WO2023218619A1 - Rolling productivity improvement assistance device - Google Patents

Rolling productivity improvement assistance device Download PDF

Info

Publication number
WO2023218619A1
WO2023218619A1 PCT/JP2022/020125 JP2022020125W WO2023218619A1 WO 2023218619 A1 WO2023218619 A1 WO 2023218619A1 JP 2022020125 W JP2022020125 W JP 2022020125W WO 2023218619 A1 WO2023218619 A1 WO 2023218619A1
Authority
WO
WIPO (PCT)
Prior art keywords
productivity
data
index
plant
rolling
Prior art date
Application number
PCT/JP2022/020125
Other languages
French (fr)
Japanese (ja)
Inventor
諒介 東谷
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2023527061A priority Critical patent/JPWO2023218619A1/ja
Priority to CN202280035005.0A priority patent/CN117396283A/en
Priority to PCT/JP2022/020125 priority patent/WO2023218619A1/en
Publication of WO2023218619A1 publication Critical patent/WO2023218619A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to a rolling productivity improvement support device that supports improvement of plant productivity in a plant that rolls ferrous and non-ferrous materials.
  • a plant that rolls ferrous and non-ferrous materials has a hot rolling line.
  • a typical hot rolling line has a series of equipment such as a heating furnace, a rough rolling mill, a finishing mill, and a winding machine. The material that has gone through the processing process in each facility is finally wound up by a winding machine to become a product.
  • mill pacing is known as a technology that optimally adjusts the timing of introducing material into the hot rolling line, taking into account the time required for material processing (rolling) and transportation. ing.
  • Various methods for optimal adjustment have also been proposed (for example, see Patent Documents 1 to 3). However, these methods are technologies based on current material processing (rolling) and transportation time, and do not improve these assumptions.
  • productivity varies greatly depending on the material, rolling conditions, equipment status, etc., and even the productivity of the same rolled material has large fluctuations. For this reason, it is difficult to discover and determine whether or not the productivity of the material is decreasing every time it is rolled for each product. Furthermore, since the amount of production information in a plant is enormous, even if it is determined that productivity has decreased, it is difficult to determine with high accuracy what factors are causing the decrease in productivity. difficult.
  • this disclosure specifies productivity using productivity parameters for each management category and indicators obtained by breaking them down into their constituent elements, and uses these indicators as potential causes of productivity decline for plant managers and operators.
  • the purpose is to contribute to rapid improvement and improvement of productivity by presenting the information to the employees.
  • a rolling productivity improvement support device includes a data collection unit that collects plant data including a production plan, production results, and operating status from the plant, and a data collection unit that collects plant data from the plant in a plant that rolls ferrous and non-ferrous materials.
  • An indicator calculation unit that calculates productivity, components of productivity, and index values for each of the components based on the plant data acquired by the data collection unit;
  • a data storage unit that stores index data, which is data of calculated index values, and a comparison between the productivity index to be evaluated and past productivity index results each time plant data is collected.
  • the productivity evaluation department evaluates the productivity decline, the results of the evaluation of the productivity decline conducted by the productivity evaluation department, the productivity that was the basis for the evaluation results, and the components of productivity.
  • a display unit that displays the values of the indices of each of the constituent elements.
  • productivity is identified using productivity parameters for each management category and indicators obtained by breaking them down into their constituent elements, and these indicators are used by plant managers and operators as possible causes of productivity decline.
  • productivity parameters for each management category and indicators obtained by breaking them down into their constituent elements are used by plant managers and operators as possible causes of productivity decline.
  • FIG. 1 is a diagram showing an example of the configuration of a rolling productivity improvement support device according to a first embodiment. It is a flowchart which shows an example of operation of the rolling productivity improvement support device concerning a 1st embodiment. It is a figure showing an example of composition of a rolling productivity improvement support device concerning a 2nd embodiment. It is a flow chart which shows an example of operation of a rolling productivity improvement support device concerning a 2nd embodiment. It is a figure showing an example of composition of a rolling productivity improvement support device concerning a 3rd embodiment. It is a flow chart which shows an example of operation of a rolling productivity improvement support device concerning a 3rd embodiment. 8 is a conceptual diagram showing an example of the hardware configuration of a processing circuit included in the rolling productivity improvement support device in the embodiment shown in FIGS. 1 to 7. FIG.
  • FIG. 1 is a schematic diagram showing an example of a hot rolling line 100 in a plant.
  • FIG. 1 shows an example of a hot rolling line 100 viewed from the side.
  • the hot rolling line 100 is provided, for example, in a plant that rolls rolling materials such as ferrous or non-ferrous materials (not shown).
  • the rolled material is controlled to flow from the left side to the right side in FIG.
  • the hot rolling line 100 is also referred to as a "plant 100.”
  • the rolled material is also referred to as "rolled material” or simply "material.”
  • the hot rolling line (plant) 100 is managed in stages of the manufacturing process, including main equipment such as a heating furnace 1, a rough rolling mill 3, a finishing rolling mill 5, and a winding machine 7, as well as conveying equipment between these equipment. Ru.
  • the hot rolling line 100 divides the heating furnace 1, rough rolling mill 3, finishing rolling mill 5, winding machine 7, and each conveying device into management divisions called zones, and improves the productivity of each process. managed.
  • the hot rolling line 100 includes, for example, a heating furnace zone 11, a first conveying zone 12, a rough rolling mill zone 13, a second conveying zone 14, a finishing rolling mill zone 15, a third conveying zone 16, It has a winder zone 17. As a general rule, each zone cannot contain more than one rolled material.
  • the heating furnace zone 11 has a heating furnace 1 that heats the rolled material.
  • the heating furnace 1 receives and heats a rolled material to be rolled, for example in the form of a slab.
  • the heat-treated rolled material is extracted from the heating furnace 1 and introduced into the first conveyance zone 12 .
  • the heating furnace 1 then receives the next subsequent rolling material and heats the received next rolling material.
  • the heating furnace 1 sequentially repeats such a rolled material receiving process, a rolled material heating process, and a rolled material extraction process for each rolled material. Note that the timing of receiving and extracting the rolled material from the heating furnace 1 is controlled by, for example, mill pacing.
  • the first conveyance zone 12 includes, for example, a first conveyance device 2 that conveys the rolled material heated in the heating furnace 1 from the exit side of the heating furnace 1 to the input side of the rough rolling mill 3.
  • the first conveyance device 2 is realized using, for example, a conveyance table, a conveyor, or a plurality of conveyance rolls.
  • the first conveying device 2 conveys the rolled material extracted from the heating furnace 1 to the rough rolling mill 3 . Note that, for example, if there is a waiting time until the rolled material being transported can be processed, the first conveying device 2 reciprocates the rolled material being transported back and forth, so that a plurality of rolled materials are simultaneously processed into the next rough material. It may be arranged so that it is not fed into the rolling mill 3.
  • the rough rolling mill zone 13 has a rough rolling mill 3 that roughly rolls the rolled material.
  • the rough rolling mill 3 is realized using, for example, a rolling mill with one or more stands.
  • the rough rolling mill 3 receives the rolled material extracted from the heating furnace 1 and transported by the first transport device 2 . Thereafter, the rough rolling mill 3 roughly rolls the received rolled material.
  • the rolled material roughly rolled by the rough rolling mill 3 is sent to the second conveyance zone 14.
  • the second conveyance zone 14 includes, for example, a second conveyance device 4 that conveys the rolled material rough rolled by the rough rolling mill 3 from the exit side of the rough rolling mill 3 to the input side of the finishing rolling mill 5.
  • the second conveyance device 4 is realized using, for example, a conveyance table, a conveyor, or a plurality of conveyance rolls.
  • the second conveying device 4 conveys the rolled material sent out from the rough rolling mill 3 to the finishing rolling mill 5. Note that, for example, if there is a waiting time until the rolled material being transported can be processed, the second conveying device 4 reciprocates the rolled material being transported back and forth, so that a plurality of rolled materials are simultaneously processed for the next finishing.
  • the rolling mill 5 may not be charged with it.
  • the finishing mill zone 15 has a finishing mill 5.
  • the finishing rolling mill 5 is realized using, for example, a rolling mill with multiple stands.
  • the finishing mill 5 receives the rolled material sent out from the rough rolling mill 3 and conveyed via the second conveying device 4 . Thereafter, the finish rolling mill 5 performs finish rolling on the received rolled material.
  • the strip-shaped rolled material finish-rolled by the finish-rolling mill 5 is delivered to the third conveyance zone 16.
  • the third conveying zone 16 includes, for example, a third conveying device 6 that guides the rolled material finish-rolled by the finishing rolling mill 5 from the exit side of the finishing rolling mill 5 to the winding machine 7.
  • the third conveyance device 6 is realized using, for example, pinch rolls and side guide sections.
  • the third conveying device 6 guides the rolled material that has been finish rolled into a strip shape and sent out from the finishing mill 5 to the winding machine 7 .
  • the third conveyance zone having the third conveyance device 6 may have a cooling step in which the rolled material finish-rolled by the finish rolling mill 5 is cooled, for example.
  • the winder zone 17 has a winder 7 that winds up the rolled material that has been finished rolled into a strip.
  • the winding machine 7 performs, for example, a winding process of winding up the rolled material after the finish rolling process to form a coil.
  • the winding machine 7 receives the strip-shaped rolled material sent out from the finishing rolling mill 5 and guided through the third conveying device 6 .
  • the winder 7 winds up the received strip-shaped rolled material into a coil shape.
  • the coiled rolled material wound up by the winder 7 is bound by, for example, a binding machine (not shown) or the like, and then transported to the outside by a transport vehicle (not shown) or the like.
  • Each of the above-mentioned zones of the hot rolling line 100 is provided with various sensors (not shown), and the values detected by the various sensors are output to the rolling productivity improvement support device 20 (described later) and sent to a data collection unit (described later). 21 etc. (see FIG. 2 etc.).
  • FIG. 2 is a diagram showing an example of the configuration of the rolling productivity improvement support device 20 according to the first embodiment.
  • the rolling productivity improvement support device 20 is placed, for example, in a hot rolling line 100 in a plant.
  • the rolling productivity improvement support device 20 may be part of the functions of a control device (not shown) that controls part or all of the plant.
  • the rolling productivity improvement support device 20 has the configuration or functions of a data collection section 21, an index calculation section 22, a data storage section 23, a productivity evaluation section 24, and a display section 25. .
  • the data collection unit 21 is connected to each sensor (not shown) of the hot rolling line 100 in the plant, for example, via a signal line (not shown) or the like.
  • the data collection unit 21 acquires data such as the plant's production plan and production results from the plant. Further, the data collection unit 21 sequentially collects plant data indicating the operating state of the plant, which is acquired by various sensors (not shown) in each zone in the hot rolling line 100 of the plant. The data collection unit 21 outputs the acquired data to the index calculation unit 22.
  • the index calculation unit 22 acquires the data output from the data collection unit 21.
  • the index calculation unit 22 calculates productivity, its constituent elements, and the value of each index for the data acquired from the plant by the data collection unit 21.
  • the index calculation unit 22 causes the data storage unit 23 to store the plant data acquired by the data collection unit 21, the calculated index values, and the like.
  • the data storage unit 23 is, for example, a volatile or nonvolatile storage medium such as an HDD (Hard Disk Drive), SSD (Solid State Drive), DRAM (Dynamic Random Access Memory), or other semiconductor memory.
  • the data storage unit 23 stores, for example, programs necessary for the operation of each part of the rolling productivity improvement support device 20, and various information is written and read by each part of the rolling productivity improvement support device 20.
  • the data storage unit 23 stores current or past plant data, calculated index values, etc. Further, the data storage unit 23 stores various current or past values, calculation results, predetermined threshold values, etc. used for various determinations of the rolling productivity improvement support device 20.
  • the data storage unit 23 is connected to each part of the rolling productivity improvement support device 20 by, for example, a bus (not shown). Note that the data storage unit 23 may be provided outside the rolling productivity improvement support device 20 and connected to the rolling productivity improvement support device 20 by wire or wirelessly. Further, the data storage unit 23 may be an external storage medium such as a memory card or a DVD (Digital Versatile Disc), or may be an online storage. Further, the data storage unit 23 may be shared with a memory 92 (see FIG. 8), which will be described later.
  • the productivity evaluation unit 24 acquires various values and various data stored in the data storage unit 23, and compares the productivity index to be evaluated with past productivity index performance each time the plant data is collected. , evaluate productivity decline.
  • the productivity evaluation unit 24 outputs to the display unit 25 the evaluation result of productivity decline, the productivity that is the basis for the evaluation, its constituent elements, and the values of the respective indicators.
  • the display unit 25 displays the evaluation result of productivity decline output from the productivity evaluation unit 24, the productivity on which the evaluation is based, its constituent elements, and the values of each index. Note that the display section 25 may also display information such as various values and various data managed by each section of the rolling productivity improvement support device 20. This information displayed (presented) by the display unit 25 is monitored by a plant manager/operator 26.
  • the display unit 25 may include an operation unit (not shown) such as a GUI (Graphical User Interface) type touch panel, etc., so that desired information can be displayed by the plant manager/operation person 26. It may also be operable.
  • an operation unit such as a GUI (Graphical User Interface) type touch panel, etc.
  • the plant manager/operating person 26 monitors the operating status, production status, etc. of the plant and the hot rolling line 100 in the plant via the display unit 25.
  • the plant manager/operator 26 understands the cause of productivity decline in the plant or the hot rolling line 100 in the plant through the display (presentation) on the display unit 25, the plant manager/operator 26 quickly takes countermeasures and improves production. It is possible to quickly improve and improve sexual performance.
  • FIG. 3 is a flowchart showing an example of the operation of the rolling productivity improvement support device 20 according to the first embodiment.
  • the flowchart shown in FIG. 3 starts, for example, when the operation of the hot rolling line 100 shown in FIG. 1 in the plant is started. Note that the flowchart shown in FIG. 3 may be in operation all the time during the operation of the hot rolling line 100 shown in FIG. The operation may be started according to instructions from the operator 26, predetermined conditions, or control.
  • step S21 the data collection unit 21 of the rolling productivity improvement support device 20 sequentially collects plant data indicating the production plan, production results, operating status, etc. from the plant.
  • step S22 the index calculation unit 22 of the rolling productivity improvement support device 20 calculates productivity, its constituent elements, and the value of each index for the data acquired from the plant. That is, the index calculation unit 22 acquires plant data, which is data related to the plant, from the plant via a sensor (not shown), etc., and calculates the productivity index.
  • productivity indicator the productivity of the entire plant (first layer) is broken down into a hierarchical structure of productivity parameters for each management category (second layer) and its components (third layer). be done. Note that the method of decomposing productivity is not limited to three levels, as long as a similar structure can be realized.
  • Productivity is, for example, the value obtained by dividing the production amount by the cycle time. By evaluating this productivity index, it is possible to detect a decrease in productivity. Furthermore, productivity can be defined in terms of productivity parameters for each zone, which is a management division of a production line.
  • the zones include a heating furnace zone 11, a first conveyance zone 12, a rough rolling mill zone 13, a second conveyance zone 14, a finishing mill zone 15, and a third conveyance zone.
  • Time that does not contribute to production includes downtime or stoppage due to planning or accidents, or waiting time until it is possible to process the own material following the preceding material.
  • the waiting time includes oscillation and gap time.
  • oscillation means for example, in FIG. 1, when the next material comes out of the rough rolling mill 3 while the finishing rolling mill 5 is rolling the material, the next material is moved to the second conveyance zone 14. , refers to the act of reciprocating back and forth. Thereby, in the second conveyance zone 14, it is possible to prevent the next hot material from being stuck in one place and seize it, and it is possible to air-cool the material to an appropriate temperature for entering the finishing rolling mill 5.
  • the gap time refers to, for example, the time that must elapse before the next material in the second conveyance zone 14 enters the finishing mill 5 for safety reasons in the above case.
  • cycle time is broken down into components such as rolling time in a rolling mill and inter-pass time, which is the interval between passes through the rolling mill.
  • step S23 the data storage unit 23 of the rolling productivity improvement support device 20 stores the plant data and the calculated index data. That is, the data storage unit 23 stores the plant data acquired by the data collection unit 21, the productivity index data calculated by the index calculation unit 22, and the performance data of its components. Note that the data storage unit 23 may directly acquire and store the plant data from the data storage unit 23 via a bus (not shown) or the like, or may acquire and store the plant data via the index calculation unit 22.
  • productivity indicators include the productivity of the entire plant mentioned above and ton/h, which is a productivity parameter for each zone.
  • the data storage unit 23 stores data each time performance data of materials and products is acquired so that productivity can be evaluated each time a product is produced. Furthermore, the data storage unit 23 also stores attribute values such as material quality and dimensions for each material or product so that performance data under the same conditions can be easily compared during evaluation. Note that the data storage unit 23 stores these current or past data.
  • step S24 the productivity evaluation unit 24 of the rolling productivity improvement support device 20 sequentially compares the productivity index to be evaluated with past productivity index results each time the plant data is collected, and Evaluate. That is, for example, every time a product is produced, the productivity evaluation unit 24 evaluates a recently produced arbitrary product and compares the productivity index of the evaluation target with past productivity index results. The comparison is performed to evaluate productivity and to detect factors causing productivity decline.
  • the past productivity index may be the average value of all productivity indexes related to products produced in the past, statistical values of data such as champion data, worst data, etc. Any statistical value may be selected depending on the intention of evaluating productivity. For example, when evaluation is performed while avoiding the influence of variations in past productivity performance data, an average value or a median value may be adopted. On the other hand, for example, when evaluation is performed to pursue better productivity, champion data may be employed.
  • the productivity evaluation unit 24 When the productivity evaluation unit 24 performs the evaluation, the comparison is performed under conditions where the productivity index is not influenced by the specifications of the materials or products, such as material quality and dimensions. Therefore, as the past productivity index used as the evaluation standard, for example, data of a group having the same attribute values such as material and dimensions as the material or product to be evaluated, that is, data of the same stratification is used. This is because it is not possible to properly determine superiority or inferiority unless items under the same conditions are compared.
  • the productivity evaluation unit 24 quantitatively calculates the quality of the productivity index by comparing the evaluation target with the evaluation criteria. For example, the productivity evaluation unit 24 determines how much the two compared results differ, whether the degree of decrease in productivity is within the allowable range defined by the standard value, or whether the index to be evaluated meets the evaluation standard. Quantitative evaluation of the position of the population in the distribution of the population. For example, quantitative evaluation may be based on percentage, statistical distribution, deviation value, or the like.
  • the productivity evaluation unit 24 not only evaluates the productivity decline of the entire plant, but also compares the productivity parameters of each zone and the indicators of its constituent elements with past results to detect productivity decline. Detect factors. Factors include, for example, as mentioned above, the rolling time for each zone that makes up the cycle time, the time between passes, the downtime or downtime due to planning or accidents that make up the time that does not contribute to production, oscillations, and gaps. Possible factors include time. Furthermore, the event that caused the pause or stop is also a factor.
  • past productivity index performance data used as the basis for evaluation is not limited to data for all periods dating back from a certain point, but may be limited to data for any period in the past.
  • production performance may deteriorate due to aging of equipment, or production performance may change due to changes in operating conditions. Therefore, in order to avoid these influences, regarding past productivity index performance data, data from the most recent period in which conditions are expected to be equivalent to some extent can be selected as the evaluation standard.
  • the targets for productivity evaluation are selected depending on the frequency of evaluation. For example, each time a product is produced, it is not necessary to limit the evaluation to the most recently produced product. In other words, for example, in order to evaluate productivity for each shift, such as a morning shift or a night shift, each time a shift is completed, the material or product group produced in that shift will be evaluated.
  • the evaluation may be performed on productivity indicators related to. For example, in order to evaluate productivity for each business day, each time a business day is completed, an evaluation is made against productivity indicators related to materials and product groups of a predetermined stratification produced on that business day. may be performed. Note that when a predetermined material or product group is to be evaluated, the above-mentioned statistical value may be employed as an evaluation index value.
  • productivity evaluation unit 24 may detect the cause of the productivity decrease only when the productivity evaluation results in an evaluation that the productivity has decreased.
  • step S25 the display unit 25 of the rolling productivity improvement support device 20 displays the evaluation result of productivity decline, the productivity on which the evaluation was based, its constituent elements, and the value of each index. , and present it to the plant manager/operation person 26.
  • the display unit 25 displays predetermined data on the most recently produced predetermined product as an evaluation target. For example, the display unit 25 displays the evaluation result of productivity decline, the productivity index on which the evaluation is based, the productivity parameter for each zone, the index of its constituent elements, and the production plan related to the productivity index. Displays production results and data indicating operational status.
  • the data displayed by the display unit 25 is not limited to evaluating a certain manufactured product each time a product is produced, and may not be limited to data related to this. That is, for example, each time a product is produced, the display unit 25 may display several products of the same stratum produced most recently as evaluation targets. For example, the display unit 25 displays the evaluation result of productivity decline obtained by evaluating the productivity index regarding the material/product group, the productivity index on which the evaluation was based, and the productivity of each zone. Parameters and indicators of their constituent elements may also be displayed. Further, the display unit 25 may display data indicating the production plan and production results related to the productivity index, and the operating status, and present the data to the plant manager/operation person 26.
  • the display unit 25 may display all of the judgments made by the productivity evaluation unit 24 and the calculated data items, or may display information that is selectively displayed in response to requests from the plant manager, operation personnel 26, etc. The selected item may be displayed. Note that the display unit 25 is not limited to one screen, and may be provided with a plurality of screens depending on the viewpoint of productivity evaluation.
  • productivity is specified by productivity parameters for each management category and indicators obtained by breaking them down into their constituent elements, and the indicators are This is presented to the plant manager/operator 26 as a candidate factor.
  • the plant manager/operator 26 can efficiently grasp the cause of the decline in productivity from among a huge amount of information, and can therefore quickly take countermeasures. Therefore, according to the first embodiment shown in FIGS. 1 to 3, it is possible to contribute to rapid improvement and improvement of productivity.
  • FIG. 4 is a diagram showing an example of the configuration of the rolling productivity improvement support device 30 according to the second embodiment.
  • the same or similar configurations or functions as those in the first embodiment shown in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof will be omitted or simplified.
  • the rolling productivity improvement support device 30 includes a data collection section 21, an index calculation section 22, a data storage section 23A, a productivity evaluation section 24A, a display section 25A, and a standard index calculation section 32. It has the structure or function of That is, in the rolling productivity improvement support device 30 according to the second embodiment, the configurations or functions of the data storage section 23A, the productivity evaluation section 24A, and the display section 25A are the same as those in the first embodiment shown in FIGS. 1 to 3. The form is partially different. Further, the rolling productivity improvement support device 30 according to the second embodiment differs from the first embodiment shown in FIGS. 1 to 3 in that it further has the configuration or function of a standard index calculation section 32.
  • the standard index calculation unit 32 acquires the data output from the data collection unit 21.
  • the standard index calculation unit 32 calculates equipment specifications for each material or product based on equipment specification data, production plan data such as materials and dimensions of materials and products to be produced, and control parameters to be applied during production. Calculate the ideal productivity indicator based on the original.
  • the specifications or specification data of the equipment indicate, for example, the specifications and data of individual elements constituting the equipment, such as the performance, properties, form, shape, material, and quality of the equipment.
  • the standard index calculation unit 32 stores the plant data acquired by the data collection unit 21, the calculated ideal productivity index value, etc. in the data storage unit 23A.
  • the data storage unit 23A has the configuration or function of the data storage unit 23 in the first embodiment shown in FIGS. 1 to 3. Furthermore, the data storage unit 23A stores an ideal productivity index output from the standard index calculation unit 32 and based on the specifications of equipment for each material or product calculated by the standard index calculation unit 32.
  • the productivity evaluation section 24A has the configuration or function of the productivity evaluation section 24 in the first embodiment shown in FIGS. 1 to 3. Furthermore, the productivity evaluation section 24A compares the performance of the productivity index to be evaluated with the ideal productivity index calculated by the standard index calculation section as the evaluation standard, and evaluates the productivity. Detection of factors causing productivity decline.
  • the display section 25A has the configuration or function of the display section 25 in the first embodiment shown in FIGS. 1 to 3. Furthermore, each time a product is produced, the display unit 25A displays the evaluation results of the performance of the productivity index against the ideal productivity index, the productivity index that was the basis of the evaluation, and the results for each zone. Display productivity parameters and indicators of their components. Furthermore, the display section 25A displays data indicating the production plan, production results, operating status, etc. related to the productivity index. Present to plant manager. This information displayed (presented) by the display unit 25A is monitored by the plant manager/operation person 26.
  • FIG. 5 is a flowchart showing an example of the operation of the rolling productivity improvement support device 30 according to the second embodiment.
  • FIG. 5 detailed descriptions of operations that are the same or similar to those of the first embodiment shown in FIGS. 1 to 3 are omitted or simplified as appropriate.
  • the flowchart shown in FIG. 5 starts its operation at the same timing as the flowchart shown in FIG. 3.
  • step S31 is the same as or similar to the operation in step S21 of the first embodiment shown in FIG. 3, so a detailed explanation will be omitted.
  • step S32 the standard index calculation unit 32 of the rolling productivity improvement support device 30, instead of or in parallel with the performance-based index calculation unit 22, calculates the following based on the equipment specification data and production plan data. Calculate (calculate) ideal productivity indicators based on equipment specifications. That is, the standard index calculation unit 32 calculates the equipment for each material or product based on equipment specification data and production plan data such as the material, dimensions, and control parameters to be applied during production of the material or product to be produced. Calculate an ideal productivity index based on the specifications of
  • the standard index calculation unit 32 uses a simulator consisting of a physical model, a statistical model, etc. regarding the entire plant 100 and each piece of equipment constituting the plant 100 in order to calculate an ideal productivity index based on the specifications of the equipment. have The standard index calculation unit 32 calculates productivity under the assumption that the product will be produced under the conditions of the given productivity planning data, and calculates the ideal productivity index based on the specifications of the equipment as described above. Calculate by performing simulation with a simulator. In addition, in the calculation process, the standard index calculation unit 32 also calculates simulation data of productivity parameters for each zone and their constituent elements. Note that the standard index calculation unit 32 may calculate the simulation data by changing the conditions many times.
  • step S32 the operation of step S22 shown in FIG. 3 by the index calculation section 22 is also performed in parallel. be exposed.
  • the data storage unit 23A of the rolling productivity improvement support device 30 stores the plant data and the calculated index data. That is, the data storage unit 23A stores the plant data acquired by the data collection unit 21, the productivity index data calculated by the index calculation unit 22, and the performance data of its components. In addition, instead of acquiring data from the performance-based index calculation section 22, or in parallel, the data storage section 23A stores ideal productivity based on the specifications of the equipment, which is calculated by the standard index calculation section 32. Memorize index data. Note that the data storage unit 23A may store ideal productivity index data based on current or past equipment specifications, which are calculated by the standard index calculation unit 32 under various conditions.
  • step S33 is the same as or similar to the operations in step S23 of the first embodiment shown in FIG. 3, so detailed explanations will be omitted.
  • step S34 the productivity evaluation unit 24A of the rolling productivity improvement support device 30 sequentially calculates the productivity index to be evaluated and the past productivity for each material or collection period and for each stratum, each time the plant data is collected. Compare indicator performance or standard productivity indicators.
  • the productivity evaluation unit 24A then evaluates the productivity decline and the factor candidates based on the comparison results. That is, the productivity evaluation section 24A compares the performance of the productivity index to be evaluated with the ideal productivity index calculated by the standard index calculation section 32, which is the evaluation standard, and based on the comparison result. , evaluate productivity and detect factors that cause productivity decline.
  • the productivity evaluation unit 24A quantitatively calculates the quality of the productivity index by comparing the evaluation target with the evaluation criteria. Furthermore, the productivity evaluation unit 24A not only evaluates the productivity decline of the entire plant 100, but also calculates productivity parameters for each zone and indicators of their constituent elements using data calculated by the standard index calculation unit 32. Detect factors contributing to productivity decline.
  • step S34 when the standard index calculation section 32 operates in parallel with the performance-based index calculation section 22, in step S34, the operation of step S24 shown in FIG. 3 may also be performed in parallel. Note that in that case, the other operations in step S34 are the same or similar to the operations in step S24 of the first embodiment shown in FIG. 3, so a detailed explanation will be omitted.
  • step S35 the display unit 25A of the rolling productivity improvement support device 30 displays the evaluation result of productivity decline, the productivity on which the evaluation is based, its components, and the values of each index. , and present it to the plant manager/operation person 26.
  • the display unit 25A displays the evaluation results of the performance of the productivity index with respect to the ideal productivity index every time a product is produced. For example, the display unit 25A displays the evaluation results, the productivity index on which the evaluation is based, the productivity parameters for each zone, the indicators of its constituent elements, the production plan and production results related to the productivity index, Displays data indicating operating status, etc.
  • step S35 is the same or similar to the operations in step S25 of the first embodiment shown in FIG. 3, so detailed explanations will be omitted.
  • the second embodiment shown in FIGS. 4 and 5 has the same effects as the first embodiment shown in FIGS. 1 to 3.
  • the standard index calculation unit 32 has a simulator, and uses the simulator etc. to change various conditions of the equipment many times, for example.
  • the ideal productivity based on the original, that is, the theoretical highest productivity of the equipment is calculated.
  • the productivity evaluation section 24A calculates the comparison result between the theoretically highest performance productivity calculated by the standard index calculation section 32 and the current productivity index. Based on this, it is possible to evaluate productivity decline and candidate factors.
  • the productivity is calculated based on the comparison result between the ideal productivity calculated by the standard index calculation unit 32 and the current productivity index.
  • Candidates for the cause of the decrease are presented to the plant manager/operator 26.
  • the plant manager/operator 26 can understand the causes of productivity decline based on a comparison between ideal productivity and the current productivity index, so the ideal productivity You can understand what the current problems (bottlenecks) are in relation to gender.
  • FIG. 6 is a diagram showing an example of the configuration of a rolling productivity improvement support device 40 according to the third embodiment.
  • the same or similar configurations or functions as those in the first embodiment shown in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof will be omitted or simplified.
  • the rolling productivity improvement support device 40 includes a data collection section 21, an index calculation section 22, a data storage section 23, a productivity evaluation section 24, a display section 25B, and a factor candidate detection section 44. It has the structure or function of That is, the rolling productivity improvement support device 40 according to the third embodiment is partially different from the first embodiment shown in FIGS. 1 to 3 in the configuration or function of the display section 25B. Further, the rolling productivity improvement support device 40 according to the third embodiment differs from the first embodiment shown in FIGS. 1 to 3 in that it further includes the configuration or function of a factor candidate detection section 44.
  • the factor candidate detection unit 44 acquires various values and various data stored in the data storage unit 23, and when the productivity index changes (deteriorates), the factor candidate detection unit 44 determines whether the index has deteriorated for the component of the productivity index. Find plant data items that are correlated with components. Note that the data storage unit 23 stores, as examples of various values and data, equipment stoppages and stops, equipment alarms, interlock history, actual values of rolling time and waiting time, and the like.
  • the display section 25B has the configuration or function of the display section 25 in the first embodiment shown in FIGS. 1 to 3. Furthermore, when a plant data item correlated with a component whose index has changed (deteriorated) is detected, the display unit 25B displays the evaluation result of productivity decline, the productivity that was the basis for the evaluation, and the component. It displays data showing candidate factors for productivity change and the values of each index. This information displayed (presented) by the display unit 25B is monitored by the plant manager/operator 26.
  • FIG. 7 is a flowchart showing an example of the operation of the rolling productivity improvement support device 40 according to the third embodiment.
  • FIG. 7 detailed descriptions of operations that are the same or similar to those of the first embodiment shown in FIGS. 1 to 3 are omitted or simplified as appropriate.
  • the flowchart shown in FIG. 7 starts its operation at the same timing as the flowchart shown in FIG. 3.
  • step S41 to step S43 are the same as or similar to the operations from step S21 to step S23 of the first embodiment shown in FIG. 3, so a detailed explanation will be omitted.
  • step S44 when the productivity index changes (deteriorates), the factor candidate detection unit 44 of the rolling productivity improvement support device 40 detects a correlation between the component of the productivity index and the component whose index has deteriorated. Find a certain plant data item. That is, when the productivity decreases, the factor candidate detection unit 44 detects, for example, by what factor the rolling time for each zone and the inter-pass time, which constitute the cycle time, have changed. The factor candidate detection unit 44 also determines, for example, what kind of time that does not contribute to production includes downtime or stoppage due to plans or accidents, waiting time such as oscillation or gap time, and productivity components. Detect whether there has been a change due to a factor. Then, the factor candidate detection unit 44 determines the detected data item as a factor candidate for productivity decline.
  • events such as scheduled downtime for maintenance, equipment failure, or failure of interlocks occur.
  • Data of these events is recorded in the data storage unit 23, for example, as a record of suspension or stoppage, equipment alarm, interlock history, etc.
  • the factor candidate detection unit 44 detects data items that are correlated with a decrease in productivity from among these data items by comparing the difference between when productivity decreases and the difference between normal times or the ideal state. do. Note that statistical methods, machine learning methods, etc. can be applied as means for determining the correlation.
  • the factor candidate detection unit 44 refers to the physical model that constitutes the standard index calculation unit 32 shown in the second embodiment shown in FIGS. 4 and 5, the specifications and specifications of the equipment, the algorithm of the control device, etc. It is also possible. This makes it possible to exclude data items that do not have a causal relationship with productivity decline or its constituent elements, thereby improving the detection accuracy of factor candidates.
  • the factor candidate detection unit 44 can determine that the failure of the interlock has no causal relationship with the detected productivity decline.
  • step S45 the display unit 25B of the rolling productivity improvement support device 40 displays the evaluation result of productivity decline, the productivity on which the evaluation was based, its constituent elements, and candidate factors for productivity change.
  • the value of the index is displayed and presented to the plant manager/operator 26.
  • the display unit 25B displays the evaluation result of productivity decline, the productivity index on which the evaluation is based, and the productivity parameters for each zone, so that the plant manager and Present it to the person in charge of operations 26.
  • the display section 25B displays indicators of those constituent elements, data indicating production plans, production results, operating conditions, etc. related to the productivity indicators, and factor candidates detected by the factor candidate detection section. and present it to the plant manager/operation person 26.
  • step S45 is the same as or similar to the operations in step S25 of the first embodiment shown in FIG. 3, so detailed explanations will be omitted.
  • the third embodiment shown in FIGS. 6 and 7 has the same effects as the first embodiment shown in FIGS. 1 to 3.
  • the factor candidate detection unit 44 detects whether the index has deteriorated for the component of the productivity index. Find plant data items that are correlated with components. Then, the display section 25B displays the factor candidates detected by the factor candidate detection section and presents them to the plant manager/operator 26. As a result, the plant manager/operation personnel 26 can grasp the plant data items during normal times and the factor candidates detected by the factor candidate detection unit 44, so that they can understand the current situation in relation to the plant during normal times. It is possible to understand whether productivity is decreasing due to a problem.
  • FIG. 8 is a conceptual diagram showing an example of the hardware configuration of the processing circuit 90 included in the rolling productivity improvement support devices 20, 30, and 40 in the embodiments shown in FIGS. 1 to 7.
  • processing circuit 90 includes at least one processor 91 and at least one memory 92.
  • processing circuitry 90 includes at least one dedicated hardware 93.
  • each function is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. At least one of software and firmware is stored in memory 92.
  • the processor 91 implements each function by reading and executing programs stored in the memory 92.
  • the processing circuit 90 When the processing circuit 90 includes dedicated hardware 93, the processing circuit 90 is, for example, a single circuit, a composite circuit, a programmed processor, or a combination thereof. Each function is realized by a processing circuit 90.
  • Each of the functions of the rolling productivity improvement support devices 20, 30, and 40 may be partially or entirely configured by hardware, or may be configured as a program executed by a processor. That is, the rolling productivity improvement support devices 20, 30, and 40 can be realized by a computer and a program, and the program can be stored in a storage medium or provided through a network.
  • the rolling productivity improvement support apparatuses 20, 30, and 40 have been described as an example of one aspect of the present disclosure, but the invention is not limited to this.
  • the present disclosure can also be realized as a rolling productivity improvement support system in which the plant 100 and the rolling productivity improvement support devices 20, 30, and 40 are combined.
  • the present disclosure can also be realized as a rolling productivity improvement support method in which processing steps are performed in each part of the rolling productivity improvement support devices 20, 30, and 40.
  • the present disclosure can also be realized as a rolling productivity improvement support program that causes a computer to execute processing steps in each part of the rolling productivity improvement support devices 20, 30, and 40.
  • the present disclosure can also be realized as a storage medium (non-temporary computer-readable medium) in which a rolling productivity improvement support program is stored.
  • the rolling productivity improvement support program can be stored and distributed on, for example, a removable disk such as a CD (Compact Disc), DVD (Digital Versatile Disc), or USB (Universal Serial Bus) memory.
  • the rolling productivity improvement support program may be uploaded onto the network via a network interface (not shown) included in the rolling productivity improvement support devices 20, 30, and 40. Further, the rolling productivity improvement support program may be downloaded from the network via the network interface or the like and stored in the data storage units 23 and 23A or the memory 92 or the like.

Abstract

According to the present invention, a rolling productivity improvement assistance device for a plant that rolls an iron/non-iron material comprises a data collection unit that collects plant data that includes a production plan, production results, and an operating state from the plant, an indicator calculation unit that, for the plant data acquired by the data collection unit, calculates a productivity, factors for the productivity, and a value for an indicator for each of the factors, a data storage unit that stores the plant data acquired by the data collection unit and indicator data that is data for the values of the indicators calculated by the indicator calculation unit, a productivity evaluation unit that, each time plant data has been gathered, compares the indicators for a productivity to be evaluated with results for the indicators for past productivities to evaluate productivity decline, and a display unit that displays the results of the productivity decline evaluation by the productivity evaluation unit, the productivity that was the basis for the evaluation results, the factors for the productivity, and the value of the indicator for each of the factors.

Description

圧延生産性向上支援装置Rolling productivity improvement support equipment
 本発明は、鉄・非鉄材料を圧延するプラントにおいて、プラントの生産性の向上を支援する、圧延生産性向上支援装置に関する。 The present invention relates to a rolling productivity improvement support device that supports improvement of plant productivity in a plant that rolls ferrous and non-ferrous materials.
 一般に、例えば、鉄・非鉄材料を圧延するプラントでは、熱間圧延ラインを有する。典型的な熱間圧延ラインの設備構成について説明すると、典型的な熱間圧延ラインは、例えば、加熱炉、粗圧延機、仕上圧延機、巻き取り機といった一連の設備を有する。そして、各設備において加工プロセスを経た材料は、最終的に巻き取り機で巻き取られて製品となる。 Generally, for example, a plant that rolls ferrous and non-ferrous materials has a hot rolling line. To explain the equipment configuration of a typical hot rolling line, a typical hot rolling line has a series of equipment such as a heating furnace, a rough rolling mill, a finishing mill, and a winding machine. The material that has gone through the processing process in each facility is finally wound up by a winding machine to become a product.
 このようなプラントにおける生産性は、材料・製品に対する各設備での加工プロセスが、滞りなく、より早く実行されることで向上する。一方、加工プロセスは、材料、製品、操業の状態等による影響を受けるため、これらの影響により、生産性の成績は、変動する。 Productivity in such plants improves because the processing processes for materials and products in each facility are carried out smoothly and more quickly. On the other hand, since the processing process is influenced by materials, products, operating conditions, etc., productivity results fluctuate due to these influences.
 このため、熱間圧延ラインにおいて、材料処理(圧延)及び搬送のために要する時間を考慮して、熱間圧延ラインに対して材料を投入するタイミングを最適調整する技術として、ミルペーシングが知られている。そして、最適調整についての様々な手法も、提案されている(例えば、特許文献1~3参照)。しかし、これらの手法は、現時点での材料処理(圧延)と搬送時間とを前提とする技術であり、これらの前提を改善するものではない。 For this reason, mill pacing is known as a technology that optimally adjusts the timing of introducing material into the hot rolling line, taking into account the time required for material processing (rolling) and transportation. ing. Various methods for optimal adjustment have also been proposed (for example, see Patent Documents 1 to 3). However, these methods are technologies based on current material processing (rolling) and transportation time, and do not improve these assumptions.
 一方、生産性改善のために、材料処理(圧延)と搬送時間とを改善する場合、長期間の実績データを分析して、改善要点を見つけるという作業も一般に知られている(例えば、非特許文献1参照)。 On the other hand, when improving material processing (rolling) and transportation time in order to improve productivity, it is generally known that long-term performance data is analyzed to find points for improvement (for example, non-patent (See Reference 1).
日本特許第5957963号公報Japanese Patent No. 5957963 日本特許第5440359号公報Japanese Patent No. 5440359 日本特許第5185783号公報Japanese Patent No. 5185783
 しかし、生産性は、材料、圧延条件、設備状況等によって、大きく異なり、同じ圧延材料の生産性であっても、振れ幅が大きい。このため、製品1つ毎に、圧延の都度、当該材の生産性が低下しているか否かを漏れなく発見・判定することは難しい。また、プラントにおける生産情報は膨大であるため、生産性が低下していると判定された場合であっても、当該生産性の低下がどのような要因によるものかを高い確度で判定することは難しい。 However, productivity varies greatly depending on the material, rolling conditions, equipment status, etc., and even the productivity of the same rolled material has large fluctuations. For this reason, it is difficult to discover and determine whether or not the productivity of the material is decreasing every time it is rolled for each product. Furthermore, since the amount of production information in a plant is enormous, even if it is determined that productivity has decreased, it is difficult to determine with high accuracy what factors are causing the decrease in productivity. difficult.
 一方、例えば、複数の工程を経て製品又は半製品を製造するプロセスを有する鉄鋼圧延プラントにおいて、操業中に生産性の低下が検出された場合、プラントの管理者や操業担当者は、生産性の低下の要因が分かれば、迅速に対処策を取ることができる。このため、異常が検出されたパラメータや構成要素を、圧延材料の生産性を低下させている要因とし、ここから推定される事象を、プラントの管理者や操業担当者に提示することが出来れば、生産性の迅速な改善・向上に寄与することができる。 On the other hand, for example, if a decline in productivity is detected during operation in a steel rolling plant that has a process of manufacturing products or semi-finished products through multiple steps, plant managers and operations personnel should Once the cause of the decline is known, countermeasures can be taken quickly. For this reason, it would be possible to treat the parameters and components in which abnormalities have been detected as factors that are reducing the productivity of rolled materials, and to present the events estimated from this to plant managers and operation personnel. , can contribute to rapid improvement and improvement of productivity.
 そこで、本件開示は、生産性を、管理区分別の生産性パラメータやその構成要素に分解して得られる指標で特定し、当該指標を生産性の低下の要因候補としてプラントの管理者や操業担当者に提示することで、生産性の迅速な改善・向上に寄与することを目的とする。 Therefore, this disclosure specifies productivity using productivity parameters for each management category and indicators obtained by breaking them down into their constituent elements, and uses these indicators as potential causes of productivity decline for plant managers and operators. The purpose is to contribute to rapid improvement and improvement of productivity by presenting the information to the employees.
 一態様に係る圧延生産性向上支援装置は、鉄・非鉄材料を圧延するプラントにおいて、プラントから生産計画、生産実績、操業状態を含むプラントデータを収集するデータ収集部と、データ収集部によって取得されたプラントデータに対して、生産性と、生産性の構成要素と、構成要素のそれぞれの指標の値とを算定する指標算定部と、データ収集部によって取得されたプラントデータと、指標算定部によって算定された指標の値のデータである指標データとを記憶するデータ記憶部と、プラントデータが揃う度に、逐次、評価対象の生産性の指標と、過去の生産性の指標の実績とを比較して、生産性低下の評価を行う生産性評価部と、生産性評価部によって行われた生産性低下の評価結果と、評価結果の評価根拠となった生産性と、生産性の構成要素と、構成要素のそれぞれの指標の値とを表示する表示部と、を備えることを特徴とする。 A rolling productivity improvement support device according to one embodiment includes a data collection unit that collects plant data including a production plan, production results, and operating status from the plant, and a data collection unit that collects plant data from the plant in a plant that rolls ferrous and non-ferrous materials. An indicator calculation unit that calculates productivity, components of productivity, and index values for each of the components based on the plant data acquired by the data collection unit; A data storage unit that stores index data, which is data of calculated index values, and a comparison between the productivity index to be evaluated and past productivity index results each time plant data is collected. The productivity evaluation department evaluates the productivity decline, the results of the evaluation of the productivity decline conducted by the productivity evaluation department, the productivity that was the basis for the evaluation results, and the components of productivity. , and a display unit that displays the values of the indices of each of the constituent elements.
 本件開示によれば、生産性を、管理区分別の生産性パラメータやその構成要素に分解して得られる指標で特定し、当該指標を生産性の低下の要因候補としてプラントの管理者や操業担当者に提示することで、生産性の迅速な改善・向上に寄与することができる。 According to this disclosure, productivity is identified using productivity parameters for each management category and indicators obtained by breaking them down into their constituent elements, and these indicators are used by plant managers and operators as possible causes of productivity decline. By presenting the information to the employees, it is possible to contribute to rapid improvement and improvement of productivity.
プラントにおける熱間圧延ラインの一例を示す模式図である。It is a schematic diagram showing an example of a hot rolling line in a plant. 第1実施形態に係る圧延生産性向上支援装置の構成の一例を示す図である。FIG. 1 is a diagram showing an example of the configuration of a rolling productivity improvement support device according to a first embodiment. 第1実施形態に係る圧延生産性向上支援装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation of the rolling productivity improvement support device concerning a 1st embodiment. 第2実施形態に係る圧延生産性向上支援装置の構成の一例を示す図である。It is a figure showing an example of composition of a rolling productivity improvement support device concerning a 2nd embodiment. 第2実施形態に係る圧延生産性向上支援装置の動作の一例を示すフローチャートである。It is a flow chart which shows an example of operation of a rolling productivity improvement support device concerning a 2nd embodiment. 第3実施形態に係る圧延生産性向上支援装置の構成の一例を示す図である。It is a figure showing an example of composition of a rolling productivity improvement support device concerning a 3rd embodiment. 第3実施形態に係る圧延生産性向上支援装置の動作の一例を示すフローチャートである。It is a flow chart which shows an example of operation of a rolling productivity improvement support device concerning a 3rd embodiment. 図1~図7に示した実施形態における圧延生産性向上支援装置が有する処理回路のハードウェア構成例を示す概念図である。8 is a conceptual diagram showing an example of the hardware configuration of a processing circuit included in the rolling productivity improvement support device in the embodiment shown in FIGS. 1 to 7. FIG.
 以下、本件開示に係る圧延生産性向上支援装置の実施形態について、図面を用いて説明する。 Hereinafter, embodiments of the rolling productivity improvement support device according to the present disclosure will be described using the drawings.
 <第1実施形態の構成>
 図1は、プラントにおける熱間圧延ライン100の一例を示す模式図である。図1は、熱間圧延ライン100の一例を横から見た様子を示している。熱間圧延ライン100は、例えば、不図示の鉄又は非鉄材料等の圧延材料を圧延するプラントに設けられる。圧延材料は、図1中、左側から右側に流れていくよう制御されている。なお、以下、本明細書において、熱間圧延ライン100は、「プラント100」とも称される。また、以下、本明細書において、圧延材料は、「圧延材」又は単に「材」とも称される。
<Configuration of first embodiment>
FIG. 1 is a schematic diagram showing an example of a hot rolling line 100 in a plant. FIG. 1 shows an example of a hot rolling line 100 viewed from the side. The hot rolling line 100 is provided, for example, in a plant that rolls rolling materials such as ferrous or non-ferrous materials (not shown). The rolled material is controlled to flow from the left side to the right side in FIG. Note that, hereinafter, in this specification, the hot rolling line 100 is also referred to as a "plant 100." Further, hereinafter, in this specification, the rolled material is also referred to as "rolled material" or simply "material."
 熱間圧延ライン(プラント)100は、加熱炉1、粗圧延機3、仕上圧延機5、巻き取り機7といった主要設備、また、これら設備間の搬送装置など製造プロセスの段階に分けて管理される。すなわち、熱間圧延ライン100は、これらの加熱炉1、粗圧延機3、仕上圧延機5、巻き取り機7、また、各搬送装置をゾーンという管理区分に分けて、各プロセスの生産性が管理される。 The hot rolling line (plant) 100 is managed in stages of the manufacturing process, including main equipment such as a heating furnace 1, a rough rolling mill 3, a finishing rolling mill 5, and a winding machine 7, as well as conveying equipment between these equipment. Ru. In other words, the hot rolling line 100 divides the heating furnace 1, rough rolling mill 3, finishing rolling mill 5, winding machine 7, and each conveying device into management divisions called zones, and improves the productivity of each process. managed.
 熱間圧延ライン100は、例えば、加熱炉ゾーン11と、第一搬送ゾーン12と、粗圧延機ゾーン13と、第二搬送ゾーン14と、仕上圧延機ゾーン15と、第三搬送ゾーン16と、巻き取り機ゾーン17とを有する。なお、原則として各ゾーンには、複数の圧延材を入れることはできない。 The hot rolling line 100 includes, for example, a heating furnace zone 11, a first conveying zone 12, a rough rolling mill zone 13, a second conveying zone 14, a finishing rolling mill zone 15, a third conveying zone 16, It has a winder zone 17. As a general rule, each zone cannot contain more than one rolled material.
 加熱炉ゾーン11は、圧延材を加熱する加熱炉1を有する。 The heating furnace zone 11 has a heating furnace 1 that heats the rolled material.
 加熱炉1は、圧延対象である例えばスラブ状の圧延材を受け入れて加熱する。加熱処理済みの圧延材は、加熱炉1から抽出されて、第一搬送ゾーン12へ投入される。加熱炉1は、その後、後続する次の圧延材を受け入れ、受け入れた次の圧延材を加熱する。加熱炉1は、このような圧延材受入工程と圧延材加熱工程と圧延材抽出工程とを圧延材毎に順次繰り返す。なお、加熱炉1からの圧延材の受け入れや抽出のタイミングは、例えば、ミルペーシング等によって制御される。 The heating furnace 1 receives and heats a rolled material to be rolled, for example in the form of a slab. The heat-treated rolled material is extracted from the heating furnace 1 and introduced into the first conveyance zone 12 . The heating furnace 1 then receives the next subsequent rolling material and heats the received next rolling material. The heating furnace 1 sequentially repeats such a rolled material receiving process, a rolled material heating process, and a rolled material extraction process for each rolled material. Note that the timing of receiving and extracting the rolled material from the heating furnace 1 is controlled by, for example, mill pacing.
 第一搬送ゾーン12は、例えば、加熱炉1で加熱された圧延材料を加熱炉1の出側から粗圧延機3の入側まで搬送する第一搬送装置2を有する。 The first conveyance zone 12 includes, for example, a first conveyance device 2 that conveys the rolled material heated in the heating furnace 1 from the exit side of the heating furnace 1 to the input side of the rough rolling mill 3.
 第一搬送装置2は、例えば、搬送テーブル、コンベヤ、又は複数の搬送ロール等を用いて実現される。第一搬送装置2は、加熱炉1から抽出された圧延材を粗圧延機3へ搬送する。なお、第一搬送装置2は、例えば、搬送中の圧延材の加工が可能になるまで待ち時間がある場合、搬送中の圧延材を前後に往復させて、同時に複数の圧延材が次の粗圧延機3に投入されないようにしてもよい。 The first conveyance device 2 is realized using, for example, a conveyance table, a conveyor, or a plurality of conveyance rolls. The first conveying device 2 conveys the rolled material extracted from the heating furnace 1 to the rough rolling mill 3 . Note that, for example, if there is a waiting time until the rolled material being transported can be processed, the first conveying device 2 reciprocates the rolled material being transported back and forth, so that a plurality of rolled materials are simultaneously processed into the next rough material. It may be arranged so that it is not fed into the rolling mill 3.
 粗圧延機ゾーン13は、圧延材を粗圧延する粗圧延機3を有する。 The rough rolling mill zone 13 has a rough rolling mill 3 that roughly rolls the rolled material.
 粗圧延機3は、例えば、1スタンド以上の圧延機を用いて実現される。粗圧延機3は、加熱炉1から抽出され、第一搬送装置2によって搬送された圧延材を受け入れる。その後、粗圧延機3は、受け入れた圧延材を粗圧延する。粗圧延機3によって粗圧延された圧延材は、第二搬送ゾーン14に送出される。 The rough rolling mill 3 is realized using, for example, a rolling mill with one or more stands. The rough rolling mill 3 receives the rolled material extracted from the heating furnace 1 and transported by the first transport device 2 . Thereafter, the rough rolling mill 3 roughly rolls the received rolled material. The rolled material roughly rolled by the rough rolling mill 3 is sent to the second conveyance zone 14.
 第二搬送ゾーン14は、例えば、粗圧延機3で粗圧延された圧延材を粗圧延機3の出側から仕上圧延機5の入側まで搬送する第二搬送装置4を有する。 The second conveyance zone 14 includes, for example, a second conveyance device 4 that conveys the rolled material rough rolled by the rough rolling mill 3 from the exit side of the rough rolling mill 3 to the input side of the finishing rolling mill 5.
 第二搬送装置4は、例えば、搬送テーブル、コンベヤ、又は複数の搬送ロール等を用いて実現される。第二搬送装置4は、粗圧延機3から送出された圧延材を仕上圧延機5へ搬送する。なお、第二搬送装置4は、例えば、搬送中の圧延材の加工が可能になるまで待ち時間がある場合、搬送中の圧延材を前後に往復させて、同時に複数の圧延材が次の仕上圧延機5に投入されないようにしてもよい。 The second conveyance device 4 is realized using, for example, a conveyance table, a conveyor, or a plurality of conveyance rolls. The second conveying device 4 conveys the rolled material sent out from the rough rolling mill 3 to the finishing rolling mill 5. Note that, for example, if there is a waiting time until the rolled material being transported can be processed, the second conveying device 4 reciprocates the rolled material being transported back and forth, so that a plurality of rolled materials are simultaneously processed for the next finishing. The rolling mill 5 may not be charged with it.
 仕上圧延機ゾーン15は、仕上圧延機5を有する。 The finishing mill zone 15 has a finishing mill 5.
 仕上圧延機5は、例えば、複数スタンドの圧延機を用いて実現される。仕上圧延機5は、粗圧延機3から送出され第二搬送装置4を介して搬送された圧延材を受け入れる。その後、仕上圧延機5は、受け入れた圧延材を仕上圧延する。仕上圧延機5は、例えば、粗圧延機3による粗圧延後の圧延材を帯状に仕上圧延する。仕上圧延機5によって仕上圧延された帯状の圧延材は、第三搬送ゾーン16に送出される。 The finishing rolling mill 5 is realized using, for example, a rolling mill with multiple stands. The finishing mill 5 receives the rolled material sent out from the rough rolling mill 3 and conveyed via the second conveying device 4 . Thereafter, the finish rolling mill 5 performs finish rolling on the received rolled material. The finishing mill 5, for example, finish-rolls the rolled material after rough rolling by the rough rolling mill 3 into a strip shape. The strip-shaped rolled material finish-rolled by the finish-rolling mill 5 is delivered to the third conveyance zone 16.
 第三搬送ゾーン16は、例えば、仕上圧延機5で仕上圧延された圧延材を仕上圧延機5の出側から巻き取り機7まで案内する第三搬送装置6を有する。 The third conveying zone 16 includes, for example, a third conveying device 6 that guides the rolled material finish-rolled by the finishing rolling mill 5 from the exit side of the finishing rolling mill 5 to the winding machine 7.
 第三搬送装置6は、例えば、ピンチロール及びサイドガイド部等を用いて実現される。第三搬送装置6は、仕上圧延機5から帯状に仕上圧延されて送出された圧延材を巻き取り機7へ案内する。なお、第三搬送装置6を有する第三搬送ゾーンでは、例えば、仕上圧延機5で仕上圧延された圧延材が冷却される冷却工程を有していてもよい。 The third conveyance device 6 is realized using, for example, pinch rolls and side guide sections. The third conveying device 6 guides the rolled material that has been finish rolled into a strip shape and sent out from the finishing mill 5 to the winding machine 7 . In addition, the third conveyance zone having the third conveyance device 6 may have a cooling step in which the rolled material finish-rolled by the finish rolling mill 5 is cooled, for example.
 巻き取り機ゾーン17は、帯状に仕上圧延された圧延材を巻き取る巻き取り機7を有する。 The winder zone 17 has a winder 7 that winds up the rolled material that has been finished rolled into a strip.
 巻き取り機7は、例えば、仕上圧延工程後の圧延材を巻き取ってコイルにする巻取工程を行う。巻き取り機7は、仕上圧延機5から送出され第三搬送装置6を介して案内された帯状の圧延材を受け入れる。巻き取り機7は、受け入れた帯状の圧延材をコイル状に巻き取る。巻き取り機7によって巻き取られたコイル状の圧延材は、例えば、不図示の結束機等によって結束され、不図示の搬送車等によって外部に搬送される。 The winding machine 7 performs, for example, a winding process of winding up the rolled material after the finish rolling process to form a coil. The winding machine 7 receives the strip-shaped rolled material sent out from the finishing rolling mill 5 and guided through the third conveying device 6 . The winder 7 winds up the received strip-shaped rolled material into a coil shape. The coiled rolled material wound up by the winder 7 is bound by, for example, a binding machine (not shown) or the like, and then transported to the outside by a transport vehicle (not shown) or the like.
 熱間圧延ライン100の上記の各ゾーンには、不図示の各種センサ等が設けられ、各種センサによって検出された値は、後述の圧延生産性向上支援装置20に出力され、後述のデータ収集部21等によって取得される(図2等参照)。 Each of the above-mentioned zones of the hot rolling line 100 is provided with various sensors (not shown), and the values detected by the various sensors are output to the rolling productivity improvement support device 20 (described later) and sent to a data collection unit (described later). 21 etc. (see FIG. 2 etc.).
 図2は、第1実施形態に係る圧延生産性向上支援装置20の構成の一例を示す図である。圧延生産性向上支援装置20は、例えば、プラントにおける熱間圧延ライン100に配置される。なお、圧延生産性向上支援装置20は、プラントの一部又は全部を制御する不図示の制御装置の機能の一部であってもよい。 FIG. 2 is a diagram showing an example of the configuration of the rolling productivity improvement support device 20 according to the first embodiment. The rolling productivity improvement support device 20 is placed, for example, in a hot rolling line 100 in a plant. Note that the rolling productivity improvement support device 20 may be part of the functions of a control device (not shown) that controls part or all of the plant.
 図2に示すとおり、圧延生産性向上支援装置20は、データ収集部21と、指標算定部22と、データ記憶部23と、生産性評価部24と、表示部25との構成又は機能を有する。 As shown in FIG. 2, the rolling productivity improvement support device 20 has the configuration or functions of a data collection section 21, an index calculation section 22, a data storage section 23, a productivity evaluation section 24, and a display section 25. .
 データ収集部21は、例えば、不図示の信号線等を介して、プラントにおける熱間圧延ライン100の不図示の各センサと接続されている。データ収集部21は、プラントから、プラントの生産計画や生産実績等のデータを取得する。また、データ収集部21は、プラントの熱間圧延ライン100における各ゾーンの不図示の各種センサによって取得された、プラントの操業状態を示すプラントデータを逐次収集する。データ収集部21は、取得したデータを指標算定部22に出力する。 The data collection unit 21 is connected to each sensor (not shown) of the hot rolling line 100 in the plant, for example, via a signal line (not shown) or the like. The data collection unit 21 acquires data such as the plant's production plan and production results from the plant. Further, the data collection unit 21 sequentially collects plant data indicating the operating state of the plant, which is acquired by various sensors (not shown) in each zone in the hot rolling line 100 of the plant. The data collection unit 21 outputs the acquired data to the index calculation unit 22.
 指標算定部22は、データ収集部21から出力されたデータを取得する。指標算定部22は、データ収集部21によってプラントから取得されたデータに対して、生産性と、その構成要素と、それぞれの指標の値とを算定する。指標算定部22は、データ収集部21によって取得されたプラントデータや算定した指標の値等をデータ記憶部23に記憶させる。 The index calculation unit 22 acquires the data output from the data collection unit 21. The index calculation unit 22 calculates productivity, its constituent elements, and the value of each index for the data acquired from the plant by the data collection unit 21. The index calculation unit 22 causes the data storage unit 23 to store the plant data acquired by the data collection unit 21, the calculated index values, and the like.
 データ記憶部23は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、DRAM(Dynamic Random Access Memory)、その他の半導体メモリ等の揮発性又は不揮発性の記憶媒体である。データ記憶部23は、例えば、圧延生産性向上支援装置20の各部の動作に必要なプログラムを記憶するとともに、圧延生産性向上支援装置20の各部により、各種の情報の書き込みや読み出しが行われる。 The data storage unit 23 is, for example, a volatile or nonvolatile storage medium such as an HDD (Hard Disk Drive), SSD (Solid State Drive), DRAM (Dynamic Random Access Memory), or other semiconductor memory. The data storage unit 23 stores, for example, programs necessary for the operation of each part of the rolling productivity improvement support device 20, and various information is written and read by each part of the rolling productivity improvement support device 20.
 データ記憶部23は、現在又は過去のプラントデータや算定された指標の値等を記憶する。また、データ記憶部23は、圧延生産性向上支援装置20の各種の判定等に用いられる現在又は過去の各種値や演算結果や所定の閾値等を記憶する。データ記憶部23は、例えば、不図示のバス等により、圧延生産性向上支援装置20の各部と接続されている。なお、データ記憶部23は、圧延生産性向上支援装置20の外部に設けられ、有線又は無線で圧延生産性向上支援装置20と接続されていてもよい。また、データ記憶部23は、メモリカード、DVD(Digital Versatile Disc)等の外部記憶媒体等であっても、オンラインストレージ等であってもよい。また、データ記憶部23は、後述のメモリ92(図8参照)と共通であってもよい。 The data storage unit 23 stores current or past plant data, calculated index values, etc. Further, the data storage unit 23 stores various current or past values, calculation results, predetermined threshold values, etc. used for various determinations of the rolling productivity improvement support device 20. The data storage unit 23 is connected to each part of the rolling productivity improvement support device 20 by, for example, a bus (not shown). Note that the data storage unit 23 may be provided outside the rolling productivity improvement support device 20 and connected to the rolling productivity improvement support device 20 by wire or wirelessly. Further, the data storage unit 23 may be an external storage medium such as a memory card or a DVD (Digital Versatile Disc), or may be an online storage. Further, the data storage unit 23 may be shared with a memory 92 (see FIG. 8), which will be described later.
 生産性評価部24は、データ記憶部23に記憶された各種値や各種データを取得し、プラントデータが揃う度に逐次、評価対象の生産性指標と過去の生産性指標実績とを比較して、生産性低下の評価を行う。生産性評価部24は、生産性低下の評価結果と、その評価根拠となった生産性と、その構成要素と、それぞれの指標の値とを表示部25に出力する。 The productivity evaluation unit 24 acquires various values and various data stored in the data storage unit 23, and compares the productivity index to be evaluated with past productivity index performance each time the plant data is collected. , evaluate productivity decline. The productivity evaluation unit 24 outputs to the display unit 25 the evaluation result of productivity decline, the productivity that is the basis for the evaluation, its constituent elements, and the values of the respective indicators.
 表示部25は、生産性評価部24から出力された生産性低下の評価結果と、その評価根拠となった生産性と、その構成要素と、それぞれの指標の値とを表示する。なお、表示部25は、圧延生産性向上支援装置20の各部で管理されている各種の値や各種のデータ等の情報も表示してもよい。表示部25によって表示(提示)されるこれらの情報は、プラント管理者・操業担当者26によって監視される。 The display unit 25 displays the evaluation result of productivity decline output from the productivity evaluation unit 24, the productivity on which the evaluation is based, its constituent elements, and the values of each index. Note that the display section 25 may also display information such as various values and various data managed by each section of the rolling productivity improvement support device 20. This information displayed (presented) by the display unit 25 is monitored by a plant manager/operator 26.
 表示部25によって、これらの情報が表示(提示)されることによって、プラント管理者・操業担当者26に対し、圧延生産性向上のための支援が行われる。なお、表示部25は、例えば、GUI(Graphical User Interface)形式のタッチパネル等による不図示の操作部を有していてもよく、プラント管理者・操業担当者26により所望の情報が表示されるように操作可能なものであってもよい。 By displaying (presenting) this information on the display unit 25, support for improving rolling productivity is provided to the plant manager/operator 26. Note that the display unit 25 may include an operation unit (not shown) such as a GUI (Graphical User Interface) type touch panel, etc., so that desired information can be displayed by the plant manager/operation person 26. It may also be operable.
 プラント管理者・操業担当者26は、プラントやプラントにおける熱間圧延ライン100の運転状況や生産状況等を、表示部25を介して監視する。プラント管理者・操業担当者26は、表示部25による表示(提示)によって、プラントやプラントにおける熱間圧延ライン100における生産性の低下の要因を把握したときは、迅速に対処策を取り、生産性の迅速な改善及び向上を図ることができる。 The plant manager/operating person 26 monitors the operating status, production status, etc. of the plant and the hot rolling line 100 in the plant via the display unit 25. When the plant manager/operator 26 understands the cause of productivity decline in the plant or the hot rolling line 100 in the plant through the display (presentation) on the display unit 25, the plant manager/operator 26 quickly takes countermeasures and improves production. It is possible to quickly improve and improve sexual performance.
 <第1実施形態の動作>
 図3は、第1実施形態に係る圧延生産性向上支援装置20の動作の一例を示すフローチャートである。図3に示すフローチャートは、例えば、プラントにおける図1に示す熱間圧延ライン100の操業が開始されたときに開始する。なお、図3に示すフローチャートは、図1に示す熱間圧延ライン100の操業中は、常に動作していても良く、所定間隔毎に定期的に動作が開始されても良く、プラント管理者・操業担当者26の指示や所定の条件又は制御に従って動作が開始されてもよい。
<Operation of the first embodiment>
FIG. 3 is a flowchart showing an example of the operation of the rolling productivity improvement support device 20 according to the first embodiment. The flowchart shown in FIG. 3 starts, for example, when the operation of the hot rolling line 100 shown in FIG. 1 in the plant is started. Note that the flowchart shown in FIG. 3 may be in operation all the time during the operation of the hot rolling line 100 shown in FIG. The operation may be started according to instructions from the operator 26, predetermined conditions, or control.
 ステップS21において、圧延生産性向上支援装置20のデータ収集部21は、プラントから生産計画、生産実績、操業状態等を示すプラントデータを逐次収集する。 In step S21, the data collection unit 21 of the rolling productivity improvement support device 20 sequentially collects plant data indicating the production plan, production results, operating status, etc. from the plant.
 ステップS22において、圧延生産性向上支援装置20の指標算定部22は、プラントから取得したデータに対して、生産性と、その構成要素と、それぞれの指標の値とを算定する。すなわち、指標算定部22は、プラントから、不図示のセンサ等を介して、プラントに関わるデータであるプラントデータを取得して、生産性の指標を算定する。 In step S22, the index calculation unit 22 of the rolling productivity improvement support device 20 calculates productivity, its constituent elements, and the value of each index for the data acquired from the plant. That is, the index calculation unit 22 acquires plant data, which is data related to the plant, from the plant via a sensor (not shown), etc., and calculates the productivity index.
 ここで、生産性の指標として、プラント全体での生産性(第一階層)は、管理区分別の生産性パラメータ(第二階層)と、その構成要素(第三階層)との階層構造に分解される。なお、生産性の分解の仕方は、同様の構造が実現できれば、三階層には限られない。 Here, as a productivity indicator, the productivity of the entire plant (first layer) is broken down into a hierarchical structure of productivity parameters for each management category (second layer) and its components (third layer). be done. Note that the method of decomposing productivity is not limited to three levels, as long as a similar structure can be realized.
 生産性は、例えば、生産量をサイクルタイムで除した値である。この生産性の指標を評価することで、生産性低下を検出することができる。また、生産性は、生産ラインの管理区分であるゾーン毎の生産性パラメータに分けて定義することができる。 Productivity is, for example, the value obtained by dividing the production amount by the cycle time. By evaluating this productivity index, it is possible to detect a decrease in productivity. Furthermore, productivity can be defined in terms of productivity parameters for each zone, which is a management division of a production line.
 ゾーンには、例えば、図1に示すように、加熱炉ゾーン11と、第一搬送ゾーン12と、粗圧延機ゾーン13と、第二搬送ゾーン14と、仕上圧延機ゾーン15と、第三搬送ゾーン16と、巻き取り機ゾーン17とがある。これらのゾーン毎の生産性パラメータを評価することで、生産性低下の要因となっているゾーンひいては設備を検出することができる。 For example, as shown in FIG. 1, the zones include a heating furnace zone 11, a first conveyance zone 12, a rough rolling mill zone 13, a second conveyance zone 14, a finishing mill zone 15, and a third conveyance zone. There is a zone 16 and a winder zone 17. By evaluating the productivity parameters for each zone, it is possible to detect the zone or equipment that is causing the decrease in productivity.
 また、生産性は、サイクルタイムのうち生産に寄与しなかった時間によって変化する。生産に寄与しなかった時間としては、計画や事故による休止又は停止、あるいは、先行材に続いて自材の加工が可能になるまでの待ち時間がある。待ち時間としては、オシレーションやギャップタイムがある。 Additionally, productivity changes depending on the time that does not contribute to production in the cycle time. Time that does not contribute to production includes downtime or stoppage due to planning or accidents, or waiting time until it is possible to process the own material following the preceding material. The waiting time includes oscillation and gap time.
 なお、オシレーションとは、例えば、図1中、仕上圧延機5で材を圧延中に粗圧延機3から次の材が出てきてしまった場合、次の材を、第二搬送ゾーン14において、前後に往復動作させることなどをいう。これにより、第二搬送ゾーン14において、熱々の次の材が1箇所にとどまって焼き付いてしまうことを抑制することや、仕上圧延機5に入るための適正な温度まで空冷することなどができる。また、ギャップタイムとは、例えば、上記の場合、第二搬送ゾーン14における次の材が、安全上の理由から仕上圧延機5に入る前に経過しなければならない時間のことなどをいう。 Note that oscillation means, for example, in FIG. 1, when the next material comes out of the rough rolling mill 3 while the finishing rolling mill 5 is rolling the material, the next material is moved to the second conveyance zone 14. , refers to the act of reciprocating back and forth. Thereby, in the second conveyance zone 14, it is possible to prevent the next hot material from being stuck in one place and seize it, and it is possible to air-cool the material to an appropriate temperature for entering the finishing rolling mill 5. Moreover, the gap time refers to, for example, the time that must elapse before the next material in the second conveyance zone 14 enters the finishing mill 5 for safety reasons in the above case.
 また、サイクルタイムは、圧延機での圧延時間、圧延機をパスする間隔であるパス間時間などの構成要素に分解される。 In addition, cycle time is broken down into components such as rolling time in a rolling mill and inter-pass time, which is the interval between passes through the rolling mill.
 これらの値は、生産性を構成する要素であり、生産性を変化させる要因である。これらの生産性及びゾーンごとの生産性パラメータの構成要素のそれぞれの変化が検出されることによって、生産性の変化の要因を検出することができる。 These values are elements that constitute productivity and are factors that change productivity. By detecting changes in each of these components of productivity and productivity parameters for each zone, the cause of the change in productivity can be detected.
 ステップS23において、圧延生産性向上支援装置20のデータ記憶部23は、プラントデータと算定された指標データとを記憶する。すなわち、データ記憶部23は、データ収集部21によって取得されたプラントデータと、指標算定部22によって算出された生産性の指標データと、その構成要素の実績データとを記憶する。なお、データ記憶部23は、プラントデータをデータ記憶部23から不図示のバス等を介して直接取得して記憶しても良く、指標算定部22を介して取得して記憶してもよい。 In step S23, the data storage unit 23 of the rolling productivity improvement support device 20 stores the plant data and the calculated index data. That is, the data storage unit 23 stores the plant data acquired by the data collection unit 21, the productivity index data calculated by the index calculation unit 22, and the performance data of its components. Note that the data storage unit 23 may directly acquire and store the plant data from the data storage unit 23 via a bus (not shown) or the like, or may acquire and store the plant data via the index calculation unit 22.
 生産性の指標としては、上述したプラント全体での生産性や、ゾーン毎の生産性パラメータであるton/hがある。データ記憶部23は、製品が生産される度に生産性の評価が行われることが出来るよう、材料や製品の実績データ等を取得する度にデータを記憶する。また、データ記憶部23は、評価をするときに、同等の条件の実績データ同士を容易に比較できるように、材料や製品毎に、その材質や寸法等の属性値を併せて記憶する。なお、データ記憶部23は、これらの現在又は過去のデータを記憶している。 Examples of productivity indicators include the productivity of the entire plant mentioned above and ton/h, which is a productivity parameter for each zone. The data storage unit 23 stores data each time performance data of materials and products is acquired so that productivity can be evaluated each time a product is produced. Furthermore, the data storage unit 23 also stores attribute values such as material quality and dimensions for each material or product so that performance data under the same conditions can be easily compared during evaluation. Note that the data storage unit 23 stores these current or past data.
 ステップS24において、圧延生産性向上支援装置20の生産性評価部24は、プラントデータが揃う度に逐次、評価対象の生産性指標と過去の生産性指標実績とを比較して、生産性低下の評価を行う。すなわち、生産性評価部24は、例えば、製品が生産される度に、直近で生産された任意の製品を評価対象として、その評価対象の生産性指標と、過去の生産性の指標実績とを比較して、生産性の評価と、生産性低下の要因の検出とを行う。 In step S24, the productivity evaluation unit 24 of the rolling productivity improvement support device 20 sequentially compares the productivity index to be evaluated with past productivity index results each time the plant data is collected, and Evaluate. That is, for example, every time a product is produced, the productivity evaluation unit 24 evaluates a recently produced arbitrary product and compares the productivity index of the evaluation target with past productivity index results. The comparison is performed to evaluate productivity and to detect factors causing productivity decline.
 過去の生産性の指標としては、過去に生産された製品に関わる全ての生産性の指標の平均値、チャンピオンデータ、ワーストデータ等のデータの統計値等であってもよい。そして、生産性を評価する意図に応じて、任意の統計値が選ばれてもよい。例えば、過去の生産性の実績データのばらつきの影響を避けて評価が行われる場合は、平均値や中央値が採用されてもよい。一方、例えば、よりよい生産性を追求するために評価が行われる場合は、チャンピオンデータが採用されてもよい。 The past productivity index may be the average value of all productivity indexes related to products produced in the past, statistical values of data such as champion data, worst data, etc. Any statistical value may be selected depending on the intention of evaluating productivity. For example, when evaluation is performed while avoiding the influence of variations in past productivity performance data, an average value or a median value may be adopted. On the other hand, for example, when evaluation is performed to pursue better productivity, champion data may be employed.
 生産性評価部24によって評価が行われるとき、生産性の指標が、材質や寸法等、材料や製品の諸元に影響を受けない条件で比較が行われる。このため、評価の基準とする過去の生産性の指標は、例えば、評価対象の材料や製品と、材質や寸法等が同じ属性値を持つ集団、すなわち同じ層別のデータが用いられる。同一条件のもの同士が比較されなければ、適正な優劣が判断できないためである。 When the productivity evaluation unit 24 performs the evaluation, the comparison is performed under conditions where the productivity index is not influenced by the specifications of the materials or products, such as material quality and dimensions. Therefore, as the past productivity index used as the evaluation standard, for example, data of a group having the same attribute values such as material and dimensions as the material or product to be evaluated, that is, data of the same stratification is used. This is because it is not possible to properly determine superiority or inferiority unless items under the same conditions are compared.
 生産性評価部24は、生産性の指標について、評価対象と評価基準とを比較して指標の良し悪しを定量的に算出する。例えば、生産性評価部24は、比較した両者がどれだけ相違するか、生産性の低下の度合いが基準値で定義した許容範囲内にあるか否か、あるいは、評価対象の指標が評価基準となる母集団の分布中でどのような位置にあるかといった定量的な評価を行う。定量的な評価は、例えば、パーセンテージや、統計的な分布や、偏差値等での評価が考えられる。 The productivity evaluation unit 24 quantitatively calculates the quality of the productivity index by comparing the evaluation target with the evaluation criteria. For example, the productivity evaluation unit 24 determines how much the two compared results differ, whether the degree of decrease in productivity is within the allowable range defined by the standard value, or whether the index to be evaluated meets the evaluation standard. Quantitative evaluation of the position of the population in the distribution of the population. For example, quantitative evaluation may be based on percentage, statistical distribution, deviation value, or the like.
 さらに、生産性評価部24は、プラント全体での生産性低下を評価するだけではなく、ゾーン毎の生産性パラメータや、その構成要素の指標をそれぞれ過去の実績と比較して、生産性低下の要因を検出する。要因としては、例えば、上述のように、サイクルタイムを構成するゾーン毎の圧延時間、パス間時間、生産に寄与しなかった時間を構成する計画や事故による休止期間又は停止期間、オシレーション、ギャップタイム等が考えられる。さらに、休止又は停止の要因となった事象も要因である。 Furthermore, the productivity evaluation unit 24 not only evaluates the productivity decline of the entire plant, but also compares the productivity parameters of each zone and the indicators of its constituent elements with past results to detect productivity decline. Detect factors. Factors include, for example, as mentioned above, the rolling time for each zone that makes up the cycle time, the time between passes, the downtime or downtime due to planning or accidents that make up the time that does not contribute to production, oscillations, and gaps. Possible factors include time. Furthermore, the event that caused the pause or stop is also a factor.
 なお、評価の基準とする過去の生産性の指標実績データについては、ある時点から遡ったすべての期間のデータに限らず、過去の任意の期間のデータに限定してもよい。例えば、プラントの操業においては、設備の老朽化による生産性能劣化や、操業条件の変更による生産性能の変化が起こり得る。このため、これらの影響を避けるため、過去の生産性の指標実績データについては、ある程度条件が同等であると見込まれる直近の期間のデータを評価の基準として選定することができる。 Note that the past productivity index performance data used as the basis for evaluation is not limited to data for all periods dating back from a certain point, but may be limited to data for any period in the past. For example, in the operation of a plant, production performance may deteriorate due to aging of equipment, or production performance may change due to changes in operating conditions. Therefore, in order to avoid these influences, regarding past productivity index performance data, data from the most recent period in which conditions are expected to be equivalent to some extent can be selected as the evaluation standard.
 なお、生産性の評価の対象は、評価を行う頻度の要求に応じて選定される。例えば、製品を生産する度に、直近で生産されたある製品を評価対象とすることに限らなくてよい。すなわち、例えば、朝のシフトや夜のシフト等、シフト毎での生産性の評価をするためであれば、シフトが完了する度に、当該シフトで生産された所定の層別の材料や製品群に関する生産性指標に対して評価が行われてもよい。また、例えば、営業日毎の生産性の評価をするためであれば、営業日が完了する度に、当該営業日で生産された所定の層別の材料や製品群に関する生産性指標に対して評価が行われてもよい。なお、所定の材料や製品群を評価の対象とする場合、上述の統計値を評価の指標値として採用してもよい。 Note that the targets for productivity evaluation are selected depending on the frequency of evaluation. For example, each time a product is produced, it is not necessary to limit the evaluation to the most recently produced product. In other words, for example, in order to evaluate productivity for each shift, such as a morning shift or a night shift, each time a shift is completed, the material or product group produced in that shift will be evaluated. The evaluation may be performed on productivity indicators related to. For example, in order to evaluate productivity for each business day, each time a business day is completed, an evaluation is made against productivity indicators related to materials and product groups of a predetermined stratification produced on that business day. may be performed. Note that when a predetermined material or product group is to be evaluated, the above-mentioned statistical value may be employed as an evaluation index value.
 これらの生産性及びゾーンごとの生産性パラメータの構成要素のそれぞれの変化が評価・検出されることによって、生産性の変化の要因を評価・検出することができる。そして、生産性が下がった場合、階層構造に分解して評価することにより、具体的にいずれのゾーンが原因で生産性が下がったのか、いずれの構成要素が原因で生産性が下がったのか検出することができる。例えば、所定の製品を製造する場合、どれほどの生産性であり、当該生産性の良し悪しが評価されたときに、例えば、いずれのゾーンがボトルネックになっているのかを検出することができる。また、例えば、当該ゾーンにおいていずれの構成要素(例えば、オシレーション、ギャップタイム、アクシデント等)に問題があるのか等を検出することができる。なお、生産性評価部24は、生産性を評価した結果、生産性が下がった旨の評価をしたときにのみ、生産性低下の要因の検出を行ってもよい。 By evaluating and detecting changes in each of the components of productivity and productivity parameters for each zone, it is possible to evaluate and detect the causes of changes in productivity. When productivity decreases, by breaking it down into a hierarchical structure and evaluating it, we can detect which zone specifically caused the decrease in productivity, and which component caused the decrease in productivity. can do. For example, in the case of manufacturing a predetermined product, it is possible to detect, for example, which zone is the bottleneck when the productivity is evaluated and the quality of the productivity is evaluated. Further, for example, it is possible to detect which component (for example, oscillation, gap time, accident, etc.) in the zone has a problem. Note that the productivity evaluation unit 24 may detect the cause of the productivity decrease only when the productivity evaluation results in an evaluation that the productivity has decreased.
 ステップS25において、圧延生産性向上支援装置20の表示部25は、生産性低下の評価結果と、その評価根拠となった生産性と、その構成要素と、それぞれの指標の値とを表示して、プラント管理者・操業担当者26に提示する。 In step S25, the display unit 25 of the rolling productivity improvement support device 20 displays the evaluation result of productivity decline, the productivity on which the evaluation was based, its constituent elements, and the value of each index. , and present it to the plant manager/operation person 26.
 すなわち、表示部25は、製品が生産される度に、直近で生産された所定の製品を評価対象として、所定のデータを表示する。例えば、表示部25は、生産性低下の評価結果と、その評価根拠となった生産性指標と、ゾーン毎の生産性パラメータと、その構成要素の指標と、その生産性指標に関連する生産計画や生産実績と、操業状態を示すデータとを表示する。 That is, each time a product is produced, the display unit 25 displays predetermined data on the most recently produced predetermined product as an evaluation target. For example, the display unit 25 displays the evaluation result of productivity decline, the productivity index on which the evaluation is based, the productivity parameter for each zone, the index of its constituent elements, and the production plan related to the productivity index. Displays production results and data indicating operational status.
 なお、表示部25が表示するデータは、製品を生産する度に、生産されたある製品を評価対象とすることには限られず、これに関連するデータに限らなくてよい。すなわち、例えば、表示部25は、製品を生産する度に、直近で生産された同じ層別の数本の製品を評価対象として表示してもよい。例えば、表示部25は、その材料・製品群に関する生産性指標に対して評価を行って得られる、生産性低下の評価結果と、その評価根拠となった生産性指標と、ゾーン毎の生産性パラメータと、その構成要素の指標とを表示してもよい。また、表示部25は、その生産性指標に関連する生産計画や生産実績と、操業状態とを示すデータとを表示して、プラント管理者・操業担当者26に提示してもよい。 Note that the data displayed by the display unit 25 is not limited to evaluating a certain manufactured product each time a product is produced, and may not be limited to data related to this. That is, for example, each time a product is produced, the display unit 25 may display several products of the same stratum produced most recently as evaluation targets. For example, the display unit 25 displays the evaluation result of productivity decline obtained by evaluating the productivity index regarding the material/product group, the productivity index on which the evaluation was based, and the productivity of each zone. Parameters and indicators of their constituent elements may also be displayed. Further, the display unit 25 may display data indicating the production plan and production results related to the productivity index, and the operating status, and present the data to the plant manager/operation person 26.
 表示部25は、生産性評価部24によって行われた判定や、算出されたデータ項目を全て表示してもよいし、プラント管理者・操業担当者26等の要求に応じて表示する情報が取捨選択されたものを表示してもよい。なお、表示部25は、一つの画面とは限らず、生産性評価の観点に応じて複数の画面が設けられていてもよい。 The display unit 25 may display all of the judgments made by the productivity evaluation unit 24 and the calculated data items, or may display information that is selectively displayed in response to requests from the plant manager, operation personnel 26, etc. The selected item may be displayed. Note that the display unit 25 is not limited to one screen, and may be provided with a plurality of screens depending on the viewpoint of productivity evaluation.
 <第1実施形態の作用効果>
 以上、図1から図3に示す第1実施形態では、生産性が、管理区分別の生産性パラメータやその構成要素に分解して得られる指標で特定され、当該指標が、生産性の低下の要因候補としてプラント管理者・操業担当者26に提示される。これにより、プラント管理者・操業担当者26は、膨大な情報の中から効率的に生産性の低下の要因を把握することが出来るため、迅速に対処策を取ることができる。このため、図1から図3に示す第1実施形態によれば、生産性の迅速な改善・向上に寄与することができる。
<Actions and effects of the first embodiment>
As described above, in the first embodiment shown in FIGS. 1 to 3, productivity is specified by productivity parameters for each management category and indicators obtained by breaking them down into their constituent elements, and the indicators are This is presented to the plant manager/operator 26 as a candidate factor. As a result, the plant manager/operator 26 can efficiently grasp the cause of the decline in productivity from among a huge amount of information, and can therefore quickly take countermeasures. Therefore, according to the first embodiment shown in FIGS. 1 to 3, it is possible to contribute to rapid improvement and improvement of productivity.
 <第2実施形態の構成>
 図4は、第2実施形態に係る圧延生産性向上支援装置30の構成の一例を示す図である。図4においては、図1~図3に示す第1実施形態と同一又は同様の構成又は機能については同一の符号を付し、詳細な説明は省略又は簡略化する。
<Configuration of second embodiment>
FIG. 4 is a diagram showing an example of the configuration of the rolling productivity improvement support device 30 according to the second embodiment. In FIG. 4, the same or similar configurations or functions as those in the first embodiment shown in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof will be omitted or simplified.
 図4に示すとおり、圧延生産性向上支援装置30は、データ収集部21と、指標算定部22と、データ記憶部23Aと、生産性評価部24Aと、表示部25Aと、規範指標算定部32との構成又は機能を有する。すなわち、第2実施形態に係る圧延生産性向上支援装置30は、データ記憶部23Aと、生産性評価部24Aと、表示部25Aとの構成又は機能が、図1~図3に示す第1実施形態と一部相違する。また、第2実施形態に係る圧延生産性向上支援装置30は、規範指標算定部32の構成又は機能をさらに有する点で、図1~図3に示す第1実施形態と相違する。 As shown in FIG. 4, the rolling productivity improvement support device 30 includes a data collection section 21, an index calculation section 22, a data storage section 23A, a productivity evaluation section 24A, a display section 25A, and a standard index calculation section 32. It has the structure or function of That is, in the rolling productivity improvement support device 30 according to the second embodiment, the configurations or functions of the data storage section 23A, the productivity evaluation section 24A, and the display section 25A are the same as those in the first embodiment shown in FIGS. 1 to 3. The form is partially different. Further, the rolling productivity improvement support device 30 according to the second embodiment differs from the first embodiment shown in FIGS. 1 to 3 in that it further has the configuration or function of a standard index calculation section 32.
 規範指標算定部32は、データ収集部21から出力されたデータを取得する。規範指標算定部32は、設備の諸元データと、生産しようとする材料・製品の材質や寸法、生産時に適用する制御パラメータなどの生産計画データに対して、材料又は製品ごとに、設備の諸元に基づく理想的な生産性の指標を計算する。なお、設備の諸元又は諸元データは、例えば、当該設備の性能、性質、形態、形状、素材、材質等、設備を構成する個々の要素の仕様やデータのことを示す。規範指標算定部32は、データ収集部21によって取得されたプラントデータや計算した理想的な生産性の指標の値等をデータ記憶部23Aに記憶させる。 The standard index calculation unit 32 acquires the data output from the data collection unit 21. The standard index calculation unit 32 calculates equipment specifications for each material or product based on equipment specification data, production plan data such as materials and dimensions of materials and products to be produced, and control parameters to be applied during production. Calculate the ideal productivity indicator based on the original. Note that the specifications or specification data of the equipment indicate, for example, the specifications and data of individual elements constituting the equipment, such as the performance, properties, form, shape, material, and quality of the equipment. The standard index calculation unit 32 stores the plant data acquired by the data collection unit 21, the calculated ideal productivity index value, etc. in the data storage unit 23A.
 データ記憶部23Aは、図1~図3に示す第1実施形態におけるデータ記憶部23の構成又は機能を有する。さらに、データ記憶部23Aは、規範指標算定部32から出力された、規範指標算定部32によって計算された材料又は製品ごとの設備の諸元に基づく理想的な生産性の指標を記憶する。 The data storage unit 23A has the configuration or function of the data storage unit 23 in the first embodiment shown in FIGS. 1 to 3. Furthermore, the data storage unit 23A stores an ideal productivity index output from the standard index calculation unit 32 and based on the specifications of equipment for each material or product calculated by the standard index calculation unit 32.
 生産性評価部24Aは、図1~図3に示す第1実施形態における生産性評価部24の構成又は機能を有する。さらに、生産性評価部24Aは、評価対象の生産性指標の実績と、評価基準として、規範指標算定部によって計算された理想的な生産性の指標とを比較して、生産性の評価と、生産性低下の要因の検出とを行う。 The productivity evaluation section 24A has the configuration or function of the productivity evaluation section 24 in the first embodiment shown in FIGS. 1 to 3. Furthermore, the productivity evaluation section 24A compares the performance of the productivity index to be evaluated with the ideal productivity index calculated by the standard index calculation section as the evaluation standard, and evaluates the productivity. Detection of factors causing productivity decline.
 表示部25Aは、図1~図3に示す第1実施形態における表示部25の構成又は機能を有する。さらに、表示部25Aは、製品が生産される度に、理想的な生産性の指標に対して、生産性指標の実績の評価結果と、その評価根拠となった生産性指標と、ゾーン毎の生産性パラメータと、その構成要素の指標とを表示する。また、表示部25Aは、その生産性指標に関連する生産計画、生産実績、操業状態等を示すデータを表示する。プラント管理者に提示する。表示部25Aによって表示(提示)されるこれらの情報は、プラント管理者・操業担当者26によって監視される。 The display section 25A has the configuration or function of the display section 25 in the first embodiment shown in FIGS. 1 to 3. Furthermore, each time a product is produced, the display unit 25A displays the evaluation results of the performance of the productivity index against the ideal productivity index, the productivity index that was the basis of the evaluation, and the results for each zone. Display productivity parameters and indicators of their components. Furthermore, the display section 25A displays data indicating the production plan, production results, operating status, etc. related to the productivity index. Present to plant manager. This information displayed (presented) by the display unit 25A is monitored by the plant manager/operation person 26.
 <第2実施形態の動作>
 図5は、第2実施形態に係る圧延生産性向上支援装置30の動作の一例を示すフローチャートである。図5においては、図1~図3に示す第1実施形態と同一又は同様の動作については、詳細な説明は、適宜省略又は簡略化する。図5に示すフローチャートは、図3に示すフローチャートと同様のタイミングで動作が開始される。
<Operation of second embodiment>
FIG. 5 is a flowchart showing an example of the operation of the rolling productivity improvement support device 30 according to the second embodiment. In FIG. 5, detailed descriptions of operations that are the same or similar to those of the first embodiment shown in FIGS. 1 to 3 are omitted or simplified as appropriate. The flowchart shown in FIG. 5 starts its operation at the same timing as the flowchart shown in FIG. 3.
 ステップS31の動作は、図3に示す第1実施形態のステップS21の動作と同一又は同様であるため、詳細な説明は省略する。 The operation in step S31 is the same as or similar to the operation in step S21 of the first embodiment shown in FIG. 3, so a detailed explanation will be omitted.
 ステップS32において、圧延生産性向上支援装置30の規範指標算定部32は、実績ベースに基づく指標算定部22の代わりに、又は並行して、設備の諸元データと生産計画データとに対して、設備の諸元に基づく理想的な生産性の指標を算定(計算)する。すなわち、規範指標算定部32は、設備の諸元データと、生産しようとする材料又は製品の材質、寸法、生産時に適用する制御パラメータ等の生産計画データに対して、材料又は製品毎に、設備の諸元に基づく理想的な生産性の指標を計算する。 In step S32, the standard index calculation unit 32 of the rolling productivity improvement support device 30, instead of or in parallel with the performance-based index calculation unit 22, calculates the following based on the equipment specification data and production plan data. Calculate (calculate) ideal productivity indicators based on equipment specifications. That is, the standard index calculation unit 32 calculates the equipment for each material or product based on equipment specification data and production plan data such as the material, dimensions, and control parameters to be applied during production of the material or product to be produced. Calculate an ideal productivity index based on the specifications of
 規範指標算定部32は、設備の諸元に基づく理想的な生産性の指標を算定するために、プラント100の全体やプラント100を構成する各設備に関する、物理モデルや統計モデル等から成るシミュレータを有する。規範指標算定部32は、与えられた生産性計画データの条件の下で製品を生産するという仮定の下で生産性を計算し、設備の諸元に基づく理想的な生産性の指標を上記のシミュレータによりシミュレーションを行うことで計算する。また、規範指標算定部32は、計算の過程で、ゾーン毎の生産性パラメータと、その構成要素とのシミュレーションデータも計算する。なお、規範指標算定部32は、何度も条件を変えて、シミュレーションデータを計算してもよい。 The standard index calculation unit 32 uses a simulator consisting of a physical model, a statistical model, etc. regarding the entire plant 100 and each piece of equipment constituting the plant 100 in order to calculate an ideal productivity index based on the specifications of the equipment. have The standard index calculation unit 32 calculates productivity under the assumption that the product will be produced under the conditions of the given productivity planning data, and calculates the ideal productivity index based on the specifications of the equipment as described above. Calculate by performing simulation with a simulator. In addition, in the calculation process, the standard index calculation unit 32 also calculates simulation data of productivity parameters for each zone and their constituent elements. Note that the standard index calculation unit 32 may calculate the simulation data by changing the conditions many times.
 なお、規範指標算定部32が、実績ベースに基づく指標算定部22と並行して動作している場合、ステップS32では、指標算定部22による、図3に示すステップS22の動作も並行して行われる。 Note that when the normative index calculation section 32 operates in parallel with the performance-based index calculation section 22, in step S32, the operation of step S22 shown in FIG. 3 by the index calculation section 22 is also performed in parallel. be exposed.
 ステップS33において、圧延生産性向上支援装置30のデータ記憶部23Aは、プラントデータと算定された指標データとを記憶する。すなわち、データ記憶部23Aは、データ収集部21によって取得されたプラントデータと、指標算定部22によって算出された生産性の指標データと、その構成要素の実績データとを記憶する。また、データ記憶部23Aは、実績ベースに基づく指標算定部22からデータを取得する代わりに、又は並行して、規範指標算定部32によって算出された、設備の諸元に基づく理想的な生産性の指標データを記憶する。なお、データ記憶部23Aは、規範指標算定部32によって、様々な条件の下で算出された、現在又は過去の設備の諸元に基づく理想的な生産性の指標データを記憶してもよい。 In step S33, the data storage unit 23A of the rolling productivity improvement support device 30 stores the plant data and the calculated index data. That is, the data storage unit 23A stores the plant data acquired by the data collection unit 21, the productivity index data calculated by the index calculation unit 22, and the performance data of its components. In addition, instead of acquiring data from the performance-based index calculation section 22, or in parallel, the data storage section 23A stores ideal productivity based on the specifications of the equipment, which is calculated by the standard index calculation section 32. Memorize index data. Note that the data storage unit 23A may store ideal productivity index data based on current or past equipment specifications, which are calculated by the standard index calculation unit 32 under various conditions.
 なお、その他のステップS33の動作は、図3に示す第1実施形態のステップS23の動作と同一又は同様であるため、詳細な説明は省略する。 Note that the other operations in step S33 are the same as or similar to the operations in step S23 of the first embodiment shown in FIG. 3, so detailed explanations will be omitted.
 ステップS34において、圧延生産性向上支援装置30の生産性評価部24Aは、材又は集計期間毎、かつ層別毎に、プラントデータが揃う度に逐次、評価対象の生産性指標と過去の生産性指標実績又は規範生産性指標とを比較する。そして、生産性評価部24Aは、比較結果に基づいて、生産性低下の評価と要因候補の評価とを行う。すなわち、生産性評価部24Aは、評価対象である生産性指標の実績と、評価基準とされる規範指標算定部32によって計算された理想的な生産性指標とを比較し、比較結果に基づいて、生産性の評価と、生産性低下の要因の検出とを行う。 In step S34, the productivity evaluation unit 24A of the rolling productivity improvement support device 30 sequentially calculates the productivity index to be evaluated and the past productivity for each material or collection period and for each stratum, each time the plant data is collected. Compare indicator performance or standard productivity indicators. The productivity evaluation unit 24A then evaluates the productivity decline and the factor candidates based on the comparison results. That is, the productivity evaluation section 24A compares the performance of the productivity index to be evaluated with the ideal productivity index calculated by the standard index calculation section 32, which is the evaluation standard, and based on the comparison result. , evaluate productivity and detect factors that cause productivity decline.
 生産性評価部24Aは、生産性指標について、評価対象と評価基準とを比較して指標の良し悪しを定量的に算出する。さらに、生産性評価部24Aは、プラント100全体での生産性低下を評価するだけではなく、ゾーン毎の生産性パラメータや、その構成要素の指標を、それぞれ規範指標算定部32によって計算されたデータと比較して、生産性低下の要因を検出する。 The productivity evaluation unit 24A quantitatively calculates the quality of the productivity index by comparing the evaluation target with the evaluation criteria. Furthermore, the productivity evaluation unit 24A not only evaluates the productivity decline of the entire plant 100, but also calculates productivity parameters for each zone and indicators of their constituent elements using data calculated by the standard index calculation unit 32. Detect factors contributing to productivity decline.
 なお、規範指標算定部32が、実績ベースに基づく指標算定部22と並行して動作している場合、ステップS34では、図3に示すステップS24の動作も並行して行われてもよい。なお、その場合、他のステップS34の動作は、図3に示す第1実施形態のステップS24の動作と同一又は同様であるため、詳細な説明は省略する。 Incidentally, when the standard index calculation section 32 operates in parallel with the performance-based index calculation section 22, in step S34, the operation of step S24 shown in FIG. 3 may also be performed in parallel. Note that in that case, the other operations in step S34 are the same or similar to the operations in step S24 of the first embodiment shown in FIG. 3, so a detailed explanation will be omitted.
 ステップS35において、圧延生産性向上支援装置30の表示部25Aは、生産性低下の評価結果と、その評価根拠となった生産性と、その構成要素と、それぞれの指標の値とを表示して、プラント管理者・操業担当者26に提示する。 In step S35, the display unit 25A of the rolling productivity improvement support device 30 displays the evaluation result of productivity decline, the productivity on which the evaluation is based, its components, and the values of each index. , and present it to the plant manager/operation person 26.
 すなわち、表示部25Aは、製品が生産される度に、理想的な生産性の指標に対して、生産性指標の実績の評価結果を表示する。例えば、表示部25Aは、評価結果と、その評価根拠となった生産性指標と、ゾーン毎の生産性パラメータと、その構成要素の指標と、その生産性指標に関連する生産計画、生産実績、操業状態等を示すデータとを表示する。 That is, the display unit 25A displays the evaluation results of the performance of the productivity index with respect to the ideal productivity index every time a product is produced. For example, the display unit 25A displays the evaluation results, the productivity index on which the evaluation is based, the productivity parameters for each zone, the indicators of its constituent elements, the production plan and production results related to the productivity index, Displays data indicating operating status, etc.
 なお、その他のステップS35の動作は、図3に示す第1実施形態のステップS25の動作と同一又は同様であるため、詳細な説明は省略する。 Note that the other operations in step S35 are the same or similar to the operations in step S25 of the first embodiment shown in FIG. 3, so detailed explanations will be omitted.
 <第2実施形態の作用効果>
 以上、図4及び図5に示す第2実施形態では、図1から図3に示した第1実施形態と同様の効果を奏する。
<Actions and effects of the second embodiment>
As described above, the second embodiment shown in FIGS. 4 and 5 has the same effects as the first embodiment shown in FIGS. 1 to 3.
 また、図4及び図5に示す第2実施形態によれば、規範指標算定部32は、シミュレータを有し、当該シミュレータ等を用いて、例えば、何度も条件を変えて、当該設備の諸元に基づく理想的な生産性、すなわち、設備の理論上最高の生産性が算定する。これにより、図4及び図5に示す第2実施形態では、生産性評価部24Aは、規範指標算定部32により算出された理論上最高性能の生産性と、現在の生産性指標との比較結果に基づいて、生産性低下の評価と要因候補の評価とを行うことができる。 Further, according to the second embodiment shown in FIGS. 4 and 5, the standard index calculation unit 32 has a simulator, and uses the simulator etc. to change various conditions of the equipment many times, for example. The ideal productivity based on the original, that is, the theoretical highest productivity of the equipment is calculated. Accordingly, in the second embodiment shown in FIGS. 4 and 5, the productivity evaluation section 24A calculates the comparison result between the theoretically highest performance productivity calculated by the standard index calculation section 32 and the current productivity index. Based on this, it is possible to evaluate productivity decline and candidate factors.
 このため、図4及び図5に示す第2実施形態によれば、規範指標算定部32により算出された理想的な生産性と、現在の生産性指標との比較結果に基づいて、生産性の低下の要因候補がプラント管理者・操業担当者26に提示される。これにより、プラント管理者・操業担当者26は、理想的な生産性と、現在の生産性指標との比較に基づいて、生産性の低下の要因を把握することが出来るため、理想的な生産性との関係で、現状何が問題(ボトルネック)になっているのかを把握することができる。 Therefore, according to the second embodiment shown in FIGS. 4 and 5, the productivity is calculated based on the comparison result between the ideal productivity calculated by the standard index calculation unit 32 and the current productivity index. Candidates for the cause of the decrease are presented to the plant manager/operator 26. As a result, the plant manager/operator 26 can understand the causes of productivity decline based on a comparison between ideal productivity and the current productivity index, so the ideal productivity You can understand what the current problems (bottlenecks) are in relation to gender.
 <第3実施形態の構成>
 図6は、第3実施形態に係る圧延生産性向上支援装置40の構成の一例を示す図である。図6においては、図1~図3に示す第1実施形態と同一又は同様の構成又は機能については同一の符号を付し、詳細な説明は省略又は簡略化する。
<Configuration of third embodiment>
FIG. 6 is a diagram showing an example of the configuration of a rolling productivity improvement support device 40 according to the third embodiment. In FIG. 6, the same or similar configurations or functions as those in the first embodiment shown in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description thereof will be omitted or simplified.
 図6に示すとおり、圧延生産性向上支援装置40は、データ収集部21と、指標算定部22と、データ記憶部23と、生産性評価部24と、表示部25Bと、要因候補検出部44との構成又は機能を有する。すなわち、第3実施形態に係る圧延生産性向上支援装置40は、表示部25Bの構成又は機能が、図1~図3に示す第1実施形態と一部相違する。また、第3実施形態に係る圧延生産性向上支援装置40は、要因候補検出部44の構成又は機能をさらに有する点で、図1~図3に示す第1実施形態と相違する。 As shown in FIG. 6, the rolling productivity improvement support device 40 includes a data collection section 21, an index calculation section 22, a data storage section 23, a productivity evaluation section 24, a display section 25B, and a factor candidate detection section 44. It has the structure or function of That is, the rolling productivity improvement support device 40 according to the third embodiment is partially different from the first embodiment shown in FIGS. 1 to 3 in the configuration or function of the display section 25B. Further, the rolling productivity improvement support device 40 according to the third embodiment differs from the first embodiment shown in FIGS. 1 to 3 in that it further includes the configuration or function of a factor candidate detection section 44.
 要因候補検出部44は、データ記憶部23に記憶された各種値や各種データを取得し、生産性の指標が変化(悪化)したときに、その生産性指標の構成要素について、指標が悪化した構成要素と相関のあるプラントデータ項目を検出する。なお、データ記憶部23には、各種値や各種データの一例として、設備の休止や停止、設備のアラーム、インターロックの履歴、圧延時間や待ち時間の実績値等が記憶されている。 The factor candidate detection unit 44 acquires various values and various data stored in the data storage unit 23, and when the productivity index changes (deteriorates), the factor candidate detection unit 44 determines whether the index has deteriorated for the component of the productivity index. Find plant data items that are correlated with components. Note that the data storage unit 23 stores, as examples of various values and data, equipment stoppages and stops, equipment alarms, interlock history, actual values of rolling time and waiting time, and the like.
 表示部25Bは、図1~図3に示す第1実施形態における表示部25の構成又は機能を有する。さらに、表示部25Bは、指標が変化(悪化)した構成要素と相関のあるプラントデータ項目が検出されると、生産性低下の評価結果と、その評価根拠となった生産性と、その構成要素と、生産性変化の要因候補と、それぞれの指標の値等を示すデータを表示する。表示部25Bによって表示(提示)されるこれらの情報は、プラント管理者・操業担当者26によって監視される。 The display section 25B has the configuration or function of the display section 25 in the first embodiment shown in FIGS. 1 to 3. Furthermore, when a plant data item correlated with a component whose index has changed (deteriorated) is detected, the display unit 25B displays the evaluation result of productivity decline, the productivity that was the basis for the evaluation, and the component. It displays data showing candidate factors for productivity change and the values of each index. This information displayed (presented) by the display unit 25B is monitored by the plant manager/operator 26.
 <第3実施形態の動作>
 図7は、第3実施形態に係る圧延生産性向上支援装置40の動作の一例を示すフローチャートである。図7においては、図1~図3に示す第1実施形態と同一又は同様の動作については、詳細な説明は、適宜省略又は簡略化する。図7に示すフローチャートは、図3に示すフローチャートと同様のタイミングで動作が開始される。
<Operation of third embodiment>
FIG. 7 is a flowchart showing an example of the operation of the rolling productivity improvement support device 40 according to the third embodiment. In FIG. 7, detailed descriptions of operations that are the same or similar to those of the first embodiment shown in FIGS. 1 to 3 are omitted or simplified as appropriate. The flowchart shown in FIG. 7 starts its operation at the same timing as the flowchart shown in FIG. 3.
 ステップS41~ステップS43の動作は、図3に示す第1実施形態のステップS21~ステップS23の動作と同一又は同様であるため、詳細な説明は省略する。 The operations from step S41 to step S43 are the same as or similar to the operations from step S21 to step S23 of the first embodiment shown in FIG. 3, so a detailed explanation will be omitted.
 ステップS44において、圧延生産性向上支援装置40の要因候補検出部44は、生産性の指標が変化(悪化)したときに、その生産性指標の構成要素について、指標が悪化した構成要素と相関のあるプラントデータ項目を検出する。すなわち、要因候補検出部44は、生産性が低下したとき、例えば、サイクルタイムを構成する、ゾーン毎の圧延時間、パス間時間が、どのような要因により変化したかを検出する。また、要因候補検出部44は、例えば、生産に寄与しなかった時間として、計画や事故による休止期間または停止期間、オシレーションやギャップタイムなどの待ち時間、生産性の構成要素が、どのような要因により変化したかを検出する。そして、要因候補検出部44は、検出したデータ項目を生産性低下の要因候補とする。 In step S44, when the productivity index changes (deteriorates), the factor candidate detection unit 44 of the rolling productivity improvement support device 40 detects a correlation between the component of the productivity index and the component whose index has deteriorated. Find a certain plant data item. That is, when the productivity decreases, the factor candidate detection unit 44 detects, for example, by what factor the rolling time for each zone and the inter-pass time, which constitute the cycle time, have changed. The factor candidate detection unit 44 also determines, for example, what kind of time that does not contribute to production includes downtime or stoppage due to plans or accidents, waiting time such as oscillation or gap time, and productivity components. Detect whether there has been a change due to a factor. Then, the factor candidate detection unit 44 determines the detected data item as a factor candidate for productivity decline.
 例えば、設備の劣化や不具合により、メンテナンスのための計画休止、設備の故障やインターロック不成立などの事象が起こる。これらの事象は、休止や停止の記録、設備のアラーム、インターロックの履歴等として、例えば、データ記憶部23にデータが記録される。 For example, due to deterioration or malfunction of equipment, events such as scheduled downtime for maintenance, equipment failure, or failure of interlocks occur. Data of these events is recorded in the data storage unit 23, for example, as a record of suspension or stoppage, equipment alarm, interlock history, etc.
 また、例えば、設備の所定の条件下での性能リミット、定格値、制御シーケンスアルゴリズムに設けられた余裕時間、制御指令値へのオペレータ介入等により、圧延時間や待ち時間等に変化が起こる。これらの事象は、圧延時間や待ち時間の実績値として、例えば、データ記憶部23にデータが記録される。 Further, for example, changes occur in rolling time, waiting time, etc. due to performance limits under predetermined conditions of the equipment, rated values, margin time provided in the control sequence algorithm, operator intervention in control command values, etc. Data of these events is recorded in the data storage unit 23, for example, as actual values of rolling time and waiting time.
 要因候補検出部44は、これらのデータ項目の中から、生産性が低下したときと、平時との差、もしくは理想状態との差を比較して、生産性低下と相関のあるデータ項目を検出する。なお、相関を判定する手段としては、統計的手法、機械学習的手法等が適用可能である。 The factor candidate detection unit 44 detects data items that are correlated with a decrease in productivity from among these data items by comparing the difference between when productivity decreases and the difference between normal times or the ideal state. do. Note that statistical methods, machine learning methods, etc. can be applied as means for determining the correlation.
 なお、要因候補検出部44は、図4~図5に示す第2実施形態に示した規範指標算定部32を構成する物理モデルや、設備の諸元、仕様、制御装置のアルゴリズム等を参照することも可能である。これにより、生産性低下やその構成要素と因果関係にないデータ項目を除外することも可能であるため、要因候補の検出確度を向上させることができる。 Note that the factor candidate detection unit 44 refers to the physical model that constitutes the standard index calculation unit 32 shown in the second embodiment shown in FIGS. 4 and 5, the specifications and specifications of the equipment, the algorithm of the control device, etc. It is also possible. This makes it possible to exclude data items that do not have a causal relationship with productivity decline or its constituent elements, thereby improving the detection accuracy of factor candidates.
 例えば、所定のゾーンで生産性低下が検出されたとき、当該ゾーンよりも前工程で発生した前材に対するインターロックの不成立は、設備や制御装置の仕様から、当該のゾーンに対して影響のあるものではないことが分かる。このため、要因候補検出部44は、当該インターロックの不成立が、検出された生産性低下とは因果関係にないと判定することができる。 For example, when a decrease in productivity is detected in a predetermined zone, failure of the interlock for the previous material that occurred in the previous process than the zone may affect the zone due to the specifications of the equipment and control device. I know it's not something. Therefore, the factor candidate detection unit 44 can determine that the failure of the interlock has no causal relationship with the detected productivity decline.
 ステップS45において、圧延生産性向上支援装置40の表示部25Bは、生産性低下の評価結果と、その評価根拠となった生産性と、その構成要素と、生産性変化の要因候補と、それぞれの指標の値とを表示して、プラント管理者・操業担当者26に提示する。 In step S45, the display unit 25B of the rolling productivity improvement support device 40 displays the evaluation result of productivity decline, the productivity on which the evaluation was based, its constituent elements, and candidate factors for productivity change. The value of the index is displayed and presented to the plant manager/operator 26.
 すなわち、表示部25Bは、製品が生産される度に、生産性低下の評価結果と、その評価根拠となった生産性指標と、ゾーン毎の生産性パラメータとを表示して、プラント管理者・操業担当者26に提示する。また、表示部25Bは、それらの構成要素の指標と、その生産性指標に関連する生産計画、生産実績、操業状態等を示すデータと、要因候補検出部によって検出された要因候補とを表示して、プラント管理者・操業担当者26に提示する。 That is, each time a product is produced, the display unit 25B displays the evaluation result of productivity decline, the productivity index on which the evaluation is based, and the productivity parameters for each zone, so that the plant manager and Present it to the person in charge of operations 26. In addition, the display section 25B displays indicators of those constituent elements, data indicating production plans, production results, operating conditions, etc. related to the productivity indicators, and factor candidates detected by the factor candidate detection section. and present it to the plant manager/operation person 26.
 なお、その他のステップS45の動作は、図3に示す第1実施形態のステップS25の動作と同一又は同様であるため、詳細な説明は省略する。 Note that the other operations in step S45 are the same as or similar to the operations in step S25 of the first embodiment shown in FIG. 3, so detailed explanations will be omitted.
 <第3実施形態の作用効果>
 以上、図6及び図7に示す第3実施形態では、図1から図3に示した第1実施形態と同様の効果を奏する。
<Actions and effects of the third embodiment>
As described above, the third embodiment shown in FIGS. 6 and 7 has the same effects as the first embodiment shown in FIGS. 1 to 3.
 また、図6及び図7に示す第3実施形態によれば、要因候補検出部44は、生産性の指標が変化(悪化)したときに、その生産性指標の構成要素について、指標が悪化した構成要素と相関のあるプラントデータ項目を検出する。そして、表示部25Bは、要因候補検出部によって検出された要因候補を表示して、プラント管理者・操業担当者26に提示する。これにより、プラント管理者・操業担当者26は、平時のプラントデータ項目と、要因候補検出部44によって検出された要因候補とを把握することが出来るため、平時のプラントとの関係で、現状何が問題で生産性が低下しているのかを把握することができる。 Further, according to the third embodiment shown in FIGS. 6 and 7, when the productivity index changes (deteriorates), the factor candidate detection unit 44 detects whether the index has deteriorated for the component of the productivity index. Find plant data items that are correlated with components. Then, the display section 25B displays the factor candidates detected by the factor candidate detection section and presents them to the plant manager/operator 26. As a result, the plant manager/operation personnel 26 can grasp the plant data items during normal times and the factor candidates detected by the factor candidate detection unit 44, so that they can understand the current situation in relation to the plant during normal times. It is possible to understand whether productivity is decreasing due to a problem.
 <ハードウェア構成例>
 図8は、図1~図7に示した実施形態における圧延生産性向上支援装置20,30,40が有する処理回路90のハードウェア構成例を示す概念図である。上述した各機能は処理回路90により実現される。一態様として、処理回路90は、少なくとも1つのプロセッサ91と少なくとも1つのメモリ92とを備える。他の態様として、処理回路90は、少なくとも1つの専用のハードウェア93を備える。
<Hardware configuration example>
FIG. 8 is a conceptual diagram showing an example of the hardware configuration of the processing circuit 90 included in the rolling productivity improvement support devices 20, 30, and 40 in the embodiments shown in FIGS. 1 to 7. Each of the functions described above is realized by the processing circuit 90. In one aspect, processing circuit 90 includes at least one processor 91 and at least one memory 92. In other aspects, processing circuitry 90 includes at least one dedicated hardware 93.
 処理回路90がプロセッサ91とメモリ92とを備える場合、各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。ソフトウェアおよびファームウェアの少なくとも一方は、メモリ92に格納される。プロセッサ91は、メモリ92に記憶されたプログラムを読み出して実行することにより、各機能を実現する。 When the processing circuit 90 includes a processor 91 and a memory 92, each function is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. At least one of software and firmware is stored in memory 92. The processor 91 implements each function by reading and executing programs stored in the memory 92.
 処理回路90が専用のハードウェア93を備える場合、処理回路90は、例えば、単一回路、複合回路、プログラム化したプロセッサ、又はこれらを組み合わせたものである。各機能は処理回路90で実現される。 When the processing circuit 90 includes dedicated hardware 93, the processing circuit 90 is, for example, a single circuit, a composite circuit, a programmed processor, or a combination thereof. Each function is realized by a processing circuit 90.
 圧延生産性向上支援装置20,30,40が有する各機能は、それぞれ一部又は全部がハードウェアによって構成されてもよく、プロセッサが実行するプログラムとして構成されてもよい。すなわち、圧延生産性向上支援装置20,30,40は、コンピュータとプログラムとによっても実現可能であり、プログラムは、記憶媒体に記憶されることも、ネットワークを通して提供されることも可能である。 Each of the functions of the rolling productivity improvement support devices 20, 30, and 40 may be partially or entirely configured by hardware, or may be configured as a program executed by a processor. That is, the rolling productivity improvement support devices 20, 30, and 40 can be realized by a computer and a program, and the program can be stored in a storage medium or provided through a network.
 <実施形態の補足事項>
 以上、図1~図8に示す実施形態によれば、図1~図3に示す圧延生産性向上支援装置20と、図4~図5に示す圧延生産性向上支援装置30と、図6~図7に示す圧延生産性向上支援装置40とに分けて説明したが、これには限られない。圧延生産性向上支援装置20,30,40の一部又は全部の構成及び動作が、直列又は並列に組み合わされてもよい。これらの構成及び動作が組み合わされることにより、組み合わされた構成及び動作は、組み合わされる前の各構成及び動作によって奏される各作用効果を奏することができる。
<Supplementary information regarding the embodiment>
As described above, according to the embodiment shown in FIGS. 1 to 8, the rolling productivity improvement support device 20 shown in FIGS. 1 to 3, the rolling productivity improvement support device 30 shown in FIGS. 4 to 5, and the rolling productivity improvement support device 30 shown in FIGS. Although the explanation has been made separately with the rolling productivity improvement support device 40 shown in FIG. 7, the present invention is not limited thereto. The configurations and operations of some or all of the rolling productivity improvement support devices 20, 30, and 40 may be combined in series or in parallel. By combining these configurations and operations, the combined configurations and operations can produce the respective effects produced by the respective configurations and operations before being combined.
 また、図1から図8に示す実施形態によれば、本件開示の一態様として、圧延生産性向上支援装置20,30,40を例に説明したが、これには限られない。本件開示は、プラント100と、圧延生産性向上支援装置20,30,40とが組み合わされた圧延生産性向上支援システムとしても実現可能である。 Further, according to the embodiment shown in FIGS. 1 to 8, the rolling productivity improvement support apparatuses 20, 30, and 40 have been described as an example of one aspect of the present disclosure, but the invention is not limited to this. The present disclosure can also be realized as a rolling productivity improvement support system in which the plant 100 and the rolling productivity improvement support devices 20, 30, and 40 are combined.
 また、本件開示は、圧延生産性向上支援装置20,30,40の各部における処理ステップが行われる圧延生産性向上支援方法としても実現可能である。 Furthermore, the present disclosure can also be realized as a rolling productivity improvement support method in which processing steps are performed in each part of the rolling productivity improvement support devices 20, 30, and 40.
 また、本件開示は、圧延生産性向上支援装置20,30,40の各部における処理ステップをコンピュータに実行させる圧延生産性向上支援プログラムとしても実現可能である。 Furthermore, the present disclosure can also be realized as a rolling productivity improvement support program that causes a computer to execute processing steps in each part of the rolling productivity improvement support devices 20, 30, and 40.
 また、本件開示は、圧延生産性向上支援プログラムが記憶された記憶媒体(非一時的なコンピュータ可読媒体)としても実現可能である。圧延生産性向上支援プログラムは、例えば、CD(Compact Disc)、DVD(Digital Versatile Disc)、USB(Universal Serial Bus)メモリ等のリムーバブルディスク等に記憶して頒布可能である。なお、圧延生産性向上支援プログラムは、圧延生産性向上支援装置20,30,40が有する不図示のネットワークインタフェース等を介して、ネットワーク上にアップロードされてもよい。また、圧延生産性向上支援プログラムは、当該ネットワークインタフェース等を介して、ネットワークからダウンロードされ、データ記憶部23,23A又はメモリ92等に格納されてもよい。 Furthermore, the present disclosure can also be realized as a storage medium (non-temporary computer-readable medium) in which a rolling productivity improvement support program is stored. The rolling productivity improvement support program can be stored and distributed on, for example, a removable disk such as a CD (Compact Disc), DVD (Digital Versatile Disc), or USB (Universal Serial Bus) memory. Note that the rolling productivity improvement support program may be uploaded onto the network via a network interface (not shown) included in the rolling productivity improvement support devices 20, 30, and 40. Further, the rolling productivity improvement support program may be downloaded from the network via the network interface or the like and stored in the data storage units 23 and 23A or the memory 92 or the like.
 以上の詳細な説明により、実施形態の特徴点および利点は明らかになるであろう。これは、特許請求の範囲がその精神および権利範囲を逸脱しない範囲で前述のような実施形態の特徴点および利点にまで及ぶことを意図するものである。また、当該技術分野において通常の知識を有する者であれば、あらゆる改良および変更に容易に想到できるはずである。したがって、発明性を有する実施形態の範囲を前述したものに限定する意図はなく、実施形態に開示された範囲に含まれる適当な改良物および均等物に拠ることも可能である。 The features and advantages of the embodiments will become clear from the above detailed description. It is intended that the appended claims extend to the features and advantages of such embodiments without departing from the spirit and scope thereof. Additionally, all improvements and changes will be readily apparent to those having ordinary knowledge in the relevant technical field. Therefore, it is not intended that the scope of the inventive embodiments be limited to those described above, but suitable modifications and equivalents may be made within the scope disclosed in the embodiments.
 1…加熱炉;2…第一搬送装置;3…粗圧延機;4…第二搬送装置;5…仕上圧延機;6…第三搬送装置;7…巻き取り機;11…加熱炉ゾーン;12…第一搬送ゾーン;13…粗圧延機ゾーン;14…第二搬送ゾーン;15…仕上圧延機ゾーン;16…第三搬送ゾーン;17…巻き取り機ゾーン;20…圧延生産性向上支援装置;21…データ収集部;22…指標算定部;23,23A…データ記憶部;24,24A…生産性評価部;25,25A,25B…表示部;26…プラント管理者・操業担当者;30…圧延生産性向上支援装置;32…規範指標算定部;40…圧延生産性向上支援装置;44…要因候補検出部;90…処理回路;91…プロセッサ;92…メモリ;93…ハードウェア;100…熱間圧延ライン(プラント) 1... Heating furnace; 2... First conveying device; 3... Rough rolling mill; 4... Second conveying device; 5... Finishing rolling mill; 6... Third conveying device; 7... Winding machine; 11... Heating furnace zone; 12... First conveyance zone; 13... Rough rolling mill zone; 14... Second conveyance zone; 15... Finish rolling mill zone; 16... Third conveyance zone; 17... Winder zone; 20... Rolling productivity improvement support device ; 21... Data collection section; 22... Index calculation section; 23, 23A... Data storage section; 24, 24A... Productivity evaluation section; 25, 25A, 25B... Display section; 26... Plant manager/operation person; 30 ...Rolling productivity improvement support device; 32... Normative index calculation unit; 40... Rolling productivity improvement support device; 44... Factor candidate detection section; 90... Processing circuit; 91... Processor; 92... Memory; 93... Hardware; 100 …Hot rolling line (plant)

Claims (3)

  1.  鉄・非鉄材料を圧延するプラントにおいて、
     前記プラントから生産計画、生産実績、操業状態を含むプラントデータを収集するデータ収集部と、
     前記データ収集部によって取得された前記プラントデータに対して、生産性と、前記生産性の構成要素と、前記構成要素のそれぞれの指標の値とを算定する指標算定部と、
     前記データ収集部によって取得された前記プラントデータと、前記指標算定部によって算定された前記指標の値のデータである指標データとを記憶するデータ記憶部と、
     前記プラントデータが揃う度に、逐次、評価対象の生産性の指標と、過去の生産性の指標の実績とを比較して、生産性低下の評価を行う生産性評価部と、
     前記生産性評価部によって行われた前記生産性低下の評価結果と、前記評価結果の評価根拠となった前記生産性と、前記生産性の前記構成要素と、前記構成要素のそれぞれの前記指標の値とを表示する表示部と、
     を備えることを特徴とする圧延生産性向上支援装置。
    In plants that roll ferrous and non-ferrous materials,
    a data collection unit that collects plant data including production plans, production results, and operating conditions from the plant;
    an index calculation unit that calculates productivity, components of the productivity, and index values for each of the components with respect to the plant data acquired by the data collection unit;
    a data storage unit that stores the plant data acquired by the data collection unit and index data that is data of the value of the index calculated by the index calculation unit;
    a productivity evaluation unit that evaluates productivity decline by sequentially comparing the productivity index to be evaluated and past productivity index results each time the plant data is collected;
    The evaluation result of the productivity decline performed by the productivity evaluation unit, the productivity on which the evaluation result is based, the component of the productivity, and the index of each of the component. a display section that displays the value;
    A rolling productivity improvement support device comprising:
  2.  請求項1に記載の圧延生産性向上支援装置において、
     前記指標算定部の代わりに、又は前記指標算定部とともに、前記プラントの設備の諸元データと生産計画データとに対して、前記設備の諸元に基づく理想的な生産性の指標を算定する規範指標算定部をさらに備え、
     前記生産性評価部は、材ごと又は集計期間毎に、かつ層別毎に、前記プラントデータが揃う度に、逐次、評価対象の生産性の指標と、過去の生産性の指標の実績、又は規範の生産性の指標とを比較して、生産性低下の評価と、前記生産性低下の要因候補の検出とを行う
     ことを特徴とする圧延生産性向上支援装置。
    The rolling productivity improvement support device according to claim 1,
    A norm for calculating an ideal productivity index based on the specifications of the equipment, with respect to the specification data and production plan data of the equipment of the plant, instead of or in conjunction with the indicator calculation unit. Additionally equipped with an indicator calculation department,
    The productivity evaluation unit sequentially evaluates the productivity index to be evaluated and the past performance of the productivity index, for each material or for each collection period, and for each stratum, each time the plant data is collected. 1. A rolling productivity improvement support device that evaluates productivity decline and detects candidate factors for the productivity decline by comparing it with a standard productivity index.
  3.  請求項1又は請求項2に記載の圧延生産性向上支援装置において、
     生産性の指標が変化したときに、前記生産性の指標の構成要素について、前記指標が変化した構成要素と相関のある前記プラントデータの項目を検出する要因候補検出部をさらに備え、
     前記表示部は、前記生産性低下の評価結果と、前記評価結果の評価根拠となった前記生産性と、前記生産性の前記構成要素と、前記生産性低下の要因候補と、前記構成要素のそれぞれの前記指標の値とを表示する
     ことを特徴とする圧延生産性向上支援装置。
    In the rolling productivity improvement support device according to claim 1 or 2,
    Further comprising a factor candidate detection unit that detects, when the productivity index changes, an item of the plant data that has a correlation with the component whose index has changed, for the component of the productivity index,
    The display unit displays the evaluation result of the productivity decrease, the productivity on which the evaluation result is based, the component of the productivity, the candidate factor of the productivity decrease, and the component of the productivity. A rolling productivity improvement support device, characterized in that the value of each of the indicators is displayed.
PCT/JP2022/020125 2022-05-12 2022-05-12 Rolling productivity improvement assistance device WO2023218619A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023527061A JPWO2023218619A1 (en) 2022-05-12 2022-05-12
CN202280035005.0A CN117396283A (en) 2022-05-12 2022-05-12 Auxiliary device for improving rolling productivity
PCT/JP2022/020125 WO2023218619A1 (en) 2022-05-12 2022-05-12 Rolling productivity improvement assistance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020125 WO2023218619A1 (en) 2022-05-12 2022-05-12 Rolling productivity improvement assistance device

Publications (1)

Publication Number Publication Date
WO2023218619A1 true WO2023218619A1 (en) 2023-11-16

Family

ID=88730174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020125 WO2023218619A1 (en) 2022-05-12 2022-05-12 Rolling productivity improvement assistance device

Country Status (3)

Country Link
JP (1) JPWO2023218619A1 (en)
CN (1) CN117396283A (en)
WO (1) WO2023218619A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257339A (en) * 2006-03-23 2007-10-04 Nippon Steel Corp Manufacturing specification determination support system and method, computer program, and computer-readable recording medium
JP2009265699A (en) * 2008-04-21 2009-11-12 Nippon Steel Corp Processing time prediction device, method, program, and computer-readable storage medium
JP2013145521A (en) * 2012-01-16 2013-07-25 Nippon Steel & Sumitomo Metal Method, device and program for predicting efficiency of manufacturing process
JP2014035590A (en) * 2012-08-07 2014-02-24 Toshiba Mitsubishi-Electric Industrial System Corp Data analysis device
JP2019035123A (en) * 2017-08-17 2019-03-07 新日鐵住金株式会社 Method, device, and program for creating operation schedule
JP2021030264A (en) * 2019-08-23 2021-03-01 Jfeスチール株式会社 Learning model generation method, database construction method, mill setup setting method, manufacturing method of rolled material, manufacturing method of processing object, and learning model generation device
CN113219910A (en) * 2021-03-19 2021-08-06 苏州数杰智能技术有限公司 Full-flow production self-diagnosis and optimization system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007257339A (en) * 2006-03-23 2007-10-04 Nippon Steel Corp Manufacturing specification determination support system and method, computer program, and computer-readable recording medium
JP2009265699A (en) * 2008-04-21 2009-11-12 Nippon Steel Corp Processing time prediction device, method, program, and computer-readable storage medium
JP2013145521A (en) * 2012-01-16 2013-07-25 Nippon Steel & Sumitomo Metal Method, device and program for predicting efficiency of manufacturing process
JP2014035590A (en) * 2012-08-07 2014-02-24 Toshiba Mitsubishi-Electric Industrial System Corp Data analysis device
JP2019035123A (en) * 2017-08-17 2019-03-07 新日鐵住金株式会社 Method, device, and program for creating operation schedule
JP2021030264A (en) * 2019-08-23 2021-03-01 Jfeスチール株式会社 Learning model generation method, database construction method, mill setup setting method, manufacturing method of rolled material, manufacturing method of processing object, and learning model generation device
CN113219910A (en) * 2021-03-19 2021-08-06 苏州数杰智能技术有限公司 Full-flow production self-diagnosis and optimization system

Also Published As

Publication number Publication date
CN117396283A (en) 2024-01-12
JPWO2023218619A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
JP6252675B2 (en) Manufacturing equipment diagnosis support device
CN107949813B (en) Manufacturing equipment diagnosis support device and manufacturing equipment diagnosis support method
JP5441824B2 (en) Manufacturing condition determination system for metal strip materials
JP6136743B2 (en) Method of changing the running plate thickness in cold tandem rolling mills
US20140297638A1 (en) Data management apparatus, data management method and data management program
JP5821363B2 (en) Product defect factor analyzer
JP5888175B2 (en) Data analysis device
JP4180960B2 (en) Data analysis apparatus, control method therefor, computer program, and computer-readable storage medium
WO2023218619A1 (en) Rolling productivity improvement assistance device
CN112839746B (en) Fold generation prediction system
JP7024800B2 (en) Steel plant maintenance support equipment
JP5471725B2 (en) Manufacturing lot creation method, apparatus and system
KR102516612B1 (en) Method for manufacturing metal workpieces
JP2007050413A (en) Method and apparatus for controlling steel sheet width
Cuznar et al. Optimization of cold rolling process recipes based on historical data
JP7222939B2 (en) Explanatory information generation device for time-series patterns
KR101122333B1 (en) Method for operating an industrial installation, system for operating an industrial installation and computer readable storage medium for operating an industrial installation
JP5884185B2 (en) Trouble-free maximum rolling speed calculation method and cold tandem rolling method in cold tandem rolling mill
US20230393113A1 (en) Construction method of abnormality diagnosis model, abnormality diagnosis method, construction device of abnormality diagnosis model, and abnormality diagnosis device
JP2022170101A (en) Rolling load prediction method, rolling control method and rolling load prediction device
JP2024016404A (en) Rolling setting support system and rolling setting support method
JP2021133415A (en) Model learning method, flying plate thickness changing method, steel plate manufacturing method, model learning device, flying plate thickness changing device and steel plate manufacturing device
Souza et al. Data mining and modelling
JP2014108451A (en) Method and apparatus for maximum rolling speed setting support in line acceleration of tandem mill
JP2014087841A (en) Rolling order determination device and rolling order determination method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941698

Country of ref document: EP

Kind code of ref document: A1