WO2023218604A1 - 電池モジュール - Google Patents

電池モジュール Download PDF

Info

Publication number
WO2023218604A1
WO2023218604A1 PCT/JP2022/020075 JP2022020075W WO2023218604A1 WO 2023218604 A1 WO2023218604 A1 WO 2023218604A1 JP 2022020075 W JP2022020075 W JP 2022020075W WO 2023218604 A1 WO2023218604 A1 WO 2023218604A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
output
voltage
circuit
battery
Prior art date
Application number
PCT/JP2022/020075
Other languages
English (en)
French (fr)
Inventor
清司 瀬上
豊壽 藤沼
政則 寺嵜
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2022/020075 priority Critical patent/WO2023218604A1/ja
Publication of WO2023218604A1 publication Critical patent/WO2023218604A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present invention relate to battery modules.
  • a battery module including an assembled battery is equipped with a cell balance circuit that balances the voltages of a plurality of battery cells.
  • Control of the cell balance circuit can be realized by either software or hardware.
  • MCU Micro Controller Unit
  • the embodiments of the present invention have been made in view of the above circumstances, and an object thereof is to provide a battery module that ensures reliability of cell balance control.
  • a battery module includes a plurality of battery cells, a detection circuit that detects voltage values of the plurality of battery cells, a cell balance circuit that can individually discharge the plurality of battery cells, and a plurality of the battery cells.
  • a plurality of comparators output a difference obtained by subtracting a second voltage value supplied from the second input wiring from a first voltage value supplied from the wiring, and a voltage value is inputted from the common first input wiring.
  • a voltage comparison circuit including a wiring; the battery cell having the maximum voltage specified based on the plurality of differences supplied from each of the plurality of first output wirings; and the plurality of second output wirings.
  • FIG. 1 is a diagram schematically showing a configuration example of a battery module according to an embodiment.
  • FIG. 2 is a diagram schematically showing a configuration example of the voltage comparison circuit shown in FIG. 1.
  • FIG. 3 is a diagram schematically showing a configuration example of the selection circuit shown in FIG. 1.
  • FIG. 4 is a diagram schematically showing a configuration example of the selection circuit shown in FIG. 1.
  • FIG. 5 is a diagram schematically showing a configuration example of the diagnostic circuit shown in FIG. 1.
  • FIG. 6 is a diagram for explaining an example of the operation of the selection circuit output diagnosis section of the diagnosis circuit shown in FIG. 5.
  • FIG. 7 is a diagram for explaining an example of the operation of the voltage comparison circuit output diagnostic section of the diagnostic circuit shown in FIG. 5.
  • FIG. FIG. 5 is a diagram schematically showing a configuration example of a battery module according to an embodiment.
  • FIG. 3 is a diagram schematically showing a configuration example of the selection circuit shown in FIG. 1.
  • FIG. 4 is a diagram schematically
  • FIG. 8 is a diagram schematically showing a configuration example of the difference extraction section and the output control section shown in FIG. 1.
  • FIG. 9 is a diagram for explaining an example of an input signal and an output signal of the output control circuit shown in FIG. 8.
  • FIG. 10 is a diagram for explaining another example of the input signal and output signal of the output control circuit shown in FIG. 8.
  • FIG. 1 is a diagram schematically showing a configuration example of a battery module according to an embodiment.
  • the battery module MDL of this embodiment includes a battery pack BT and a battery monitoring circuit (CMU: Cell monitoring unit) 100.
  • CMU Battery monitoring circuit
  • the assembled battery BT includes a plurality of battery cells C 1 to C n connected in series.
  • the battery cells C 1 to C n are, for example, lithium ion batteries.
  • the battery cells C 1 to C n are not limited to lithium ion batteries, and may be other storage batteries such as nickel metal hydride batteries or lead batteries.
  • the battery monitoring circuit 100 includes a cell balance circuit 10 and a balancer control circuit 20.
  • the cell balance circuit 10 is capable of discharging the plurality of battery cells C 1 to C n individually.
  • the cell balance circuit 10 includes a plurality of discharge switches S 1 to S n .
  • Each of the plurality of discharge switches S 1 to S n is provided in a path that electrically connects the positive terminal and negative terminal of the corresponding battery cell C 1 to C n via a resistor. For example, when the discharge switch S1 is turned on, the positive terminal and negative terminal of the battery cell C1 are electrically connected via a resistor, and the energy stored in the battery cell C1 is discharged.
  • the operation of the discharge switches S 1 to S n is controlled by a control signal from the balancer control circuit 20.
  • the balancer control circuit 20 is a circuit that controls the operation of the cell balance circuit 10.
  • the balancer control circuit 20 includes a plurality of output circuits 21 1 to 21 n , a cell voltage detection section 22, a voltage comparison section 23, a difference extraction section 24, an output control section 25, and a timer circuit 26.
  • the timer circuit 26 includes timer circuits 261, 262, and 263, which will be described later.
  • the plurality of output circuits 21 1 to 21 n are circuits that output control signals to the plurality of discharge switches S 1 to S n .
  • the balancer control circuit 20 includes a plurality of output circuits 21 1 to 21 n that output control signals to each of the plurality of discharge switches S 1 to S n .
  • the cell voltage detection unit 22 is a detection circuit that detects the voltage value (or voltage equivalent value) of each of the plurality of battery cells C 1 to C n .
  • the cell voltage detection unit 22 includes a differential amplifier (not shown) that converts the voltage of each of the plurality of battery cells C 1 to C n connected in series to a value based on a ground potential (GND). .
  • the differential amplifier includes, for example, a plurality of (n) operational amplifiers. The value of the positive terminal voltage of the corresponding battery cells C 1 to C n and the negative value of the negative terminal voltage are input to the operational amplifier.
  • the operational amplifier outputs a value (cell voltage equivalent value Cell( 1 ) to Cell(n)) obtained by amplifying the difference obtained by subtracting the negative terminal voltage from the positive terminal voltage of the corresponding battery cells C 1 to C n .
  • the voltage comparison unit 23 compares the plurality of cell voltage equivalent values Cell(1) to Cell(n) supplied from the cell voltage detection unit 22, and selects the one with the highest voltage among the plurality of battery cells C 1 to C n . A battery cell and a battery cell with the lowest voltage are selected.
  • the voltage comparison section 23 includes a voltage comparison circuit 231, registers 232C and 232R, selection circuits 233C and 233R, and a diagnostic circuit 234.
  • the voltage comparison circuit 231 is a circuit that compares cell voltage equivalent values Cell(1) to Cell(n) of the plurality of battery cells C 1 to C n .
  • the voltage comparison circuit 231 outputs the results of comparing each of the cell voltage equivalent values Cell(1) to Cell(n) with all other cell voltage equivalent values Cell(1) to Cell(n). That is, the voltage comparison circuit 231 outputs the result of comparing the cell voltage equivalent value Cell(1) with all other cell voltage equivalent values Cell(2) to Cell(n), and outputs the result of comparing the cell voltage equivalent value Cell(2). ) for all other cell voltage equivalent values Cell(1), Cell(3) to Cell(n), ..., for the cell voltage equivalent value Cell(n), for all other cells
  • the results of comparison with the voltage equivalent values Cell(1) to Cell(n-1) can be output.
  • FIG. 2 is a diagram schematically showing a configuration example of the voltage comparison circuit shown in FIG. 1. Note that the arrangement positions of the elements included in the circuit in FIG. 2 are merely examples, and any circuit that does not change the electrical connection state of the circuit can be applied to the battery module MDL of this embodiment.
  • the voltage comparison circuit 231 includes a plurality of first input wirings Wi1, a plurality of second input wirings Wi2, a plurality of first output wirings Wo1, a plurality of second output wirings Wo2, and a plurality of voltage comparators COM. We are prepared.
  • the plurality of first input wirings Wi1 are wirings that supply cell voltage equivalent values Cell(A) to Cell(E) of the plurality of battery cells C A to C E to the input terminal of the voltage comparator COM.
  • Each first input wiring Wi1 extends parallel to the first direction D1, and the plurality of first input wirings Wi1 are arranged at intervals along a second direction D2 that intersects the first direction D1.
  • the plurality of second input wirings Wi2 are wirings that supply the cell voltage equivalent values Cell(A) to Cell(E) of the plurality of battery cells C A to C E to the negative input terminal of the voltage comparator COM.
  • Each of the second input wirings Wi2 extends parallel to the second direction D2, and the plurality of second input wirings Wi2 are arranged at intervals along the first direction D1.
  • the plurality of voltage comparators COM compare cell voltage equivalent values Cell(A) to Cell(E) of different battery cells C A to C E and output the difference.
  • Each of the plurality of voltage comparators COM includes an input terminal, a negative input terminal, and an output terminal.
  • Cell voltage equivalent values Cell(A) to Cell(E) (first voltage values) are inputted to the input terminal of the voltage comparator COM from the first input wiring Wi1.
  • the cell voltage equivalent values Cell(A) to Cell(E) (second voltage value) are input from the second input wiring Wi2 to the negative input terminal of the voltage comparator COM.
  • the voltage comparator COM calculates the cell voltage equivalent value input from the second input wiring Wi2 to the negative input terminal from the cell voltage equivalent values Cell(A) to Cell(E) supplied to the input terminal from the first input wiring Wi1. The difference obtained by subtracting Cell (A) to Cell (E) is output from the output terminal.
  • the plurality of voltage comparators COM are arranged near the position where the first input wiring Wi1 and the second input wiring Wi2, which supply mutually different cell voltage equivalent values Cell(A) to Cell(E), intersect.
  • a plurality of voltage comparators COM to which common cell voltage equivalent values Cell(A) to Cell(E) are inputted to input terminals are connected to a plurality of voltage comparators COM which supply the common cell voltage equivalent values Cell(A) to Cell(E). They are arranged in line along the 1-input wiring Wi1.
  • a plurality of voltage comparators COM to which common cell voltage equivalent values Cell(A) to Cell(E) are input to negative input terminals supply the common cell voltage equivalent values Cell(A) to Cell(E). They are arranged side by side along the second input wiring Wi2.
  • a plurality of voltage comparators COM to which a common cell voltage equivalent value Cell(A) is inputted to their input terminals are arranged side by side along the first input wiring Wi1 that supplies the cell voltage equivalent value Cell(A).
  • a plurality of second input wirings Wi2 supplying cell voltage equivalent values Cell(B) to Cell(E) intersect with the first input wiring Wi1 supplying cell voltage equivalent value Cell(A). each is placed.
  • a plurality of voltage comparators COM to which a common cell voltage equivalent value Cell(B) is input to their negative input terminals are arranged side by side along the second input wiring Wi2 that supplies the cell voltage equivalent value Cell(B).
  • a plurality of first input wirings Wi1 supplying cell voltage equivalent values Cell(A), Cell(C) to Cell(E) and a second input wiring Wi2 supplying cell voltage equivalent value Cell(B). are placed near the intersections of the two.
  • Each of the plurality of first output wirings Wo1 supplies the output value of the plurality of voltage comparators COM lined up along each of the plurality of first input wirings Wi1 to the register 232C.
  • the output values of the plurality of voltage comparators COM lined up along the first input wiring Wi1 that supplies the cell voltage equivalent value Cell(B) are supplied to the register 232C through a common first output wiring Wo1.
  • the first output wiring Wo1 may include a plurality of wirings that supply each of cell voltage equivalent value differences BA, BC, BD, and BE to the register 232C.
  • one of the plurality of first output wirings Wo1 changes from, for example, the cell voltage equivalent value Cell(B) supplied to the first input wiring Wi1 to the cell voltage equivalent value Cell(B) supplied to the second input wiring Wi2.
  • Each of the plurality of second output wirings Wo2 supplies the output value of the plurality of voltage comparators COM lined up along each of the plurality of second input wirings Wi2 to the register 232R.
  • the output values of the plurality of voltage comparators COM lined up along the second input wiring Wi2 that supplies the cell voltage equivalent value Cell (C) are supplied to the register 232R through a common second output wiring Wo2.
  • the second output wiring Wo2 may include a plurality of wirings that supply each of the cell voltage equivalent value differences AC, BC, DC, and EC to the register 232R.
  • one of the plurality of second output wirings Wo2 is selected from the cell voltage equivalent values Cell(A), Cell(B), Cell(D), and Cell(E) supplied to the first input wiring Wi1, for example.
  • the wiring outputs a plurality of differences obtained by subtracting a common cell voltage equivalent value from each of the plurality of cell voltage equivalent values.
  • the register 232C temporarily holds the values supplied from the plurality of first output wirings Wo1.
  • the value held in register 232C is supplied to selection circuit 233C.
  • the value held in the register 232C is updated at the timing when the signal ⁇ 1 is supplied from the timer circuit 262.
  • the register 232R temporarily holds the values supplied from the plurality of second output wirings Wo2.
  • the value held in the register 232R is supplied to the selection circuit 233R.
  • the value held in the register 232R is updated at the timing when the signal ⁇ 1 is supplied from the timer circuit 261.
  • the timer circuit 261 and the timer circuit 262 are circuits that output the signal ⁇ 1 at a common timing, and may be integrally configured.
  • FIG. 3 is a diagram schematically showing a configuration example of the selection circuit shown in FIG. 1.
  • the selection circuit (first selection circuit) 233C selects the battery cell with the highest voltage among the battery cells C A to C E based on the plurality of differences supplied from each of the plurality of first output wirings Wo1. This circuit identifies the battery cell with the minimum value.
  • the selection circuit 233C includes a plurality of maximum value selection circuits CA1 to CE1 and a plurality of minimum value selection circuits CA2 to CE2.
  • Values (AB, AC, AD, AE) from the common first output wiring Wo1 are supplied to the maximum value selection circuit CA1 and the minimum value selection circuit CA2 via the register 232C. be done.
  • Values (BA, BC, BD, BE) from the common first output wiring Wo1 are supplied to the maximum value selection circuit CB1 and the minimum value selection circuit CB2 via the register 232C. be done.
  • Values (CA, CB, CD, CE) from the common first output wiring Wo1 are supplied to the maximum value selection circuit CC1 and the minimum value selection circuit CC2 via the register 232C. be done.
  • Values (DA, DB, DC, DE) from the common first output wiring Wo1 are supplied to the maximum value selection circuit CD1 and the minimum value selection circuit CD2 via the register 232C. be done.
  • Values (EA, EB, EC, ED) from the common first output wiring Wo1 are supplied to the maximum value selection circuit CE1 and the minimum value selection circuit CE2 via the register 232C. be done.
  • the maximum value selection circuit and the minimum value selection circuit to which a value is supplied from the common first output wiring Wo1 via the register 232C correspond to a common battery cell.
  • the value obtained by subtracting other cell voltage equivalent values Cell (A), Cell (B), Cell (D), Cell (E) from the voltage equivalent value Cell (C) (C-A, CB, C- D, C-E) is common to the maximum value selection circuit CC1 and the minimum value selection circuit CC2, and the maximum value selection circuit CC1 and the minimum value selection circuit CC2 are connected to a common battery cell.
  • CC Compatible with CC .
  • Each of the plurality of maximum value selection circuits CA1 to CE1 is provided corresponding to each of the plurality of battery cells C A to C E , and selects cell voltage equivalent values Cell(A) to Cell of the corresponding battery cells C A to C E.
  • (E) is the maximum value
  • a high (H) level value is output.
  • Each of the plurality of maximum value selection circuits CA1 to CE1 includes an AND circuit with (n-1) inputs. A value supplied from the corresponding first output wiring Wo1 to the register 232C and held in the register 232C is input to each of the plurality of maximum value selection circuits CA1 to CE1. Each of the maximum value selection circuits CA1 to CE1 has an output value of 1 (H level) when all input values are positive (H level).
  • the cell voltage equivalent value Cell(A) is larger (maximum value) than other cell voltage equivalent values Cell(B) to Cell(E)
  • the cell voltage equivalent value is input to the maximum value selection circuit CA1.
  • the differences AB, AC, AD, and AE are all positive (H level), and the output value of the maximum value selection circuit CA1 becomes 1 (H level).
  • the cell voltage equivalent value Cell(A) is not the maximum value
  • at least one of the cell voltage equivalent value differences AB, AC, AD, and AE input to the maximum value selection circuit CA1. is negative (L level), and the output value of the maximum value selection circuit CA1 becomes 0 (L level).
  • Each of the plurality of minimum value selection circuits CA2 to CE2 is provided corresponding to each of the plurality of battery cells C A to C E , and selects cell voltage equivalent values Cell(A) to Cell of the corresponding battery cells C A to C E.
  • (E) is the minimum value
  • a high (H) level value is output.
  • Each of the plurality of minimum value selection circuits CA2 to CE2 includes an (n-1) NOT circuit and an (n-1) input AND circuit into which the output value of the NOT circuit is input.
  • a value supplied from the corresponding first output wiring Wo1 to the register 232C and held in the register 232C is input to each of the minimum value selection circuits CA2 to CE2.
  • Each of the minimum value selection circuits CA2 to CE2 has an output value of 1 (H level) when all input values are negative (L level).
  • the cell voltage equivalent value Cell (B) is smaller (minimum value) than other cell voltage equivalent values Cell (A), Cell (C) to Cell (E), the cell voltage equivalent value Cell (B) is input to the minimum value selection circuit CB2.
  • the differences BA, BC, BD, and BE in the cell voltage equivalent values are all negative (L level), and the output value of the minimum value selection circuit CB2 becomes 1 (H level).
  • at least one of the cell voltage equivalent value differences BA, BC, BD, and BE input to the minimum value selection circuit CB2. is positive (H level), and the output value of the minimum value selection circuit CB2 becomes 0 (L level).
  • the value is supplied to the diagnostic circuit 234 and the difference extractor 24.
  • FIG. 4 is a diagram schematically showing a configuration example of the selection circuit shown in FIG. 1.
  • the selection circuit (second selection circuit) 233R selects the battery cell with the highest voltage among the battery cells C A to C E based on the plurality of differences supplied from each of the plurality of second output wirings Wo2. This circuit identifies the battery cell with the minimum value.
  • the selection circuit 233R includes a plurality of maximum value selection circuits RA1 to RE1 and a plurality of minimum value selection circuits RA2 to RE2.
  • Values (BA, CA, DA, EA) from the common second output wiring Wo2 are supplied to the maximum value selection circuit RA1 and the minimum value selection circuit RA2 via the register 232R. be done.
  • Values (AB, CB, DB, EB) from the common second output wiring Wo2 are supplied to the maximum value selection circuit RB1 and the minimum value selection circuit RB2 via the register 232R. be done.
  • Values (AC, BC, DC, EC) from the common second output wiring Wo2 are supplied to the maximum value selection circuit RC1 and the minimum value selection circuit RC2 via the register 232R. be done.
  • Values (A-D, BD, CD, ED) from the common first output wiring Wo2 are supplied to the maximum value selection circuit RD1 and the minimum value selection circuit RD2 via the register 232R. be done.
  • Values (AE, BE, CE, DE) from the common second output wiring Wo2 are supplied to the maximum value selection circuit RE1 and the minimum value selection circuit RE2 via the register 232R. be done.
  • the maximum value selection circuit and the minimum value selection circuit to which the value from the common second output wiring Wo2 is supplied via the register 232R correspond to a common battery cell.
  • the value (A-C, B -C, DC, E-C) is common to the maximum value selection circuit RC1 and the minimum value selection circuit RC2, and is common to the maximum value selection circuit RC1 and the minimum value selection circuit RC2. corresponds to the common battery cell CC .
  • Each of the plurality of maximum value selection circuits RA1 to RE1 is provided corresponding to each of the plurality of battery cells C A to C E , and selects cell voltage equivalent values Cell(A) to Cell of the corresponding battery cells C A to C E.
  • (E) is the maximum value
  • a high (H) level value is output.
  • Each of the plurality of maximum value selection circuits RA1 to RE1 includes an (n-1) NOT circuit and an (n-1) input AND circuit into which the output value of the NOT circuit is input.
  • a value supplied from the corresponding second output wiring Wo2 to the register 232R and held in the register 232R is input to each of the plurality of maximum value selection circuits RA1 to RE1.
  • Each of the maximum value selection circuits RA1 to RE1 has an output value of 1 (H level) when all input values are negative (L level).
  • the cell voltage equivalent value Cell(A) is larger (maximum value) than other cell voltage equivalent values Cell(B) to Cell(E)
  • the cell voltage equivalent value is input to the maximum value selection circuit RA1.
  • the differences BA, CA, DA, and EA are all negative (L level), and the output value of the maximum value selection circuit RA1 becomes 1 (H level).
  • at least one of the cell voltage equivalent value differences BA, CA, DA, and EA input to the maximum value selection circuit RA1. is positive (H level), and the output value of the maximum value selection circuit CA1 becomes 0 (L level).
  • Each of the plurality of minimum value selection circuits RA2 to RE2 is provided corresponding to each of the plurality of battery cells C A to C E , and selects cell voltage equivalent values Cell(A) to Cell of the corresponding battery cells C A to C E.
  • (E) is the minimum value
  • a high (H) level value is output.
  • Each of the plurality of minimum value selection circuits RA2 to RE2 includes an AND circuit with (n-1) inputs. A value supplied from the corresponding second output wiring Wo2 to the register 232R and held in the register 232R is input to each of the minimum value selection circuits RA2 to RE2. Each of the minimum value selection circuits RA2 to RE2 has an output value of 1 (H level) when all input values are positive (H level).
  • the cell voltage equivalent value Cell (B) is smaller (minimum value) than other cell voltage equivalent values Cell (A), Cell (C) to Cell (E), the cell voltage equivalent value Cell (B) is input to the minimum value selection circuit RB2.
  • the differences AB, CB, DB, and EB in the cell voltage equivalent values are all positive (H level), and the output value of the minimum value selection circuit RB2 becomes 1 (H level).
  • at least one of the cell voltage equivalent value differences AB, CB, DB, and EB input to the minimum value selection circuit RB2. is negative (L level), and the output value of the minimum value selection circuit CB2 becomes 0 (L level).
  • the value is supplied to the diagnostic circuit 234 and the difference extractor 24.
  • FIG. 5 is a diagram schematically showing a configuration example of the diagnostic circuit shown in FIG. 1.
  • the diagnostic circuit 234 includes a selection circuit output diagnostic section C1 and a voltage comparison circuit output diagnostic section C2.
  • the selection circuit output diagnosis section C1 includes a negative exclusive OR circuit EQ and AND circuits A1 and A2.
  • each of the output signals MAX(C)A to MAX(C)E of the selection circuit 233C and the output signals MAX(R)A to MAX(R)E of the selection circuit 233R are the same.
  • high (H) level signals MAX(x)A to MAX(x)E are output.
  • the corresponding output signals MAX(C)A to MAX(C)E of the selection circuit 233C and the output signals MAX(R)A to MAX(R)E of the selection circuit 233R have different values.
  • the output values MIN(R)A to MIN(R)E of the selection circuit 233C are the same as the output values MIN(R)A to MIN(R)E of the selection circuit 233R.
  • high (H) level signals MIN(x)A to MIN(x)E are output.
  • the corresponding output values MIN(C)A to MIN(C)E of the selection circuit 233C and the output values MIN(R)A to MIN(R)E of the selection circuit 233R have different values.
  • the values of the corresponding output signals MIN(x)A to MIN(x)E of the negative exclusive OR circuit EQ become low (L) level.
  • Output signals MIN(x)A to MIN(x)E of the negative exclusive OR circuit EQ are input to the AND circuit A2.
  • the AND circuit A1 outputs the AND value of the input signals MAX(x)A to MAX(x)E as an output signal MAX_Enable.
  • the AND circuit A2 outputs the AND value of the input signals MIN(x)A to MIN(x)E as an output signal MIN_Enable.
  • FIG. 6 is a diagram for explaining an example of the operation of the selection circuit output diagnosis section of the diagnosis circuit shown in FIG. 5.
  • the voltage comparison circuit 231 is arranged so that the values supplied to the register 232C by each first output wiring Wo1 are arranged in the row direction, and the values supplied to the register 232R by each second output wiring Wo2 are arranged in the column direction. Output values (difference values between cell voltage equivalent values) are written in a matrix.
  • the battery cell corresponding to the first output wiring Wo1 whose output values are all high (H) level is set as the battery cell with the maximum voltage, and the battery cell corresponding to the first output wiring Wo1 whose output values are all low (L) level is selected.
  • Signals MAX(C)A to MAX(C)E and signals MIN(C)A to MIN(C)E are outputted as the battery cell corresponding to the battery cell having the lowest voltage.
  • the battery cells corresponding to the first output wiring Wo1 whose output values are all low (L) level are the battery cells with the maximum voltage, and the battery cells corresponding to the first output wiring Wo1 whose output values are all high (H) level
  • Signals MAX(R)A to MAX(R)E and signals MIN(R)A to MIN(R)E are outputted as the battery cell corresponding to the battery cell having the lowest voltage.
  • the selection circuit output diagnosis section C1 compares the output value of the selection circuit 233C and the output value of the selection circuit 233R, and determines the possibility that there is an abnormality in the voltage comparison circuit 231, the registers 232C, 232R, or the selection circuits 233C, 233R. Diagnose.
  • the output signal MAX_Enable of the AND circuit A1 becomes a low (L) level when the battery cell with the maximum voltage selected by the selection circuit 233C and the battery cell with the maximum voltage selected by the selection circuit 233R are different. Become.
  • the selection circuits 233C, 233R and the circuits in the preceding stages are operating normally, and the values output by the selection circuits 233C, 233R can be trusted.
  • the output signal MAX_Enable is at low (L) level, the voltage comparison circuit 231, registers 232C, 232R, and selection circuits 233C, 233R may not be operating normally, and the values output by the selection circuits 233C, 233R This results in low reliability.
  • the output signal MIN_Enable of the AND circuit A2 becomes low (L) when, for example, the battery cell with the minimum voltage selected by the selection circuit 233C and the battery cell with the minimum voltage selected by the selection circuit 233R are different. level.
  • the selection circuits 233C and 233R and the circuits in the preceding stages are operating normally, and the values output by the selection circuits 233C and 233R can be trusted.
  • the output signal MIN_Enable is at low (L) level
  • the voltage comparator circuit 231, the registers 232C, 232R, and the selection circuits 233C, 233R may not be operating normally, and the values output by the selection circuits 233C, 233R This results in low reliability.
  • the output signals MAX_Enable and MIN_Enable of the selection circuit output diagnosis section C1 are supplied to the output control circuit 252 of the output control section 25.
  • the voltage comparison circuit output diagnosis section C2 includes a plurality of exclusive OR circuits EX1 and EX2, and a plurality of AND circuits A3, A4, and A5.
  • the values held in the register 232C are supplied to the plurality of exclusive OR circuits EX1.
  • a difference value calculated from two cell voltage equivalent values is input to each exclusive OR circuit EX1.
  • the voltage comparison circuit output diagnosis section C2 includes an exclusive OR circuit EX1 for each combination of two cell voltage equivalent values.
  • FIG. 5 illustrates an exclusive OR circuit EX1 to which the values of differences AB and BA calculated from the cell voltage equivalent value Cell (A) and the cell voltage equivalent value (B) are input. are doing.
  • FIG. 7 is a diagram for explaining an example of the operation of the voltage comparison circuit output diagnostic section of the diagnostic circuit shown in FIG. 5.
  • the exclusive OR circuit EX1 outputs a high (H) level output signal C_check when the input two values are at different levels, and outputs a low (L) level output signal C_check when the input two values are at the same level. outputs an output signal C_check.
  • the output signal C_check of the plurality of exclusive OR circuits EX1 is input to the AND circuit A3.
  • the values held in the register 232R are supplied to the plurality of exclusive OR circuits EX2.
  • a difference value calculated from two cell voltage equivalent values is input to each exclusive OR circuit EX2.
  • the voltage comparison circuit output diagnosis section C2 includes an exclusive OR circuit EX2 for each combination of two cell voltage equivalent values.
  • FIG. 5 illustrates an exclusive OR circuit EX2 to which the values of differences AB and BA calculated from the cell voltage equivalent value Cell (A) and the cell voltage equivalent value (B) are input. are doing.
  • the exclusive OR circuit EX2 outputs a high (H) level output signal R_check when the input two values are at different levels, and outputs a low (L) level output signal when the input two values are at the same level. output signal R_check.
  • the output signal R_check of the plurality of exclusive OR circuits EX2 is input to the AND circuit A4.
  • the AND circuit A3 supplies the AND circuit A5 with the AND of the values of the signals C_check supplied from the plurality of exclusive OR circuits EX1.
  • the AND circuit A4 supplies the AND circuit A5 with the AND of the values of the signal R_check supplied from the plurality of exclusive OR circuits EX2.
  • the AND circuit A5 outputs the value of the AND of the output value of the AND circuit A3 and the output value of the AND circuit A4 as the value of the signal CR_check.
  • each exclusive OR circuit EX1 when the signs of the binary values input to each exclusive OR circuit EX1 are different (including H level and L level), the signs of the binary values input to each exclusive OR circuit EX2 are different (H level and L level are included). In at least one of the following cases, the value of the output signal CR_check of the AND circuit A5 becomes high (H) level.
  • the signs of the binary values input to each exclusive OR circuit EX1, EX2 are sure to match. No (unless the voltages of the two battery cells are equal). Therefore, when the value of the output signal CR_check of the AND circuit A5 is at a high (H) level, it means that the voltage comparison circuit 231 and the registers 232C and 232R are operating normally. In this case, the selection result of the battery cell with the maximum voltage or the battery cell with the minimum voltage based on the output value of the voltage comparison circuit 231 is reliable.
  • the output signal CR_check of the AND circuit A5 is at a low (L) level
  • the two values input to at least one of the plurality of exclusive OR circuits EX1 and EX2 are at the same level.
  • the voltage comparison circuit 231 and the registers 232C and 232R are not operating normally. In this case, the reliability of the selection result of the battery cell with the maximum voltage or the battery cell with the minimum voltage based on the output value of the voltage comparison circuit 231 is low.
  • the output signal CR_check of the voltage comparison circuit output diagnosis section C2 is supplied to the output control circuit 252 of the output control section 25.
  • FIG. 8 is a diagram schematically showing a configuration example of the difference extraction section and the output control section shown in FIG. 1.
  • the difference extractor 24 includes multiplexers 241 and 242 and a differential amplifier 243.
  • the multiplexer 241 includes multiple switching elements.
  • the voltage equivalent value of the corresponding battery cell is input to the input terminals of the plurality of switching elements.
  • Output terminals of the plurality of switching elements are electrically connected to input terminals of the differential amplifier 243.
  • Signals MAX(C)A to MAX(C)E or signals MAX(R)A to MAX(R)E corresponding to each are input to the control terminals of the plurality of switching elements.
  • the input terminal and output terminal of the switching element of the multiplexer 241 are electrically connected when a high (H) level signal is input to the control terminal. Therefore, the multiplexer 241 supplies the voltage equivalent value of the battery cell having the maximum voltage to the input terminal of the differential amplifier 243.
  • the multiplexer 242 includes multiple switching elements.
  • the voltage equivalent value of the corresponding battery cell is input to the input terminals of the plurality of switching elements.
  • the output terminals of the plurality of switching elements are electrically connected to the negative input terminal of the differential amplifier 243.
  • Signals MIN(C)A to MIN(C)E or signals MIN(R)A to MIN(R)E corresponding to each of the switching elements are input to control terminals of the plurality of switching elements.
  • the input terminal and output terminal of the switching element of the multiplexer 242 are electrically connected when a high (H) level signal is input to the control terminal. Therefore, the multiplexer 242 supplies the voltage equivalent value of the battery cell having the minimum voltage to the negative input terminal of the differential amplifier 243.
  • the differential amplifier 243 outputs an amplified value of the difference obtained by subtracting the value input to the negative input terminal from the value input to the input terminal. That is, the differential amplifier 243 outputs an amplified value (voltage difference ⁇ V) of the difference obtained by subtracting the voltage equivalent value of the battery cell with the minimum voltage from the voltage equivalent value of the battery cell with the maximum voltage.
  • the output of the differential amplifier 243 is input to the output control section 25.
  • the output control section 25 includes a comparator 251, an output control circuit 252, and an enable signal output section 253 (shown in FIG. 1).
  • the comparator 251 outputs a value dV_Enable obtained by subtracting the threshold value Vref from the voltage difference ⁇ V output from the differential amplifier 243.
  • the output signal dV_Enable becomes positive (high level), and cell balance control is executed at this time.
  • the output signal dV_Enable becomes negative (low level), and at this time, cell balance control is stopped.
  • the threshold value Vref is, for example, 10 mV.
  • the enable signal output section 253 generates and outputs enable signals (or disable signals) other than the output signal dV_Enable of the comparator 251 and the output signals MAX_Enable and MIN_Enable of the selection circuit output diagnosis section C1.
  • the enable signal (or disable signal) output from the enable signal output section 253 is supplied to the output control circuit 252.
  • the enable signal output unit 253 outputs, for example, the temperature of the plurality of battery cells (or the assembled battery BT), the current flowing through the assembled battery BT, the voltage of the assembled battery BT (or the plurality of battery cells), and the temperature of the assembled battery BT (or the assembled battery BT). At least one value of the remaining capacity of the battery cell) is acquired, and an enable signal (or disable signal) is generated.
  • the temperature value of the plurality of battery cells or assembled battery BT may be the temperature near (surrounding) any battery cell or assembled battery BT, and may be the temperature value obtained at multiple locations of the plurality of battery cells or the vicinity thereof. An average value or median value of a plurality of temperature values may be used.
  • the enable signal output unit 253 performs cell balance control when the temperature of a plurality of battery cells is higher than a predetermined temperature, lower than a predetermined temperature, or within a predetermined temperature range.
  • An enable signal (or a disable signal to stop cell balance control) for executing (starting) cell balance control is generated and output.
  • the enable signal output unit 253 outputs the signal when the current (charging current or discharging current) flowing through the assembled battery BT is larger than a predetermined current, smaller than a predetermined current, or included in a predetermined current range.
  • an enable signal for executing (starting) cell balance control (or a disable signal for stopping cell balance control) is generated and output.
  • the enable signal output unit 253 outputs the signal when the voltage of the assembled battery BT (or a plurality of battery cells) is larger than a predetermined voltage, smaller than a predetermined voltage, or included in a predetermined voltage range.
  • an enable signal for executing (starting) cell balance control (or a disable signal for stopping cell balance control) is generated and output.
  • the enable signal output unit 253 outputs a signal when the remaining capacity of the assembled battery BT (or a plurality of battery cells) is greater than a predetermined capacity, less than a predetermined capacity, or is within a predetermined capacity range.
  • an enable signal for executing (starting) cell balance control (or a disable signal for stopping cell balance control) is generated and output.
  • the output control circuit 252 outputs the output signal dV_Enable of the comparator 251, the output signals MAX_Enable and MIN_Enable of the selection circuit output diagnostic section C1, the output signal of the enable signal output section 253, and the output signal MAX(R)A ⁇ of the register 232R.
  • the timer circuit 263 outputs a high level signal ⁇ 2 to the output control circuit 252 during the period when the cell balance circuit 10 is operating, and outputs a low level signal ⁇ 2 to the output control circuit 252 during the period when the cell balance circuit 10 is inactive. Output.
  • the timer circuit 263 can ensure the accuracy of the measured voltage by stopping the cell balance circuit 10 during a period when the voltages of a plurality of battery cells are being measured.
  • the output control circuit 252 outputs output signals MAX(R)A to E, MIN(R)A to E of the register 232R, and output signals MAX(C)A to E, MIN(C)A to E of the register 232C. It is only necessary to obtain at least one of the following, and there is no need to obtain the output values of both the register 232R and the register 232C.
  • the signal acquired by the output control circuit 252 has a value based on the ground potential, but the output control circuit 252 outputs an output signal CB_MAX (or output signal CB_MIN) based on the negative electrode potential of each of the plurality of battery cells. Output to 21 1 to 21 n .
  • the output control circuit 252 determines that all the acquired enable signals are high level (positive) (or all the disable signals are negative), and the output signal CR_check of the voltage comparison circuit output diagnosis section C2 is high ( H) level, during which the cell balance circuit 10 operates as set by the timer circuit 263 (output signal ⁇ 2 is at a high level), at least the battery cell with the highest voltage is discharged.
  • a control signal CB_Max is output to the cell balance circuit 10.
  • FIG. 9 is a diagram for explaining an example of an input signal and an output signal of the output control circuit shown in FIG. 8.
  • the enable signal (or disable signal) input from the enable signal output section 253 to the output control circuit 252 the output signal CR_check of the voltage comparison circuit output diagnosis section C2, and the output signal MIN(R)A of the register 232R -E and the values of the output signals MIN(C)A to E of the register 232C are omitted.
  • the output control circuit 252 outputs a control signal CB_Max for forcibly discharging the battery cell with the highest voltage to the cell balance circuit 10.
  • the output control circuit 252 When the output signal ⁇ 2 of the timer circuit 263 is at a low (L) level, the output control circuit 252 outputs an output signal CB_Max that turns off all discharge switches S 1 to S n regardless of the values of other input signals. However, do not discharge all battery cells. Further, when the output signal ⁇ 2 of the timer circuit 263 is at a high (H) level, the output control circuit 252 outputs the value of at least one of the enable signals dV_Enable, MAX_Enable, MIN_Enable and the output signal CR_check of the voltage comparison circuit output diagnostic section C2. When is at a low (L) level, an output signal CB_Max that turns off all discharge switches S 1 to S n is output, and all battery cells are not discharged.
  • the output control circuit 252 outputs the output signal MAX of the register 232R when the output signal ⁇ 2 of the timer circuit 263 is at a high (H) level and the values of enable signals dV_Enable, MAX_Enable, and MIN_Enable are all at a high (H) level. Based on the values of (R)A to E or the output signals MAX(C)A to E of the register 232C, a signal CB_Max for discharging the battery cell with the maximum voltage is output.
  • the output control circuit 252 only needs to acquire at least one of the output signals MAX(R)A to E of the register 232R and the output signals MAX(C)A to E of the register 232C. It is not necessary to obtain the output values of both H.232C and H.232C.
  • the output control circuit 252 may output the control signal CB_Min to the cell balance circuit 10 so as to discharge all battery cells other than the battery cell with the lowest voltage.
  • FIG. 10 is a diagram for explaining another example of the input signal and output signal of the output control circuit shown in FIG. 8. Note that here, the enable signal (or disable signal) input from the enable signal output unit 253 to the output control circuit 252, the output signal CR_check of the voltage comparison circuit output diagnosis unit C2, and the output signal MAX(R)A of the register 232R -E and the values of the output signals MAX(C)A to E of the register 232C are omitted.
  • the output control circuit 252 outputs to the cell balance circuit 10 a control signal CB_Min for forcibly discharging all battery cells other than the battery cell with the minimum voltage.
  • the output control circuit 252 When the output signal ⁇ 2 of the timer circuit 263 is at a low (L) level, the output control circuit 252 outputs an output signal CB_Max that turns off all discharge switches S 1 to S n regardless of the values of other input signals. However, do not discharge all battery cells. Further, when the output signal ⁇ 2 of the timer circuit 263 is at a high (H) level, the output control circuit 252 outputs the value of at least one of the enable signals dV_Enable, MAX_Enable, MIN_Enable and the output signal CR_check of the voltage comparison circuit output diagnostic section C2. When is at a low (L) level, an output signal CB_Max that turns off all discharge switches S 1 to S n is output, and all battery cells are not discharged.
  • the output control circuit 252 outputs the output signal MIN of the register 232R when the output signal ⁇ 2 of the timer circuit 263 is at a high (H) level and all the values of enable signals dV_Enable, MAX_Enable, and MIN_Enable are at a high (H) level. Based on the values of (R)A to E or the output signals MIN(C)A to E of the register 232C, a signal CB_Min is output that discharges all battery cells other than the battery cell with the minimum voltage.
  • the output control circuit 252 only needs to acquire at least one of the output signals MIN(R)A to E of the register 232R and the output signals MIN(C)A to E of the register 232C. It is not necessary to obtain the output values of both H.232C and H.232C.
  • the cell balance circuit 10 can be controlled by the control signal CB_Max or the control signal CB_Min generated as described above, and highly reliable cell balance control can be realized.
  • the battery module MDL of this embodiment performs cell balance control using only hardware, it is possible to realize cell balance control at low cost, and there is no sequential operation like when executing a program, so it operates at high speed.
  • the circuit can be realized.
  • the cell voltage (or The reliability is determined by comparing the vertical axis (the value held in the register 232R) and the horizontal axis (the value held in the register 232C), which are the results of the voltage comparison matrix.
  • This enables high cell balance control.
  • the balancer control circuit 20 when the balancer control circuit 20 is operating normally, the results are not necessarily equal except in the case of zero (for example, the difference between cell voltage equivalent values A-B and B).
  • -A) enables highly reliable cell balance control by diagnosing the circuit. According to the present embodiment, by performing appropriate cell balance control as described above, it is possible to secure the charge/discharge capacity of the battery module MDL and provide a battery module in which the reliability of the cell balance control is ensured.
  • the diagnostic circuit 234 performs diagnosis using the output values of the selection circuits 233C and 233R and diagnosis using the output values of the registers 232C and 232R. does not need to perform both of these diagnoses. Even when the diagnostic circuit 234 performs diagnosis using the output values of the selection circuits 233C and 233R and diagnosis using the output values of the registers 232C and 232R, it can achieve the same effect as the above embodiment. Obtainable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

実施形態による電池モジュールは、セルバランス回路と、複数の電池セル電圧が供給される複数の第1入力配線および複数の第2入力配線と、第1入力配線に供給された電池セル電圧から、第2入力配線に供給された他の電池セル電圧を引いた値を出力する配線であって、共通の電池セル電圧から他の複数の電池セル電圧の各々を引いた複数の差を出力する複数の第1出力配線および複数の電池セル電圧の各々から共通の他の電池セル電圧を引いた複数の差を出力する複数の第2出力配線と、を含む電圧比較回路と、複数の第1出力配線の各々から供給された複数の差に基づいて特定された最大電圧の電池セル又は最小電圧の電池セルと、複数の第2出力配線の各々から供給された複数の差に基づいて特定された最大電圧の電池セル又は最小電圧の電池セルとが異なるときに、セルバランス回路による放電を停止する出力制御回路と、を備える。

Description

電池モジュール
 本発明の実施形態は、電池モジュールに関する。
 直列に接続された複数の電池セルを含む組電池を備えた電池モジュールでは、個々の電池セルの容量やリーク電流などのばらつきにより、複数の電池セルの電圧のアンバランスが生じることが知られている。複数の電池セルの電圧のアンバランスが生じた状態で組電池の充電を行うと、電圧の低いセルが満充電になっていなくとも、電圧の高い電池セルが満充電となったときに充電が終了する。また、複数の電池セルの電圧のアンバランスが生じた状態で組電池の放電を行うと、電圧の高いセルはまだ放電可能であったとしても、電圧の低いセルが過放電となると放電が終了する。
 したがって、複数の電池セルの電圧のアンバランスが生じた状態では、組電池の容量を効率よく利用できないこととなる。そこで、組電池を含む電池モジュールには、複数の電池セルの電圧をバランスさせるセルバランス回路が備えられている。
日本国特許第5678650号公報 日本国特開2001-218376号公報
 セルバランス回路の制御(セルバランス制御)は、ソフトウエアとハードウエアとのいずれでも実現することが可能である。
 ソフトウエアでセルバランス制御を行う場合、電池モジュールにマイクロコントローラ(MCU:Micro Controller Unit)を搭載する必要があり、MCUおよびプログラムを搭載するための費用が必要であった。
 ハードウエアのみでセルバランス制御を行う場合、一つの回路で電圧が最大であるセルを選別し、別の回路で電圧が最小であるセルを選別すると、いずれかの回路で誤った結果が出力されたときに、誤ったセルを放電したり、放電させるエネルギーが十分ではなかったりして、複数の電池セルの電圧のバランス状態が悪化する可能性があった。
 本発明の実施形態は上記事情を鑑みて成されたものであって、セルバランス制御の信頼性を担保した電池モジュールを提供することを目的とする。
 本発明の実施形態による電池モジュールは、複数の電池セルと、複数の前記電池セルの電圧値を検出する検出回路と、複数の前記電池セルを個別に放電可能なセルバランス回路と、複数の前記電池セルの電圧値が供給される複数の第1入力配線および複数の第2入力配線と、互いに異なる電池セルの電圧値を比較した差を出力する複数の比較器であって、前記第1入力配線から供給された第1電圧値から前記第2入力配線から供給された第2電圧値を引いた差を出力する複数の前記比較器と、共通の前記第1入力配線から電圧値が入力される複数の前記比較器の出力が供給される複数の第1出力配線と、共通の前記第2入力配線から電圧値が入力される複数の前記比較器の出力が供給される複数の第2出力配線と、を含む電圧比較回路と、複数の前記第1出力配線の各々から供給された複数の差に基づいて特定された電圧が最大である前記電池セルと、複数の前記第2出力配線の各々から供給された複数の差に基づいて特定された電圧が最大である前記電池セルとが異なるとき、または、複数の前記第1出力配線の各々から供給された複数の差に基づいて特定された電圧が最小である前記電池セルと、複数の前記第2出力配線の各々から供給された複数の差に基づいて特定された電圧が最小である前記電池セルとが異なるときに、前記セルバランス回路による放電を停止する出力制御回路と、を備える。
図1は、一実施形態の電池モジュールの一構成例を概略的に示す図である。 図2は、図1に示す電圧比較回路の一構成例を概略的に示す図である。 図3は、図1に示す選択回路の一構成例を概略的に示す図である。 図4は、図1に示す選択回路の一構成例を概略的に示す図である。 図5は、図1に示す診断回路の一構成例を概略的に示す図である。 図6は、図5に示す診断回路の選択回路出力診断部の動作の一例を説明するための図である。 図7は、図5に示す診断回路の電圧比較回路出力診断部の動作の一例を説明するための図である。 図8は、図1に示す差分抽出部および出力制御部の一構成例を概略的に示す図である。 図9は、図8に示す出力制御回路の入力信号と出力信号との一例を説明するための図である。 図10は、図8に示す出力制御回路の入力信号と出力信号との他の例を説明するための図である。
実施形態
 以下に、一実施形態の電池モジュールについて図面を参照して詳細に説明する。
 図1は、一実施形態の電池モジュールの一構成例を概略的に示す図である。
 本実施形態の電池モジュールMDLは、組電池BTと、電池監視回路(CMU:Cell monitoring unit)100と、を備えている。
 組電池BTは、直列に接続された複数の電池セルC~Cを含む。電池セルC~Cは、例えばリチウムイオン電池である。電池セルC~Cは、リチウムイオン電池に限定されるものではなく、ニッケル水素電池、鉛電池等の他の蓄電池であっても構わない。
 電池監視回路100は、セルバランス回路10と、バランサ制御回路20と、を備えている。
 セルバランス回路10は、複数の電池セルC~Cを個別に放電可能である。セルバランス回路10は、複数の放電スイッチS~Sを備えている。複数の放電スイッチS~Sの各々は、対応する電池セルC~Cの正極端子と負極端子とを抵抗器を介して電気的に接続する経路に設けられている。例えば放電スイッチSがオンされると、電池セルCの正極端子と負極端子とが抵抗器を介して電気的に接続され、電池セルCに蓄えられたエネルギーが放電される。放電スイッチS~Sの動作は、バランサ制御回路20からの制御信号により制御される。
 バランサ制御回路20は、セルバランス回路10の動作を制御する回路である。
 バランサ制御回路20は、複数の出力回路21~21と、セル電圧検出部22と、電圧比較部23と、差分抽出部24と、出力制御部25と、タイマー回路26と、を備えている。タイマー回路26は、後述するタイマー回路261、262、263を含む。
 複数の出力回路21~21は、複数の放電スイッチS~Sへの制御信号を出力する回路である。バランサ制御回路20は、複数の放電スイッチS~S各々に制御信号を出力する複数の出力回路21~21を備えている。
 セル電圧検出部22は、複数の電池セルC~Cの各々の電圧値(若しくは電圧相当値)を検出する検出回路である。セル電圧検出部22は、直列に接続された複数の電池セルC~Cの各々の電圧を、接地電位(GND)を基準とする値に変換する差動増幅器(図示せず)を含む。差動増幅器は、例えば複数の(n個の)オペアンプを備えている。オペアンプには、対応する電池セルC~Cの正極端子電圧の値と、負極端子電圧の否定値とが入力されている。オペアンプは、対応する電池セルC~Cの正極端子電圧から負極端子電圧を引いた差を増幅した値(セル電圧相当値Cell(1)~Cell(n))を出力する。
 電圧比較部23は、セル電圧検出部22から供給された複数のセル電圧相当値Cell(1)~Cell(n)を比較し、複数の電池セルC~Cの中で電圧が最大の電池セルと電圧が最小の電池セルとを選択する。
 電圧比較部23は、電圧比較回路231と、レジスタ232C、232Rと、選択回路233C、233Rと、診断回路234と、を備えている。
 電圧比較回路231は、複数の電池セルC~Cのセル電圧相当値Cell(1)~Cell(n)を比較する回路である。電圧比較回路231は、セル電圧相当値Cell(1)~Cell(n)各々について、他の全てのセル電圧相当値Cell(1)~Cell(n)と比較した結果を出力する。
 すなわち、電圧比較回路231は、セル電圧相当値Cell(1)について、他の全てのセル電圧相当値Cell(2)~Cell(n)と比較した結果を出力し、セル電圧相当値Cell(2)について、他の全てのセル電圧相当値Cell(1)、Cell(3)~Cell(n)と比較した結果を出力し、…、セル電圧相当値Cell(n)について、他の全てのセル電圧相当値Cell(1)~Cell(n-1)と比較した結果を出力することができる。
 図2は、図1に示す電圧比較回路の一構成例を概略的に示す図である。
 なお、図2の回路に含まれる要素の配置位置は一例であって、回路の電気的な接続状態を変更しない回路であれば本実施形態の電池モジュールMDLに適用することが可能である。
 この例では、電圧比較回路231は、複数(n=5)の電池セルC~Cのセル電圧相当値Cell(A)~Cell(E)を比較している。
 電圧比較回路231は、複数の第1入力配線Wi1と、複数の第2入力配線Wi2と、複数の第1出力配線Wo1と、複数の第2出力配線Wo2と、複数の電圧比較器COMとを備えている。
 複数の第1入力配線Wi1は、複数の電池セルC~Cのセル電圧相当値Cell(A)~Cell(E)を電圧比較器COMの入力端子へ供給する配線である。各第1入力配線Wi1は第1方向D1と平行に延び、複数の第1入力配線Wi1は間隔を置いて、第1方向D1と交差する第2方向D2に沿って並んで配置されている。
 複数の第2入力配線Wi2は、複数の電池セルC~Cのセル電圧相当値Cell(A)~Cell(E)を電圧比較器COMの否定入力端子へ供給する配線である。各第2入力配線Wi2は第2方向D2と平行に延び、複数の第2入力配線Wi2は間隔をおいて、第1方向D1に沿って並んで配置されている。
 複数の電圧比較器COMは、互いに異なる電池セルC~Cのセル電圧相当値Cell(A)~Cell(E)を比較した差を出力する。複数の電圧比較器COMの各々は、入力端子と、否定入力端子と、出力端子と、を備えている。電圧比較器COMの入力端子には、第1入力配線Wi1からセル電圧相当値Cell(A)~Cell(E)(第1電圧値)が入力される。電圧比較器COMの否定入力端子には、第2入力配線Wi2からセル電圧相当値Cell(A)~Cell(E)(第2電圧値)が入力される。電圧比較器COMは、第1入力配線Wi1から入力端子に供給されたセル電圧相当値Cell(A)~Cell(E)から、第2入力配線Wi2から否定入力端子に入力されたセル電圧相当値Cell(A)~Cell(E)を引いた差を出力端子から出力する。
 複数の電圧比較器COMは、互いに異なるセル電圧相当値Cell(A)~Cell(E)を供給する第1入力配線Wi1と第2入力配線Wi2とが交差する位置の近傍に配置されている。
 入力端子に共通のセル電圧相当値Cell(A)~Cell(E)が入力される複数の電圧比較器COMは、当該共通のセル電圧相当値Cell(A)~Cell(E)を供給する第1入力配線Wi1に沿って並んで配置されている。否定入力端子に共通のセル電圧相当値Cell(A)~Cell(E)が入力される複数の電圧比較器COMは、当該共通のセル電圧相当値Cell(A)~Cell(E)を供給する第2入力配線Wi2に沿って並んで配置されている。
 例えば、入力端子に共通のセル電圧相当値Cell(A)が入力される複数の電圧比較器COMは、セル電圧相当値Cell(A)を供給する第1入力配線Wi1に沿って並んで配置されるとともに、セル電圧相当値Cell(B)~Cell(E)を供給する複数の第2入力配線Wi2とセル電圧相当値Cell(A)を供給する第1入力配線Wi1とが交差する位置近傍にそれぞれ配置されている。
 例えば、否定入力端子に共通のセル電圧相当値Cell(B)が入力される複数の電圧比較器COMは、セル電圧相当値Cell(B)を供給する第2入力配線Wi2に沿って並んで配置されるとともに、セル電圧相当値Cell(A)、Cell(C)~Cell(E)を供給する複数の第1入力配線Wi1とセル電圧相当値Cell(B)を供給する第2入力配線Wi2とが交差する位置近傍にそれぞれ配置されている。
 複数の第1出力配線Wo1の各々は、複数の第1入力配線Wi1各々に沿って並んだ複数の電圧比較器COMの出力値をレジスタ232Cへ供給する。例えば、セル電圧相当値Cell(B)を供給する第1入力配線Wi1に沿って並んだ複数の電圧比較器COMの出力値(セル電圧相当値の差分B-A、B-C、B-D、B-E)は、共通の第1出力配線Wo1によりレジスタ232Cへ供給される。当該第1出力配線Wo1は、セル電圧相当値の差分B-A、B-C、B-D、B-Eの各々をレジスタ232Cへ供給する複数の配線を含み得る。
 すなわち、複数の第1出力配線Wo1の一つは、例えば第1入力配線Wi1に供給されたセル電圧相当値Cell(B)から、第2入力配線Wi2に供給された当該セル電圧相当値Cell(B)と重複しない他のセル電圧相当値Cell(A)、Cell(C)~Cell(E)を引いた値を出力する配線であって、共通のセル電圧相当値から他の複数のセル電圧相当値の各々を引いた複数の差を出力する。
 複数の第2出力配線Wo2の各々は、複数の第2入力配線Wi2各々に沿って並んだ複数の電圧比較器COMの出力値をレジスタ232Rへ供給する。例えば、セル電圧相当値Cell(C)を供給する第2入力配線Wi2に沿って並んだ複数の電圧比較器COMの出力値(セル電圧相当値の差分A-C、B-C、D-C、E-C)は、共通の第2出力配線Wo2によりレジスタ232Rへ供給される。第2出力配線Wo2は、セル電圧相当値の差分A-C、B-C、D-C、E-Cの各々をレジスタ232Rへ供給する配線を複数含み得る。
 すなわち、複数の第2出力配線Wo2の一つは、例えば第1入力配線Wi1に供給されたセル電圧相当値Cell(A)、Cell(B)、Cell(D)、Cell(E)から、第2入力配線Wi2に供給された当該セル電圧相当値Cell(A)、Cell(B)、Cell(D)、Cell(E)と重複しないセル電圧相当値Cell(C)を引いた値を出力する配線であって、複数のセル電圧相当値の各々から共通の他のセル電圧相当値を引いた複数の差を出力する。
 レジスタ232Cは、複数の第1出力配線Wo1から供給された値を一時的に保持する。レジスタ232Cに保持された値は、選択回路233Cへ供給される。レジスタ232Cで保持される値は、タイマー回路262から信号φ1が供給されるタイミングで更新される。
 レジスタ232Rは、複数の第2出力配線Wo2から供給された値を一時的に保持する。レジスタ232Rに保持された値は、選択回路233Rへ供給される。レジスタ232Rで保持される値は、タイマー回路261から信号φ1が供給されるタイミングで更新される。
 なお、タイマー回路261とタイマー回路262とは、共通のタイミングで信号φ1を出力する回路であって、一体に構成されていても構わない。
 図3は、図1に示す選択回路の一構成例を概略的に示す図である。
 選択回路(第1選択回路)233Cは、複数の第1出力配線Wo1の各々から供給された複数の差に基づいて、電池セルC~C中で、電圧が最大である電池セルと電圧が最小である電池セルとを特定する回路である。選択回路233Cは、複数の最大値選択回路CA1~CE1と、複数の最小値選択回路CA2~CE2と、を備えている。
 最大値選択回路CA1と最小値選択回路CA2とには、レジスタ232Cを介して、共通の第1出力配線Wo1からの値(A-B、A-C、A-D、A-E)が供給される。最大値選択回路CB1と最小値選択回路CB2とには、レジスタ232Cを介して、共通の第1出力配線Wo1からの値(B-A、B-C、B-D、B-E)が供給される。最大値選択回路CC1と最小値選択回路CC2とには、レジスタ232Cを介して、共通の第1出力配線Wo1からの値(C-A、C-B、C-D、C-E)が供給される。最大値選択回路CD1と最小値選択回路CD2とには、レジスタ232Cを介して、共通の第1出力配線Wo1からの値(D-A、D-B、D-C、D-E)が供給される。最大値選択回路CE1と最小値選択回路CE2とには、レジスタ232Cを介して、共通の第1出力配線Wo1からの値(E-A、E-B、E-C、E-D)が供給される。
 レジスタ232Cを介して共通の第1出力配線Wo1からの値が供給される最大値選択回路と最小値選択回路とは、共通の電池セルに対応するものである。例えば、電圧相当値Cell(C)から他のセル電圧相当値Cell(A)、Cell(B)、Cell(D)、Cell(E)を引いた値(C-A、C-B、C-D、C-E)を供給する第1出力配線Wo1は、最大値選択回路CC1と最小値選択回路CC2とに共通であり、最大値選択回路CC1と最小値選択回路CC2とは共通の電池セルCに対応している。
 複数の最大値選択回路CA1~CE1各々は、複数の電池セルC~Cの各々に対応して設けられ、対応する電池セルC~Cのセル電圧相当値Cell(A)~Cell(E)が最大値であるときに、ハイ(H)レベルの値を出力する。
 複数の最大値選択回路CA1~CE1の各々は(n-1)入力の論理積回路を備えている。複数の最大値選択回路CA1~CE1の各々には、対応する第1出力配線Wo1からレジスタ232Cに供給され、レジスタ232Cに保持された値が入力される。最大値選択回路CA1~CE1各々は、入力された値が全て正(Hレベル)であるとき、その出力値が1(Hレベル)となる。
 例えば、セル電圧相当値Cell(A)が他のセル電圧相当値Cell(B)~Cell(E)よりも大きい(最大値である)ときには、最大値選択回路CA1に入力されるセル電圧相当値の差分A-B、A-C、A-D、A-Eは全て正(Hレベル)であり、最大値選択回路CA1の出力値が1(Hレベル)となる。例えば、セル電圧相当値Cell(A)が最大値でないときには、最大値選択回路CA1に入力されるセル電圧相当値の差分A-B、A-C、A-D、A-Eの少なくともいずれかが負(Lレベル)であり、最大値選択回路CA1の出力値が0(Lレベル)となる。
 複数の最小値選択回路CA2~CE2各々は、複数の電池セルC~Cの各々に対応して設けられ、対応する電池セルC~Cのセル電圧相当値Cell(A)~Cell(E)が最小値であるときに、ハイ(H)レベルの値を出力する。
 複数の最小値選択回路CA2~CE2の各々は(n-1)の否定回路および否定回路の出力値が入力される(n-1)入力の論理積回路を備えている。最小値選択回路CA2~CE2の各々には、対応する第1出力配線Wo1からレジスタ232Cに供給され、レジスタ232Cに保持された値が入力される。最小値選択回路CA2~CE2各々は、入力された値が全て負(Lレベル)であるとき、その出力値が1(Hレベル)となる。
 例えば、セル電圧相当値Cell(B)が他のセル電圧相当値Cell(A)、Cell(C)~Cell(E)よりも小さい(最小値である)ときには、最小値選択回路CB2に入力されるセル電圧相当値の差分B-A、B-C、B-D、B-Eは全て負(Lレベル)であり、最小値選択回路CB2の出力値が1(Hレベル)となる。例えば、セル電圧相当値Cell(B)が最小値でないときには、最小値選択回路CB2に入力されるセル電圧相当値の差分B-A、B-C、B-D、B-Eの少なくともいずれかが正(Hレベル)であり、最小値選択回路CB2の出力値が0(Lレベル)となる。
 複数の最大値選択回路CA1~CE1の出力信号MAX(C)A~MAX(C)Eの値および複数の最小値選択回路CA2~CE2の出力信号MIN(C)A~MIN(C)Eの値は、診断回路234および差分抽出部24へ供給される。
 図4は、図1に示す選択回路の一構成例を概略的に示す図である。
 選択回路(第2選択回路)233Rは、複数の第2出力配線Wo2の各々から供給された複数の差に基づいて、電池セルC~C中で、電圧が最大である電池セルと電圧が最小である電池セルとを特定する回路である。選択回路233Rは、複数の最大値選択回路RA1~RE1と、複数の最小値選択回路RA2~RE2と、を備えている。
 最大値選択回路RA1と最小値選択回路RA2とには、レジスタ232Rを介して、共通の第2出力配線Wo2からの値(B-A、C-A、D-A、E-A)が供給される。最大値選択回路RB1と最小値選択回路RB2とには、レジスタ232Rを介して、共通の第2出力配線Wo2からの値(A-B、C-B、D-B、E-B)が供給される。最大値選択回路RC1と最小値選択回路RC2とには、レジスタ232Rを介して、共通の第2出力配線Wo2からの値(A-C、B-C、D-C、E-C)が供給される。最大値選択回路RD1と最小値選択回路RD2とには、レジスタ232Rを介して、共通の第1出力配線Wo2からの値(A-D、B-D、C-D、E-D)が供給される。最大値選択回路RE1と最小値選択回路RE2とには、レジスタ232Rを介して、共通の第2出力配線Wo2からの値(A-E、B-E、C-E、D-E)が供給される。
 レジスタ232Rを介して共通の第2出力配線Wo2からの値が供給される最大値選択回路と最小値選択回路とは、共通の電池セルに対応するものである。例えば、電圧相当値Cell(A)、CELL(B)、CELL(D)、CELL(E)から、これらに共通の他のセル電圧相当値Cell(C)を引いた値(A-C、B-C、D-C、E-C)を供給する第2出力配線Wo2は、最大値選択回路RC1と最小値選択回路RC2とに共通であり、最大値選択回路RC1と最小値選択回路RC2とは、共通の電池セルCに対応している。
 複数の最大値選択回路RA1~RE1各々は、複数の電池セルC~Cの各々に対応して設けられ、対応する電池セルC~Cのセル電圧相当値Cell(A)~Cell(E)が最大値であるときに、ハイ(H)レベルの値を出力する。
 複数の最大値選択回路RA1~RE1の各々は、(n-1)の否定回路および否定回路の出力値が入力される(n-1)入力の論理積回路を備えている。複数の最大値選択回路RA1~RE1の各々には、対応する第2出力配線Wo2からレジスタ232Rに供給され、レジスタ232Rに保持された値が入力される。最大値選択回路RA1~RE1各々は、入力された値が全て負(Lレベル)であるとき、その出力値が1(Hレベル)となる。
 例えば、セル電圧相当値Cell(A)が他のセル電圧相当値Cell(B)~Cell(E)よりも大きい(最大値である)ときには、最大値選択回路RA1に入力されるセル電圧相当値の差分B-A、C-A、D-A、E-Aは全て負(Lレベル)であり、最大値選択回路RA1の出力値が1(Hレベル)となる。例えば、セル電圧相当値Cell(A)が最大値でないときには、最大値選択回路RA1に入力されるセル電圧相当値の差分B-A、C-A、D-A、E-Aの少なくともいずれかが正(Hレベル)であり、最大値選択回路CA1の出力値が0(Lレベル)となる。
 複数の最小値選択回路RA2~RE2各々は、複数の電池セルC~Cの各々に対応して設けられ、対応する電池セルC~Cのセル電圧相当値Cell(A)~Cell(E)が最小値であるときに、ハイ(H)レベルの値を出力する。
 複数の最小値選択回路RA2~RE2の各々は(n-1)入力の論理積回路を備えている。最小値選択回路RA2~RE2の各々には、対応する第2出力配線Wo2からレジスタ232Rに供給され、レジスタ232Rに保持された値が入力される。最小値選択回路RA2~RE2各々は、入力された値が全て正(Hレベル)であるとき、その出力値が1(Hレベル)となる。
 例えば、セル電圧相当値Cell(B)が他のセル電圧相当値Cell(A)、Cell(C)~Cell(E)よりも小さい(最小値である)ときには、最小値選択回路RB2に入力されるセル電圧相当値の差分A-B、C-B、D-B、E-Bは全て正(Hレベル)であり、最小値選択回路RB2の出力値が1(Hレベル)となる。例えば、セル電圧相当値Cell(B)が最小値でないときには、最小値選択回路RB2に入力されるセル電圧相当値の差分A-B、C-B、D-B、E-Bの少なくともいずれかが負(Lレベル)であり、最小値選択回路CB2の出力値が0(Lレベル)となる。
 複数の最大値選択回路RA1~RE1の出力信号MAX(R)A~MAX(R)Eの値および複数の最小値選択回路RA2~RE2の出力信号MIN(R)A~MIN(R)Eの値は、診断回路234および差分抽出部24へ供給される。
 図5は、図1に示す診断回路の一構成例を概略的に示す図である。
 診断回路234は、選択回路出力診断部C1と、電圧比較回路出力診断部C2と、を備えている。
 選択回路出力診断部C1は、否定排他的論理和回路EQと、論理積回路A1、A2と、を含む。
 否定排他的論理和回路EQは、選択回路233Cの出力信号MAX(C)A~MAX(C)Eと、選択回路233Rの出力信号MAX(R)A~MAX(R)Eとの各々が同じ値であるときに、ハイ(H)レベルの信号MAX(x)A~MAX(x)Eを出力する。選択回路233Cの出力信号MAX(C)A~MAX(C)Eと、選択回路233Rの出力信号MAX(R)A~MAX(R)Eとの中で、対応するものに異なる値があるとき(例えば信号MAX(C)Eと信号MAX(R)Eとの値が異なるとき)、否定排他的論理和回路EQの対応する出力信号MAX(x)A~MAX(x)Eの値が、ロー(L)レベルとなる。
 否定排他的論理和回路EQの出力信号MAX(x)A~MAX(x)Eは、論理積回路A1に入力される。
 否定排他的論理和回路EQは、選択回路233Cの出力値MIN(R)A~MIN(R)Eと、選択回路233Rの出力値MIN(R)A~MIN(R)Eとの各々が同じ値であるときに、ハイ(H)レベルの信号MIN(x)A~MIN(x)Eを出力する。選択回路233Cの出力値MIN(C)A~MIN(C)Eと、選択回路233Rの出力値MIN(R)A~MIN(R)Eとの中で、対応するものに異なる値があるとき、否定排他的論理和回路EQの対応する出力信号MIN(x)A~MIN(x)Eの値が、ロー(L)レベルとなる。
 否定排他的論理和回路EQの出力信号MIN(x)A~MIN(x)Eは、論理積回路A2に入力される。
 論理積回路A1は、入力された信号MAX(x)A~MAX(x)Eの値の論理積値を出力信号MAX_Enableとして出力する。
 論理積回路A2は、入力された信号MIN(x)A~MIN(x)Eの値の論理積値を出力信号MIN_Enableとして出力する。
 図6は、図5に示す診断回路の選択回路出力診断部の動作の一例を説明するための図である。
 ここでは、各第1出力配線Wo1によりレジスタ232Cへ供給される値が行方向に並び、各第2出力配線Wo2によりレジスタ232Rへ供給される値が列方向に並ぶように、電圧比較回路231の出力値(セル電圧相当値の差分値)をマトリクス状に記載している。
 選択回路233Cにおいて、出力値が全てハイ(H)レベルである第1出力配線Wo1に対応する電池セルを最大電圧の電池セルとし、出力値が全てロー(L)レベルである第1出力配線Wo1に対応する電池セルが最小電圧の電池セルとして、信号MAX(C)A~MAX(C)E、および、信号MIN(C)A~MIN(C)Eが出力される。
 選択回路233Rにおいて、出力値が全てロー(L)レベルである第1出力配線Wo1に対応する電池セルが最大電圧の電池セルとし、出力値が全てハイ(H)レベルである第1出力配線Wo1に対応する電池セルが最小電圧の電池セルとして、信号MAX(R)A~MAX(R)E、および、信号MIN(R)A~MIN(R)Eが出力される。
 選択回路出力診断部C1は、選択回路233Cの出力値と選択回路233Rとの出力値とを比較し、電圧比較回路231や、レジスタ232C、232Rや、選択回路233C、233Rに異常がある可能性を診断する。
 論理積回路A1の出力信号MAX_Enableは、例えば、選択回路233Cで選択された最大電圧の電池セルと、選択回路233Rで選択された最大電圧の電池セルとが異なる場合に、ロー(L)レベルとなる。
 つまり、出力信号MAX_Enableがハイ(H)レベルのときには、選択回路233C、233Rおよびその前段の回路が正常に動作しており、選択回路233C、233Rの出力した値を信頼することができる。出力信号MAX_Enableがロー(L)レベルのときには、電圧比較回路231や、レジスタ232C、232Rや、選択回路233C、233Rが正常に動作していない可能性があり、選択回路233C、233Rの出力した値の信頼性が低いこととなる。
 また、論理積回路A2の出力信号MIN_Enableは、例えば、選択回路233Cで選択された最小電圧の電池セルと、選択回路233Rで選択された最小電圧の電池セルとが異なる場合に、ロー(L)レベルとなる。
 つまり、出力信号MIN_Enableがハイ(H)レベルのときには、選択回路233C、233Rおよびその前段の回路が正常に動作しており、選択回路233C、233Rの出力した値を信頼することができる。出力信号MIN_Enableがロー(L)レベルのときには、電圧比較回路231や、レジスタ232C、232Rや、選択回路233C、233Rが正常に動作していない可能性があり、選択回路233C、233Rの出力した値の信頼性が低いこととなる。
 選択回路出力診断部C1の出力信号MAX_Enable、MIN_Enableは、出力制御部25の出力制御回路252に供給される。
 電圧比較回路出力診断部C2は、複数の排他的論理和回路EX1、EX2と、複数の論理積回路A3、A4、A5と、を含む。
 複数の排他的論理和回路EX1には、レジスタ232Cに保持されている値が供給される。各排他的論理和回路EX1には、2つのセル電圧相当値から演算される差分値が入力される。電圧比較回路出力診断部C2は、2つセル電圧相当値の組み合わせ毎に排他的論理和回路EX1を含む。例えば、図5には、セル電圧相当値Cell(A)とセル電圧相当値(B)とから演算される差分A-B、B-Aの値が入力される排他的論理和回路EX1を例示している。
 図7は、図5に示す診断回路の電圧比較回路出力診断部の動作の一例を説明するための図である。
 排他的論理和回路EX1は、入力された2値が異なるレベルであるときにハイ(H)レベルの出力信号C_checkを出力し、入力された2値が同じレベルであるときにロー(L)レベルの出力信号C_checkを出力する。
 複数の排他的論理和回路EX1の出力信号C_checkは、論理積回路A3に入力される。
 複数の排他的論理和回路EX2には、レジスタ232Rに保持されている値が供給される。各排他的論理和回路EX2には、2つのセル電圧相当値から演算される差分値が入力される。電圧比較回路出力診断部C2は、2つのセル電圧相当値の組み合わせ毎に排他的論理和回路EX2を含む。例えば、図5には、セル電圧相当値Cell(A)とセル電圧相当値(B)とから演算される差分A-B、B-Aの値が入力される排他的論理和回路EX2を例示している。
 排他的論理和回路EX2は、入力された2値が異なるレベルであるときにハイ(H)レベルの出力信号R_checkを出力し、入力された2値が同じレベルであるときにロー(L)レベルの出力信号R_checkを出力する。
 複数の排他的論理和回路EX2の出力信号R_checkは、論理積回路A4に入力される。
 論理積回路A3は、複数の排他的論理和回路EX1から供給された信号C_checkの値の論理積を論理積回路A5へ供給する。
 論理積回路A4は、複数の排他的論理和回路EX2から供給された信号R_checkの値の論理積を論理積回路A5へ供給する。
 論理積回路A5は、論理積回路A3の出力値と論理積回路A4の出力値との論理積の値を、信号CR_checkの値として出力する。
 すなわち、排他的論理和回路EX1各々に入力される2値の符号が異なる(HレベルとLレベルとを含む)とき、排他的論理和回路EX2各々に入力される2値の符号が異なる(HレベルとLレベルとを含む)とき、との少なくともいずれかの場合に、論理積回路A5の出力信号CR_checkの値がハイ(H)レベルとなる。
 ここで、電圧比較回路231、レジスタ232C、232Rおよび比較回路23に含まれる配線などが正常に動作していれば、各排他的論理和回路EX1、EX2に入力される2値の符号は必ず一致しない(2つの電池セルの電圧が等しい場合を除く)。このため、論理積回路A5の出力信号CR_checkの値がハイ(H)レベルのときには、電圧比較回路231およびレジスタ232C、232Rが正常に動作していることになる。この場合、電圧比較回路231の出力値に基づく最大電圧の電池セルや最小電圧の電池セルの選択結果は信頼できるものである。
 一方で、論理積回路A5の出力信号CR_checkの値がロー(L)レベルのときには、複数の排他的論理和回路EX1、EX2の少なくともいずれかに入力された2値が同じレベルであることとなり、電圧比較回路231およびレジスタ232C、232Rが正常に動作していない可能性がある。この場合、電圧比較回路231の出力値に基づく最大電圧の電池セルや最小電圧の電池セルの選択結果の信頼性は低い。
 電圧比較回路出力診断部C2の出力信号CR_checkは、出力制御部25の出力制御回路252に供給される。
 図8は、図1に示す差分抽出部および出力制御部の一構成例を概略的に示す図である。
 差分抽出部24は、マルチプレクサ241、242と、差動増幅器243と、を備えている。
 マルチプレクサ241は複数のスイッチング素子を含む。複数のスイッチング素子の入力端子には、各々に対応する電池セルの電圧相当値が入力される。複数のスイッチング素子の出力端子は、差動増幅器243の入力端子と電気的に接続されている。複数のスイッチング素子の制御端子には、各々に対応する信号MAX(C)A~MAX(C)E又は信号MAX(R)A~MAX(R)Eが入力される。マルチプレクサ241のスイッチング素子は、制御端子にハイ(H)レベルの信号が入力されたときに、入力端子と出力端子とが導通する。したがって、マルチプレクサ241は、電圧最大である電池セルの電圧相当値を差動増幅器243の入力端子に供給する。
 マルチプレクサ242は複数のスイッチング素子を含む。複数のスイッチング素子の入力端子には、各々に対応する電池セルの電圧相当値が入力される。複数のスイッチング素子の出力端子は、差動増幅器243の否定入力端子と電気的に接続されている。複数のスイッチング素子の制御端子には、各々に対応する信号MIN(C)A~MIN(C)E又は信号MIN(R)A~MIN(R)Eが入力される。マルチプレクサ242のスイッチング素子は、制御端子にハイ(H)レベルの信号が入力されたときに、入力端子と出力端子とが導通する。したがって、マルチプレクサ242は、電圧最小である電池セルの電圧相当値を差動増幅器243の否定入力端子に供給する。
 差動増幅器243は、入力端子に入力された値から、否定入力端子に入力された値を引いた差の増幅値を出力する。すなわち、差動増幅器243は、最大電圧の電池セルの電圧相当値から、最小電圧の電池セルの電圧相当値を引いた差の増幅値(電圧差ΔV)を出力する。差動増幅器243の出力は、出力制御部25に入力される。
 出力制御部25は、比較器251と、出力制御回路252と、イネーブル信号出力部253(図1に示す)と、を備えている。
 比較器251は、差動増幅器243から出力された電圧差ΔVから、しきい値Vrefを引いた値dV_Enableを出力する。電圧差ΔVがしきい値Vref以上であるときに、出力信号dV_Enableが正(ハイレベル)となり、このときにセルバランス制御が実行される。電圧差ΔVがしきい値Vrefよりも小さいときに、出力信号dV_Enableが負(ローレベル)となり、このときにセルバランス制御は停止される。
 上記のことから、しきい値Vrefを適切に設定することにより、複数の電池セルの電圧が均衡しているときに、セルバランス制御が実行されて電圧バランスを崩すことが無くなる。本実施形態では、しきい値Vrefは例えば10mVである。セルバランス制御を実行する際の電池セル電圧のしきい値Vrefを設けることにより、セルバランス回路10が動作する電池セルの電圧差を可変にすることができる。
 イネーブル信号出力部253は、比較器251の出力信号dV_Enable、および、選択回路出力診断部C1の出力信号MAX_Enable、MIN_Enable以外のイネーブル信号(又はディスイネーブル信号)を生成して出力する。イネーブル信号出力部253から出力されたイネーブル信号(又はディスイネーブル信号)は、出力制御回路252へ供給される。
 イネーブル信号出力部253は、例えば、複数の電池セル(若しくは組電池BT)の温度、組電池BTに流れる電流、組電池BT(若しくは複数の電池セル)の電圧、および、組電池BT(若しくは複数の電池セル)の残容量の少なくともいずれかの値を取得し、イネーブル信号(又はディスイネーブル信号)を生成する。複数の電池セル又は組電池BTの温度の値は、任意の電池セルや組電池BTの近傍(周囲)の温度であってもよく、複数の電池セル若しくはその近傍の複数の箇所で取得された複数の温度の値の平均値や中央値を用いてもよい。
 イネーブル信号出力部253は、例えば、複数の電池セルの温度が、所定の温度よりも高いとき、所定の温度よりも低いとき、若しくは、所定の温度範囲に含まれているときに、セルバランス制御を実行(開始)するためのイネーブル信号(若しくはセルバランス制御を停止するディスイネーブル信号)を生成して出力する。
 イネーブル信号出力部253は、例えば、組電池BTに流れる電流(充電電流又は放電電流)が、所定の電流よりも大きいとき、所定の電流よりも小さいとき、若しくは、所定の電流の範囲に含まれているときに、セルバランス制御を実行(開始)するためのイネーブル信号(若しくはセルバランス制御を停止するディスイネーブル信号)を生成して出力する。
 イネーブル信号出力部253は、例えば、組電池BT(若しくは複数の電池セル)の電圧が、所定の電圧よりも大きいとき、所定の電圧よりも小さいとき、若しくは、所定の電圧の範囲に含まれているときに、セルバランス制御を実行(開始)するためのイネーブル信号(若しくはセルバランス制御を停止するディスイネーブル信号)を生成して出力する。
 イネーブル信号出力部253は、例えば、組電池BT(若しくは複数の電池セル)の残容量が、所定の容量より多いとき、所定の容量よりも少ないとき、若しくは、所定の容量の範囲に含まれているときに、セルバランス制御を実行(開始)するためのイネーブル信号(若しくはセルバランス制御を停止するディスイネーブル信号)を生成して出力する。
 出力制御回路252は、比較器251の出力信号dV_Enableと、選択回路出力診断部C1の出力信号MAX_Enable、MIN_Enableと、イネーブル信号出力部253の出力信号と、レジスタ232Rの出力信号MAX(R)A~E、MIN(R)A~Eと、レジスタ232Cの出力信号MAX(C)A~E、MIN(C)A~Eと、タイマー回路263の出力信号φ2と、電圧比較回路出力診断部C2の出力信号CR_checkと、を取得し、出力回路21~21の各々に対応する制御信号CB_MAX(又は出力信号CB_MIN)を出力する。
 なお、タイマー回路263は、セルバランス回路10が動作する期間にハイレベルの信号φ2を出力制御回路252へ出力し、セルバランス回路10が休止する期間にローレベルの信号φ2を出力制御回路252へ出力する。タイマー回路263は、例えば、複数の電池セルの電圧を測定している期間に、セルバランス回路10を停止させて測定された電圧の精度を確保することができる。
 また、出力制御回路252は、レジスタ232Rの出力信号MAX(R)A~E、MIN(R)A~Eと、レジスタ232Cの出力信号MAX(C)A~E、MIN(C)A~Eとの少なくともいずれか一方を取得すればよく、レジスタ232Rとレジスタ232Cとの両方の出力値を取得する必要はない。
 出力制御回路252が取得する信号は接地電位を基準とした値であるが、出力制御回路252は、複数の電池セル各々の負極電位を基準とした出力信号CB_MAX(又は出力信号CB_MIN)を出力回路21~21へ出力する。
 出力制御回路252は、例えば、取得した全てのイネーブル信号がハイレベル(正)(若しくは全てのディスイネーブル信号が負である)であって、電圧比較回路出力診断部C2の出力信号CR_checkがハイ(H)レベルであって、タイマー回路263により設定されたセルバランス回路10が動作する期間である(出力信号φ2がハイレベルである)ときに、少なくとも電圧が最大である電池セルを放電させるようにセルバランス回路10へ制御信号CB_Maxを出力する。
 図9は、図8に示す出力制御回路の入力信号と出力信号との一例を説明するための図である。なお、ここでは、イネーブル信号出力部253から出力制御回路252へ入力されるイネーブル信号(若しくはディスイネーブル信号)、電圧比較回路出力診断部C2の出力信号CR_check、レジスタ232Rの出力信号MIN(R)A~E、および、レジスタ232Cの出力信号MIN(C)A~Eの値は省略している。
 この例では、出力制御回路252は、電圧が最大である電池セルを強制的に放電させる制御信号CB_Maxを、セルバランス回路10へ出力する。
 出力制御回路252は、タイマー回路263の出力信号φ2がロー(L)レベルであるとき、他の入力信号の値に関わらず、全ての放電スイッチS~Sをオフする出力信号CB_Maxを出力し、全ての電池セルを放電させない。また、出力制御回路252は、タイマー回路263の出力信号φ2がハイ(H)レベルであるとき、イネーブル信号dV_Enable、MAX_Enable、MIN_Enableおよび電圧比較回路出力診断部C2の出力信号CR_checkの少なくともいずれかの値がロー(L)レベルのときには、全ての放電スイッチS~Sをオフする出力信号CB_Maxを出力し、全ての電池セルを放電させない。
 出力制御回路252は、タイマー回路263の出力信号φ2がハイ(H)レベルであって、イネーブル信号dV_Enable、MAX_Enable、MIN_Enableの全ての値がハイ(H)レベルのときに、レジスタ232Rの出力信号MAX(R)A~E、若しくはレジスタ232Cの出力信号MAX(C)A~Eの値に基づいて、電圧が最大である電池セルを放電させる信号CB_Maxを出力する。
 なお、出力制御回路252は、レジスタ232Rの出力信号MAX(R)A~Eと、レジスタ232Cの出力信号MAX(C)A~Eとの少なくともいずれか一方を取得すればよく、レジスタ232Rとレジスタ232Cとの両方の出力値を取得する必要はない。
 出力制御回路252は、電圧が最小である電池セル以外の全ての電池セルを放電させるように、セルバランス回路10へ制御信号CB_Minを出力してもよい。
 図10は、図8に示す出力制御回路の入力信号と出力信号との他の例を説明するための図である。なお、ここでは、イネーブル信号出力部253から出力制御回路252へ入力されるイネーブル信号(若しくはディスイネーブル信号)、電圧比較回路出力診断部C2の出力信号CR_check、レジスタ232Rの出力信号MAX(R)A~E、および、レジスタ232Cの出力信号MAX(C)A~Eの値は省略している。
 この例では、出力制御回路252は、電圧が最小である電池セル以外の全ての電池セルを強制的に放電させる制御信号CB_Minを、セルバランス回路10へ出力する。
 出力制御回路252は、タイマー回路263の出力信号φ2がロー(L)レベルであるとき、他の入力信号の値に関わらず、全ての放電スイッチS~Sをオフする出力信号CB_Maxを出力し、全ての電池セルを放電させない。また、出力制御回路252は、タイマー回路263の出力信号φ2がハイ(H)レベルであるとき、イネーブル信号dV_Enable、MAX_Enable、MIN_Enableおよび電圧比較回路出力診断部C2の出力信号CR_checkの少なくともいずれかの値がロー(L)レベルのときには、全ての放電スイッチS~Sをオフする出力信号CB_Maxを出力し、全ての電池セルを放電させない。
 出力制御回路252は、タイマー回路263の出力信号φ2がハイ(H)レベルであって、イネーブル信号dV_Enable、MAX_Enable、MIN_Enableの全ての値がハイ(H)レベルのときに、レジスタ232Rの出力信号MIN(R)A~E、若しくはレジスタ232Cの出力信号MIN(C)A~Eの値に基づいて、電圧が最小である電池セル以外の全ての電池セルを放電させる信号CB_Minを出力する。
 なお、出力制御回路252は、レジスタ232Rの出力信号MIN(R)A~Eと、レジスタ232Cの出力信号MIN(C)A~Eとの少なくともいずれか一方を取得すればよく、レジスタ232Rとレジスタ232Cとの両方の出力値を取得する必要はない。
 本実施形態の電池モジュールMDLによれば、上記のように生成された制御信号CB_Max又は制御信号CB_Minによりセルバランス回路10を制御し、信頼性の高いセルバランス制御を実現することができる。
 例えば、ソフトウエアでセルバランス制御を行う場合、電池モジュールにMCUを搭載する必要があり、MCUおよびプログラムを搭載するための費用が必要である。一方で、本実施形態の電池モジュールMDLはハードウエアのみでセルバランス制御を行うため、安価にセルバランス制御を実現することができるとともに、プログラム実行時のような逐次動作がなく、高速に動作する回路を実現することができる。
 また、一つの回路で電圧が最大である電池セルを選別し、別の回路で電圧が最小である電池セルを選別すると、いずれかの回路で誤った結果が出力されたときに、誤ったセルを放電したり、放電させるエネルギーが十分ではなかったりして、セル電圧のバランス状態が悪化する可能性がある。
 一方で、本実施形態の電池モジュールMDLでは、複数の電池セルの電圧(若しくは電圧相当値)の全ての組み合わせについて、値の並び順を変えて比較した電圧比較マトリクスを用いて、セル電圧(若しくは電圧相当値)の高低を比較し、且つ、電圧比較マトリクスの結果である縦軸(レジスタ232Rに保持される値)と横軸(レジスタ232Cに保持される値)とを比較し、信頼性の高いセルバランス制御を可能としている。さらに、本実施形態の電池モジュールMDLでは、バランサ制御回路20が正常に動作しているときに、ゼロの場合を除き結果が必ず等しくならない項目(例えば、セル電圧相当値の差分A-BとB-A)により回路の診断を行うことにより、信頼性の高いセルバランス制御を可能としている。
 本実施形態によれば、上記のように適切なセルバランス制御を行うことにより、電池モジュールMDLの充放電容量を確保し、セルバランス制御の信頼性を担保した電池モジュールを提供することができる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 上記の実施形態の電池モジュールMDLでは、診断回路234において、選択回路233C、233Rの出力値を用いた診断と、レジスタ232C、232Rの出力値を用いた診断とを行っているが、診断回路234はこれらの両方の診断を行う必要はない。診断回路234は、選択回路233C、233Rの出力値を用いた診断と、レジスタ232C、232Rの出力値を用いた診断との一方を行う場合であっても、上述の実施形態と同様の効果を得ることができる。
 
 

Claims (8)

  1.  複数の電池セルと、
     複数の前記電池セルの電圧値を検出する検出回路と、
     複数の前記電池セルを個別に放電可能なセルバランス回路と、
     複数の前記電池セルの電圧値が供給される複数の第1入力配線および複数の第2入力配線と、互いに異なる前記電池セルの電圧値を比較した差を出力する複数の比較器であって、前記第1入力配線から供給された第1電圧値から前記第2入力配線から供給された第2電圧値を引いた差を出力する複数の前記比較器と、共通の前記第1入力配線から電圧値が入力される複数の前記比較器の出力が供給される複数の第1出力配線と、共通の前記第2入力配線から電圧値が入力される複数の前記比較器の出力が供給される複数の第2出力配線と、を含む電圧比較回路と、
     複数の前記第1出力配線の各々から供給された複数の差に基づいて特定された電圧が最大である前記電池セルと、複数の前記第2出力配線の各々から供給された複数の差に基づいて特定された電圧が最大である前記電池セルとが異なるとき、または、複数の前記第1出力配線の各々から供給された複数の差に基づいて特定された電圧が最小である前記電池セルと、複数の前記第2出力配線の各々から供給された複数の差に基づいて特定された電圧が最小である前記電池セルとが異なるときに、前記セルバランス回路による放電を停止する出力制御回路と、を備えた電池モジュール。
  2.  複数の前記電池セルは第1電池セルと第2電池セルとを含み、
     前記出力制御回路は、前記第1出力配線から供給される前記第1電池セルの電圧値から前記第2電池セルの電圧値を引いた差と、前記第2出力配線から供給される前記第2電池セルの電圧値から前記第1電池セルの電圧値を引いた差との符号が同じときに、前記セルバランス回路による放電を停止する、請求項1記載の電池モジュール。
  3.  前記出力制御回路は、複数の前記電池セルの電圧の最大値から最小値を引いた電圧差が所定のしきい値よりも小さいときに、前記セルバランス回路による放電を停止する、請求項1記載の電池モジュール。
  4.  前記出力制御回路は、複数の前記第1出力配線の各々から供給された複数の差、又は、複数の前記第2出力配線の各々から供給された複数の差に基づいて、前記セルバランス回路により、電圧が最大である前記電池セルを放電させる、請求項1記載の電池モジュール。
  5.  前記出力制御回路は、複数の前記第1出力配線の各々から供給された複数の差、又は、複数の前記第2出力配線の各々から供給された複数の差に基づいて、前記セルバランス回路により、電圧が最小である前記電池セル以外の前記電池セルを放電させる、請求項1記載の電池モジュール。
  6.  前記出力制御回路は、複数の前記電池セルを含む組電池の電圧値が所定のしきい値より小さいとき、若しくは、所定のしきい値よりも大きいときに、前記セルバランス回路による放電を停止若しくは開始させる、請求項1乃至請求項5のいずれか1項記載の電池モジュール。
  7.  前記出力制御回路は、複数の前記電池セルに流れる電流が所定のしきい値より小さいとき、若しくは、所定のしきい値よりも大きいときに、前記セルバランス回路による放電を停止若しくは開始させる、請求項1乃至請求項5のいずれか1項記載の電池モジュール。
  8.  前記出力制御回路は、複数の前記電池セルの周囲の温度が所定のしきい値より小さいとき、若しくは、所定のしきい値より大きいときに、前記セルバランス回路による放電を停止若しくは開始させる、請求項1乃至請求項5のいずれか1項記載の電池モジュール。
PCT/JP2022/020075 2022-05-12 2022-05-12 電池モジュール WO2023218604A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020075 WO2023218604A1 (ja) 2022-05-12 2022-05-12 電池モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020075 WO2023218604A1 (ja) 2022-05-12 2022-05-12 電池モジュール

Publications (1)

Publication Number Publication Date
WO2023218604A1 true WO2023218604A1 (ja) 2023-11-16

Family

ID=88730134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020075 WO2023218604A1 (ja) 2022-05-12 2022-05-12 電池モジュール

Country Status (1)

Country Link
WO (1) WO2023218604A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165206A (ja) * 2007-12-28 2009-07-23 Honda Motor Co Ltd 充放電装置
JP2010249793A (ja) * 2009-02-27 2010-11-04 Hitachi Ltd 電池監視装置および電池監視装置の診断方法
JP2018046629A (ja) * 2016-09-13 2018-03-22 ミツミ電機株式会社 電池制御回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165206A (ja) * 2007-12-28 2009-07-23 Honda Motor Co Ltd 充放電装置
JP2010249793A (ja) * 2009-02-27 2010-11-04 Hitachi Ltd 電池監視装置および電池監視装置の診断方法
JP2018046629A (ja) * 2016-09-13 2018-03-22 ミツミ電機株式会社 電池制御回路

Similar Documents

Publication Publication Date Title
US11177669B2 (en) Apparatus and method for battery module equalization
US9128161B2 (en) Voltage monitoring device
JP5606997B2 (ja) 電池セル監視回路、電池セルモジュール、電池セルモジュールを備えた自動車
CN101421883B (zh) 电池组件及其断路检测方法
US8680814B2 (en) Battery charger and battery charging method
US8952660B2 (en) Systems and methods for balancing battery cells
US8659265B2 (en) Battery pack and method of sensing voltage of battery pack
EP2741093A1 (en) Ground fault detection device, ground fault detection method, solar energy system, and ground fault detection program
JP4466628B2 (ja) 電圧検出装置
US20190064272A1 (en) Assembled battery monitoring system
JP5974849B2 (ja) 電池監視装置
JP2011134577A (ja) 電池異常判定装置
US9172258B2 (en) Circuit for balancing cells
JP2015083960A (ja) 異常検出装置
JP2012161182A (ja) 電池監視装置
CN107110895B (zh) 内置状态监视部的集成电路以及电源装置
JP6518082B2 (ja) 電圧検出装置、電圧検出方法および組電池システム
US10571524B2 (en) In-vehicle power supply device
US8441234B2 (en) Detecting module for a battery equalizer and method for detecting a battery equalizer
WO2023218604A1 (ja) 電池モジュール
KR20140124470A (ko) 배터리 제어 시스템 및 그의 구동 방법
US20140097852A1 (en) Voltage monitoring device
KR101795075B1 (ko) 고전압 배터리용 셀 밸런싱 제어 방법
EP2846388B1 (en) Apparatus and method for controlling fuel cell system
US20220390520A1 (en) Abnormal Cell Diagnosing Method and Battery System Applying the Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941684

Country of ref document: EP

Kind code of ref document: A1