WO2023218629A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2023218629A1
WO2023218629A1 PCT/JP2022/020172 JP2022020172W WO2023218629A1 WO 2023218629 A1 WO2023218629 A1 WO 2023218629A1 JP 2022020172 W JP2022020172 W JP 2022020172W WO 2023218629 A1 WO2023218629 A1 WO 2023218629A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
flat tube
heat exchanger
tube groups
condenser
Prior art date
Application number
PCT/JP2022/020172
Other languages
French (fr)
Japanese (ja)
Inventor
篤史 ▲高▼橋
剛志 前田
悟 梁池
伸 中村
敦 森田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/020172 priority Critical patent/WO2023218629A1/en
Publication of WO2023218629A1 publication Critical patent/WO2023218629A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present disclosure relates to a heat exchanger including a plurality of flat tubes.
  • an air heat exchanger equipped with a plurality of flat tubes has been adopted, for example, as a heat exchanger for an air conditioner.
  • liquid refrigerant condensed by a heat exchanger that functions as a condenser mounted on an indoor unit is depressurized by a throttle device. Then, the refrigerant becomes a gas-liquid two-phase state in which gas refrigerant and liquid refrigerant are mixed, and flows into a heat exchanger that functions as an evaporator mounted on the outdoor unit.
  • the header is extended horizontally and the header is divided longitudinally, and the heat exchanger functions as a condenser, the refrigerant flows downward in the flat tubes, and the refrigerant flows upward in the bypass tubes.
  • Patent Document 1 As in the configuration of Patent Document 1, by dividing the header into shorter lengths and reducing the portion where the refrigerant flows upward, the deterioration of the distribution performance in the longitudinal direction of the header is suppressed, and the deterioration of the heat exchanger performance is suppressed. is suppressed. Furthermore, by allowing the refrigerant to flow downward in the flat tube, the liquefied refrigerant can flow in the direction of gravity, improving the heat transfer coefficient of the refrigerant and improving the heat exchanger performance.
  • the present disclosure has been made to solve the above problems, and when functioning as a condenser, it suppresses the accumulation of liquid refrigerant in the header and uniformizes the distribution of the refrigerant, thereby improving heat exchange.
  • the purpose is to provide a heat exchanger with improved heat exchanger performance.
  • the heat exchanger includes a plurality of flat tubes in which a refrigerant flows in the same direction, the tubes extending in the vertical direction, and having flat surfaces facing each other so as to be parallel to each other.
  • a bypass pipe arranged between the adjacent flat tube groups and through which a refrigerant flows in the opposite direction to the adjacent flat tube groups; and a bypass pipe arranged above the plurality of flat tube groups and the bypass pipe. and a lower header arranged below the plurality of flat tube groups and the bypass piping and into which the ends thereof are inserted, and functions as a condenser.
  • the refrigerant flows downward inside the plurality of flat tube groups, and the refrigerant flows upward inside the bypass piping.
  • the ends of the bypass piping are arranged below the ends of each of the flat tubes.
  • the refrigerant when functioning as a condenser, the refrigerant is configured to flow downward inside the plurality of flat tube groups and to flow upward inside the bypass piping, Inside each of the upper header and the lower header, the end of the bypass piping is located below the end of each flat tube. Therefore, when the heat exchanger functions as a condenser, the liquid refrigerant that has accumulated on the bottom surface of the lower header can be raised by the bypass piping. As a result, the occurrence of areas in the flat tube where it is difficult for the refrigerant to flow is suppressed, and the distribution of the refrigerant in the flat tube where the internal refrigerant flows downward can be made uniform, thereby improving the heat exchanger performance. Moreover, since the liquid refrigerant that has accumulated on the bottom surface of the upper header is mixed with the refrigerant flowing out from the bypass pipe, liquid accumulation is suppressed.
  • FIG. 2 is a schematic diagram showing the flow of refrigerant when the heat exchanger according to Embodiment 1 functions as a condenser.
  • FIG. 3 is a schematic diagram showing the flow of refrigerant when the heat exchanger according to the first embodiment functions as an evaporator.
  • FIG. 7 is a schematic diagram showing the flow of refrigerant when a heat exchanger according to a modification of the first embodiment functions as an evaporator.
  • FIG. 7 is a schematic diagram showing the flow of refrigerant when the heat exchanger according to Embodiment 2 functions as a condenser.
  • FIG. 7 is a schematic diagram showing the flow of refrigerant when a heat exchanger according to a first modification of the second embodiment functions as a condenser.
  • FIG. 7 is a schematic diagram showing the flow of refrigerant when a heat exchanger according to a second modification of the second embodiment functions as a condenser.
  • FIG. 7 is a schematic diagram showing the flow of refrigerant when a heat exchanger according to a third modification of the second embodiment functions as a condenser.
  • FIG. 7 is a schematic diagram showing the flow of refrigerant when a heat exchanger according to a fourth modification of the second embodiment functions as a condenser.
  • FIG. 7 is a schematic diagram showing the flow of refrigerant when a heat exchanger according to a fifth modification of the second embodiment functions as a condenser.
  • FIG. 7 is a schematic diagram showing the flow of refrigerant when the heat exchanger according to Embodiment 3 functions as a condenser.
  • FIG. 1 is a schematic diagram showing the flow of refrigerant when heat exchanger 100 according to Embodiment 1 functions as a condenser.
  • FIG. 2 is a schematic diagram showing the flow of refrigerant when heat exchanger 100 according to the first embodiment functions as an evaporator. Note that the arrows in FIGS. 1 and 2 indicate the flow of the refrigerant, and the same applies to the drawings described later.
  • a pair of distribution headers consisting of an upper header 10 and a lower header 20 are arranged vertically separated in the height direction. .
  • a plurality of flat tubes 31 are arranged, with the vertical direction being the tube extending direction and flat surfaces facing each other so as to be parallel to each other, and through which the refrigerant flows in the same direction.
  • Two flat tube groups 30 are arranged. That is, the plurality of flat tubes 31 are arranged at intervals in the horizontal direction orthogonal to the vertical direction.
  • the flat tube 31 has a flat cross section, and the outer surface on the longitudinal side of the flat shape along the air flow direction (direction perpendicular to the plane of the paper in FIGS. 1 and 2) is planar, and the flat tube 31 has a flat cross section. This is a heat exchanger tube whose outer surface on the shorter side is curved.
  • the flat tube 31 according to Embodiment 1 is a multi-hole flat tube that has a plurality of holes that serve as refrigerant flow paths inside the tube.
  • the holes in the flat tube 31 are formed along the height direction to serve as flow paths between the pair of distribution headers. Note that the number of flat tubes 31 constituting each flat tube group 30 is an arbitrary number.
  • a bypass pipe 40 is provided between the two adjacent flat tube groups 30, through which the refrigerant flows in the opposite direction to the two adjacent flat tube groups 30. That is, the heat exchanger 100 has two flat tube groups 30 and one bypass pipe 40. Here, the passage cross-sectional area of one bypass pipe 40 is larger than the passage cross-sectional area of one flat pipe 31. By doing so, the pressure loss of the refrigerant when the heat exchanger 100 functions as an evaporator can be suppressed, and the performance of the heat exchanger can be improved.
  • An upper header 10 is provided above the flat tube group 30 and the bypass piping 40, and the upper ends of the flat tubes 31 of the flat tube group 30 and the bypass piping 40 are inserted into the upper header 10.
  • the upper end of the bypass pipe 40 (see hu2 in FIG. 1) is arranged below the upper end of each flat tube 31 of the flat tube group 30 (see hu1 in FIG. 1).
  • a lower header 20 is provided below the flat tube group 30 and the bypass piping 40, and the lower ends of the flat tubes 31 of the flat tube group 30 and the bypass piping 40 are inserted into the lower header 20. .
  • the lower end of the bypass pipe 40 see hl2 in FIG.
  • each flat tube 31 of the flat tube group 30 is arranged below the lower end of each flat tube 31 of the flat tube group 30 (see hl1 in FIG. 1). ing. That is, in the upper header 10, the insertion amount of the bypass piping 40 is smaller than the insertion amount of the flat tubes 31 in the flat tube group 30, and in the lower header 20, the insertion amount of the bypass piping 40 is smaller than the insertion amount in the flat tube group 30. The amount of insertion of the flat tube 31 is greater than the amount of insertion of the flat tube 31.
  • the upper header 10 has a refrigerant flow path formed inside. Furthermore, a first partition 11 is provided inside the upper header 10 to partition a refrigerant flow path. Furthermore, a refrigerant inlet/outlet 51 is formed at one end of the upper header 10 .
  • the lower header 20 has a refrigerant flow path formed therein. Further, a second partition 21 is provided inside the lower header 20 to partition a refrigerant flow path. Further, a refrigerant inlet/outlet 52 is formed at one end of the lower header 20 located on the opposite side from one end of the upper header 10 .
  • the first partition 11 is arranged between the upper end of the flat tube group 30 and the upper end of the bypass piping 40. Further, the second partition 21 is arranged between the lower end of the flat tube group 30 and the lower end of the bypass piping 40.
  • the high-temperature, high-pressure gas refrigerant that has flowed into the heat exchanger 100 exchanges heat with air while flowing through the flat tubes 31 and bypass piping 40, and flows out of the heat exchanger 100 as a low-temperature, high-pressure liquid refrigerant. That is, when the heat exchanger 100 functions as a condenser, the refrigerant inlet/outlet 51 becomes a gas refrigerant inlet, and the refrigerant inlet/outlet 52 becomes a liquid refrigerant outlet.
  • low-temperature, low-pressure two-phase refrigerant flows into the lower header 20 from the refrigerant inlet/outlet 52.
  • the two-phase refrigerant that has flowed into the lower header 20 flows upward inside each flat tube 31 of the upstream flat tube group 30 and joins at the upper header 10 .
  • the refrigerants that have merged at the upper header 10 flow downward inside the bypass pipe 40 and merge at the lower header 20.
  • the refrigerant that has merged at the lower header 20 flows upward inside each flat tube 31 of the flat tube group 30 on the downstream side, merges at the upper header 10, and then flows out from the refrigerant inlet/outlet port 51.
  • the low-temperature, low-pressure two-phase refrigerant that has flowed into the heat exchanger 100 exchanges heat with air while flowing through the flat tubes 31 and the bypass piping 40, and flows out of the heat exchanger 100 as a high-temperature, low-pressure gas refrigerant. That is, when the heat exchanger 100 functions as an evaporator, the refrigerant inlet/outlet 52 becomes a two-phase refrigerant inlet, and the refrigerant inlet/outlet 51 becomes a gas refrigerant outlet.
  • the heat exchanger 100 when the heat exchanger 100 functions as a condenser, it is configured so that the refrigerant flows downward inside the two flat tube groups 30 and flows upward inside the bypass piping 40. . Further, when the heat exchanger 100 functions as an evaporator, the refrigerant is configured to flow upward within the two flat tube groups 30 and flow downward within the bypass piping 40. In other words, the refrigerant flows through the two flat tube groups 30 and the bypass piping 40 in opposite directions.
  • the effects when the heat exchanger 100 functions as a condenser include the following.
  • the lower end of the bypass piping 40 is arranged below the lower end of each flat tube 31 of the flat tube group 30, so that the liquid refrigerant accumulated on the bottom surface of the lower header 20 is removed by the bypass piping 40. It is possible to suck it up and raise it.
  • the occurrence of regions in the flat tubes 31 where it is difficult for the refrigerant to flow is suppressed, and the distribution of the refrigerant in the flat tubes 31, where the internal refrigerant flows downward, can be made uniform, improving heat exchanger performance. do.
  • the upper end of the bypass piping 40 is disposed below the upper end of each flat tube 31 of the flat tube group 30, so that the liquid refrigerant that has accumulated on the bottom surface of the upper header 10 can be bypassed. Since the refrigerant is mixed by the refrigerant flowing out from the pipe 40, liquid retention is suppressed.
  • Effects when the heat exchanger 100 functions as an evaporator include the following.
  • the upper end of the bypass piping 40 is arranged below the upper end of each flat tube 31 of the flat tube group 30 , so the liquid refrigerant that stays on the bottom surface of the upper header 10 flows through the bypass piping 40 .
  • the liquid reaches the upper end, and liquid retention near the flat tube 31 is suppressed.
  • it is possible to reduce the amount of liquid refrigerant that has accumulated on the bottom surface of the upper header 10, and it is possible to suppress a decrease in the defrosting heat amount due to the low-temperature liquid refrigerant that has accumulated in the upper header 10 during defrosting.
  • FIG. 3 is a schematic diagram showing the flow of refrigerant when the heat exchanger 100a according to a modification of the first embodiment functions as an evaporator.
  • two flat tube groups 30 are arranged between a pair of distribution headers, but the present invention is not limited to this, and three or more flat tube groups 30 are arranged between a pair of distribution headers. may be placed.
  • four flat tube groups 30 may be arranged between a pair of distribution headers.
  • bypass piping 40 through which the refrigerant flows in the opposite direction to the two adjacent flat tube groups 30 is provided between each of the two adjacent flat tube groups 30 . That is, the heat exchanger 100a has four flat tube groups 30 and three bypass pipes 40.
  • the upper header 10 has a refrigerant flow path formed inside. Further, inside the upper header 10, a plurality of first partitions 11 are provided to partition a refrigerant flow path. Furthermore, a refrigerant inlet/outlet 51 is formed at one end of the upper header 10 .
  • the lower header 20 has a refrigerant flow path formed therein. Further, inside the lower header 20, a plurality of second partitions 21 are provided to partition a refrigerant flow path. Further, a refrigerant inlet/outlet 52 is formed at one end of the lower header 20 located on the opposite side from one end of the upper header 10 .
  • the first partition 11 is arranged between the upper end of the flat tube group 30 and the upper end of the bypass piping 40. Further, the second partition 21 is arranged between the lower end of the flat tube group 30 and the lower end of the bypass piping 40.
  • the heat exchanger 100 is composed of a plurality of flat tubes 31 in which the tube extending direction is the vertical direction and the flat surfaces thereof are opposed so as to be parallel to each other, and through which the refrigerant flows in the same direction.
  • a plurality of flat tube groups 30 a bypass pipe 40 that is arranged between adjacent flat tube groups 30 and through which refrigerant flows in the opposite direction to the adjacent flat tube groups 30 , and a plurality of flat tube groups 30 and
  • An upper header 10 that is arranged above the bypass piping 40 and has its ends inserted therein, and a lower header 20 that is arranged below the plurality of flat tube groups 30 and the bypass piping 40 and has its ends inserted therein.
  • the refrigerant flows downward inside the plurality of flat tube groups 30 and flows upward inside the bypass piping 40.
  • the ends of the bypass piping 40 are arranged below the ends of each flat tube 31.
  • the heat exchanger 100 when functioning as a condenser, the refrigerant flows downward inside the plurality of flat tube groups 30 and flows upward inside the bypass piping 40.
  • the end of the bypass piping 40 is arranged below the end of each flat tube 31. Therefore, when the heat exchanger 100 functions as a condenser, the liquid refrigerant stagnant on the bottom surface of the lower header 20 can be raised by the bypass pipe 40.
  • the occurrence of regions in the flat tubes 31 where it is difficult for the refrigerant to flow is suppressed, and the distribution of the refrigerant in the flat tubes 31, where the internal refrigerant flows downward, can be made uniform, improving heat exchanger performance. do.
  • the liquid refrigerant that has accumulated on the bottom surface of the upper header 10 is mixed with the refrigerant that flows out from the bypass pipe 40, liquid accumulation is suppressed.
  • the passage cross-sectional area of the bypass pipe 40 is larger than the passage cross-sectional area of the flat tube 31.
  • the pressure loss of the refrigerant when the heat exchanger 100 functions as an evaporator can be suppressed, and the heat exchanger performance can be improved.
  • Embodiment 2 will be described below, but the description of parts that overlap with Embodiment 1 will be omitted, and the same or corresponding parts as in Embodiment 1 will be given the same reference numerals.
  • FIG. 4 is a schematic diagram showing the flow of refrigerant when the heat exchanger 100b according to the second embodiment functions as a condenser.
  • the condenser A flat tube group 30 (hereinafter referred to as non-module NM) in which the refrigerant flows in the opposite direction to the flat tube group 30 of the module M is provided on the upstream side of the refrigerant flow of the module M when functioning as a module. . That is, the flat tube group 30 which is a non-module NM is not adjacent to the bypass piping 40.
  • a refrigerant inlet/outlet 51 serving as a gas refrigerant inlet is formed at one end of the lower header 20
  • a refrigerant inlet/outlet 52 serving as a liquid refrigerant outlet is formed at the other end of the lower header 20. is formed.
  • FIG. 5 is a schematic diagram showing the flow of refrigerant when the heat exchanger 100c according to the first modification of the second embodiment functions as a condenser.
  • a non-module NM is provided on the downstream side of the refrigerant flow of the module M when functioning as a condenser. Further, when the heat exchanger 100c functions as a condenser, a refrigerant inlet/outlet 51 serving as a gas refrigerant inlet is formed at one end of the upper header 10, and a refrigerant inlet/outlet 52 serving as a liquid refrigerant outlet is formed at the other end of the upper header 10. is formed.
  • FIG. 6 is a schematic diagram showing the flow of refrigerant when the heat exchanger 100d according to the second modification of the second embodiment functions as a condenser.
  • non-modules NM are provided on the upstream and downstream sides of the refrigerant flow of the module M when functioning as a condenser.
  • a refrigerant inlet/outlet 51 serving as a gas refrigerant inlet is formed at one end of the lower header 20
  • a refrigerant inlet/outlet 52 serving as a liquid refrigerant outlet is formed at one end of the upper header 10. It is formed. Note that one end of the upper header 10 in which the refrigerant inlet/outlet 52 is formed is located on the opposite side from one end of the lower header 20 in which the refrigerant inlet/outlet 51 is formed.
  • FIG. 7 is a schematic diagram showing the flow of refrigerant when the heat exchanger 100e according to the third modification of the second embodiment functions as a condenser.
  • the module M is composed of three flat tube groups 30 and two bypass pipes 40. That is, the module M of the heat exchanger 100e is a combination of three flat tube groups 30 and bypass piping 40 arranged between two mutually adjacent flat tube groups 30. Note that the module M may include four or more flat tube groups 30 and three or more bypass pipes 40.
  • a non-module NM is provided on the upstream side of the refrigerant flow of the module M when functioning as a condenser. Further, when the heat exchanger 100e functions as a condenser, a refrigerant inlet/outlet 51 serving as a gas refrigerant inlet is formed at one end of the lower header 20, and a refrigerant inlet/outlet 52 serving as a liquid refrigerant outlet is formed at the other end of the lower header 20. is formed.
  • the heat exchanger 100e can provide the same effects as the heat exchanger 100b according to the second embodiment.
  • FIG. 8 is a schematic diagram showing the flow of refrigerant when the heat exchanger 100f according to the fourth modification of the second embodiment functions as a condenser.
  • the module M includes three flat tube groups 30 and two bypass pipes 40. That is, the module M of the heat exchanger 100f is a combination of three flat tube groups 30 and bypass piping 40 arranged between two mutually adjacent flat tube groups 30. Note that the module M may include four or more flat tube groups 30 and three or more bypass pipes 40.
  • a non-module NM is provided on the downstream side of the refrigerant flow of the module M when functioning as a condenser. Further, when the heat exchanger 100f functions as a condenser, a refrigerant inlet/outlet 51 serving as a gas refrigerant inlet is formed at one end of the upper header 10, and a refrigerant inlet/outlet 52 serving as a liquid refrigerant outlet is formed at the other end of the upper header 10. is formed.
  • the heat exchanger 100f can provide the same effects as the heat exchanger 100c according to the first modification of the second embodiment.
  • FIG. 9 is a schematic diagram showing the flow of refrigerant when the heat exchanger 100g according to the fifth modification of the second embodiment functions as a condenser.
  • the module M is composed of three flat tube groups 30 and two bypass pipes 40.
  • the module M of the heat exchanger 100g is a combination of three flat tube groups 30 and bypass piping 40 arranged between two mutually adjacent flat tube groups 30.
  • the module M may include four or more flat tube groups 30 and three or more bypass pipes 40.
  • non-modules NM are provided on the upstream and downstream sides of the refrigerant flow of the module M when functioning as a condenser. Further, when the heat exchanger 100g functions as a condenser, a refrigerant inlet/outlet 51 serving as a gas refrigerant inlet is formed at one end of the lower header 20, and a refrigerant inlet/outlet 52 serving as a liquid refrigerant outlet is formed at one end of the upper header 10. It is formed. Note that one end of the upper header 10 in which the refrigerant inlet/outlet 52 is formed is located on the opposite side from one end of the lower header 20 in which the refrigerant inlet/outlet 51 is formed.
  • the heat exchanger 100g can provide the same effects as the heat exchanger 100d according to the second modification of the second embodiment.
  • the heat exchanger 100b according to the second embodiment functions as a condenser
  • the refrigerant flows inside the plurality of flat tube groups 30 in the opposite direction to the upstream side of the refrigerant flow of the plurality of flat tube groups 30.
  • a flowing flat tube group 30 is provided.
  • a non-module NM By providing the configuration, the number of bypass pipes 40 can be reduced. As a result, the amount of refrigerant for the reduced bypass pipe 40 can be reduced, and the amount of heat of the high temperature refrigerant can be transmitted to the flat tube 31 during defrosting. Furthermore, the structure is simplified and costs can be expected to be reduced.
  • the heat exchanger 100 when the heat exchanger 100 according to the second embodiment functions as a condenser, the refrigerant flows inside the plurality of flat tube groups 30 in the opposite direction to the downstream side of the refrigerant flow of the plurality of flat tube groups 30.
  • a flowing flat tube group 30 is provided.
  • a non-module NM By providing the configuration, the number of bypass pipes 40 can be reduced. As a result, the amount of refrigerant for the reduced bypass pipe 40 can be reduced, and the amount of heat of the high temperature refrigerant can be transmitted to the flat tube 31 during defrosting. Furthermore, the structure is simplified and costs can be expected to be reduced.
  • Embodiment 3 will be described below, but the description of parts that overlap with Embodiments 1 and 2 will be omitted, and the same or corresponding parts as in Embodiments 1 and 2 will be given the same reference numerals.
  • FIG. 10 is a schematic diagram showing the flow of refrigerant when the heat exchanger 100h according to the third embodiment functions as a condenser.
  • the heat exchanger 100h according to the third embodiment includes three flat tube groups 30 and bypass piping 40 disposed between two adjacent flat tube groups 30. That is, the heat exchanger 100h has three flat tube groups 30 and two bypass pipes 40. Note that the heat exchanger 100h only needs to have a plurality of bypass pipes 40, and may have three or more bypass pipes 40.
  • the diameter r1 of the bypass pipe 40 on the downstream side of the refrigerant flow is smaller than the diameter r2 of the bypass pipe 40 on the upstream side. That is, r1 ⁇ r2.
  • the diameter of the bypass pipe 40 on the most downstream side of the refrigerant flow when the heat exchanger 100h functions as a condenser is defined as r1, and the diameter of the bypass pipe 40 on the upstream side is on the other hand, if the diameters of the bypass piping 40 are r2, r3..., then r1 ⁇ r2 ⁇ r3....
  • the downstream side of the refrigerant flow becomes a low dryness region (high density region), so the bypass piping 40 can be made thinner than on the upstream side. Therefore, when the heat exchanger 100h functions as a condenser, the amount of refrigerant inside the heat exchanger 100h is reduced by making the bypass piping 40 in the low dryness region on the downstream side of the refrigerant flow thinner than on the upstream side. be able to.
  • the heat exchanger 100 has three or more flat tube groups 30, two or more bypass pipes 40, and has bypass pipes on the downstream side of the refrigerant flow when functioning as a condenser.
  • the diameter of 40 is smaller than the diameter of bypass piping 40 on the upstream side.
  • the heat exchanger 100h by making the bypass pipe 40 in the low dryness region on the downstream side of the refrigerant flow thinner than the upstream side when functioning as a condenser, the heat exchanger 100h can be The amount of refrigerant inside can be reduced.

Abstract

This heat exchanger comprises: a plurality of flat tube groups each composed of a plurality of flat tubes which face each other so as to be parallel to each other on flat surfaces thereof and through which a refrigerant flows in the same direction, with a vertical direction set as a tube extending direction; a bypass piping which is disposed between adjacent flat tube groups and through which the refrigerant flows in a direction opposite to that of the adjacent flat tube groups; an upper header which is disposed above the flat tube groups and the bypass piping, and into which ends of those are inserted; and a lower header which is disposed below the flat tube groups and the bypass piping, and into which ends of those are inserted. When functioning as a condenser, the heat exchanger is configured such that the refrigerant inside the flat tube groups flows downward while the refrigerant inside the bypass piping flows upward. Inside the respective upper and lower headers, the ends of the bypass piping are disposed below the ends of the respective flat tubes.

Description

熱交換器Heat exchanger
 本開示は、複数の扁平管を備えた熱交換器に関するものである。 The present disclosure relates to a heat exchanger including a plurality of flat tubes.
 従来、複数の扁平管を備えた空気熱交換器を、例えば空気調和装置の熱交換器に採用したものがある。この空気調和装置では、室内機に搭載された凝縮器として機能する熱交換器で凝縮された液冷媒が絞り装置によって減圧される。そして、冷媒は、ガス冷媒と液冷媒とが混在する気液二相状態となって室外機に搭載された蒸発器として機能する熱交換器に流入する。 Conventionally, an air heat exchanger equipped with a plurality of flat tubes has been adopted, for example, as a heat exchanger for an air conditioner. In this air conditioner, liquid refrigerant condensed by a heat exchanger that functions as a condenser mounted on an indoor unit is depressurized by a throttle device. Then, the refrigerant becomes a gas-liquid two-phase state in which gas refrigerant and liquid refrigerant are mixed, and flows into a heat exchanger that functions as an evaporator mounted on the outdoor unit.
 複数の扁平管を備えた熱交換器では、圧力損失を低減するために、扁平管の本数が膨大となり、各扁平管に均一に冷媒を分配することが困難である。そこで、熱交換器が蒸発器として機能する場合の冷媒の分配の均一化を狙い、重力による気液分離が発生しづらい水平方向にヘッダが伸びる形態を用いて、冷媒の分配の均一化が行われている。しかしながら、本構成では、熱交換器が凝縮器として機能する場合に、上下方向に延伸した扁平管内の相変化に伴う液ヘッドの増加で、扁平管内を冷媒が上昇流となる部分で大幅に分配性能が悪化し、熱交換器性能が低下することが課題とされている。 In a heat exchanger equipped with a plurality of flat tubes, in order to reduce pressure loss, the number of flat tubes becomes enormous, making it difficult to uniformly distribute refrigerant to each flat tube. Therefore, in order to equalize the refrigerant distribution when the heat exchanger functions as an evaporator, we used a configuration in which the header extends horizontally, which makes it difficult for gas-liquid separation to occur due to gravity. It is being said. However, in this configuration, when the heat exchanger functions as a condenser, the refrigerant is significantly distributed in the upward flow part of the flat tube due to the increase in liquid head due to the phase change in the flat tube extending in the vertical direction. The problem is that the performance deteriorates and the heat exchanger performance deteriorates.
 そこで、ヘッダを水平方向に延伸させ、ヘッダを長手方向に分割し、熱交換器が凝縮器として機能する場合、扁平管内を冷媒が下降流となり、バイパス管内を冷媒が上昇流となる熱交換器が提案されている(例えば、特許文献1参照)。特許文献1の構成のように、ヘッダを短く分割すること、および、冷媒が上昇流となる部分を減らすことで、ヘッダの長手方向での分配性能の悪化が抑制され、熱交換器性能の低下が抑制される。また、扁平管内を冷媒が下降流となるようにすることで、液化した冷媒が重力方向に流れることができるため、冷媒の熱伝達率が向上し、熱交換器性能が向上する。 Therefore, if the header is extended horizontally and the header is divided longitudinally, and the heat exchanger functions as a condenser, the refrigerant flows downward in the flat tubes, and the refrigerant flows upward in the bypass tubes. has been proposed (for example, see Patent Document 1). As in the configuration of Patent Document 1, by dividing the header into shorter lengths and reducing the portion where the refrigerant flows upward, the deterioration of the distribution performance in the longitudinal direction of the header is suppressed, and the deterioration of the heat exchanger performance is suppressed. is suppressed. Furthermore, by allowing the refrigerant to flow downward in the flat tube, the liquefied refrigerant can flow in the direction of gravity, improving the heat transfer coefficient of the refrigerant and improving the heat exchanger performance.
特開2001-141382号公報Japanese Patent Application Publication No. 2001-141382
 しかしながら、特許文献1は、ヘッダが水平方向に延伸しているため、ヘッダ下部に液冷媒が滞留し、バイパス管と扁平管の端面の位置によっては、ヘッダ下部に滞留した液冷媒によって扁平管に冷媒が流れづらい領域が発生し、熱交換器性能が低下するという課題があった。 However, in Patent Document 1, since the header extends in the horizontal direction, the liquid refrigerant stays at the bottom of the header, and depending on the positions of the end faces of the bypass pipe and the flat tube, the liquid refrigerant that stays at the bottom of the header may cause the liquid refrigerant to flow into the flat tube. There was a problem in that there were areas where it was difficult for the refrigerant to flow, resulting in a decrease in heat exchanger performance.
 本開示は、以上のような課題を解決するためになされたもので、凝縮器として機能する場合、ヘッダ内の液冷媒の滞留を抑制するとともに、冷媒の分配を均一化することで、熱交換器性能を向上させた熱交換器を提供することを目的としている。 The present disclosure has been made to solve the above problems, and when functioning as a condenser, it suppresses the accumulation of liquid refrigerant in the header and uniformizes the distribution of the refrigerant, thereby improving heat exchange. The purpose is to provide a heat exchanger with improved heat exchanger performance.
 本開示に係る熱交換器は、上下方向を管延伸方向とし、互いに平行となるように扁平面を対向させた、内部を同一方向に冷媒が流れる複数の扁平管で構成された複数の扁平管群と、隣り合う前記扁平管群の間に配置され、内部を前記隣り合う前記扁平管群とは反対方向に冷媒が流れるバイパス配管と、前記複数の扁平管群および前記バイパス配管の上側に配置され、それらの端部が挿入された上部ヘッダと、前記複数の扁平管群および前記バイパス配管の下側に配置され、それらの端部が挿入された下部ヘッダと、を備え、凝縮器として機能する場合、前記複数の扁平管群の内部では冷媒が下降流となり、前記バイパス配管の内部では冷媒が上昇流となるように構成されており、前記上部ヘッダおよび前記下部ヘッダそれぞれの内部において、前記バイパス配管の端部は、各前記扁平管の端部よりも下方に配置されているものである。 The heat exchanger according to the present disclosure includes a plurality of flat tubes in which a refrigerant flows in the same direction, the tubes extending in the vertical direction, and having flat surfaces facing each other so as to be parallel to each other. a bypass pipe arranged between the adjacent flat tube groups and through which a refrigerant flows in the opposite direction to the adjacent flat tube groups; and a bypass pipe arranged above the plurality of flat tube groups and the bypass pipe. and a lower header arranged below the plurality of flat tube groups and the bypass piping and into which the ends thereof are inserted, and functions as a condenser. In this case, the refrigerant flows downward inside the plurality of flat tube groups, and the refrigerant flows upward inside the bypass piping. The ends of the bypass piping are arranged below the ends of each of the flat tubes.
 本開示に係る熱交換器によれば、凝縮器として機能する場合、複数の扁平管群の内部では冷媒が下降流となり、バイパス配管の内部では冷媒が上昇流となるように構成されており、上部ヘッダおよび下部ヘッダそれぞれの内部において、バイパス配管の端部は、各扁平管の端部よりも下方に配置されている。そのため、熱交換器が凝縮器として機能する場合、バイパス配管によって下部ヘッダの底面に滞留した液冷媒を上昇させることが可能となる。その結果、扁平管に冷媒が流れづらい領域が発生するのが抑制され、内部の冷媒が下降流となる扁平管での冷媒の分配を均一化させることができ、熱交換器性能が向上する。また、上部ヘッダの底面に滞留した液冷媒が、バイパス配管から流出する冷媒によって混合されるため、液滞留が抑制される。 According to the heat exchanger according to the present disclosure, when functioning as a condenser, the refrigerant is configured to flow downward inside the plurality of flat tube groups and to flow upward inside the bypass piping, Inside each of the upper header and the lower header, the end of the bypass piping is located below the end of each flat tube. Therefore, when the heat exchanger functions as a condenser, the liquid refrigerant that has accumulated on the bottom surface of the lower header can be raised by the bypass piping. As a result, the occurrence of areas in the flat tube where it is difficult for the refrigerant to flow is suppressed, and the distribution of the refrigerant in the flat tube where the internal refrigerant flows downward can be made uniform, thereby improving the heat exchanger performance. Moreover, since the liquid refrigerant that has accumulated on the bottom surface of the upper header is mixed with the refrigerant flowing out from the bypass pipe, liquid accumulation is suppressed.
実施の形態1に係る熱交換器が凝縮器として機能する場合の冷媒の流れを示す模式図である。FIG. 2 is a schematic diagram showing the flow of refrigerant when the heat exchanger according to Embodiment 1 functions as a condenser. 実施の形態1に係る熱交換器が蒸発器として機能する場合の冷媒の流れを示す模式図である。FIG. 3 is a schematic diagram showing the flow of refrigerant when the heat exchanger according to the first embodiment functions as an evaporator. 実施の形態1の変形例に係る熱交換器が蒸発器として機能する場合の冷媒の流れを示す模式図である。FIG. 7 is a schematic diagram showing the flow of refrigerant when a heat exchanger according to a modification of the first embodiment functions as an evaporator. 実施の形態2に係る熱交換器が凝縮器として機能する場合の冷媒の流れを示す模式図である。FIG. 7 is a schematic diagram showing the flow of refrigerant when the heat exchanger according to Embodiment 2 functions as a condenser. 実施の形態2の第1変形例に係る熱交換器が凝縮器として機能する場合の冷媒の流れを示す模式図である。FIG. 7 is a schematic diagram showing the flow of refrigerant when a heat exchanger according to a first modification of the second embodiment functions as a condenser. 実施の形態2の第2変形例に係る熱交換器が凝縮器として機能する場合の冷媒の流れを示す模式図である。FIG. 7 is a schematic diagram showing the flow of refrigerant when a heat exchanger according to a second modification of the second embodiment functions as a condenser. 実施の形態2の第3変形例に係る熱交換器が凝縮器として機能する場合の冷媒の流れを示す模式図である。FIG. 7 is a schematic diagram showing the flow of refrigerant when a heat exchanger according to a third modification of the second embodiment functions as a condenser. 実施の形態2の第4変形例に係る熱交換器が凝縮器として機能する場合の冷媒の流れを示す模式図である。FIG. 7 is a schematic diagram showing the flow of refrigerant when a heat exchanger according to a fourth modification of the second embodiment functions as a condenser. 実施の形態2の第5変形例に係る熱交換器が凝縮器として機能する場合の冷媒の流れを示す模式図である。FIG. 7 is a schematic diagram showing the flow of refrigerant when a heat exchanger according to a fifth modification of the second embodiment functions as a condenser. 実施の形態3に係る熱交換器が凝縮器として機能する場合の冷媒の流れを示す模式図である。FIG. 7 is a schematic diagram showing the flow of refrigerant when the heat exchanger according to Embodiment 3 functions as a condenser.
 以下、本開示の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the present disclosure will be described based on the drawings. Note that the present disclosure is not limited to the embodiments described below. Further, in the following drawings, the size relationship of each component may differ from the actual one.
 実施の形態1.
 図1は、実施の形態1に係る熱交換器100が凝縮器として機能する場合の冷媒の流れを示す模式図である。図2は、実施の形態1に係る熱交換器100が蒸発器として機能する場合の冷媒の流れを示す模式図である。なお、図1および図2の矢印は、冷媒の流れを示しており、後述する図面についても同様である。
Embodiment 1.
FIG. 1 is a schematic diagram showing the flow of refrigerant when heat exchanger 100 according to Embodiment 1 functions as a condenser. FIG. 2 is a schematic diagram showing the flow of refrigerant when heat exchanger 100 according to the first embodiment functions as an evaporator. Note that the arrows in FIGS. 1 and 2 indicate the flow of the refrigerant, and the same applies to the drawings described later.
 図1および図2に示すように、実施の形態1に係る熱交換器100は、上部ヘッダ10と下部ヘッダ20とからなる一対の分配ヘッダが、高さ方向に上下に分かれて配置されている。 As shown in FIGS. 1 and 2, in the heat exchanger 100 according to the first embodiment, a pair of distribution headers consisting of an upper header 10 and a lower header 20 are arranged vertically separated in the height direction. .
 そして、一対の分配ヘッダの間には、上下方向を管延伸方向とし、互いに平行となるように扁平面を対向させた、内部を同一方向に冷媒が流れる複数の扁平管31で構成された2つの扁平管群30が配置されている。つまり、複数の扁平管31は、上下方向と直交する左右方向に間隔を空けて配置されている。扁平管31は、断面が扁平形状を有し、空気の流れ方向(図1および図2の紙面直交方向)に沿った扁平形状の長手側における外側面が平面状であり、当該長手方向に直交する短手側における外側面が曲面状である伝熱管である。実施の形態1に係る扁平管31は、管の内部において、冷媒の流路となる複数の穴を有する多穴扁平管である。実施の形態1において、扁平管31の穴は、一対の分配ヘッダの間の流路となるため、高さ方向に沿って形成されている。なお、各扁平管群30を構成する扁平管31の数は、任意の数である。 Between the pair of distribution headers, a plurality of flat tubes 31 are arranged, with the vertical direction being the tube extending direction and flat surfaces facing each other so as to be parallel to each other, and through which the refrigerant flows in the same direction. Two flat tube groups 30 are arranged. That is, the plurality of flat tubes 31 are arranged at intervals in the horizontal direction orthogonal to the vertical direction. The flat tube 31 has a flat cross section, and the outer surface on the longitudinal side of the flat shape along the air flow direction (direction perpendicular to the plane of the paper in FIGS. 1 and 2) is planar, and the flat tube 31 has a flat cross section. This is a heat exchanger tube whose outer surface on the shorter side is curved. The flat tube 31 according to Embodiment 1 is a multi-hole flat tube that has a plurality of holes that serve as refrigerant flow paths inside the tube. In the first embodiment, the holes in the flat tube 31 are formed along the height direction to serve as flow paths between the pair of distribution headers. Note that the number of flat tubes 31 constituting each flat tube group 30 is an arbitrary number.
 互いに隣り合う2つの扁平管群30の間には、内部を互いに隣り合う2つの扁平管群30とは反対方向に冷媒が流れるバイパス配管40が設けられている。つまり、熱交換器100は、2つの扁平管群30と1つのバイパス配管40とを有している。ここで、1つのバイパス配管40の流路断面積は、1つの扁平管31の流路断面積よりも大きい。このようにすることで、熱交換器100が蒸発器として機能する場合の冷媒の圧力損失を抑えることができ、熱交換器性能の向上を図ることができる。また、熱交換器100を通過する風速分布の偏りなどに伴い、それぞれの扁平管31での熱交換量の差による冷媒の状態変化におけるばらつきを、バイパス配管40にて合流させることにより解消でき、次の扁平管群30へ冷媒を均一に分配でき、熱交換器性能の向上を図ることができる。 A bypass pipe 40 is provided between the two adjacent flat tube groups 30, through which the refrigerant flows in the opposite direction to the two adjacent flat tube groups 30. That is, the heat exchanger 100 has two flat tube groups 30 and one bypass pipe 40. Here, the passage cross-sectional area of one bypass pipe 40 is larger than the passage cross-sectional area of one flat pipe 31. By doing so, the pressure loss of the refrigerant when the heat exchanger 100 functions as an evaporator can be suppressed, and the performance of the heat exchanger can be improved. Further, due to unevenness in the wind speed distribution passing through the heat exchanger 100, variations in the state of the refrigerant due to differences in the amount of heat exchanged between the respective flat tubes 31 can be eliminated by merging them in the bypass pipe 40, The refrigerant can be uniformly distributed to the next flat tube group 30, and the heat exchanger performance can be improved.
 扁平管群30およびバイパス配管40の上側には上部ヘッダ10が設けられており、上部ヘッダ10には、扁平管群30の扁平管31およびバイパス配管40の上端部が挿入されている。このとき、上部ヘッダ10の内部において、バイパス配管40の上端部(図1のhu2参照)は、扁平管群30の各扁平管31の上端部(図1のhu1参照)よりも下方に配置されている。また、扁平管群30およびバイパス配管40の下側には下部ヘッダ20が設けられており、下部ヘッダ20には、扁平管群30の扁平管31およびバイパス配管40の下端部が挿入されている。このとき、下部ヘッダ20の内部において、バイパス配管40の下端部(図1のhl2参照)は、扁平管群30の各扁平管31の下端部(図1のhl1参照)よりも下方に配置されている。つまり、上部ヘッダ10においては、バイパス配管40の挿入量が扁平管群30の扁平管31の挿入量よりも少なくなっており、下部ヘッダ20においては、バイパス配管40の挿入量が扁平管群30の扁平管31の挿入量よりも多くなっている。 An upper header 10 is provided above the flat tube group 30 and the bypass piping 40, and the upper ends of the flat tubes 31 of the flat tube group 30 and the bypass piping 40 are inserted into the upper header 10. At this time, inside the upper header 10, the upper end of the bypass pipe 40 (see hu2 in FIG. 1) is arranged below the upper end of each flat tube 31 of the flat tube group 30 (see hu1 in FIG. 1). ing. Further, a lower header 20 is provided below the flat tube group 30 and the bypass piping 40, and the lower ends of the flat tubes 31 of the flat tube group 30 and the bypass piping 40 are inserted into the lower header 20. . At this time, inside the lower header 20, the lower end of the bypass pipe 40 (see hl2 in FIG. 1) is arranged below the lower end of each flat tube 31 of the flat tube group 30 (see hl1 in FIG. 1). ing. That is, in the upper header 10, the insertion amount of the bypass piping 40 is smaller than the insertion amount of the flat tubes 31 in the flat tube group 30, and in the lower header 20, the insertion amount of the bypass piping 40 is smaller than the insertion amount in the flat tube group 30. The amount of insertion of the flat tube 31 is greater than the amount of insertion of the flat tube 31.
 上部ヘッダ10は、内部に冷媒の流路が形成されている。また、上部ヘッダ10の内部には、冷媒の流路を仕切る第1仕切り11が設けられている。また、上部ヘッダ10の一端には、冷媒出入口51が形成されている。下部ヘッダ20は、内部に冷媒の流路が形成されている。また、下部ヘッダ20の内部には、冷媒の流路を仕切る第2仕切り21が設けられている。また、上部ヘッダ10の一端とは反対側に位置する下部ヘッダ20の一端には、冷媒出入口52が形成されている。 The upper header 10 has a refrigerant flow path formed inside. Furthermore, a first partition 11 is provided inside the upper header 10 to partition a refrigerant flow path. Furthermore, a refrigerant inlet/outlet 51 is formed at one end of the upper header 10 . The lower header 20 has a refrigerant flow path formed therein. Further, a second partition 21 is provided inside the lower header 20 to partition a refrigerant flow path. Further, a refrigerant inlet/outlet 52 is formed at one end of the lower header 20 located on the opposite side from one end of the upper header 10 .
 第1仕切り11は、扁平管群30の上端とバイパス配管40の上端との間に配置されている。また、第2仕切り21は、扁平管群30の下端とバイパス配管40の下端との間に配置されている。 The first partition 11 is arranged between the upper end of the flat tube group 30 and the upper end of the bypass piping 40. Further, the second partition 21 is arranged between the lower end of the flat tube group 30 and the lower end of the bypass piping 40.
 図1に示すように、熱交換器100が凝縮器として機能する場合、高温高圧のガス冷媒が冷媒出入口51から上部ヘッダ10の内部に流入する。上部ヘッダ10の内部に流入したガス冷媒は、上流側の扁平管群30の各扁平管31の内部を下方に流れ、下部ヘッダ20で合流する。下部ヘッダ20で合流した冷媒は、バイパス配管40の内部を上方に流れ、上部ヘッダ10で合流する。上部ヘッダ10で合流した冷媒は、下流側の扁平管群30の各扁平管31の内部を下方に流れ、下部ヘッダ20で合流した後、冷媒出入口52から流出する。なお、熱交換器100に流入した高温高圧のガス冷媒は、扁平管31およびバイパス配管40を流れながら空気と熱交換し、低温高圧の液冷媒となって熱交換器100から流出する。つまり、熱交換器100が凝縮器として機能する場合、冷媒出入口51はガス冷媒入口となり、冷媒出入口52は液冷媒出口となる。 As shown in FIG. 1, when the heat exchanger 100 functions as a condenser, high-temperature, high-pressure gas refrigerant flows into the upper header 10 from the refrigerant inlet/outlet 51. The gas refrigerant that has flowed into the upper header 10 flows downward inside each flat tube 31 of the upstream flat tube group 30 and joins at the lower header 20 . The refrigerants that have merged at the lower header 20 flow upward inside the bypass pipe 40 and merge at the upper header 10. The refrigerant that has merged at the upper header 10 flows downward inside each flat tube 31 of the flat tube group 30 on the downstream side, merges at the lower header 20, and then flows out from the refrigerant inlet/outlet port 52. The high-temperature, high-pressure gas refrigerant that has flowed into the heat exchanger 100 exchanges heat with air while flowing through the flat tubes 31 and bypass piping 40, and flows out of the heat exchanger 100 as a low-temperature, high-pressure liquid refrigerant. That is, when the heat exchanger 100 functions as a condenser, the refrigerant inlet/outlet 51 becomes a gas refrigerant inlet, and the refrigerant inlet/outlet 52 becomes a liquid refrigerant outlet.
 図2に示すように、熱交換器100が蒸発器として機能する場合、低温低圧の二相冷媒が冷媒出入口52から下部ヘッダ20の内部に流入する。下部ヘッダ20の内部に流入した二相冷媒は、上流側の扁平管群30の各扁平管31の内部を上方に流れ、上部ヘッダ10で合流する。上部ヘッダ10で合流した冷媒は、バイパス配管40の内部を下方に流れ、下部ヘッダ20で合流する。下部ヘッダ20で合流した冷媒は、下流側の扁平管群30の各扁平管31の内部を上方に流れ、上部ヘッダ10で合流した後、冷媒出入口51から流出する。なお、熱交換器100に流入した低温低圧の二相冷媒は、扁平管31およびバイパス配管40を流れながら空気と熱交換し、高温低圧のガス冷媒となって熱交換器100から流出する。つまり、熱交換器100が蒸発器として機能する場合、冷媒出入口52は二相冷媒入口となり、冷媒出入口51はガス冷媒出口となる。 As shown in FIG. 2, when the heat exchanger 100 functions as an evaporator, low-temperature, low-pressure two-phase refrigerant flows into the lower header 20 from the refrigerant inlet/outlet 52. The two-phase refrigerant that has flowed into the lower header 20 flows upward inside each flat tube 31 of the upstream flat tube group 30 and joins at the upper header 10 . The refrigerants that have merged at the upper header 10 flow downward inside the bypass pipe 40 and merge at the lower header 20. The refrigerant that has merged at the lower header 20 flows upward inside each flat tube 31 of the flat tube group 30 on the downstream side, merges at the upper header 10, and then flows out from the refrigerant inlet/outlet port 51. Note that the low-temperature, low-pressure two-phase refrigerant that has flowed into the heat exchanger 100 exchanges heat with air while flowing through the flat tubes 31 and the bypass piping 40, and flows out of the heat exchanger 100 as a high-temperature, low-pressure gas refrigerant. That is, when the heat exchanger 100 functions as an evaporator, the refrigerant inlet/outlet 52 becomes a two-phase refrigerant inlet, and the refrigerant inlet/outlet 51 becomes a gas refrigerant outlet.
 以上のように、熱交換器100が凝縮器として機能する場合、2つの扁平管群30の内部では冷媒が下降流となり、バイパス配管40の内部では冷媒が上昇流となるように構成されている。また、熱交換器100が蒸発器として機能する場合、2つの扁平管群30の内部では冷媒が上昇流となり、バイパス配管40の内部では冷媒が下降流となるように構成されている。つまり、2つの扁平管群30とバイパス配管40とは、その内部を互いに反対方向に冷媒が流れるようになっている。 As described above, when the heat exchanger 100 functions as a condenser, it is configured so that the refrigerant flows downward inside the two flat tube groups 30 and flows upward inside the bypass piping 40. . Further, when the heat exchanger 100 functions as an evaporator, the refrigerant is configured to flow upward within the two flat tube groups 30 and flow downward within the bypass piping 40. In other words, the refrigerant flows through the two flat tube groups 30 and the bypass piping 40 in opposite directions.
 熱交換器100が凝縮器として機能する場合の効果としては、以下が挙げられる。下部ヘッダ20において、バイパス配管40の下端部は、扁平管群30の各扁平管31の下端部よりも下方に配置されているため、バイパス配管40によって下部ヘッダ20の底面に滞留した液冷媒を吸い上げて上昇させることが可能となる。その結果、扁平管31に冷媒が流れづらい領域が発生するのが抑制され、内部の冷媒が下降流となる扁平管31での冷媒の分配を均一化させることができ、熱交換器性能が向上する。また、上部ヘッダ10において、バイパス配管40の上端部は、扁平管群30の各扁平管31の上端部よりも下方に配置されているため、上部ヘッダ10の底面に滞留した液冷媒が、バイパス配管40から流出する冷媒によって混合されるため、液滞留が抑制される。 The effects when the heat exchanger 100 functions as a condenser include the following. In the lower header 20, the lower end of the bypass piping 40 is arranged below the lower end of each flat tube 31 of the flat tube group 30, so that the liquid refrigerant accumulated on the bottom surface of the lower header 20 is removed by the bypass piping 40. It is possible to suck it up and raise it. As a result, the occurrence of regions in the flat tubes 31 where it is difficult for the refrigerant to flow is suppressed, and the distribution of the refrigerant in the flat tubes 31, where the internal refrigerant flows downward, can be made uniform, improving heat exchanger performance. do. Furthermore, in the upper header 10, the upper end of the bypass piping 40 is disposed below the upper end of each flat tube 31 of the flat tube group 30, so that the liquid refrigerant that has accumulated on the bottom surface of the upper header 10 can be bypassed. Since the refrigerant is mixed by the refrigerant flowing out from the pipe 40, liquid retention is suppressed.
 熱交換器100が蒸発器として機能する場合の効果としては、以下が挙げられる。上部ヘッダ10において、バイパス配管40の上端部は、扁平管群30の各扁平管31の上端部よりも下方に配置されているため、上部ヘッダ10の底面に滞留する液冷媒はバイパス配管40の上端部までとなり、扁平管31近傍での液滞留が抑制される。その結果、上部ヘッダ10の底面に滞留した液冷媒を少なくすることができ、除霜時に上部ヘッダ10に滞留した低温の液冷媒による、除霜熱量の低下を抑制することができる。 Effects when the heat exchanger 100 functions as an evaporator include the following. In the upper header 10 , the upper end of the bypass piping 40 is arranged below the upper end of each flat tube 31 of the flat tube group 30 , so the liquid refrigerant that stays on the bottom surface of the upper header 10 flows through the bypass piping 40 . The liquid reaches the upper end, and liquid retention near the flat tube 31 is suppressed. As a result, it is possible to reduce the amount of liquid refrigerant that has accumulated on the bottom surface of the upper header 10, and it is possible to suppress a decrease in the defrosting heat amount due to the low-temperature liquid refrigerant that has accumulated in the upper header 10 during defrosting.
 図3は、実施の形態1の変形例に係る熱交換器100aが蒸発器として機能する場合の冷媒の流れを示す模式図である。なお、実施の形態1では、一対の分配ヘッダの間に2つの扁平管群30が配置されているとしたが、それに限定されず、一対の分配ヘッダの間に3つ以上の扁平管群30が配置されていてもよい。例えば、図3に示す熱交換器100aのように、一対の分配ヘッダの間に4つの扁平管群30が配置されていてもよい。この場合、互いに隣り合う2つの扁平管群30の間のそれぞれには、内部を互いに隣り合う2つの扁平管群30とは反対方向に冷媒が流れるバイパス配管40が設けられている。つまり、熱交換器100aは、4つの扁平管群30と3つのバイパス配管40とを有している。 FIG. 3 is a schematic diagram showing the flow of refrigerant when the heat exchanger 100a according to a modification of the first embodiment functions as an evaporator. In the first embodiment, two flat tube groups 30 are arranged between a pair of distribution headers, but the present invention is not limited to this, and three or more flat tube groups 30 are arranged between a pair of distribution headers. may be placed. For example, like the heat exchanger 100a shown in FIG. 3, four flat tube groups 30 may be arranged between a pair of distribution headers. In this case, bypass piping 40 through which the refrigerant flows in the opposite direction to the two adjacent flat tube groups 30 is provided between each of the two adjacent flat tube groups 30 . That is, the heat exchanger 100a has four flat tube groups 30 and three bypass pipes 40.
 上部ヘッダ10は、内部に冷媒の流路が形成されている。また、上部ヘッダ10の内部には、冷媒の流路を仕切る第1仕切り11が複数設けられている。また、上部ヘッダ10の一端には、冷媒出入口51が形成されている。下部ヘッダ20は、内部に冷媒の流路が形成されている。また、下部ヘッダ20の内部には、冷媒の流路を仕切る第2仕切り21が複数設けられている。また、上部ヘッダ10の一端とは反対側に位置する下部ヘッダ20の一端には、冷媒出入口52が形成されている。 The upper header 10 has a refrigerant flow path formed inside. Further, inside the upper header 10, a plurality of first partitions 11 are provided to partition a refrigerant flow path. Furthermore, a refrigerant inlet/outlet 51 is formed at one end of the upper header 10 . The lower header 20 has a refrigerant flow path formed therein. Further, inside the lower header 20, a plurality of second partitions 21 are provided to partition a refrigerant flow path. Further, a refrigerant inlet/outlet 52 is formed at one end of the lower header 20 located on the opposite side from one end of the upper header 10 .
 第1仕切り11は、扁平管群30の上端とバイパス配管40の上端との間に配置されている。また、第2仕切り21は、扁平管群30の下端とバイパス配管40の下端との間に配置されている。 The first partition 11 is arranged between the upper end of the flat tube group 30 and the upper end of the bypass piping 40. Further, the second partition 21 is arranged between the lower end of the flat tube group 30 and the lower end of the bypass piping 40.
 以上、実施の形態1に係る熱交換器100は、上下方向を管延伸方向とし、互いに平行となるように扁平面を対向させた、内部を同一方向に冷媒が流れる複数の扁平管31で構成された複数の扁平管群30と、隣り合う扁平管群30の間に配置され、内部を隣り合う扁平管群30とは反対方向に冷媒が流れるバイパス配管40と、複数の扁平管群30およびバイパス配管40の上側に配置され、それらの端部が挿入された上部ヘッダ10と、複数の扁平管群30およびバイパス配管40の下側に配置され、それらの端部が挿入された下部ヘッダ20と、を備え、凝縮器として機能する場合、複数の扁平管群30の内部では冷媒が下降流となり、バイパス配管40の内部では冷媒が上昇流となるように構成されており、上部ヘッダ10および下部ヘッダ20それぞれの内部において、バイパス配管40の端部は、各扁平管31の端部よりも下方に配置されているものである。 As described above, the heat exchanger 100 according to Embodiment 1 is composed of a plurality of flat tubes 31 in which the tube extending direction is the vertical direction and the flat surfaces thereof are opposed so as to be parallel to each other, and through which the refrigerant flows in the same direction. a plurality of flat tube groups 30 , a bypass pipe 40 that is arranged between adjacent flat tube groups 30 and through which refrigerant flows in the opposite direction to the adjacent flat tube groups 30 , and a plurality of flat tube groups 30 and An upper header 10 that is arranged above the bypass piping 40 and has its ends inserted therein, and a lower header 20 that is arranged below the plurality of flat tube groups 30 and the bypass piping 40 and has its ends inserted therein. When functioning as a condenser, the refrigerant flows downward inside the plurality of flat tube groups 30 and flows upward inside the bypass piping 40. Inside each of the lower headers 20, the ends of the bypass piping 40 are arranged below the ends of each flat tube 31.
 実施の形態1に係る熱交換器100によれば、凝縮器として機能する場合、複数の扁平管群30の内部では冷媒が下降流となり、バイパス配管40の内部では冷媒が上昇流となるように構成されており、上部ヘッダ10および下部ヘッダ20それぞれの内部において、バイパス配管40の端部は、各扁平管31の端部よりも下方に配置されている。そのため、熱交換器100が凝縮器として機能する場合、バイパス配管40によって下部ヘッダ20の底面に滞留した液冷媒を上昇させることが可能となる。その結果、扁平管31に冷媒が流れづらい領域が発生するのが抑制され、内部の冷媒が下降流となる扁平管31での冷媒の分配を均一化させることができ、熱交換器性能が向上する。また、上部ヘッダ10の底面に滞留した液冷媒が、バイパス配管40から流出する冷媒によって混合されるため、液滞留が抑制される。 According to the heat exchanger 100 according to the first embodiment, when functioning as a condenser, the refrigerant flows downward inside the plurality of flat tube groups 30 and flows upward inside the bypass piping 40. In each of the upper header 10 and the lower header 20, the end of the bypass piping 40 is arranged below the end of each flat tube 31. Therefore, when the heat exchanger 100 functions as a condenser, the liquid refrigerant stagnant on the bottom surface of the lower header 20 can be raised by the bypass pipe 40. As a result, the occurrence of regions in the flat tubes 31 where it is difficult for the refrigerant to flow is suppressed, and the distribution of the refrigerant in the flat tubes 31, where the internal refrigerant flows downward, can be made uniform, improving heat exchanger performance. do. Moreover, since the liquid refrigerant that has accumulated on the bottom surface of the upper header 10 is mixed with the refrigerant that flows out from the bypass pipe 40, liquid accumulation is suppressed.
 また、実施の形態1に係る熱交換器100において、バイパス配管40の流路断面積は、扁平管31の流路断面積よりも大きい。 Furthermore, in the heat exchanger 100 according to the first embodiment, the passage cross-sectional area of the bypass pipe 40 is larger than the passage cross-sectional area of the flat tube 31.
 実施の形態1に係る熱交換器100によれば、熱交換器100が蒸発器として機能する場合の冷媒の圧力損失を抑えることができ、熱交換器性能の向上を図ることができる。 According to the heat exchanger 100 according to the first embodiment, the pressure loss of the refrigerant when the heat exchanger 100 functions as an evaporator can be suppressed, and the heat exchanger performance can be improved.
 実施の形態2.
 以下、実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 2.
Embodiment 2 will be described below, but the description of parts that overlap with Embodiment 1 will be omitted, and the same or corresponding parts as in Embodiment 1 will be given the same reference numerals.
 図4は、実施の形態2に係る熱交換器100bが凝縮器として機能する場合の冷媒の流れを示す模式図である。 FIG. 4 is a schematic diagram showing the flow of refrigerant when the heat exchanger 100b according to the second embodiment functions as a condenser.
 実施の形態2に係る熱交換器100bでは、2つの扁平管群30と、互いに隣り合う2つの扁平管群30の間に配置されたバイパス配管40との組み合わせをモジュールMとした場合、凝縮器として機能する場合におけるモジュールMの冷媒流れの上流側に、内部をモジュールMの扁平管群30とは反対方向に冷媒が流れる扁平管群30(以下、非モジュールNMと称する)が設けられている。つまり、非モジュールNMである扁平管群30は、バイパス配管40と隣接していない。また、熱交換器100bが凝縮器として機能する場合において、ガス冷媒入口となる冷媒出入口51が下部ヘッダ20の一端に形成されており、液冷媒出口となる冷媒出入口52が下部ヘッダ20の他端に形成されている。 In the heat exchanger 100b according to the second embodiment, when a module M is a combination of two flat tube groups 30 and a bypass pipe 40 arranged between two mutually adjacent flat tube groups 30, the condenser A flat tube group 30 (hereinafter referred to as non-module NM) in which the refrigerant flows in the opposite direction to the flat tube group 30 of the module M is provided on the upstream side of the refrigerant flow of the module M when functioning as a module. . That is, the flat tube group 30 which is a non-module NM is not adjacent to the bypass piping 40. Further, when the heat exchanger 100b functions as a condenser, a refrigerant inlet/outlet 51 serving as a gas refrigerant inlet is formed at one end of the lower header 20, and a refrigerant inlet/outlet 52 serving as a liquid refrigerant outlet is formed at the other end of the lower header 20. is formed.
 ここで、単相のガス冷媒が存在すると考えられる領域では、熱交換器100bが凝縮器として機能する場合に上昇流れとなっても扁平管31内の相変化に伴う液ヘッドの増加がない若しくは少なく、ヘッド差の影響が小さいため、バイパス配管40を設ける必要がない。そこで、単相のガス冷媒が存在すると考えられる領域である、熱交換器100bが凝縮器として機能する場合におけるモジュールMの冷媒流れの上流側に、非モジュールNMを設ける構成とすることで、バイパス配管40の数を減らすことができる。その結果、減らしたバイパス配管40分の冷媒量を削減することができ、除霜時に高温冷媒の熱量を扁平管31に伝えることが可能となる。さらに構造が簡素化され、低コスト化が見込める。 Here, in a region where a single-phase gas refrigerant is considered to exist, there is no increase in the liquid head due to the phase change in the flat tube 31 even if there is an upward flow when the heat exchanger 100b functions as a condenser. Since the influence of the head difference is small, there is no need to provide the bypass piping 40. Therefore, by providing a non-module NM on the upstream side of the refrigerant flow of the module M when the heat exchanger 100b functions as a condenser, which is a region where single-phase gas refrigerant is thought to exist, bypass The number of piping 40 can be reduced. As a result, the amount of refrigerant for the reduced bypass pipe 40 can be reduced, and the amount of heat of the high temperature refrigerant can be transmitted to the flat tube 31 during defrosting. Furthermore, the structure is simplified and costs can be expected to be reduced.
 図5は、実施の形態2の第1変形例に係る熱交換器100cが凝縮器として機能する場合の冷媒の流れを示す模式図である。 FIG. 5 is a schematic diagram showing the flow of refrigerant when the heat exchanger 100c according to the first modification of the second embodiment functions as a condenser.
 実施の形態2の第1変形例に係る熱交換器100cでは、凝縮器として機能する場合におけるモジュールMの冷媒流れの下流側に非モジュールNMが設けられている。また、熱交換器100cが凝縮器として機能する場合において、ガス冷媒入口となる冷媒出入口51が上部ヘッダ10の一端に形成されており、液冷媒出口となる冷媒出入口52が上部ヘッダ10の他端に形成されている。 In the heat exchanger 100c according to the first modification of the second embodiment, a non-module NM is provided on the downstream side of the refrigerant flow of the module M when functioning as a condenser. Further, when the heat exchanger 100c functions as a condenser, a refrigerant inlet/outlet 51 serving as a gas refrigerant inlet is formed at one end of the upper header 10, and a refrigerant inlet/outlet 52 serving as a liquid refrigerant outlet is formed at the other end of the upper header 10. is formed.
 ここで、単相の液冷媒が存在すると考えられる領域では、熱交換器100cが凝縮器として機能する場合に上昇流れとなっても扁平管31内の相変化に伴う液ヘッドの増加がない若しくは少なく、ヘッド差の影響が小さいため、バイパス配管40を設ける必要がない。そこで、単相の液冷媒が存在すると考えられる領域である、熱交換器100cが凝縮器として機能する場合におけるモジュールMの冷媒流れの下流側に、非モジュールNMを設ける構成とすることで、バイパス配管40の数を減らすことができる。その結果、減らしたバイパス配管40分の冷媒量を削減することができ、除霜時に高温冷媒の熱量を扁平管31に伝えることが可能となる。さらに構造が簡素化され、低コスト化が見込める。 Here, in a region where single-phase liquid refrigerant is considered to exist, even if the heat exchanger 100c functions as a condenser and there is an upward flow, there is no increase in the liquid head due to the phase change in the flat tube 31. Since the influence of the head difference is small, there is no need to provide the bypass piping 40. Therefore, by providing a non-module NM on the downstream side of the refrigerant flow of the module M when the heat exchanger 100c functions as a condenser, which is an area where single-phase liquid refrigerant is thought to exist, bypass The number of piping 40 can be reduced. As a result, the amount of refrigerant for the reduced bypass pipe 40 can be reduced, and the amount of heat of the high temperature refrigerant can be transmitted to the flat tube 31 during defrosting. Furthermore, the structure is simplified and costs can be expected to be reduced.
 図6は、実施の形態2の第2変形例に係る熱交換器100dが凝縮器として機能する場合の冷媒の流れを示す模式図である。 FIG. 6 is a schematic diagram showing the flow of refrigerant when the heat exchanger 100d according to the second modification of the second embodiment functions as a condenser.
 実施の形態2の第2変形例に係る熱交換器100dでは、凝縮器として機能する場合におけるモジュールMの冷媒流れの上流側および下流側それぞれに非モジュールNMが設けられている。また、熱交換器100dが凝縮器として機能する場合において、ガス冷媒入口となる冷媒出入口51が下部ヘッダ20の一端に形成されており、液冷媒出口となる冷媒出入口52が上部ヘッダ10の一端に形成されている。なお、冷媒出入口52が形成されている上部ヘッダ10の一端は、冷媒出入口51が形成されている下部ヘッダ20の一端とは反対側に位置している。 In the heat exchanger 100d according to the second modification of the second embodiment, non-modules NM are provided on the upstream and downstream sides of the refrigerant flow of the module M when functioning as a condenser. Further, when the heat exchanger 100d functions as a condenser, a refrigerant inlet/outlet 51 serving as a gas refrigerant inlet is formed at one end of the lower header 20, and a refrigerant inlet/outlet 52 serving as a liquid refrigerant outlet is formed at one end of the upper header 10. It is formed. Note that one end of the upper header 10 in which the refrigerant inlet/outlet 52 is formed is located on the opposite side from one end of the lower header 20 in which the refrigerant inlet/outlet 51 is formed.
 ここで、単相のガス冷媒が存在すると考えられる領域では、熱交換器100dが凝縮器として機能する場合に上昇流れとなっても扁平管31内の相変化に伴う液ヘッドの増加がない若しくは少なく、ヘッド差の影響が小さいため、バイパス配管40を設ける必要がない。そこで、単相のガス冷媒が存在すると考えられる領域である、熱交換器100dが凝縮器として機能する場合におけるモジュールMの冷媒流れの上流側に、非モジュールNMを設ける構成とすることで、バイパス配管40の数を減らすことができる。その結果、減らしたバイパス配管40分の冷媒量を削減することができ、除霜時に高温冷媒の熱量を扁平管31に伝えることが可能となる。さらに構造が簡素化され、低コスト化が見込める。 Here, in a region where a single-phase gas refrigerant is considered to exist, there is no increase in the liquid head due to the phase change in the flat tube 31 even if there is an upward flow when the heat exchanger 100d functions as a condenser. Since the influence of the head difference is small, there is no need to provide the bypass piping 40. Therefore, by providing a non-module NM on the upstream side of the refrigerant flow of the module M when the heat exchanger 100d functions as a condenser, which is a region where single-phase gas refrigerant is thought to exist, bypass The number of piping 40 can be reduced. As a result, the amount of refrigerant for the reduced bypass pipe 40 can be reduced, and the amount of heat of the high temperature refrigerant can be transmitted to the flat tube 31 during defrosting. Furthermore, the structure is simplified and costs can be expected to be reduced.
 また、単相の液冷媒が存在すると考えられる領域では、熱交換器100dが凝縮器として機能する場合に上昇流れとなっても扁平管31内の相変化に伴う液ヘッドの増加がない若しくは少なく、ヘッド差の影響が小さいため、バイパス配管40を設ける必要がない。そこで、単相の液冷媒が存在すると考えられる領域である、熱交換器100dが凝縮器として機能する場合におけるモジュールMの冷媒流れの下流側に、非モジュールNMを設ける構成とすることで、バイパス配管40の数を減らすことができる。その結果、減らしたバイパス配管40分の冷媒量を削減することができ、除霜時に高温冷媒の熱量を扁平管31に伝えることが可能となる。さらに構造が簡素化され、低コスト化が見込める。 In addition, in a region where single-phase liquid refrigerant is thought to exist, even if the heat exchanger 100d functions as a condenser and there is an upward flow, there is no or little increase in the liquid head due to the phase change within the flat tube 31. Since the influence of the head difference is small, there is no need to provide the bypass piping 40. Therefore, by providing a non-module NM on the downstream side of the refrigerant flow of the module M when the heat exchanger 100d functions as a condenser, which is an area where single-phase liquid refrigerant is thought to exist, bypass The number of piping 40 can be reduced. As a result, the amount of refrigerant for the reduced bypass pipe 40 can be reduced, and the amount of heat of the high temperature refrigerant can be transmitted to the flat tube 31 during defrosting. Furthermore, the structure is simplified and costs can be expected to be reduced.
 図7は、実施の形態2の第3変形例に係る熱交換器100eが凝縮器として機能する場合の冷媒の流れを示す模式図である。 FIG. 7 is a schematic diagram showing the flow of refrigerant when the heat exchanger 100e according to the third modification of the second embodiment functions as a condenser.
 実施の形態2の第3変形例に係る熱交換器100eでは、モジュールMが、3つの扁平管群30と2つのバイパス配管40とで構成されている。つまり、熱交換器100eのモジュールMは、3つの扁平管群30と、互いに隣り合う2つの扁平管群30の間のそれぞれに配置されたバイパス配管40との組み合わせである。なお、モジュールMは、4つ以上の扁平管群30と3つ以上のバイパス配管40とで構成されていてもよい。 In the heat exchanger 100e according to the third modification of the second embodiment, the module M is composed of three flat tube groups 30 and two bypass pipes 40. That is, the module M of the heat exchanger 100e is a combination of three flat tube groups 30 and bypass piping 40 arranged between two mutually adjacent flat tube groups 30. Note that the module M may include four or more flat tube groups 30 and three or more bypass pipes 40.
 そして、熱交換器100eでは、凝縮器として機能する場合におけるモジュールMの冷媒流れの上流側に非モジュールNMが設けられている。また、熱交換器100eが凝縮器として機能する場合において、ガス冷媒入口となる冷媒出入口51が下部ヘッダ20の一端に形成されており、液冷媒出口となる冷媒出入口52が下部ヘッダ20の他端に形成されている。熱交換器100eでは、実施の形態2に係る熱交換器100bと同様の効果を得ることができる。 In the heat exchanger 100e, a non-module NM is provided on the upstream side of the refrigerant flow of the module M when functioning as a condenser. Further, when the heat exchanger 100e functions as a condenser, a refrigerant inlet/outlet 51 serving as a gas refrigerant inlet is formed at one end of the lower header 20, and a refrigerant inlet/outlet 52 serving as a liquid refrigerant outlet is formed at the other end of the lower header 20. is formed. The heat exchanger 100e can provide the same effects as the heat exchanger 100b according to the second embodiment.
 図8は、実施の形態2の第4変形例に係る熱交換器100fが凝縮器として機能する場合の冷媒の流れを示す模式図である。 FIG. 8 is a schematic diagram showing the flow of refrigerant when the heat exchanger 100f according to the fourth modification of the second embodiment functions as a condenser.
 実施の形態2の第4変形例に係る熱交換器100fでは、モジュールMが、3つの扁平管群30と2つのバイパス配管40とで構成されている。つまり、熱交換器100fのモジュールMは、3つの扁平管群30と、互いに隣り合う2つの扁平管群30の間のそれぞれに配置されたバイパス配管40との組み合わせである。なお、モジュールMは、4つ以上の扁平管群30と3つ以上のバイパス配管40とで構成されていてもよい。 In the heat exchanger 100f according to the fourth modification of the second embodiment, the module M includes three flat tube groups 30 and two bypass pipes 40. That is, the module M of the heat exchanger 100f is a combination of three flat tube groups 30 and bypass piping 40 arranged between two mutually adjacent flat tube groups 30. Note that the module M may include four or more flat tube groups 30 and three or more bypass pipes 40.
 そして、熱交換器100fでは、凝縮器として機能する場合におけるモジュールMの冷媒流れの下流側に非モジュールNMが設けられている。また、熱交換器100fが凝縮器として機能する場合において、ガス冷媒入口となる冷媒出入口51が上部ヘッダ10の一端に形成されており、液冷媒出口となる冷媒出入口52が上部ヘッダ10の他端に形成されている。熱交換器100fでは、実施の形態2の第1変形例に係る熱交換器100cと同様の効果を得ることができる。 In the heat exchanger 100f, a non-module NM is provided on the downstream side of the refrigerant flow of the module M when functioning as a condenser. Further, when the heat exchanger 100f functions as a condenser, a refrigerant inlet/outlet 51 serving as a gas refrigerant inlet is formed at one end of the upper header 10, and a refrigerant inlet/outlet 52 serving as a liquid refrigerant outlet is formed at the other end of the upper header 10. is formed. The heat exchanger 100f can provide the same effects as the heat exchanger 100c according to the first modification of the second embodiment.
 図9は、実施の形態2の第5変形例に係る熱交換器100gが凝縮器として機能する場合の冷媒の流れを示す模式図である。 FIG. 9 is a schematic diagram showing the flow of refrigerant when the heat exchanger 100g according to the fifth modification of the second embodiment functions as a condenser.
 実施の形態2の第5変形例に係る熱交換器100gでは、モジュールMが、3つの扁平管群30と2つのバイパス配管40とで構成されている。つまり、熱交換器100gのモジュールMは、3つの扁平管群30と、互いに隣り合う2つの扁平管群30の間のそれぞれに配置されたバイパス配管40との組み合わせである。なお、モジュールMは、4つ以上の扁平管群30と3つ以上のバイパス配管40とで構成されていてもよい。 In the heat exchanger 100g according to the fifth modification of the second embodiment, the module M is composed of three flat tube groups 30 and two bypass pipes 40. In other words, the module M of the heat exchanger 100g is a combination of three flat tube groups 30 and bypass piping 40 arranged between two mutually adjacent flat tube groups 30. Note that the module M may include four or more flat tube groups 30 and three or more bypass pipes 40.
 そして、熱交換器100gでは、凝縮器として機能する場合におけるモジュールMの冷媒流れの上流側および下流側それぞれに非モジュールNMが設けられている。また、熱交換器100gが凝縮器として機能する場合において、ガス冷媒入口となる冷媒出入口51が下部ヘッダ20の一端に形成されており、液冷媒出口となる冷媒出入口52が上部ヘッダ10の一端に形成されている。なお、冷媒出入口52が形成されている上部ヘッダ10の一端は、冷媒出入口51が形成されている下部ヘッダ20の一端とは反対側に位置している。熱交換器100gでは、実施の形態2の第2変形例に係る熱交換器100dと同様の効果を得ることができる。 In the heat exchanger 100g, non-modules NM are provided on the upstream and downstream sides of the refrigerant flow of the module M when functioning as a condenser. Further, when the heat exchanger 100g functions as a condenser, a refrigerant inlet/outlet 51 serving as a gas refrigerant inlet is formed at one end of the lower header 20, and a refrigerant inlet/outlet 52 serving as a liquid refrigerant outlet is formed at one end of the upper header 10. It is formed. Note that one end of the upper header 10 in which the refrigerant inlet/outlet 52 is formed is located on the opposite side from one end of the lower header 20 in which the refrigerant inlet/outlet 51 is formed. The heat exchanger 100g can provide the same effects as the heat exchanger 100d according to the second modification of the second embodiment.
 以上、実施の形態2に係る熱交換器100bは、凝縮器として機能する場合における複数の扁平管群30の冷媒流れの上流側に、内部を複数の扁平管群30とは反対方向に冷媒が流れる扁平管群30が設けられている。 As described above, when the heat exchanger 100b according to the second embodiment functions as a condenser, the refrigerant flows inside the plurality of flat tube groups 30 in the opposite direction to the upstream side of the refrigerant flow of the plurality of flat tube groups 30. A flowing flat tube group 30 is provided.
 ここで、単相のガス冷媒が存在すると考えられる領域では、熱交換器100bが凝縮器として機能する場合に上昇流れとなっても扁平管31内の相変化に伴う液ヘッドの増加がない若しくは少なく、ヘッド差の影響が小さいため、バイパス配管40を設ける必要がない。そこで、実施の形態2に係る熱交換器100bによれば、単相のガス冷媒が存在すると考えられる領域である、凝縮器として機能する場合におけるモジュールMの冷媒流れの上流側に、非モジュールNMを設ける構成とすることで、バイパス配管40の数を減らすことができる。その結果、減らしたバイパス配管40分の冷媒量を削減することができ、除霜時に高温冷媒の熱量を扁平管31に伝えることが可能となる。さらに構造が簡素化され、低コスト化が見込める。 Here, in a region where a single-phase gas refrigerant is considered to exist, there is no increase in the liquid head due to the phase change in the flat tube 31 even if there is an upward flow when the heat exchanger 100b functions as a condenser. Since the influence of the head difference is small, there is no need to provide the bypass piping 40. Therefore, according to the heat exchanger 100b according to the second embodiment, a non-module NM By providing the configuration, the number of bypass pipes 40 can be reduced. As a result, the amount of refrigerant for the reduced bypass pipe 40 can be reduced, and the amount of heat of the high temperature refrigerant can be transmitted to the flat tube 31 during defrosting. Furthermore, the structure is simplified and costs can be expected to be reduced.
 また、実施の形態2に係る熱交換器100は、凝縮器として機能する場合における複数の扁平管群30の冷媒流れの下流側に、内部を複数の扁平管群30とは反対方向に冷媒が流れる扁平管群30が設けられている。 Furthermore, when the heat exchanger 100 according to the second embodiment functions as a condenser, the refrigerant flows inside the plurality of flat tube groups 30 in the opposite direction to the downstream side of the refrigerant flow of the plurality of flat tube groups 30. A flowing flat tube group 30 is provided.
 ここで、単相の液冷媒が存在すると考えられる領域では、熱交換器100bが凝縮器として機能する場合に上昇流れとなっても扁平管31内の相変化に伴う液ヘッドの増加がない若しくは少なく、ヘッド差の影響が小さいため、バイパス配管40を設ける必要がない。そこで、実施の形態2に係る熱交換器100bによれば、単相の液冷媒が存在すると考えられる領域である、凝縮器として機能する場合におけるモジュールMの冷媒流れの下流側に、非モジュールNMを設ける構成とすることで、バイパス配管40の数を減らすことができる。その結果、減らしたバイパス配管40分の冷媒量を削減することができ、除霜時に高温冷媒の熱量を扁平管31に伝えることが可能となる。さらに構造が簡素化され、低コスト化が見込める。 Here, in a region where single-phase liquid refrigerant is considered to exist, even if the heat exchanger 100b functions as a condenser and there is an upward flow, there is no increase in the liquid head due to the phase change in the flat tube 31. Since the influence of the head difference is small, there is no need to provide the bypass piping 40. Therefore, according to the heat exchanger 100b according to the second embodiment, a non-module NM By providing the configuration, the number of bypass pipes 40 can be reduced. As a result, the amount of refrigerant for the reduced bypass pipe 40 can be reduced, and the amount of heat of the high temperature refrigerant can be transmitted to the flat tube 31 during defrosting. Furthermore, the structure is simplified and costs can be expected to be reduced.
 実施の形態3.
 以下、実施の形態3について説明するが、実施の形態1および2と重複するものについては説明を省略し、実施の形態1および2と同じ部分または相当する部分には同じ符号を付す。
Embodiment 3.
Embodiment 3 will be described below, but the description of parts that overlap with Embodiments 1 and 2 will be omitted, and the same or corresponding parts as in Embodiments 1 and 2 will be given the same reference numerals.
 図10は、実施の形態3に係る熱交換器100hが凝縮器として機能する場合の冷媒の流れを示す模式図である。 FIG. 10 is a schematic diagram showing the flow of refrigerant when the heat exchanger 100h according to the third embodiment functions as a condenser.
 実施の形態3に係る熱交換器100hは、3つの扁平管群30と、互いに隣り合う2つの扁平管群30の間のそれぞれに配置されたバイパス配管40とを有している。つまり、熱交換器100hは、3つの扁平管群30と2つのバイパス配管40とを有している。なお、熱交換器100hは、複数のバイパス配管40を有していればよく、3つ以上のバイパス配管40を有していてもよい。 The heat exchanger 100h according to the third embodiment includes three flat tube groups 30 and bypass piping 40 disposed between two adjacent flat tube groups 30. That is, the heat exchanger 100h has three flat tube groups 30 and two bypass pipes 40. Note that the heat exchanger 100h only needs to have a plurality of bypass pipes 40, and may have three or more bypass pipes 40.
 そして、熱交換器100hでは、凝縮器として機能する場合における冷媒流れの下流側のバイパス配管40の直径r1は、上流側のバイパス配管40の直径r2より小さくなっている。つまり、r1<r2である。なお、3つ以上のバイパス配管40を有している場合でも同様に、熱交換器100hが凝縮器として機能する場合における冷媒流れの最も下流側のバイパス配管40の直径をr1として、上流側に向かってバイパス配管40の直径をr2、r3・・・とすると、r1<r2<r3・・・である。 In the heat exchanger 100h, when functioning as a condenser, the diameter r1 of the bypass pipe 40 on the downstream side of the refrigerant flow is smaller than the diameter r2 of the bypass pipe 40 on the upstream side. That is, r1<r2. Note that even when there are three or more bypass pipes 40, the diameter of the bypass pipe 40 on the most downstream side of the refrigerant flow when the heat exchanger 100h functions as a condenser is defined as r1, and the diameter of the bypass pipe 40 on the upstream side is On the other hand, if the diameters of the bypass piping 40 are r2, r3..., then r1<r2<r3....
 ここで、熱交換器100hが凝縮器として機能する場合における冷媒流れの下流側に向かうにつれて低乾き度領域(高密度領域)となるため、上流側よりもバイパス配管40を細くすることができる。そこで、熱交換器100hが凝縮器として機能する場合における冷媒流れの下流側の低乾き度領域のバイパス配管40を上流側よりも細くすることで、熱交換器100hの内部の冷媒量を削減することができる。 Here, when the heat exchanger 100h functions as a condenser, the downstream side of the refrigerant flow becomes a low dryness region (high density region), so the bypass piping 40 can be made thinner than on the upstream side. Therefore, when the heat exchanger 100h functions as a condenser, the amount of refrigerant inside the heat exchanger 100h is reduced by making the bypass piping 40 in the low dryness region on the downstream side of the refrigerant flow thinner than on the upstream side. be able to.
 以上、実施の形態3に係る熱交換器100は、扁平管群30を3つ以上有し、バイパス配管40を2つ以上有し、凝縮器として機能する場合における冷媒流れの下流側のバイパス配管40の直径は、上流側のバイパス配管40の直径より小さい。 As described above, the heat exchanger 100 according to the third embodiment has three or more flat tube groups 30, two or more bypass pipes 40, and has bypass pipes on the downstream side of the refrigerant flow when functioning as a condenser. The diameter of 40 is smaller than the diameter of bypass piping 40 on the upstream side.
 実施の形態3に係る熱交換器100によれば、凝縮器として機能する場合における冷媒流れの下流側の低乾き度領域のバイパス配管40を上流側よりも細くすることで、熱交換器100hの内部の冷媒量を削減することができる。 According to the heat exchanger 100 according to the third embodiment, by making the bypass pipe 40 in the low dryness region on the downstream side of the refrigerant flow thinner than the upstream side when functioning as a condenser, the heat exchanger 100h can be The amount of refrigerant inside can be reduced.
 10 上部ヘッダ、11 第1仕切り、20 下部ヘッダ、21 第2仕切り、30 扁平管群、31 扁平管、40 バイパス配管、51 冷媒出入口、52 冷媒出入口、100 熱交換器、100a 熱交換器、100b 熱交換器、100c 熱交換器、100d 熱交換器、100e 熱交換器、100f 熱交換器、100g 熱交換器、100h 熱交換器。 10 Upper header, 11 First partition, 20 Lower header, 21 Second partition, 30 Flat tube group, 31 Flat tube, 40 Bypass piping, 51 Refrigerant inlet/outlet, 52 Refrigerant inlet/outlet, 100 Heat exchanger, 100a Heat exchanger, 100b Heat exchanger, 100c heat exchanger, 100d heat exchanger, 100e heat exchanger, 100f heat exchanger, 100g heat exchanger, 100h heat exchanger.

Claims (6)

  1.  上下方向を管延伸方向とし、互いに平行となるように扁平面を対向させた、内部を同一方向に冷媒が流れる複数の扁平管で構成された複数の扁平管群と、
     隣り合う前記扁平管群の間に配置され、内部を前記隣り合う前記扁平管群とは反対方向に冷媒が流れるバイパス配管と、
     前記複数の扁平管群および前記バイパス配管の上側に配置され、それらの端部が挿入された上部ヘッダと、
     前記複数の扁平管群および前記バイパス配管の下側に配置され、それらの端部が挿入された下部ヘッダと、を備え、
     凝縮器として機能する場合、
     前記複数の扁平管群の内部では冷媒が下降流となり、前記バイパス配管の内部では冷媒が上昇流となるように構成されており、
     前記上部ヘッダおよび前記下部ヘッダそれぞれの内部において、前記バイパス配管の端部は、各前記扁平管の端部よりも下方に配置されている
     熱交換器。
    A plurality of flat tube groups constituted by a plurality of flat tubes in which the refrigerant flows in the same direction, with the vertical direction being the tube extending direction and flat surfaces facing each other so as to be parallel to each other;
    bypass piping arranged between the adjacent flat tube groups, through which a refrigerant flows in a direction opposite to the adjacent flat tube groups;
    an upper header arranged above the plurality of flat tube groups and the bypass piping, into which ends thereof are inserted;
    a lower header arranged below the plurality of flat tube groups and the bypass piping, into which ends thereof are inserted;
    When acting as a condenser,
    The refrigerant is configured to flow downward within the plurality of flat tube groups, and flow upward within the bypass piping,
    Inside each of the upper header and the lower header, an end of the bypass piping is arranged below an end of each of the flat tubes. Heat exchanger.
  2.  凝縮器として機能する場合における前記複数の扁平管群の冷媒流れの上流側に、内部を前記複数の扁平管群とは反対方向に冷媒が流れる扁平管群が設けられている
     請求項1に記載の熱交換器。
    According to claim 1, a flat tube group is provided on the upstream side of the refrigerant flow of the plurality of flat tube groups when functioning as a condenser, the inside of which the refrigerant flows in the opposite direction to the plurality of flat tube groups. heat exchanger.
  3.  凝縮器として機能する場合における前記複数の扁平管群の冷媒流れの下流側に、内部を前記複数の扁平管群とは反対方向に冷媒が流れる扁平管群が設けられている
     請求項1または2に記載の熱交換器。
    2. A flat tube group is provided on the downstream side of the refrigerant flow of the plurality of flat tube groups when functioning as a condenser, the inside of which the refrigerant flows in the opposite direction to the plurality of flat tube groups. Heat exchanger described in.
  4.  前記扁平管群を3つ以上有し、
     前記バイパス配管を2つ以上有し、
     凝縮器として機能する場合における冷媒流れの下流側の前記バイパス配管の直径は、上流側の前記バイパス配管の直径より小さい
     請求項1~3のいずれか一項に記載の熱交換器。
    having three or more of the flat tube groups,
    having two or more of the bypass pipes,
    The heat exchanger according to any one of claims 1 to 3, wherein the diameter of the bypass piping on the downstream side of the refrigerant flow when functioning as a condenser is smaller than the diameter of the bypass piping on the upstream side.
  5.  前記バイパス配管の流路断面積は、前記扁平管の流路断面積よりも大きい
     請求項1~4のいずれか一項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 4, wherein the flow passage cross-sectional area of the bypass pipe is larger than the flow passage cross-sectional area of the flat tube.
  6.  前記上部ヘッダの内部には、前記上部ヘッダの内部に形成された冷媒の流路を仕切る第1仕切りが設けられており、
     前記下部ヘッダの内部には、前記下部ヘッダの内部に形成された冷媒の流路を仕切る第2仕切りが設けられている
     請求項1~5のいずれか一項に記載の熱交換器。
    A first partition is provided inside the upper header to partition a refrigerant flow path formed inside the upper header,
    The heat exchanger according to any one of claims 1 to 5, wherein a second partition is provided inside the lower header to partition a refrigerant flow path formed inside the lower header.
PCT/JP2022/020172 2022-05-13 2022-05-13 Heat exchanger WO2023218629A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020172 WO2023218629A1 (en) 2022-05-13 2022-05-13 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020172 WO2023218629A1 (en) 2022-05-13 2022-05-13 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2023218629A1 true WO2023218629A1 (en) 2023-11-16

Family

ID=88730081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020172 WO2023218629A1 (en) 2022-05-13 2022-05-13 Heat exchanger

Country Status (1)

Country Link
WO (1) WO2023218629A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132422A (en) * 1996-10-30 1998-05-22 Daikin Ind Ltd Heat-exchanger
JP2004177041A (en) * 2002-11-28 2004-06-24 Matsushita Electric Ind Co Ltd Heat exchanger
JP2011127794A (en) * 2009-12-15 2011-06-30 Fuji Electric Co Ltd Heat exchanger
JP2013174398A (en) * 2012-02-27 2013-09-05 Japan Climate Systems Corp Heat exchanger
WO2021234958A1 (en) * 2020-05-22 2021-11-25 三菱電機株式会社 Heat exchanger, outdoor unit equipped with heat exchanger, and air conditioner equipped with outdoor unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132422A (en) * 1996-10-30 1998-05-22 Daikin Ind Ltd Heat-exchanger
JP2004177041A (en) * 2002-11-28 2004-06-24 Matsushita Electric Ind Co Ltd Heat exchanger
JP2011127794A (en) * 2009-12-15 2011-06-30 Fuji Electric Co Ltd Heat exchanger
JP2013174398A (en) * 2012-02-27 2013-09-05 Japan Climate Systems Corp Heat exchanger
WO2021234958A1 (en) * 2020-05-22 2021-11-25 三菱電機株式会社 Heat exchanger, outdoor unit equipped with heat exchanger, and air conditioner equipped with outdoor unit

Similar Documents

Publication Publication Date Title
US10571205B2 (en) Stacking-type header, heat exchanger, and air-conditioning apparatus
JP6011009B2 (en) Heat exchanger and air conditioner
US10107570B2 (en) Stacking-type header, heat exchanger, and air-conditioning apparatus
US9791189B2 (en) Heat exchanger and refrigeration cycle apparatus
WO2014115240A1 (en) Refrigerant distributor and heat pump device using refrigerant distributor
US9689594B2 (en) Evaporator, and method of conditioning air
JP2004177041A (en) Heat exchanger
JP6419882B2 (en) Air conditioner
US20160223231A1 (en) Heat exchanger and air conditioner
JP2013057426A (en) Plate-type heat exchanger and freezing cycle device with the same
WO2015059832A1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
WO2023218629A1 (en) Heat exchanger
KR20040075717A (en) Heat exchanger
JP2012167861A (en) Plate type heat exchanger
JP3632248B2 (en) Refrigerant evaporator
JP6671380B2 (en) Heat exchanger
CN112066601A (en) Heat exchanger and air conditioning system
JP7327213B2 (en) Heat exchanger
JP7310655B2 (en) Heat exchanger
JP7146139B1 (en) heat exchangers and air conditioners
CN218296879U (en) Heat exchanger divides liquid subassembly, heat exchanger and air conditioner
JP7327214B2 (en) Heat exchanger
WO2021192902A1 (en) Heat exchanger
US20230228466A1 (en) Condenser, air conditioner outdoor unit, and air-conditioning system
WO2022172359A1 (en) Outdoor heat exchanger and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941707

Country of ref document: EP

Kind code of ref document: A1