and hot rolled) or direct rolling (a method in which the steel slab is subjected to a slight heat retention process). A method in which rolling is carried out immediately afterwards) can be mentioned.
  • Hot rolling conditions are not particularly limited, and, for example, hot rolling can be performed under the following conditions. That is, the steel slab is once cooled to room temperature, then reheated, and then rolled.
  • the slab heating temperature (reheating temperature) is preferably 1100° C. or higher from the viewpoint of dissolving carbides and reducing rolling load. Further, in order to prevent an increase in scale loss, the slab heating temperature is preferably 1300° C. or lower. Note that the slab heating temperature is based on the temperature of the surface of the steel slab.
  • the steel slab is subjected to rough rolling according to a conventional method to obtain a rough rolled plate (hereinafter also referred to as a sheet bar).
  • the sheet bar is subjected to finish rolling to obtain a hot rolled steel plate.
  • the finish rolling temperature is preferably 800° C. or higher in order to reduce the rolling load.
  • the finish rolling temperature is preferably in the range of 950°C or higher. From the above, the finish rolling temperature is preferably in the range of 800°C or higher and 950°C or higher.
  • the winding temperature is preferably 450°C or higher. Further, the winding temperature is preferably 750°C or less.
  • the sheet bars may be joined together during hot rolling and finish rolling may be performed continuously. Further, the sheet bar may be wound up once before finishing rolling. Further, in order to reduce the rolling load during hot rolling, part or all of the finish rolling may be performed as lubricated rolling. Performing lubricated rolling is also effective from the viewpoint of uniformizing the shape of the steel sheet and uniforming the material quality. Note that the friction coefficient during lubricated rolling is preferably in the range of 0.10 or more and 0.25 or less. In a hot rolling process (hot rolling process) including rough rolling and finish rolling, a steel slab generally becomes a sheet bar during rough rolling and becomes a hot rolled steel plate through finish rolling. However, depending on the mill capacity, etc., there is no problem with such division as long as it is a predetermined size.
  • the hot rolled steel sheet after the hot rolling process is pickled.
  • oxides on the surface of the steel sheet can be removed, ensuring good chemical conversion treatment properties and plating quality.
  • the pickling may be performed only once, or may be performed in multiple steps.
  • the pickling conditions are not particularly limited, and any conventional method may be used.
  • Cold rolling process Then, if necessary, the hot-rolled steel sheet is cold-rolled to obtain a cold-rolled steel sheet.
  • Cold rolling is performed, for example, by multi-pass rolling that requires two or more passes, such as tandem multi-stand rolling or reverse rolling.
  • the reduction rate (cumulative reduction rate) of cold rolling is not particularly limited, but is preferably 20% or more.
  • the reduction ratio of cold rolling is 80% or less. If the rolling reduction ratio in cold rolling is less than 20%, the steel structure tends to become coarse and non-uniform in the annealing process, and there is a risk that the TS and bendability of the final product will deteriorate. On the other hand, if the rolling reduction ratio in cold rolling exceeds 80%, the steel sheet tends to be defective in shape, and the amount of zinc plating deposited may become uneven. Further, optionally, the cold rolled steel sheet obtained after cold rolling may be pickled.
  • one side of the steel sheet after the hot rolling process (after the pickling process, or if cold rolling is performed, after the cold rolling process after the pickling process) and before the annealing process or It may include a first plating step of applying metal plating to both surfaces to form a metal plating layer (first plating layer).
  • first plating layer the surface of the hot-rolled steel sheet or cold-rolled steel sheet obtained as described above may be subjected to a metal electroplating treatment to obtain a pre-annealed metal electroplated steel sheet in which a pre-annealed metal electroplating layer is formed on at least one side. .
  • the metal plating mentioned here excludes zinc plating (secondary plating).
  • the metal electroplating method is not particularly limited, but as described above, it is preferable that the metal electroplating layer is formed on the base steel sheet, so it is preferable to perform the metal electroplating process.
  • a sulfuric acid bath, a hydrochloric acid bath, or a mixture of both can be used.
  • the amount of deposited metal electroplating layer before annealing can be adjusted by adjusting the current application time and the like.
  • pre-annealed metal electroplated steel sheet means that the metal electroplated layer has not undergone an annealing process, and refers to a hot rolled steel sheet before metal electroplating, a pickled sheet after hot rolling, or a cold rolled steel sheet that has been annealed in advance. This does not exclude such aspects.
  • the metal species of the electroplating layer include Cr, Mn, Fe, Co, Ni, Cu, Ga, Ge, As, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Os, Ir, Any of Rt, Au, Hg, Ti, Pb, and Bi may be used, but since Fe is more preferable, the manufacturing method of Fe-based electroplating will be described below. Conditions in electroplating systems can be similarly adopted.
  • the Fe ion content in the Fe-based electroplating bath before the start of current application is preferably 0.5 mol/L or more as Fe 2+ . If the Fe ion content in the Fe-based electroplating bath is 0.5 mol/L or more as Fe 2+ , a sufficient amount of Fe deposition can be obtained. Further, in order to obtain a sufficient amount of Fe deposited, it is preferable that the Fe ion content in the Fe-based electroplating bath before the start of current application is 2.0 mol/L or less.
  • the Fe-based electroplating bath contains Fe ions and at least one selected from the group consisting of B, C, P, N, O, Ni, Mn, Mo, Zn, W, Pb, Sn, Cr, V, and Co. It can contain one kind of element.
  • the total content of these elements in the Fe-based electroplating bath is preferably such that the total content of these elements in the Fe-based electroplated layer before annealing is 10% by mass or less.
  • the metal element may be contained as a metal ion, and the non-metal element may be contained as a part of boric acid, phosphoric acid, nitric acid, organic acid, or the like.
  • the iron sulfate plating solution may contain a conductivity aid such as sodium sulfate or potassium sulfate, a chelating agent, or a pH buffer.
  • the temperature of the Fe-based electroplating solution is preferably 30° C. or higher, and preferably 85° C. or lower, in view of constant temperature retention.
  • the pH of the Fe-based electroplating bath is not particularly specified, it is preferably 1.0 or higher from the viewpoint of preventing a decrease in current efficiency due to hydrogen generation, and considering the electrical conductivity of the Fe-based electroplating bath, .0 or less is preferable.
  • the current density is preferably 10 A/dm 2 or more from the viewpoint of productivity, and preferably 150 A/dm 2 or less from the viewpoint of facilitating control of the amount of Fe-based electroplated layer deposited.
  • the plate passing speed is preferably 5 mpm or more from the viewpoint of productivity, and preferably 150 mpm or less from the viewpoint of stably controlling the amount of adhesion.
  • degreasing treatment and water washing can be performed to clean the steel plate surface, and furthermore, pickling treatment and water washing can be performed to activate the steel plate surface. Following these pre-treatments, Fe-based electroplating treatment is performed.
  • the methods of degreasing and washing with water are not particularly limited, and ordinary methods can be used.
  • pickling treatment various acids such as sulfuric acid, hydrochloric acid, nitric acid, and mixtures thereof can be used. Among these, sulfuric acid, hydrochloric acid, or a mixture thereof is preferred.
  • the acid concentration is not particularly defined, it is preferably about 1 to 20 mass% in consideration of the ability to remove an oxide film and the prevention of rough skin (surface defects) due to overacid washing.
  • the pickling treatment liquid may contain an antifoaming agent, a pickling accelerator, a pickling inhibitor, and the like.
  • the metal plating If cold rolling and metal plating are performed after the (first plating) process, the steel plate obtained as described above is annealed at annealing temperature: (Ac 1 +0.4) ⁇ (Ac 3 ⁇ Ac 1 )) Annealing is performed at a temperature of 900° C. or higher and an annealing time of 20 seconds or longer.
  • the number of times of annealing may be two or more times, but from the viewpoint of energy efficiency, one time is preferable.
  • Annealing temperature (Ac 1 + 0.4 x (Ac 3 - Ac 1 )) °C or more and 900 °C or less
  • the annealing temperature is less than (Ac 1 + 0.4 x (Ac 3 - Ac 1 )) °C
  • ferrite and austenite The rate of austenite formation during heating in the two-phase region becomes insufficient. Therefore, the area ratio of ferrite increases excessively after annealing, and YS decreases.
  • the C concentration in the austenite during annealing may increase too much and the desired ⁇ and SFmax may not be achieved. Furthermore, it becomes difficult to increase the TS to 1180 MPa or more.
  • the annealing temperature is set to (Ac 1 +0.4 ⁇ (Ac 3 ⁇ Ac 1 ))°C or more and 900°C or less.
  • the annealing temperature is preferably 880°C or lower.
  • the annealing temperature is more preferably 870°C or lower.
  • the annealing temperature is preferably (Ac 1 +0.5 ⁇ (Ac 3 ⁇ Ac 1 ))°C or higher, more preferably (Ac 1 +0.6 ⁇ (Ac 3 ⁇ Ac 1 ))°C or higher. . Note that the annealing temperature is the highest temperature reached in the annealing step.
  • [%C] C content (mass %)
  • [%Si] Si content (mass %)
  • [%Mn] Mn content (mass %).
  • Annealing time 20 seconds or more
  • the annealing time is set to 20 seconds or more.
  • the annealing time is preferably 30 seconds or more, more preferably 50 seconds or more.
  • the annealing time is preferably 900 seconds or less, more preferably 800 seconds or less.
  • the annealing time is more preferably 300 seconds or less, and even more preferably 220 seconds or less.
  • the annealing time is the holding time in a temperature range of (annealing temperature -40° C.) or higher and lower than the annealing temperature. That is, in addition to the holding time at the annealing temperature, the annealing time also includes the residence time in the temperature range from (annealing temperature -40°C) to below the annealing temperature during heating and cooling before and after reaching the annealing temperature.
  • Dew point of annealing atmosphere in annealing step ⁇ 30° C. or higher
  • the dew point of the atmosphere in an annealing step is preferably ⁇ 30° C.
  • the dew point of the annealing atmosphere in the annealing step is more preferably -25°C or higher, even more preferably -15°C or higher, and most preferably higher than -5°C.
  • the annealing atmosphere in the annealing process should be set.
  • the dew point is preferably 30°C or lower.
  • First cooling stop temperature 400°C or more and 600°C or less
  • the first cooling stop temperature becomes less than 400°C
  • the area ratio of bainitic ferrite increases excessively, the retained austenite volume ratio exceeds a predetermined amount, and the desired ⁇ and S Fmax cannot be achieved.
  • the first cooling stop temperature is set to 400°C or more and 600°C or less.
  • the first cooling stop temperature is preferably 460°C or higher. Further, the first cooling stop temperature is preferably 550°C or lower.
  • a holding step may be performed in which the steel plate is held in a temperature range of 400° C. or higher and 600° C. or lower (hereinafter also referred to as a holding temperature range) for less than 80 seconds.
  • the holding temperature range may be the first cooling stop temperature described above.
  • Holding time in holding temperature range less than 80 seconds
  • bainitic ferrite is generated and C diffuses from the generated bainitic ferrite to untransformed austenite adjacent to the bainitic ferrite. .
  • a predetermined amount of area ratio of retained austenite is ensured.
  • the holding time in the holding temperature range is 80 seconds or more, the area ratio of bainitic ferrite may increase excessively, and YS may decrease. Further, excessive diffusion of C from bainitic ferrite to untransformed austenite occurs, and the area ratio of retained austenite exceeds 15.0%, which may make it impossible to achieve desired ⁇ and S Fmax . Therefore, the holding time in the holding temperature range is preferably less than 80 seconds.
  • the holding time in the holding temperature range is more preferably less than 60 seconds. Note that the retention time in the retention temperature range does not include the residence time in the temperature range after zinc plating treatment is performed in the plating process.
  • the steel plate After the first cooling step (or after the holding step if a holding step is performed), the steel plate may be subjected to galvanizing treatment.
  • a galvanized steel sheet can be obtained by performing galvanizing treatment. Examples of the galvanizing treatment include hot dip galvanizing and alloyed galvanizing.
  • hot-dip galvanizing it is preferable to immerse the steel sheet in a galvanizing bath at a temperature of 440° C. or higher and 500° C. or lower, and then adjust the coating amount by gas wiping or the like.
  • the hot-dip galvanizing bath is not particularly limited as long as it has the composition of the galvanized layer described above, but for example, the bath has an Al content of 0.10% by mass or more, and the remainder consists of Zn and inevitable impurities. It is preferable to use a plating bath having the same composition.
  • the above Al content is preferably 0.23% by mass or less.
  • the galvanized steel sheet is heated to an alloying temperature of 450° C. or higher to perform alloying treatment.
  • the above alloying temperature is preferably 600°C or less. If the alloying temperature is less than 450°C, the Zn--Fe alloying rate will be slow and alloying may become difficult. On the other hand, when the alloying temperature exceeds 600° C., untransformed austenite transforms to pearlite, making it difficult to increase the TS to 1180 MPa or more, resulting in a decrease in ductility.
  • the alloying temperature is more preferably 470°C or higher. Further, the alloying temperature is more preferably 570°C or lower.
  • the coating weight of both the hot-dip galvanized steel sheet (GI) and the alloyed hot-dip galvanized steel sheet (GA) be 20 g/m 2 or more per side. Further, the amount of plating deposited on one side of the galvanized layer is preferably 80 g/m 2 or less. Note that the amount of plating deposited can be adjusted by gas wiping or the like.
  • Second cooling stop temperature 100°C or more and 300°C or less
  • the second cooling step is for controlling the area ratio of tempered martensite and the area ratio of retained austenite generated in the subsequent reheating process within a predetermined range. This is a necessary process.
  • the second cooling stop temperature is less than 100° C.
  • almost all of the untransformed austenite present in the steel is transformed into martensite in the second cooling step.
  • the area ratio of tempered martensite ultimately increases excessively, making it difficult to obtain retained austenite of more than 3.0%, and ductility decreases.
  • the second cooling stop temperature exceeds 300°C, the area ratio of tempered martensite decreases and the area ratio of fresh martensite increases.
  • the second cooling stop temperature is set to 100°C or more and 300°C or less.
  • the second cooling stop temperature is preferably 120°C or higher.
  • the first cooling stop temperature is preferably 280° C. or lower.
  • Average cooling rate in the second cooling process 25.0°C/sec or less If the cooling rate in the second cooling process exceeds 25.0°C/sec, fine carbides will be generated, and the density of carbides in the tempered martensite will increase. becomes more than a predetermined amount. As a result, the desired ⁇ and S Fmax cannot be achieved. Furthermore, there are cases where the desired ⁇ cannot be obtained. Therefore, the average cooling rate in the second cooling step is 25.0° C./second or less.
  • the average cooling rate can be calculated by "(cooling start temperature (°C) - second cooling stop temperature (°C)"/cooling time (s)).
  • a tension of 2.0 kgf/mm 2 or more is applied at least once in a temperature range of 300° C. or higher and 450° C. or lower. Then, the steel plate after applying the above tension is applied for 4 passes or more while being brought into contact with a roll having a diameter of 500 mm or more and 1500 mm or less per pass for 1/4 rotation of the roll, and the steel plate is A process is performed in which the coating is applied for two or more passes while contacting a roll of 500 mm or more and 1500 mm or less for 1/2 revolution of the roll.
  • the number of passes applied to the steel plate while contacting with the roll for 1/4 of the roll is preferably 5 passes or more, more preferably 6 passes or more.
  • the upper limit is not particularly limited, the number of passes applied to the steel plate while contacting with the roll for 1/4 rotation is preferably 12 passes or less, more preferably 10 passes or less.
  • the number of passes applied to the steel plate while contacting with the roll for 1/2 rotation is preferably 3 passes or more, more preferably 4 passes or more.
  • the number of passes applied to the steel plate while contacting with the roll for 1/2 rotation is preferably 6 passes or less, more preferably 5 passes or less.
  • the load cell must be placed parallel to the tension direction.
  • the load cell is preferably arranged at a position 200 mm from both ends of the roll.
  • the body length of the roll used is 1500 mm or more.
  • the body length of the roll used is 2500 mm or less.
  • this tension is preferably 2.2 kgf/mm 2 or more, more preferably 2.4 kgf/mm 2 or more.
  • this tension is preferably 15.0 kgf/mm 2 or less, more preferably 10.0 kgf/mm 2 or less. This tension is more preferably 7.0 kgf/mm 2 or less, even more preferably 4.0 kgf/mm 2 or less.
  • applying tension twice means first applying tension of 2.0 kgf/mm 2 or more once, and then applying tension of 2.0 kgf/mm 2 or more .
  • applying tension three times means that first, a tension of 2.0 kgf/mm 2 or more is applied once, and then, after the tension becomes less than 2.0 kgf/mm 2, a second application of 2.0 kgf/mm 2 or more is applied.
  • the steel plate is reheated to a temperature range of more than 300°C and not more than 500°C (hereinafter also referred to as a reheating temperature range), and the steel plate is held in a temperature range of more than 300°C and not more than 500°C for 20 seconds to 900 seconds. do.
  • the reheating temperature exceeds 500°C
  • the martensite present in the steel will be excessively tempered at the end of the second cooling process, making it difficult to increase the TS to 1180 MPa or higher.
  • the untransformed austenite present in the steel at the end of the second cooling step decomposes as carbide (pearlite), ductility decreases.
  • hydrogen contained in the base steel sheet may not be sufficiently released to the outside, and the amount of diffusible hydrogen in the base steel sheet may increase. This reduces the hole expandability. Therefore, the reheating temperature is set to be higher than 300°C and lower than 500°C.
  • the reheating temperature is the highest temperature reached in the reheating step.
  • the reheating temperature is preferably 340°C or higher, more preferably 360°C or higher.
  • the reheating temperature is preferably 460°C or lower, more preferably 440°C or lower.
  • Holding time in the reheating temperature range (tempering time): 20 seconds or more and 900 seconds or less If the holding time in the reheating temperature range (tempering time) is less than 20 seconds, it will be present in the steel at the end of the second cooling process. Tempering of martensite does not proceed sufficiently, and fresh martensite increases excessively. Further, the coarsening of carbides in the tempered martensite may not proceed sufficiently, and the density of the carbides in the tempered martensite may exceed a predetermined amount. As a result, desired ⁇ , ⁇ and S Fmax cannot be achieved. Furthermore, hydrogen contained in the base steel sheet is not sufficiently released to the outside, and the amount of diffusible hydrogen in the base steel sheet increases. This further reduces the hole expandability and bendability.
  • the holding time in the reheating temperature range is set to 20 seconds or more and 900 seconds or less.
  • the holding time is preferably 30 seconds or more, more preferably 40 seconds or more.
  • the holding time is preferably 500 seconds or less, more preferably 100 seconds or less.
  • the holding time in the reheating temperature range includes not only the holding time at the reheating temperature but also the residence time in the temperature range during heating and cooling before and after reaching the reheating temperature.
  • Carbide control parameter CP during reheating 10,000 or more and 15,000 or less If the carbide control parameter CP during reheating becomes less than 10,000, the martensite present in the steel at the end of the second cooling process will not be sufficiently tempered. In addition to the excessive increase in fresh martensite, the coarsening of carbides in tempered martensite does not progress sufficiently, and the density of carbides in tempered martensite exceeds a predetermined amount, resulting in the desired ⁇ , ⁇ and S Fmax cannot be achieved. Furthermore, hydrogen contained in the base steel sheet is not sufficiently released to the outside, and the amount of diffusible hydrogen in the base steel sheet increases. This further reduces the hole expandability and bendability.
  • the carbide control parameter CP during reheating is set to 10,000 or more and 15,000 or less.
  • the carbide control parameter CP during reheating is preferably 11,000 or more, more preferably 12,000 or more.
  • the carbide control parameter CP during reheating is preferably 14,500 or less, more preferably 14,000 or less.
  • CP carbide control parameter
  • T tempering temperature (°C)
  • k material constant depending on C content
  • t tempering time (seconds)
  • 1.2 in the term of 1.2 ⁇ logt. is a correction coefficient (preset correction coefficient) that takes into consideration the cooling time after the reheating step.
  • C M is the amount of carbon (% by mass) in martensite produced in the second cooling step. Note that the amount of carbon in martensite produced in the second cooling step can be measured as follows.
  • V ⁇ 1 1-V F -V BF ...Formula (3)
  • V ⁇ 1 and C ⁇ 1 are the area ratio (%) of untransformed austenite immediately before the second cooling step and the carbon concentration (mass %) in the untransformed austenite
  • V F and C F are the area ratio (%) of ferrite immediately before the second cooling step and the carbon concentration (mass %) in the ferrite
  • V BF and C BF are the area ratio (%) of the bainitic ferrite immediately before the second cooling step and the carbon concentration (mass %) in the bainitic ferrite
  • C T is the carbon concentration (mass %) in the steel (immediately before the second cooling step).
  • the cooling conditions after holding in the reheating temperature range are not particularly limited, and any conventional method may be used.
  • the cooling method for example, gas jet cooling, mist cooling, roll cooling, water cooling, air cooling, etc. can be applied.
  • the average cooling rate during cooling after holding in the reheating temperature range is preferably, for example, 1° C./second or more and 50° C./second or less.
  • the steel plate obtained as described above may be further subjected to temper rolling. If the reduction ratio in temper rolling exceeds 2.00%, the yield stress will increase, and there is a risk that the dimensional accuracy when forming the steel plate into a member will decrease. Therefore, the reduction ratio in temper rolling is preferably 2.00% or less.
  • the lower limit of the rolling reduction in skin pass rolling is not particularly limited, but from the viewpoint of productivity, it is preferably 0.05% or more.
  • skin pass rolling may be performed on a device that is continuous with the annealing device for performing each process mentioned above (online), or on a device that is discontinuous with the annealing device for performing each process (offline). You may go. Further, the number of times of temper rolling may be one, or two or more times. Note that rolling with a leveler or the like may be used as long as it can provide an elongation rate equivalent to that of temper rolling.
  • Conditions other than the above are not particularly limited and may be according to conventional methods.
  • a member according to an embodiment of the present invention is a member made of (made of) the above-mentioned steel plate.
  • a steel plate as a raw material is subjected to at least one of forming and bonding to form a member.
  • the above-mentioned steel plate has a TS of 1180 MPa or more, a high YS, excellent press formability (ductility, hole expandability, and bendability), and fracture resistance during crushing (bending fracture properties and axial crushing properties). Therefore, the member according to one embodiment of the present invention has high strength and excellent impact resistance. Therefore, a member according to an embodiment of the present invention is particularly suitable for application as an impact energy absorbing member used in the automotive field.
  • a method for manufacturing a member according to an embodiment of the present invention includes the step of subjecting the above steel plate (for example, a steel plate manufactured by the above steel plate manufacturing method) to at least one of a forming process and a joining process to form a member.
  • the molding method is not particularly limited, and for example, a general processing method such as press working can be used.
  • the joining method is not particularly limited, and for example, common welding such as spot welding, laser welding, arc welding, riveting joining, caulking joining, etc. can be used.
  • the molding conditions and bonding conditions are not particularly limited, and conventional methods may be followed.
  • a steel material having the component composition shown in Table 1 (the remainder being Fe and unavoidable impurities) was melted in a converter and made into a steel slab by continuous casting.
  • Table 1 indicates the content at the inevitable impurity level.
  • the calculated transformation points Ac 1 point (°C) and Ac 3 point (°C) shown in Table 1 are calculated by the following formula.
  • the obtained steel slab was heated to 1200°C, and after heating, the steel slab was subjected to hot rolling consisting of rough rolling and finish rolling at a finishing rolling temperature of 900°C to obtain a hot rolled steel plate. Then, the obtained hot rolled steel sheet No. 1 ⁇ No. 61, No. 64 ⁇ No. 78, No. 84 ⁇ No. 98, No. 104 ⁇ No. No. 109 was pickled and cold rolled (reduction ratio: 50%) to obtain cold rolled steel sheets having the thicknesses shown in Table 3, Table 6, and Table 9. Moreover, No. of the obtained hot-rolled steel sheet. 62 ⁇ No. 63, No. 79 ⁇ No. 83, No. 99 ⁇ No.
  • the presence or absence of the first plating process (metal plating process) and the type of plating when performing the treatment in the metal plating process are shown for the steel plate No. 109. No. in Table 6 and Table 9. 64 ⁇ No.
  • the thickness of the soft surface layer, the amount of metal plating deposited, and the hardness distribution of the soft surface layer are shown for steel plate No. 109.
  • hot-dip galvanizing treatment or alloyed galvanizing treatment was performed to obtain a hot-dip galvanized steel sheet (hereinafter also referred to as GI) or an alloyed hot-dip galvanized steel sheet (hereinafter also referred to as GA).
  • GI hot-dip galvanized steel sheet
  • GA alloyed hot-dip galvanized steel sheet
  • Tables 2, 5, and 8 the types of plating processes are also indicated as "GI” and "GA.”
  • the alloying temperature is indicated as - because no alloying treatment is performed.
  • cold-rolled steel sheets obtained without galvanizing are indicated as "CR,” and hot-rolled steel sheets are obtained without galvanizing in the galvanizing process. ⁇ HR'' is displayed for those that are.
  • the zinc plating bath temperature was 470° C. in both GI and GA production.
  • the amount of zinc plating deposited was 45 to 72 g/m 2 per side when manufacturing GI, and 45 g/m 2 per side when manufacturing GA.
  • the composition of the galvanized layer of the finally obtained galvanized steel sheet is, in GI, Fe: 0.1 to 1.0% by mass, Al: 0.2 to 0.33% by mass, and the remainder were Zn and unavoidable impurities.
  • GA contained Fe: 8.0 to 12.0% by mass, Al: 0.1 to 0.23% by mass, and the remainder was Zn and inevitable impurities. Further, all galvanized layers were formed on both sides of the base steel sheet.
  • the number of passes 1 means that the steel plate is applied with an average tension of 2.0 kgf/mm 2 or more at least once in a temperature range of 300°C or more and 450°C or less during the second cooling process. is the number of passes in which the steel plate is applied to a roll with a diameter of 500 mm or more and 1500 mm or less per pass while contacting the roll for 1/4 rotation, and the number of passes 2 means that the steel plate is then applied to a roll with a diameter of 500 mm or more and 1500 mm or less per pass. This is the number of passes applied while contacting the roll for 1/2 revolution.
  • the steel structure of the base steel plate was identified and the amount of diffusible hydrogen was measured in the manner described above.
  • the measurement results are shown in Table 3, Table 6, and Table 9.
  • Tables 3, 6, and 9 BF is bainitic ferrite, TM is tempered martensite, RA is retained austenite, FM is fresh martensite, LB is lower bainite, P is pearlite, and ⁇ is carbide.
  • C M is the amount of carbon in martensite produced in the second cooling step
  • C ⁇ is the amount of carbon in retained austenite
  • ⁇ C is the density of carbides in the tempered martensite.
  • the method for measuring the surface soft layer is as follows. After smoothing the plate thickness cross section (L cross section) parallel to the rolling direction of the steel plate by wet polishing, the plate thickness was measured from the steel plate surface using a Vickers hardness tester at a load of 10gf based on JIS Z 2244-1 (2020). Measurements were performed at 1 ⁇ m intervals from a position of 1 ⁇ m in the direction to a position of 100 ⁇ m in the plate thickness direction. Thereafter, measurements were taken at intervals of 20 ⁇ m up to the center of the plate thickness. The area where the hardness has decreased to 85% or less compared to the hardness at 1/4 of the plate thickness is defined as a soft layer (surface soft layer), and the thickness of this area in the plate thickness direction is defined as the thickness of the soft layer. .
  • tensile tests, hole expansion tests, VDA bending tests, V-VDA bending tests, and axial crushing tests were conducted according to the following procedures, and the tensile strength (TS), yield stress (YS), total elongation (El), critical hole expansion rate ( ⁇ ), critical bending angle ( ⁇ ) in the VDA bending test, stroke at maximum load (S Fmax ) in the V-VDA bending test, and presence or absence of axial crush fracture were evaluated.
  • is an index for evaluating stretch flangeability.
  • the results are shown in Table 4, Table 7, and Table 10.
  • ⁇ (%) ⁇ (D f - D 0 )/D 0 ⁇ 100 here, D f : Diameter of hole in test piece at the time of crack occurrence (mm) D 0 : Diameter of hole in initial test piece (mm) It is.
  • VDA bending test was conducted in accordance with the VDA standard (VDA238-100) stipulated by the German Automobile Industry Association. Specifically, a 70 mm x 60 mm test piece was taken from the obtained steel plate by shearing. Here, the 60 mm side is parallel to the rolling (L) direction. The test piece was subjected to a VDA bending test under the following conditions.
  • V-VDA bending test (V bending + orthogonal VDA bending test)
  • the V-VDA bending test was conducted as follows. A 60 mm x 65 mm test piece was taken from the obtained steel plate by shearing. Here, the 60 mm side is parallel to the rolling (L) direction. A test piece was prepared by performing 90° bending (primary bending) in the rolling (L) direction with the width (C) direction as the axis at a radius of curvature/plate thickness of 4.2. In the 90° bending process (primary bending process), as shown in Figure 2-1(a), a punch B1 was pushed into a steel plate placed on a die A1 having a V groove to obtain a test piece T1. . Next, as shown in FIG.
  • V-bending conditions in the V-VDA bending test (V-bending + orthogonal VDA bending test) are as follows. Test method: die support, punch press molding load: 10t Test speed: 30mm/min Holding time: 5s Bending direction: rolling (L) direction VDA bending conditions in the V-VDA bending test are as follows.
  • Test method Roll support, punch pushing Roll diameter: ⁇ 30mm Punch tip R: 0.4mm Distance between rolls: (plate thickness x 2) + 0.5mm Stroke speed: 20mm/min Test piece size: 60mm x 60mm Bending direction: rolling perpendicular (C) direction
  • S Fmax The average value of the stroke at the maximum load when performing the above V-VDA bending test three times is defined as S Fmax (mm). The results are shown in Table 4, Table 7, and Table 10.
  • Axial crush test A 160 mm x 200 mm test piece was taken from the obtained steel plate by shearing. Here, the 160 mm side is parallel to the rolling (L) direction. Using a mold with a punch shoulder radius of 5.0 mm and a die shoulder radius of 5.0 mm, the molding process (bending process) was performed to a depth of 40 mm. A hat-shaped member 10 shown in 6-1(b) was manufactured. Further, a steel plate used as a material for the hat-shaped member was separately cut into a size of 80 mm x 200 mm. Next, the cut steel plate 20 and the hat-shaped member 10 were spot welded to produce a test member 30 as shown in FIGS. 6-1(a) and 6-1(b). FIG.
  • FIG. 6-1(a) is a front view of a test member 30 produced by spot welding the hat-shaped member 10 and the steel plate 20.
  • FIG. 6-1(b) is a perspective view of the test member 30.
  • the spot welds 40 were positioned so that the distance between the end of the steel plate and the weld was 10 mm, and the distance between the welds was 45 mm.
  • the test member 30 was joined to the base plate 50 by TIG welding to prepare a sample for the axial crush test.
  • the impactor 60 was made to collide with the produced sample for the axial crush test at a constant velocity of 10 mm/min, and the sample for the axial crush test was crushed by 70 mm.
  • the crushing direction D3 was parallel to the longitudinal direction of the test member 30. The samples after crushing were evaluated in the manner described above, and the results are shown in Tables 4, 7, and 10.
  • the VDA bending test, V-VDA bending test, and axial crushing test on steel plates with a thickness of more than 1.2 mm were all conducted on steel plates with a plate thickness of 1.2 mm, taking into consideration the influence of the plate thickness.
  • Steel plates with a thickness of more than 1.2 mm were ground on one side to a thickness of 1.2 mm. Since the bendability of the steel plate surface may be affected by the grinding process, in the VDA bending test, the ground surface is placed on the inside of the bend (the side that contacts the punch), and in the V-VDA bending test, the ground surface is placed on the outside of the bend during the V-bending test.
  • the length of the crack, 50 ⁇ m from the surface of the steel plate on the outside of VDA bending, and the area of 50 ⁇ m left and right centered on the bending apex of VDA bending (from the bending apex on the outside of VDA bending as the starting point to a position of 50 ⁇ m in the plate thickness direction) This is the amount of change in grain size in the plate thickness direction of bainitic ferrite before and after processing in regions formed at positions up to 50 ⁇ m on both sides of the starting line in the vertical direction from each position of the existing starting line.
  • ⁇ Nano hardness measurement> In order to obtain excellent bendability during press forming and excellent bending rupture properties during collision, it is necessary to place the base material at a position of 1/4 of the depth in the thickness direction and 1/2 of the depth in the thickness direction of the surface soft layer from the surface layer of the substrate.
  • nanohardness was measured at 300 or more points in a 50 ⁇ m x 50 ⁇ m area of the plate surface at each position, the nanohardness of the plate surface at a position 1/4 of the thickness direction depth of the surface soft layer from the base steel plate surface was It is more preferable that the number of measurements of 7.0 GPa or more is 0.10 or less with respect to the total number of measurements at 1/4 position of the depth in the plate thickness direction.
  • the ratio of nanohardness of 7.0 GPa or more is 0.10 or less, it means that the ratio of hard structures (such as martensite) and inclusions is small. It became possible to further suppress the generation and connection of voids and the propagation of cracks during press molding and collision, and excellent R/t and SFmax were obtained.
  • the above-mentioned plating layer that peels off is a galvanized layer if a galvanized layer is formed, a metal plating layer if a metal plating layer is formed, and a galvanized layer and a metal plating layer.
  • a plating layer is formed, it is a galvanized layer and a metal plating layer.
  • tensile strength (TS), yield stress (YS), total elongation (El), critical hole expansion rate ( ⁇ ), critical bending angle ( ⁇ ) in VDA bending test, and V-VDA bending test At least one of the stroke at maximum load (S Fmax ) and the presence or absence of fracture in the axial crush test were insufficient.
  • S Fmax stroke at maximum load
  • the soft layer thickness is less than 11 ⁇ m, and the judgment of fracture (appearance cracking) in the axial crush test is "B" or "C”.
  • the soft layer thickness is less than 11 ⁇ m, if it has a metal plating layer, the rupture (appearance cracking) in the axial crush test was evaluated as "A".
  • the members obtained by forming or bonding the steel sheets of the present invention have tensile strength (TS), yield stress (YS), total elongation (El), limit The hole expansion rate ( ⁇ ), the limit bending angle ( ⁇ ) in the VDA bending test, and the stroke at maximum load in the V-VDA bending test (S Fmax ) all have the excellent characteristics featured in the present invention. It was found that there was no breakage in the axial crushing test, and that it had the excellent properties featured in the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Provided are: a steel sheet that has a high YS and a TS of at least 1180 MPa, excellent press formability (ductility, hole expandability, and bendability), and fracture resistance characteristics (bending fracture characteristics and axial crushing characteristics) when being crushed; a member; and methods for producing the steel sheet and the member. According to the present invention, a base steel sheet has a predetermined component composition. In the steel structure of the base steel sheet: bainitic ferrite, tempered martensite, residual austenite, and fresh martensite are contained in predetermined ranges; the concentration of carbon in the residual austenite and the density of carbides in the tempered martensite are in predetermined ranges; the amount of diffusible hydrogen is at most 0.50 ppm by mass; and, when a V-VDA bending test is conducted up to the maximum load point, the length of a crack in an L cross-section is at most 400 μm, and the amount of change between before and after processing in the particle size of bainitic ferrite in the thickness direction in a predetermined region of VDA bending is at most 5.0.

Description

鋼板、部材およびそれらの製造方法Steel plates, members and their manufacturing methods
 本発明は、鋼板、該鋼板を素材とする部材およびそれらの製造方法に関する。 The present invention relates to steel plates, members made from the steel plates, and methods of manufacturing them.
 近年、地球環境の保全の見地から、自動車の燃費向上が重要な課題となっている。そのため、自動車部材の素材となる鋼板を高強度化し、薄くすることにより、自動車車体を軽量化しようとする動きが活発となってきている。 In recent years, improving the fuel efficiency of automobiles has become an important issue from the perspective of preserving the global environment. Therefore, there has been an active movement to reduce the weight of automobile bodies by increasing the strength and thinning of steel plates, which are the raw materials for automobile parts.
 また、自動車の衝突安全性向上に対する社会的要求がより一層高くなっている。そのため、高い強度を有することに加え、自動車が走行中に衝突した場合の耐衝撃特性(以下、単に耐衝撃特性という)に優れた鋼板の開発が望まれている。 In addition, social demands for improved collision safety of automobiles are becoming even higher. Therefore, it is desired to develop a steel plate that not only has high strength but also has excellent impact resistance properties (hereinafter simply referred to as impact resistance properties) in the event of a collision while an automobile is running.
 このような自動車部材の素材となる鋼板として、例えば、特許文献1には、質量%で表して、Cを0.04~0.22%、Siを1.0%以下、Mnを3.0%以下、Pを0.05%以下、Sを0.01%以下、Alを0.01~0.1%及びNを0.001~0.005%含有し、残部Fe及び不可避的不純物からなる成分組成を有するとともに、主相であるフェライト相と、第二相であるマルテンサイト相から構成され、かつマルテンサイト相の最大粒径が2μm以下で、その面積率が5%以上であることを特徴とする伸びフランジ性と耐衝突特性に優れた高強度鋼板が開示されている。 For example, in Patent Document 1, as a steel plate that is a material for such automobile parts, C is 0.04 to 0.22%, Si is 1.0% or less, and Mn is 3.0%. % or less, P is 0.05% or less, S is 0.01% or less, Al is 0.01-0.1%, and N is 0.001-0.005%, with the balance being Fe and unavoidable impurities. It is composed of a ferrite phase as a main phase and a martensite phase as a second phase, and the maximum grain size of the martensite phase is 2 μm or less and its area ratio is 5% or more. A high-strength steel plate with excellent stretch flangeability and collision resistance characteristics is disclosed.
 また、特許文献2には、表面層を厚さ0.1μm以上研削除去された冷延鋼板上にNiを0.2g/m以上2.0g/m以下プレめっきされた冷延鋼板の表面に溶融亜鉛めっき層を有する溶融亜鉛めっき鋼板であって、質量%で、C:0.05%以上、0.4%以下、Si:0.01%以上、3.0%以下、Mn:0.1%以上、3.0%以下、P:0.04%以下、S:0.05%以下、N:0.01%以下、Al:0.01%以上、2.0%以下、Si+Al>0.5%、を含有し、残部Fe及び不可避的不純物からなり、ミクロ組織が、体積分率で主相としてフェライトを40%以上含有し、残留オーステナイトを8%以上、下記に規定する3種類のマルテンサイト[1][2][3]のマルテンサイト[3]を含む2種以上と1%以上のベイナイト及び0~10%のパーライトを含有し、且つ、前記3種類のマルテンサイト[1][2][3]がそれぞれ、体積分率で、マルテンサイト[1]:0%以上、50%以下、マルテンサイト[2]:0%以上、20%未満、マルテンサイト[3]:1%以上、30%以下、である鋼板の表面に、Feを7%未満含有し、残部がZn、Alおよび不可避的不純物からなる溶融亜鉛めっき層を有し、引張強度TS(MPa)、全伸び率EL(%)、穴拡げ率λ(%)としてTS×ELが18000MPa・%以上、TS×λが35000MPa・%以上であり、引張強度980MPa以上有することを特徴とするめっき密着性と成形性に優れた高強度溶融亜鉛めっき鋼板(マルテンサイト[1]:C濃度(CM1)が0.8%未満で、硬さHv1が、Hv1/(-982.1×CM1+1676×CM1+189)≦0.60、マルテンサイト[2]:C濃度(CM2)が0.8%以上で、硬さHv2が、Hv2/(-982.1×CM2+1676×CM2+189)≦0.60、マルテンサイト[3]:C濃度(CM3)が0.8%以上で、硬さHv3が、Hv3/(-982.1×CM3+1676×CM3+189)≧0.80が開示されている。 Furthermore, Patent Document 2 describes a cold-rolled steel sheet whose surface layer has been polished to a thickness of 0.1 μm or more and which is pre-plated with Ni at 0.2 g/m2 or more and 2.0 g/m2 or less . A hot-dip galvanized steel sheet having a hot-dip galvanized layer on the surface, in mass %, C: 0.05% or more and 0.4% or less, Si: 0.01% or more and 3.0% or less, Mn: 0.1% or more, 3.0% or less, P: 0.04% or less, S: 0.05% or less, N: 0.01% or less, Al: 0.01% or more, 2.0% or less, Contains Si + Al > 0.5%, the remainder consists of Fe and unavoidable impurities, the microstructure contains 40% or more of ferrite as the main phase in volume fraction, and 8% or more of retained austenite, as specified below. Containing two or more types of martensite [3] of three types of martensite [1], [2], and [3], 1% or more of bainite, and 0 to 10% of pearlite, and containing the three types of martensite [1], [2], and [3] are volume fractions, respectively: martensite [1]: 0% or more, 50% or less, martensite [2]: 0% or more, less than 20%, martensite [3] : 1% or more and 30% or less, and has a hot-dip galvanized layer containing less than 7% Fe, with the remainder consisting of Zn, Al and inevitable impurities, and has a tensile strength TS (MPa), Plating adhesion characterized by having a total elongation rate EL (%) and a hole expansion rate λ (%) of TS x EL of 18000 MPa % or more, TS x λ of 35000 MPa % or more, and a tensile strength of 980 MPa or more. High-strength hot-dip galvanized steel sheet with excellent formability (martensite [1]: C concentration (CM1) is less than 0.8%, hardness Hv1 is Hv1/(-982.1×CM1 2 +1676×CM1+189) ≦0.60, martensite [2]: C concentration (CM2) is 0.8% or more, hardness Hv2 is Hv2/(-982.1×CM2 2 +1676×CM2+189)≦0.60, martensite [3]: It is disclosed that the C concentration (CM3) is 0.8% or more and the hardness Hv3 is Hv3/(-982.1×CM3 2 +1676×CM3+189)≧0.80.
 また、特許文献3には、質量%で、C:0.15%以上0.25%以下、Si:0.50%以上2.5%以下、Mn:2.3%以上4.0%以下、P:0.100%以下、S:0.02%以下、Al:0.01%以上2.5%以下、残部がFeおよび不可避的不純物からなる成分組成を有し、面積率で、焼戻しマルテンサイト相:30%以上73%以下、フェライト相:25%以上68%以下、残留オーステナイト相:2%以上20%以下、他の相:10%以下(0%を含む)であり、かつ、該他の相としてマルテンサイト相:3%以下(0%を含む)、ベイニティックフェライト相:5%未満(0%を含む)を有し、前記焼戻しマルテンサイト相の平均結晶粒径が8μm以下、前記残留オーステナイト相中のC量が0.7質量%未満である鋼板組織を有する高強度溶融亜鉛めっき鋼板が開示されている。 Furthermore, in Patent Document 3, in mass %, C: 0.15% or more and 0.25% or less, Si: 0.50% or more and 2.5% or less, Mn: 2.3% or more and 4.0% or less. , P: 0.100% or less, S: 0.02% or less, Al: 0.01% or more and 2.5% or less, with the balance consisting of Fe and unavoidable impurities. Martensite phase: 30% or more and 73% or less, ferrite phase: 25% or more and 68% or less, retained austenite phase: 2% or more and 20% or less, other phases: 10% or less (including 0%), and The other phases include martensitic phase: 3% or less (including 0%), bainitic ferrite phase: less than 5% (including 0%), and the average grain size of the tempered martensitic phase is 8 μm. The following discloses a high-strength hot-dip galvanized steel sheet having a steel sheet structure in which the amount of C in the retained austenite phase is less than 0.7% by mass.
特許第3887235号公報Patent No. 3887235 特許第5953693号公報Patent No. 5953693 特許第6052472号公報Patent No. 6052472
 ところで、フロントサイドメンバーやリアサイドメンバーに代表される自動車の衝撃エネルギー吸収部材は、引張強さ(以下、TSともいう。)が590MPa級の鋼板の適用に留まっているのが現状である。 Incidentally, the current situation is that steel plates with a tensile strength (hereinafter also referred to as TS) of 590 MPa class are only used for impact energy absorbing members of automobiles, such as front side members and rear side members.
 すなわち、衝撃時の吸収エネルギー(以下、衝撃吸収エネルギーともいう。)を高めるには、降伏応力(以下、YSともいう。)の向上が有効である。しかしながら、鋼板のTSおよびYSを高めると、一般的に、プレス成形性、特には、延性や穴広げ性、曲げ性といった特性が低下する。そのため、このようなTSおよびYSを高めた鋼板を前記した自動車の衝撃エネルギー吸収部材への適用を想定すると、単にプレス成形が難しくなるのみならず、衝突試験を模擬した軸圧壊試験で当該部材が割れてしまう、換言すれば、YSの値から想定されるほどには実際の衝撃吸収エネルギーが高くならない。そのため、前記の衝撃エネルギー吸収部材は、TSが590MPa級である鋼板の適用に留まっているのが現状である。 That is, improving the yield stress (hereinafter also referred to as YS) is effective in increasing the absorbed energy during impact (hereinafter also referred to as impact absorbed energy). However, when the TS and YS of a steel sheet are increased, press formability, particularly properties such as ductility, hole expandability, and bendability are generally reduced. Therefore, if we assume that a steel plate with high TS and YS is to be applied to the above-mentioned impact energy absorbing member of an automobile, it will not only be difficult to press-form, but also the member will be difficult to perform in an axial crush test simulating a crash test. In other words, the actual impact absorption energy is not as high as expected from the value of YS. Therefore, at present, the impact energy absorbing member described above is limited to steel plates having a TS of 590 MPa class.
 実際、特許文献1~3に開示される鋼板も、TS:1180MPa以上であり、かつ、高いYSと、優れたプレス成形性(延性、穴広げ性および曲げ性)と、圧壊時の耐破断特性(曲げ破断特性および軸圧壊特性)を有するものとは言えない。 In fact, the steel sheets disclosed in Patent Documents 1 to 3 also have a TS of 1180 MPa or more, a high YS, excellent press formability (ductility, hole expandability, and bendability), and rupture resistance during crushing. (bending rupture characteristics and axial crushing characteristics).
 本発明は、前記の現状に鑑み開発されたものであって、引張強さTSが1180MPa以上であり、かつ、高い降伏応力YSと、優れたプレス成形性(延性、穴広げ性および曲げ性)と、圧壊時の耐破断特性(曲げ破断特性および軸圧壊特性)を有する鋼板を、その有利な製造方法とともに、提供することを目的とする。
 また、本発明は、前記の鋼板を素材とする部材およびその製造方法を提供することを目的とする。
The present invention was developed in view of the above-mentioned current situation, and has a tensile strength TS of 1180 MPa or more, a high yield stress YS, and excellent press formability (ductility, hole expandability, and bendability). It is an object of the present invention to provide a steel plate having fracture resistance properties (bending fracture properties and axial crush properties) during crushing, together with an advantageous manufacturing method thereof.
Another object of the present invention is to provide a member made of the above-mentioned steel plate and a method for manufacturing the same.
 ここでいう鋼板には亜鉛めっき鋼板も含まれており、亜鉛めっき鋼板とは、溶融亜鉛めっき鋼板(以下、GIともいう)または合金化溶融亜鉛めっき鋼板(以下、GAともいう)である。 The steel sheet referred to herein also includes a galvanized steel sheet, and the galvanized steel sheet is a hot-dip galvanized steel sheet (hereinafter also referred to as GI) or an alloyed hot-dip galvanized steel sheet (hereinafter also referred to as GA).
 ここで、引張強さTSは、JIS Z 2241(2011)に準拠する引張試験で測定される。
 また、高い降伏応力YSと、優れたプレス成形性(延性、穴広げ性および曲げ性)と、圧壊時の耐破断特性(曲げ破断特性および軸圧壊特性)を有するとは、以下を満たすことを指す。
 降伏応力YSが高いとは、JIS Z 2241(2011)に準拠する引張試験で測定されるYSが、当該引張試験で測定されるTSに応じて、以下の(A)または(B)式を満足することを指す。
(A)1180MPa≦TS<1320MPaの場合、750MPa≦YS
(B)1320MPa≦TSの場合、850MPa≦YS
Here, the tensile strength TS is measured by a tensile test based on JIS Z 2241 (2011).
In addition, having a high yield stress YS, excellent press formability (ductility, hole expandability, and bendability), and fracture resistance during crushing (bending fracture properties and axial crush properties) means that the following are satisfied. Point.
High yield stress YS means that YS measured in a tensile test based on JIS Z 2241 (2011) satisfies the following formula (A) or (B) depending on the TS measured in the tensile test. refers to doing.
(A) When 1180MPa≦TS<1320MPa, 750MPa≦YS
(B) If 1320MPa≦TS, 850MPa≦YS
 また、延性に優れるとは、JIS Z 2241(2011)に準拠する引張試験で測定される全伸び(El)が、当該引張試験で測定されるTSに応じて、以下の(A)または(B)式を満足することを指す。
(A)1180MPa≦TS<1320MPaの場合、12.0%≦El
(B)1320MPa≦TSの場合、10.0%≦El
Furthermore, having excellent ductility means that the total elongation (El) measured in a tensile test based on JIS Z 2241 (2011) is the following (A) or (B) depending on the TS measured in the tensile test. ) refers to satisfying the formula.
(A) When 1180MPa≦TS<1320MPa, 12.0%≦El
(B) When 1320MPa≦TS, 10.0%≦El
 また、穴広げ性に優れるとは、JIS Z 2256(2020)に準拠する穴広げ試験で測定される限界穴広げ率(λ)が30%以上であることを指す。 In addition, "excellent hole expansion property" refers to a critical hole expansion rate (λ) of 30% or more measured in a hole expansion test based on JIS Z 2256 (2020).
 また、曲げ性に優れるとは、ドイツ自動車工業会で規定されたVDA規格(VDA238-100)に準拠する曲げ試験で測定される荷重最大時の曲げ角度(α)が80°以上であることを指す。 In addition, "excellent bendability" means that the bending angle (α) at the maximum load measured in a bending test based on the VDA standard (VDA238-100) specified by the German Automobile Manufacturers Association is 80° or more. Point.
 また、曲げ破断特性に優れるとは、V-VDA曲げ試験で測定される荷重最大時のストローク(SFmax)が26.0mm以上であることを指す。 Furthermore, the term "excellent bending and breaking properties" means that the stroke at maximum load (S Fmax ) measured by the V-VDA bending test is 26.0 mm or more.
 また、軸圧壊特性に優れるとは、軸圧壊試験後に破断(外観割れ)が、図6-1(b)の下部2箇所の曲げ稜線部(図6-1中、領域Cx参照)のR=5.0mm、200mmの領域内で3箇所以下であることを指す。 In addition, having excellent axial crushing properties means that the fracture (appearance crack) after the axial crushing test is R= 5.0mm, refers to 3 or less locations within a 200mm area.
 上記のEl、λおよびαは鋼板のプレス成形時の成形しやすさを示す特性である。一方、V-VDA曲げ試験は衝突試験での曲げ稜線部の変形および破断挙動を模擬した試験であり、V-VDA曲げ試験で測定される荷重最大時のストローク(SFmax)は部材の割れにくさを示す特性である。 The above El, λ, and α are characteristics that indicate the ease of forming a steel plate during press forming. On the other hand, the V-VDA bending test is a test that simulates the deformation and fracture behavior of the bending ridge line part in a collision test, and the stroke at the maximum load (S Fmax ) measured in the V-VDA bending test This is a characteristic that indicates shadyness.
 さて、本発明者らは、上記の目的を達成すべく、鋭意検討を重ねた。
 その結果、鋼板の素地鋼板の成分組成を適正に調整し、かつ、鋼板の該素地鋼板の鋼組織は、ベイニティックフェライトの面積率:3.0%以上20.0%以下、焼戻しマルテンサイト(残留オーステナイトを除く)の面積率:40.0%以上90.0%以下、残留オーステナイトの面積率:3.0%超15.0%以下、残留オーステナイト中の炭素濃度:0.60質量%以上1.30質量%以下、フレッシュマルテンサイトの面積率:10.0%以下(0.0%を含む)、焼戻しマルテンサイト中の炭化物の密度が8.0個/μm以下、である鋼組織を有し、素地鋼板の拡散性水素量が0.50質量ppm以下であり、さらに、V-VDA曲げ試験を最高荷重点まで行い、V曲げ稜線部およびVDA曲げ稜線部の重複領域におけるL断面において、き裂の長さが400μm以下であり、さらに、VDA曲げの曲げ外側の曲げ頂点を始点とし板厚方向に50μmの位置まで存在する開始線の各位置から、開始線の垂直方向両側夫々に50μmまでの位置に形成される領域において、ベイニティックフェライトの板厚方向の平均粒径に関し、加工後の平均粒径に対する加工前の平均粒径の割合(加工前後での変化量:加工前の平均粒径(nm)/加工後の平均粒径(nm))を5.0以下とすることにより、引張強さTS:1180MPa以上であり、かつ、高いYSと、優れたプレス成形性(延性、穴広げ性および曲げ性)と、圧壊時の耐破断特性(曲げ破断特性および軸圧壊特性)を有する鋼板が得られることを知見した。
 本発明は、前記の知見に基づき、さらに検討を加えて完成されたものである。
Now, the present inventors have made extensive studies to achieve the above object.
As a result, the composition of the base steel plate of the steel plate was adjusted appropriately, and the steel structure of the base steel plate of the steel plate was such that the area ratio of bainitic ferrite was 3.0% or more and 20.0% or less, and tempered martensite. Area ratio (excluding retained austenite): 40.0% to 90.0%, area ratio of retained austenite: more than 3.0% to 15.0%, carbon concentration in retained austenite: 0.60% by mass 1.30% by mass or less, the area ratio of fresh martensite: 10.0% or less (including 0.0%), and the density of carbides in tempered martensite is 8.0 pieces/μm 2 or less The base steel sheet has a diffusible hydrogen content of 0.50 mass ppm or less, and the V-VDA bending test is performed up to the maximum load point, and the L In the cross section, the crack length is 400 μm or less, and furthermore, from each position of the start line that extends from the bending apex on the outside of the VDA bending to a position of 50 μm in the plate thickness direction, on both sides of the start line in the vertical direction Regarding the average grain size in the plate thickness direction of bainitic ferrite in the regions formed up to 50 μm in each region, the ratio of the average grain size before processing to the average grain size after processing (change amount before and after processing: By setting the average particle size (nm) before processing/average particle size (nm) after processing to 5.0 or less, the tensile strength TS: 1180 MPa or more, high YS, and excellent press forming can be achieved. It was discovered that a steel plate having good properties (ductility, hole expandability, and bendability) and fracture resistance upon crushing (bending fracture properties and axial crush properties) can be obtained.
The present invention was completed based on the above findings and further studies.
 すなわち、本発明の要旨構成は次のとおりである。
[1]素地鋼板を備える鋼板であって、前記素地鋼板は、
質量%で、
  C:0.050%以上0.400%以下、
  Si:0.75%超3.00%以下、
  Mn:2.00%以上3.50%未満、
  P:0.001%以上0.100%以下、
  S:0.0001%以上0.0200%以下、
  Al:0.010%以上2.000%以下および
  N:0.0100%以下
を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
 前記素地鋼板は、
  ベイニティックフェライトの面積率:3.0%以上20.0%以下、
  焼戻しマルテンサイトの面積率:40.0%以上90.0%以下、
  残留オーステナイトの面積率:3.0%超15.0%以下、
  残留オーステナイト中の炭素濃度:0.60質量%以上1.30質量%以下、
  フレッシュマルテンサイトの面積率:10.0%以下、
  焼戻しマルテンサイト中の炭化物の密度:8.0個/μm以下、
である鋼組織を有し、
 前記素地鋼板の拡散性水素量が0.50質量ppm以下であり、
 さらに、V-VDA曲げ試験を最高荷重点まで行い、
 L断面において、
き裂の長さが400μm以下であり、
さらに、VDA曲げの曲げ外側の曲げ頂点を始点とし板厚方向に50μmの位置まで存在する開始線の各位置から、前記開始線の垂直方向両側夫々に50μmまでの位置に形成される領域において、
ベイニティックフェライトの板厚方向の平均粒径に関し、加工後の平均粒径に対する加工前の平均粒径の割合が5.0以下であり、
 引張強さが1180MPa以上である、鋼板。
[2]前記素地鋼板の成分組成が、さらに、質量%で、
  Nb:0.200%以下、
  Ti:0.200%以下、
  V:0.200%以下、
  B:0.0100%以下、
  Cr:1.000%以下、
  Ni:1.000%以下、
  Mo:1.000%以下、
  Sb:0.200%以下、
  Sn:0.200%以下、
  Cu:1.000%以下、
  Ta:0.100%以下、
  W:0.500%以下、
  Mg:0.0200%以下、
  Zn:0.0200%以下、
  Co:0.0200%以下、
  Zr:0.1000%以下、
  Ca:0.0200%以下、
  Se:0.0200%以下、
  Te:0.0200%以下、
  Ge:0.0200%以下、
  As:0.0500%以下、
  Sr:0.0200%以下、
  Cs:0.0200%以下、
  Hf:0.0200%以下、
  Pb:0.0200%以下、
  Bi:0.0200%以下および
  REM:0.0200%以下
のうちから選ばれる少なくとも1種を含有する、前記[1]に記載の鋼板。
[3]前記鋼板の片面または両面において最表層として亜鉛めっき層を備える、前記[1]または[2]に記載の鋼板。
[4]前記素地鋼板は、素地鋼板表面から板厚方向に200μm以下の領域を表層とした際、
前記表層に、板厚1/4位置のビッカース硬さに対して、ビッカース硬さが85%以下である表層軟質層を有し、
 前記素地鋼板表面から前記表層軟質層の板厚方向深さの1/4位置および板厚方向深さの1/2位置の夫々における板面の50μm×50μmの領域において、300点以上のナノ硬度を測定したとき、
前記素地鋼板表面から前記表層軟質層の板厚方向深さの1/4位置の板面のナノ硬度が7.0GPa以上の測定数割合が、前記表層軟質層の板厚方向深さの1/4位置の全測定数に対して0.10以下であり、
さらに、前記素地鋼板表面から前記表層軟質層の板厚方向深さの1/4位置の板面のナノ硬度の標準偏差σが1.8GPa以下であり、
さらに、前記素地鋼板表面から前記表層軟質層の板厚方向深さの1/2位置の板面のナノ硬度の標準偏差σが2.2GPa以下である、前記[1]~[3]のいずれかに記載の鋼板。
[5]前記鋼板の片面または両面において、前記素地鋼板の上に形成された金属めっき層を有する、前記[1]~[4]のいずれかに記載の鋼板。
[6]前記[1]~[5]のいずれかに記載の鋼板を用いてなる、部材。
[7]前記[1]または[2]に記載の成分組成を有する鋼スラブに熱間圧延を施して熱延鋼板とする、熱延工程と、
 該熱延鋼板を酸洗する酸洗工程と、
 該酸洗工程後の鋼板を、焼鈍温度:(Ac+0.4×(Ac-Ac))℃以上900℃以下、且つ焼鈍時間:20秒以上で焼鈍する、焼鈍工程と、
 該焼鈍工程後の鋼板を400℃以上600℃以下の第一冷却停止温度まで冷却する、第一冷却工程と、
 該第一冷却工程後の鋼板を100℃以上300℃以下の第二冷却停止温度まで25.0℃/秒以下の平均冷却速度で冷却し、
該冷却時、前記鋼板に対して、300℃以上450℃以下の温度域で2.0kgf/mm以上の張力を一回以上付与し、
その後、
前記鋼板を、1パス当たり直径500mm以上1500mm以下のロールにロール1/4周分接触させながら4パス以上付与する処理、および
前記鋼板を、1パス当たり直径500mm以上1500mm以下のロールにロール1/2周分接触させながら、2パス以上付与する処理を行う、第二冷却工程と、
 該第二冷却工程後の前記鋼板を、焼戻し温度:300℃超500℃以下の温度域まで加熱し、且つ前記温度域で焼戻し時間:20秒以上900秒以下保持する再加熱処理を行い、該再加熱処理時、以下の式(1)で示す炭化物制御パラメータCPを10000以上15000以下とする、再加熱工程と、を含み、
あるいはさらに
前記酸洗工程後、且つ前記焼鈍工程前の鋼板に、冷間圧延して冷延鋼板を得る、冷延工程を含む、鋼板の製造方法。
 CP=(T+273)×(k+1.2×logt) ・・・式(1)
 ここで、T:焼戻し温度(℃)、k:C含有量に依存した材料定数、t:焼戻し時間(秒)であり、
k=-6×C+17.8であり、
:第二冷却工程で生成するマルテンサイト中の炭素量(質量%)である。
[8]前記第一冷却工程後、かつ前記第二冷却工程前の前記鋼板に亜鉛めっき処理を施し、前記鋼板に亜鉛めっき層を形成する亜鉛めっき工程を含む、前記[7]に記載の鋼板の製造方法。
[9]前記焼鈍工程における焼鈍を、露点-30℃以上の雰囲気下で行う、前記[7]または[8]に記載の鋼板の製造方法。
[10]前記酸洗工程の後、かつ前記焼鈍工程の前に、前記鋼板の片面または両面において、金属めっきを施し金属めっき層を形成する金属めっき工程を含む、前記[7]~[9]のいずれかに記載の鋼板の製造方法。
[11]前記[1]~[5]のいずれかに記載の鋼板に、成形加工、接合加工の少なくとも一方を施して部材とする工程を含む、部材の製造方法。
That is, the gist of the present invention is as follows.
[1] A steel plate comprising a base steel plate, the base steel plate comprising:
In mass%,
C: 0.050% or more and 0.400% or less,
Si: more than 0.75% and 3.00% or less,
Mn: 2.00% or more and less than 3.50%,
P: 0.001% or more and 0.100% or less,
S: 0.0001% or more and 0.0200% or less,
Contains Al: 0.010% or more and 2.000% or less and N: 0.0100% or less, with the remainder consisting of Fe and inevitable impurities,
The base steel plate is
Area ratio of bainitic ferrite: 3.0% or more and 20.0% or less,
Area ratio of tempered martensite: 40.0% or more and 90.0% or less,
Area ratio of retained austenite: more than 3.0% and less than 15.0%,
Carbon concentration in retained austenite: 0.60% by mass or more and 1.30% by mass or less,
Fresh martensite area ratio: 10.0% or less,
Density of carbides in tempered martensite: 8.0 pieces/μm 2 or less,
It has a steel structure that is
The amount of diffusible hydrogen in the base steel sheet is 0.50 mass ppm or less,
Furthermore, a V-VDA bending test was performed up to the maximum load point,
In the L section,
The length of the crack is 400 μm or less,
Furthermore, in a region formed at a position of up to 50 μm on each side of the start line in the vertical direction from each position of the start line, which starts from the bending apex on the outside of the VDA bending and extends up to a position of 50 μm in the plate thickness direction,
Regarding the average grain size in the plate thickness direction of bainitic ferrite, the ratio of the average grain size before processing to the average grain size after processing is 5.0 or less,
A steel plate having a tensile strength of 1180 MPa or more.
[2] The composition of the base steel sheet further includes, in mass%,
Nb: 0.200% or less,
Ti: 0.200% or less,
V: 0.200% or less,
B: 0.0100% or less,
Cr: 1.000% or less,
Ni: 1.000% or less,
Mo: 1.000% or less,
Sb: 0.200% or less,
Sn: 0.200% or less,
Cu: 1.000% or less,
Ta: 0.100% or less,
W: 0.500% or less,
Mg: 0.0200% or less,
Zn: 0.0200% or less,
Co: 0.0200% or less,
Zr: 0.1000% or less,
Ca: 0.0200% or less,
Se: 0.0200% or less,
Te: 0.0200% or less,
Ge: 0.0200% or less,
As: 0.0500% or less,
Sr: 0.0200% or less,
Cs: 0.0200% or less,
Hf: 0.0200% or less,
Pb: 0.0200% or less,
The steel plate according to [1] above, containing at least one selected from Bi: 0.0200% or less and REM: 0.0200% or less.
[3] The steel sheet according to [1] or [2], wherein one or both surfaces of the steel sheet include a galvanized layer as the outermost layer.
[4] When the base steel plate has an area of 200 μm or less in the thickness direction from the surface of the base steel plate as the surface layer,
The surface layer has a soft surface layer whose Vickers hardness is 85% or less with respect to the Vickers hardness at the 1/4 position of the plate thickness,
Nano hardness of 300 points or more in a 50 μm x 50 μm area of the plate surface at 1/4 position and 1/2 depth in the plate thickness direction of the surface soft layer from the surface of the base steel plate, respectively. When measuring,
The proportion of measurements where the nano-hardness of the plate surface at 1/4 of the depth in the thickness direction of the soft surface layer from the surface of the base steel sheet is 7.0 GPa or more is 1/4 of the depth in the thickness direction of the soft surface layer. 0.10 or less for the total number of measurements at 4 positions,
Furthermore, the standard deviation σ of the nano-hardness of the plate surface at a position 1/4 of the thickness direction depth of the surface soft layer from the base steel plate surface is 1.8 GPa or less,
Furthermore, any one of [1] to [3] above, wherein the standard deviation σ of nano-hardness of the plate surface at a position 1/2 the thickness direction depth of the surface soft layer from the base steel plate surface is 2.2 GPa or less. Steel plate described in Crab.
[5] The steel plate according to any one of [1] to [4], which has a metal plating layer formed on the base steel plate on one or both sides of the steel plate.
[6] A member using the steel plate according to any one of [1] to [5] above.
[7] A hot rolling process of hot rolling a steel slab having the composition described in [1] or [2] above to obtain a hot rolled steel plate;
A pickling step of pickling the hot rolled steel sheet;
An annealing step of annealing the steel plate after the pickling step at an annealing temperature of (Ac 1 +0.4×(Ac 3 −Ac 1 ))° C. or higher and 900° C. or lower, and an annealing time of 20 seconds or more;
A first cooling step of cooling the steel plate after the annealing step to a first cooling stop temperature of 400° C. or higher and 600° C. or lower;
Cooling the steel plate after the first cooling step to a second cooling stop temperature of 100 ° C. or more and 300 ° C. or less at an average cooling rate of 25.0 ° C. / seconds or less,
During the cooling, a tension of 2.0 kgf/mm 2 or more is applied to the steel plate at least once in a temperature range of 300 ° C. or higher and 450 ° C. or lower,
after that,
A process of applying the steel plate to a roll having a diameter of 500 mm or more and 1500 mm or less for 4 passes or more while contacting the roll for 1/4 turn per pass, and applying the steel plate to a roll of 500 mm or more and 1500 mm or less in diameter per pass for 1/4 pass. A second cooling step in which a process is performed in which two or more passes are applied while contacting for two rounds;
The steel plate after the second cooling step is heated to a tempering temperature range of more than 300°C and 500°C or less, and is heated in the temperature range for a tempering time of 20 seconds or more and 900 seconds or less, and During the reheating treatment, a reheating step in which the carbide control parameter CP shown by the following formula (1) is set to 10,000 or more and 15,000 or less,
Alternatively, the method for producing a steel plate further includes a cold rolling process of cold rolling the steel plate after the pickling process and before the annealing process to obtain a cold rolled steel plate.
CP=(T+273)×(k+1.2×logt)...Formula (1)
Here, T: tempering temperature (°C), k: material constant depending on C content, t: tempering time (seconds),
k=-6×C M +17.8,
CM : Carbon content (mass%) in martensite produced in the second cooling step.
[8] The steel plate according to [7], which includes a galvanizing process of subjecting the steel plate after the first cooling process and before the second cooling process to form a galvanized layer on the steel plate. manufacturing method.
[9] The method for manufacturing a steel plate according to [7] or [8], wherein the annealing in the annealing step is performed in an atmosphere with a dew point of −30° C. or higher.
[10] [7] to [9] above, including a metal plating step of applying metal plating to form a metal plating layer on one or both sides of the steel plate after the pickling step and before the annealing step. A method for producing a steel plate according to any one of the above.
[11] A method for producing a member, comprising the step of subjecting the steel plate according to any one of [1] to [5] to at least one of forming and joining to produce a member.
 本発明によれば、引張強さTSが1180MPa以上であり、かつ、高い降伏応力YSと、優れたプレス成形性(延性、穴広げ性および曲げ性)と、圧壊時の耐破断特性(曲げ破断特性および軸圧壊特性)を有する鋼板が得られる。
 また、本発明の鋼板を素材とする部材は、高強度であり、かつ、優れた耐衝撃特性を有するので、自動車の衝撃エネルギー吸収部材などに極めて有利に適用することができる。
According to the present invention, the tensile strength TS is 1180 MPa or more, the high yield stress YS, the excellent press formability (ductility, hole expandability, and bendability), and the rupture resistance property at the time of crushing (bending rupture A steel plate having the following properties is obtained.
In addition, the member made of the steel plate of the present invention has high strength and excellent impact resistance, so it can be extremely advantageously applied to impact energy absorbing members of automobiles.
図1は、組織の同定を説明するためのSEMによる組織画像である。FIG. 1 is a tissue image taken by SEM to explain tissue identification. 図2-1(a)は、実施例のV-VDA曲げ試験における、V曲げ加工(一次曲げ加工)を説明するための図である。図2-1(b)は、実施例のV-VDA曲げ試験における、VDA曲げ(二次曲げ加工)を説明するための図である。FIG. 2-1(a) is a diagram for explaining the V-bending process (primary bending process) in the V-VDA bending test of the example. FIG. 2-1(b) is a diagram for explaining VDA bending (secondary bending) in the V-VDA bending test of the example. 図2-2(c)は、V-VDAにおけるV曲げ加工(一次曲げ加工)を施した試験片を示す斜視図である。図2-2(d)は、V-VDAにおけるVDA曲げ(二次曲げ加工)を施した試験片を示す斜視図である。FIG. 2-2(c) is a perspective view showing a test piece subjected to V-bending (primary bending) in V-VDA. FIG. 2-2(d) is a perspective view showing a test piece subjected to VDA bending (secondary bending) in V-VDA. 図2-3(e)は、V-VDAにおけるVDA曲げ(二次曲げ加工)を施した試験片およびL断面観察面を示す斜視図である。図2-3(f)は、V-VDAにおけるVDA曲げ(二次曲げ加工)を施した試験片のL断面観察面において、ベイニティックフェライトの板厚方向の粒径の加工前後での変化量の測定箇所を示す断面図である。FIG. 2-3(e) is a perspective view showing a test piece subjected to VDA bending (secondary bending) in V-VDA and an L cross-sectional observation surface. Figure 2-3(f) shows the change in grain size in the thickness direction of bainitic ferrite before and after processing on the L cross-section observation surface of a test piece subjected to VDA bending (secondary bending) in V-VDA. FIG. 3 is a cross-sectional view showing locations where quantities are measured. 図2-4は、AB領域を説明するための模式図である。FIG. 2-4 is a schematic diagram for explaining the AB area. 図3は、V-VDA試験を施した際に得られたストローク-荷重曲線の模式図である。FIG. 3 is a schematic diagram of the stroke-load curve obtained when performing the V-VDA test. 図4は、本発明で特定するき裂の長さ測定を説明するためのSEMによる組織画像である(実施例の本発明例No.36)。FIG. 4 is a tissue image taken by SEM to explain the measurement of the length of a crack specified in the present invention (Example No. 36 of the present invention). 図5(a)は、本発明で特定する加工による変形前のベイニティックフェライトの粒径の測定方法を説明するためのSEMによる組織画像である(実施例の本発明例No.35)。図5(b)は、本発明で特定する加工による変形後のベイニティックフェライトの粒径の測定方法を説明するためのSEMによる組織画像である(実施例の本発明例No.35)。FIG. 5(a) is a structure image taken by SEM to explain the method for measuring the grain size of bainitic ferrite before deformation by processing specified in the present invention (invention example No. 35). FIG. 5(b) is a structure image taken by SEM to explain the method for measuring the grain size of bainitic ferrite after deformation due to processing specified in the present invention (invention example No. 35). 図6-1(a)は、実施例の軸圧壊試験をするために製造した、ハット型部材と、鋼板とをスポット溶接した試験用部材の正面図である。図6-1(b)は、図6-1(a)に示す試験用部材の斜視図である。FIG. 6-1(a) is a front view of a test member made by spot welding a hat-shaped member and a steel plate, which was manufactured for the axial crush test of the example. FIG. 6-1(b) is a perspective view of the test member shown in FIG. 6-1(a). 図6-2(c)は、実施例の軸圧壊試験を説明するための概略図である。FIG. 6-2(c) is a schematic diagram for explaining the axial crush test of the example.
 本発明を、以下の実施形態に基づき説明する。 The present invention will be explained based on the following embodiments.
[1.鋼板]
 本発明の鋼板は、素地鋼板を備える鋼板であって、素地鋼板は、質量%で、C:0.050%以上0.400%以下、Si:0.75%超3.00%以下、Mn:2.00%以上3.50%未満、P:0.001%以上0.100%以下、S:0.0001%以上0.0200%以下、Al:0.010%以上2.000%以下およびN:0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、素地鋼板は、ベイニティックフェライトの面積率:3.0%以上20.0%以下、焼戻しマルテンサイトの面積率:40.0%以上90.0%以下、残留オーステナイトの面積率:3.0%超15.0%以下、残留オーステナイト中の炭素濃度:0.60質量%以上1.30質量%以下、フレッシュマルテンサイトの面積率:10.0%以下、焼戻しマルテンサイト中の炭化物の密度:8.0個/μm以下、である鋼組織を有し、素地鋼板の拡散性水素量が0.50質量ppm以下であり、さらに、V-VDA曲げ試験を最高荷重点まで行い、L断面において、き裂の長さが400μm以下であり、さらに、VDA曲げの曲げ外側の曲げ頂点を始点とし板厚方向に50μmの位置まで存在する開始線の各位置から、開始線の垂直方向両側夫々に50μmまでの位置に形成される領域において、ベイニティックフェライトの板厚方向の平均粒径に関し、加工後の平均粒径に対する加工前の平均粒径の割合が5.0以下であり、引張強さが1180MPa以上である。
鋼板は、該鋼板の片面または両面において最表層として亜鉛めっき層を有していてもよい。亜鉛めっき層を有する鋼板は、亜鉛めっき鋼板としてもよい。
[1. steel plate]
The steel plate of the present invention is a steel plate comprising a base steel plate, in which the base steel plate includes, in mass %, C: 0.050% or more and 0.400% or less, Si: more than 0.75% and 3.00% or less, Mn : 2.00% or more and less than 3.50%, P: 0.001% or more and 0.100% or less, S: 0.0001% or more and 0.0200% or less, Al: 0.010% or more and 2.000% or less and N: 0.0100% or less, with the remainder consisting of Fe and unavoidable impurities, and the base steel sheet has a bainitic ferrite area ratio of 3.0% or more and 20.0% or less, Area ratio of tempered martensite: 40.0% to 90.0%, area ratio of retained austenite: more than 3.0% to 15.0%, carbon concentration in retained austenite: 0.60% by mass or more1. It has a steel structure of 30% by mass or less, area ratio of fresh martensite: 10.0% or less, density of carbides in tempered martensite: 8.0 pieces/μm 2 or less, and diffusible hydrogen of the base steel sheet. The amount is 0.50 mass ppm or less, and the V-VDA bending test is performed up to the maximum load point, and the crack length is 400 μm or less in the L section, and the bending apex on the outside of the VDA bending is 0.50 mass ppm or less. The average grain size of bainitic ferrite in the thickness direction is determined from each position of the starting line that extends up to 50 μm in the thickness direction from Regarding the diameter, the ratio of the average particle size before processing to the average particle size after processing is 5.0 or less, and the tensile strength is 1180 MPa or more.
The steel plate may have a galvanized layer as the outermost layer on one or both sides of the steel plate. The steel sheet having a galvanized layer may be a galvanized steel sheet.
 成分組成
 まず、本発明の一実施形態に従う鋼板の素地鋼板の成分組成について説明する。なお、成分組成における単位はいずれも「質量%」であるが、以下、特に断らない限り、単に「%」で示す。
Composition First, the composition of the base steel sheet of the steel sheet according to one embodiment of the present invention will be described. Note that the units in the component compositions are all "% by mass", but hereinafter, unless otherwise specified, they will be simply expressed as "%".
 C:0.050%以上0.400%以下
 Cは、フレッシュマルテンサイト、焼戻しマルテンサイト、ベイニティックフェライトおよび残留オーステナイトを適正量生成させて、1180MPa以上の引張強さTSと、高いYSを確保するために有効な元素である。ここで、C含有量が0.050%未満では、フェライトの面積率が増加して、TSを1180MPa以上とすることが困難になる。また、YSの低下も招く。
一方、C含有量が0.400%を超えると、残留オーステナイト中の炭素濃度が過度に増加する。そのため、穴広げ試験で鋼板に打抜き加工を受けた時またはV-VDA試験でV曲げ加工を受けた時に加工誘起変態によって生成したフレッシュマルテンサイトの硬度が大幅に増加し、その後のボイドの生成および亀裂進展が促進され、所望のλおよびSFmaxを達成できない。
 したがって、C含有量は、0.050%以上0.400%以下とする。C含有量は、好ましくは0.100%以上である。また、C含有量は、好ましくは0.300%以下である。
C: 0.050% or more and 0.400% or less C produces appropriate amounts of fresh martensite, tempered martensite, bainitic ferrite, and retained austenite to ensure tensile strength TS of 1180 MPa or more and high YS. It is an effective element for Here, if the C content is less than 0.050%, the area ratio of ferrite increases, making it difficult to increase the TS to 1180 MPa or more. It also causes a decrease in YS.
On the other hand, when the C content exceeds 0.400%, the carbon concentration in retained austenite increases excessively. Therefore, when a steel plate is subjected to a punching process in a hole expansion test or a V-bending process in a V-VDA test, the hardness of fresh martensite generated by process-induced transformation increases significantly, and the subsequent formation of voids and Crack propagation is promoted and the desired λ and S Fmax cannot be achieved.
Therefore, the C content is set to 0.050% or more and 0.400% or less. The C content is preferably 0.100% or more. Further, the C content is preferably 0.300% or less.
 Si:0.75%超3.00%以下
 Siは、焼鈍後の冷却保持中の炭化物生成を抑制し、残留オーステナイトの生成を促進する。すなわち、Siは、残留オーステナイトの体積率および残留オーステナイト中の炭素濃度に影響する元素である。ここで、Si含有量が0.75%以下では、残留オーステナイトの体積率が減少し、延性が低下する。
一方、Si含有量が3.00%を超えると、フェライトの面積率が過度に増加し、TSを1180MPa以上とすることが困難になる。また、YSの低下も招く。加えて、焼鈍中のオーステナイト中の炭素濃度が過度に増加し、所望のλおよびSFmaxを達成できない。
 したがって、Si含有量は、0.75%超3.00%以下とする。Si含有量は、好ましくは2.00%以下である。
Si: More than 0.75% and 3.00% or less Si suppresses the formation of carbides during cooling and holding after annealing and promotes the formation of retained austenite. That is, Si is an element that affects the volume fraction of retained austenite and the carbon concentration in retained austenite. Here, if the Si content is 0.75% or less, the volume fraction of retained austenite decreases and ductility decreases.
On the other hand, when the Si content exceeds 3.00%, the area ratio of ferrite increases excessively, making it difficult to increase the TS to 1180 MPa or more. It also causes a decrease in YS. In addition, the carbon concentration in the austenite during annealing increases too much and the desired λ and SFmax cannot be achieved.
Therefore, the Si content is set to more than 0.75% and 3.00% or less. The Si content is preferably 2.00% or less.
 Mn:2.00%以上3.50%未満
 Mnは、ベイニティックフェライトや焼戻しマルテンサイトなどの面積率を調整する元素である。ここで、Mn含有量が2.00%未満では、フェライトの面積率が過度に増加して、TSを1180MPa以上とすることが困難になる。また、YSの低下も招く。
一方、Mn含有量が3.50%以上となると、マルテンサイト変態開始温度Ms(以下単に、Ms点又はMsともいう。)が低下し、第二冷却工程で生成するマルテンサイトが減少する。その結果、最終冷却時に生成するマルテンサイトが増加し、その時に生成するマルテンサイトが十分に焼戻されず、硬質なフレッシュマルテンサイトの面積率が増加する。フレッシュマルテンサイトが穴広げ試験時、VDA曲げ試験時またはV-VDA曲げ試験時にボイド生成の起点となり、フレッシュマルテンサイトの面積率が10%を超えると、所望のλ、αおよびSFmaxが達成できない。
 したがって、Mn含有量は、2.00%以上3.50%未満とする。Mn含有量は、好ましくは、2.50%以上である。また、Mn含有量は、好ましくは3.20%以下である。
Mn: 2.00% or more and less than 3.50% Mn is an element that adjusts the area ratio of bainitic ferrite, tempered martensite, and the like. Here, if the Mn content is less than 2.00%, the area ratio of ferrite increases excessively, making it difficult to increase the TS to 1180 MPa or more. It also causes a decrease in YS.
On the other hand, when the Mn content is 3.50% or more, the martensite transformation start temperature Ms (hereinafter also simply referred to as the Ms point or Ms) decreases, and the martensite generated in the second cooling step decreases. As a result, martensite generated during final cooling increases, martensite generated at that time is not sufficiently tempered, and the area ratio of hard fresh martensite increases. Fresh martensite becomes the starting point of void generation during the hole expansion test, VDA bending test, or V-VDA bending test, and if the area ratio of fresh martensite exceeds 10%, the desired λ, α, and S Fmax cannot be achieved. .
Therefore, the Mn content is set to 2.00% or more and less than 3.50%. The Mn content is preferably 2.50% or more. Further, the Mn content is preferably 3.20% or less.
 P:0.001%以上0.100%以下
 Pは、固溶強化の作用を有し、鋼板のTSおよびYSを上昇させる元素である。このような効果を得るため、P含有量を0.001%以上にする。一方、P含有量が0.100%を超えると、Pが旧オーステナイト粒界に偏析して粒界を脆化させる。そのため、鋼板に打抜き加工を施した後またはV-VDA曲げ試験でV曲げ加工を施した後、ボイドの生成量が増加し、所望のλおよびSFmaxを達成できない。
 したがって、P含有量は、0.001%以上0.100%以下とする。P含有量は、好ましくは0.030%以下である。
P: 0.001% or more and 0.100% or less P is an element that has a solid solution strengthening effect and increases the TS and YS of the steel sheet. In order to obtain such an effect, the P content is set to 0.001% or more. On the other hand, when the P content exceeds 0.100%, P segregates at prior austenite grain boundaries and embrittles the grain boundaries. Therefore, after punching a steel plate or V-bending in a V-VDA bending test, the amount of voids increases, making it impossible to achieve the desired λ and S Fmax .
Therefore, the P content is set to 0.001% or more and 0.100% or less. The P content is preferably 0.030% or less.
 S:0.0001%以上0.0200%以下
 Sは、鋼中で硫化物として存在する。特に、S含有量が0.0200%を超えると、鋼板に打抜き加工を施した後またはV-VDA曲げ試験でV曲げ加工を施した後、ボイドの生成量が増加し、所望のλおよびSFmaxを達成できない。
 したがって、S含有量は0.0200%以下とする。S含有量は、好ましくは0.0080%以下である。なお、S含有量の下限は生産技術上の制約から、S含有量は0.0001%以上とする。
S: 0.0001% or more and 0.0200% or less S exists as a sulfide in steel. In particular, when the S content exceeds 0.0200%, the amount of voids increases after punching a steel plate or V-bending in a V-VDA bending test, and the desired λ and S Unable to achieve Fmax .
Therefore, the S content is set to 0.0200% or less. The S content is preferably 0.0080% or less. Note that the lower limit of the S content is set to 0.0001% or more due to constraints on production technology.
 Al:0.010%以上2.000%以下
 Alは、焼鈍後の冷却保持中の炭化物生成を抑制するとともに、残留オーステナイトの生成を促進する。すなわち、Alは、残留オーステナイトの体積率および残留オーステナイト中の炭素濃度に影響を及ぼす元素である。このような効果を得るために、Al含有量を0.010%以上とする。
一方、Al含有量が2.000%を超えると、フェライトの面積率が過度に増加して、TSを1180MPa以上とすることが困難になる。また、YSの低下も招く。加えて、焼鈍中のオーステナイト中のC濃度が過度に増加し、所望のλおよびSFmaxを達成できない。
 したがって、Al含有量は、0.010%以上2.000%以下とする。Al含有量は、好ましくは0.015%以上である。また、Al含有量は、好ましくは1.000%以下である。
Al: 0.010% or more and 2.000% or less Al suppresses the formation of carbides during cooling and holding after annealing, and also promotes the formation of retained austenite. That is, Al is an element that affects the volume fraction of retained austenite and the carbon concentration in retained austenite. In order to obtain such an effect, the Al content is set to 0.010% or more.
On the other hand, when the Al content exceeds 2.000%, the area ratio of ferrite increases excessively, making it difficult to increase the TS to 1180 MPa or more. It also causes a decrease in YS. In addition, the C concentration in the austenite during annealing increases too much, making it impossible to achieve the desired λ and SFmax .
Therefore, the Al content is set to 0.010% or more and 2.000% or less. Al content is preferably 0.015% or more. Further, the Al content is preferably 1.000% or less.
 N:0.0100%以下
 Nは、鋼中で窒化物として存在する。特に、N含有量が0.0100%を超えると、鋼板に打抜き加工を施した後またはV-VDA曲げ試験でV曲げ加工を施した後、ボイドの生成量が増加し、所望のλおよびSFmaxを達成できない。
 したがって、N含有量は0.0100%以下とする。また、N含有量は、好ましくは0.0050%以下である。なお、N含有量の下限は特に規定しないが、生産技術上の制約から、N含有量は0.0005%以上が好ましい。
N: 0.0100% or less N exists as a nitride in steel. In particular, when the N content exceeds 0.0100%, the amount of voids generated increases after punching a steel plate or V-bending in a V-VDA bending test, and the desired λ and S Unable to achieve Fmax .
Therefore, the N content is set to 0.0100% or less. Further, the N content is preferably 0.0050% or less. Note that, although the lower limit of the N content is not particularly specified, it is preferable that the N content is 0.0005% or more due to constraints on production technology.
 以上、本発明の一実施形態に従う鋼板の素地鋼板の基本成分組成について説明したが、本発明の一実施形態に従う鋼板の素地鋼板は、上記基本成分を含有し、上記基本成分以外の残部はFe(鉄)および不可避的不純物を含む成分組成を有する。ここで、本発明の一実施形態に従う鋼板の素地鋼板は、上記基本成分を含有し、残部はFeおよび不可避的不純物からなる成分組成を有することが好ましい。 The basic component composition of the base steel plate of the steel plate according to one embodiment of the present invention has been described above. The base steel plate of the steel plate according to one embodiment of the present invention contains the above basic components, and the remainder other than the above basic components is Fe. (iron) and unavoidable impurities. Here, it is preferable that the base steel sheet of the steel sheet according to one embodiment of the present invention contains the above-mentioned basic components, with the remainder consisting of Fe and inevitable impurities.
 本発明の一実施形態に従う鋼板の素地鋼板には、上記基本成分に加え、以下に示す任意成分のうちから選択される少なくとも一種を含有させてもよい。なお、以下に示す任意成分は、以下で示す上限量以下で含有していれば、本発明の効果が得られるため、下限は特に設けない。なお、下記の任意元素を後述する好適な下限値未満で含む場合、当該元素は不可避的不純物として含まれるものとする。 In addition to the above-mentioned basic components, the base steel sheet of the steel sheet according to an embodiment of the present invention may contain at least one selected from the following optional components. Note that the effects of the present invention can be obtained for the optional components shown below as long as they are contained in amounts below the upper limit shown below, so there is no particular lower limit set. In addition, when the following arbitrary elements are contained below the preferable lower limit value mentioned later, the said elements shall be contained as an unavoidable impurity.
 Nb:0.200%以下、Ti:0.200%以下、V:0.200%以下、B:0.0100%以下、Cr:1.000%以下、Ni:1.000%以下、Mo:1.000%以下、Sb:0.200%以下、Sn:0.200%以下、Cu:1.000%以下、Ta:0.100%以下、W:0.500%以下、Mg:0.0200%以下、Zn:0.0200%以下、Co:0.0200%以下、Zr:0.1000%以下、Ca:0.0200%以下、Se:0.0200%以下、Te:0.0200%以下、Ge:0.0200%以下、As:0.0500%以下、Sr:0.0200%以下、Cs:0.0200%以下、Hf:0.0200%以下、Pb:0.0200%以下、Bi:0.0200%以下およびREM:0.0200%以下のうちから選ばれる少なくとも1種 Nb: 0.200% or less, Ti: 0.200% or less, V: 0.200% or less, B: 0.0100% or less, Cr: 1.000% or less, Ni: 1.000% or less, Mo: 1.000% or less, Sb: 0.200% or less, Sn: 0.200% or less, Cu: 1.000% or less, Ta: 0.100% or less, W: 0.500% or less, Mg: 0. 0200% or less, Zn: 0.0200% or less, Co: 0.0200% or less, Zr: 0.1000% or less, Ca: 0.0200% or less, Se: 0.0200% or less, Te: 0.0200% Below, Ge: 0.0200% or less, As: 0.0500% or less, Sr: 0.0200% or less, Cs: 0.0200% or less, Hf: 0.0200% or less, Pb: 0.0200% or less, At least one type selected from Bi: 0.0200% or less and REM: 0.0200% or less
 Nb:0.200%以下
 Nbは、熱間圧延時や焼鈍時に、微細な炭化物、窒化物または炭窒化物を形成することによって、TSおよびYSを上昇させる。このような効果を得るためには、Nb含有量を0.001%以上とすることが好ましい。Nb含有量は、より好ましくは0.005%以上である。一方、Nb含有量が0.200%を超えると、粗大な析出物や介在物が多量に生成する場合がある。このような場合に、粗大な析出物や介在物が穴広げ試験時、VDA曲げ試験時またはV-VDA曲げ試験時に亀裂の起点となり、所望のλ、αおよびSFmaxを達成できないおそれがある。したがって、Nbを含有させる場合、Nb含有量は0.200%以下が好ましい。Nb含有量は、より好ましくは0.060%以下である。
Nb: 0.200% or less Nb increases TS and YS by forming fine carbides, nitrides, or carbonitrides during hot rolling or annealing. In order to obtain such an effect, it is preferable that the Nb content is 0.001% or more. The Nb content is more preferably 0.005% or more. On the other hand, if the Nb content exceeds 0.200%, large amounts of coarse precipitates and inclusions may be produced. In such a case, coarse precipitates and inclusions become the starting point of cracks during the hole expansion test, VDA bending test, or V-VDA bending test, and the desired λ, α, and S Fmax may not be achieved. Therefore, when Nb is contained, the Nb content is preferably 0.200% or less. The Nb content is more preferably 0.060% or less.
 Ti:0.200%以下
 Tiは、Nbと同様、熱間圧延時や焼鈍時に、微細な炭化物、窒化物または炭窒化物を形成することによって、TSおよびYSを上昇させる。このような効果を得るためには、Ti含有量を0.001%以上とすることが好ましい。Ti含有量は、より好ましくは0.005%以上である。一方、Ti含有量が0.200%超えると、粗大な析出物や介在物が多量に生成する場合がある。このような場合に、粗大な析出物や介在物が穴広げ試験時、VDA曲げ試験時またはV-VDA曲げ試験時に亀裂の起点となり、所望のλ、αおよびSFmaxが達成できないおそれがある。したがって、Tiを含有させる場合、Ti含有量は0.200%以下が好ましい。Ti含有量は、より好ましくは0.060%以下である。
Ti: 0.200% or less Like Nb, Ti increases TS and YS by forming fine carbides, nitrides, or carbonitrides during hot rolling or annealing. In order to obtain such an effect, it is preferable that the Ti content is 0.001% or more. The Ti content is more preferably 0.005% or more. On the other hand, if the Ti content exceeds 0.200%, large amounts of coarse precipitates and inclusions may be generated. In such a case, coarse precipitates and inclusions become the starting point of cracks during the hole expansion test, VDA bending test, or V-VDA bending test, and the desired λ, α, and S Fmax may not be achieved. Therefore, when containing Ti, the Ti content is preferably 0.200% or less. The Ti content is more preferably 0.060% or less.
 V:0.200%以下
 Vは、NbやTiと同様、熱間圧延時や焼鈍時に、微細な炭化物、窒化物または炭窒化物を形成することによって、TSおよびYSを上昇させる。このような効果を得るためには、V含有量を0.001%以上とすることが好ましい。V含有量は、より好ましくは0.005%以上である。V含有量は、0.010%以上であることがさらに好ましく、0.030%以上であることがさらにより好ましい。一方、V含有量が0.200%超えると、粗大な析出物や介在物が多量に生成する場合がある。このような場合に、粗大な析出物や介在物が穴広げ試験時、VDA曲げ試験時またはV-VDA曲げ試験時に亀裂の起点となり、所望のλ、αおよびSFmaxが達成できないおそれがある。したがって、Vを含有させる場合、V含有量は0.200%以下が好ましい。V含有量は、より好ましくは0.060%以下である。
V: 0.200% or less Like Nb and Ti, V increases TS and YS by forming fine carbides, nitrides, or carbonitrides during hot rolling or annealing. In order to obtain such an effect, it is preferable that the V content is 0.001% or more. The V content is more preferably 0.005% or more. The V content is more preferably 0.010% or more, and even more preferably 0.030% or more. On the other hand, when the V content exceeds 0.200%, large amounts of coarse precipitates and inclusions may be generated. In such a case, coarse precipitates and inclusions become the starting point of cracks during the hole expansion test, VDA bending test, or V-VDA bending test, and the desired λ, α, and S Fmax may not be achieved. Therefore, when V is contained, the V content is preferably 0.200% or less. The V content is more preferably 0.060% or less.
 B:0.0100%以下
 Bは、オーステナイト粒界に偏析することにより、焼入れ性を高める元素である。また、Bは、焼鈍後の冷却時に、フェライトの生成および粒成長を抑制する元素である。このような効果を得るためには、B含有量を0.0001%以上にすることが好ましい。B含有量は、より好ましくは0.0002%以上である。
 B含有量は、0.0005%以上であることがさらに好ましく、0.0007%以上であることがさらにより好ましい。
一方、B含有量が0.0100%を超えると、熱間圧延時に鋼板内部に割れが生じるおそれがある。また、鋼板に打抜き加工を施した後またはV-VDA曲げ試験でV曲げ加工を施した後、ボイドの生成量が増加し、所望のλおよびSFmaxを達成できないおそれがある。
したがって、Bを含有させる場合、B含有量は0.0100%以下とすることが好ましい。B含有量は、より好ましくは0.0050%以下である。
B: 0.0100% or less B is an element that improves hardenability by segregating at austenite grain boundaries. Further, B is an element that suppresses the formation of ferrite and grain growth during cooling after annealing. In order to obtain such an effect, it is preferable that the B content is 0.0001% or more. The B content is more preferably 0.0002% or more.
The B content is more preferably 0.0005% or more, and even more preferably 0.0007% or more.
On the other hand, if the B content exceeds 0.0100%, cracks may occur inside the steel sheet during hot rolling. Further, after punching a steel plate or V-bending in a V-VDA bending test, the amount of voids generated increases, and there is a possibility that the desired λ and S Fmax cannot be achieved.
Therefore, when B is included, the B content is preferably 0.0100% or less. The B content is more preferably 0.0050% or less.
 Cr:1.000%以下
 Crは、焼入れ性を高める元素であるため、Crの添加により焼戻しマルテンサイトが多量に生成し、1180MPa以上のTSと、高いYSが確保できる。このような効果を得るためには、Cr含有量は0.0005%以上にすることが好ましい。また、Cr含有量は、より好ましくは0.010%以上である。
 Cr含有量は、0.030%以上であることがさらに好ましく、0.050%以上であることがさらにより好ましい。
一方、Cr含有量が1.000%を超えると、硬質なフレッシュマルテンサイトの面積率が過度に増加し、穴広げ試験、VDA曲げ試験またはV-VDA曲げ試験で、フレッシュマルテンサイトがボイド生成起点となり、所望のλ、αおよびSFmaxを達成できないおそれがある。したがって、Crを含有させる場合、Cr含有量は1.000%以下にすることが好ましい。また、Cr含有量は、より好ましくは0.800%以下、さらに好ましくは0.700%以下である。
Cr: 1.000% or less Since Cr is an element that increases hardenability, a large amount of tempered martensite is generated by adding Cr, and a TS of 1180 MPa or more and a high YS can be ensured. In order to obtain such effects, the Cr content is preferably 0.0005% or more. Further, the Cr content is more preferably 0.010% or more.
The Cr content is more preferably 0.030% or more, and even more preferably 0.050% or more.
On the other hand, when the Cr content exceeds 1.000%, the area ratio of hard fresh martensite increases excessively, and fresh martensite becomes the starting point for void formation in the hole expansion test, VDA bending test, or V-VDA bending test. Therefore, there is a possibility that the desired λ, α, and S Fmax cannot be achieved. Therefore, when Cr is contained, the Cr content is preferably 1.000% or less. Further, the Cr content is more preferably 0.800% or less, still more preferably 0.700% or less.
 Ni:1.000%以下
 Niは、焼入れ性を高める元素であるため、Niの添加により焼戻しマルテンサイトが多量に生成し、1180MPa以上のTSと、高いYSを確保できる。このような効果を得るためには、Ni含有量を0.005%以上にすることが好ましい。Ni含有量は、より好ましくは、0.020%以上である。Ni含有量は、0.040%以上であることがさらに好ましく、0.060%以上であることがさらにより好ましい。
一方、Niの含有量が1.000%を超えると、フレッシュマルテンサイトの面積率が過度に増加し、穴広げ試験、VDA曲げ試験またはV-VDA曲げ試験で、フレッシュマルテンサイトがボイド生成起点となり、所望のλ、αおよびSFmaxを達成できないおそれがある。したがって、Niを含有させる場合、Ni含有量は1.000%以下とすることが好ましい。Ni含有量は、より好ましくは0.800%以下である。
Ni含有量は、0.600%以下であることがさらに好ましく、0.400%以下であることがさらにより好ましい。
Ni: 1.000% or less Ni is an element that improves hardenability, so adding Ni generates a large amount of tempered martensite, ensuring a TS of 1180 MPa or more and a high YS. In order to obtain such an effect, it is preferable that the Ni content be 0.005% or more. The Ni content is more preferably 0.020% or more. The Ni content is more preferably 0.040% or more, and even more preferably 0.060% or more.
On the other hand, when the Ni content exceeds 1.000%, the area ratio of fresh martensite increases excessively, and fresh martensite becomes the starting point for void formation in the hole expansion test, VDA bending test, or V-VDA bending test. , the desired λ, α, and S Fmax may not be achieved. Therefore, when Ni is contained, the Ni content is preferably 1.000% or less. The Ni content is more preferably 0.800% or less.
The Ni content is more preferably 0.600% or less, and even more preferably 0.400% or less.
 Mo:1.000%以下
 Moは、焼入れ性を高める元素であるため、Moの添加により焼戻しマルテンサイトが多量に生成し、1180MPa以上のTSと、高いYSが確保できる。このような効果を得るためには、Mo含有量を0.010%以上にすることが好ましい。Mo含有量は、より好ましくは、0.030%以上である。
一方、Mo含有量が1.000%を超えると、フレッシュマルテンサイトの面積率が過度に増加し、穴広げ試験、VDA曲げ試験またはV-VDA曲げ試験で、フレッシュマルテンサイトがボイド生成起点となり、所望のλ、αおよびSFmaxを達成できないおそれがある。したがって、Moを含有させる場合、Mo含有量は1.000%以下にすることが好ましい。Mo含有量は、より好ましくは0.500%以下であり、さらに好ましくは0.450%以下、さらにより好ましくは0.400%以下である。Mo含有量は、0.350%以下であることがより好ましく、0.300%以下であることがさらにより好ましい。
Mo: 1.000% or less Mo is an element that improves hardenability, so adding Mo generates a large amount of tempered martensite, ensuring a TS of 1180 MPa or more and a high YS. In order to obtain such an effect, it is preferable that the Mo content is 0.010% or more. Mo content is more preferably 0.030% or more.
On the other hand, when the Mo content exceeds 1.000%, the area ratio of fresh martensite increases excessively, and fresh martensite becomes the starting point for void formation in the hole expansion test, VDA bending test, or V-VDA bending test. There is a possibility that the desired λ, α and S Fmax cannot be achieved. Therefore, when Mo is contained, the Mo content is preferably 1.000% or less. The Mo content is more preferably 0.500% or less, still more preferably 0.450% or less, even more preferably 0.400% or less. The Mo content is more preferably 0.350% or less, and even more preferably 0.300% or less.
 Sb:0.200%以下
 Sbは、焼鈍中の鋼板表面近傍でのCの拡散を抑制し、鋼板表面近傍における軟質層の形成を制御するために有効な元素である。鋼板表面近傍に軟質層が過度に増加すると、TSを1180MPa以上とすることが困難になる。また、YSの低下も招く。そのため、Sb含有量を0.002%以上とすることが好ましい。Sb含有量は、より好ましくは0.005%以上である。
一方、Sb含有量が0.200%を超えると、鋼板表面近傍に軟質層が形成されず、穴広げ性および曲げ性の低下を招くおそれがある。したがって、Sbを含有させる場合、Sb含有量は0.200%以下にすることが好ましい。Sb含有量は、より好ましくは0.020%以下である。
Sb: 0.200% or less Sb is an effective element for suppressing the diffusion of C near the surface of the steel sheet during annealing and controlling the formation of a soft layer near the surface of the steel sheet. If the soft layer increases excessively near the surface of the steel sheet, it becomes difficult to increase the TS to 1180 MPa or more. It also causes a decrease in YS. Therefore, it is preferable that the Sb content is 0.002% or more. The Sb content is more preferably 0.005% or more.
On the other hand, when the Sb content exceeds 0.200%, a soft layer is not formed near the surface of the steel sheet, which may lead to a decrease in hole expandability and bendability. Therefore, when Sb is contained, the Sb content is preferably 0.200% or less. The Sb content is more preferably 0.020% or less.
 Sn:0.200%以下
 Snは、Sbと同様、焼鈍中の鋼板表面近傍でのCの拡散を抑制し、鋼板表面近傍における軟質層の形成を制御するために有効な元素である。鋼板表面近傍に軟質層が過度に増加すると、TSを1180MPa以上とすることが困難になる。また、YSの低下も招く。そのため、Sn含有量を0.002%以上とすることが好ましい。Sn含有量は、より好ましくは0.005%以上である。
一方、Sn含有量が0.200%を超えると、鋼板表面近傍に軟質層が形成されず、穴広げ性および曲げ性の低下を招くおそれがある。したがって、Snを含有させる場合、Sn含有量は0.200%以下にすることが好ましい。Sn含有量は、より好ましくは0.020%以下である。
Sn: 0.200% or less Like Sb, Sn is an effective element for suppressing the diffusion of C near the surface of the steel sheet during annealing and controlling the formation of a soft layer near the surface of the steel sheet. If the soft layer increases excessively near the surface of the steel sheet, it becomes difficult to increase the TS to 1180 MPa or more. It also causes a decrease in YS. Therefore, it is preferable that the Sn content is 0.002% or more. The Sn content is more preferably 0.005% or more.
On the other hand, if the Sn content exceeds 0.200%, a soft layer will not be formed near the surface of the steel sheet, which may lead to a decrease in hole expandability and bendability. Therefore, when Sn is contained, the Sn content is preferably 0.200% or less. The Sn content is more preferably 0.020% or less.
 Cu:1.000%以下
 Cuは、焼入れ性を高める元素であるため、Cuの添加により焼戻しマルテンサイトが多量に生成し、1180MPa以上のTSと、高いYSが確保できる。このような効果を得るためには、Cu含有量を0.005%以上にすることが好ましい。Cu含有量は、0.008%以上であることがさらに好ましく、0.010%以上であることがさらにより好ましい。Cu含有量は、より好ましくは0.020%以上である。
一方、Cu含有量が1.000%を超えると、フレッシュマルテンサイトの面積率が過度に増加し、粗大な析出物や介在物が多量に生成する場合がある。このような場合に、フレッシュマルテンサイトおよび粗大な析出物や介在物が穴広げ試験、VDA曲げ試験時またはV-VDA曲げ試験時にボイドおよび亀裂の起点となる、所望のλ、αおよびSFmaxを達成できないおそれがある。したがって、Cuを含有させる場合、Cu含有量は1.000%以下とすることが好ましい。Cuの含有量は、より好ましくは0.200%以下である。
Cu: 1.000% or less Cu is an element that improves hardenability, so adding Cu generates a large amount of tempered martensite, ensuring a TS of 1180 MPa or more and a high YS. In order to obtain such an effect, it is preferable that the Cu content is 0.005% or more. The Cu content is more preferably 0.008% or more, and even more preferably 0.010% or more. The Cu content is more preferably 0.020% or more.
On the other hand, when the Cu content exceeds 1.000%, the area ratio of fresh martensite increases excessively, and a large amount of coarse precipitates and inclusions may be generated. In such cases, fresh martensite and coarse precipitates and inclusions become starting points for voids and cracks during the hole expansion test, VDA bending test, or V-VDA bending test . There is a possibility that this cannot be achieved. Therefore, when Cu is contained, the Cu content is preferably 1.000% or less. The Cu content is more preferably 0.200% or less.
 Ta:0.100%以下
 Taは、Ti、NbおよびVと同様に、熱間圧延時や焼鈍時に、微細な炭化物、窒化物または炭窒化物を形成することによって、TSおよびYSを上昇させる。加えて、Taは、Nb炭化物やNb炭窒化物に一部固溶し、(Nb,Ta)(C,N)のような複合析出物を生成する。これにより、析出物の粗大化を抑制し、析出強化を安定化させる。これにより、TS、YSをさらに向上させる。このような効果を得るためには、Ta含有量を0.001%以上とすることが好ましい。Ta含有量は、0.002%以上であることがさらに好ましく、0.004%以上であることがさらにより好ましい。
一方、Ta含有量が0.100%を超えると、粗大な析出物や介在物が多量に生成する場合がある。このような場合に、粗大な析出物や介在物が穴広げ試験、VDA曲げ試験時またはV-VDA曲げ試験時に亀裂の起点となり、所望のλ、αおよびSFmaxを達成できないおそれがある。したがって、Taを含有させる場合、Ta含有量は0.100%以下が好ましい。
Ta含有量は、0.090%以下であることがさらに好ましく、0.080%以下であることがさらにより好ましい。
Ta: 0.100% or less Like Ti, Nb, and V, Ta increases TS and YS by forming fine carbides, nitrides, or carbonitrides during hot rolling or annealing. In addition, Ta is partially dissolved in Nb carbides and Nb carbonitrides to form composite precipitates such as (Nb, Ta) (C, N). This suppresses coarsening of precipitates and stabilizes precipitation strengthening. This further improves TS and YS. In order to obtain such an effect, the Ta content is preferably 0.001% or more. The Ta content is more preferably 0.002% or more, and even more preferably 0.004% or more.
On the other hand, if the Ta content exceeds 0.100%, large amounts of coarse precipitates and inclusions may be produced. In such a case, coarse precipitates and inclusions become the starting point of cracks during the hole expansion test, VDA bending test, or V-VDA bending test, and there is a possibility that the desired λ, α, and S Fmax cannot be achieved. Therefore, when Ta is contained, the Ta content is preferably 0.100% or less.
The Ta content is more preferably 0.090% or less, and even more preferably 0.080% or less.
 W:0.500%以下
 Wは、焼入れ性を高める元素であるため、Wの添加により焼戻しマルテンサイトが多量に生成し、1180MPa以上のTSと、高いYSが確保できる。このような効果を得るためには、W含有量を0.001%以上とすることが好ましい。W含有量は、より好ましくは0.030%以上である。
一方、W含有量が0.500%を超えると、硬質なフレッシュマルテンサイトの面積率が過度に増加し、穴広げ試験、VDA曲げ試験またはV-VDA曲げ試験で、フレッシュマルテンサイトがボイド生成起点となり、所望のλ、αおよびSFmaxを達成できないおそれがある。したがって、Wを含有させる場合、W含有量は0.500%以下にすることが好ましい。W含有量は、より好ましくは0.450%以下、さらに好ましくは0.400%以下である。W含有量は、0.300%以下であることがさらにより好ましい。
W: 0.500% or less W is an element that improves hardenability, so the addition of W generates a large amount of tempered martensite, ensuring a TS of 1180 MPa or more and a high YS. In order to obtain such an effect, it is preferable that the W content is 0.001% or more. The W content is more preferably 0.030% or more.
On the other hand, when the W content exceeds 0.500%, the area ratio of hard fresh martensite increases excessively, and fresh martensite becomes the starting point for void formation in the hole expansion test, VDA bending test, or V-VDA bending test. Therefore, there is a possibility that the desired λ, α, and S Fmax cannot be achieved. Therefore, when W is contained, the W content is preferably 0.500% or less. The W content is more preferably 0.450% or less, still more preferably 0.400% or less. It is even more preferable that the W content is 0.300% or less.
 Mg:0.0200%以下
 Mgは、硫化物や酸化物などの介在物の形状を球状化し、鋼板の穴広げ性を向上させるために有効な元素である。このような効果を得るためには、Mg含有量を0.0001%以上とすることが好ましい。Mg含有量は、0.0005%以上であることがより好ましく、0.0010%以上であることがさらに好ましい。
一方、Mg含有量が0.0200%を超えると、粗大な析出物や介在物が多量に生成する場合がある。このような場合に、粗大な析出物や介在物が穴広げ試験時、VDA曲げ試験時またはV-VDA曲げ試験時に亀裂の起点となり、所望のλ、αおよびSFmaxを達成できないおそれがある。したがって、Mgを含有させる場合、Mg含有量は0.0200%以下とすることが好ましい。Mg含有量は、0.0180%以下であることがより好ましく、0.0150%以下であることがさらに好ましい。
Mg: 0.0200% or less Mg is an effective element for making inclusions such as sulfides and oxides spheroidal and improving the hole expandability of the steel sheet. In order to obtain such an effect, it is preferable that the Mg content is 0.0001% or more. The Mg content is more preferably 0.0005% or more, and even more preferably 0.0010% or more.
On the other hand, if the Mg content exceeds 0.0200%, large amounts of coarse precipitates and inclusions may be formed. In such a case, coarse precipitates and inclusions become the starting point of cracks during the hole expansion test, VDA bending test, or V-VDA bending test, and there is a possibility that the desired λ, α, and S Fmax cannot be achieved. Therefore, when Mg is contained, the Mg content is preferably 0.0200% or less. The Mg content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
 Zn:0.0200%以下
 Znは、介在物の形状を球状化し、鋼板の穴広げ性を向上させるために有効な元素である。このような効果を得るためには、Zn含有量は、0.0010%以上にすることが好ましい。Zn含有量は、0.0020%以上であることがより好ましく、0.0030%以上であることがさらに好ましい。
一方、Zn含有量が0.0200%を超えると、粗大な析出物や介在物が多量に生成する場合がある。このような場合に、粗大な析出物や介在物が穴広げ試験、VDA曲げ試験またはV-VDA曲げ試験時に亀裂の起点となり、所望のλ、αおよびSFmaxが達成できないおそれがある。したがって、Znを含有させる場合、Zn含有量は0.0200%以下とすることが好ましい。Zn含有量は、0.0180%以下であることがより好ましく、0.0150%以下であることがさらに好ましい。
Zn: 0.0200% or less Zn is an effective element for spheroidizing the shape of inclusions and improving the hole expandability of the steel sheet. In order to obtain such an effect, the Zn content is preferably 0.0010% or more. The Zn content is more preferably 0.0020% or more, and even more preferably 0.0030% or more.
On the other hand, if the Zn content exceeds 0.0200%, large amounts of coarse precipitates and inclusions may be formed. In such cases, coarse precipitates and inclusions may become starting points for cracks during the hole expansion test, VDA bending test, or V-VDA bending test, and the desired λ, α, and S Fmax may not be achieved. Therefore, when Zn is contained, the Zn content is preferably 0.0200% or less. The Zn content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
 Co:0.0200%以下
 Coは、Znと同様、介在物の形状を球状化し、鋼板の穴広げ性を向上させるために有効な元素である。このような効果を得るためには、Co含有量は、0.0010%以上にすることが好ましい。Co含有量は、0.0020%以上であることがより好ましく、0.0030%以上であることがさらに好ましい。
一方、Co含有量が0.0200%を超えると、粗大な析出物や介在物が多量に生成する場合がある。このような場合に、粗大な析出物や介在物が穴広げ試験時、VDA曲げ試験時またはV-VDA曲げ試験時に亀裂の起点となり、所望のλ、αおよびSFmaxを達成できないおそれがある。したがって、Coを含有させる場合、Co含有量は0.0200%以下とすることが好ましい。Co含有量は、0.0180%以下であることがより好ましく、0.0150%以下であることがさらに好ましい。
Co: 0.0200% or less Co, like Zn, is an effective element for spheroidizing the shape of inclusions and improving the hole expandability of the steel sheet. In order to obtain such an effect, the Co content is preferably 0.0010% or more. The Co content is more preferably 0.0020% or more, and even more preferably 0.0030% or more.
On the other hand, if the Co content exceeds 0.0200%, large amounts of coarse precipitates and inclusions may be formed. In such a case, coarse precipitates and inclusions become the starting point of cracks during the hole expansion test, VDA bending test, or V-VDA bending test, and there is a possibility that the desired λ, α, and S Fmax cannot be achieved. Therefore, when Co is contained, the Co content is preferably 0.0200% or less. The Co content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
 Zr:0.1000%以下
 Zrは、ZnおよびCoと同様、介在物の形状を球状化し、鋼板の穴広げ性を向上させるために有効な元素である。このような効果を得るためには、Zr含有量は、0.0010%以上にすることが好ましい。一方、Zr含有量が0.1000%を超えると、粗大な析出物や介在物が多量に生成する場合がある。このような場合に、粗大な析出物や介在物が穴広げ試験時、VDA曲げ試験時またはV-VDA曲げ試験時に亀裂の起点となり、所望のλ、αおよびSFmaxを達成できないおそれがある。したがって、Zrを含有させる場合、Zr含有量は0.1000%以下とすることが好ましい。
Zr含有量は、0.0300%以下であることがより好ましく、0.0100%以下であることがさらに好ましい。
Zr: 0.1000% or less Zr, like Zn and Co, is an effective element for making the shape of inclusions spherical and improving the hole expandability of the steel sheet. In order to obtain such an effect, the Zr content is preferably 0.0010% or more. On the other hand, if the Zr content exceeds 0.1000%, large amounts of coarse precipitates and inclusions may be formed. In such a case, coarse precipitates and inclusions become the starting point of cracks during the hole expansion test, VDA bending test, or V-VDA bending test, and the desired λ, α, and S Fmax may not be achieved. Therefore, when containing Zr, the Zr content is preferably 0.1000% or less.
The Zr content is more preferably 0.0300% or less, and even more preferably 0.0100% or less.
 Ca:0.0200%以下
 Caは、鋼中で介在物として存在する。ここで、Ca含有量が0.0200%を超えると、粗大な介在物が多量に生成する場合がある。このような場合に、粗大な析出物や介在物が穴広げ試験、VDA曲げ試験時またはV-VDA曲げ試験時に亀裂の起点となり、所望のλ、αおよびSFmaxを達成できないおそれがある。したがって、Caを含有させる場合、Ca含有量は0.0200%以下にすることが好ましい。Ca含有量は、好ましくは0.0020%以下である。
Ca含有量は、0.0019%以下であることがより好ましく、0.0018%以下であることがさらに好ましい。
なお、Ca含有量の下限は特に限定されるものではないが、Ca含有量は0.0005%以上が好ましい。また、生産技術上の制約から、Ca含有量は0.0010%以上がより好ましい。
Ca: 0.0200% or less Ca exists as inclusions in steel. Here, if the Ca content exceeds 0.0200%, a large amount of coarse inclusions may be generated. In such a case, coarse precipitates and inclusions become the starting point of cracks during the hole expansion test, VDA bending test, or V-VDA bending test, and there is a possibility that the desired λ, α, and S Fmax cannot be achieved. Therefore, when Ca is contained, the Ca content is preferably 0.0200% or less. The Ca content is preferably 0.0020% or less.
The Ca content is more preferably 0.0019% or less, and even more preferably 0.0018% or less.
Note that the lower limit of the Ca content is not particularly limited, but the Ca content is preferably 0.0005% or more. Furthermore, due to production technology constraints, the Ca content is more preferably 0.0010% or more.
 Se:0.0200%以下、Te:0.0200%以下、Ge:0.0200%以下、As:0.0500%以下、Sr:0.0200%以下、Cs:0.0200%以下、Hf:0.0200%以下、Pb:0.0200%以下、Bi:0.0200%以下、REM:0.0200%以下
 Se、Te、Ge、As、Sr、Cs、Hf、Pb、BiおよびREMはいずれも、鋼板の穴広げ性を向上させるために有効な元素である。このような効果を得るためには、Se、Te、Ge、As、Sr、Cs、Hf、Pb、BiおよびREMの含有量はそれぞれ0.0001%以上にすることが好ましい。
一方、Se、Te、Ge、Sr、Cs、Hf、Pb、BiおよびREMの含有量がそれぞれ0.0200%を超えると、また、Asの含有量がそれぞれ0.0500%を超えると、粗大な析出物や介在物が多量に生成する場合がある。このような場合に、粗大な析出物や介在物が穴広げ試験、VDA曲げ試験またはV-VDA曲げ試験時に亀裂の起点となり、所望のλ、αおよびSFmaxを達成できないおそれがある。したがって、Se、Te、Ge、As、Sr、Cs、Hf、Pb、BiおよびREMのうちの少なくとも1種を含有させる場合、Se、Te、Ge、As、Sr、Cs、Hf、Pb、BiおよびREMの含有量はそれぞれ0.0200%以下、Asの含有量は0.0500%以下とすることが好ましい。
 Se含有量は、0.0005%以上であることがより好ましく、0.0008%以上であることがさらに好ましい。Se含有量は、0.0180%以下であることがより好ましく、0.0150%以下であることがさらに好ましい。
 Te含有量は、0.0005%以上であることがより好ましく、0.0008%以上であることがさらに好ましい。Te含有量は、0.0180%以下であることがより好ましく、0.0150%以下であることがさらに好ましい。
 Ge含有量は、0.0005%以上であることがより好ましく、0.0008%以上であることがさらに好ましい。Ge含有量は、0.0180%以下であることがより好ましく、0.0150%以下であることがさらに好ましい。
 As含有量は、0.0010%以上であることがより好ましく、0.0015%以上であることがさらに好ましい。As含有量は、0.0400%以下であることがより好ましく、0.0300%以下であることがさらに好ましい。
 Sr含有量は、0.0005%以上であることがより好ましく、0.0008%以上であることがさらに好ましい。Sr含有量は、0.0180%以下であることがより好ましく、0.0150%以下であることがさらに好ましい。
 Cs含有量は、0.0005%以上であることがより好ましく、0.0008%以上であることがさらに好ましい。Cs含有量は、0.0180%以下であることがより好ましく、0.0150%以下であることがさらに好ましい。
 Hf含有量は、0.0005%以上であることがより好ましく、0.0008%以上であることがさらに好ましい。Hf含有量は、0.0180%以下であることがより好ましく、0.0150%以下であることがさらに好ましい。
 Pb含有量は、0.0005%以上であることがより好ましく、0.0008%以上であることがさらに好ましい。Pb含有量は、0.0180%以下であることがより好ましく、0.0150%以下であることがさらに好ましい。
 Bi含有量は、0.0005%以上であることがより好ましく、0.0008%以上であることがさらに好ましい。Bi含有量は、0.0180%以下であることがより好ましく、0.0150%以下であることがさらに好ましい。
 REM含有量は、0.0005%以上であることがより好ましく、0.0008%以上であることがさらに好ましい。REM含有量は、0.0180%以下であることがより好ましく、0.0150%以下であることがさらに好ましい。
 なお、本発明でいうREMとは、原子番号21番のスカンジウム(Sc)と原子番号39番のイットリウム(Y)及び、原子番号57番のランタン(La)から71番のルテチウム(Lu)までのランタノイドのことを指す。本発明におけるREM濃度とは、上述のREMから選択された1種または2種以上の元素の総含有量である。
REMとしては、特に限定されないが、Sc、Y、Ce、Laであることが好ましい。
Se: 0.0200% or less, Te: 0.0200% or less, Ge: 0.0200% or less, As: 0.0500% or less, Sr: 0.0200% or less, Cs: 0.0200% or less, Hf: 0.0200% or less, Pb: 0.0200% or less, Bi: 0.0200% or less, REM: 0.0200% or less Se, Te, Ge, As, Sr, Cs, Hf, Pb, Bi, and REM are all is also an effective element for improving the hole expandability of steel sheets. In order to obtain such an effect, it is preferable that the content of Se, Te, Ge, As, Sr, Cs, Hf, Pb, Bi, and REM is each 0.0001% or more.
On the other hand, when the content of Se, Te, Ge, Sr, Cs, Hf, Pb, Bi and REM exceeds 0.0200%, and when the content of As exceeds 0.0500%, coarse A large amount of precipitates and inclusions may be generated. In such cases, coarse precipitates and inclusions may become starting points for cracks during hole expansion tests, VDA bending tests, or V-VDA bending tests, and there is a possibility that desired λ, α, and S Fmax cannot be achieved. Therefore, when containing at least one of Se, Te, Ge, As, Sr, Cs, Hf, Pb, Bi and REM, Se, Te, Ge, As, Sr, Cs, Hf, Pb, Bi and The content of REM is preferably 0.0200% or less, and the content of As is preferably 0.0500% or less.
The Se content is more preferably 0.0005% or more, and even more preferably 0.0008% or more. The Se content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
The Te content is more preferably 0.0005% or more, and even more preferably 0.0008% or more. The Te content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
The Ge content is more preferably 0.0005% or more, and even more preferably 0.0008% or more. The Ge content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
As for As content, it is more preferred that it is 0.0010% or more, and it is still more preferred that it is 0.0015% or more. As for As content, it is more preferred that it is 0.0400% or less, and it is still more preferred that it is 0.0300% or less.
The Sr content is more preferably 0.0005% or more, and even more preferably 0.0008% or more. The Sr content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
The Cs content is more preferably 0.0005% or more, and even more preferably 0.0008% or more. The Cs content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
The Hf content is more preferably 0.0005% or more, and even more preferably 0.0008% or more. The Hf content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
The Pb content is more preferably 0.0005% or more, and even more preferably 0.0008% or more. The Pb content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
The Bi content is more preferably 0.0005% or more, and even more preferably 0.0008% or more. The Bi content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
The REM content is more preferably 0.0005% or more, and even more preferably 0.0008% or more. The REM content is more preferably 0.0180% or less, and even more preferably 0.0150% or less.
In addition, REM as used in the present invention refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanum (La) with atomic number 57 to lutetium (Lu) with atomic number 71. Refers to lanthanoids. The REM concentration in the present invention is the total content of one or more elements selected from the above-mentioned REMs.
REM is not particularly limited, but preferably Sc, Y, Ce, and La.
 すなわち、本発明の一実施形態に従う鋼板の素地鋼板は、質量%で、C:0.050%以上0.400%以下、Si:0.75%超3.00%以下、Mn:2.00%以上3.50%未満、P:0.001%以上0.100%以下、S:0.0001%以上0.0200%以下、Al:0.010%以上2.000%以下およびN:0.0100%以下であり、任意に、Nb:0.200%以下、Ti:0.200%以下、V:0.200%以下、B:0.0100%以下、Cr:1.000%以下、Ni:1.000%以下、Mo:1.000%以下、Sb:0.200%以下、Sn:0.200%以下、Cu:1.000%以下、Ta:0.100%以下、W:0.500%以下、Mg:0.0200%以下、Zn:0.0200%以下、Co:0.0200%以下、Zr:0.1000%以下、Ca:0.0200%以下、Se:0.0200%以下、Te:0.0200%以下、Ge:0.0200%以下、As:0.0500%以下、Sr:0.0200%以下、Cs:0.0200%以下、Hf:0.0200%以下、Pb:0.0200%以下、Bi:0.0200%以下およびREM:0.0200%以下のうちから選ばれる少なくとも1種を含有し、残部がFeおよび不可避的不純物である、成分組成を有する。 That is, the base steel plate of the steel plate according to an embodiment of the present invention has, in mass %, C: 0.050% or more and 0.400% or less, Si: more than 0.75% and 3.00% or less, and Mn: 2.00. % or more and less than 3.50%, P: 0.001% or more and 0.100% or less, S: 0.0001% or more and 0.0200% or less, Al: 0.010% or more and 2.000% or less, and N: 0 .0100% or less, optionally Nb: 0.200% or less, Ti: 0.200% or less, V: 0.200% or less, B: 0.0100% or less, Cr: 1.000% or less, Ni: 1.000% or less, Mo: 1.000% or less, Sb: 0.200% or less, Sn: 0.200% or less, Cu: 1.000% or less, Ta: 0.100% or less, W: 0.500% or less, Mg: 0.0200% or less, Zn: 0.0200% or less, Co: 0.0200% or less, Zr: 0.1000% or less, Ca: 0.0200% or less, Se: 0. 0200% or less, Te: 0.0200% or less, Ge: 0.0200% or less, As: 0.0500% or less, Sr: 0.0200% or less, Cs: 0.0200% or less, Hf: 0.0200% Hereinafter, a component composition containing at least one selected from Pb: 0.0200% or less, Bi: 0.0200% or less, and REM: 0.0200% or less, with the remainder being Fe and unavoidable impurities. have
 鋼組織
 つぎに、本発明の一実施形態に従う鋼板の素地鋼板の鋼組織について説明する。
 本発明の一実施形態に従う鋼板の素地鋼板の鋼組織は、ベイニティックフェライトの面積率:3.0%以上20.0%以下、焼戻しマルテンサイト(残留オーステナイトを除く)の面積率:40.0%以上90.0%以下、残留オーステナイトの体積率:3.0%超15.0%以下、残留オーステナイト中の炭素濃度:0.60質量%以上1.30質量%以下、フレッシュマルテンサイトの面積率:10.0%以下(0.0%を含む)、焼戻しマルテンサイト中の炭化物の密度が8.0個/μm以下、であり、素地鋼板の拡散性水素量が0.50質量ppm以下であり、さらに、V-VDA曲げ試験を最高荷重点まで行い、L断面において、き裂の長さが400μm以下であり、さらに、VDA曲げの曲げ外側の曲げ頂点を始点とし板厚方向に50μmの位置まで存在する開始線の各位置から、開始線の垂直方向両側夫々に50μmまでの位置に形成される領域において、ベイニティックフェライトの板厚方向の平均粒径に関し、加工後の平均粒径に対する加工前の平均粒径の比率が5.0以下である。
Steel Structure Next, the steel structure of the base steel plate of the steel plate according to one embodiment of the present invention will be described.
The steel structure of the base steel sheet of the steel sheet according to an embodiment of the present invention has an area ratio of bainitic ferrite of 3.0% to 20.0% and an area ratio of tempered martensite (excluding retained austenite) of 40. 0% or more and 90.0% or less, volume fraction of retained austenite: more than 3.0% and 15.0% or less, carbon concentration in retained austenite: 0.60% by mass or more and 1.30% by mass or less, fresh martensite Area ratio: 10.0% or less (including 0.0%), the density of carbides in the tempered martensite is 8.0 pieces/μm 2 or less, and the amount of diffusible hydrogen in the base steel sheet is 0.50 mass ppm or less, and furthermore, the V-VDA bending test was performed up to the maximum load point, and the crack length was 400 μm or less in the L cross section, and furthermore, the crack length was 400 μm or less in the VDA bending, and Regarding the average grain size in the plate thickness direction of bainitic ferrite in the regions formed up to 50 μm on both sides of the start line in the vertical direction from each position of the start line that exists up to 50 μm in the process, The ratio of the average particle size before processing to the average particle size is 5.0 or less.
 以下、それぞれの限定理由について説明する。 The reasons for each limitation will be explained below.
 ベイニティックフェライトの面積率:3.0%以上20.0%以下
 ベイニティックフェライトは、軟質なフェライトや硬質なフレッシュマルテンサイトなどと比較すると、中間の硬度を有し、良好な穴広げ性、曲げ性、曲げ破断特性および軸圧壊特性を確保するために重要な相である。また、ベイニティックフェライトは、ベイニティックフェライトから未変態オーステナイトへのCの拡散を活用して、適正量の残留オーステナイトの面積率および残留オーステナイト中の炭素濃度を得るためにも有用な相である。そのため、ベイニティックフェライトの面積率は3.0%以上とする。
ベイニティックフェライトの面積率は、好ましくは5.0%以上であり、より好ましくは8.0%以上である。
一方、ベイニティックフェライトの面積率が過度に増加すると、強度が低下し、かつ、残留オーステナイトの面積率が所定量超えになる。そのため、ベイニティックフェライトの面積率は20.0%以下とする。
ベイニティックフェライトの面積率は、好ましくは18.0%以下であり、より好ましくは15.0%以下である。
なお、ベイニティックフェライトとは、比較的に高温域で生成する炭化物の少ない上部ベイナイトである。
Area ratio of bainitic ferrite: 3.0% or more and 20.0% or less Bainitic ferrite has an intermediate hardness compared to soft ferrite and hard fresh martensite, and has good hole expandability. , is an important phase to ensure bendability, bending rupture properties and axial crush properties. Bainitic ferrite is also a useful phase for obtaining an appropriate amount of retained austenite area ratio and carbon concentration in retained austenite by utilizing the diffusion of C from bainitic ferrite to untransformed austenite. be. Therefore, the area ratio of bainitic ferrite is set to 3.0% or more.
The area ratio of bainitic ferrite is preferably 5.0% or more, more preferably 8.0% or more.
On the other hand, when the area ratio of bainitic ferrite increases excessively, the strength decreases and the area ratio of retained austenite exceeds a predetermined amount. Therefore, the area ratio of bainitic ferrite is set to 20.0% or less.
The area ratio of bainitic ferrite is preferably 18.0% or less, more preferably 15.0% or less.
Note that bainitic ferrite is upper bainitic bainite that is generated in a relatively high temperature range and has few carbides.
 焼戻しマルテンサイト(残留オーステナイトを除く)の面積率:40.0%以上90.0%以下
 焼戻しマルテンサイトは、軟質なフェライトや、硬質なフレッシュマルテンサイトなどと比較すると、中間の硬度を有し、良好な穴広げ性、曲げ性、曲げ破断特性および軸圧壊特性を確保するために重要な相である。また、焼戻しマルテンサイトは、TSを向上させるのに有効である。そのため、焼戻しマルテンサイトの面積率は、40.0%以上とする。焼戻しマルテンサイトの面積率は、好ましくは60.0%以上である。一方、焼戻しマルテンサイトの面積率が過度に増加すると、延性が低下する。そのため、焼戻しマルテンサイトの面積率は90.0%以下とする。
焼戻しマルテンサイトの面積率は、好ましくは85.0%以下であり、より好ましくは80.0%以下である。
Area ratio of tempered martensite (excluding retained austenite): 40.0% or more and 90.0% or less Tempered martensite has an intermediate hardness compared to soft ferrite and hard fresh martensite. It is an important phase for ensuring good hole expandability, bendability, bending rupture properties, and axial crushing properties. Furthermore, tempered martensite is effective in improving TS. Therefore, the area ratio of tempered martensite is set to 40.0% or more. The area ratio of tempered martensite is preferably 60.0% or more. On the other hand, when the area ratio of tempered martensite increases excessively, ductility decreases. Therefore, the area ratio of tempered martensite is 90.0% or less.
The area ratio of tempered martensite is preferably 85.0% or less, more preferably 80.0% or less.
 残留オーステナイトの面積率:3.0%超15.0%以下
 良好な延性を得る観点から、残留オーステナイトの面積率は3.0%超とする。残留オーステナイトの面積率は、好ましくは5.0%以上である。一方、残留オーステナイトの面積率が過度に増加すると、穴広げ試験で鋼板が打抜き加工を受けた時、またはV-VDA試験でV曲げ加工を受けた時、加工誘起変態によって生成したフレッシュマルテンサイトがボイド生成起点となり、所望のλおよびSFmaxを達成できない。よって、残留オーステナイトの面積率は15.0%以下とする。残留オーステナイトの面積率は、好ましくは12.0%以下であり、より好ましくは10.0%以下である。
Area ratio of retained austenite: more than 3.0% and not more than 15.0% From the viewpoint of obtaining good ductility, the area ratio of retained austenite is set to be more than 3.0%. The area ratio of retained austenite is preferably 5.0% or more. On the other hand, if the area ratio of retained austenite increases excessively, fresh martensite generated by deformation-induced transformation occurs when a steel plate undergoes punching in a hole expansion test or V-bending in a V-VDA test. This becomes a starting point for void generation, making it impossible to achieve the desired λ and S Fmax . Therefore, the area ratio of retained austenite is set to 15.0% or less. The area ratio of retained austenite is preferably 12.0% or less, more preferably 10.0% or less.
 例えば、後述する製造方法における第二冷却工程時の張力の制御により残留オーステナイトの面積率を15.0%以下に抑制できる。第一冷却工程後(亜鉛めっき処理を施す場合は、亜鉛めっき処理後(必要に応じて、合金化処理後))に2.0kgf/mm以上の張力を一回以上付与し、その後、鋼板を、1パス当たり直径500mm以上1500mm以下のロールにロール1/4周分接触させながら4パス以上付与する処理、および、鋼板を、1パス当たり直径500mm以上1500mm以下のロールにロール1/2周分接触させながら、2パス以上付与する処理を行うことで、不安定な残留オーステナイトが加工誘起変態し、フレッシュマルテンサイトになり、その後の冷却中に焼戻され、最終的に焼戻しマルテンサイトになる。 For example, the area ratio of retained austenite can be suppressed to 15.0% or less by controlling the tension during the second cooling step in the manufacturing method described below. After the first cooling process (in the case of galvanizing, after galvanizing (if necessary, after alloying)), a tension of 2.0 kgf/ mm2 or more is applied at least once, and then the steel plate is is applied for 4 passes or more while contacting a roll with a diameter of 500 mm or more and 1500 mm or less for 1/4 rotation per pass, and a process of applying the steel plate to a roll with a diameter of 500 mm or more and 1500 mm or less per pass for 1/2 rotation of the roll. By performing the treatment for two or more passes while contacting each other for a few minutes, the unstable residual austenite undergoes deformation-induced transformation and becomes fresh martensite, which is then tempered during cooling and finally becomes tempered martensite. .
 残留オーステナイト中の炭素濃度:0.60質量%以上1.30質量%以下
 残留オーステナイト中の炭素濃度は、変形時に残留オーステナイトがマルテンサイトに変態する安定度に影響する指標である。残留オーステナイト中の炭素濃度が0.60質量%未満では、残留オーステナイトが不安定であり、応力付与後、塑性変形する前に加工誘起マルテンサイト変態が生じるため、所要の伸びが得られなくなる。一方、残留オーステナイト中の炭素濃度が1.30質量%を超えると、穴広げ試験で鋼板に打抜き加工を受けた時、またはV-VDA試験でV曲げ加工を受けた時に残留オーステナイトから生成するフレッシュマルテンサイトの硬度が大きく上昇し、ボイドの生成および連結が促進され、所望のλおよびSFmaxを達成できない。したがって、残留オーステナイト中の炭素濃度は0.60質量%以上1.30質量%以下とする。残留オーステナイト中の炭素濃度は、好ましくは0.80質量%以上とする。また、残留オーステナイト中の炭素濃度は、好ましくは1.20質量%以下とする。
Carbon concentration in retained austenite: 0.60% by mass or more and 1.30% by mass or less The carbon concentration in retained austenite is an index that affects the stability with which retained austenite transforms into martensite during deformation. If the carbon concentration in the retained austenite is less than 0.60% by mass, the retained austenite is unstable and deformation-induced martensitic transformation occurs after stress is applied but before plastic deformation occurs, making it impossible to obtain the required elongation. On the other hand, if the carbon concentration in the retained austenite exceeds 1.30% by mass, fresh carbon is generated from the retained austenite when the steel plate is punched in the hole expansion test or when it is subjected to V-bending in the V-VDA test. The hardness of martensite increases significantly, the formation and connection of voids is promoted, and the desired λ and SFmax cannot be achieved. Therefore, the carbon concentration in the retained austenite is set to 0.60% by mass or more and 1.30% by mass or less. The carbon concentration in the retained austenite is preferably 0.80% by mass or more. Further, the carbon concentration in the retained austenite is preferably 1.20% by mass or less.
 フレッシュマルテンサイトの面積率:10.0%以下(0.0%を含む)
 フレッシュマルテンサイトの面積率が過度に増加すると、穴広げ試験、VDA曲げ試験またはV-VDA曲げ試験で、フレッシュマルテンサイトがボイド生成起点となり、所望のλ、αおよびSFmaxを達成できない。また、フレッシュマルテンサイト面積率の増加にともない鋼板中の拡散性水素量が増加し、穴広げ性および曲げ性がさらに低下する。良好な穴広げ性および曲げ性を確保する観点から、フレッシュマルテンサイトの面積率は10.0%以下、好ましくは5.0%以下とする。なお、フレッシュマルテンサイトの面積率の下限については特に限定されず、0.0%であってもよい。
 なお、フレッシュマルテンサイトとは、焼入れままの(焼戻しを受けていない)マルテンサイトである。
Fresh martensite area ratio: 10.0% or less (including 0.0%)
If the area ratio of fresh martensite increases excessively, fresh martensite becomes the starting point for void formation in the hole expansion test, VDA bending test, or V-VDA bending test, making it impossible to achieve the desired λ, α, and S Fmax . Furthermore, as the fresh martensite area ratio increases, the amount of diffusible hydrogen in the steel sheet increases, and the hole expandability and bendability further decrease. From the viewpoint of ensuring good hole expandability and bendability, the area ratio of fresh martensite is 10.0% or less, preferably 5.0% or less. Note that the lower limit of the area ratio of fresh martensite is not particularly limited, and may be 0.0%.
Note that fresh martensite is martensite that is still quenched (not tempered).
 焼戻しマルテンサイト中の炭化物の密度(個数密度):8.0個/μm以下
 本発明において、焼戻しマルテンサイト中の炭化物の密度が8.0個/μmを超えると、穴広げ試験、VDA曲げ試験またはV-VDA曲げ試験において、炭化物に起因するボイドの数が増加することによりき裂の発生および進展が助長され、その結果所望のλ、αおよびSFmaxを達成できない。そのため、焼戻しマルテンサイト中の炭化物の密度は8.0個/μm以下とする。焼戻しマルテンサイト中の炭化物の密度は、好ましくは7.0個/μm以下であり、より好ましくは6.0個/μm以下である。
また、下限は特に限定されないが、焼戻しマルテンサイト中の炭化物の密度は、好ましくは1.0個/μm以上であり、より好ましくは2.0個/μm以上である。
Density of carbides in tempered martensite (number density): 8.0 pieces/μm 2 or less In the present invention, if the density of carbides in tempered martensite exceeds 8.0 pieces/μm 2 , hole expansion test, VDA In the bending test or the V-VDA bending test, the increase in the number of voids due to carbides promotes crack initiation and propagation, and as a result, the desired λ, α and S Fmax cannot be achieved. Therefore, the density of carbides in tempered martensite is set to 8.0 carbides/μm 2 or less. The density of carbides in the tempered martensite is preferably 7.0 pieces/μm 2 or less, more preferably 6.0 pieces/μm 2 or less.
Although the lower limit is not particularly limited, the density of carbides in the tempered martensite is preferably 1.0 pieces/μm 2 or more, more preferably 2.0 pieces/μm 2 or more.
 なお、上記以外の残部組織としては、例えば、フェライトや下部ベイナイト、パーライト、セメンタイトなどの炭化物が挙げられる。1180MPa以上のTSと、高いYSを確保するために、パーライトの面積率は5.0%以下とすることが好ましい。
残部組織の種類は、例えば、SEM(Scanning Electron Microscope;走査電子顕微鏡)による観察で確認することができる。
Note that examples of residual structures other than those mentioned above include carbides such as ferrite, lower bainite, pearlite, and cementite. In order to ensure a TS of 1180 MPa or more and a high YS, the area ratio of pearlite is preferably 5.0% or less.
The type of residual tissue can be confirmed, for example, by observation using a scanning electron microscope (SEM).
 ベイニティックフェライト、焼戻しマルテンサイトおよび硬質第二相(残留オーステナイト+フレッシュマルテンサイト)の面積率は、素地鋼板の板厚1/4位置において、以下のように測定する。
 すなわち、素地鋼板の圧延方向に平行な板厚断面が観察面となるように、素地鋼板から試料を切り出す。ついで、ダイヤモンドペーストを用いて試料の観察面を鏡面研磨する。ついで、試料の観察面にコロイダルシリカを用いて仕上げ研磨を施したのち、3vol.%ナイタールでエッチングして組織を現出させる。
 そして、SEM(Scanning Electron Microscope;走査電子顕微鏡)により、加速電圧:15kV、倍率:5000倍の条件で、試料の観察面の25.6μm×17.6μmの視野を3視野撮影する。
 得られた組織画像から、以下のようにして、ベイニティックフェライト、焼戻しマルテンサイト、硬質第二相(残留オーステナイト+フレッシュマルテンサイト)および残部組織を同定する。
The area ratio of bainitic ferrite, tempered martensite, and hard second phase (retained austenite + fresh martensite) is measured as follows at a position of 1/4 of the thickness of the base steel plate.
That is, a sample is cut out from the base steel plate so that the plate thickness cross section parallel to the rolling direction of the base steel plate serves as the observation surface. Next, the observation surface of the sample is mirror-polished using diamond paste. Then, after final polishing the observation surface of the sample using colloidal silica, 3vol. Etch with % nital to reveal the tissue.
Then, three fields of view of 25.6 μm×17.6 μm of the observation surface of the sample are photographed using an SEM (Scanning Electron Microscope) under the conditions of acceleration voltage: 15 kV and magnification: 5000 times.
From the obtained structure image, bainitic ferrite, tempered martensite, hard second phase (retained austenite + fresh martensite), and residual structure are identified as follows.
ベイニティックフェライト:黒色から濃い灰色を呈した領域であり、形態は塊状や不定形などである。また、鉄系炭化物を内包しないか、比較的少数内包する。
焼戻しマルテンサイト:灰色を呈した領域であり、形態は不定形である。また、鉄系炭化物を比較的多数内包する。
硬質第二相(残留オーステナイト+フレッシュマルテンサイト):白色から薄い灰色を呈する領域であり、形態は不定形である。また、鉄系炭化物を内包しない。なお、サイズが比較的大きい場合には、他組織との界面から離れるにつれて次第に色が濃くなり、内部は濃い灰色を呈する場合がある。
フェライト:黒色を呈した領域であり、形態は塊状である。また、鉄系炭化物をほとんど内包しない。ただし、鉄系炭化物を内包する場合は、フェライトの面積に鉄系炭化物の面積も含むものとする。前述したベイニティックフェライトおよび焼戻しマルテンサイトについても同様である。
セメンタイト:白色を呈する領域であり、形態は点状や線状である。焼戻しマルテンサイト、ベイニティックフェライト、およびフェライトに内包される。
下部ベイナイトやパーライトなど:これらの形態等は公知のとおりである。
Bainitic ferrite: A black to dark gray region, with a lumpy or irregular shape. Also, it does not contain iron-based carbides or contains relatively few iron-based carbides.
Tempered martensite: A gray area with an amorphous shape. It also contains a relatively large number of iron-based carbides.
Hard second phase (retained austenite + fresh martensite): This is a white to light gray region with an amorphous shape. Also, it does not contain iron-based carbides. Note that when the size is relatively large, the color becomes gradually darker as it moves away from the interface with other tissues, and the inside may take on a dark gray color.
Ferrite: A black region with a block-like shape. In addition, it contains almost no iron-based carbide. However, when iron-based carbide is included, the area of the iron-based carbide is also included in the area of ferrite. The same applies to the aforementioned bainitic ferrite and tempered martensite.
Cementite: A white region with a dotted or linear shape. Enclosed in tempered martensite, bainitic ferrite, and ferrite.
Lower bainite, pearlite, etc.: Their forms are known.
 ついで、組織画像において同定した各相の領域は以下の手法により算出する。前記の倍率5000倍のSEM像上の、実長23.1μm×17.6μmの領域上に等間隔の20×20の格子をおき、各相上にある点数を数えるポイントカウンティング法によりベイニティックフェライト、焼戻しマルテンサイトおよび硬質第二相の面積率を算出する。面積率は倍率5000倍の別々のSEM像で求めた3つの面積率の平均値とする。 Next, the region of each phase identified in the tissue image is calculated using the following method. On the SEM image with a magnification of 5,000 times, a 20 x 20 grid with equal spacing is placed over an area of actual length 23.1 μm x 17.6 μm, and bainitic processing is performed using a point counting method that counts the number of points on each phase. Calculate the area percentages of ferrite, tempered martensite, and hard second phase. The area ratio is the average value of three area ratios obtained from separate SEM images with a magnification of 5000 times.
 また、残留オーステナイトの面積率は、以下のように測定する。
 すなわち、素地鋼板を板厚方向(深さ方向)に板厚の1/4位置まで機械研削した後、シュウ酸による化学研磨を行い、観察面とする。ついで、観察面を、X線回折法により観察する。入射X線にはMoKα線を使用し、bcc鉄の(200)、(211)および(220)各面の回折強度に対するfcc鉄(オーステナイト)の(200)、(220)および(311)各面の回折強度の比を求め、各面の回折強度の比から、残留オーステナイトの体積率を算出する。そして、残留オーステナイトが三次元的に均質であるとみなして、残留オーステナイトの体積率を、残留オーステナイトの面積率とする。
Moreover, the area ratio of retained austenite is measured as follows.
That is, the base steel plate is mechanically ground in the thickness direction (depth direction) to a position of 1/4 of the plate thickness, and then chemically polished with oxalic acid to form an observation surface. Then, the observation surface is observed by X-ray diffraction. MoKα rays were used for the incident X-rays, and the diffraction intensity of the (200), (211) and (220) planes of BCC iron was compared with the (200), (220) and (311) planes of FCC iron (austenite). The ratio of the diffraction intensities of each surface is determined, and the volume fraction of retained austenite is calculated from the ratio of the diffraction intensities of each surface. Then, assuming that the retained austenite is three-dimensionally homogeneous, the volume fraction of the retained austenite is defined as the area fraction of the retained austenite.
 残留オーステナイト中の炭素濃度の分布については、上記X線回折法で測定されたfcc鉄(オーステナイト)の(220)面の回折ピークを用いて、残留オーステナイトの格子定数を求める。ついで、下記式より残留オーステナイト中の炭素濃度を求める。
Cγ=((A-(3.572+0.0012×[Mn%]-0.00157×[Si%]+0.0056×[Al%]))/0.033
ここで、A:残留オーステナイトの格子定数、
Cγ:残留オーステナイト中の炭素濃度、[Mn%]、[Si%]、[Al%]:それぞれ鋼板中のMn、Si、Alの含有量(質量%)である。
Regarding the distribution of carbon concentration in the retained austenite, the lattice constant of the retained austenite is determined using the diffraction peak of the (220) plane of FCC iron (austenite) measured by the above-mentioned X-ray diffraction method. Next, the carbon concentration in the retained austenite is determined from the following formula.
Cγ=((A-(3.572+0.0012×[Mn%]-0.00157×[Si%]+0.0056×[Al%]))/0.033
Here, A: lattice constant of retained austenite,
Cγ: carbon concentration in retained austenite; [Mn%], [Si%], [Al%]: content (mass%) of Mn, Si, and Al in the steel sheet, respectively.
 また、フレッシュマルテンサイトの面積率は、上記のようにして求めた硬質第二相の面積率から、残留オーステナイトの面積率を減じることにより求める。
 [フレッシュマルテンサイトの面積率(%)]=[硬質第二相の面積率(%)]-[残留オーステナイトの面積率(%)]
Further, the area ratio of fresh martensite is determined by subtracting the area ratio of retained austenite from the area ratio of the hard second phase determined as described above.
[Area ratio of fresh martensite (%)] = [Area ratio of hard second phase (%)] - [Area ratio of retained austenite (%)]
 また、残部組織の面積率は、100.0%から上記のようにして求めたベイニティックフェライトの面積率、焼戻しマルテンサイトの面積率、硬質第二相の面積率を減じることにより求める。
 [残部組織の面積率(%)]=100.0-[ベイニティックフェライトの面積率(%)]-[焼戻しマルテンサイトの面積率(%)]-[硬質第二相の面積率(%)]
Further, the area ratio of the residual structure is determined by subtracting the area ratio of bainitic ferrite, the area ratio of tempered martensite, and the area ratio of the hard second phase determined as described above from 100.0%.
[Area ratio of residual structure (%)] = 100.0 - [Area ratio of bainitic ferrite (%)] - [Area ratio of tempered martensite (%)] - [Area ratio of hard second phase (%) )]
 焼戻しマルテンサイト中の炭化物の密度は以下のようにして測定する。
 上記の組織分率測定に使用したSEMによる組織画像を手塗で焼戻しマルテンサイトおよび炭化物を色分けして抽出し、焼戻しマルテンサイトまたは炭化物のみの画像とする。ここで、直径(円相当径)100nm以上の炭化物を対象とする。その後、オープンソースのImageJを用いて、焼戻しマルテンサイトの面積および焼戻しマルテンサイト中の炭化物の数を求める。焼戻しマルテンサイト中の炭化物の数をその焼戻しマルテンサイトの面積で除した値が焼戻しマルテンサイト中の炭化物の密度であり、別々のSEM像でランダムに10個の焼戻しマルテンサイトを抽出して平均した値を焼戻しマルテンサイト中の炭化物の密度とする。
なお、1個の炭化物については、SEM像において、外周が焼戻しマルテンサイトに囲まれて、途切れることなく一体形成された粒状の領域を1個として測定する。
The density of carbides in tempered martensite is measured as follows.
Tempered martensite and carbide are extracted by color from the SEM microstructure image used for the above-mentioned microstructure fraction measurement by hand painting, and an image of only the tempered martensite or carbide is obtained. Here, carbides with a diameter (circular equivalent diameter) of 100 nm or more are targeted. Thereafter, the area of the tempered martensite and the number of carbides in the tempered martensite are determined using open source ImageJ. The value obtained by dividing the number of carbides in tempered martensite by the area of the tempered martensite is the density of carbides in tempered martensite, and is averaged by randomly extracting 10 tempered martensite from separate SEM images. Let the value be the density of carbides in tempered martensite.
In addition, regarding one carbide, in the SEM image, a granular region whose outer periphery is surrounded by tempered martensite and is integrally formed without interruption is measured as one.
 拡散性水素量:0.50質量ppm以下
 より優れた穴広げ性および曲げ性を得る観点から、素地鋼板の拡散性水素量は0.50質量ppm以下とすることが好ましい。また、素地鋼板の拡散性水素量は、より好ましくは0.30質量ppm以下である。なお、素地鋼板の拡散性水素量の下限は特に規定されず、0質量ppmであってもよい。また、生産技術上の制約から、素地鋼板の拡散性水素量は0.01質量ppm以上がより好ましい。
Amount of diffusible hydrogen: 0.50 mass ppm or less From the viewpoint of obtaining better hole expandability and bendability, the amount of diffusible hydrogen in the base steel sheet is preferably 0.50 mass ppm or less. Further, the amount of diffusible hydrogen in the base steel sheet is more preferably 0.30 mass ppm or less. Note that the lower limit of the amount of diffusible hydrogen in the base steel sheet is not particularly specified, and may be 0 mass ppm. Further, due to constraints on production technology, the amount of diffusible hydrogen in the base steel sheet is more preferably 0.01 mass ppm or more.
 ここで、素地鋼板の拡散性水素量は、以下のようにして測定する。
 鋼板から長さが30mm、幅が5mmの試験片を採取し、鋼板に亜鉛めっき層が形成されている場合には、亜鉛めっき層をアルカリ除去する。ついで、昇温脱離分析法により、試験片から放出される水素量を測定する。具体的には、試験片を、室温(-5~55℃)から300℃までを昇温速度200℃/hで連続加熱した後、室温まで冷却する。この際、当該連続加熱における室温から210℃までの温度域で、試験片から放出される水素量(積算水素量)を測定する。そして、測定した水素量を、試験片(亜鉛めっき層除去後で、連続加熱前の試験片)の質量で除し、質量ppm単位に換算した値を、素地鋼板の拡散性水素量とする。拡散性水素量の測定は、鋼板の製造完了後に行うことが好ましい。水素量の測定は、鋼板の製造完了後1週間以内に行うことがより好ましい。
なお、室温は世界各国での生産を踏まえた場合、現地での1年間での気温の変化の範囲内とする。一般的には、10~50℃の範囲であることが好ましい。
Here, the amount of diffusible hydrogen in the base steel sheet is measured as follows.
A test piece with a length of 30 mm and a width of 5 mm is taken from a steel plate, and if a galvanized layer is formed on the steel plate, the galvanized layer is removed with alkali. Next, the amount of hydrogen released from the test piece is measured by temperature programmed desorption analysis. Specifically, the test piece is continuously heated from room temperature (-5 to 55°C) to 300°C at a heating rate of 200°C/h, and then cooled to room temperature. At this time, the amount of hydrogen released from the test piece (cumulative amount of hydrogen) is measured in the temperature range from room temperature to 210° C. during the continuous heating. Then, the measured amount of hydrogen is divided by the mass of the test piece (the test piece after removing the galvanized layer and before continuous heating), and the value converted to mass ppm is taken as the amount of diffusible hydrogen in the base steel sheet. It is preferable to measure the amount of diffusible hydrogen after the production of the steel sheet is completed. It is more preferable to measure the amount of hydrogen within one week after the completion of manufacturing the steel sheet.
In addition, the room temperature should be within the range of local temperature changes over a one-year period, taking into account production in various countries around the world. Generally, the temperature is preferably in the range of 10 to 50°C.
 なお、鋼板を成形加工や接合加工した後の製品(部材)については、一般的な使用環境におかれた該製品から試験片を切り出して上記と同様の要領で素地鋼板部分の拡散性水素量を測定し、その値が0.50質量ppm以下であれば、成形加工や接合加工をする前の素材段階の鋼板の素地鋼板の拡散性水素量も0.50質量ppm以下であったとみなせる。 For products (components) after forming or joining steel plates, test pieces are cut out from the product in a general usage environment and the amount of diffusible hydrogen in the base steel plate is measured in the same manner as above. is measured, and if the value is 0.50 mass ppm or less, it can be considered that the amount of diffusible hydrogen in the base steel sheet of the steel sheet at the raw material stage before forming or joining processing is also 0.50 mass ppm or less.
 表層軟質層
 本発明の一実施形態に伴う鋼板の素地鋼板では、素地鋼板表面に表層軟質層を有することが好ましい。プレス成形時および車体衝突時に表層軟質層が曲げ割れ進展の抑制に寄与するため、耐曲げ破断特性がさらに向上する。なお、表層軟質層とは、脱炭層を意味し、板厚1/4位置の断面のビッカース硬さに対して、85%以下のビッカース硬さの表層領域のことである。
 ここで、表層軟質層は、素地鋼板表面から板厚方向に200μm以下の領域で形成されている。表層軟質層の形成される領域は、素地鋼板表面から板厚方向に、好ましくは150μm以下であり、より好ましくは120μm以下である。なお、表層軟質層の厚さの下限については、特に定めないが、表層軟質層の厚さは、8μm以上であることが好ましく、11μm以上であることがより好ましい。また、表層軟質層は、好ましくは30μm以上であり、より好ましくは40μm以上である。
 また、上記のビッカース硬さを測定する素地鋼板の板厚1/4位置は、非表層軟質層(本発明で規定される表層軟質層の硬さの条件を満たさない層)である。
 ビッカース硬さは、JIS Z 2244-1(2020)に基づいて、荷重を10gfとして測定する。
Soft Surface Layer The base steel sheet of the steel plate according to one embodiment of the present invention preferably has a soft surface layer on the surface of the base steel sheet. The soft surface layer contributes to suppressing the propagation of bending cracks during press molding and car body collisions, further improving the bending fracture resistance. Note that the surface soft layer means a decarburized layer, and is a surface layer region having a Vickers hardness of 85% or less of the Vickers hardness of the cross section at the 1/4 thickness position.
Here, the surface soft layer is formed in an area of 200 μm or less in the thickness direction from the surface of the base steel sheet. The area where the surface soft layer is formed is preferably 150 μm or less, more preferably 120 μm or less in the thickness direction from the base steel plate surface. Although the lower limit of the thickness of the soft surface layer is not particularly determined, the thickness of the soft surface layer is preferably 8 μm or more, more preferably 11 μm or more. Moreover, the surface soft layer preferably has a thickness of 30 μm or more, more preferably 40 μm or more.
Further, the position of 1/4 of the thickness of the base steel plate at which the Vickers hardness is measured is a non-surface soft layer (a layer that does not satisfy the hardness conditions of the surface soft layer defined in the present invention).
Vickers hardness is measured based on JIS Z 2244-1 (2020) with a load of 10 gf.
 表層軟質層のナノ硬度
 素地鋼板表面から表層軟質層の板厚方向深さの1/4位置および板厚方向深さの1/2位置の夫々における板面の50μm×50μmの領域において、300点以上のナノ硬度を測定したとき、素地鋼板表面から表層軟質層の板厚方向深さの1/4位置の板面のナノ硬度が7.0GPa以上の測定数割合が、表層軟質層の板厚方向深さの1/4位置の全測定数に対して0.10以下
 本発明において、プレス成形時の優れた曲げ性と衝突時の優れた曲げ破断特性を得るためには、素地鋼板表面から表層軟質層の板厚方向深さの1/4位置及び板厚方向深さの1/2位置の夫々における板面の50μm×50μmの領域において、300点以上のナノ硬度を測定したとき、素地鋼板表面から表層軟質層の板厚方向深さの1/4位置の板面のナノ硬度が7.0GPa以上の測定数割合が、表層軟質層の板厚方向深さの1/4位置の全測定数に対して0.10以下であることが好ましい。ナノ硬度が7.0GPa以上の割合が0.10以下の場合、硬質な組織(マルテンサイトなど)、介在物などの割合が小さいことを意味し、硬質な組織(マルテンサイトなど)、介在物などのプレス成形時および衝突時のボイドの生成や連結、さらには亀裂の進展をより抑制することが可能となり、優れたR/t、αおよびSFmaxが得られる。
Nano-hardness of surface soft layer 300 points in an area of 50 μm x 50 μm on the plate surface at 1/4 position and 1/2 depth in the thickness direction of the surface soft layer from the surface of the base steel plate, respectively. When the above nanohardness was measured, the proportion of measurements where the nanohardness of the plate surface at 1/4 of the depth in the thickness direction of the surface soft layer from the surface of the base steel sheet was 7.0 GPa or more was determined by the thickness of the surface soft layer. 0.10 or less for all measurements at 1/4 position of depth In the present invention, in order to obtain excellent bending properties during press forming and excellent bending rupture properties during collision, it is necessary to When nanohardness was measured at 300 points or more in an area of 50 μm x 50 μm on the board surface at 1/4 depth in the thickness direction and 1/2 depth in the thickness direction of the surface soft layer, The proportion of measurements where the nanohardness of the plate surface at 1/4 of the depth in the thickness direction of the surface soft layer from the steel plate surface is 7.0 GPa or more is It is preferable that it is 0.10 or less with respect to the number of measurements. If the ratio of nanohardness of 7.0 GPa or more is 0.10 or less, it means that the ratio of hard structures (such as martensite), inclusions, etc. is small; It becomes possible to further suppress the generation and connection of voids during press molding and collision, as well as the propagation of cracks, resulting in excellent R/t, α, and SFmax .
 鋼板表面から表層軟質層の板厚方向深さの1/4位置の板面のナノ硬度の標準偏差σが1.8GPa以下であり、さらに、鋼板表面から表層軟質層の板厚方向深さの1/2位置の板面のナノ硬度の標準偏差σが2.2GPa以下
 本発明において、プレス成形時の優れた曲げ性と衝突時の優れた曲げ破断特性を得るためには、鋼板表面から表層軟質層の板厚方向深さの1/4位置の板面のナノ硬度の標準偏差σが1.8GPa以下であり、さらに、鋼板表面から表層軟質層の板厚方向深さの1/2位置の板面のナノ硬度の標準偏差σが2.2GPa以下であることが好ましい。鋼板表面から表層軟質層の板厚方向深さの1/4位置の板面のナノ硬度の標準偏差σが1.8GPa以下であり、さらに、鋼板表面から表層軟質層の板厚方向深さの1/2位置の板面のナノ硬度の標準偏差σが2.2GPa以下の場合、ミクロ領域における組織硬度差が小さいことを意味するため、ミクロ領域における組織硬度差が小さいため、プレス成形時または衝突時のボイドの生成・連結および亀裂の進展をより抑制することが可能となり、優れたR/t、αおよびSFmaxが得られる。
素地鋼板表面から表層軟質層の板厚方向深さの1/4位置の板面のナノ硬度の標準偏差σの好ましい範囲は、1.7GPa以下であることが好ましい。素地鋼板表面から表層軟質層の板厚方向深さの1/4位置の板面のナノ硬度の標準偏差σは、より好ましくは、1.3GPa以下である。下限は特に限定されないが、素地鋼板表面から表層軟質層の板厚方向深さの1/4位置の板面のナノ硬度の標準偏差σは、0.5GPa以上としてもよい。
素地鋼板表面から表層軟質層の板厚方向深さの1/2位置の板面のナノ硬度の標準偏差σのより好ましい範囲は、2.1GPa以下である。素地鋼板表面から表層軟質層の板厚方向深さの1/2位置の板面のナノ硬度の標準偏差σは、より好ましくは、1.7GPa以下である。下限は特に限定されないが、素地鋼板表面から表層軟質層の板厚方向深さの1/2位置の板面のナノ硬度の標準偏差σは、0.6GPa以上としてもよい。
The standard deviation σ of the nano-hardness of the plate surface at a position 1/4 of the depth in the thickness direction of the surface soft layer from the steel plate surface is 1.8 GPa or less, and The standard deviation σ of the nanohardness of the plate surface at the 1/2 position is 2.2 GPa or less. In the present invention, in order to obtain excellent bendability during press forming and excellent bending rupture properties during collision, it is necessary to The standard deviation σ of the nano-hardness of the plate surface at 1/4 of the depth in the thickness direction of the soft layer is 1.8 GPa or less, and furthermore, the standard deviation σ of the nanohardness of the plate surface at 1/4 of the depth in the thickness direction of the surface soft layer from the steel plate surface is 1/2 of the depth in the thickness direction of the surface soft layer. It is preferable that the standard deviation σ of the nanohardness of the plate surface is 2.2 GPa or less. The standard deviation σ of the nano-hardness of the plate surface at a position 1/4 of the depth in the thickness direction of the surface soft layer from the steel plate surface is 1.8 GPa or less, and If the standard deviation σ of the nanohardness of the plate surface at the 1/2 position is 2.2 GPa or less, it means that the difference in the structure hardness in the micro region is small. It becomes possible to further suppress the generation and connection of voids and the propagation of cracks during a collision, resulting in excellent R/t, α, and SFmax .
The preferred range of the standard deviation σ of the nano-hardness of the plate surface at a position 1/4 of the thickness direction depth of the surface soft layer from the base steel plate surface is preferably 1.7 GPa or less. The standard deviation σ of the nanohardness of the plate surface at a position of 1/4 of the thickness direction depth of the surface soft layer from the base steel plate surface is more preferably 1.3 GPa or less. Although the lower limit is not particularly limited, the standard deviation σ of the nanohardness of the plate surface at a position 1/4 of the thickness direction depth of the surface soft layer from the base steel plate surface may be 0.5 GPa or more.
A more preferable range of the standard deviation σ of the nano-hardness of the plate surface at 1/2 the thickness direction depth of the surface soft layer from the base steel plate surface is 2.1 GPa or less. The standard deviation σ of the nanohardness of the plate surface at a position 1/2 the thickness direction depth of the surface soft layer from the base steel plate surface is more preferably 1.7 GPa or less. Although the lower limit is not particularly limited, the standard deviation σ of the nanohardness of the plate surface at 1/2 the thickness direction depth of the surface soft layer from the base steel plate surface may be 0.6 GPa or more.
 ここで、板厚方向深さの1/4位置、1/2位置の板面のナノ硬度とは、以下の方法により測定される硬度である。
 めっき層が形成されている場合は、めっき層剥離後、素地鋼板の表面から表層軟質層の板厚方向深さの1/4位置の位置-5μmの位置まで機械研磨を実施し、素地鋼板の表面から表層軟質層の板厚方向深さの1/4位置までダイヤモンドおよびアルミナでのバフ研磨を実施し、さらにコロイダルシリカ研磨を実施する。ここで、剥離するめっき層は、亜鉛めっき層が形成されている場合は、亜鉛めっき層であり、金属めっき層が形成されている場合は、金属めっき層であり、亜鉛めっき層および金属めっき層が形成されている場合は、亜鉛めっき層および金属めっき層である。
Hysitron社のtribo-950を用い、バーコビッチ形状のダイヤモンド圧子により、荷重:500μN、測定領域:50μm×50μm、打点間隔:2μmの条件でナノ硬度を測定する。
次いで、表層軟質層の板厚方向深さの1/2位置まで機械研磨、ダイヤモンドおよびアルミナでのバフ研磨およびコロイダルシリカ研磨を実施する。Hysitron社のtribo-950を用い、バーコビッチ形状のダイヤモンド圧子により、荷重:500μN、測定領域:50μm×50μm、打点間隔:2μmの条件でナノ硬度を測定する。
 板厚方向深さの1/4位置で300点以上のナノ硬度を測定し、また、板厚方向深さの1/2位置でも300点以上のナノ硬度を測定する。
例えば、表層軟質層厚さが100μmの場合、1/4位置は表層軟質層の表面から25μm位置となり、1/2位置は表層軟質層の表面から50μm位置となる。この25μm位置で300点以上のナノ硬度を測定し、また、50μm位置でも300点以上のナノ硬度を測定する。
Here, the nanohardness of the plate surface at the 1/4 position and 1/2 position of the depth in the thickness direction is the hardness measured by the following method.
If a plating layer is formed, after peeling off the plating layer, mechanical polishing is performed from the surface of the base steel sheet to a position 1/4 of the depth in the thickness direction of the surface soft layer - 5 μm, and the base steel sheet is polished. Buff polishing with diamond and alumina is performed from the surface to 1/4 of the depth in the thickness direction of the surface soft layer, and further polishing with colloidal silica is performed. Here, the plating layer to be peeled off is a galvanized layer if a galvanized layer is formed, a metal plating layer if a metal plating layer is formed, and a galvanized layer and a metal plating layer. If it is formed, it is a zinc plating layer and a metal plating layer.
Nanohardness is measured using Hysitron's tribo-950 with a Berkovich-shaped diamond indenter under the conditions of load: 500 μN, measurement area: 50 μm×50 μm, and dot spacing: 2 μm.
Next, mechanical polishing, buff polishing with diamond and alumina, and colloidal silica polishing are performed to 1/2 the depth of the surface soft layer in the thickness direction. Nanohardness is measured using Hysitron's tribo-950 with a Berkovich-shaped diamond indenter under the conditions of load: 500 μN, measurement area: 50 μm×50 μm, and dot spacing: 2 μm.
Nanohardness is measured at 300 or more points at a position of 1/4 of the depth in the thickness direction, and nanohardness at 300 or more points is also measured at a position of 1/2 of the depth in the thickness direction.
For example, when the soft surface layer thickness is 100 μm, the 1/4 position is 25 μm from the surface of the soft surface layer, and the 1/2 position is 50 μm from the surface of the soft surface layer. Nanohardness is measured at 300 or more points at this 25 μm position, and nanohardness at 300 or more points is also measured at the 50 μm position.
 金属めっき層(第一めっき層)
 さらに、本発明の一実施形態に伴う鋼板は、素地鋼板の片面または両面の表面上において、金属めっき層(第一めっき層、プレめっき層)(なお、金属めっき層(第一めっき層)は、溶融亜鉛めっき層、合金化溶融亜鉛めっき層の亜鉛めっき層を除く)を有することが好ましい。金属めっき層は金属電気めっき層とすることが好ましく、以下では、金属電気めっき層を例に説明する。
金属電気めっき層が鋼板表面に形成されることで、プレス成形時および車体衝突時に最表層の前記金属電気めっき層が曲げ割れ発生の抑制に寄与するため、耐曲げ破断特性がさらに向上する。
 本発明では、露点を-5℃超とすることで、軟質層の厚みをより大きくすることができ、軸圧壊特性を非常に優れたものとすることが可能になる。この点、本発明では、金属めっき層を有することで、露点を-5℃以下として、軟質層厚みが小さくても、軟質層厚みが大きい場合と同等の軸圧壊特性を得られる。
Metal plating layer (first plating layer)
Furthermore, the steel sheet according to an embodiment of the present invention has a metal plating layer (first plating layer, pre-plating layer) (in addition, a metal plating layer (first plating layer) on one or both surfaces of the base steel sheet). , a hot-dip galvanized layer, and an alloyed hot-dip galvanized layer (excluding the galvanized layer). The metal plating layer is preferably a metal electroplating layer, and below, the metal electroplating layer will be explained as an example.
By forming the metal electroplating layer on the surface of the steel sheet, the metal electroplating layer on the outermost layer contributes to suppressing the occurrence of bending cracks during press forming and when a vehicle body collides, so that the bending rupture resistance is further improved.
In the present invention, by setting the dew point to more than -5°C, the thickness of the soft layer can be increased, and the axial crushing properties can be made very excellent. In this regard, in the present invention, by having a metal plating layer, the dew point can be set to −5° C. or less, and even if the soft layer thickness is small, the same axial crushing characteristics as when the soft layer thickness is large can be obtained.
 金属電気めっき層の金属種としては、Cr、Mn、Fe、Co、Ni、Cu、Ga、Ge、As、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Os、Ir、Rt、Au、Hg、Ti、Pb、Biのいずれでもかまわないが、Feであることがより好ましい。以下では、Fe系電気めっき層を例に説明するが、他の金属種でも以下のFeにおける条件を同様に採用し得る。 The metal species of the metal electroplating layer include Cr, Mn, Fe, Co, Ni, Cu, Ga, Ge, As, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Os, Ir, Rt, Any of Au, Hg, Ti, Pb, and Bi may be used, but Fe is more preferable. In the following description, an Fe-based electroplated layer will be explained as an example, but the following conditions for Fe can be similarly adopted for other metal types.
 Fe系電気めっき層の付着量は、0g/m超とし、好ましくは2.0g/m以上とする。Fe系電気めっき層の片面あたりの付着量の上限は特に限定されないが、コストの観点から、Fe系電気めっき層の片面あたりの付着量を60g/m以下とすることが好ましい。Fe系電気めっき層の付着量は、好ましくは50g/m以下であり、より好ましくは40g/m以下であり、さらに好ましくは30g/m以下とする。 The amount of the Fe-based electroplated layer deposited is more than 0 g/m 2 , preferably 2.0 g/m 2 or more. The upper limit of the amount of the Fe-based electroplated layer per side is not particularly limited, but from the viewpoint of cost, it is preferable that the amount of the Fe-based electroplated layer applied per side is 60 g/m 2 or less. The amount of the Fe-based electroplated layer deposited is preferably 50 g/m 2 or less, more preferably 40 g/m 2 or less, and even more preferably 30 g/m 2 or less.
 Fe系電気めっき層の付着量は、以下のとおり測定する。Fe系電気めっき鋼板から10×15mmサイズのサンプルを採取して樹脂に埋め込み、断面埋め込みサンプルとする。同断面の任意の3か所を走査型電子顕微鏡(ScanningElectron Microscope;SEM)を用いて加速電圧15kVで、Fe系めっき層の厚みに応じて倍率2000~10000倍で観察し、3視野の厚みの平均値に鉄の比重を乗じることによって、Fe系電気めっき層の片面あたりの付着量に換算する。 The adhesion amount of the Fe-based electroplating layer is measured as follows. A sample with a size of 10 x 15 mm is taken from a Fe-based electroplated steel plate and embedded in resin to form a cross-sectional embedded sample. Three arbitrary points on the same cross section were observed using a scanning electron microscope (SEM) at an accelerating voltage of 15 kV and a magnification of 2,000 to 10,000 times depending on the thickness of the Fe-based plating layer. By multiplying the average value by the specific gravity of iron, it is converted into the amount of Fe-based electroplating layer deposited on one side.
 Fe系電気めっき層としては、純Feの他、Fe-B合金、Fe-C合金、Fe-P合金、Fe-N合金、Fe-O合金、Fe-Ni合金、Fe-Mn合金、Fe-Mo合金、Fe-W合金等の合金めっき層が使用できる。Fe系電気めっき層の成分組成は特に限定されないが、B、C、P、N、O、Ni、Mn、Mo、Zn、W、Pb、Sn、Cr、VおよびCoからなる群から選ばれる1または2以上の元素を合計で10質量%以下含み、残部はFe及び不可避的不純物からなる成分組成とすることが好ましい。Fe以外の元素の量を合計で10質量%以下とすることで、電解効率の低下を防ぎ、低コストでFe系電気めっき層を形成することができる。Fe-C合金の場合、Cの含有量は0.08質量%以下とすることが好ましい。 In addition to pure Fe, Fe-based electroplating layers include Fe-B alloy, Fe-C alloy, Fe-P alloy, Fe-N alloy, Fe-O alloy, Fe-Ni alloy, Fe-Mn alloy, Fe- An alloy plating layer such as Mo alloy or Fe-W alloy can be used. The composition of the Fe-based electroplated layer is not particularly limited, but 1 selected from the group consisting of B, C, P, N, O, Ni, Mn, Mo, Zn, W, Pb, Sn, Cr, V, and Co. Alternatively, it is preferable that the composition contains two or more elements in a total of 10% by mass or less, with the remainder consisting of Fe and unavoidable impurities. By controlling the total amount of elements other than Fe to 10% by mass or less, a decrease in electrolytic efficiency can be prevented and an Fe-based electroplated layer can be formed at low cost. In the case of Fe--C alloy, the C content is preferably 0.08% by mass or less.
 Fe系電気めっき層の下に表層軟質層を有していることがより好ましく、これにより、耐曲げ破断特性を大幅に向上させることができる。Fe系電気めっき層を有する場合、Fe系電気めっき層と素地鋼板の界面から、上述の方法で板厚方向に向かってビッカース硬さ分布を測定し、表層軟質層の板厚方向深さを評価する。 It is more preferable to have a soft surface layer under the Fe-based electroplated layer, whereby the bending resistance to breakage can be significantly improved. When having an Fe-based electroplated layer, measure the Vickers hardness distribution from the interface between the Fe-based electroplated layer and the base steel sheet in the thickness direction using the method described above, and evaluate the depth of the surface soft layer in the thickness direction. do.
 V-VDA曲げ試験を最高荷重点まで行い、L断面における、き裂の長さ:400μm以下
 本発明において、上記のき裂長さが400μmを超える鋼板は、鋼板組織中のボイドの形成および進展が速く、耐曲げ破断特性が低下する。そのため、上記のき裂長さを400μm以下とする。上記のき裂長さは、好ましくは300μm以下であり、より好ましくは200μm以下である。下限は特に限定しないが、この値は0μmであってもよい。
A V-VDA bending test was performed up to the maximum load point, and the crack length in the L cross section was 400 μm or less.In the present invention, the above-mentioned steel plate with a crack length exceeding 400 μm is susceptible to the formation and propagation of voids in the steel plate structure. The bending resistance to breakage decreases quickly. Therefore, the above crack length is set to 400 μm or less. The above crack length is preferably 300 μm or less, more preferably 200 μm or less. Although the lower limit is not particularly limited, this value may be 0 μm.
 V-VDA曲げ試験を最高荷重点まで行い、L断面において、VDA曲げの曲げ外側の曲げ頂点を始点とし板厚方向に50μmの位置まで存在する開始線の各位置から、開始線の垂直方向両側夫々に50μmまでの位置に形成される領域で、ベイニティックフェライトの板厚方向の平均粒径に関し、加工後の平均粒径に対する加工前の平均粒径の比率(平均粒径の加工前後での変化量):5.0以下
 ついで、上記のベイニティックフェライトの板厚方向の粒径の加工前後での変化量について説明する。
図1中、符号BFはベイニティックフェライトを示し、符号Fはフェライトを示し、符号TMは焼戻しマルテンサイトを示す。また、図1中、θ(TM)は焼戻しマルテンサイト中の炭化物を示し、H1は硬質第二相を示し、X1(BF)はベイニティックフェライト中の島状第二相を示す。
図1に示すように鋼板組織中のベイニティックフェライトBFは炭素分配により、内部に島状の残留オーステナイトが形成される。ベイニティックフェライトBFが加工を受けて変形した場合、ベイニティックフェライトBFと島状残留オーステナイトが加工誘起変態で生成した硬質なフレッシュマルテンサイトの境界にボイドが発生しやすくなる。上記ベイニティックフェライトBFの板厚方向の平均粒径の加工前後での変化量が5.0を超えると、ベイニティックフェライトBFが圧延方向の引張応力を受けて、ボイド数の増加によりき裂の発生および進展が助長され、その結果耐曲げ破断特性が低下する。そのため、上記ベイニティックフェライトの板厚方向の平均粒径の加工前後での変化量は5.0以下とする。上記変化量は好ましくは4.8以下であり、より好ましくは4.5以下である。
また、ベイニティックフェライトの平均粒径の加工前後での変化量が0.2未満の場合、圧縮応力を受けたベイニティックフェライトにおいては同様に、ベイニティックフェライト内部にある島状残留オーステナイトが加工誘起変態で生成した硬質なフレッシュマルテンサイトの境界にボイドが発生しやすいおそれがあり、耐曲げ破断特性が低下するおそれがある。そのため、ベイニティックフェライトの板厚方向の平均粒径の加工前後での変化量は好ましくは0.2以上とする。上記変化量は好ましくは0.3以上であり、より好ましくは0.5以上である。
The V-VDA bending test was performed up to the maximum load point, and on the L cross section, from each position of the starting line that existed up to a position of 50 μm in the plate thickness direction, starting from the bending apex on the outside of the VDA bending, on both sides of the starting line in the vertical direction Regarding the average grain size in the plate thickness direction of bainitic ferrite, the ratio of the average grain size before processing to the average grain size after processing (the average grain size before and after processing ): 5.0 or less Next, the amount of change in the grain size in the plate thickness direction of the above-mentioned bainitic ferrite before and after processing will be explained.
In FIG. 1, the symbol BF indicates bainitic ferrite, the symbol F indicates ferrite, and the symbol TM indicates tempered martensite. Moreover, in FIG. 1, θ(TM) indicates a carbide in tempered martensite, H1 indicates a hard second phase, and X1(BF) indicates an island-like second phase in bainitic ferrite.
As shown in FIG. 1, island-like retained austenite is formed inside the bainitic ferrite BF in the steel sheet structure due to carbon distribution. When the bainitic ferrite BF is deformed by processing, voids are likely to occur at the boundaries between the bainitic ferrite BF and the hard fresh martensite generated by the processing-induced transformation between the bainitic ferrite BF and the island-like residual austenite. If the amount of change in the average grain size in the thickness direction of the bainitic ferrite BF before and after processing exceeds 5.0, the bainitic ferrite BF will be subjected to tensile stress in the rolling direction, resulting in an increase in the number of voids. The initiation and propagation of cracks is promoted, resulting in a decrease in bending rupture resistance. Therefore, the amount of change in the average grain size in the plate thickness direction of the bainitic ferrite before and after processing is set to be 5.0 or less. The amount of change is preferably 4.8 or less, more preferably 4.5 or less.
In addition, if the amount of change in the average grain size of bainitic ferrite before and after processing is less than 0.2, in bainitic ferrite subjected to compressive stress, island-like residual austenite inside the bainitic ferrite will be formed. There is a possibility that voids are likely to be generated at the boundaries of hard fresh martensite generated by deformation-induced transformation, and the bending rupture resistance may deteriorate. Therefore, the amount of change in the average grain size of the bainitic ferrite in the plate thickness direction before and after processing is preferably 0.2 or more. The amount of change is preferably 0.3 or more, more preferably 0.5 or more.
 上記のV-VDA曲げ試験は以下のようにして行う。
 得られた鋼板から、60mm×65mmの試験片を剪断加工により採取する。ここで、60mmの辺は圧延(L)方向に平行する。曲率半径/板厚:4.2で幅(C)方向を軸に圧延(L)方向に90°曲げ加工(一次曲げ加工)を施し、試験片を準備する。90°曲げ加工(一次曲げ加工)では、図2-1(a)に示すように、V溝を有するダイA1の上に載せた鋼板に対して、パンチB1を押し込んで試験片T1を得る。次に、図2-1(b)に示すように、支持ロールA2の上に載せた試験片T1に対して、曲げ方向が圧延直角方向となるようにして、パンチB2を押し込んで直交曲げ(二次曲げ加工)を施す。図2-1(a)及び図2-1(b)において、符号D1は幅(C)方向、符号D2は圧延(L)方向を示している。
 V-VDA試験を施した際に得られたストローク-荷重曲線の模式図を図3に示す。V-VDA試験を最高荷重点Pまで行い、その後、荷重が最高荷重の94.9~99.9%になる時(図3中、符号R参照)に除荷したサンプルを、V-VDA曲げ試験における評価サンプルとする。
The above V-VDA bending test is conducted as follows.
A 60 mm x 65 mm test piece is taken from the obtained steel plate by shearing. Here, the 60 mm side is parallel to the rolling (L) direction. A test piece is prepared by performing a 90° bending process (primary bending process) in the rolling (L) direction with the width (C) direction as an axis at a radius of curvature/plate thickness of 4.2. In the 90° bending process (primary bending process), as shown in FIG. 2-1(a), a punch B1 is pushed into a steel plate placed on a die A1 having a V groove to obtain a test piece T1. Next, as shown in FIG. 2-1(b), the punch B2 is pushed into the test piece T1 placed on the support roll A2 so that the bending direction is perpendicular to the rolling direction. (secondary bending). In FIGS. 2-1(a) and 2-1(b), the symbol D1 indicates the width (C) direction, and the symbol D2 indicates the rolling (L) direction.
FIG. 3 shows a schematic diagram of the stroke-load curve obtained when performing the V-VDA test. The V-VDA test was performed up to the maximum load point P, and then, when the load reached 94.9 to 99.9% of the maximum load (see symbol R in Figure 3), the sample was unloaded and subjected to V-VDA bending. This will be used as an evaluation sample in the test.
 V-VDA曲げ試験において、鋼板に対してV曲げ加工(一次曲げ加工)を施した試験片T1を図2-2(c)に示す。また、試験片T1に対してVDA曲げ(二次曲げ加工)を施した試験片T2を図2-2(d)に示す。図2-2(d)の試験片T2に破線で示した位置は、上記のV曲げ稜線部であり、VDA曲げを行う前の図2-2(c)の試験片T1に破線で示した位置に対応している。本発明において、V曲げ稜線部およびVDA曲げ稜線部の重複領域とは、図2-2(d)のaと示すVDA曲げ頂点且つ破線の中央位置である。
具体的に、V曲げ稜線部は、V曲げを施され、幅方向に延設されるV曲げ角部(頂点)から両側5mmまでの範囲の領域を指す。また、V曲げ稜線部以外の領域は、V曲げ平坦部である。
また、VDA曲げ稜線部は、VDA曲げを施され、圧延方向に延設されるVDA曲げ角部(頂点)から両側5mmまでの範囲の領域を指す。
V曲げ稜線部およびVDA曲げ稜線部のL断面ALと試験片T2の位置関係を図2-3(e)に点線で示す。D2方向が紙面に垂直であり、D1方向が紙面に平行である時のL断面ALを図2-3(f)に示す。
In the V-VDA bending test, a test piece T1 obtained by subjecting a steel plate to V-bending (primary bending) is shown in FIG. 2-2(c). Further, a test piece T2 obtained by subjecting the test piece T1 to VDA bending (secondary bending) is shown in FIG. 2-2(d). The position indicated by the broken line in test piece T2 in Figure 2-2(d) is the above-mentioned V-bending ridgeline, and the position indicated by the broken line in test piece T1 in Figure 2-2(c) before VDA bending. corresponds to the position. In the present invention, the overlapping region of the V-bending ridgeline and the VDA-bending ridgeline is the center position of the VDA bending apex and the broken line shown as a in FIG. 2-2(d).
Specifically, the V-bending ridgeline portion refers to a region extending in the width direction from the V-bending corner (apex) to 5 mm on both sides. Further, the area other than the V-bending ridgeline portion is a V-bending flat portion.
Further, the VDA bending ridgeline portion refers to an area extending 5 mm on both sides from the VDA bending corner (apex) that is subjected to VDA bending and extends in the rolling direction.
The positional relationship between the L cross section AL of the V bending ridgeline part and the VDA bending ridgeline part and the test piece T2 is shown by the dotted line in FIG. 2-3(e). FIG. 2-3(f) shows the L cross section AL when the D2 direction is perpendicular to the paper surface and the D1 direction is parallel to the paper surface.
 V-VDA曲げ試験を最高荷重点まで行い、V曲げ稜線部およびVDA曲げ稜線部の重複領域におけるL断面(以下AL面ともいう)におけるき裂の長さは以下のように求める。
 V-VDA曲げ試験を最高荷重点まで行った鋼板のAL面が観察面となるように、素地鋼板から試料を切り出す。ついで、ダイヤモンドペーストを用いて試料の観察面を鏡面研磨する。ついで、試料の観察面にコロイダルシリカを用いて仕上げ研磨を施したのち、3vol.%ナイタールでエッチングして組織を現出させる。
 そして、SEM(Scanning Electron Microscope;走査電子顕微鏡)により、加速電圧:15kV、倍率:200倍の条件で、試料の観察面の曲げ頂点となる箇所に、AL面の対称軸が垂直になるように25.6μm×17.6μmの視野を1視野撮影し、き裂の全貌を観察する。
得られたき裂の画像で、き裂の起点と終点の垂直方向の距離をき裂の長さとする。実際に測定したき裂の画像の一例を図4に示す。図4中、符号D2が圧延(L)方向を示し、符号D4が板厚方向を示す。また、符号Lがき裂の長さを示す。
The V-VDA bending test is performed up to the maximum load point, and the length of the crack in the L cross section (hereinafter also referred to as the AL plane) in the overlapping region of the V bending ridgeline and the VDA bending ridgeline is determined as follows.
A sample is cut out from the base steel plate so that the AL surface of the steel plate subjected to the V-VDA bending test up to the maximum load point becomes the observation surface. Next, the observation surface of the sample is mirror-polished using diamond paste. Then, after final polishing the observation surface of the sample using colloidal silica, 3vol. Etch with % nital to reveal the tissue.
Then, using an SEM (Scanning Electron Microscope), the axis of symmetry of the AL plane was perpendicular to the bending apex of the observation surface of the sample under the conditions of accelerating voltage: 15 kV and magnification: 200 times. A field of view of 25.6 μm x 17.6 μm is photographed to observe the entire appearance of the crack.
In the obtained crack image, the vertical distance between the crack starting point and ending point is defined as the crack length. Figure 4 shows an example of an image of a crack that was actually measured. In FIG. 4, the symbol D2 indicates the rolling (L) direction, and the symbol D4 indicates the plate thickness direction. Further, the symbol L indicates the length of the crack.
 ついで、V-VDA曲げ試験を最高荷重点まで行い、V曲げ稜線部およびVDA曲げ稜線部の重複領域におけるL断面においてVDA曲げの曲げ外側の鋼板表面から0~50μm、且つVDA曲げの曲げ頂点を中心とする左右50μmの領域(図2-3(f)の点線で示すAB領域、以下AB領域ともいう)において、ベイニティックフェライトの板厚方向の平均粒径の加工前後での変化量の測定方法を説明する。
ここで、まず、AB領域について、図2-4を参照しながら説明する。図2-4は、AB領域を説明するための模式図である。図2-4に示すように、AB領域は、VDA曲げの曲げ外側の曲げ頂点tを始点とし板厚方向に50μmの位置まで存在する開始線Lの各位置から、開始線Lの垂直方向両側夫々に50μmまでの位置に形成される領域のことを指す。
 上記の変化量の測定方法としては、まず、上記のV-VDA曲げ試験を最高荷重点まで行った後AL面を観察面とした試料(以下、変形後の試料ともいう)および上記の鋼板組織の面積率の測定に使用した試料(以下、変形前の試料ともいう)を用いて、SEM(Scanning Electron Microscope;走査電子顕微鏡)により、加速電圧:15kV、倍率:3000倍の条件で、25.6μm×17.6μmの視野を各試料で5視野撮影する。変形後の試料においてはAB領域内を撮影し、加工を受けて変形したベイニティックフェライト(以下変形後のベイニティックフェライトともいう)を観察する。変形前の試料においては素地鋼板の表面から板厚50μmの位置までを撮影し、変形しないベイニティックフェライト(以下変形前のベイニティックフェライトともいう)を観察する。
得られた組織画像について、手塗で変形後のベイニティックフェライトおよび変形前のベイニティックフェライトをランダムに各10個を抽出し、各ベイニティックフェライトの板厚方向で一番長い箇所を粒径とする。
得られた10個の変形後のベイニティックフェライトおよび10個の変形前のベイニティックフェライトの板厚方向の粒径をそれぞれ平均し、変形前のベイニティックフェライトの板厚方向の平均粒径を変形後のベイニティックフェライトの板厚方向の平均粒径で除した値(加工後の平均粒径に対する加工前の平均粒径の割合:加工前の平均粒径(nm)/加工後の平均粒径(nm)をベイニティックフェライトの板厚方向の平均粒径の加工前後での変化量とする。
変形前のベイニティックフェライトおよび変形後のベイニティックフェライトの画像の一例を図5に示す。図5中、符号BF1は、変形前のベイニティックフェライトを示し、符号BF2は、変形後のベイニティックフェライトを示す。
なお、1個のベイニティックフェライトについては、SEM像において、外周が他の組織に囲まれて、途切れることなく一体形成された粒状の領域を1個として測定する。
Next, a V-VDA bending test was performed up to the maximum load point, and in the L cross section in the overlapping region of the V bending ridgeline and the VDA bending ridgeline, the bending peak was 0 to 50 μm from the steel plate surface on the outside of the VDA bending, and The amount of change in the average grain size in the plate thickness direction of bainitic ferrite before and after processing in the area 50 μm left and right from the center (AB area shown by the dotted line in Figure 2-3 (f), hereinafter also referred to as AB area) Explain the measurement method.
First, the AB area will be explained with reference to FIG. 2-4. FIG. 2-4 is a schematic diagram for explaining the AB area. As shown in FIG . 2-4, the AB region starts from the bending apex t 0 on the outside of VDA bending and extends from each position of the starting line L 0 that extends to a position of 50 μm in the plate thickness direction. This refers to a region formed at a distance of up to 50 μm on each side in the vertical direction.
As a method for measuring the above change, first, after performing the above V-VDA bending test up to the maximum load point, a sample with the AL surface as the observation surface (hereinafter also referred to as the sample after deformation) and the above steel sheet structure were used. Using the sample used to measure the area ratio (hereinafter also referred to as the sample before deformation), 25. Five visual fields of 6 μm x 17.6 μm are photographed for each sample. In the sample after deformation, the inside of the AB region is photographed to observe the bainitic ferrite that has undergone processing and deformed (hereinafter also referred to as bainitic ferrite after deformation). In the sample before deformation, a photograph is taken from the surface of the base steel plate to a position where the plate thickness is 50 μm, and undeformed bainitic ferrite (hereinafter also referred to as bainitic ferrite before deformation) is observed.
From the obtained tissue image, 10 pieces of bainitic ferrite after deformation and 10 pieces of bainitic ferrite before deformation were randomly extracted by hand painting, and the longest point in the thickness direction of each bainitic ferrite was Particle size.
The grain sizes in the thickness direction of the obtained 10 bainitic ferrites after deformation and 10 bainitic ferrites before deformation were averaged, and the average grain size in the thickness direction of the bainitic ferrite before deformation was calculated. The value obtained by dividing the diameter by the average grain size in the thickness direction of the bainitic ferrite after deformation (ratio of the average grain size before processing to the average grain size after processing: average grain size before processing (nm) / after processing Let the average grain size (nm) of bainitic ferrite be the amount of change in the average grain size in the thickness direction of the bainitic ferrite before and after processing.
FIG. 5 shows an example of images of bainitic ferrite before deformation and bainitic ferrite after deformation. In FIG. 5, the symbol BF1 indicates bainitic ferrite before deformation, and the symbol BF2 indicates bainitic ferrite after deformation.
Regarding one piece of bainitic ferrite, in the SEM image, a granular region whose outer periphery is surrounded by other structures and is integrally formed without interruption is measured as one piece.
 つぎに、本発明の一実施形態に従う鋼板の機械特性について、説明する。 Next, the mechanical properties of the steel plate according to one embodiment of the present invention will be explained.
 引張強さ(TS):1180MPa以上
 本発明の一実施形態に従う鋼板の引張強さTSは、1180MPa以上である。上限は特に規定しないが、引張強さTSは、1470MPa未満であることが好ましい。
 なお、本発明の一実施形態に従う鋼板の降伏応力(YS)、全伸び(El)、限界穴広げ率(λ)、VDA曲げ試験での限界曲げ角度(α)およびV-VDA曲げ試験での荷重最大時のストローク(SFmax)の基準値、ならびに軸圧壊破断有無については上述したとおりである。
Tensile strength (TS): 1180 MPa or more The tensile strength TS of the steel plate according to one embodiment of the present invention is 1180 MPa or more. Although the upper limit is not particularly defined, the tensile strength TS is preferably less than 1470 MPa.
In addition, the yield stress (YS), total elongation (El), critical hole expansion rate (λ), critical bending angle (α) in the VDA bending test, and critical bending angle (α) in the V-VDA bending test of the steel plate according to an embodiment of the present invention are The reference value of the stroke at maximum load (S Fmax ) and the presence or absence of axial crush fracture are as described above.
 また、引張強さ(TS)、降伏応力(YS)および全伸び(El)は、実施例において後述するJIS Z 2241(2011)に準拠する引張試験により、測定する。限界穴広げ率(λ)は、実施例において後述するJIS Z 2256(2020)に準拠する穴広げ試験により、測定する。VDA曲げ試験での限界曲げ角度(α)は、実施例において後述するVDA238-100に準拠するVDA曲げ試験により、測定する。V-VDA曲げ試験での荷重最大時のストローク(SFmax)は実施例において後述するV-VDA曲げ試験により、測定する。軸圧壊破断有無は実施例において後述する軸圧壊試験により、測定する。 Moreover, tensile strength (TS), yield stress (YS), and total elongation (El) are measured by a tensile test based on JIS Z 2241 (2011), which will be described later in Examples. The critical hole expansion rate (λ) is measured by a hole expansion test based on JIS Z 2256 (2020), which will be described later in Examples. The limit bending angle (α) in the VDA bending test is measured by the VDA bending test in accordance with VDA238-100, which will be described later in Examples. The stroke at maximum load (S Fmax ) in the V-VDA bending test is measured by the V-VDA bending test described later in the Examples. The presence or absence of axial crush fracture is determined by the axial crush test described later in Examples.
 亜鉛めっき層(第二めっき層)
 本発明の一実施形態に従う鋼板は、最表層として素地鋼板の上(素地鋼板表面上または金属めっき層が形成された場合は金属めっき層表面上)に形成された亜鉛めっき層を有していてもよく、この亜鉛めっき層は、素地鋼板の一方の表面の上のみに設けてもよく、両面の上に設けてもよい。
 すなわち、本発明の鋼板は、素地鋼板を有し、該素地鋼板上に第二めっき層(亜鉛めっき層)が形成されていてよく、また、素地鋼板を有し、該素地鋼板上に金属めっき層(第一めっき層(亜鉛めっき層の第二めっき層を除く))と第二めっき層(亜鉛めっき層)とが順に形成されていてもよい。
亜鉛めっき層を有する鋼板は、亜鉛めっき鋼板としてもよい。
Galvanized layer (second plating layer)
The steel sheet according to an embodiment of the present invention has a galvanized layer formed on the base steel sheet (on the surface of the base steel sheet or on the surface of the metal plating layer if a metal plating layer is formed) as the outermost layer. Alternatively, this galvanized layer may be provided only on one surface of the base steel sheet, or may be provided on both surfaces.
That is, the steel sheet of the present invention has a base steel plate, and a second plating layer (galvanized layer) may be formed on the base steel plate, and also has a base steel plate, and may have a metal plating layer on the base steel plate. The layer (first plating layer (excluding the second plating layer of the galvanized layer)) and the second plating layer (zinc plating layer) may be formed in this order.
The steel sheet having a galvanized layer may be a galvanized steel sheet.
 なお、ここでいう亜鉛めっき層は、Znを主成分(Zn含有量が50.0%以上)とするめっき層を指し、例えば、溶融亜鉛めっき層や合金化溶融亜鉛めっき層が挙げられる。 Note that the galvanized layer here refers to a plating layer containing Zn as a main component (Zn content is 50.0% or more), and includes, for example, a hot-dip galvanized layer and an alloyed hot-dip galvanized layer.
 ここで、溶融亜鉛めっき層は、例えば、Znと、20.0質量%以下のFe、0.001質量%以上1.0質量%以下のAlにより構成することが好適である。また、溶融亜鉛めっき層には、任意に、Pb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、BiおよびREMからなる群から選ばれる1種または2種以上の元素を合計で0.0質量%以上3.5質量%以下含有させてもよい。また、溶融亜鉛めっき層のFe含有量は、より好ましくは7.0質量%未満である。なお、上記の元素以外の残部は、不可避的不純物である。 Here, the hot-dip galvanized layer is preferably composed of, for example, Zn, 20.0% by mass or less of Fe, and 0.001% by mass or more and 1.0% by mass or less of Al. Further, the hot-dip galvanized layer may optionally include one selected from the group consisting of Pb, Sb, Si, Sn, Mg, Mn, Ni, Cr, Co, Ca, Cu, Li, Ti, Be, Bi, and REM. The total content of a species or two or more elements may be 0.0% by mass or more and 3.5% by mass or less. Further, the Fe content of the hot-dip galvanized layer is more preferably less than 7.0% by mass. Note that the remainder other than the above elements are unavoidable impurities.
 また、合金化溶融亜鉛めっき層は、例えば、Znと、20.0質量%以下のFe、0.001質量%以上1.0質量%以下のAlにより構成することが好適である。また、合金化溶融亜鉛めっき層には、任意に、Pb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、BiおよびREMからなる群から選ばれる1種または2種以上の元素を合計で0.0質量%以上3.5質量%以下含有させてもよい。合金化溶融亜鉛めっき層のFe含有量は、より好ましくは7.0質量%以上、さらに好ましくは8.0質量%以上である。また、合金化溶融亜鉛めっき層のFe含有量は、より好ましくは15.0質量%以下、さらに好ましくは12.0質量%以下である。なお、上記の元素以外の残部は、不可避的不純物である。 Further, the alloyed hot-dip galvanized layer is preferably composed of, for example, Zn, 20.0% by mass or less of Fe, and 0.001% by mass or more and 1.0% by mass or less of Al. Additionally, the alloyed hot-dip galvanized layer may optionally be selected from the group consisting of Pb, Sb, Si, Sn, Mg, Mn, Ni, Cr, Co, Ca, Cu, Li, Ti, Be, Bi, and REM. One or more types of elements may be contained in a total amount of 0.0% by mass or more and 3.5% by mass or less. The Fe content of the alloyed hot-dip galvanized layer is more preferably 7.0% by mass or more, and still more preferably 8.0% by mass or more. Further, the Fe content of the alloyed hot-dip galvanized layer is more preferably 15.0% by mass or less, still more preferably 12.0% by mass or less. Note that the remainder other than the above elements are unavoidable impurities.
 加えて、亜鉛めっき層の片面あたりのめっき付着量は、特に限定されるものではないが、20g/m以上とすることが好ましい。また、亜鉛めっき層の片面あたりのめっき付着量は、80g/m以下とすることが好ましい。 In addition, the amount of plating deposited on one side of the galvanized layer is not particularly limited, but is preferably 20 g/m 2 or more. Further, the amount of plating deposited on one side of the galvanized layer is preferably 80 g/m 2 or less.
 なお、亜鉛めっき層のめっき付着量は、以下のようにして測定する。
 すなわち、10質量%塩酸水溶液1Lに対し、Feに対する腐食抑制剤(朝日化学工業(株)製「イビット700BK」(登録商標))を0.6g添加した処理液を調整する。ついで、該処理液に、供試材となる鋼板を浸漬し、亜鉛めっき層を溶解させる。そして、溶解前後での供試材の質量減少量を測定し、その値を、素地鋼板の表面積(めっきで被覆されていた部分の表面積)で除することにより、めっき付着量(g/m)を算出する。
In addition, the plating adhesion amount of the galvanized layer is measured as follows.
That is, a treatment solution is prepared by adding 0.6 g of a corrosion inhibitor for Fe (Ivit 700BK (registered trademark) manufactured by Asahi Chemical Co., Ltd.) to 1 L of a 10% by mass hydrochloric acid aqueous solution. Next, a steel plate serving as a test material is immersed in the treatment liquid to dissolve the galvanized layer. Then, by measuring the amount of mass loss of the test material before and after melting, and dividing that value by the surface area of the base steel sheet (the surface area of the part covered with plating), the amount of plating coating (g/m 2 ) is calculated.
 なお、本発明の一実施形態に従う鋼板の板厚は、特に限定されないが、好ましくは0.5mm以上であり、より好ましくは0.6mm以上である。
板厚は、より好ましくは0.8mm超である。板厚は、さらに好ましくは0.9mm以上である。板厚は、より好ましくは1.0mm以上である。板厚は、さらに好ましくは1.2mm以上である。
また、鋼板の板厚は、好ましくは3.5mm以下である。板厚は、より好ましくは2.3mm以下である。
また、本発明の鋼板の板幅は、特に限定されないが、500mm以上とすることが好ましく、750mm以上とすることがより好ましい。また、鋼板の板幅は、1600mm以下とすることが好ましく、1450mm以下とすることがより好ましい。
The thickness of the steel plate according to an embodiment of the present invention is not particularly limited, but is preferably 0.5 mm or more, more preferably 0.6 mm or more.
The plate thickness is more preferably over 0.8 mm. The plate thickness is more preferably 0.9 mm or more. The plate thickness is more preferably 1.0 mm or more. The plate thickness is more preferably 1.2 mm or more.
Further, the thickness of the steel plate is preferably 3.5 mm or less. The plate thickness is more preferably 2.3 mm or less.
Further, the width of the steel plate of the present invention is not particularly limited, but is preferably 500 mm or more, more preferably 750 mm or more. Further, the width of the steel plate is preferably 1600 mm or less, more preferably 1450 mm or less.
[2.鋼板の製造方法]
 つぎに、本発明の一実施形態に従う鋼板の製造方法について、説明する。
[2. Manufacturing method of steel plate]
Next, a method for manufacturing a steel plate according to an embodiment of the present invention will be described.
 本発明の一実施形態に従う鋼板の製造方法は、上述した成分組成を有する鋼スラブに熱間圧延を施して熱延鋼板とする、熱延工程と、該熱延鋼板を酸洗する酸洗工程と、該酸洗工程後の鋼板を、焼鈍温度:(Ac+0.4×(Ac-Ac))℃以上900℃以下、且つ焼鈍時間:20秒以上で焼鈍する、焼鈍工程と、該焼鈍工程後の鋼板を400℃以上600℃以下の第一冷却停止温度まで冷却する、第一冷却工程と、該第一冷却工程後の鋼板を100℃以上300℃以下の第二冷却停止温度まで25.0℃/秒以下の平均冷却速度で冷却し、該冷却時、鋼板に対して、300℃以上450℃以下の温度域で2.0kgf/mm以上の張力を一回以上付与し、その後、鋼板を、1パス当たり直径500mm以上1500mm以下のロールにロール1/4周分接触させながら4パス以上付与する処理、および鋼板を、1パス当たり直径500mm以上1500mm以下のロールにロール1/2周分接触させながら、2パス以上付与する処理を行う、第二冷却工程と、該第二冷却工程後の鋼板を、焼戻し温度:300℃超500℃以下の温度域まで加熱し、且つ上記温度域で焼戻し時間:20秒以上900秒以下保持する再加熱処理を行い、該再加熱処理時、以下の式(1)で示す炭化物制御パラメータCPを10000以上15000以下とする、再加熱工程と、を含み、あるいはさらに酸洗工程後、且つ焼鈍工程前の鋼板に、冷間圧延して冷延鋼板を得る、冷延工程を含む。
 CP=(T+273)×(k+1.2×logt) ・・・式(1)
 ここで、T:焼戻し温度(℃)、k:C含有量に依存した材料定数、t:焼戻し時間(秒)であり、
k=-6×C+17.8であり、
:第二冷却工程で生成するマルテンサイト中の炭素量(質量%)である。
 なお、上記の各温度は、特に説明がない限り、鋼スラブおよび鋼板の表面温度を意味する。
A method for producing a steel plate according to an embodiment of the present invention includes a hot rolling process in which a steel slab having the above-mentioned composition is hot rolled to produce a hot rolled steel plate, and a pickling process in which the hot rolled steel plate is pickled. and an annealing step in which the steel plate after the pickling step is annealed at an annealing temperature of (Ac 1 +0.4×(Ac 3 −Ac 1 ))° C. or higher and 900° C. or lower, and an annealing time of 20 seconds or more; A first cooling step of cooling the steel plate after the annealing step to a first cooling stop temperature of 400°C or more and 600°C or less, and a second cooling stop temperature of 100°C or more and 300°C or less of the steel plate after the first cooling step. The steel plate is cooled at an average cooling rate of 25.0°C/sec or less, and during cooling, a tension of 2.0kgf/mm2 or more is applied to the steel plate at least once in a temperature range of 300°C or more and 450°C or less. Thereafter, the steel plate is applied with a roll having a diameter of 500 mm or more and 1500 mm or less for 4 passes or more while contacting the roll for 1/4 of the roll per pass, and the steel plate is applied to a roll 1 of rolls with a diameter of 500 mm or more and 1500 mm or less per pass. /A second cooling step in which the steel plate is subjected to two passes or more while being in contact for two turns, and the steel plate after the second cooling step is heated to a tempering temperature range of more than 300°C and less than 500°C, and A reheating step in which a reheating treatment is performed in the above temperature range for a tempering time of 20 seconds or more and 900 seconds or less, and during the reheating treatment, the carbide control parameter CP shown by the following formula (1) is set to 10,000 or more and 15,000 or less. or further includes a cold rolling process of cold rolling the steel plate after the pickling process and before the annealing process to obtain a cold rolled steel plate.
CP=(T+273)×(k+1.2×logt)...Formula (1)
Here, T: tempering temperature (°C), k: material constant depending on C content, t: tempering time (seconds),
k=-6×C M +17.8,
CM : Carbon content (mass%) in martensite produced in the second cooling step.
In addition, each temperature mentioned above means the surface temperature of a steel slab and a steel plate unless otherwise specified.
 まず、上述した成分組成を有する鋼スラブを準備する。例えば、鋼素材を溶製して前記の成分組成を有する溶鋼とする。溶製方法は特に限定されず、転炉溶製や電気炉溶製等、公知の溶製方法を用いることができる。ついで、得られた溶鋼を固めて鋼スラブとする。溶鋼から鋼スラブを得る方法は特に限定されず、例えば、連続鋳造法、造塊法または薄スラブ鋳造法等を用いることができる。マクロ偏析を防止する観点から、連続鋳造法が好ましい。 First, a steel slab having the above-mentioned composition is prepared. For example, a steel material is melted to obtain molten steel having the above-mentioned composition. The melting method is not particularly limited, and known melting methods such as converter furnace melting and electric furnace melting can be used. Then, the obtained molten steel is solidified to form a steel slab. The method for obtaining a steel slab from molten steel is not particularly limited, and for example, a continuous casting method, an ingot forming method, a thin slab casting method, etc. can be used. From the viewpoint of preventing macro segregation, continuous casting is preferred.
 [熱延工程]
 ついで、熱延工程において、鋼スラブに熱間圧延を施して熱延鋼板とする。
 熱間圧延は、省エネルギープロセスを適用して行ってもよい。省エネルギープロセスとしては、直送圧延(鋼スラブを室温まで冷却せずに、温片のままで加熱炉に装入し、熱間圧延する方法)または直接圧延(鋼スラブにわずかの保熱を行った後に直ちに圧延する方法)などが挙げられる。
[Hot rolling process]
Then, in the hot rolling process, the steel slab is hot rolled to form a hot rolled steel plate.
Hot rolling may be performed by applying an energy saving process. Energy-saving processes include direct rolling (a method in which the steel slab is charged into a heating furnace as hot pieces without being cooled to room temperature and hot rolled) or direct rolling (a method in which the steel slab is subjected to a slight heat retention process). A method in which rolling is carried out immediately afterwards) can be mentioned.
 熱間圧延条件については特に限定されず、例えば、以下の条件で行うことができる。
 すなわち、鋼スラブを、一旦室温まで冷却し、その後、再加熱してから圧延する。スラブ加熱温度(再加熱温度)は、炭化物の溶解や圧延荷重の低減といった観点から、1100℃以上とすることが好ましい。また、スケールロスの増大を防止するため、スラブ加熱温度は1300℃以下とすることが好ましい。なお、スラブ加熱温度は、鋼スラブ表面の温度を基準とする。
Hot rolling conditions are not particularly limited, and, for example, hot rolling can be performed under the following conditions.
That is, the steel slab is once cooled to room temperature, then reheated, and then rolled. The slab heating temperature (reheating temperature) is preferably 1100° C. or higher from the viewpoint of dissolving carbides and reducing rolling load. Further, in order to prevent an increase in scale loss, the slab heating temperature is preferably 1300° C. or lower. Note that the slab heating temperature is based on the temperature of the surface of the steel slab.
 ついで、鋼スラブに、常法に従い粗圧延を施し、粗圧延板(以下、シートバーともいう)とする。ついで、シートバーに仕上げ圧延を施して、熱延鋼板とする。なお、スラブ加熱温度を低めにした場合は、仕上げ圧延時のトラブルを防止する観点から、仕上げ圧延前にバーヒーターなどを用いてシートバーを加熱することが好ましい。仕上げ圧延温度は、圧延負荷を低減するため、800℃以上とすることが好ましい。また、オーステナイトの未再結晶状態での圧下率が高くなると、圧延方向に伸長した異常な組織が発達し、焼鈍板の加工性を低下させるおそれがある。さらに、仕上げ圧延温度を800℃以上にすることにより、熱延鋼板段階の鋼組織、ひいては、最終製品の鋼組織も均一になり易い。なお、鋼組織が不均一になると、曲げ性が低下する傾向がある。
一方、仕上げ圧延温度が950℃を超えると、酸化物(スケール)生成量が多くなる。その結果、地鉄と酸化物の界面が荒れて、酸洗および冷間圧延後の鋼板の表面品質が劣化するおそれがある。また、結晶粒が粗大になることで、鋼板の強度や曲げ性を低下させる原因となるおそれもある。そのため、仕上げ圧延温度は、950℃以上の範囲とすることが好ましい。以上より、仕上げ圧延温度は、800℃以上950℃以上の範囲とすることが好ましい。
Next, the steel slab is subjected to rough rolling according to a conventional method to obtain a rough rolled plate (hereinafter also referred to as a sheet bar). Next, the sheet bar is subjected to finish rolling to obtain a hot rolled steel plate. In addition, when the slab heating temperature is set to be low, it is preferable to heat the sheet bar using a bar heater or the like before finish rolling, from the viewpoint of preventing troubles during finish rolling. The finish rolling temperature is preferably 800° C. or higher in order to reduce the rolling load. Furthermore, if the rolling reduction ratio of austenite in a non-recrystallized state increases, an abnormal structure elongated in the rolling direction may develop, which may reduce the workability of the annealed sheet. Furthermore, by setting the finish rolling temperature to 800° C. or higher, the steel structure in the hot-rolled steel sheet stage and, by extension, the steel structure in the final product tend to be uniform. Note that when the steel structure becomes non-uniform, bendability tends to decrease.
On the other hand, when the finish rolling temperature exceeds 950°C, the amount of oxide (scale) produced increases. As a result, the interface between the base iron and the oxide becomes rough, and the surface quality of the steel sheet after pickling and cold rolling may deteriorate. Furthermore, the coarse grains may cause a decrease in the strength and bendability of the steel sheet. Therefore, the finish rolling temperature is preferably in the range of 950°C or higher. From the above, the finish rolling temperature is preferably in the range of 800°C or higher and 950°C or higher.
 仕上げ圧延後、熱延鋼板を巻き取る。巻取温度は、450℃以上とすることが好ましい。また、巻取温度は750℃以下とすることが好ましい。 After finish rolling, the hot rolled steel sheet is wound up. The winding temperature is preferably 450°C or higher. Further, the winding temperature is preferably 750°C or less.
 なお、熱延時にシートバー同士を接合し、連続的に仕上げ圧延を行ってもよい。また、シートバーを仕上げ圧延前に一旦巻き取っても構わない。また、熱間圧延時の圧延荷重を低減するために、仕上げ圧延の一部または全部を潤滑圧延としてもよい。潤滑圧延を行うことは、鋼板形状の均一化および材質の均一化の観点からも有効である。なお、潤滑圧延時の摩擦係数は、0.10以上0.25以下の範囲とすることが好ましい。
 粗圧延および仕上げ圧延を含む熱延工程(熱間圧延工程)では、一般的に鋼スラブは粗圧延でシートバーとなり、仕上げ圧延によって熱延鋼板となる。ただし、ミル能力等によってはそのような区分けにこだわらず、所定のサイズになれば問題ない。
Note that the sheet bars may be joined together during hot rolling and finish rolling may be performed continuously. Further, the sheet bar may be wound up once before finishing rolling. Further, in order to reduce the rolling load during hot rolling, part or all of the finish rolling may be performed as lubricated rolling. Performing lubricated rolling is also effective from the viewpoint of uniformizing the shape of the steel sheet and uniforming the material quality. Note that the friction coefficient during lubricated rolling is preferably in the range of 0.10 or more and 0.25 or less.
In a hot rolling process (hot rolling process) including rough rolling and finish rolling, a steel slab generally becomes a sheet bar during rough rolling and becomes a hot rolled steel plate through finish rolling. However, depending on the mill capacity, etc., there is no problem with such division as long as it is a predetermined size.
 [酸洗工程]
 熱延工程後の熱延鋼板を酸洗する。酸洗によって、鋼板表面の酸化物を除去することができ、良好な化成処理性やめっき品質が確保される。なお、酸洗は、1回のみ行ってもよく、複数回に分けて行ってもよい。酸洗条件については特に限定されず、常法に従えばよい。
[Acid washing process]
The hot rolled steel sheet after the hot rolling process is pickled. By pickling, oxides on the surface of the steel sheet can be removed, ensuring good chemical conversion treatment properties and plating quality. Note that the pickling may be performed only once, or may be performed in multiple steps. The pickling conditions are not particularly limited, and any conventional method may be used.
 [冷延工程]
 ついで、必要に応じて、熱延鋼板に冷間圧延を施して冷延鋼板とする。冷間圧延は、例えば、タンデム式の多スタンド圧延やリバース圧延等の、2パス以上のパス数を要する多パス圧延により行う。
 冷間圧延の圧下率(累積圧下率)は特に限定されないが、20%以上とすることが好ましい。また、冷間圧延の圧下率は80%以下とすることが好ましい。冷間圧延の圧下率が20%未満では、焼鈍工程において鋼組織の粗大化や不均一化が生じやすくなり、最終製品においてTSや曲げ性が低下するおそれがある。一方、冷間圧延の圧下率が80%を超えると、鋼板の形状不良が生じやすくなり、亜鉛めっきの付着量が不均一になるおそれがある。
 また、任意に、冷間圧延後に得られた冷延鋼板に酸洗を施してもよい。
[Cold rolling process]
Then, if necessary, the hot-rolled steel sheet is cold-rolled to obtain a cold-rolled steel sheet. Cold rolling is performed, for example, by multi-pass rolling that requires two or more passes, such as tandem multi-stand rolling or reverse rolling.
The reduction rate (cumulative reduction rate) of cold rolling is not particularly limited, but is preferably 20% or more. Moreover, it is preferable that the reduction ratio of cold rolling is 80% or less. If the rolling reduction ratio in cold rolling is less than 20%, the steel structure tends to become coarse and non-uniform in the annealing process, and there is a risk that the TS and bendability of the final product will deteriorate. On the other hand, if the rolling reduction ratio in cold rolling exceeds 80%, the steel sheet tends to be defective in shape, and the amount of zinc plating deposited may become uneven.
Further, optionally, the cold rolled steel sheet obtained after cold rolling may be pickled.
 [金属めっき(金属電気めっき、第一めっき)工程]
 本発明の一実施形態においては、熱延工程後(酸洗工程後、また、冷間圧延を施す場合は、酸洗工程後の冷延工程後)、かつ焼鈍工程の前の鋼板の片面もしくは両面において、金属めっきを施し、金属めっき層(第一めっき層)を形成する第一めっき工程を含んでいてもよい。
 例えば、上記のようにして得られた熱延鋼板または冷延鋼板の表面に金属電気めっき処理を施して、焼鈍前金属電気めっき層が少なくとも片面に形成された焼鈍前金属電気めっき鋼板としてもよい。なお、ここでいう金属めっきは、亜鉛めっき(第二めっき)を除く。
金属電気めっき処理方法は特に限定されないが、前述したように素地鋼板上に形成させる金属めっき層としては、金属電気めっき層とすることが好ましいため、金属電気めっき処理を施すことが好ましい。
例えば、Fe系電気めっき浴では硫酸浴、塩酸浴あるいは両者の混合などが適用できる。また、焼鈍前金属電気めっき層の付着量は、通電時間等によって調整することができる。なお、焼鈍前金属電気めっき鋼板とは、金属電気めっき層が焼鈍工程を経ていないことを意味し、金属電気めっき処理前の熱延鋼板、熱延後酸洗処理板または冷延鋼板について予め焼鈍された態様を除外するものではない。
[Metal plating (metal electroplating, first plating) process]
In one embodiment of the present invention, one side of the steel sheet after the hot rolling process (after the pickling process, or if cold rolling is performed, after the cold rolling process after the pickling process) and before the annealing process or It may include a first plating step of applying metal plating to both surfaces to form a metal plating layer (first plating layer).
For example, the surface of the hot-rolled steel sheet or cold-rolled steel sheet obtained as described above may be subjected to a metal electroplating treatment to obtain a pre-annealed metal electroplated steel sheet in which a pre-annealed metal electroplating layer is formed on at least one side. . Note that the metal plating mentioned here excludes zinc plating (secondary plating).
The metal electroplating method is not particularly limited, but as described above, it is preferable that the metal electroplating layer is formed on the base steel sheet, so it is preferable to perform the metal electroplating process.
For example, in the Fe-based electroplating bath, a sulfuric acid bath, a hydrochloric acid bath, or a mixture of both can be used. Furthermore, the amount of deposited metal electroplating layer before annealing can be adjusted by adjusting the current application time and the like. Note that "pre-annealed metal electroplated steel sheet" means that the metal electroplated layer has not undergone an annealing process, and refers to a hot rolled steel sheet before metal electroplating, a pickled sheet after hot rolling, or a cold rolled steel sheet that has been annealed in advance. This does not exclude such aspects.
 ここで、電気めっき層の金属種としては、Cr、Mn、Fe、Co、Ni、Cu、Ga、Ge、As、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Os、Ir、Rt、Au、Hg、Ti、Pb、Biのいずれでもかまわないが、Feであることがより好ましいため、Fe系電気めっきの製造方法を以下に述べるが、他の金属系電気めっきでも以下のFe系電気めっきにおける条件を同様に採用し得る。 Here, the metal species of the electroplating layer include Cr, Mn, Fe, Co, Ni, Cu, Ga, Ge, As, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Os, Ir, Any of Rt, Au, Hg, Ti, Pb, and Bi may be used, but since Fe is more preferable, the manufacturing method of Fe-based electroplating will be described below. Conditions in electroplating systems can be similarly adopted.
 通電開始前のFe系電気めっき浴中のFeイオン含有量は、Fe2+として0.5mol/L以上とすることが好ましい。Fe系電気めっき浴中のFeイオン含有量が、Fe2+として0.5mol/L以上であれば、十分なFe付着量を得ることができる。また、十分なFe付着量を得るために、通電開始前のFe系電気めっき浴中のFeイオン含有量は、2.0mol/L以下とすることが好ましい。 The Fe ion content in the Fe-based electroplating bath before the start of current application is preferably 0.5 mol/L or more as Fe 2+ . If the Fe ion content in the Fe-based electroplating bath is 0.5 mol/L or more as Fe 2+ , a sufficient amount of Fe deposition can be obtained. Further, in order to obtain a sufficient amount of Fe deposited, it is preferable that the Fe ion content in the Fe-based electroplating bath before the start of current application is 2.0 mol/L or less.
 また、Fe系電気めっき浴中にはFeイオンと、B、C、P、N、O、Ni、Mn、Mo、Zn、W、Pb、Sn、Cr、V及びCoからなる群から選ばれる少なくとも一種の元素とを含有することができる。Fe系電気めっき浴中でのこれらの元素の合計含有量は、焼鈍前Fe系電気めっき層中でこれらの元素の合計含有量が10質量%以下となるようにすることが好ましい。なお、金属元素は金属イオンとして含有すればよく、非金属元素はホウ酸、リン酸、硝酸、有機酸等の一部として含有することができる。また、硫酸鉄めっき液中には、硫酸ナトリウム、硫酸カリウム等の伝導度補助剤や、キレート剤、pH緩衝剤が含まれていてもよい。 In addition, the Fe-based electroplating bath contains Fe ions and at least one selected from the group consisting of B, C, P, N, O, Ni, Mn, Mo, Zn, W, Pb, Sn, Cr, V, and Co. It can contain one kind of element. The total content of these elements in the Fe-based electroplating bath is preferably such that the total content of these elements in the Fe-based electroplated layer before annealing is 10% by mass or less. Note that the metal element may be contained as a metal ion, and the non-metal element may be contained as a part of boric acid, phosphoric acid, nitric acid, organic acid, or the like. Further, the iron sulfate plating solution may contain a conductivity aid such as sodium sulfate or potassium sulfate, a chelating agent, or a pH buffer.
 Fe系電気めっき浴のその他の条件についても特に限定しない。Fe系電気めっき液の温度は、定温保持性を考えると、30℃以上とすることが好ましく、85℃以下が好ましい。Fe系電気めっき浴のpHも特に規定しないが、水素発生による電流効率の低下を防ぐ観点から1.0以上とすることが好ましく、また、Fe系電気めっき浴の電気伝導度を考慮すると、3.0以下が好ましい。電流密度は、生産性の観点から10A/dm以上とすることが好ましく、Fe系電気めっき層の付着量制御を容易にする観点から150A/dm以下とすることが好ましい。通板速度は、生産性の観点から5mpm以上とすることが好ましく、付着量を安定的に制御する観点から150mpm以下とすることが好ましい。 Other conditions for the Fe-based electroplating bath are not particularly limited either. The temperature of the Fe-based electroplating solution is preferably 30° C. or higher, and preferably 85° C. or lower, in view of constant temperature retention. Although the pH of the Fe-based electroplating bath is not particularly specified, it is preferably 1.0 or higher from the viewpoint of preventing a decrease in current efficiency due to hydrogen generation, and considering the electrical conductivity of the Fe-based electroplating bath, .0 or less is preferable. The current density is preferably 10 A/dm 2 or more from the viewpoint of productivity, and preferably 150 A/dm 2 or less from the viewpoint of facilitating control of the amount of Fe-based electroplated layer deposited. The plate passing speed is preferably 5 mpm or more from the viewpoint of productivity, and preferably 150 mpm or less from the viewpoint of stably controlling the amount of adhesion.
 なお、Fe系電気めっき処理を施す前の処理として、鋼板表面を清浄化するための脱脂処理および水洗、さらには、鋼板表面を活性化するための酸洗処理および水洗を施すことができる。これらの前処理に引き続いてFe系電気めっき処理を実施する。脱脂処理および水洗の方法は特に限定されず、通常の方法を用いることができる。酸洗処理においては、硫酸、塩酸、硝酸、およびこれらの混合物等各種の酸が使用できる。中でも、硫酸、塩酸あるいはこれらの混合が好ましい。酸の濃度は特に規定しないが、酸化皮膜の除去能力、及び過酸洗による肌荒れ(表面欠陥)防止等を考慮すると、1~20mass%程度が好ましい。また、酸洗処理液には、消泡剤、酸洗促進剤、酸洗抑制剤等を含有してもよい。 Note that as treatments before performing the Fe-based electroplating treatment, degreasing treatment and water washing can be performed to clean the steel plate surface, and furthermore, pickling treatment and water washing can be performed to activate the steel plate surface. Following these pre-treatments, Fe-based electroplating treatment is performed. The methods of degreasing and washing with water are not particularly limited, and ordinary methods can be used. In the pickling treatment, various acids such as sulfuric acid, hydrochloric acid, nitric acid, and mixtures thereof can be used. Among these, sulfuric acid, hydrochloric acid, or a mixture thereof is preferred. Although the acid concentration is not particularly defined, it is preferably about 1 to 20 mass% in consideration of the ability to remove an oxide film and the prevention of rough skin (surface defects) due to overacid washing. Further, the pickling treatment liquid may contain an antifoaming agent, a pickling accelerator, a pickling inhibitor, and the like.
 [焼鈍工程]
 ついで、本発明の一実施形態においては、酸洗工程後(冷間圧延を施す場合は、冷延工程後、金属めっき層(第一めっき層)を形成する金属めっきを施す場合は、金属めっき(第一めっき)工程後、冷間圧延および金属めっきを施す場合は、金属めっき(第一めっき)工程後)、上記のようにして得られた鋼板を、焼鈍温度:(Ac+0.4×(Ac-Ac))℃以上900℃以下および焼鈍時間:20秒以上で焼鈍する。なお、焼鈍回数は2回以上でもよいが、エネルギー効率の観点から1回が好ましい。
[Annealing process]
Then, in one embodiment of the present invention, after the pickling process (in the case of performing cold rolling, after the cold rolling process, in the case of performing metal plating to form a metal plating layer (first plating layer), the metal plating If cold rolling and metal plating are performed after the (first plating) process, the steel plate obtained as described above is annealed at annealing temperature: (Ac 1 +0.4) ×(Ac 3 −Ac 1 )) Annealing is performed at a temperature of 900° C. or higher and an annealing time of 20 seconds or longer. The number of times of annealing may be two or more times, but from the viewpoint of energy efficiency, one time is preferable.
 焼鈍温度:(Ac+0.4×(Ac-Ac))℃以上900℃以下
 焼鈍温度が(Ac+0.4×(Ac-Ac))℃未満の場合、フェライトとオーステナイトの二相域での加熱中におけるオーステナイトの生成割合が不十分になる。そのため、焼鈍後にフェライトの面積率が過度に増加して、YSが低下する。加えて、焼鈍中のオーステナイト中のC濃度が過度に増加し、所望のλおよびSFmaxを達成できない場合がある。さらに、TSを1180MPa以上とすることが困難になる。
一方、焼鈍温度が900℃を超えると、オーステナイトの粒成長が過度に生じ、M点が上昇し、炭化物を含む焼戻しマルテンサイトが大量に生成し、3.0%超の残留オーステナイトを得ることが困難となり、延性が低下する。従って、焼鈍温度は(Ac+0.4×(Ac―Ac))℃以上900℃以下とする。焼鈍温度は、好ましくは880℃以下である。焼鈍温度は、より好ましくは870℃以下である。また、焼鈍温度は、好ましくは(Ac+0.5×(Ac-Ac))℃以上であり、より好ましくは(Ac+0.6×(Ac-Ac))℃以上である。
なお、焼鈍温度は、焼鈍工程での最高到達温度である。
Annealing temperature: (Ac 1 + 0.4 x (Ac 3 - Ac 1 )) ℃ or more and 900 ℃ or less When the annealing temperature is less than (Ac 1 + 0.4 x (Ac 3 - Ac 1 )) ℃, ferrite and austenite The rate of austenite formation during heating in the two-phase region becomes insufficient. Therefore, the area ratio of ferrite increases excessively after annealing, and YS decreases. In addition, the C concentration in the austenite during annealing may increase too much and the desired λ and SFmax may not be achieved. Furthermore, it becomes difficult to increase the TS to 1180 MPa or more.
On the other hand, when the annealing temperature exceeds 900°C, austenite grain growth occurs excessively, the MS point rises, a large amount of tempered martensite containing carbides is generated, and retained austenite exceeding 3.0% can be obtained. becomes difficult and ductility decreases. Therefore, the annealing temperature is set to (Ac 1 +0.4×(Ac 3 −Ac 1 ))°C or more and 900°C or less. The annealing temperature is preferably 880°C or lower. The annealing temperature is more preferably 870°C or lower. Further, the annealing temperature is preferably (Ac 1 +0.5×(Ac 3 −Ac 1 ))°C or higher, more preferably (Ac 1 +0.6×(Ac 3 −Ac 1 ))°C or higher. .
Note that the annealing temperature is the highest temperature reached in the annealing step.
 Ac点(℃)およびAc点(℃)は次式により計算する:
Ac点(℃)=727.0-32.7×[%C]+14.9×[%Si]+2.0×[%Mn]
Ac点(℃)=912.0-230×[%C]+31.6×[%Si]-20.4×[%Mn]
ここで、[%C]:C含有量(質量%)、[%Si]:Si含有量(質量%)、[%Mn]:Mn含有量(質量%)である。
Ac 1 point (℃) and Ac 3 point (℃) are calculated by the following formula:
Ac 1 point (°C) = 727.0-32.7×[%C]+14.9×[%Si]+2.0×[%Mn]
Ac 3 points (°C) = 912.0-230×[%C]+31.6×[%Si]-20.4×[%Mn]
Here, [%C]: C content (mass %), [%Si]: Si content (mass %), and [%Mn]: Mn content (mass %).
 焼鈍時間:20秒以上
 焼鈍時間が20秒未満になると、フェライトとオーステナイトの二相域での加熱中におけるオーステナイトの生成割合が不十分になる。そのため、焼鈍後にフェライトの面積率が過度に増加して、YSが低下する。加えて、焼鈍中のオーステナイト中のC濃度が過度に増加し、所望のλおよびSFmaxを達成できない。さらに、TSを1180MPa以上とすることが困難になる。そのため、焼鈍時間は20秒以上とする。焼鈍時間は、好ましくは30秒以上であり、より好ましくは50秒以上である。なお、焼鈍時間の上限は特に限定されないが、焼鈍時間は900秒以下とすることが好ましく、より好ましくは800秒以下である。焼鈍時間は300秒以下とすることがさらに好ましく、さらにより好ましくは220秒以下である。
なお、焼鈍時間とは、(焼鈍温度-40℃)以上焼鈍温度以下の温度域での保持時間である。すなわち、焼鈍時間には、焼鈍温度での保持時間に加え、焼鈍温度に到達する前後の加熱および冷却における(焼鈍温度-40℃)以上焼鈍温度以下の温度域での滞留時間も含まれる。
Annealing time: 20 seconds or more When the annealing time is less than 20 seconds, the proportion of austenite produced during heating in the two-phase region of ferrite and austenite becomes insufficient. Therefore, the area ratio of ferrite increases excessively after annealing, and YS decreases. In addition, the C concentration in the austenite during annealing increases too much, making it impossible to achieve the desired λ and SFmax . Furthermore, it becomes difficult to increase the TS to 1180 MPa or more. Therefore, the annealing time is set to 20 seconds or more. The annealing time is preferably 30 seconds or more, more preferably 50 seconds or more. Although the upper limit of the annealing time is not particularly limited, the annealing time is preferably 900 seconds or less, more preferably 800 seconds or less. The annealing time is more preferably 300 seconds or less, and even more preferably 220 seconds or less.
Note that the annealing time is the holding time in a temperature range of (annealing temperature -40° C.) or higher and lower than the annealing temperature. That is, in addition to the holding time at the annealing temperature, the annealing time also includes the residence time in the temperature range from (annealing temperature -40°C) to below the annealing temperature during heating and cooling before and after reaching the annealing temperature.
 焼鈍工程の焼鈍雰囲気の露点:-30℃以上
 本発明の一実施形態においては、焼鈍工程の雰囲気(焼鈍雰囲気)の露点を-30℃とすることが好ましい。焼鈍工程における焼鈍雰囲気の露点を-30℃以上にして焼鈍を行うことで、脱炭反応が促進され、表層軟質層をより深く形成できる。焼鈍工程の焼鈍雰囲気の露点は、より好ましくは-25℃以上、さらにより好ましくは-15℃以上、最も好ましくは-5℃超である。
焼鈍工程の焼鈍雰囲気の露点の上限は特に定めないが、Fe系電気めっき層表面の酸化を好適に防ぎ、亜鉛めっき層を設ける際のめっき密着性を良好にするため、焼鈍工程の焼鈍雰囲気の露点は30℃以下とすることが好ましい。
Dew point of annealing atmosphere in annealing step: −30° C. or higher In an embodiment of the present invention, the dew point of the atmosphere in an annealing step (annealing atmosphere) is preferably −30° C. By performing annealing with the dew point of the annealing atmosphere at -30° C. or higher in the annealing step, the decarburization reaction is promoted and a deeper soft surface layer can be formed. The dew point of the annealing atmosphere in the annealing step is more preferably -25°C or higher, even more preferably -15°C or higher, and most preferably higher than -5°C.
Although there is no particular upper limit for the dew point of the annealing atmosphere in the annealing process, in order to suitably prevent oxidation of the surface of the Fe-based electroplated layer and improve plating adhesion when providing the galvanized layer, the annealing atmosphere in the annealing process should be set. The dew point is preferably 30°C or lower.
 [第一冷却工程]
 ついで、上記のようにして焼鈍を施した鋼板を、400℃以上600℃以下の第一冷却停止温度まで冷却する。
[First cooling process]
Next, the steel plate annealed as described above is cooled to a first cooling stop temperature of 400°C or more and 600°C or less.
 第一冷却停止温度:400℃以上600℃以下
 第一冷却停止温度が400℃未満になると、ベイニティックフェライトの面積率が過度に増加し、残留オーステナイト体積率が所定量以上になり、所望のλおよびSFmaxを達成できない。一方、第一冷却停止温度が600℃を超えると、パーライトの面積率が増加するため、強度が低下する場合がある。したがって、第一冷却停止温度は400℃以上600℃以下とする。第一冷却停止温度は、好ましくは460℃以上である。また、第一冷却停止温度は、好ましくは550℃以下とする。
First cooling stop temperature: 400°C or more and 600°C or less When the first cooling stop temperature becomes less than 400°C, the area ratio of bainitic ferrite increases excessively, the retained austenite volume ratio exceeds a predetermined amount, and the desired λ and S Fmax cannot be achieved. On the other hand, when the first cooling stop temperature exceeds 600° C., the area ratio of pearlite increases, so that the strength may decrease. Therefore, the first cooling stop temperature is set to 400°C or more and 600°C or less. The first cooling stop temperature is preferably 460°C or higher. Further, the first cooling stop temperature is preferably 550°C or lower.
 [保持工程(好適要件)]
 第一冷却工程後、必要に応じて、鋼板を400℃以上600℃以下の温度域(以下、保持温度域ともいう)で80秒未満滞留させる保持工程を行ってもよい。ここで、保持温度域は、上記の第一冷却停止温度としてよい。
[Holding process (preferred requirements)]
After the first cooling step, if necessary, a holding step may be performed in which the steel plate is held in a temperature range of 400° C. or higher and 600° C. or lower (hereinafter also referred to as a holding temperature range) for less than 80 seconds. Here, the holding temperature range may be the first cooling stop temperature described above.
 保持温度域での保持時間:80秒未満
 保持工程では、ベイニティックフェライトが生成するとともに、生成したベイニティックフェライトから該ベイニティックフェライトに隣接する未変態のオーステナイトへのCの拡散が生じる。その結果、所定量の残留オーステナイトの面積率が確保される。
 ここで、保持温度域での保持時間が80秒以上になると、ベイニティックフェライトの面積率が過度に増加し、YSが低下するおそれがある。また、ベイニティックフェライトから未変態オーステナイトへのCの拡散が過度に生じ、残留オーステナイトの面積率が15.0%を超え、所望のλおよびSFmaxを達成できないおそれがある。したがって、保持温度域での保持時間は80秒未満とすることが好ましい。保持温度域での保持時間はより好ましくは60秒未満である。なお、保持温度域での保持時間には、めっき工程において亜鉛めっき処理を施した後の当該温度域での滞留時間は含まない。
Holding time in holding temperature range: less than 80 seconds In the holding step, bainitic ferrite is generated and C diffuses from the generated bainitic ferrite to untransformed austenite adjacent to the bainitic ferrite. . As a result, a predetermined amount of area ratio of retained austenite is ensured.
Here, if the holding time in the holding temperature range is 80 seconds or more, the area ratio of bainitic ferrite may increase excessively, and YS may decrease. Further, excessive diffusion of C from bainitic ferrite to untransformed austenite occurs, and the area ratio of retained austenite exceeds 15.0%, which may make it impossible to achieve desired λ and S Fmax . Therefore, the holding time in the holding temperature range is preferably less than 80 seconds. The holding time in the holding temperature range is more preferably less than 60 seconds. Note that the retention time in the retention temperature range does not include the residence time in the temperature range after zinc plating treatment is performed in the plating process.
 [亜鉛めっき工程(第二めっき工程)]
 第一冷却工程後(保持工程を経る場合は保持工程後)、鋼板に亜鉛めっき処理を施してもよい。亜鉛めっき処理を施すことにより、亜鉛めっき鋼板を得ることができる。亜鉛めっき処理としては、例えば、溶融亜鉛めっき処理や合金化亜鉛めっき処理が挙げられる。
[Zinc plating process (second plating process)]
After the first cooling step (or after the holding step if a holding step is performed), the steel plate may be subjected to galvanizing treatment. A galvanized steel sheet can be obtained by performing galvanizing treatment. Examples of the galvanizing treatment include hot dip galvanizing and alloyed galvanizing.
 溶融亜鉛めっき処理の場合、鋼板を440℃以上500℃以下の亜鉛めっき浴中に浸漬させた後、ガスワイピング等によって、めっき付着量を調整することが好ましい。溶融亜鉛めっき浴としては、前記した亜鉛めっき層の組成となれば特に限定されるものではないが、例えば、Al含有量が0.10質量%以上であり、残部がZnおよび不可避的不純物からなる組成のめっき浴を用いることが好ましい。上記のAl含有量は0.23質量%以下であることが好ましい。 In the case of hot-dip galvanizing, it is preferable to immerse the steel sheet in a galvanizing bath at a temperature of 440° C. or higher and 500° C. or lower, and then adjust the coating amount by gas wiping or the like. The hot-dip galvanizing bath is not particularly limited as long as it has the composition of the galvanized layer described above, but for example, the bath has an Al content of 0.10% by mass or more, and the remainder consists of Zn and inevitable impurities. It is preferable to use a plating bath having the same composition. The above Al content is preferably 0.23% by mass or less.
 また、合金化亜鉛めっき処理の場合、上記の要領で溶融亜鉛めっき処理を施した後、亜鉛めっき鋼板を450℃以上の合金化温度に加熱して合金化処理を施すことが好ましい。上記の合金化温度は、600℃以下とすることが好ましい。
合金化温度が450℃未満では、Zn-Fe合金化速度が遅くなり、合金化が困難となる場合がある。一方、合金化温度が600℃を超えると、未変態オーステナイトがパーライトへ変態し、TSを1180MPa以上とすることが困難になり、延性が低下する。なお、合金化温度は、より好ましくは470℃以上である。また、合金化温度は、より好ましくは570℃以下である。
Further, in the case of alloyed galvanizing treatment, it is preferable that after performing hot-dip galvanizing treatment as described above, the galvanized steel sheet is heated to an alloying temperature of 450° C. or higher to perform alloying treatment. The above alloying temperature is preferably 600°C or less.
If the alloying temperature is less than 450°C, the Zn--Fe alloying rate will be slow and alloying may become difficult. On the other hand, when the alloying temperature exceeds 600° C., untransformed austenite transforms to pearlite, making it difficult to increase the TS to 1180 MPa or more, resulting in a decrease in ductility. Note that the alloying temperature is more preferably 470°C or higher. Further, the alloying temperature is more preferably 570°C or lower.
 また、溶融亜鉛めっき鋼板(GI)および合金化溶融亜鉛めっき鋼板(GA)のめっき付着量はいずれも、片面あたり20g/m以上とすることが好ましい。また、亜鉛めっき層の片面あたりのめっき付着量は、80g/m以下とすることが好ましい。なお、めっき付着量は、ガスワイピング等により調節することが可能である。 Further, it is preferable that the coating weight of both the hot-dip galvanized steel sheet (GI) and the alloyed hot-dip galvanized steel sheet (GA) be 20 g/m 2 or more per side. Further, the amount of plating deposited on one side of the galvanized layer is preferably 80 g/m 2 or less. Note that the amount of plating deposited can be adjusted by gas wiping or the like.
 [第二冷却工程]
 ついで、第一冷却工程後の鋼板を、100℃以上300℃以下の第二冷却停止温度まで25.0℃/秒以下の平均冷却速度で冷却する。
[Second cooling process]
Then, the steel plate after the first cooling step is cooled to a second cooling stop temperature of 100°C or more and 300°C or less at an average cooling rate of 25.0°C/second or less.
 第二冷却停止温度:100℃以上300℃以下
 第二冷却工程は、後工程である再加熱工程で生成する焼戻しマルテンサイトの面積率および残留オーステナイトの面積率を所定の範囲に制御とするために必要な工程である。ここで、第二冷却停止温度が100℃未満では、当該第二冷却工程において鋼中に存在する未変態オーステナイトが、ほぼ全量マルテンサイトに変態する。これにより、最終的に焼戻しマルテンサイトの面積率が過度に増加し、3.0%超の残留オーステナイトを得ることが困難となり、延性が低下する。一方、第二冷却停止温度が300℃を超えると、焼戻しマルテンサイトの面積率が減少し、フレッシュマルテンサイトの面積率が増加する。また、鋼板中の拡散性水素量も増加する場合がある。その結果、所望のλおよびSFmaxを達成できない。また、所望のαを得られない場合もある。したがって、第二冷却停止温度は100℃以上300℃以下とする。第二冷却停止温度は、好ましくは120℃以上である。また、第一冷却停止温度は、好ましくは280℃以下である。
Second cooling stop temperature: 100°C or more and 300°C or less The second cooling step is for controlling the area ratio of tempered martensite and the area ratio of retained austenite generated in the subsequent reheating process within a predetermined range. This is a necessary process. Here, when the second cooling stop temperature is less than 100° C., almost all of the untransformed austenite present in the steel is transformed into martensite in the second cooling step. As a result, the area ratio of tempered martensite ultimately increases excessively, making it difficult to obtain retained austenite of more than 3.0%, and ductility decreases. On the other hand, when the second cooling stop temperature exceeds 300°C, the area ratio of tempered martensite decreases and the area ratio of fresh martensite increases. Furthermore, the amount of diffusible hydrogen in the steel sheet may also increase. As a result, the desired λ and S Fmax cannot be achieved. Furthermore, there are cases where the desired α cannot be obtained. Therefore, the second cooling stop temperature is set to 100°C or more and 300°C or less. The second cooling stop temperature is preferably 120°C or higher. Moreover, the first cooling stop temperature is preferably 280° C. or lower.
 第二冷却工程での平均冷却速度:25.0℃/秒以下
 第二冷却工程の冷却速度が25.0℃/秒を超えると、微細な炭化物が生成し、焼戻しマルテンサイト中の炭化物の密度が所定量以上になる。その結果、所望のλおよびSFmaxを達成できない。また、所望のαを得られない場合もある。したがって、第二冷却工程での平均冷却速度は25.0℃/秒以下とする。
ここで、平均冷却速度は「(冷却開始温度(℃)-第二冷却停止温度(℃)」/冷却時間(s)」により算出できる。
Average cooling rate in the second cooling process: 25.0°C/sec or less If the cooling rate in the second cooling process exceeds 25.0°C/sec, fine carbides will be generated, and the density of carbides in the tempered martensite will increase. becomes more than a predetermined amount. As a result, the desired λ and S Fmax cannot be achieved. Furthermore, there are cases where the desired α cannot be obtained. Therefore, the average cooling rate in the second cooling step is 25.0° C./second or less.
Here, the average cooling rate can be calculated by "(cooling start temperature (°C) - second cooling stop temperature (°C)"/cooling time (s)).
 本発明では、鋼板を第二冷却停止温度まで冷却する時、300℃以上450℃以下の温度域で2.0kgf/mm以上の張力を一回以上付与する。
そして、上記の張力を付与した後の鋼板を、1パス当たり直径500mm以上1500mm以下のロールにロール1/4周分接触させながら、4パス以上付与する処理、および、鋼板を、1パス当たり直径500mm以上1500mm以下のロールにロール1/2周分接触させながら、2パス以上付与する処理を行う。
上記のように鋼板に対して、2.0kgf/mm以上の張力を一回以上付与すること、および、規定のパス数付与することで鋼板組織中に過度に生成した残留オーステナイトが加工誘起変態してマルテンサイトになり、さらに、その後の冷却中に焼戻しマルテンサイトになる。その結果、所望のλおよびSFmaxを得られる。
In the present invention, when the steel plate is cooled to the second cooling stop temperature, a tension of 2.0 kgf/mm 2 or more is applied at least once in a temperature range of 300° C. or higher and 450° C. or lower.
Then, the steel plate after applying the above tension is applied for 4 passes or more while being brought into contact with a roll having a diameter of 500 mm or more and 1500 mm or less per pass for 1/4 rotation of the roll, and the steel plate is A process is performed in which the coating is applied for two or more passes while contacting a roll of 500 mm or more and 1500 mm or less for 1/2 revolution of the roll.
As mentioned above, by applying a tension of 2.0 kgf/mm 2 or more to the steel plate once or more and applying a specified number of passes, residual austenite excessively generated in the steel plate structure undergoes deformation-induced transformation. and becomes martensite, which then becomes tempered martensite during subsequent cooling. As a result, desired λ and S Fmax can be obtained.
 上記のロール1/4周分接触させながら鋼板に付与するパス数は、好ましくは5パス以上であり、より好ましくは6パス以上である。
上限は特に限定されないが、上記のロール1/4周分接触させながら鋼板に付与するパス数は、好ましくは12パス以下であり、より好ましくは10パス以下である。
 上記のロール1/2周分接触させながら鋼板に付与するパス数は、好ましくは3パス以上であり、より好ましくは4パス以上である。
上限は特に限定されないが、上記のロール1/2周分接触させながら鋼板に付与するパス数は、好ましくは6パス以下であり、より好ましくは5パス以下である。
The number of passes applied to the steel plate while contacting with the roll for 1/4 of the roll is preferably 5 passes or more, more preferably 6 passes or more.
Although the upper limit is not particularly limited, the number of passes applied to the steel plate while contacting with the roll for 1/4 rotation is preferably 12 passes or less, more preferably 10 passes or less.
The number of passes applied to the steel plate while contacting with the roll for 1/2 rotation is preferably 3 passes or more, more preferably 4 passes or more.
Although the upper limit is not particularly limited, the number of passes applied to the steel plate while contacting with the roll for 1/2 rotation is preferably 6 passes or less, more preferably 5 passes or less.
 ここで、張力は、ロール左右のロードセルの荷重(kgf)の合計値を、鋼板の断面積(=板厚(mm)×板幅(mm))(mm)で割ることで得られる。なお、ロードセルの配置は、張力方向と平行にする必要がある。
ここで、ロードセルの配置位置は、ロール両端部から200mm位置とすることが好ましい。また、用いるロールの胴長は、1500mm以上とすることが好ましい。また、用いるロールの胴長は、2500mm以下とすることが好ましい。
 また、この張力は、好ましくは2.2kgf/mm以上であり、より好ましくは2.4kgf/mm以上である。
また、この張力は、好ましくは15.0kgf/mm以下であり、より好ましくは10.0kgf/mm以下である。この張力は、さらに好ましくは7.0kgf/mm以下であり、さらにより好ましくは4.0kgf/mm以下である。
Here, the tension is obtained by dividing the total value of the loads (kgf) of the load cells on the left and right sides of the roll by the cross-sectional area of the steel plate (=plate thickness (mm) x plate width (mm)) (mm 2 ). Note that the load cell must be placed parallel to the tension direction.
Here, the load cell is preferably arranged at a position 200 mm from both ends of the roll. Moreover, it is preferable that the body length of the roll used is 1500 mm or more. Moreover, it is preferable that the body length of the roll used is 2500 mm or less.
Further, this tension is preferably 2.2 kgf/mm 2 or more, more preferably 2.4 kgf/mm 2 or more.
Further, this tension is preferably 15.0 kgf/mm 2 or less, more preferably 10.0 kgf/mm 2 or less. This tension is more preferably 7.0 kgf/mm 2 or less, even more preferably 4.0 kgf/mm 2 or less.
 また、張力を一回以上付与するということについて、例えば、張力を二回付与するとは、まず、2.0kgf/mm以上の張力を一回付与し、その後、張力が2.0kgf/mm未満になってから、二回目の2.0kgf/mm以上の張力を付与することをいう。また、張力を三回付与するとは、まず、2.0kgf/mm以上の張力を一回付与し、その後、張力が2.0kgf/mm未満になってから、二回目の2.0kgf/mm以上の張力を付与し、その後、張力が2.0kgf/mm未満になってから、三回目の2.0kgf/mm以上の張力を付与することをいう。 Regarding applying tension more than once, for example, applying tension twice means first applying tension of 2.0 kgf/mm 2 or more once, and then applying tension of 2.0 kgf/mm 2 or more . This means applying a second tension of 2.0 kgf/mm 2 or more after the tension becomes less than 2.0 kgf/mm 2 . Also, applying tension three times means that first, a tension of 2.0 kgf/mm 2 or more is applied once, and then, after the tension becomes less than 2.0 kgf/mm 2, a second application of 2.0 kgf/mm 2 or more is applied. This refers to applying a tension of 2.0 kgf/mm 2 or more, and then applying a third tension of 2.0 kgf/mm 2 or more after the tension becomes less than 2.0 kgf/mm 2 .
 [再加熱工程]
 ついで、鋼板を、300℃超500℃以下の温度域(以下、再加熱温度域ともいう)に再加熱し、上記鋼板を、300℃超500℃以下の温度域で20秒以上900秒以下保持する。
 これにより、第二冷却工程終了時点で鋼中に存在するマルテンサイトを焼戻す。また、マルテンサイト中に過飽和に固溶したCを未変態オーステナイトへと拡散させることにより、室温で安定なオーステナイト、すなわち、残留オーステナイトを生成させる。
[Reheating process]
Then, the steel plate is reheated to a temperature range of more than 300°C and not more than 500°C (hereinafter also referred to as a reheating temperature range), and the steel plate is held in a temperature range of more than 300°C and not more than 500°C for 20 seconds to 900 seconds. do.
This tempers the martensite present in the steel at the end of the second cooling step. Further, by diffusing C dissolved in supersaturated solid solution in martensite into untransformed austenite, austenite that is stable at room temperature, that is, residual austenite is generated.
 再加熱温度(焼戻し温度):300℃超500℃以下
 再加熱温度(焼戻し温度)が300℃以下になると、第二冷却工程終了時点で鋼中に存在するマルテンサイトの焼戻しが十分には進行せず、フレッシュマルテンサイトが過度に増加することに加えて、焼戻しマルテンサイト中の炭化物の粗大化が十分に進行せず、焼戻しマルテンサイト中の炭化物の密度が所定量以上になり、その結果、所望のλ、αおよびSFmaxを達成できない。さらに、素地鋼板に含まれる水素の外部放出が不十分となり、素地鋼板の拡散性水素量が増加する。これにより、穴広げ性および曲げ性がさらに低下する。
一方、再加熱温度(焼戻し温度)が500℃を超えると、第二冷却工程終了時点で鋼中に存在するマルテンサイトの焼戻しが過度に進行するため、TSを1180MPa以上とすることが困難になる。また、第二冷却工程終了時点で鋼中に存在する未変態オーステナイトが、炭化物(パーライト)として分解してしまうため、延性が低下する。さらに、素地鋼板に含まれる水素の外部放出が不十分となり、素地鋼板の拡散性水素量が増加する場合もある。これにより、穴広げ性が低下する。したがって、再加熱温度は300℃超以上500℃以下とする。再加熱温度は、再加熱工程での最高到達温度である。再加熱温度は、好ましくは340℃以上であり、より好ましくは360℃以上である。再加熱温度は、好ましくは460℃以下であり、より好ましくは440℃以下である。
Reheating temperature (tempering temperature): over 300°C and below 500°C If the reheating temperature (tempering temperature) is below 300°C, the martensite present in the steel at the end of the second cooling process will not be sufficiently tempered. In addition to the excessive increase in fresh martensite, the coarsening of carbides in tempered martensite does not progress sufficiently, and the density of carbides in tempered martensite exceeds a predetermined amount, resulting in λ, α and S Fmax cannot be achieved. Furthermore, hydrogen contained in the base steel sheet is not sufficiently released to the outside, and the amount of diffusible hydrogen in the base steel sheet increases. This further reduces the hole expandability and bendability.
On the other hand, if the reheating temperature (tempering temperature) exceeds 500°C, the martensite present in the steel will be excessively tempered at the end of the second cooling process, making it difficult to increase the TS to 1180 MPa or higher. . Moreover, since the untransformed austenite present in the steel at the end of the second cooling step decomposes as carbide (pearlite), ductility decreases. Furthermore, hydrogen contained in the base steel sheet may not be sufficiently released to the outside, and the amount of diffusible hydrogen in the base steel sheet may increase. This reduces the hole expandability. Therefore, the reheating temperature is set to be higher than 300°C and lower than 500°C. The reheating temperature is the highest temperature reached in the reheating step. The reheating temperature is preferably 340°C or higher, more preferably 360°C or higher. The reheating temperature is preferably 460°C or lower, more preferably 440°C or lower.
 再加熱温度域での保持時間(焼戻し時間):20秒以上900秒以下
 再加熱温度域での保持時間(焼戻し時間)が20秒未満になると、第二冷却工程終了時点で鋼中に存在するマルテンサイトの焼戻しが十分には進行せず、フレッシュマルテンサイトが過度に増加する。また、焼戻しマルテンサイト中の炭化物の粗大化が十分に進行せず、焼戻しマルテンサイト中の炭化物の密度が所定量以上になる場合がある。その結果、所望のλ、αおよびSFmaxを達成できない。さらに、素地鋼板に含まれる水素の外部放出が不十分となり、素地鋼板の拡散性水素量が増加する。これにより、穴広げ性および曲げ性がさらに低下する。
一方、再加熱温度域での保持時間(焼戻し時間)が900秒を超えると、第二冷却工程終了時点で鋼中に存在するマルテンサイトの焼戻しが過度に進行するため、TSを1180MPa以上とすることが困難になる。また、第二冷却工程終了時点で鋼中に存在する未変態オーステナイトが、炭化物(パーライト)として分解してしまうため、延性が低下する。したがって、再加熱温度域での保持時間は20秒以上900秒以下とする。保持時間は、好ましくは30秒以上であり、より好ましくは40秒以上である。保持時間は、好ましくは500秒以下であり、より好ましくは100秒以下である。
再加熱温度域での保持時間には、再加熱温度での保持時間に加え、再加熱温度に到達する前後の加熱および冷却における当該温度域での滞留時間も含まれる。
Holding time in the reheating temperature range (tempering time): 20 seconds or more and 900 seconds or less If the holding time in the reheating temperature range (tempering time) is less than 20 seconds, it will be present in the steel at the end of the second cooling process. Tempering of martensite does not proceed sufficiently, and fresh martensite increases excessively. Further, the coarsening of carbides in the tempered martensite may not proceed sufficiently, and the density of the carbides in the tempered martensite may exceed a predetermined amount. As a result, desired λ, α and S Fmax cannot be achieved. Furthermore, hydrogen contained in the base steel sheet is not sufficiently released to the outside, and the amount of diffusible hydrogen in the base steel sheet increases. This further reduces the hole expandability and bendability.
On the other hand, if the holding time (tempering time) in the reheating temperature range exceeds 900 seconds, the martensite present in the steel will be excessively tempered at the end of the second cooling process, so the TS should be set to 1180 MPa or more. Things become difficult. Moreover, since the untransformed austenite present in the steel at the end of the second cooling step decomposes as carbide (pearlite), ductility decreases. Therefore, the holding time in the reheating temperature range is set to 20 seconds or more and 900 seconds or less. The holding time is preferably 30 seconds or more, more preferably 40 seconds or more. The holding time is preferably 500 seconds or less, more preferably 100 seconds or less.
The holding time in the reheating temperature range includes not only the holding time at the reheating temperature but also the residence time in the temperature range during heating and cooling before and after reaching the reheating temperature.
 再加熱時の炭化物制御パラメータCP:10000以上15000以下
 再加熱時の炭化物制御パラメータCPが10000未満になると、第二冷却工程終了時点で鋼中に存在するマルテンサイトの焼戻しが十分には進行せず、フレッシュマルテンサイトが過度に増加することに加えて、焼戻しマルテンサイト中の炭化物の粗大化が十分に進行せず、焼戻しマルテンサイト中の炭化物の密度が所定量以上になり、その結果、所望のλ、αおよびSFmaxを達成できない。さらに、素地鋼板に含まれる水素の外部放出が不十分となり、素地鋼板の拡散性水素量が増加する。これにより、穴広げ性および曲げ性がさらに低下する。
一方、再加熱時の炭化物制御パラメータCPが15000を超えると、第二冷却工程終了時点で鋼中に存在するマルテンサイトの焼戻しが過度に進行するため、TSを1180MPa以上とすることが困難になる。また、第二冷却工程終了時点で鋼中に存在する未変態オーステナイトが、炭化物(パーライト)として分解してしまうため、延性が低下する。したがって、再加熱時の炭化物制御パラメータCPは10000以上15000以下とする。
再加熱時の炭化物制御パラメータCPは、好ましくは11000以上であり、より好ましくは12000以上である。再加熱時の炭化物制御パラメータCPは、好ましくは14500以下であり、より好ましくは14000以下である。
Carbide control parameter CP during reheating: 10,000 or more and 15,000 or less If the carbide control parameter CP during reheating becomes less than 10,000, the martensite present in the steel at the end of the second cooling process will not be sufficiently tempered. In addition to the excessive increase in fresh martensite, the coarsening of carbides in tempered martensite does not progress sufficiently, and the density of carbides in tempered martensite exceeds a predetermined amount, resulting in the desired λ, α and S Fmax cannot be achieved. Furthermore, hydrogen contained in the base steel sheet is not sufficiently released to the outside, and the amount of diffusible hydrogen in the base steel sheet increases. This further reduces the hole expandability and bendability.
On the other hand, if the carbide control parameter CP during reheating exceeds 15,000, the martensite present in the steel will be excessively tempered at the end of the second cooling process, making it difficult to increase the TS to 1,180 MPa or more. . Moreover, since the untransformed austenite present in the steel at the end of the second cooling step decomposes as carbide (pearlite), ductility decreases. Therefore, the carbide control parameter CP during reheating is set to 10,000 or more and 15,000 or less.
The carbide control parameter CP during reheating is preferably 11,000 or more, more preferably 12,000 or more. The carbide control parameter CP during reheating is preferably 14,500 or less, more preferably 14,000 or less.
 再加熱時の炭化物制御パラメータは次式により計算する:
 CP=(T+273)×(k+1.2×logt) ・・・式(1)
ここで、CP:炭化物制御パラメータ、T:焼戻し温度(℃)、k:C含有量に依存した材料定数、t:焼戻し時間(秒)であり、1.2×logtの項での1.2は再加熱工程後の冷却の時間を考慮した補正係数(予め設定された補正係数)である。
また、材料定数kは次式により計算する:
k=-6×C+17.8
ここで、C:第二冷却工程で生成するマルテンサイト中の炭素量(質量%)である。
 なお、第二冷却工程で生成するマルテンサイト中の炭素量は、以下のように測定できる。
 まず、第二冷却工程直前における各相中の炭素量は下記の関係を満たす。
γ1×Cγ1+V×C+VBF×CBF=CT ・・・式(2)
γ1=1―V―VBF ・・・式(3)
ここで、Vγ1、Cγ1は第二冷却工程直前における未変態オーステナイトの面積率(%)および該未変態オーステナイト中の炭素濃度(質量%)、
、Cは第二冷却工程直前におけるフェライトの面積率(%)および該フェライト中の炭素濃度(質量%)、
BF、CBFは第二冷却工程直前におけるベイニティックフェライトの面積率(%)および該ベイニティックフェライト中の炭素濃度(質量%)、
は(第二冷却工程直前の)鋼中の炭素濃度(質量%)である。
さらに、第二冷却工程直前におけるフェライトの面積率V(%)およびベイニティックフェライトの面積率VBF(%)は、最終組織(最終的に得られる鋼板の鋼組織)におけるフェライトの面積率(%)およびベイニティックフェライトの面積率(%)と同等とすることができる。また、フェライト中の炭素濃度C(質量%)およびベイニティックフェライト中の炭素濃度CBF(質量%)はゼロとすることができる。
 よって、式(2)は、
=Vγ1×Cγ1+V×0(零)+VBF×0(零)=Vγ1×Cγ1・・・式(2―2)
となる。
 また、この式(2―2)と式(3)より、C=(1―V―VBF)×Cγ1となるため、Cγ1=CT/(1―V―VBF)とすることができる。さらに、第二冷却工程におけるγ1(未変態オーステナイト)からマルテンサイトへの変態は、Cの拡散が伴わない変態であるため、C=Cγ1となり、つまり、C=Cγ1=CT/(1―V―VBF)である。
The carbide control parameters during reheating are calculated by the following formula:
CP=(T+273)×(k+1.2×logt)...Formula (1)
Here, CP: carbide control parameter, T: tempering temperature (°C), k: material constant depending on C content, t: tempering time (seconds), and 1.2 in the term of 1.2×logt. is a correction coefficient (preset correction coefficient) that takes into consideration the cooling time after the reheating step.
Also, the material constant k is calculated using the following formula:
k=-6×C M +17.8
Here, C M is the amount of carbon (% by mass) in martensite produced in the second cooling step.
Note that the amount of carbon in martensite produced in the second cooling step can be measured as follows.
First, the amount of carbon in each phase immediately before the second cooling step satisfies the following relationship.
V γ1 ×C γ1 +V F ×C F +V BF ×C BF =C T ...Formula (2)
V γ1 =1-V F -V BF ...Formula (3)
Here, V γ1 and C γ1 are the area ratio (%) of untransformed austenite immediately before the second cooling step and the carbon concentration (mass %) in the untransformed austenite,
V F and C F are the area ratio (%) of ferrite immediately before the second cooling step and the carbon concentration (mass %) in the ferrite,
V BF and C BF are the area ratio (%) of the bainitic ferrite immediately before the second cooling step and the carbon concentration (mass %) in the bainitic ferrite,
C T is the carbon concentration (mass %) in the steel (immediately before the second cooling step).
Furthermore, the area ratio of ferrite V F (%) and the area ratio of bainitic ferrite V BF (%) immediately before the second cooling process are the area ratio of ferrite in the final structure (the steel structure of the steel sheet finally obtained). (%) and the area ratio (%) of bainitic ferrite. Further, the carbon concentration C F (mass %) in ferrite and the carbon concentration C BF (mass %) in bainitic ferrite can be zero.
Therefore, equation (2) is
C T =V γ1 ×C γ1 +V F ×0 (zero) +V BF ×0 (zero) = V γ1 ×C γ1 ...Equation (2-2)
becomes.
Also, from equations (2-2) and (3), C T = (1-V F - V BF ) x C γ1 , so C γ1 = C T / (1- V F - V BF ) It can be done. Furthermore, since the transformation from γ1 (untransformed austenite) to martensite in the second cooling step is a transformation that does not involve diffusion of C, CM = C γ1 , that is, CM = C γ1 = C T / (1-V F -V BF ).
 再加熱温度域での保持後の冷却条件は特に限定されず、常法に従えばよい。冷却方法としては、例えば、ガスジェット冷却、ミスト冷却、ロール冷却、水冷および空冷などを適用することができる。また、表面の酸化防止の観点から、再加熱温度域での保持後、50℃以下まで冷却することが好ましく、より好ましくは室温程度まで冷却する。再加熱温度域での保持後の冷却における平均冷却速度は、例えば、1℃/秒以上50℃/秒以下が好適である。 The cooling conditions after holding in the reheating temperature range are not particularly limited, and any conventional method may be used. As the cooling method, for example, gas jet cooling, mist cooling, roll cooling, water cooling, air cooling, etc. can be applied. In addition, from the viewpoint of preventing surface oxidation, it is preferable to cool down to 50° C. or lower after holding in the reheating temperature range, and more preferably to about room temperature. The average cooling rate during cooling after holding in the reheating temperature range is preferably, for example, 1° C./second or more and 50° C./second or less.
 また、上記のようにして得た鋼板に、さらに、調質圧延を施してもよい。調質圧延の圧下率は2.00%を超えると、降伏応力が上昇し、鋼板を部材に成形する際の寸法精度が低下するおそれがある。そのため、調質圧延の圧下率は2.00%以下が好ましい。なお、調質圧延の圧下率の下限は特に限定されるものではないが、生産性の観点から0.05%以上が好ましい。また、調質圧延は上述した各工程を行うための焼鈍装置と連続した装置上(オンライン)で行ってもよいし、各工程を行うための焼鈍装置とは不連続な装置上(オフライン)で行ってもよい。また、調質圧延の圧延回数は、1回でもよく、2回以上であってもよい。なお、調質圧延と同等の伸長率を付与できれば、レベラー等による圧延であっても構わない。 Additionally, the steel plate obtained as described above may be further subjected to temper rolling. If the reduction ratio in temper rolling exceeds 2.00%, the yield stress will increase, and there is a risk that the dimensional accuracy when forming the steel plate into a member will decrease. Therefore, the reduction ratio in temper rolling is preferably 2.00% or less. Note that the lower limit of the rolling reduction in skin pass rolling is not particularly limited, but from the viewpoint of productivity, it is preferably 0.05% or more. In addition, skin pass rolling may be performed on a device that is continuous with the annealing device for performing each process mentioned above (online), or on a device that is discontinuous with the annealing device for performing each process (offline). You may go. Further, the number of times of temper rolling may be one, or two or more times. Note that rolling with a leveler or the like may be used as long as it can provide an elongation rate equivalent to that of temper rolling.
 上記以外の条件については特に限定されず、常法に従えばよい。 Conditions other than the above are not particularly limited and may be according to conventional methods.
 [3.部材]
 つぎに、本発明の一実施形態に従う部材について、説明する。
 本発明の一実施形態に従う部材は、上記の鋼板を用いてなる(素材とする)部材である。例えば、素材である鋼板に、成形加工、接合加工の少なくとも一方を施して部材とする。
 ここで、上記の鋼板は、TS:1180MPa以上であり、かつ、高いYSと、優れたプレス成形性(延性、穴広げ性および曲げ性)と、圧壊時の耐破断特性(曲げ破断特性および軸圧壊特性)を有する。そのため、本発明の一実施形態に従う部材は、高強度であり、かつ、耐衝撃特性にも優れている。したがって、本発明の一実施形態に従う部材は、自動車分野で使用される衝撃エネルギー吸収部材に適用して特に好適である。
[3. Element]
Next, a member according to an embodiment of the present invention will be explained.
A member according to an embodiment of the present invention is a member made of (made of) the above-mentioned steel plate. For example, a steel plate as a raw material is subjected to at least one of forming and bonding to form a member.
Here, the above-mentioned steel plate has a TS of 1180 MPa or more, a high YS, excellent press formability (ductility, hole expandability, and bendability), and fracture resistance during crushing (bending fracture properties and axial crushing properties). Therefore, the member according to one embodiment of the present invention has high strength and excellent impact resistance. Therefore, a member according to an embodiment of the present invention is particularly suitable for application as an impact energy absorbing member used in the automotive field.
[4.部材の製造方法]
 つぎに、本発明の一実施形態に従う部材の製造方法について、説明する。
 本発明の一実施形態に従う部材の製造方法は、上記の鋼板(例えば、上記の鋼板の製造方法により製造された鋼板)に、成形加工、接合加工の少なくとも一方を施して部材とする工程を有する。
 ここで、成形加工方法は、特に限定されず、例えば、プレス加工等の一般的な加工方法を用いることができる。また、接合加工方法も、特に限定されず、例えば、スポット溶接、レーザー溶接、アーク溶接等の一般的な溶接や、リベット接合、かしめ接合等を用いることができる。なお、成形条件および接合条件については特に限定されず、常法に従えばよい。
[4. Manufacturing method of parts]
Next, a method for manufacturing a member according to an embodiment of the present invention will be described.
A method for manufacturing a member according to an embodiment of the present invention includes the step of subjecting the above steel plate (for example, a steel plate manufactured by the above steel plate manufacturing method) to at least one of a forming process and a joining process to form a member. .
Here, the molding method is not particularly limited, and for example, a general processing method such as press working can be used. Further, the joining method is not particularly limited, and for example, common welding such as spot welding, laser welding, arc welding, riveting joining, caulking joining, etc. can be used. Note that the molding conditions and bonding conditions are not particularly limited, and conventional methods may be followed.
 表1に示す成分組成(残部はFeおよび不可避的不純物)を有する鋼素材を転炉にて溶製し、連続鋳造法にて鋼スラブとした。表1中、-は不可避的不純物レベルの含有量を示す。
 表1に示す計算変態点Ac点(℃)およびAc点(℃)は次式により計算する。
Ac点(℃)=727.0-32.7×[%C]+14.9×[%Si]+2.0×[%Mn]
Ac点(℃)=912.0-230×[%C]+31.6×[%Si]-20.4×[%Mn]
ここで、[%C]:C含有量(質量%)、[%Si]:Si含有量(質量%)、[%Mn]:Mn含有量(質量%)である。
A steel material having the component composition shown in Table 1 (the remainder being Fe and unavoidable impurities) was melted in a converter and made into a steel slab by continuous casting. In Table 1, - indicates the content at the inevitable impurity level.
The calculated transformation points Ac 1 point (°C) and Ac 3 point (°C) shown in Table 1 are calculated by the following formula.
Ac 1 point (°C) = 727.0-32.7×[%C]+14.9×[%Si]+2.0×[%Mn]
Ac 3 points (°C) = 912.0-230×[%C]+31.6×[%Si]-20.4×[%Mn]
Here, [%C]: C content (mass %), [%Si]: Si content (mass %), and [%Mn]: Mn content (mass %).
 得られた鋼スラブを1200℃に加熱し、加熱後、鋼スラブに粗圧延と、仕上圧延温度を900℃とする仕上げ圧延からなる熱間圧延を施し、熱延鋼板とした。ついで、得られた熱延鋼板のNo.1~No.61、No.64~No.78、No.84~No.98、No.104~No.109に、酸洗および冷間圧延(圧下率:50%)を施し、表3、表6、表9に示す板厚の冷延鋼板とした。また、得られた熱延鋼板のNo.62~No.63、No.79~No.83、No.99~No.103に酸洗を施し、表3、表6、表9に示す板厚の熱延鋼板(白皮)とした。
ついで、得られた冷延鋼板または熱延鋼板(白皮)に、表2に示す条件で焼鈍工程、第一冷却工程、保持工程、亜鉛めっき工程、第二冷却工程および再加熱工程における処理を行い、また、表5、表8に示す条件で、第一めっき工程(金属めっき工程)、焼鈍工程、第一冷却工程、保持工程、第二めっき工程(亜鉛めっき工程)、第二冷却工程および再加熱工程における処理を行い、鋼板(亜鉛めっき鋼板)を得た。
 なお、表5、表8中にNo.64~No.109の鋼板について第一めっき工程(金属めっき工程)の有無、金属めっき工程における処理を行う場合のめっき種を示す。表6、表9中にNo.64~No.109の鋼板について表層軟質層の厚み、金属めっき付着量、表層軟質層の硬度分布を示す。
The obtained steel slab was heated to 1200°C, and after heating, the steel slab was subjected to hot rolling consisting of rough rolling and finish rolling at a finishing rolling temperature of 900°C to obtain a hot rolled steel plate. Then, the obtained hot rolled steel sheet No. 1~No. 61, No. 64~No. 78, No. 84~No. 98, No. 104~No. No. 109 was pickled and cold rolled (reduction ratio: 50%) to obtain cold rolled steel sheets having the thicknesses shown in Table 3, Table 6, and Table 9. Moreover, No. of the obtained hot-rolled steel sheet. 62~No. 63, No. 79~No. 83, No. 99~No. 103 was pickled to obtain hot rolled steel sheets (white skin) having the thicknesses shown in Table 3, Table 6, and Table 9.
Then, the obtained cold-rolled steel sheet or hot-rolled steel sheet (white skin) is subjected to treatments in an annealing process, a first cooling process, a holding process, a galvanizing process, a second cooling process, and a reheating process under the conditions shown in Table 2. Also, under the conditions shown in Tables 5 and 8, the first plating process (metal plating process), annealing process, first cooling process, holding process, second plating process (zinc plating process), second cooling process and A steel plate (galvanized steel plate) was obtained by processing in a reheating step.
In addition, No. in Table 5 and Table 8. 64~No. The presence or absence of the first plating process (metal plating process) and the type of plating when performing the treatment in the metal plating process are shown for the steel plate No. 109. No. in Table 6 and Table 9. 64~No. The thickness of the soft surface layer, the amount of metal plating deposited, and the hardness distribution of the soft surface layer are shown for steel plate No. 109.
 ここで、亜鉛めっき工程では、溶融亜鉛めっき処理または合金化亜鉛めっき処理を行い、溶融亜鉛めっき鋼板(以下、GIともいう)または合金化溶融亜鉛めっき鋼板(以下、GAともいう)を得た。なお、表2、表5、表8では、めっき工程の種類についても、「GI」および「GA」と表示している。表2、表5、表8中のGI鋼板の場合に合金化処理を行わないため合金化温度を-と示す。また、表8において、亜鉛めっき工程による亜鉛めっき処理を行わず、冷延鋼板を得たものについては、「CR」と表示し、亜鉛めっき工程による亜鉛めっき処理を行わず、熱延鋼板を得たものについては、「HR」と表示している。 Here, in the galvanizing process, hot-dip galvanizing treatment or alloyed galvanizing treatment was performed to obtain a hot-dip galvanized steel sheet (hereinafter also referred to as GI) or an alloyed hot-dip galvanized steel sheet (hereinafter also referred to as GA). In addition, in Tables 2, 5, and 8, the types of plating processes are also indicated as "GI" and "GA." In the case of the GI steel sheets in Tables 2, 5, and 8, the alloying temperature is indicated as - because no alloying treatment is performed. In addition, in Table 8, cold-rolled steel sheets obtained without galvanizing are indicated as "CR," and hot-rolled steel sheets are obtained without galvanizing in the galvanizing process. ``HR'' is displayed for those that are.
 亜鉛めっき浴温は、GIおよびGAいずれを製造する場合も、470℃とした。
 亜鉛めっき付着量は、GIを製造する場合は、片面あたり45~72g/mとし、GAを製造する場合は、片面あたり45g/mとした。
 なお、最終的に得られた亜鉛めっき鋼板の亜鉛めっき層の組成は、GIでは、Fe:0.1~1.0質量%、Al:0.2~0.33質量%を含有し、残部がZnおよび不可避的不純物であった。また、GAでは、Fe:8.0~12.0質量%、Al:0.1~0.23質量%を含有し、残部がZnおよび不可避的不純物であった。
 また、亜鉛めっき層はいずれも、素地鋼板の両面に形成した。
The zinc plating bath temperature was 470° C. in both GI and GA production.
The amount of zinc plating deposited was 45 to 72 g/m 2 per side when manufacturing GI, and 45 g/m 2 per side when manufacturing GA.
The composition of the galvanized layer of the finally obtained galvanized steel sheet is, in GI, Fe: 0.1 to 1.0% by mass, Al: 0.2 to 0.33% by mass, and the remainder were Zn and unavoidable impurities. Furthermore, GA contained Fe: 8.0 to 12.0% by mass, Al: 0.1 to 0.23% by mass, and the remainder was Zn and inevitable impurities.
Further, all galvanized layers were formed on both sides of the base steel sheet.
 表2、表5、表8中、パス数1は、第二冷却工程時、300℃以上450℃以下の温度域で2.0kgf/mm以上の平均張力を一回以上付与した後、鋼板を、1パス当たり直径500mm以上1500mm以下のロールにロール1/4周分接触させながら付与するパス数であり、パス数2は、その後、鋼板を、1パス当たり直径500mm以上1500mm以下のロールにロール1/2周分接触させながら付与するパス数である。 In Tables 2, 5, and 8, the number of passes 1 means that the steel plate is applied with an average tension of 2.0 kgf/mm 2 or more at least once in a temperature range of 300°C or more and 450°C or less during the second cooling process. is the number of passes in which the steel plate is applied to a roll with a diameter of 500 mm or more and 1500 mm or less per pass while contacting the roll for 1/4 rotation, and the number of passes 2 means that the steel plate is then applied to a roll with a diameter of 500 mm or more and 1500 mm or less per pass. This is the number of passes applied while contacting the roll for 1/2 revolution.
 得られた鋼板を用いて、上述した要領により、素地鋼板の鋼組織の同定および拡散性水素量の測定を行った。測定結果を表3、表6、表9に示す。表3、表6、表9中、BFはベイニティックフェライト、TMは焼戻しマルテンサイト、RAは残留オーステナイト、FMはフレッシュマルテンサイト、LBは下部ベイナイト、Pはパーライト、θは炭化物である。また、Cは第二冷却工程で生成するマルテンサイト中の炭素量、Cγは残留オーステナイト中の炭素量、ρは焼戻しマルテンサイト中の炭化物の密度である。 Using the obtained steel plate, the steel structure of the base steel plate was identified and the amount of diffusible hydrogen was measured in the manner described above. The measurement results are shown in Table 3, Table 6, and Table 9. In Tables 3, 6, and 9, BF is bainitic ferrite, TM is tempered martensite, RA is retained austenite, FM is fresh martensite, LB is lower bainite, P is pearlite, and θ is carbide. Further, C M is the amount of carbon in martensite produced in the second cooling step, C γ is the amount of carbon in retained austenite, and ρ C is the density of carbides in the tempered martensite.
 表層軟質層の測定方法は、以下の通りである。鋼板の圧延方向に平行な板厚断面(L断面)を湿式研磨により平滑化した後、JIS Z 2244-1(2020)に基づき、ビッカース硬度計を用いて、荷重10gfで、鋼板表面から板厚方向に1μmの位置より、板厚方向100μmの位置まで、1μm間隔で測定を行った。その後は板厚中心まで20μm間隔で測定を行った。硬度が板厚1/4位置の硬度に比して85%以下に減少した領域を軟質層(表層軟質層)と定義し、当該領域の板厚方向の厚さを軟質層の厚さと定義する。 The method for measuring the surface soft layer is as follows. After smoothing the plate thickness cross section (L cross section) parallel to the rolling direction of the steel plate by wet polishing, the plate thickness was measured from the steel plate surface using a Vickers hardness tester at a load of 10gf based on JIS Z 2244-1 (2020). Measurements were performed at 1 μm intervals from a position of 1 μm in the direction to a position of 100 μm in the plate thickness direction. Thereafter, measurements were taken at intervals of 20 μm up to the center of the plate thickness. The area where the hardness has decreased to 85% or less compared to the hardness at 1/4 of the plate thickness is defined as a soft layer (surface soft layer), and the thickness of this area in the plate thickness direction is defined as the thickness of the soft layer. .
 また、以下の要領により、引張試験、穴広げ試験、VDA曲げ試験、V-VDA曲げ試験および軸圧壊試験を行い、以下の基準により、引張強さ(TS)、降伏応力(YS)、全伸び(El)、限界穴広げ率(λ)、VDA曲げ試験での限界曲げ角度(α)、V-VDA曲げ試験での荷重最大時のストローク(SFmax)および軸圧壊破断有無を評価した。 In addition, tensile tests, hole expansion tests, VDA bending tests, V-VDA bending tests, and axial crushing tests were conducted according to the following procedures, and the tensile strength (TS), yield stress (YS), total elongation (El), critical hole expansion rate (λ), critical bending angle (α) in the VDA bending test, stroke at maximum load (S Fmax ) in the V-VDA bending test, and presence or absence of axial crush fracture were evaluated.
・TS
 〇(合格):1180MPa以上
 ×(不合格):1180MPa未満
・TS
〇 (Pass): 1180MPa or more × (Fail): Less than 1180MPa
・YS
 〇(合格):
(A)1180MPa≦TS<1320MPaの場合、750MPa≦YS
(B)1320MPa≦TSの場合、850MPa≦YS
 ×(不合格):
(A)1180MPa≦TS<1320MPaの場合、750MPa>YS
(B)1320MPa≦TSの場合、850MPa>YS
・YS
〇(Passed):
(A) When 1180MPa≦TS<1320MPa, 750MPa≦YS
(B) If 1320MPa≦TS, 850MPa≦YS
× (fail):
(A) If 1180MPa≦TS<1320MPa, 750MPa>YS
(B) If 1320MPa≦TS, 850MPa>YS
・El
 〇(合格): 
(A)1180MPa≦TS<1320MPaの場合、12.0%≦El
(B)1320MPa≦TSの場合、10.0%≦El
 ×(不合格):
(A)1180MPa≦TS<1320MPaの場合、12.0%>El
(B)1320MPa≦TSの場合、10.0%>El
・El
〇(Passed):
(A) When 1180MPa≦TS<1320MPa, 12.0%≦El
(B) When 1320MPa≦TS, 10.0%≦El
× (fail):
(A) When 1180MPa≦TS<1320MPa, 12.0%>El
(B) When 1320MPa≦TS, 10.0%>El
・λ
 〇(合格):30%以上
 ×(不合格):30%未満
・λ
〇(Pass): 30% or more ×(Fail): Less than 30%
・α
 〇(合格):80°以上
 ×(不合格):80°未満
・α
〇 (Pass): 80° or more × (Fail): Less than 80°
・SFmax
 〇(合格):26.0mm以上
 ×(不合格):26.0mm未満
・S Fmax
〇(Pass): 26.0mm or more ×(Fail): Less than 26.0mm
・軸圧壊破断有無
 A(合格):軸圧壊試験後のサンプルに割れが観察されなかった
 B(合格):軸圧壊試験後のサンプルに割れが2箇所以下観察された
 C(合格):軸圧壊試験後のサンプルに割れが3箇所以下観察された
 D(不合格):軸圧壊試験後のサンプルに割れが4箇所以上観察された、または軸圧壊試験後のサンプルが破断した
・Presence or absence of axial crush fracture A (pass): No cracks were observed in the sample after the axial crush test B (pass): Cracks were observed in two or less places in the sample after the axial crush test C (pass): Axial crush Cracks were observed in 3 or less places in the sample after the test. D (Fail): Cracks were observed in 4 or more places in the sample after the axial crush test, or the sample after the axial crush test was broken.
(1)引張試験
 引張試験は、JIS Z 2241(2011)に準拠して行った。すなわち、得られた鋼板から、長手方向が素地鋼板の圧延方向に対して直角となるようにJIS5号試験片を採取した。採取した試験片を用いて、クロスヘッド速度が10mm/minの条件で引張試験を行い、TS、YSおよびElを測定した。結果を表4、表7、表10に示す。
(1) Tensile test The tensile test was conducted in accordance with JIS Z 2241 (2011). That is, a JIS No. 5 test piece was taken from the obtained steel plate so that the longitudinal direction was perpendicular to the rolling direction of the base steel plate. Using the sampled test piece, a tensile test was conducted at a crosshead speed of 10 mm/min, and TS, YS, and El were measured. The results are shown in Table 4, Table 7, and Table 10.
(2)穴広げ試験
 穴広げ試験は、JIS Z 2256(2020)に準拠して行った。すなわち、得られた鋼板から、100mm×100mmの試験片を剪断加工により採取した。該試験片に、クリアランスを12.5%として直径10mmの穴を打ち抜いた。ついで、内径:75mmのダイスを用いて穴の周囲にしわ押さえ力:9ton(88.26kN)を加え、頂角:60°の円錐ポンチを穴に押し込み、亀裂発生限界(亀裂発生時)における試験片の穴の直径を測定した。そして、次式により、限界穴広げ率:λ(%)を求めた。なお、λは、伸びフランジ性を評価する指標となるものである。結果を表4、表7、表10に示す。
 λ(%)={(D-D)/D}×100
 ここで、
 D:亀裂発生時の試験片の穴の直径(mm)
 D:初期の試験片の穴の直径(mm)
である。
(2) Hole expansion test The hole expansion test was conducted in accordance with JIS Z 2256 (2020). That is, a 100 mm x 100 mm test piece was taken from the obtained steel plate by shearing. A hole with a diameter of 10 mm was punched into the test piece with a clearance of 12.5%. Next, using a die with an inner diameter of 75 mm, a wrinkle pressing force of 9 tons (88.26 kN) was applied around the hole, and a conical punch with an apex angle of 60° was pushed into the hole to perform a test at the crack generation limit (at the time of crack generation). The diameter of the hole in the piece was measured. Then, the critical hole expansion rate: λ (%) was determined using the following formula. Note that λ is an index for evaluating stretch flangeability. The results are shown in Table 4, Table 7, and Table 10.
λ (%) = {(D f - D 0 )/D 0 }×100
here,
D f : Diameter of hole in test piece at the time of crack occurrence (mm)
D 0 : Diameter of hole in initial test piece (mm)
It is.
(3)VDA曲げ試験
 VDA曲げ試験は、ドイツ自動車工業会で規定されたVDA規格(VDA238-100)に準拠する曲げ試験で行った。
具体的には、得られた鋼板から、70mm×60mmの試験片を剪断加工により採取した。ここで、60mmの辺は圧延(L)方向に平行する。
該試験片に以下の条件で、VDA曲げ試験を行った。
試験方法:ロール支持、パンチ押し込み
ロール径:φ30mm
パンチ先端R:0.4mm
ロール間距離:(板厚×2)+0.5mm
ストローク速度:20mm/min
曲げ方向:圧延直角(C)方向
この際に、上方からの押し曲げ治具からの荷重Fが最大となる時の、板状試験片の中央部の曲げ外側の角度を限界曲げ角度(°)として測定する。上記VDA曲げ試験を3回実施した際の当該荷重最大時の限界曲げ角度の平均値をα(°)とする。結果を表4、表7、表10に示す。
(3) VDA bending test The VDA bending test was conducted in accordance with the VDA standard (VDA238-100) stipulated by the German Automobile Industry Association.
Specifically, a 70 mm x 60 mm test piece was taken from the obtained steel plate by shearing. Here, the 60 mm side is parallel to the rolling (L) direction.
The test piece was subjected to a VDA bending test under the following conditions.
Test method: Roll support, punch pushing Roll diameter: φ30mm
Punch tip R: 0.4mm
Distance between rolls: (plate thickness x 2) + 0.5mm
Stroke speed: 20mm/min
Bending direction: Direction perpendicular to rolling (C) At this time, the outer bending angle of the central part of the plate-shaped specimen when the load F from the push bending jig from above is maximum is the limit bending angle (°) Measure as. Let α (°) be the average value of the limit bending angle at the maximum load when the above VDA bending test is carried out three times. The results are shown in Table 4, Table 7, and Table 10.
(4)V-VDA曲げ試験(V曲げ+直交VDA曲げ試験)
 V-VDA曲げ試験は以下のようにして行った。
得られた鋼板から、60mm×65mmの試験片を剪断加工により採取した。ここで、60mmの辺は圧延(L)方向に平行する。曲率半径/板厚:4.2で幅(C)方向を軸に圧延(L)方向に90°曲げ加工(一次曲げ加工)を施し、試験片を準備した。90°曲げ加工(一次曲げ加工)では、図2-1(a)に示すように、V溝を有するダイA1の上に載せた鋼板に対して、パンチB1を押し込んで試験片T1を得た。次に、図2-1(b)に示すように、支持ロールA2の上に載せた試験片T1に対して、曲げ方向が圧延直角方向となるようにして、パンチB2を押し込んで直交曲げ(二次曲げ加工)を施した。図2-1(a)および図2-1(b)において、符号D1は幅(C)方向、符号D2は圧延(L)方向を示している。
 V-VDA曲げ試験(V曲げ+直交VDA曲げ試験)におけるV曲げの条件は、以下のとおりである。
試験方法:ダイ支持、パンチ押し込み
成型荷重:10t
試験速度:30mm/min
保持時間:5s
曲げ方向:圧延(L)方向
V-VDA曲げ試験におけるVDA曲げの条件は、以下のとおりである。
試験方法:ロール支持、パンチ押し込み
ロール径:φ30mm
パンチ先端R:0.4mm
ロール間距離:(板厚×2)+0.5mm
ストローク速度:20mm/min
試験片サイズ:60mm×60mm
曲げ方向:圧延直角(C)方向
 上記VDA曲げを施した際に得られるストローク-荷重曲線において、荷重最大時のストロークを求める。上記V-VDA曲げ試験を3回実施した際の当該荷重最大時のストロークの平均値をSFmax(mm)とする。結果を表4、表7、表10に示す。
(4) V-VDA bending test (V bending + orthogonal VDA bending test)
The V-VDA bending test was conducted as follows.
A 60 mm x 65 mm test piece was taken from the obtained steel plate by shearing. Here, the 60 mm side is parallel to the rolling (L) direction. A test piece was prepared by performing 90° bending (primary bending) in the rolling (L) direction with the width (C) direction as the axis at a radius of curvature/plate thickness of 4.2. In the 90° bending process (primary bending process), as shown in Figure 2-1(a), a punch B1 was pushed into a steel plate placed on a die A1 having a V groove to obtain a test piece T1. . Next, as shown in FIG. 2-1(b), the punch B2 is pushed into the test piece T1 placed on the support roll A2 so that the bending direction is perpendicular to the rolling direction. Secondary bending process) was applied. In FIGS. 2-1(a) and 2-1(b), the symbol D1 indicates the width (C) direction, and the symbol D2 indicates the rolling (L) direction.
The V-bending conditions in the V-VDA bending test (V-bending + orthogonal VDA bending test) are as follows.
Test method: die support, punch press molding load: 10t
Test speed: 30mm/min
Holding time: 5s
Bending direction: rolling (L) direction VDA bending conditions in the V-VDA bending test are as follows.
Test method: Roll support, punch pushing Roll diameter: φ30mm
Punch tip R: 0.4mm
Distance between rolls: (plate thickness x 2) + 0.5mm
Stroke speed: 20mm/min
Test piece size: 60mm x 60mm
Bending direction: rolling perpendicular (C) direction In the stroke-load curve obtained when performing the above VDA bending, the stroke at the maximum load is determined. The average value of the stroke at the maximum load when performing the above V-VDA bending test three times is defined as S Fmax (mm). The results are shown in Table 4, Table 7, and Table 10.
(5)軸圧壊試験
得られた鋼板から、160mm×200mmの試験片を剪断加工により採取した。ここで、160mmの辺は圧延(L)方向に平行である。パンチ肩半径が5.0mmであり、ダイ肩半径が5.0mmである金型を用いて、深さ40mmとなるように成形加工(曲げ加工)して、図6-1(a)および図6-1(b)に示すハット型部材10を作製した。また、ハット型部材の素材として用いた鋼板を、80mm×200mmの大きさに別途切り出した。次に、その切り出した後の鋼板20と、ハット型部材10とをスポット溶接し、図6-1(a)および図6-1(b)に示すような試験用部材30を作製した。図6-1(a)は、ハット型部材10と鋼板20とをスポット溶接して作製した試験用部材30の正面図である。図6-1(b)は、試験用部材30の斜視図である。スポット溶接部40の位置は、図6-1(b)に示すように、鋼板の端部と溶接部が10mm、溶接部間が45mmの間隔となるようにした。次に、図6-2(c)に示すように、試験用部材30を地板50とTIG溶接により接合して軸圧壊試験用サンプルを作製した。次に、作製した軸圧壊試験用サンプルにインパクター60を衝突速度10mm/minで等速衝突させ、軸圧壊試験用のサンプルを70mm圧壊した。図6-2(c)に示すように、圧壊方向D3は、試験用部材30の長手方向と平行な方向とした。
圧壊後のサンプルを上記の要領で評価し、結果を表4、表7、表10に示す。
(5) Axial crush test A 160 mm x 200 mm test piece was taken from the obtained steel plate by shearing. Here, the 160 mm side is parallel to the rolling (L) direction. Using a mold with a punch shoulder radius of 5.0 mm and a die shoulder radius of 5.0 mm, the molding process (bending process) was performed to a depth of 40 mm. A hat-shaped member 10 shown in 6-1(b) was manufactured. Further, a steel plate used as a material for the hat-shaped member was separately cut into a size of 80 mm x 200 mm. Next, the cut steel plate 20 and the hat-shaped member 10 were spot welded to produce a test member 30 as shown in FIGS. 6-1(a) and 6-1(b). FIG. 6-1(a) is a front view of a test member 30 produced by spot welding the hat-shaped member 10 and the steel plate 20. FIG. 6-1(b) is a perspective view of the test member 30. As shown in FIG. 6-1(b), the spot welds 40 were positioned so that the distance between the end of the steel plate and the weld was 10 mm, and the distance between the welds was 45 mm. Next, as shown in FIG. 6-2(c), the test member 30 was joined to the base plate 50 by TIG welding to prepare a sample for the axial crush test. Next, the impactor 60 was made to collide with the produced sample for the axial crush test at a constant velocity of 10 mm/min, and the sample for the axial crush test was crushed by 70 mm. As shown in FIG. 6-2(c), the crushing direction D3 was parallel to the longitudinal direction of the test member 30.
The samples after crushing were evaluated in the manner described above, and the results are shown in Tables 4, 7, and 10.
 板厚1.2mm超の鋼板のVDA曲げ試験、V-VDA曲げ試験および軸圧壊試験では板厚の影響を考慮し、全て板厚1.2mmの鋼板で実施した。板厚1.2mm超の鋼板は片面研削し、板厚を1.2mmにした。研削加工により鋼板表面の曲げ性が影響されるおそれがあるため、VDA曲げ試験では研削面を曲げ内側(パンチに接触する側)とし、V-VDA曲げ試験ではV曲げ試験時に研削面を曲げ外側(ダイに接触する側)とし、その後VDA曲げ試験に研削面を曲げ内側(パンチに接触する側)とした。
一方、板厚1.2mm以下の鋼板のVDA曲げ試験、V-VDA曲げ試験および軸圧壊試験では、板厚の影響が小さいため、研削処理無しで試験を行った。
The VDA bending test, V-VDA bending test, and axial crushing test on steel plates with a thickness of more than 1.2 mm were all conducted on steel plates with a plate thickness of 1.2 mm, taking into consideration the influence of the plate thickness. Steel plates with a thickness of more than 1.2 mm were ground on one side to a thickness of 1.2 mm. Since the bendability of the steel plate surface may be affected by the grinding process, in the VDA bending test, the ground surface is placed on the inside of the bend (the side that contacts the punch), and in the V-VDA bending test, the ground surface is placed on the outside of the bend during the V-bending test. (the side that contacts the die), and then subjected to the VDA bending test with the ground surface bent inside (the side that contacts the punch).
On the other hand, in the VDA bending test, V-VDA bending test, and axial crushing test of steel plates with a thickness of 1.2 mm or less, the effects of the plate thickness were small, so the tests were conducted without grinding.
 さらに、表4、表7、表10中の「*1」および「*2」はそれぞれV-VDA曲げ試験を最高荷重点まで行い、V曲げ稜線部およびVDA曲げ稜線部のL断面において形成されたき裂の長さと、VDA曲げの曲げ外側の鋼板表面から50μm、VDA曲げの曲げ頂点を中心とする左右50μmの領域(VDA曲げの曲げ外側の曲げ頂点を始点とし板厚方向に50μmの位置まで存在する開始線の各位置から、開始線の垂直方向両側夫々に50μmまでの位置に形成される領域)における、ベイニティックフェライトの板厚方向の粒径の加工前後での変化量である。 Furthermore, "*1" and "*2" in Table 4, Table 7, and Table 10 indicate that the V-VDA bending test was performed up to the maximum load point, and the results were formed at the L cross section of the V bending ridgeline and the VDA bending ridgeline. The length of the crack, 50 μm from the surface of the steel plate on the outside of VDA bending, and the area of 50 μm left and right centered on the bending apex of VDA bending (from the bending apex on the outside of VDA bending as the starting point to a position of 50 μm in the plate thickness direction) This is the amount of change in grain size in the plate thickness direction of bainitic ferrite before and after processing in regions formed at positions up to 50 μm on both sides of the starting line in the vertical direction from each position of the existing starting line.
<ナノ硬度測定>
 プレス成形時の優れた曲げ性と衝突時の優れた曲げ破断特性を得るためには、素地表層から表層軟質層の板厚方向深さの1/4位置および板厚方向深さの1/2位置の夫々における板面の50μm×50μmの領域において、300点以上のナノ硬度を測定したとき、素地鋼板表面から表層軟質層の板厚方向深さの1/4位置の板面のナノ硬度が7.0GPa以上の測定数が、板厚方向深さの1/4位置の全測定数に対して0.10以下であることがより好ましい。ナノ硬度が7.0GPa以上の割合が0.10以下の場合、硬質な組織(マルテンサイトなど)、介在物などの割合が小さいことを意味するため、硬質な組織(マルテンサイトなど)、介在物などのプレス成形時および衝突時のボイドの生成・連結および亀裂の進展をより抑制することが可能となり、優れたR/tおよびSFmaxが得られた。
<Nano hardness measurement>
In order to obtain excellent bendability during press forming and excellent bending rupture properties during collision, it is necessary to place the base material at a position of 1/4 of the depth in the thickness direction and 1/2 of the depth in the thickness direction of the surface soft layer from the surface layer of the substrate. When nanohardness was measured at 300 or more points in a 50 μm x 50 μm area of the plate surface at each position, the nanohardness of the plate surface at a position 1/4 of the thickness direction depth of the surface soft layer from the base steel plate surface was It is more preferable that the number of measurements of 7.0 GPa or more is 0.10 or less with respect to the total number of measurements at 1/4 position of the depth in the plate thickness direction. If the ratio of nanohardness of 7.0 GPa or more is 0.10 or less, it means that the ratio of hard structures (such as martensite) and inclusions is small. It became possible to further suppress the generation and connection of voids and the propagation of cracks during press molding and collision, and excellent R/t and SFmax were obtained.
 亜鉛めっきを施した場合は、めっき層剥離後、素地鋼板表面から表層軟質層の板厚方向深さの1/4位置-5μmまで機械研磨し、素地鋼板表面から表層軟質層の板厚方向深さの1/4位置までダイヤモンドおよびアルミナでのバフ研磨後、コロイダルシリカ研磨を実施した。Hysitron社のtribo-950を用い、バーコビッチ形状のダイヤモンド圧子により、
 荷重:500μN
 測定領域:50μm×50μm
 打点間隔:2μm
の条件で計512点のナノ硬度を測定した。
なお、上記の剥離するめっき層とは、亜鉛めっき層が形成されている場合は、亜鉛めっき層であり、金属めっき層が形成されている場合は、金属めっき層であり、亜鉛めっき層および金属めっき層が形成されている場合は、亜鉛めっき層および金属めっき層である。
In the case of zinc plating, after peeling off the plating layer, mechanical polishing is performed from the surface of the base steel sheet to 1/4 of the depth in the thickness direction of the soft surface layer -5 μm, and the depth in the thickness direction of the surface soft layer is removed from the surface of the base steel sheet. After buffing with diamond and alumina to the 1/4th position, colloidal silica polishing was performed. Using Hysitron's tribo-950, with a Berkovich-shaped diamond indenter,
Load: 500μN
Measurement area: 50μm x 50μm
Dot spacing: 2μm
Nanohardness was measured at a total of 512 points under these conditions.
In addition, the above-mentioned plating layer that peels off is a galvanized layer if a galvanized layer is formed, a metal plating layer if a metal plating layer is formed, and a galvanized layer and a metal plating layer. When a plating layer is formed, it is a galvanized layer and a metal plating layer.
 次いで、上記表層軟質層の板厚方向深さの1/2位置まで機械研磨、ダイヤモンドおよびアルミナでのバフ研磨およびコロイダルシリカ研磨を実施した。Hysitron社のtribo-950を用い、バーコビッチ形状のダイヤモンド圧子により、
 荷重:500μN
 測定領域:50μm×50μm
 打点間隔:2μm
の条件で計512点のナノ硬度を測定した。
Next, mechanical polishing, buff polishing with diamond and alumina, and colloidal silica polishing were performed to 1/2 the depth of the surface soft layer in the thickness direction. Using Hysitron's tribo-950, with a Berkovich-shaped diamond indenter,
Load: 500μN
Measurement area: 50μm x 50μm
Dot spacing: 2μm
Nanohardness was measured at a total of 512 points under these conditions.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000014
 
Figure JPOXMLDOC01-appb-T000014
 
 表1~10中、下線部は本発明の適正範囲外を示す。
 表4、表7、表10に示したように、発明例ではいずれも、引張強さ(TS)、降伏応力(YS)、全伸び(El)、限界穴広げ率(λ)、VDA曲げ試験での限界曲げ角度(α)、V-VDA曲げ試験での荷重最大時のストローク(SFmax)の全てが合格であり、軸圧壊試験での破断はなかった。
 一方、比較例では、引張強さ(TS)、降伏応力(YS)、全伸び(El)、限界穴広げ率(λ)、VDA曲げ試験での限界曲げ角度(α)、V-VDA曲げ試験での荷重最大時のストローク(SFmax)、軸圧壊試験での破断有無の少なくとも1つが十分ではなかった。
なお、表5~10において、露点が-30℃以上-5℃以下の範囲では、軟質層厚さが11μm未満となり、軸圧壊試験での破断(外観割れ)の判定は「B」、「C」であるものもあるが、軟質層厚さが11μm未満の場合でも金属めっき層を有する場合は、軸圧壊試験での破断(外観割れ)の判定は「A」であった。
In Tables 1 to 10, the underlined portions indicate outside the appropriate range of the present invention.
As shown in Table 4, Table 7, and Table 10, in each of the invention examples, tensile strength (TS), yield stress (YS), total elongation (El), critical hole expansion ratio (λ), VDA bending test The limit bending angle (α) in the V-VDA bending test and the maximum load stroke (S Fmax ) in the V-VDA bending test all passed, and there was no fracture in the axial crushing test.
On the other hand, in the comparative example, tensile strength (TS), yield stress (YS), total elongation (El), critical hole expansion rate (λ), critical bending angle (α) in VDA bending test, and V-VDA bending test At least one of the stroke at maximum load (S Fmax ) and the presence or absence of fracture in the axial crush test were insufficient.
In addition, in Tables 5 to 10, when the dew point is in the range of -30°C or more and -5°C or less, the soft layer thickness is less than 11 μm, and the judgment of fracture (appearance cracking) in the axial crush test is "B" or "C". However, even if the soft layer thickness is less than 11 μm, if it has a metal plating layer, the rupture (appearance cracking) in the axial crush test was evaluated as "A".
 また、本発明例の鋼板を用いて、成形加工を施して得た部材または接合加工を施して得た部材は、引張強さ(TS)、降伏応力(YS)、全伸び(El)、限界穴広げ率(λ)、VDA曲げ試験での限界曲げ角度(α)、V-VDA曲げ試験での荷重最大時のストローク(SFmax)の全てが本発明で特徴とする優れた特性を有し、軸圧壊試験での破断はなく、本発明で特徴とする優れた特性を有することがわかった。 In addition, the members obtained by forming or bonding the steel sheets of the present invention have tensile strength (TS), yield stress (YS), total elongation (El), limit The hole expansion rate (λ), the limit bending angle (α) in the VDA bending test, and the stroke at maximum load in the V-VDA bending test (S Fmax ) all have the excellent characteristics featured in the present invention. It was found that there was no breakage in the axial crushing test, and that it had the excellent properties featured in the present invention.
 10  ハット型部材
 20  亜鉛めっき鋼板
 30  試験用部材
 40  スポット溶接部
 50  地板
 60  インパクター
 A1  ダイ
 A2  支持ロール
 B1  パンチ
 B2  パンチ
 D1  幅(C)方向
 D2  圧延(L)方向
 D3  圧壊方向
 D4  板厚方向
 T1  試験片
 T2  試験片
 P  最高荷重点
 R  最高荷重点からストロークを増加していき、荷重が最高荷重の94.9~99.9%となる領域
 AB  V曲げ稜線部およびVDA曲げ稜線部の重複領域におけるL断面においてVDA曲げの曲げ外側の鋼板表面から0~50μm、且つVDA曲げの曲げ頂点を中心とする左右50μmの領域
 AL  V曲げ稜線部およびVDA曲げ稜線部の重複領域におけるL断面
 F  フェライト
 BF  ベイニティックフェライト
 BF1  変形前のベイニティックフェライト
 BF2  変形後のベイニティックフェライト
 TM  焼戻しマルテンサイト
 θ   炭化物
 H1  硬質第二相
 X1  島状第二相
10 Hat-shaped member 20 Galvanized steel plate 30 Test member 40 Spot weld 50 Base plate 60 Impactor A1 Die A2 Support roll B1 Punch B2 Punch D1 Width (C) direction D2 Rolling (L) direction D3 Crushing direction D4 Thickness direction T1 Test piece T2 Test piece P Maximum load point R Area where the stroke increases from the maximum load point and the load is 94.9 to 99.9% of the maximum load AB Overlapping area of the V bending ridge line part and the VDA bending ridge line part 0 to 50 μm from the surface of the steel plate on the outside of VDA bending in the L cross section at , and 50 μm to the left and right around the bending apex of VDA bending AL L cross section in the overlapping region of the V bending ridgeline part and the VDA bending ridgeline part F Ferrite BF Bainitic ferrite BF1 Bainitic ferrite before deformation BF2 Bainitic ferrite after deformation TM Tempered martensite θ Carbide H1 Hard second phase X1 Island-like second phase

Claims (11)

  1.  素地鋼板を備える鋼板であって、前記素地鋼板は、
    質量%で、
      C:0.050%以上0.400%以下、
      Si:0.75%超3.00%以下、
      Mn:2.00%以上3.50%未満、
      P:0.001%以上0.100%以下、
      S:0.0001%以上0.0200%以下、
      Al:0.010%以上2.000%以下および
      N:0.0100%以下
    を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
     前記素地鋼板は、
      ベイニティックフェライトの面積率:3.0%以上20.0%以下、
      焼戻しマルテンサイトの面積率:40.0%以上90.0%以下、
      残留オーステナイトの面積率:3.0%超15.0%以下、
      残留オーステナイト中の炭素濃度:0.60質量%以上1.30質量%以下、
      フレッシュマルテンサイトの面積率:10.0%以下、
      焼戻しマルテンサイト中の炭化物の密度:8.0個/μm以下、
    である鋼組織を有し、
     前記素地鋼板の拡散性水素量が0.50質量ppm以下であり、
     さらに、V-VDA曲げ試験を最高荷重点まで行い、
     L断面において、
    き裂の長さが400μm以下であり、
    さらに、VDA曲げの曲げ外側の曲げ頂点を始点とし板厚方向に50μmの位置まで存在する開始線の各位置から、前記開始線の垂直方向両側夫々に50μmまでの位置に形成される領域において、
    ベイニティックフェライトの板厚方向の平均粒径に関し、加工後の平均粒径に対する加工前の平均粒径の割合が5.0以下であり、
     引張強さが1180MPa以上である、鋼板。
    A steel plate comprising a base steel plate, the base steel plate comprising:
    In mass%,
    C: 0.050% or more and 0.400% or less,
    Si: more than 0.75% and 3.00% or less,
    Mn: 2.00% or more and less than 3.50%,
    P: 0.001% or more and 0.100% or less,
    S: 0.0001% or more and 0.0200% or less,
    Contains Al: 0.010% or more and 2.000% or less and N: 0.0100% or less, with the remainder consisting of Fe and inevitable impurities,
    The base steel plate is
    Area ratio of bainitic ferrite: 3.0% or more and 20.0% or less,
    Area ratio of tempered martensite: 40.0% or more and 90.0% or less,
    Area ratio of retained austenite: more than 3.0% and less than 15.0%,
    Carbon concentration in retained austenite: 0.60% by mass or more and 1.30% by mass or less,
    Fresh martensite area ratio: 10.0% or less,
    Density of carbides in tempered martensite: 8.0 pieces/μm 2 or less,
    It has a steel structure that is
    The amount of diffusible hydrogen in the base steel sheet is 0.50 mass ppm or less,
    Furthermore, a V-VDA bending test was performed up to the maximum load point,
    In the L section,
    The length of the crack is 400 μm or less,
    Furthermore, in a region formed at a position of up to 50 μm on each side of the start line in the vertical direction from each position of the start line, which starts from the bending apex on the outside of the VDA bending and extends up to a position of 50 μm in the plate thickness direction,
    Regarding the average grain size in the plate thickness direction of bainitic ferrite, the ratio of the average grain size before processing to the average grain size after processing is 5.0 or less,
    A steel plate having a tensile strength of 1180 MPa or more.
  2.  前記素地鋼板の成分組成が、さらに、質量%で、
      Nb:0.200%以下、
      Ti:0.200%以下、
      V:0.200%以下、
      B:0.0100%以下、
      Cr:1.000%以下、
      Ni:1.000%以下、
      Mo:1.000%以下、
      Sb:0.200%以下、
      Sn:0.200%以下、
      Cu:1.000%以下、
      Ta:0.100%以下、
      W:0.500%以下、
      Mg:0.0200%以下、
      Zn:0.0200%以下、
      Co:0.0200%以下、
      Zr:0.1000%以下、
      Ca:0.0200%以下、
      Se:0.0200%以下、
      Te:0.0200%以下、
      Ge:0.0200%以下、
      As:0.0500%以下、
      Sr:0.0200%以下、
      Cs:0.0200%以下、
      Hf:0.0200%以下、
      Pb:0.0200%以下、
      Bi:0.0200%以下および
      REM:0.0200%以下
    のうちから選ばれる少なくとも1種を含有する、請求項1に記載の鋼板。
    The composition of the base steel sheet further includes, in mass%,
    Nb: 0.200% or less,
    Ti: 0.200% or less,
    V: 0.200% or less,
    B: 0.0100% or less,
    Cr: 1.000% or less,
    Ni: 1.000% or less,
    Mo: 1.000% or less,
    Sb: 0.200% or less,
    Sn: 0.200% or less,
    Cu: 1.000% or less,
    Ta: 0.100% or less,
    W: 0.500% or less,
    Mg: 0.0200% or less,
    Zn: 0.0200% or less,
    Co: 0.0200% or less,
    Zr: 0.1000% or less,
    Ca: 0.0200% or less,
    Se: 0.0200% or less,
    Te: 0.0200% or less,
    Ge: 0.0200% or less,
    As: 0.0500% or less,
    Sr: 0.0200% or less,
    Cs: 0.0200% or less,
    Hf: 0.0200% or less,
    Pb: 0.0200% or less,
    The steel plate according to claim 1, containing at least one selected from Bi: 0.0200% or less and REM: 0.0200% or less.
  3.  前記鋼板の片面または両面において最表層として亜鉛めっき層を備える、請求項1または2に記載の鋼板。 The steel plate according to claim 1 or 2, comprising a galvanized layer as the outermost layer on one or both sides of the steel plate.
  4.  前記素地鋼板は、素地鋼板表面から板厚方向に200μm以下の領域を表層とした際、
    前記表層に、板厚1/4位置のビッカース硬さに対して、ビッカース硬さが85%以下である表層軟質層を有し、
     前記素地鋼板表面から前記表層軟質層の板厚方向深さの1/4位置および板厚方向深さの1/2位置の夫々における板面の50μm×50μmの領域において、300点以上のナノ硬度を測定したとき、
    前記素地鋼板表面から前記表層軟質層の板厚方向深さの1/4位置の板面のナノ硬度が7.0GPa以上の測定数割合が、前記表層軟質層の板厚方向深さの1/4位置の全測定数に対して0.10以下であり、
    さらに、前記素地鋼板表面から前記表層軟質層の板厚方向深さの1/4位置の板面のナノ硬度の標準偏差σが1.8GPa以下であり、
    さらに、前記素地鋼板表面から前記表層軟質層の板厚方向深さの1/2位置の板面のナノ硬度の標準偏差σが2.2GPa以下である、請求項1~3のいずれかに記載の鋼板。
    When the base steel plate has an area of 200 μm or less in the thickness direction from the surface of the base steel plate as the surface layer,
    The surface layer has a soft surface layer whose Vickers hardness is 85% or less with respect to the Vickers hardness at the 1/4 position of the plate thickness,
    Nano hardness of 300 points or more in a 50 μm x 50 μm area of the plate surface at 1/4 position and 1/2 depth in the plate thickness direction of the surface soft layer from the surface of the base steel plate, respectively. When measuring
    The proportion of measurements where the nano-hardness of the plate surface at 1/4 of the depth in the thickness direction of the soft surface layer from the surface of the base steel sheet is 7.0 GPa or more is 1/4 of the depth in the thickness direction of the soft surface layer. 0.10 or less for the total number of measurements at 4 positions,
    Furthermore, the standard deviation σ of the nano-hardness of the plate surface at a position 1/4 of the thickness direction depth of the surface soft layer from the base steel plate surface is 1.8 GPa or less,
    Further, according to any one of claims 1 to 3, the standard deviation σ of nanohardness of the plate surface at a position 1/2 the depth in the plate thickness direction of the surface soft layer from the surface of the base steel plate is 2.2 GPa or less. steel plate.
  5.  前記鋼板の片面または両面において、前記素地鋼板の上に形成された金属めっき層を有する、請求項1~4のいずれかに記載の鋼板。 The steel plate according to any one of claims 1 to 4, having a metal plating layer formed on the base steel plate on one or both sides of the steel plate.
  6.  請求項1~5のいずれかに記載の鋼板を用いてなる、部材。 A member made of the steel plate according to any one of claims 1 to 5.
  7.  請求項1または2に記載の成分組成を有する鋼スラブに熱間圧延を施して熱延鋼板とする、熱延工程と、
     該熱延鋼板を酸洗する酸洗工程と、
     該酸洗工程後の鋼板を、焼鈍温度:(Ac+0.4×(Ac-Ac))℃以上900℃以下、且つ焼鈍時間:20秒以上で焼鈍する、焼鈍工程と、
     該焼鈍工程後の鋼板を400℃以上600℃以下の第一冷却停止温度まで冷却する、第一冷却工程と、
     該第一冷却工程後の鋼板を100℃以上300℃以下の第二冷却停止温度まで25.0℃/秒以下の平均冷却速度で冷却し、
    該冷却時、前記鋼板に対して、300℃以上450℃以下の温度域で2.0kgf/mm以上の張力を一回以上付与し、
    その後、
    前記鋼板を、1パス当たり直径500mm以上1500mm以下のロールにロール1/4周分接触させながら4パス以上付与する処理、および
    前記鋼板を、1パス当たり直径500mm以上1500mm以下のロールにロール1/2周分接触させながら、2パス以上付与する処理を行う、第二冷却工程と、
     該第二冷却工程後の前記鋼板を、焼戻し温度:300℃超500℃以下の温度域まで加熱し、且つ前記温度域で焼戻し時間:20秒以上900秒以下保持する再加熱処理を行い、該再加熱処理時、以下の式(1)で示す炭化物制御パラメータCPを10000以上15000以下とする、再加熱工程と、を含み、
    あるいはさらに
    前記酸洗工程後、且つ前記焼鈍工程前の鋼板に、冷間圧延して冷延鋼板を得る、冷延工程を含む、鋼板の製造方法。
     CP=(T+273)×(k+1.2×logt) ・・・式(1)
     ここで、T:焼戻し温度(℃)、k:C含有量に依存した材料定数、t:焼戻し時間(秒)であり、
    k=-6×C+17.8であり、
    :第二冷却工程で生成するマルテンサイト中の炭素量(質量%)である。
    A hot rolling step of hot rolling a steel slab having the composition according to claim 1 or 2 to obtain a hot rolled steel plate;
    A pickling step of pickling the hot rolled steel sheet;
    An annealing step of annealing the steel plate after the pickling step at an annealing temperature of (Ac 1 +0.4×(Ac 3 −Ac 1 ))° C. or higher and 900° C. or lower, and an annealing time of 20 seconds or more;
    A first cooling step of cooling the steel plate after the annealing step to a first cooling stop temperature of 400° C. or higher and 600° C. or lower;
    Cooling the steel plate after the first cooling step to a second cooling stop temperature of 100 ° C. or more and 300 ° C. or less at an average cooling rate of 25.0 ° C. / seconds or less,
    During the cooling, a tension of 2.0 kgf/mm 2 or more is applied to the steel plate at least once in a temperature range of 300 ° C. or higher and 450 ° C. or lower,
    after that,
    A process of applying the steel plate to a roll having a diameter of 500 mm or more and 1500 mm or less for 4 passes or more while contacting the roll for 1/4 turn per pass, and applying the steel plate to a roll of 500 mm or more and 1500 mm or less in diameter per pass for 1/4 pass. A second cooling step in which a process is performed in which two or more passes are applied while contacting for two rounds;
    The steel plate after the second cooling step is heated to a tempering temperature range of more than 300°C and 500°C or less, and is heated in the temperature range for a tempering time of 20 seconds or more and 900 seconds or less, and During the reheating treatment, a reheating step in which the carbide control parameter CP shown by the following formula (1) is set to 10,000 or more and 15,000 or less,
    Alternatively, the method for manufacturing a steel plate further includes a cold rolling process of cold rolling the steel plate after the pickling process and before the annealing process to obtain a cold rolled steel plate.
    CP=(T+273)×(k+1.2×logt)...Formula (1)
    Here, T: tempering temperature (°C), k: material constant depending on C content, t: tempering time (seconds),
    k=-6×C M +17.8,
    CM : Carbon content (mass%) in martensite produced in the second cooling step.
  8.  前記第一冷却工程後、かつ前記第二冷却工程前の前記鋼板に亜鉛めっき処理を施し、前記鋼板に亜鉛めっき層を形成する亜鉛めっき工程を含む、請求項7に記載の鋼板の製造方法。 The method for manufacturing a steel sheet according to claim 7, comprising a galvanizing step of performing galvanization on the steel sheet after the first cooling step and before the second cooling step to form a galvanized layer on the steel sheet.
  9.  前記焼鈍工程における焼鈍を、露点-30℃以上の雰囲気下で行う、請求項7または8に記載の鋼板の製造方法。 The method for manufacturing a steel plate according to claim 7 or 8, wherein the annealing in the annealing step is performed in an atmosphere with a dew point of −30° C. or higher.
  10.  前記酸洗工程の後、かつ前記焼鈍工程の前に、前記鋼板の片面または両面において、金属めっきを施し金属めっき層を形成する金属めっき工程を含む、請求項7~9のいずれかに記載の鋼板の製造方法。 After the pickling step and before the annealing step, a metal plating step is performed to form a metal plating layer on one or both surfaces of the steel plate, according to any one of claims 7 to 9. Method of manufacturing steel plates.
  11.  請求項1~5のいずれかに記載の鋼板に、成形加工、接合加工の少なくとも一方を施して部材とする工程を含む、部材の製造方法。
     
    A method for producing a member, the method comprising the step of subjecting the steel plate according to any one of claims 1 to 5 to at least one of forming and joining to produce a member.
PCT/JP2023/006926 2022-05-11 2023-02-27 Steel sheet, member, and methods for producing same WO2023218732A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023565463A JPWO2023218732A1 (en) 2022-05-11 2023-02-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-078347 2022-05-11
JP2022078347 2022-05-11

Publications (1)

Publication Number Publication Date
WO2023218732A1 true WO2023218732A1 (en) 2023-11-16

Family

ID=88729918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006926 WO2023218732A1 (en) 2022-05-11 2023-02-27 Steel sheet, member, and methods for producing same

Country Status (2)

Country Link
JP (1) JPWO2023218732A1 (en)
WO (1) WO2023218732A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051238A1 (en) * 2011-10-04 2013-04-11 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same
WO2020136990A1 (en) * 2018-12-26 2020-07-02 Jfeスチール株式会社 High-strength hot-dip zinc-coated steel sheet and method for manufacturing same
WO2021153393A1 (en) * 2020-01-31 2021-08-05 Jfeスチール株式会社 Steel plate, member, and methods for manufacturing said steel plate and said member
WO2021200580A1 (en) * 2020-03-31 2021-10-07 Jfeスチール株式会社 Steel sheet, member, and methods for producing same
WO2022079988A1 (en) * 2020-10-13 2022-04-21 Jfeスチール株式会社 High-strength cold rolled steel sheet, high-strength plated steel sheet, method for manufacturing high-strength cold rolled steel sheet, and method for manufacturing high-strength plated steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051238A1 (en) * 2011-10-04 2013-04-11 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same
WO2020136990A1 (en) * 2018-12-26 2020-07-02 Jfeスチール株式会社 High-strength hot-dip zinc-coated steel sheet and method for manufacturing same
WO2021153393A1 (en) * 2020-01-31 2021-08-05 Jfeスチール株式会社 Steel plate, member, and methods for manufacturing said steel plate and said member
WO2021200580A1 (en) * 2020-03-31 2021-10-07 Jfeスチール株式会社 Steel sheet, member, and methods for producing same
WO2022079988A1 (en) * 2020-10-13 2022-04-21 Jfeスチール株式会社 High-strength cold rolled steel sheet, high-strength plated steel sheet, method for manufacturing high-strength cold rolled steel sheet, and method for manufacturing high-strength plated steel sheet

Also Published As

Publication number Publication date
JPWO2023218732A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
JP7001202B1 (en) Steel plate and members
WO2020184154A1 (en) High-strength steel sheet and method for producing same
CN115715332A (en) Galvanized steel sheet, member, and method for producing same
JP7195501B1 (en) Hot-dip galvanized steel sheet, manufacturing method thereof, and member
CN115768915B (en) Galvanized steel sheet, member, and method for producing same
WO2023026819A1 (en) High-strength steel sheet and method for manufacturing same
JP7197062B1 (en) Galvanized steel sheet and member, and manufacturing method thereof
JP7197063B1 (en) Galvanized steel sheet and member, and manufacturing method thereof
WO2023218732A1 (en) Steel sheet, member, and methods for producing same
WO2023218729A1 (en) Steel sheet, member, and method for manufacturing same
CN115698361A (en) Steel sheet, member, and method for producing same
WO2023218730A1 (en) Steel sheet, member, and method for producing same
WO2023218731A1 (en) Steel sheet, member, and method for producing same
JP7364119B1 (en) Hot-dip galvanized steel sheets, members made of hot-dip galvanized steel sheets, automobile frame structural parts or automobile reinforcement parts made of the members, and methods for producing hot-dip galvanized steel sheets and members.
WO2023188539A1 (en) Steel sheet, member, and method for producing same
JP7473860B1 (en) High-strength steel plate, its manufacturing method, components and automobile parts
JP2008240047A (en) High-strength steel sheet having excellent scale adhesion upon hot pressing, and method for producing the same
WO2023188643A1 (en) Galvanized steel sheet, member, and methods for producing these
JP7367893B1 (en) High-strength steel plates, members made of high-strength steel plates, automobile frame structural parts or reinforcing parts for automobiles made of the members, and methods for producing high-strength steel plates and members.
WO2023191020A1 (en) Galvanized steel sheet, member, and method for manufacturing same
WO2023199776A1 (en) Hot stamp molded body
WO2023007833A1 (en) Galvanized steel sheet and member, and method for manufacturing same
JP7311068B1 (en) Galvanized steel sheet and member, and manufacturing method thereof
CN115698362B (en) Steel sheet, member, and method for producing same
WO2022196733A1 (en) Steel sheet, steel member, and coated steel member

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023565463

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803219

Country of ref document: EP

Kind code of ref document: A1