WO2023218723A1 - 可変静翼及び圧縮機 - Google Patents
可変静翼及び圧縮機 Download PDFInfo
- Publication number
- WO2023218723A1 WO2023218723A1 PCT/JP2023/005981 JP2023005981W WO2023218723A1 WO 2023218723 A1 WO2023218723 A1 WO 2023218723A1 JP 2023005981 W JP2023005981 W JP 2023005981W WO 2023218723 A1 WO2023218723 A1 WO 2023218723A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blade
- height direction
- main body
- variable stator
- leading edge
- Prior art date
Links
- 239000012530 fluid Substances 0.000 claims abstract description 34
- 230000007246 mechanism Effects 0.000 description 21
- 238000011144 upstream manufacturing Methods 0.000 description 16
- 230000004048 modification Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- 230000002093 peripheral effect Effects 0.000 description 11
- 230000000994 depressogenic effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000000384 rearing effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/10—Final actuators
- F01D17/12—Final actuators arranged in stator parts
- F01D17/14—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
- F01D17/16—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D9/00—Stators
- F01D9/02—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
- F01D9/04—Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/54—Fluid-guiding means, e.g. diffusers
- F04D29/56—Fluid-guiding means, e.g. diffusers adjustable
Definitions
- the present disclosure relates to variable stator vanes and compressors.
- This application claims priority to Japanese Patent Application No. 2022-076917 filed in Japan on May 9, 2022, the contents of which are incorporated herein.
- Some compressors include a rotor that rotates around an axis, a casing that covers the rotor, and a plurality of rows of stationary blades.
- the rotor has a rotor body centered on an axis, and a plurality of rotor blade rows attached to the rotor body.
- the plurality of rotor blade rows are lined up in the axial direction, which is the direction in which the axis extends.
- Each rotor blade row has a plurality of rotor blades arranged in a circumferential direction centered on an axis.
- a plurality of stator blade rows are attached to the casing.
- Each of the plurality of stator blade rows is arranged downstream of any one of the plurality of rotor blade rows.
- Each stator blade row has a plurality of stator blades lined up in the circumferential direction.
- the compressor described in Patent Document 1 has variable stator vanes configured to be rotatable so as to change the angle of the stator vane main body with respect to the flow direction of the main flow of working fluid.
- a curved surface portion is provided on a vane surface adjacent to a radial end surface protruding outward from the rotary shaft in a stator vane main body connected to the rotary shaft.
- the radius of curvature of the curved surface portion is formed to gradually become smaller as it moves away from the rotation axis.
- the curved surface portion suppresses turbulence in the flow of the working fluid near the rotating shaft where the pressure difference between the blade surfaces is large.
- a minute gap is formed between the stator vane main body and an inner casing or an outer casing that supports the stator vane main body via a rotating shaft.
- a leakage flow occurs in this gap, the flow of the working fluid flowing around the gap is disturbed and a vortex is generated.
- the occurrence of leakage flow in the gaps increases pressure loss and may reduce the efficiency of the compressor.
- the present disclosure provides a variable stator vane and a compressor that can suppress leakage flow and suppress a decrease in efficiency.
- the variable stator vane includes a stator blade main body extending in a blade height direction intersecting a flow direction of a working fluid, and a stator blade body connected to an end of the stator vane main body in the blade height direction, a blade rotation shaft rotatable so as to change the angle of the stationary blade body with respect to the flow direction, the blade rotation shaft being a rotation shaft body extending around a rotation axis extending in the blade height direction; , an enlarged diameter portion that extends around the rotational axis to connect the rotational shaft main body and the stationary blade main body, and has an outer diameter larger than the outer diameter of the rotational shaft main body when viewed from the blade height direction;
- the stationary blade body has a leading edge extending in the blade height direction, a trailing edge extending in the blade height direction, and a blade connecting the leading edge and the trailing edge. It has a pressure surface and a suction surface, and the enlarged diameter portion is formed in a size that overlaps at least one of the leading edge
- a compressor includes a rotor including variable stator blades as described above, a rotor body, and a plurality of moving blades arranged in an axial direction and a circumferential direction of the rotor body, and a rotor disposed outside the rotor. an inner casing disposed outside the inner casing; and a rotation drive unit connected to the blade rotation shaft and rotating the blade rotation shaft, and the variable stator blade is connected to the inner casing. and rotatably arranged relative to the outer casing.
- variable stator vanes and compressor of the present disclosure it is possible to suppress leakage flow and suppress a decrease in efficiency.
- FIG. 2 is a cross-sectional view of the main part (the upper half on the suction port side) of the compressor according to the embodiment of the present disclosure.
- FIG. 2 is an enlarged sectional view of a main part of a variable stator vane according to a first embodiment of the present disclosure.
- FIG. 3 is a schematic diagram illustrating a variable stator blade in a view taken along arrows III-III in FIG. 2;
- FIG. 4 is an arrow view corresponding to FIG. 3 and showing a variable stator vane of a first modification of the first embodiment of the present disclosure.
- FIG. 4 is an arrow view corresponding to FIG. 3 and showing a variable stator vane of a second modification of the first embodiment of the present disclosure.
- FIG. 7 is an enlarged sectional view of a main part of a variable stator vane according to a second embodiment of the present disclosure.
- the compressor 1 takes in a large amount of working fluid A and compresses it.
- the compressor 1 is, for example, an axial flow compressor applied to a gas turbine.
- the compressor 1 includes a rotor 2, a casing 3, and a plurality of variable stator vane mechanisms 4.
- the direction in which the axis O of the compressor 1 extends is referred to as the axial direction Da.
- the axial direction Da is the flow direction of the working fluid A in the compressor 1.
- the upstream side Dau in the flow direction of the working fluid A is defined as the upstream side Dau (one side, first side) in the axial direction Da.
- the downstream side Dad in the flow direction of the working fluid A is defined as the downstream side Dad (the other side, second side) in the axial direction Da.
- the radial direction of the compressor 1 with respect to the axis O is simply referred to as the radial direction Dr.
- the side approaching the axis O in the radial direction Dr is defined as the inner side Dri in the radial direction Dr.
- the side opposite to the inner side Dri in the radial direction Dr is defined as the outer side Dr in the radial direction Dr.
- the circumferential direction of the compressor 1 centered on the axis O is simply referred to as the circumferential direction Dc.
- the rotor 2 has a rotor main body 21 and a plurality of rotor blade rows 22.
- the rotor main body 21 extends in the axial direction Da with the axis O as the center.
- the rotor body 21 is a columnar member centered on the axis O.
- the rotor main body 21 is rotatably supported with respect to the casing 3 by a bearing (not shown).
- the plurality of rotor blade rows 22 are attached to the rotor main body 21.
- the plural rotor blade rows 22 are arranged at intervals in the axial direction Da.
- Each of the plurality of rotor blade rows 22 has a plurality of rotor blades 25 arranged in the circumferential direction Dc.
- the rotor blade row 22 closest to the upstream side Dau in the axial direction Da is defined as the first rotor blade row 221.
- the rotor blade row 22 disposed on the downstream side Dad in the axial direction Da with respect to the first rotor blade row 221 is referred to as a second rotor blade row 222.
- the first rotor blade row 221, the second rotor blade row 222, the third rotor blade row 223, and the fourth rotor blade row are arranged in order from the upstream side Dau to the downstream side Dad in the axial direction Da.
- a blade row 224 is arranged.
- a plurality of rotor blades 25 are arranged for each rotor blade row 22.
- the plurality of rotor blades 25 are fixed to the rotor body 21.
- a plurality of rotor blades 25 fixed to the rotor main body 21 are arranged in the circumferential direction Dc for each rotor blade row 22.
- the moving blades 25 are arranged so as to protrude from the outer peripheral surface of the rotor main body 21.
- the casing 3 has an inner casing 31, an outer casing 32, and struts 33.
- the inner casing 31 is formed into a cylindrical shape around the axis O.
- the inner casing 31 covers a part of the rotor main body 21 from the outside Dr in the radial direction Dr.
- a plurality of inner casings 31 are arranged apart from each other in the axial direction Da.
- the outer casing 32 is formed into a cylindrical shape centered on the axis O.
- the outer casing 32 covers the inner casing 31 and the rotor main body 21 from the outer side Dr in the radial direction Dr.
- a cylindrical main flow path S through which the working fluid A flows is formed between the outer casing 32 and the inner casing 31. That is, the inner circumferential surface 321 of the outer casing 32 and the outer circumferential surface 311 of the inner casing 31 are flow path forming surfaces that define a part of the main flow path S.
- the inner peripheral surface 321 of the outer casing 32 facing the inner Dri of the radial direction Dr is located in the axial direction when viewed from the circumferential direction Dc in a region overlapping with the position where the rotor blades 25 and the variable stator blades 5 described later are arranged. It is inclined toward the inner side Dri in the radial direction Dr as it goes from the upstream side Dau to the downstream side Dad.
- the inner peripheral surface 321 of the outer casing 32 is curved in a concave shape when viewed from the axial direction Da.
- the outer circumferential surface 311 of the inner casing 31 facing the outer side Dr in the radial direction Dr is located upstream in the axial direction Da when viewed from the circumferential direction Dc in a region that overlaps with the position where the rotor blades 25 and the variable stator blades 5 are arranged. It is inclined toward the outer side Dro in the radial direction Dr as it goes from the side Dau to the downstream side Dad.
- the outer peripheral surface 311 of the inner casing 31 is curved in a convex shape when viewed from the axial direction Da.
- a plurality of struts 33 are arranged in the circumferential direction Dc between the inner casing 31 and the outer casing 32.
- a plurality of struts 33 connect the inner casing 31 and the outer casing 32.
- the casing 3 has a suction port 35 and a discharge port (not shown).
- the suction port 35 is opened and formed at the upstream Dau end of the casing 3 in the axial direction Da.
- the suction port 35 communicates with the main flow path S.
- the suction port 35 supplies working fluid A (for example, outside air) into the main flow path S.
- the discharge port is opened and formed at the downstream end Dad of the casing 3 in the axial direction Da.
- the discharge port communicates with the main flow path S.
- the discharge port discharges the compressed working fluid A flowing through the main flow path S to the outside of the casing 3 .
- variable stator vane mechanism 4 (Configuration of variable stator vane mechanism)
- the plurality of variable stator vane mechanisms 4 are arranged on the upstream side Dau in the axial direction Da with respect to each rotor blade row 22 so as to correspond to each rotor blade row 22. That is, in the compressor 1 of the present embodiment, the variable stator blade mechanism 4 includes the first variable stator blade mechanism 41 and the second rotor blade row 222 arranged on the upstream side Dau of the first rotor blade row 221 in the axial direction Da.
- the second variable stator vane mechanism 42 is disposed on the upstream side Dau in the axial direction Da of the third rotor blade row 223, the third variable stator vane mechanism 43 is disposed on the upstream side Dau in the axial direction Da of the third rotor blade row 223, and the fourth rotor blade mechanism 42 is disposed on the upstream side Dau in the axial direction Da.
- a fourth variable stator blade mechanism 44 is disposed on the upstream side Dau of the blade row 224 in the axial direction Da.
- variable stator vane mechanism 4 As shown in FIG. 1, the variable stator vane mechanism 4 is attached to the casing 3.
- the variable stator vane mechanism 4 of this embodiment includes a plurality of variable stator vanes 5 and a rotational drive section 8.
- variable stator blade 5 (Configuration of variable stator blade)
- the variable stator blade 5 is arranged rotatably with respect to the inner casing 31 and the outer casing 32.
- a plurality of variable stator vanes 5 are arranged in parallel in the circumferential direction Dc.
- the variable stator blade 5 is arranged on the upstream side Dau of each rotor blade 25 in the axial direction Da.
- the variable stator blade 5 of this embodiment has a stator blade main body 51 and two blade rotation shafts 6.
- the stationary blade main body 51 is a three-dimensional blade that has a blade-shaped cross section and extends in the blade height direction D1.
- the stationary vane main body 51 is arranged within the main flow path S through which the working fluid A flows.
- the stator blade main body 51 has two edges, a leading edge 511 and a trailing edge 512, and a pressure surface 515 and a suction surface 516, which are blade surfaces.
- the blade height direction D1 in this embodiment is a direction perpendicular to (crosses) the axial direction Da, which is the flow direction of the working fluid A, and is the radial direction Dr in the compressor 1.
- the chord direction D2 which will be described later, is a direction perpendicular to the blade height direction D1 in this embodiment, and includes the direction in which the chord connects the leading edge 511 and the trailing edge 512 in the blade cross section, and includes the direction in which the blade chord extends, and the blade height The direction is parallel to an imaginary line connecting the most distal end of the leading edge 511 and the most rear end of the trailing edge 512 when viewed from the horizontal direction D1.
- the chord direction D2 may coincide with the axial direction Da of the compressor 1 in some cases.
- a direction perpendicular to (crosses) the flow direction and the blade height direction D1 is a circumferential direction Dc in the compressor 1.
- the leading edge 511 extends in the blade height direction D1.
- the leading edge 511 is a front end in the chord direction D2 where the pressure surface 515 and the suction surface 516 are connected.
- the trailing edge 512 extends in the blade height direction D1.
- the trailing edge 512 is an end on the rear side in the chord direction D2 where the pressure surface 515 and the suction surface 516 are connected.
- the positive pressure surface 515 is a ventral wing surface when viewed from the wing height direction D1, and is formed in a concave shape.
- the suction surface 516 is a dorsal wing surface when viewed from the wing height direction D1, and is formed in a convex shape. Therefore, the stator blade main body 51 has an airfoil-shaped cross section in which a pressure surface 515 and a suction surface 516 are continuous via a leading edge 511 and a trailing edge 512.
- the ends 52 and 53 of the stator blade main body in the radial direction Dr are connected to the blade rotation shaft 6.
- the blade rotation shaft 6 is connected to each stationary blade body 51.
- the end portion 52 of the stator blade main body on the outer side Dr in the radial direction Dr is inclined away from the blade rotation axis 6 from the leading edge 511 toward the trailing edge 512 when viewed from the circumferential direction Dc.
- the end portion 52 of the stator blade main body on the outer side Dr in the radial direction Dr of this embodiment is inclined so as to be parallel to the inner circumferential surface 321 of the outer casing 32 when viewed from the circumferential direction Dc.
- the end portion 53 of the stator blade main body on the inner side Dr in the radial direction Dr is inclined away from the blade rotation axis 6 from the leading edge 511 toward the trailing edge 512 when viewed from the circumferential direction Dc.
- the end portion 53 of the stator blade main body on the inner side Dri in the radial direction Dr of this embodiment is inclined so as to be parallel to the outer circumferential surface 311 of the inner casing 31 when viewed from the circumferential direction Dc.
- the blade rotation shaft 6 is rotatable so as to change the angle of the stationary blade body 51 with respect to the axial direction Da (the main flow direction of the working fluid A).
- the variable stator blade 5 of the present embodiment has an outer blade rotation shaft 61 connected to the end portion 52 of the stator blade body on the outer side Dr in the radial direction Dr as a blade rotation axis 6, and a stator blade on the inner side Dr in the radial direction Dr. It has an inner wing rotation shaft 62 connected to the end portion 53 of the main body.
- the inner blade rotation shaft 62 and the outer blade rotation shaft 61 extend around the same rotation axis Ar extending in the blade height direction D1.
- the rotation axis Ar is located closer to the leading edge 511 than the trailing edge 512 in the blade chord direction D2 when viewed from the blade height direction D1.
- the outer blade rotation shaft 61 is arranged to be rotatable with respect to the outer casing 32 around the rotation axis Ar.
- the outer blade rotation shaft 61 of this embodiment is formed in a different shape from the inner blade rotation shaft 62.
- the outer blade rotation shaft 61 is a cylindrical member extending in the blade height direction D1 centering on the rotation axis Ar.
- the outer blade rotating shaft 61 extends through the outer casing 32.
- the inner blade rotation shaft 62 is arranged to be rotatable with respect to the inner casing 31 about the rotation axis Ar.
- the inner blade rotating shaft 62 is housed inside the inner casing 31 so as to fit into a hole recessed from the outer peripheral surface 311 of the inner casing 31 .
- the inner blade rotating shaft 62 of this embodiment has a rotating shaft main body 71, an enlarged diameter portion 72, and an outer disk portion 73.
- the rotation shaft main body 71 extends in the blade height direction D1 centering on the rotation axis Ar.
- the rotation shaft main body 71 has a circular cross section centered on the rotation axis Ar.
- the enlarged diameter portion 72 extends in the blade height direction D1 centering on the rotation axis Ar.
- the enlarged diameter portion 72 connects the rotary shaft body 71 and the stationary blade body 51.
- the enlarged diameter portion 72 is formed integrally with the rotary shaft body 71 and the stationary blade body 51.
- the enlarged diameter portion 72 has a circular cross section centered on the rotation axis Ar, which is larger than the rotation shaft main body 71. That is, the expanded diameter portion 72 is formed to have an outer diameter larger than the outer diameter of the rotating shaft main body 71 when viewed from the blade height direction D1. As shown in FIG.
- the position of the side surface of the enlarged diameter portion 72 overlaps with the position of the innermost end Dri of the leading edge 511 in the radial direction Dr when viewed from the blade height direction D1.
- the enlarged diameter portion 72 has a first surface 723 to which the stationary blade main body 51 is connected.
- the first surface 723 is inclined away from the rotating shaft main body 71 from a front end 721 near the front edge 511 to a rear end 722 near the rear edge 512 when viewed from the circumferential direction Dc. More specifically, the first surface 723 is the inner casing when viewed from the circumferential direction Dc with the stator blade main body 51 located at the position (angle) when the compressor 1 is operated at its rated value.
- the first surface 723 forms a smooth surface with the outer peripheral surface 311 of the inner casing 31 when the stator blade main body 51 is located at the position (angle) when the compressor 1 is operated at its rated value. is formed.
- the outer peripheral surface 311 of the inner casing 31 is curved in a convex shape when viewed from the axial direction Da.
- the outer disk portion 73 extends in the blade height direction D1 centering on the rotation axis Ar.
- the outer disk portion 73 is connected to the rotating shaft main body 71 on the side opposite to the enlarged diameter portion 72 in the blade height direction D1.
- the outer disk portion 73 is formed integrally with the rotating shaft main body 71.
- the outer disk portion 73 has a circular cross section centered on the rotation axis Ar, which is larger than the rotation shaft main body 71 and smaller than the enlarged diameter portion 72. That is, the outer disk portion 73 has an outer diameter larger than the outer diameter of the rotating shaft main body 71 and smaller than the enlarged diameter portion 72 when viewed from the blade height direction D1.
- the rotation drive unit 8 rotates the blade rotation shaft 6.
- the rotation drive unit 8 is connected to the blade rotation shaft 6.
- the rotation drive unit 8 of this embodiment is connected to a plurality of outer blade rotation shafts 61 in each variable stator vane mechanism 4 .
- the rotation drive unit 8 rotates the outer blade rotation shaft 61 around the rotation axis Ar, thereby indirectly rotating the inner blade rotation shaft 62 around the rotation axis Ar. Further, the rotation drive unit 8 rotates the plurality of outer blade rotation shafts 61 at the same rotation angle.
- the rotation angles of the plurality of stator blade bodies 51 arranged in the circumferential direction Dc change, and the flow path area between two adjacent stator blade bodies 51 in the circumferential direction Dc changes.
- the leading edge 511 and the inner blade rotation axis 62 overlap when viewed from the blade height direction D1. Therefore, around the leading edge 511, there is no gap between the stator blade main body 51 and the inner casing 31. Therefore, around the leading edge 511 of the inner casing 31, the flow of the working fluid A is not disturbed between the stator blade main body 51 and the inner casing 31. This suppresses the occurrence of leakage flow in the gap and suppresses pressure loss. As a result, a decrease in efficiency of the compressor 1 due to pressure loss in the variable stator blades 5 can be suppressed.
- the vibration at the leading edge 511 can be suppressed by connecting the leading edge 511 of the end portion 53 of the stationary blade body to the enlarged diameter portion 72.
- the rotation axis Ar of the inner blade rotation shaft 62 is located closer to the leading edge 511 than the trailing edge 512 in the blade chord direction D2 when viewed from the blade height direction D1. That is, in the chord direction D2, the inner blade rotating shaft 62 is located closer to the leading edge 511 than the trailing edge 512. Therefore, the enlarged diameter portion 72 can intensively suppress disturbances in the flow of the working fluid A around the front edge 511 of the inner casing 31. Thereby, the occurrence of leakage flow in the gap around the leading edge 511 can be suppressed with higher precision, and a decrease in efficiency of the compressor 1 can be suppressed.
- the expanded diameter portion 72A is not limited to a shape that overlaps only the leading edge 511 when viewed from the blade height direction D1, as in the first embodiment.
- the enlarged diameter portion 72A only needs to overlap at least one of the leading edge 511 and the trailing edge 512 when viewed from the blade height direction D1. Therefore, when viewed from the blade height direction D1, it may overlap only with the trailing edge 512, or it may overlap with both the leading edge 511 and the trailing edge 512.
- the inner blade rotating shaft 62 of the first modification of the first embodiment as shown in FIG. may overlap. Even in this state, the enlarged diameter portion 72A has a circular cross section centered on the rotation axis Ar, which is larger than the rotation shaft main body 71.
- the entire area of the leading edge 511 and the front extension overlaps with the inner blade rotation axis 62 when viewed from the blade height direction D1. Therefore, there is no gap between the stator blade main body 51 and the inner casing 31 in the entire region from the leading edge 511 to the trailing edge 512. Therefore, in the entire region from the leading edge 511 to the trailing edge 512, the flow of the working fluid A is not disturbed between the stator blade main body 51 and the inner casing 31. This more effectively suppresses the occurrence of leakage flow in the gap and suppresses pressure loss to the maximum. As a result, a decrease in efficiency of the compressor 1 due to pressure loss in the variable stator blades 5 can be greatly suppressed.
- the enlarged diameter portion 72B is formed in a size that allows sliding contact with the enlarged diameter portion 72B of another adjacent variable stator blade 5 when viewed from the blade height direction D1. That is, the enlarged diameter portion 72B is formed to be as large as possible without interfering with the enlarged diameter portion 72B of another adjacent variable stator blade 5.
- the enlarged diameter portion 72B extends to a position beyond the leading edge 511 in the blade chord direction D2 when viewed from the blade height direction D1.
- the expanded diameter portions 72, 72A, and 72B are not limited to a structure in which they always overlap the leading edge 511 when viewed from the blade height direction D1.
- the enlarged diameter portion 72 may be formed in a size that overlaps at least one of the leading edge 511 and the trailing edge 512 when viewed from the blade height direction D1. Therefore, for example, the enlarged diameter portion 72 may overlap only the trailing edge 512 when viewed from the blade height direction D1.
- variable stator vane 5 Next, a second embodiment of the variable stator vane 5 according to the present disclosure will be described.
- the same reference numerals are given to the same components in the figures as in the first embodiment, and the explanation thereof will be omitted.
- the shape of the periphery of the enlarged diameter portion 72C of the blade rotating shaft 6C is different from the first embodiment.
- the first surface 723C is recessed relative to the virtual straight line VL.
- the virtual straight line VL is a virtual line corresponding to the position of the outer peripheral surface 311 of the inner casing 31 when viewed from the circumferential direction Dc assuming that the outer peripheral surface 311 of the inner casing 31 is not depressed.
- the first surface 723C of this embodiment is formed as a three-dimensional curved surface having the largest depression amount ⁇ D from the virtual straight line VL on the rotation axis Ar.
- the first surface 723C is a virtual straight line when the stator blade main body 51 is rotated, for example, by about 15° to 25° with respect to the position (angle) when the compressor 1 is operated at its rated value. It is recessed to reduce the step difference ⁇ H that occurs between the VL and the side surface.
- the depression amount ⁇ D from the virtual straight line VL at the rotation axis Ar is formed to be larger than the step difference ⁇ H.
- the outer circumferential surface 311 of the inner casing 31 is also recessed from the virtual straight line VL on the downstream side Dad in the axial direction Da.
- the outer circumferential surface 311 of the inner casing 31 is statically positioned at the position (angle) when the compressor 1 is operated at its rated value when viewed from the circumferential direction Dc on the downstream side Dad in the axial direction Da with respect to the enlarged diameter portion 72C.
- the first surface 723C is recessed as if it were an extension of the first surface 723C where the wing body 51 is located.
- the top surface of the inner blade rotation shaft 62 is One surface 723 is nearly smooth with the outer circumferential surface 311 of the inner casing 31 . That is, while the compressor 1 is being operated at its rated value, the first surface 723 has almost no unevenness with respect to the outer circumferential surface 311 of the inner casing 31 .
- the opening degree (angle) is changed, so the blade rotation shaft 6 may be rotated at an angle different from that during rated operation. state.
- the front end 721 and the rear end 722 have different sizes in the blade height direction D1. Therefore, as the blade rotation shaft 6 rotates, the front end portion 721 becomes depressed with respect to the outer circumferential surface 311 of the inner casing 31, while the rear end portion 722 protrudes.
- the diameter of the expanded diameter portion 72 is large, the difference in size in the blade height direction D1 is large between the front end portion 721 and the rear end portion 722. In other words, there may be a case where the first surface 723 has large irregularities with respect to the outer circumferential surface 311 of the inner casing 31.
- the first surface 723C of the enlarged diameter portion 72C is depressed. Therefore, the unevenness of the first surface 723C with respect to the outer peripheral surface 311 of the inner casing 31 can be reduced. Thereby, the blade surface Mach number of the variable stator blade 5 when operating at an opening degree different from the rated operation can be reduced. As a result, efficiency can be greatly improved when the compressor 1 is operated at low atmospheric temperatures and high flow rates.
- the numbers of the rotor blade rows 22 and the variable stator blade mechanisms 4 are not limited to those in the embodiment.
- the number of rotor blade rows 22 and variable stator blade mechanisms 4 may be one or more. Therefore, the number of rotor blade rows 22 and variable stator blade mechanisms 4 may be one, or may be four or more as in this embodiment.
- the inner blade rotation shaft 62 and the outer blade rotation shaft 61 have different shapes.
- the inner blade rotation shaft 62 and the outer blade rotation shaft 61 are not limited to different shapes, and may have the same shape.
- variable stator vanes 5 and compressor 1 described in each embodiment can be understood, for example, as follows.
- the variable stator blade 5 includes a stator blade main body 51 extending in a blade height direction D1 intersecting the flow direction of the working fluid A, and an end of the stator blade main body in the blade height direction D1.
- a blade rotation shaft 6B connected to the sections 52 and 53 and rotatable so as to change the angle of the stationary blade main body 51 with respect to the flow direction of the working fluid A, the blade rotation shaft 6B:
- a rotary shaft main body 71 extends around a rotation axis Ar extending in the blade height direction D1, and connects the rotary shaft main body 71 and the stationary blade main body 51, extending around the rotation axis Ar, and
- the stator blade main body 51 has a leading edge 511 extending in the blade height direction D1, and an enlarged diameter portion 72 whose outer diameter when viewed from the direction D1 is larger than the outer diameter of the rotary shaft main body 71.
- the portion 72 is formed in a size that overlaps at least one of the leading edge 511 and the trailing edge 512 when viewed from the blade height direction D1.
- variable stator blade 5 is the variable stator blade 5 of (1), in which the enlarged diameter portion 72 is located at the leading edge 511 when viewed from the blade height direction D1. It overlaps with
- variable stator blade 5 is the variable stator blade 5 of (1) or (2), in which the enlarged diameter portion 72 has the following characteristics when viewed from the blade height direction D1: It overlaps with the trailing edge 512.
- variable stator vane 5 is the variable stator vane 5 according to any one of (1) to (3), and the variable stator vane 5 is arranged in the flow direction and the blade height.
- a plurality of the enlarged diameter portions 72 can be arranged in a line in a direction intersecting the direction D1, and the enlarged diameter portions 72 slide with the enlarged diameter portions 72 of the other adjacent variable stator blades 5 when viewed from the blade height direction D1. It is sized so that it can be accessed.
- variable stator blade 5 is the variable stator blade 5 according to any one of (1) to (4), in which the rotation axis Ar is the same as viewed from the blade height direction D1. In this case, it is arranged at a position closer to the leading edge 511 than to the trailing edge 512 in the chord direction D2 in which the chord connecting the leading edge 511 and the trailing edge 512 extends.
- the blade rotation axis 6B is located closer to the leading edge 511 than the trailing edge 512 in the blade chord direction D2. Therefore, the enlarged diameter portion 72 can intensively suppress disturbances in the flow of the working fluid A around the front edge 511 of the inner casing 31. Thereby, the occurrence of leakage flow in the gap around the leading edge 511 can be suppressed with higher precision, and a decrease in efficiency of the compressor 1 can be suppressed.
- variable stator vane 5 is the variable stator vane 5 according to any one of (1) to (5), in which the enlarged diameter portion 72 has the following characteristics in the blade height direction D1: It has a first surface 723 facing the stator blade main body 51, and the end portions 52, 53 of the stator blade main body are opposite to the leading edge when viewed from a direction intersecting the flow direction and the blade height direction D1.
- the first surface 723 is inclined toward the trailing edge 512 away from the rotating shaft main body 71, and the first surface 723 It is recessed between a front end 721 near the edge 511 and a rear end 722 near the rear edge 512 so as to be away from the ends 52 and 53 of the stator blade body.
- the compressor 1 according to the seventh aspect includes the variable stator blade 5 of any one of (1) to (6), the rotor body 21, and the rotor body 21 in the axial direction Da and the circumferential direction Dc.
- a rotor 2 including a plurality of arranged moving blades 25, an inner casing 31 disposed on the outer side of the rotor 2, an outer casing 32 arranged on the outer side of the inner casing 31, and the blade rotation shaft 6B. and a rotary drive unit 8 connected to the blade rotary shaft 6 ⁇ /b>B to rotate the blade rotation shaft 6 ⁇ /b>B, and the variable stator blade 5 is arranged rotatably with respect to the inner casing 31 and the outer casing 32 .
- variable stator vanes and compressor of the present disclosure it is possible to suppress leakage flow and suppress a decrease in efficiency.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Control Of Turbines (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
可変静翼は、翼高さ方向に延びる静翼本体と、作動流体の流れ方向に対する前記静翼本体の角度を変更させるように回転可能とされた翼回転軸と、を備える。前記翼回転軸は、前記翼高さ方向に延びる回転軸線を中心として延びる回転軸本体と、前記翼高さ方向から見た際の外径が前記回転軸本体の外径よりも大きい拡径部とを有する。前記静翼本体は、前記翼高さ方向に延び、前縁と後縁とを繋ぐ正圧面及び負圧面と、を有する。前記拡径部は、前記翼高さ方向から見た際に、前記前縁及び前記後縁の少なくとも一方と重なる大きさで形成されている。
Description
本開示は、可変静翼及び圧縮機に関する。
本願は、2022年5月9日に日本に出願された特願2022-076917号について優先権を主張し、その内容をここに援用する。
本願は、2022年5月9日に日本に出願された特願2022-076917号について優先権を主張し、その内容をここに援用する。
圧縮機には、軸線を中心として回転するロータと、ロータを覆うケーシングと、複数の静翼列と、を備えたものがある。ロータは、軸線を中心とするロータ本体と、このロータ本体に取り付けられている複数の動翼列と、を有する。複数の動翼列は、軸線が延びている方向である軸線方向に並んでいる。各動翼列は、軸線を中心とする周方向に並ぶ複数の動翼を有する。複数の静翼列は、ケーシングに取り付けられている。複数の静翼列のそれぞれは、複数の動翼列のうちのいずれか一の動翼列の下流側に配置されている。各静翼列は、いずれも、周方向に並ぶ複数の静翼を有する。圧縮機の中には、静翼が回転可能とされた構造を有する圧縮機がある。
例えば、特許文献1に記載の圧縮機は、作動流体の主流の流れ方向に対して静翼本体の角度を変化させるように回転可能に構成された可変静翼を有している。この可変静翼は、回転軸に接続される静翼本体において、回転軸の外側に突出する径方向端面に隣接する翼面に曲面部が設けられている。曲面部の曲率半径は、回転軸から離れるにつれて徐々に小さくなるように形成されている。特許文献1の可変静翼では、この曲面部によって、翼面の圧力差が大きい回転軸の近傍での作動流体の流れの乱れが抑制されている。
ところで、可変静翼を圧縮機に適用する場合、静翼本体と、回転軸を介して静翼本体を支持する内側ケーシングや外側ケーシングとの間には、微小な隙間が形成されている。この隙間で漏れ流れが生じると、その周辺を流れる作動流体の流れが乱され、渦が発生する。このように、隙間での漏れ流れが生じることで、圧力損失が大きくなり、圧縮機の効率が低下してしまう可能性がある。
本開示は、漏れ流れを抑えて効率の低下を抑制することが可能な可変静翼及び圧縮機を提供する。
本開示に係る可変静翼は、作動流体の流れ方向に交差する翼高さ方向に延びる静翼本体と、前記翼高さ方向における前記静翼本体の端部に接続され、前記作動流体の前記流れ方向に対する前記静翼本体の角度を変更させるように回転可能とされた翼回転軸と、を備え、前記翼回転軸は、前記翼高さ方向に延びる回転軸線を中心として延びる回転軸本体と、前記回転軸線を中心として延びて前記回転軸本体と前記静翼本体とを接続し、前記翼高さ方向から見た際の外径が前記回転軸本体の外径よりも大きい拡径部とを有し、前記静翼本体は、前記翼高さ方向に延びる前縁と、前記翼高さ方向に延びる後縁と、前記翼高さ方向に延び、前記前縁と前記後縁とを繋ぐ正圧面及び負圧面と、を有し、前記拡径部は、前記翼高さ方向から見た際に、前記前縁及び前記後縁の少なくとも一方と重なる大きさで形成されている。
本開示に係る圧縮機は、上記したような可変静翼と、ロータ本体、及び前記ロータ本体の軸線方向及び周方向に配列された複数の動翼を含むロータと、前記ロータの外側に配置された内側ケーシングと、前記内側ケーシングの外側に配置された外側ケーシングと、前記翼回転軸と接続され、前記翼回転軸を回転させる回転駆動部と、を備え、前記可変静翼は、前記内側ケーシング及び外側ケーシングに対して回転可能に配置されている。
本開示の可変静翼及び圧縮機によれば、漏れ流れを抑えて効率の低下を抑制することができる。
(第一実施形態)
以下、添付図面を参照して、本開示による可変静翼及び圧縮機を実施するための形態を説明する。しかし、本開示はこれらの実施形態のみに限定されるものではない。
以下、添付図面を参照して、本開示による可変静翼及び圧縮機を実施するための形態を説明する。しかし、本開示はこれらの実施形態のみに限定されるものではない。
(圧縮機の構成)
圧縮機1は、多量の作動流体Aを内部に取り入れて圧縮する。圧縮機1は、例えば、ガスタービンに適用される軸流圧縮機である。図1に示すように、圧縮機1は、ロータ2と、ケーシング3と、複数の可変静翼機構4と、を有する。
圧縮機1は、多量の作動流体Aを内部に取り入れて圧縮する。圧縮機1は、例えば、ガスタービンに適用される軸流圧縮機である。図1に示すように、圧縮機1は、ロータ2と、ケーシング3と、複数の可変静翼機構4と、を有する。
なお、以下の説明の都合上、圧縮機1の軸線Oが延びている方向を軸線方向Daとする。また、軸線方向Daは、圧縮機1において作動流体Aの流れ方向である。さらに、作動流体Aの流れ方向の上流側Dauを軸線方向Daの上流側Dau(一方側、第一側)とする。また、作動流体Aの流れ方向の下流側Dadを軸線方向Daの下流側Dad(他方側、第二側)とする。また、軸線Oを基準とした圧縮機1の径方向を単に径方向Drとする。また、この径方向Drで軸線Oに近づく側を径方向Drの内側Driとする。この径方向Drで径方向Drの内側Driとは反対側を径方向Drの外側Droとする。また、軸線Oを中心とした圧縮機1の周方向を単に周方向Dcとする。
ロータ2は、ロータ本体21と、複数の動翼列22と、を有する。ロータ本体21は、軸線Oを中心として軸線方向Daに延びている。ロータ本体21は、軸線Oを中心とする柱状の部材である。ロータ本体21は、軸受(図示せず)によって、ケーシング3に対して回転可能に支持されている。
複数の動翼列22は、ロータ本体21に取り付けられている。複数の動翼列22は、軸線方向Daに間隔を空けて配置されている。複数の動翼列22は、いずれも、周方向Dcに並ぶ複数の動翼25を有する。ここで、複数の動翼列22のうち、最も軸線方向Daの上流側Dauの動翼列22を第一動翼列221とする。この第一動翼列221に対して軸線方向Daの下流側Dadに配置されている動翼列22を第二動翼列222とする。このように、本実施形態では、軸線方向Daの上流側Dauから下流側Dadに向かって順に、第一動翼列221、第二動翼列222、第三動翼列223、及び第四動翼列224が配置されている。
動翼25は、動翼列22毎に複数配置されている。複数の動翼25は、ロータ本体21に固定されている。ロータ本体21に固定された複数の動翼25は、動翼列22毎に周方向Dcに並んでいる。動翼25は、ロータ本体21の外周面から突出するように配置されている。
ケーシング3は、内側ケーシング31と、外側ケーシング32と、ストラット33とを有する。内側ケーシング31は、軸線Oを中心として筒状に形成されている、内側ケーシング31は、ロータ本体21の一部を径方向Drの外側Droから覆っている。内側ケーシング31は、軸線方向Daに離れて複数配置されている。外側ケーシング32は、軸線Oを中心として筒状に形成されている。外側ケーシング32は、内側ケーシング31及びロータ本体21を径方向Drの外側Droから覆っている。
外側ケーシング32と内側ケーシング31との間には、作動流体Aが流通する筒状の主流路Sが形成されている。つまり、外側ケーシング32の内周面321及び内側ケーシング31の外周面311は、主流路Sの一部を画成する流路形成面となっている。径方向Drの内側Driを向く外側ケーシング32の内周面321は、動翼25や後述する可変静翼5が配置されている位置と重なる領域において、周方向Dcから見た際に、軸線方向Daの上流側Dauから下流側Dadに向かうにしたがって、径方向Drの内側Driに向かうように傾斜している。外側ケーシング32の内周面321は、軸線方向Daから見た際に、凹面状に湾曲している。径方向Drの外側Droを向く内側ケーシング31の外周面311は、動翼25や可変静翼5が配置されている位置と重なる領域において、周方向Dcから見た際に、軸線方向Daの上流側Dauから下流側Dadに向かうにしたがって、径方向Drの外側Droに向かうように傾斜している。内側ケーシング31の外周面311は、軸線方向Daから見た際に、凸面状に湾曲している。
ストラット33は、内側ケーシング31と外側ケーシング32との間で周方向Dcに複数並んでいる。複数のストラット33は、内側ケーシング31と外側ケーシング32とを接続している。
また、ケーシング3は、吸込口35と、吐出口(不図示)と、を有する。吸込口35は、ケーシング3の軸線方向Daの上流側Dauの端に、開口して形成されている。吸込口35は、主流路Sと連通している。吸込口35は、主流路S内に作動流体A(例えば、外気)を供給する。吐出口は、ケーシング3の軸線方向Daの下流側Dadの端に、開口して形成されている。吐出口は、主流路Sと連通している。吐出口は、主流路S内を流通して圧縮された作動流体Aをケーシング3の外部に排出する。
(可変静翼機構の構成)
複数の可変静翼機構4は、各動翼列22に対応するように、各動翼列22に対して軸線方向Daの上流側Dauに配置されている。つまり、本実施形態の圧縮機1では、可変静翼機構4として、第一動翼列221の軸線方向Daの上流側Dauに配置された第一可変静翼機構41、第二動翼列222の軸線方向Daの上流側Dauに配置された第二可変静翼機構42、第三動翼列223の軸線方向Daの上流側Dauに配置された第三可変静翼機構43、及び第四動翼列224の軸線方向Daの上流側Dauに配置された第四可変静翼機構44が配置されている。
複数の可変静翼機構4は、各動翼列22に対応するように、各動翼列22に対して軸線方向Daの上流側Dauに配置されている。つまり、本実施形態の圧縮機1では、可変静翼機構4として、第一動翼列221の軸線方向Daの上流側Dauに配置された第一可変静翼機構41、第二動翼列222の軸線方向Daの上流側Dauに配置された第二可変静翼機構42、第三動翼列223の軸線方向Daの上流側Dauに配置された第三可変静翼機構43、及び第四動翼列224の軸線方向Daの上流側Dauに配置された第四可変静翼機構44が配置されている。
ここで、図1から図3を参照して、可変静翼機構4の構成について説明する。図1に示すように、可変静翼機構4は、ケーシング3に取り付けられている。本実施形態の可変静翼機構4は、複数の可変静翼5と、回転駆動部8と、を有する。
(可変静翼の構成)
可変静翼5は、内側ケーシング31及び外側ケーシング32に対して回転可能に配置されている。複数の可変静翼5は、周方向Dcに並んで、複数配置されている。可変静翼5は、各動翼25の軸線方向Daの上流側Dauに配置されている。本実施形態の可変静翼5は、静翼本体51と、二つの翼回転軸6とを有する。
可変静翼5は、内側ケーシング31及び外側ケーシング32に対して回転可能に配置されている。複数の可変静翼5は、周方向Dcに並んで、複数配置されている。可変静翼5は、各動翼25の軸線方向Daの上流側Dauに配置されている。本実施形態の可変静翼5は、静翼本体51と、二つの翼回転軸6とを有する。
静翼本体51は、翼形状断面を有して翼高さ方向D1に延びる三次元翼である。静翼本体51は、作動流体Aが流通する主流路S内に配置されている。図2及び図3に示すように、静翼本体51は、2つの縁である前縁511及び後縁512と、翼面である正圧面515及び負圧面516とを有している。
なお、本実施形態における翼高さ方向D1は、作動流体Aの流れ方向である軸線方向Daに直交(交差)する方向であって、圧縮機1における径方向Drである。また、後述する翼弦方向D2は、本実施形態における翼高さ方向D1と直交する方向であって、翼断面において前縁511と後縁512とを結ぶ翼弦の延びる方向を含み、翼高さ方向D1から見た際の前縁511の最も先端と後縁512の最も後端とを結んだ仮想線と平行な方向とする。翼弦方向D2は、圧縮機1における軸線方向Daと一致する場合もある。また、流れ方向及び翼高さ方向D1と直交(交差)する方向が圧縮機1における周方向Dcである。
前縁511は、翼高さ方向D1に延びている。前縁511は、正圧面515と負圧面516とが接続される翼弦方向D2の前方側の端部である。後縁512は、翼高さ方向D1に延びている。後縁512は、正圧面515と負圧面516とが接続される翼弦方向D2の後方側の端部である。正圧面515は、翼高さ方向D1から見た際に、腹側の翼面であって、凹面状に形成されている。負圧面516は、翼高さ方向D1から見た際に、背側の翼面であって、凸面状に形成されている。したがって、静翼本体51は、正圧面515と負圧面516とが前縁511と後縁512とを介して連続してなる翼型断面を有している。
また、図1に示すように、径方向Drにおける静翼本体の端部52、53は、翼回転軸6に接続されている。翼回転軸6は、一つ一つの静翼本体51に接続されている。径方向Drの外側Droにおける静翼本体の端部52は、周方向Dcから見た際に、前縁511から後縁512に向かって、翼回転軸6から離れるように傾斜している。本実施形態の径方向Drの外側Droにおける静翼本体の端部52は、周方向Dcから見た際に、外側ケーシング32の内周面321と平行になるように傾斜している。径方向Drの内側Driにおける静翼本体の端部53は、周方向Dcから見た際に、前縁511から後縁512に向かって、翼回転軸6から離れるように傾斜している。本実施形態の径方向Drの内側Driにおける静翼本体の端部53は、周方向Dcから見た際に、内側ケーシング31の外周面311と平行になるように傾斜している。
翼回転軸6は、軸線方向Da(作動流体Aの主流の流れ方向)に対する静翼本体51の角度を変更させるように回転可能とされている。本実施形態の可変静翼5は、翼回転軸6として、径方向Drの外側Droの静翼本体の端部52に接続される外側翼回転軸61と、径方向Drの内側Driの静翼本体の端部53に接続される内側翼回転軸62とを有する。内側翼回転軸62及び外側翼回転軸61は、翼高さ方向D1に延びる同じ回転軸線Arを中心として延びている。回転軸線Arは、翼高さ方向D1から見た際に、翼弦方向D2において、後縁512に対して前縁511に近い位置に配置されている。
外側翼回転軸61は、回転軸線Arを中心として外側ケーシング32に対して回転可能に配置されている。本実施形態の外側翼回転軸61は、内側翼回転軸62とは異なる形状で形成されている。外側翼回転軸61は、回転軸線Arを中心として翼高さ方向D1に延びる円柱状の部材である。外側翼回転軸61は、外側ケーシング32を貫通するように延びている。
図2に示すように、内側翼回転軸62は、回転軸線Arを中心として内側ケーシング31に対して回転可能に配置されている。内側翼回転軸62は、内側ケーシング31の外周面311から窪む孔に収まるように、内側ケーシング31の内部に収容されている。本実施形態の内側翼回転軸62は、回転軸本体71と、拡径部72と、外側円板部73とを有している。回転軸本体71は、回転軸線Arを中心として翼高さ方向D1に延びている。回転軸本体71は、回転軸線Arを中心とする円形断面を有している。
拡径部72は、回転軸線Arを中心として翼高さ方向D1に延びている。拡径部72は、回転軸本体71と静翼本体51とを接続している。拡径部72は、回転軸本体71と静翼本体51と一体に形成されている。拡径部72は、回転軸本体71よりも大きな回転軸線Arを中心とする円形断面を有している。つまり、拡径部72は、翼高さ方向D1から見た際の外径が回転軸本体71の外径よりも大きく形成されている。拡径部72の側面の位置は、図3に示すように、翼高さ方向D1から見た際に、前縁511の径方向Drの最も内側Driの端部の位置と重なっている。また、拡径部72は、静翼本体51が接続される第一面723を有している。第一面723は、周方向Dcから見た際に、前縁511に近い前端部721から後縁512に近い後端部722に向かって回転軸本体71から離れるように傾斜している。より具体的には、第一面723は、圧縮機1が定格運転される際の位置(角度)に静翼本体51が位置している状態で、周方向Dcから見た際に、内側ケーシング31の外周面311と平行となるように、軸線方向Daの上流側Dauから下流側Dadに向かうにしたがって、径方向Drの外側Droに向かうように直線状をなすように傾斜している。そのため、第一面723は、圧縮機1が定格運転される際の位置(角度)に静翼本体51が位置している状態で、内側ケーシング31の外周面311と平滑な面を構成するように形成されている。内側ケーシング31の外周面311は、軸線方向Daから見た際に、凸面状に湾曲している。
外側円板部73は、回転軸線Arを中心として翼高さ方向D1に延びている。外側円板部73は、翼高さ方向D1において拡径部72とは反対側で回転軸本体71に接続している。外側円板部73は、回転軸本体71と一体に形成されている。外側円板部73は、回転軸本体71よりも大きく、拡径部72よりも小さな回転軸線Arを中心とする円形断面を有している。つまり、外側円板部73は、翼高さ方向D1から見た際の外径が回転軸本体71の外径よりも大きく、かつ、拡径部72よりも小さく形成されている。
回転駆動部8は、翼回転軸6を回転させる。回転駆動部8は、翼回転軸6と接続されている。本実施形態の回転駆動部8は、各可変静翼機構4において複数の外側翼回転軸61に接続されている。回転駆動部8は、外側翼回転軸61を回転軸線Ar周りに回転させることで、間接的に内側翼回転軸62も回転軸線Ar周りに回転させる。さらに、回転駆動部8は、複数の外側翼回転軸61を同じ回転角で回転させる。これにより、周方向Dcに並ぶ複数の静翼本体51の回転角が変化し、周方向Dcで隣り合う二つの静翼本体51の間における流路面積が変化する。
(作用効果)
上記構成の可変静翼5及び圧縮機1では、翼高さ方向D1から見た際に、翼回転軸6が、静翼本体51と重ならない程度の大きさで形成されている場合、翼回転軸6と重なっていない静翼本体51の前縁511や後縁512周辺では、静翼本体の端部52、53と内側ケーシング31や外側ケーシング32との間には、数mm程度の微小な隙間が形成されてしまう。この隙間での漏れ流れが生じると、その周辺を流れる作動流体Aの流れが乱され、渦が発生する。
上記構成の可変静翼5及び圧縮機1では、翼高さ方向D1から見た際に、翼回転軸6が、静翼本体51と重ならない程度の大きさで形成されている場合、翼回転軸6と重なっていない静翼本体51の前縁511や後縁512周辺では、静翼本体の端部52、53と内側ケーシング31や外側ケーシング32との間には、数mm程度の微小な隙間が形成されてしまう。この隙間での漏れ流れが生じると、その周辺を流れる作動流体Aの流れが乱され、渦が発生する。
ところが、拡径部72によって、翼高さ方向D1から見た際に、前縁511と内側翼回転軸62とが重なっている。そのため、前縁511周辺では、静翼本体51と内側ケーシング31との間に隙間が生じていない状態となっている。そのため、内側ケーシング31の前縁511周辺では、静翼本体51と内側ケーシング31との間では、作動流体Aの流れの乱れが生じなくなる。これにより、隙間での漏れ流れの発生を抑え、圧力損失を抑えられる。その結果、可変静翼5での圧力損失による圧縮機1の効率低下を抑制することができる。
また、翼回転軸6に対して、翼弦方向D2に静翼本体51が突出した構造では、前縁511や後縁512のように翼回転軸6に固定されていない離れた位置での振動が大きくなってしまう。その結果、前縁511や後縁512での振動応力が増加する可能性がある。これは、圧縮機1のサイズが大きくなって、静翼本体51が大きくなるほど顕著となる。しかしながら、本実施形態では、静翼本体の端部53の前縁511と拡径部72とが接続されていることで、前縁511での振動を抑えることができる。
また、作動流体Aの流れの乱れは、内側ケーシング31及び外側ケーシング32の両方で生じるが、流れている作動流体Aの流量の多い内側ケーシング31の前縁511周辺の方が顕著に生じる。そのため、内側ケーシング31の前縁511周辺では、隙間の影響が大きくなってしまう。本実施形態では、拡径部72によって、前縁511周辺で、静翼本体51と内側ケーシング31との間に隙間が生じていない状態となっている。そのため、内側ケーシング31の前縁511周辺での作動流体Aの流れの乱れが生じなくなる。これにより、前縁511周辺での隙間での漏れ流れの発生を抑え、圧縮機1の効率低下を抑制することができる。
また、内側翼回転軸62の回転軸線Arは、翼高さ方向D1から見た際に、翼弦方向D2において、後縁512に比べて前縁511に近い位置に配置されている。つまり、翼弦方向D2において、内側翼回転軸62は、後縁512に対して前縁511に近い位置に配置される。そのため、拡径部72によって、内側ケーシング31の前縁511周辺での作動流体Aの流れの乱れを重点的に抑えることができる。これにより、前縁511周辺での隙間での漏れ流れの発生をより高い精度で抑え、圧縮機1の効率低下を抑制することができる。
(第一実施形態の第一変形例)
次に、本開示に係る可変静翼5の第一実施形態の第一変形例について説明する。なお、以下に説明する第一実施形態の第一変形例においては、上記第一実施形態と共通する構成については図中に同符号を付してその説明を省略する。第一実施形態の第一変形例は、翼回転軸6Aの拡径部72Aの形状が第一実施形態と異なっている。
次に、本開示に係る可変静翼5の第一実施形態の第一変形例について説明する。なお、以下に説明する第一実施形態の第一変形例においては、上記第一実施形態と共通する構成については図中に同符号を付してその説明を省略する。第一実施形態の第一変形例は、翼回転軸6Aの拡径部72Aの形状が第一実施形態と異なっている。
具体的には、拡径部72Aは、第一実施形態のように、翼高さ方向D1から見た際に、前縁511のみと重なっている形状に限定されるものではない。拡径部72Aは、翼高さ方向D1から見た際に、前縁511及び後縁512の少なくとも一方と重なっていればよい。したがって、翼高さ方向D1から見た際に、後縁512のみと重なっていてもよく、前縁511及び後縁512の両方と重なっていてもよい。第一実施形態の第一変形例の内側翼回転軸62では、図4に示すように、拡径部72Aは、翼高さ方向D1から見た際に、前縁511及び後縁512の両方と重なっていてもよい。このような状態でも、拡径部72Aは、回転軸本体71よりも大きな回転軸線Arを中心とする円形断面を有している。
このように、拡径部72Aによって、翼高さ方向D1から見た際に、後縁512と内側翼回転軸62とが重なっている。そのため、後縁512周辺では、静翼本体51と内側ケーシング31との間に隙間が生じていない状態となっている。そのため、内側ケーシング31の後縁512周辺では、静翼本体51と内側ケーシング31との間では、作動流体Aの流れの乱れが生じなくなる。これにより、隙間での漏れ流れの発生を抑え、圧力損失を抑えられる。
さらに、第一変形例の拡径部72Aによって、翼高さ方向D1から見た際に、前縁511及び前延の全領域が内側翼回転軸62と重なっている。そのため、前縁511から後縁512までの全領域で、静翼本体51と内側ケーシング31との間に隙間が生じていない状態となっている。そのため、前縁511から後縁512までの全領域で、静翼本体51と内側ケーシング31との間では、作動流体Aの流れの乱れが生じなくなる。これにより、隙間での漏れ流れの発生をより効果的に抑え、圧力損失を最大限抑えられる。その結果、可変静翼5での圧力損失による圧縮機1の効率低下を大きく抑制することができる。
(第一実施形態の第二変形例)
次に、本開示に係る可変静翼5の第一実施形態の第二変形例について説明する。なお、以下に説明する第一実施形態の第二変形例においては、上記第一実施形態と共通する構成については図中に同符号を付してその説明を省略する。第一実施形態の第二変形例は、翼回転軸6Bの拡径部72Bの形状が第一実施形態と異なっている。
次に、本開示に係る可変静翼5の第一実施形態の第二変形例について説明する。なお、以下に説明する第一実施形態の第二変形例においては、上記第一実施形態と共通する構成については図中に同符号を付してその説明を省略する。第一実施形態の第二変形例は、翼回転軸6Bの拡径部72Bの形状が第一実施形態と異なっている。
具体的には、第一実施形態の第二変形例の内側翼回転軸62では、図5に示すように、拡径部72Bは、第一実施形態のように、翼高さ方向D1から見た際に、前縁511のみと重なっている。ただし、拡径部72Bは、翼高さ方向D1から見た際に、隣り合う他の可変静翼5の拡径部72Bと摺接可能な大きさで形成されている。つまり、拡径部72Bは、隣り合う他の可変静翼5の拡径部72Bと干渉しない範囲で、最大限大きく形成されている。拡径部72Bは、翼高さ方向D1から見た際に、翼弦方向D2において、前縁511を超えた位置まで広がっている。
このように、拡径部72Bによって、翼高さ方向D1から見た際に、前縁511だけでなく、非常に大きな範囲で静翼本体51と内側翼回転軸62とが重なっている。そのため、静翼本体51と内側ケーシング31との間に隙間が生じていない領域が非常に大きくなる。そのため、静翼本体51と内側ケーシング31との間では、作動流体Aの流れの乱れが広い範囲で生じなくなる。これにより、隙間での漏れ流れの発生を大きく抑え、圧力損失を大きく抑えられる。
なお、拡径部72、72A、72Bは、翼高さ方向D1から見た際に、必ず前縁511と重なっている構造に限定されるものではない。拡径部72は、翼高さ方向D1から見た際に、前縁511及び後縁512の少なくとも一方と重なる大きさで形成されていればよい。したがって、例えば、拡径部72は、翼高さ方向D1から見た際に、後縁512のみに重なっていてもよい。
(第二実施形態)
次に、本開示に係る可変静翼5の第二実施形態について説明する。なお、以下に説明する第二実施形態においては、上記第一実施形態と共通する構成については図中に同符号を付してその説明を省略する。第二実施形態では、翼回転軸6Cの拡径部72C周辺の形状が第一実施形態と異なっている。
次に、本開示に係る可変静翼5の第二実施形態について説明する。なお、以下に説明する第二実施形態においては、上記第一実施形態と共通する構成については図中に同符号を付してその説明を省略する。第二実施形態では、翼回転軸6Cの拡径部72C周辺の形状が第一実施形態と異なっている。
第二実施形態の拡径部72Cでは、図6に示すように、第一面723Cが、周方向Dcから見た際に、前端部721から後端部722との間で静翼本体の端部53から離れるように窪んでいる。第一面723Cは、仮想直線VLよりも窪んでいる。仮想直線VLは、内側ケーシング31の外周面311が窪んでいないと仮定した場合での周方向Dcから見た際の内側ケーシング31の外周面311の位置に相当する仮想線である。本実施形態の第一面723Cは、回転軸線Arでの仮想直線VLからの窪み量ΔDが最も大きい三次元曲面として形成されている。第一面723Cは、圧縮機1が定格運転される際の位置(角度)に静翼本体51が位置している状態に対して、例えば、15°~25°程度回転した状態で、仮想直線VLとの側面との間に生じる段差ΔHを低減するように窪んでいる。回転軸線Arでの仮想直線VLからの窪み量ΔDは、段差ΔHよりも大きく形成されている。また、周方向Dcから見た際に、軸線方向Daの下流側Dadでは、内側ケーシング31の外周面311も仮想直線VLよりも窪んでいる。内側ケーシング31の外周面311は、拡径部72Cに対して軸線方向Daの下流側Dadにおいて、周方向Dcから見た際に、圧縮機1が定格運転される際の位置(角度)に静翼本体51が位置している状態での第一面723Cを延長したように窪んでいる。
一般的に、圧縮機1が定格運転される際の開度(角度)に静翼本体51が位置するに翼回転軸6が回転された状態では、内側翼回転軸62の頂面となる第一面723は、内側ケーシング31の外周面311と平滑に近い状態となっている。つまり、圧縮機1が定格運転されている間、第一面723は、内側ケーシング31の外周面311に対して凹凸がほとんど無い状態となっている。一方で、圧縮機1の始動時や停止時のように、定格運転以外の状態では、開度(角度)が変更されるため、翼回転軸6が定格運転時とは異なる角度で回転された状態となる。第一面723は、前端部721と後端部722とで翼高さ方向D1の大きさが異なっている。そのため、翼回転軸6の回転に伴って、内側ケーシング31の外周面311に対して前端部721が窪む一方で、後端部722が突出してしまう。特に、本実施形態では、拡径部72の径が大きいため、前端部721と後端部722とで翼高さ方向D1の大きさの差が大きくなっている。つまり、第一面723が内側ケーシング31の外周面311に対して凹凸が大きい状態となってしまう場合が考えられる。
ところが、第二実施形態では、拡径部72Cの第一面723Cが窪んでいる。そのため、内側ケーシング31の外周面311に対する第一面723Cの凹凸を低減することができる。これにより、定格運転とは異なる開度で運転する際の可変静翼5での翼面マッハ数を低減できる。その結果、低大気温度や高流量で圧縮機1を運転した場合の効率を大きく向上することができる。
(その他の実施形態)
以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
なお、動翼列22や可変静翼機構4の数は、実施形態に限定されるものではない。動翼列22や可変静翼機構4の数は、1つ以上であればよい。したがって、動翼列22や可変静翼機構4の数は、一つのみでもよく、本実施形態の四つ以上あってもよい。
また、本実施形態では、内側翼回転軸62及び外側翼回転軸61は、異なる形状とされている。しかしながら、内側翼回転軸62及び外側翼回転軸61は、異なる形状であることに限定されるものではなく、互いに同じ形状であってもよい。ただし、少なくとも内側翼回転軸62が、拡径部72を有することが好ましい。
<付記>
各実施形態に記載の可変静翼5及び圧縮機1は、例えば以下のように把握される。
各実施形態に記載の可変静翼5及び圧縮機1は、例えば以下のように把握される。
(1)第1の態様に係る可変静翼5は、作動流体Aの流れ方向に交差する翼高さ方向D1に延びる静翼本体51と、前記翼高さ方向D1における前記静翼本体の端部52、53に接続され、前記作動流体Aの前記流れ方向に対する前記静翼本体51の角度を変更させるように回転可能とされた翼回転軸6Bと、を備え、前記翼回転軸6Bは、前記翼高さ方向D1に延びる回転軸線Arを中心として延びる回転軸本体71と、前記回転軸線Arを中心として延びて前記回転軸本体71と前記静翼本体51とを接続し、前記翼高さ方向D1から見た際の外径が前記回転軸本体71の外径よりも大きい拡径部72とを有し、前記静翼本体51は、前記翼高さ方向D1に延びる前縁511と、前記翼高さ方向D1に延びる後縁512と、前記翼高さ方向D1に延び、前記前縁511と前記後縁512とを繋ぐ正圧面515及び負圧面516と、を有し、前記拡径部72は、前記翼高さ方向D1から見た際に、前記前縁511及び前記後縁512の少なくとも一方と重なる大きさで形成されている。
これにより、前縁511及び後縁512の少なくとも一方の周辺では、静翼本体51とケーシング3との間に隙間が生じていない状態となっている。そのため、ケーシング3の前縁511及び後縁512の少なくとも一方の周辺では、静翼本体51と内側ケーシング31との間では、作動流体Aの流れの乱れが生じなくなる。これにより、隙間での漏れ流れの発生を抑え、圧力損失を抑えられる。その結果、可変静翼5での圧力損失による圧縮機1の効率低下を抑制することができる。
(2)第2の態様に係る可変静翼5は、(1)の可変静翼5であって、前記拡径部72は、前記翼高さ方向D1から見た際に、前記前縁511と重なっている。
これにより、ケーシング3の前縁511周辺での作動流体Aの流れの乱れが生じなくなる。これにより、前縁511周辺での隙間での漏れ流れの発生を抑え、圧縮機1の効率低下を抑制することができる。
(3)第3の態様に係る可変静翼5は、(1)又は(2)の可変静翼5であって、前記拡径部72は、前記翼高さ方向D1から見た際に、前記後縁512と重なっている。
これにより、ケーシング3の後縁512周辺では、静翼本体51と内側ケーシング31との間では、作動流体Aの流れの乱れが生じなくなる。これにより、隙間での漏れ流れの発生を抑え、圧力損失を抑えられる。
(4)第4の態様に係る可変静翼5は、(1)から(3)の何れか一つの可変静翼5であって、前記可変静翼5は、前記流れ方向及び前記翼高さ方向D1と交差する方向に並んで複数配置可能とされ、前記拡径部72は、前記翼高さ方向D1から見た際に、隣り合う他の前記可変静翼5の拡径部72と摺接可能な大きさで形成されている。
これにより、静翼本体51とケーシング3との間に隙間が生じていない領域が非常に大きくなる。そのため、静翼本体51とケーシング3との間では、作動流体Aの流れの乱れが広い範囲で生じなくなる。これにより、隙間での漏れ流れの発生を大きく抑え、圧力損失を大きく抑えられる。
(5)第5の態様に係る可変静翼5は、(1)から(4)の何れか一つの可変静翼5であって、前記回転軸線Arは、前記翼高さ方向D1から見た際に、前記前縁511と前記後縁512とを結ぶ翼弦の延びる翼弦方向D2において、前記後縁512に対して前記前縁511に近い位置に配置されている。
これにより、翼弦方向D2において、翼回転軸6Bは、後縁512に対して前縁511に近い位置に配置される。そのため、拡径部72によって、内側ケーシング31の前縁511周辺での作動流体Aの流れの乱れを重点的に抑えることができる。これにより、前縁511周辺での隙間での漏れ流れの発生をより高い精度で抑え、圧縮機1の効率低下を抑制することができる。
(6)第6の態様に係る可変静翼5は、(1)から(5)の何れか一つの可変静翼5であって、前記拡径部72は、前記翼高さ方向D1において、前記静翼本体51を向く第一面723を有し、前記静翼本体の端部52、53は、前記流れ方向及び前記翼高さ方向D1と交差する方向から見た際に、前記前縁511から前記後縁512に向かって前記回転軸本体71から離れるように傾斜し、前記第一面723は、前記流れ方向及び前記翼高さ方向D1と交差する方向から見た際に、前記前縁511に近い前端部721から前記後縁512に近い後端部722との間で前記静翼本体の端部52、53から離れるように窪んでいる。
これにより、ケーシング3の外周面に対する第一面723の凹凸を低減することができる。これにより、定格運転とは異なる開度で運転する際の可変静翼5での翼面マッハ数を低減得きる。その結果、低大気温度や高流量で圧縮機1を運転した場合の効率を大きく向上することができる。
(7)第7の態様に係る圧縮機1は、(1)から(6)の何れか一つの可変静翼5と、ロータ本体21、及び前記ロータ本体21の軸線方向Da及び周方向Dcに配列された複数の動翼25を含むロータ2と、前記ロータ2の外側Droに配置された内側ケーシング31と、前記内側ケーシング31の外側Droに配置された外側ケーシング32と、前記翼回転軸6Bと接続され、前記翼回転軸6Bを回転させる回転駆動部8と、を備え、前記可変静翼5は、前記内側ケーシング31及び外側ケーシング32に対して回転可能に配置されている。
本開示の可変静翼及び圧縮機によれば、漏れ流れを抑えて効率の低下を抑制することができる。
1…圧縮機
2…ロータ
21…ロータ本体
22…動翼列
221…第一動翼列
222…第二動翼列
223…第三動翼列
224…第四動翼列
25…動翼
3…ケーシング
31…内側ケーシング
311…(内側ケーシングの)外周面
32…外側ケーシング
321…(外側ケーシングの)内周面
33…ストラット
S…主流路
35…吸込口
4…可変静翼機構
41…第一可変静翼機構
42…第二可変静翼機構
43…第三可変静翼機構
44…第四可変静翼機構
5…可変静翼
51…静翼本体
511…前縁
512…後縁
515…正圧面
516…負圧面
52、53…静翼本体の端部
6、6A、6B、6C…翼回転軸
61…外側翼回転軸
62…内側翼回転軸
Ar…回転軸線
71…回転軸本体
72、72A、72B、72C…拡径部
721…前端部
722…後端部
723、723C…第一面
73…外側円板部
8…回転駆動部
A…作動流体
O…軸線
Da…軸線方向
Dau…上流側
Dad…下流側
Dc…周方向
Dr…径方向
Dro…外側
Dri…内側
D1…翼高さ方向
D2…翼弦方向
2…ロータ
21…ロータ本体
22…動翼列
221…第一動翼列
222…第二動翼列
223…第三動翼列
224…第四動翼列
25…動翼
3…ケーシング
31…内側ケーシング
311…(内側ケーシングの)外周面
32…外側ケーシング
321…(外側ケーシングの)内周面
33…ストラット
S…主流路
35…吸込口
4…可変静翼機構
41…第一可変静翼機構
42…第二可変静翼機構
43…第三可変静翼機構
44…第四可変静翼機構
5…可変静翼
51…静翼本体
511…前縁
512…後縁
515…正圧面
516…負圧面
52、53…静翼本体の端部
6、6A、6B、6C…翼回転軸
61…外側翼回転軸
62…内側翼回転軸
Ar…回転軸線
71…回転軸本体
72、72A、72B、72C…拡径部
721…前端部
722…後端部
723、723C…第一面
73…外側円板部
8…回転駆動部
A…作動流体
O…軸線
Da…軸線方向
Dau…上流側
Dad…下流側
Dc…周方向
Dr…径方向
Dro…外側
Dri…内側
D1…翼高さ方向
D2…翼弦方向
Claims (7)
- 作動流体の流れ方向に交差する翼高さ方向に延びる静翼本体と、
前記翼高さ方向における前記静翼本体の端部に接続され、前記作動流体の前記流れ方向に対する前記静翼本体の角度を変更させるように回転可能とされた翼回転軸と、を備え、
前記翼回転軸は、
前記翼高さ方向に延びる回転軸線を中心として延びる回転軸本体と、
前記回転軸線を中心として延びて前記回転軸本体と前記静翼本体とを接続し、前記翼高さ方向から見た際の外径が前記回転軸本体の外径よりも大きい拡径部とを有し、
前記静翼本体は、
前記翼高さ方向に延びる前縁と、
前記翼高さ方向に延びる後縁と、
前記翼高さ方向に延び、前記前縁と前記後縁とを繋ぐ正圧面及び負圧面と、を有し、
前記拡径部は、前記翼高さ方向から見た際に、前記前縁及び前記後縁の少なくとも一方と重なる大きさで形成されている可変静翼。 - 前記拡径部は、前記翼高さ方向から見た際に、前記前縁と重なっている請求項1に記載の可変静翼。
- 前記拡径部は、前記翼高さ方向から見た際に、前記後縁と重なっている請求項2に記載の可変静翼。
- 前記可変静翼は、前記流れ方向及び前記翼高さ方向と交差する方向に並んで複数配置可能とされ、
前記拡径部は、前記翼高さ方向から見た際に、隣り合う他の前記可変静翼の拡径部と摺接可能な大きさで形成されている請求項2に記載の可変静翼。 - 前記回転軸線は、前記翼高さ方向から見た際に、前記前縁と前記後縁とを結ぶ翼弦の延びる翼弦方向において、前記後縁に対して前記前縁に近い位置に配置されている請求項1から請求項4の何れか一項に記載の可変静翼。
- 前記拡径部は、前記翼高さ方向において、前記静翼本体を向く第一面を有し、
前記静翼本体の端部は、前記流れ方向及び前記翼高さ方向と交差する方向から見た際に、前記前縁から前記後縁に向かって前記回転軸本体から離れるように傾斜し、
前記第一面は、前記流れ方向及び前記翼高さ方向と交差する方向から見た際に、前記前縁に近い前端部から前記後縁に近い後端部との間で前記静翼本体の端部から離れるように窪んでいる請求項1から請求項4の何れか一項に記載の可変静翼。 - 請求項1から請求項4のうち、いずれか一項に記載の可変静翼と、
ロータ本体、及び前記ロータ本体の軸線方向及び周方向に配列された複数の動翼を含むロータと、
前記ロータの外側に配置された内側ケーシングと、
前記内側ケーシングの外側に配置された外側ケーシングと、
前記翼回転軸と接続され、前記翼回転軸を回転させる回転駆動部と、を備え、
前記可変静翼は、前記内側ケーシング及び外側ケーシングに対して回転可能に配置されている圧縮機。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-076917 | 2022-05-09 | ||
JP2022076917A JP2023166117A (ja) | 2022-05-09 | 2022-05-09 | 可変静翼及び圧縮機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023218723A1 true WO2023218723A1 (ja) | 2023-11-16 |
Family
ID=88729965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/005981 WO2023218723A1 (ja) | 2022-05-09 | 2023-02-20 | 可変静翼及び圧縮機 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023166117A (ja) |
WO (1) | WO2023218723A1 (ja) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4231703A (en) * | 1978-08-11 | 1980-11-04 | Motoren- Und Turbinen-Union Muenchen Gmbh | Variable guide vane arrangement and configuration for compressor of gas turbine devices |
JP2000283096A (ja) * | 1999-03-31 | 2000-10-10 | Hitachi Ltd | 軸流圧縮機及び軸流圧縮機を備えたガスタービン |
JP2002130189A (ja) * | 2000-09-18 | 2002-05-09 | Snecma Moteurs | 一定間隙を有するコンプレッサステータ |
JP2005291212A (ja) * | 2004-04-05 | 2005-10-20 | Snecma Moteurs | ターボ機械における可変ピッチベーンシステムのためのセラミックベースのブッシング |
US20080131268A1 (en) * | 2006-11-03 | 2008-06-05 | Volker Guemmer | Turbomachine with variable guide/stator blades |
US20100124487A1 (en) * | 2008-11-19 | 2010-05-20 | Rolls-Royce Deutschland Ltd & Co Kg | Multi-vane variable stator unit of a fluid flow machine |
US20100232936A1 (en) * | 2009-03-11 | 2010-09-16 | Mark Joseph Mielke | Variable stator vane contoured button |
JP2013133742A (ja) * | 2011-12-26 | 2013-07-08 | Hitachi Ltd | 圧縮機及びこれに用いる可変静翼 |
JP2017129133A (ja) * | 2016-01-06 | 2017-07-27 | ゼネラル・エレクトリック・カンパニイ | 可変静翼アンダーカットボタン |
US20200240435A1 (en) * | 2014-09-12 | 2020-07-30 | Honeywell International Inc. | Variable stator vane assemblies and variable stator vanes thereof having a locally swept leading edge and methods for minimizing endwall leakage therewith |
-
2022
- 2022-05-09 JP JP2022076917A patent/JP2023166117A/ja active Pending
-
2023
- 2023-02-20 WO PCT/JP2023/005981 patent/WO2023218723A1/ja unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4231703A (en) * | 1978-08-11 | 1980-11-04 | Motoren- Und Turbinen-Union Muenchen Gmbh | Variable guide vane arrangement and configuration for compressor of gas turbine devices |
JP2000283096A (ja) * | 1999-03-31 | 2000-10-10 | Hitachi Ltd | 軸流圧縮機及び軸流圧縮機を備えたガスタービン |
JP2002130189A (ja) * | 2000-09-18 | 2002-05-09 | Snecma Moteurs | 一定間隙を有するコンプレッサステータ |
JP2005291212A (ja) * | 2004-04-05 | 2005-10-20 | Snecma Moteurs | ターボ機械における可変ピッチベーンシステムのためのセラミックベースのブッシング |
US20080131268A1 (en) * | 2006-11-03 | 2008-06-05 | Volker Guemmer | Turbomachine with variable guide/stator blades |
US20100124487A1 (en) * | 2008-11-19 | 2010-05-20 | Rolls-Royce Deutschland Ltd & Co Kg | Multi-vane variable stator unit of a fluid flow machine |
US20100232936A1 (en) * | 2009-03-11 | 2010-09-16 | Mark Joseph Mielke | Variable stator vane contoured button |
JP2013133742A (ja) * | 2011-12-26 | 2013-07-08 | Hitachi Ltd | 圧縮機及びこれに用いる可変静翼 |
US20200240435A1 (en) * | 2014-09-12 | 2020-07-30 | Honeywell International Inc. | Variable stator vane assemblies and variable stator vanes thereof having a locally swept leading edge and methods for minimizing endwall leakage therewith |
JP2017129133A (ja) * | 2016-01-06 | 2017-07-27 | ゼネラル・エレクトリック・カンパニイ | 可変静翼アンダーカットボタン |
Also Published As
Publication number | Publication date |
---|---|
JP2023166117A (ja) | 2023-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10287902B2 (en) | Variable stator vane undercut button | |
EP2236773A2 (en) | Variable stator vane contoured button | |
EP2581556A2 (en) | Variable vanes with non uniform lean | |
WO2015002142A1 (ja) | 可変ノズルユニット及び可変容量型過給機 | |
JP5524010B2 (ja) | 可変容量タービン | |
JPWO2017168766A1 (ja) | 回転機械翼、過給機、および、これらの流れ場の形成方法 | |
JP6690730B2 (ja) | 可変ノズルユニットおよび過給機 | |
US11821339B2 (en) | Turbocharger | |
CN111742125B (zh) | 涡轮机以及涡轮增压器 | |
WO2023218723A1 (ja) | 可変静翼及び圧縮機 | |
US11300135B2 (en) | Variable stator vane and compressor | |
WO2017072843A1 (ja) | 回転機械 | |
CN114483646B (zh) | 旋转机械的叶轮以及旋转机械 | |
US20210102471A1 (en) | Turbine and turbocharger | |
KR102223293B1 (ko) | 회전 기계, 회전 기계의 배기 부재 | |
WO2020129234A1 (ja) | ターボ機械 | |
WO2019167181A1 (ja) | 半径流入式タービン及びターボチャージャー | |
JP7348831B2 (ja) | インペラ及び回転機械 | |
WO2023162115A1 (ja) | 可変ノズル装置及び可変容量型ターボチャージャ | |
JP7302738B2 (ja) | 可変容量型過給機 | |
JP7165804B2 (ja) | ノズルベーン | |
WO2024070040A1 (ja) | 回転装置 | |
WO2022113570A1 (ja) | タービン | |
JP2022011589A (ja) | 回転機械の翼及び回転機械 | |
JP2024093441A (ja) | インペラ及び遠心圧縮機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23803212 Country of ref document: EP Kind code of ref document: A1 |