WO2023218558A1 - Gallium nitride single crystal substrate and method for producing same - Google Patents

Gallium nitride single crystal substrate and method for producing same Download PDF

Info

Publication number
WO2023218558A1
WO2023218558A1 PCT/JP2022/019935 JP2022019935W WO2023218558A1 WO 2023218558 A1 WO2023218558 A1 WO 2023218558A1 JP 2022019935 W JP2022019935 W JP 2022019935W WO 2023218558 A1 WO2023218558 A1 WO 2023218558A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
growth
main surface
gallium nitride
crystal substrate
Prior art date
Application number
PCT/JP2022/019935
Other languages
French (fr)
Japanese (ja)
Inventor
拓司 岡久
俊佑 西野
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2023507779A priority Critical patent/JP7409556B1/en
Priority to PCT/JP2022/019935 priority patent/WO2023218558A1/en
Priority to TW112113252A priority patent/TW202347827A/en
Publication of WO2023218558A1 publication Critical patent/WO2023218558A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides

Definitions

  • the present disclosure relates to a gallium nitride single crystal substrate and a method for manufacturing the same.
  • One of the gallium nitride single crystal substrates useful for forming nitride semiconductor devices has two main surfaces that are parallel or substantially parallel to the C plane (hereinafter also referred to as the "(0001) plane") of the gallium nitride single crystal.
  • a C-plane gallium nitride single crystal substrate (hereinafter also simply referred to as a "GaN single crystal substrate”) is well known.
  • the two main surfaces of the C-plane GaN single crystal substrate refer to the gallium polar plane, which is the main surface on the [0001] direction side, and the nitrogen polar plane, which is the main surface on the [000-1] direction side, respectively.
  • C-plane GaN single crystal substrates are generally made of gallium nitride single crystals (hereinafter referred to as "GaN single crystals") obtained by applying the HVPE (Hydride Vapor Phase Epitaxy) method using gallium chloride (GaCl) gas and ammonia (NH 3 ) gas. (also referred to as "crystal"). It is known that when a GaN single crystal is grown using the C-plane as a growth surface by the HVPE method, inverted hexagonal pyramid-shaped depressions called pits are formed on the growth surface.
  • HVPE Hydrode Vapor Phase Epitaxy
  • Non-patent document 1 discloses that when a GaN single crystal is obtained by using the HVPE method and leaving the pits, the GaN single crystal is caused by dislocations, which are structural defects of the crystal, concentrating at the bottom of the pits. reported that the dislocations are reduced around the pits.
  • JP2016-074549A Patent Document 1
  • Patent Document 2 disclose that in the process of obtaining a gallium nitride single crystal using the above HVPE, dislocations are generated on the growth plane under predetermined growth conditions. It is proposed that after forming the pits in which GaN is concentrated, almost all of the pits are filled with GaN single crystal under other growth conditions to produce a GaN single crystal substrate with a low dislocation density.
  • a gallium nitride single crystal substrate according to the present disclosure is a gallium nitride single crystal substrate comprising a first main surface and a second main surface, wherein the diameter of the gallium nitride single crystal substrate is 50 mm or more, and the gallium nitride single crystal substrate has a diameter of 50 mm or more.
  • the first main surface is a gallium polar surface
  • the second main surface is a nitrogen polar surface
  • the first main surface and the second main surface have a circular shape
  • the (0001) plane of the gallium nitride single crystal constituting the substrate is a spherical curved surface that is convex from the first main surface side to the second main surface side, and has a radius of curvature of 6 m or more
  • the first main surface has a plurality of pit traces
  • the density of the pit traces is 0.1 pieces/cm 2 or more and 100 pieces/cm 2 or less.
  • a method for manufacturing a gallium nitride single crystal substrate according to the present disclosure is a method for manufacturing a gallium nitride single crystal substrate having a first main surface and a second main surface, the method comprising forming a gallium nitride film on at least a portion of the surface. a step of forming a first layer on the gallium nitride film by growing a gallium nitride single crystal under first growth conditions in the gallium nitride film; in the first layer, forming a second layer on the first layer by growing the gallium nitride single crystal under second growth conditions; and forming the gallium nitride single crystal by cutting out the second layer.
  • the growth surface of the first layer has a pit density of more than 100 pits/cm2, and the growth surface of the second layer has a pit density of 0.1 pits/ cm2 or more and 100 pits/cm2 or more. / cm2 or less, having a pit density of
  • the above first growth condition is A gallium chloride gas partial pressure of 0.1 kPa or more and 20 kPa or less, Ammonia gas partial pressure of 0.5 kPa or more and 50 kPa or less, A growth temperature of 900°C or higher and 1100°C or lower, has a growth rate of 10 ⁇ m/hour or more and 300 ⁇ m/hour or less,
  • the above second growth condition is Gallium chloride gas partial pressure of 1 kPa or more and 50 kPa or less, Ammonia gas partial pressure of 1 kPa or more and 100 kPa or less, A growth temperature of 900°C or higher and 1100°C or lower, has a growth rate of 50 ⁇ m/
  • FIG. 1 is a schematic cross-sectional view illustrating a gallium nitride single crystal substrate according to this embodiment.
  • FIG. 2 relates to the gallium nitride single crystal substrate according to the present embodiment, and shows measurement points used in XRD analysis to determine the radius of curvature of the (0001) plane of the GaN single crystal constituting the substrate (i.e. measurement points irradiated with X-rays).
  • FIG. FIG. 3 is an explanatory diagram illustrating the reason why pit traces exist in the gallium nitride single crystal substrate according to the present embodiment.
  • FIG. 4 is a schematic diagram schematically showing the distribution of pit traces existing on the first main surface of the gallium nitride single crystal substrate according to the present embodiment.
  • FIG. 1 is a schematic cross-sectional view illustrating a gallium nitride single crystal substrate according to this embodiment.
  • FIG. 2 relates to the gallium nitride single crystal substrate according to the present embodiment, and shows measurement points
  • FIG. 5 is a photograph substituted for a drawing showing a fluorescence microscopic image of pit traces.
  • FIG. 6 is a photograph substituted for a drawing, which is an enlarged fluorescence microscopic image of the pit trace shown in FIG.
  • FIG. 7 is a flowchart illustrating an example of a method for manufacturing a gallium nitride single crystal substrate according to this embodiment.
  • FIG. 8 is a schematic cross-sectional diagram illustrating how a mask is placed on a base substrate in order to perform the step of forming a first layer on a gallium nitride film in the method for manufacturing a gallium nitride single crystal substrate according to the present embodiment. It is a diagram.
  • FIG. 8 is a schematic cross-sectional diagram illustrating how a mask is placed on a base substrate in order to perform the step of forming a first layer on a gallium nitride film in the method for manufacturing a gallium nitride single crystal substrate according to the present
  • FIG. 9 is a schematic cross-sectional view illustrating how a first layer (GaN single crystal) is formed on a gallium nitride film in the method for manufacturing a gallium nitride single crystal substrate according to the present embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating how a second layer (GaN single crystal) is formed on the first layer in the method for manufacturing a gallium nitride single crystal substrate according to the present embodiment.
  • Non-Patent Document 1, Patent Document 1, and Patent Document 2 mentioned above all focus on providing a GaN single-crystal substrate whose main surface has low dislocations.
  • Patent Document 1 and Patent Document 2 disclose that after forming pits where dislocations are concentrated on the growth surface as described above, dislocations are reduced by filling almost all of the pits with GaN single crystal using other growth conditions. I am proposing to do so.
  • the pits are filled with GaN single crystals
  • the dislocations concentrated at the bottom of the pits diffuse to the periphery, generating stress (particularly tensile stress), which causes the GaN single crystals cut from the ingot to warp.
  • a phenomenon occurs in which the (0001) plane of the GaN single crystal is curved.
  • a GaN single crystal substrate having a flat main surface can be obtained from a warped GaN single crystal by surface processing such as polishing the surface. Since the (0001) plane is curved, the characteristics may change for each region of the main surface, which may adversely affect the device characteristics. Therefore, a GaN single crystal substrate that can improve device characteristics by achieving both low dislocations on the main surface and suppression of warping of the GaN single crystal has not yet been obtained, and its development is highly desired. has been done.
  • the present disclosure provides a gallium nitride single crystal substrate that can increase the radius of curvature of the (0001) plane of the GaN single crystal by suppressing warpage of the GaN single crystal, thereby improving device characteristics. , and a manufacturing method thereof.
  • a gallium nitride single crystal substrate that can increase the radius of curvature of the (0001) plane of the GaN single crystal by suppressing warpage of the GaN single crystal, thereby improving device characteristics, and a method for manufacturing the same can be provided.
  • the present inventors have made extensive studies to solve the above problems and have completed the present disclosure.
  • the present inventors focused on the growth conditions when growing a GaN single crystal using the above HVPE method. Specifically, a first growth condition in which many pits are formed on a growth surface that is a (0001) plane and dislocations are concentrated at the bottom of the pits to reduce dislocations around the pits;
  • a GaN single crystal ingot was manufactured by employing a growth process including second growth conditions for growing a gallium nitride single crystal while controlling the filling ratio with the GaN single crystal.
  • a GaN single crystal ingot in which the pits remained at a predetermined density on the growth surface of the GaN single crystal was obtained under the second growth conditions. Furthermore, it has been found that warping of the GaN single crystal cut from the above ingot can be suppressed.
  • the present disclosure was completed by obtaining a GaN single crystal substrate made of GaN single crystal with a flat (0001) plane with a radius of curvature of 6 m or more from a GaN single crystal with suppressed warpage.
  • a gallium nitride single crystal substrate is a gallium nitride single crystal substrate including a first main surface and a second main surface, and the diameter of the gallium nitride single crystal substrate is 50 mm or more, the first main surface is a gallium polar surface, the second main surface is a nitrogen polar surface, and the first main surface and the second main surface are circular.
  • the (0001) plane of the gallium nitride single crystal constituting the substrate has a spherical shape that is convex from the first main surface side to the second main surface side.
  • the first main surface has a plurality of pit marks, and the density of the pit marks is 0.1 pieces/cm 2 or more and 100 pieces/cm 2 or more. cm2 or less.
  • a gallium nitride single crystal substrate having such characteristics has uniform characteristics in each region of the first main surface, so that device characteristics can be improved.
  • the diameter of the pit trace is preferably 200 ⁇ m or less, and the polarity of the region corresponding to the pit trace on the first main surface is preferably gallium polarity. This makes it possible to avoid excessive concentration of dislocations in the region corresponding to the pit traces on the first main surface, thereby making it possible to form a device in the region corresponding to the pit traces.
  • the (0001) plane preferably has a radius of curvature of 11 m or more. Thereby, device characteristics can be further improved.
  • the density of the pit traces is preferably 1 piece/cm 2 or more and 100 pieces/cm 2 or less. Thereby, device characteristics can be further improved.
  • the diameter of the gallium nitride single crystal substrate is preferably 50 mm or more and 155 mm or less. Thereby, device characteristics can be improved in the gallium nitride single crystal substrate having a diameter of 50 mm or more and 155 mm or less.
  • a method for manufacturing a gallium nitride single crystal substrate is a method for manufacturing a gallium nitride single crystal substrate having a first main surface and a second main surface, the method comprising: forming a first layer on the gallium nitride film by preparing a base substrate on which a gallium nitride film is disposed, and growing a gallium nitride single crystal under first growth conditions in the gallium nitride film; forming a second layer on the first layer by growing the gallium nitride single crystal under second growth conditions in the first layer; and cutting out the second layer.
  • the first growth condition is a gallium chloride gas partial pressure of 0.1 kPa or more and 20 kPa or less , and an ammonia gas partial pressure of 0.5 kPa or more and 50 kPa or less. , a growth temperature of 900° C. or more and 1100° C.
  • the second growth conditions include a gallium chloride gas partial pressure of 1 kPa or more and 50 kPa or less, and 1 kPa or more and 100 kPa or less. It has the following ammonia gas partial pressure, a growth temperature of 900°C or more and 1100°C or less, and a growth rate of 50 ⁇ m/hour or more and 500 ⁇ m/hour or less, and the growth temperature of the first growth condition is the same as the second growth condition.
  • a gallium nitride single crystal substrate having such characteristics is obtained in which the characteristics of each region of the first main surface are uniform without variation and device characteristics can be improved. be able to.
  • the first growth conditions are a gallium chloride gas partial pressure of 1 kPa or more and 5 kPa or less, an ammonia gas partial pressure of 5 kPa or more and 20 kPa or less, a growth temperature of 950°C or more and 1050°C or less, and 10 ⁇ m/hour or more and 200 ⁇ m/hour or more.
  • the second growth conditions include a gallium chloride gas partial pressure of 3 kPa or more and 10 kPa or less, an ammonia gas partial pressure of 5 kPa or more and 50 kPa or less, and a growth temperature of 1000°C or more and 1100°C or less. , and a growth rate of 50 ⁇ m/hour or more and 400 ⁇ m/hour or less. This makes it possible to make the characteristics of each region of the first main surface more uniform with less variation.
  • the notation in the format "A to B” means the upper and lower limits of the range (i.e., from A to B), and when there is no unit described in A and only in B, The units of and the units of B are the same.
  • a compound or the like when expressed by a chemical formula in this specification, it includes all conventionally known atomic ratios unless the atomic ratio is specifically limited, and should not necessarily be limited to only those in the stoichiometric range.
  • GaN the ratio of the number of atoms constituting GaN includes all conventionally known atomic ratios. This also applies to the description of compounds other than "GaN".
  • the GaN single crystal substrate is the so-called "C-plane GaN single-crystal substrate” mentioned above, and has two main surfaces parallel or substantially parallel to the C-plane ((0001) plane), the first main surface and the second main surface. It has two main surfaces.
  • the first main surface is the main surface on the [0001] direction side, and is a gallium polar surface.
  • the second main surface is the main surface on the [000-1] direction side and is a nitrogen polar surface.
  • Various nitride semiconductor devices may be formed on the first main surface of the GaN single crystal substrate.
  • the "plane” used in the term “in-plane” means the above-mentioned "first main surface” unless otherwise specified below.
  • the diameter of the GaN single crystal substrate is "50 mm”
  • the diameter is around 50 mm (about 50 to 55.5 mm), or it means that it is 2 inches.
  • the above-mentioned diameter is described as “100 mm”, it means that the above-mentioned diameter is around 100 mm (about 95 to 105 mm), or 4 inches.
  • the above-mentioned diameter is described as “150 mm”, it means that the above-mentioned diameter is around 150 mm (about 145 to 155 mm), or 6 inches.
  • the diameter of the main surface can be measured using a conventionally known outer diameter measuring device such as a caliper.
  • the first main surface and the second main surface of the GaN single crystal substrate have a "circular shape".
  • the "circular shape” expressing the shape of the main surface includes a geometric circular shape, as well as a notch, an orientation flat (hereinafter also referred to as "OF"), or an index on the outer periphery of the main surface.
  • OF orientation flat
  • IF orientation flat
  • shapes in which the main surface does not form a geometric circular shape are included.
  • the shape when the main surface does not form a geometric circular shape refers to the notch, OF, and IF of the line segment extending from any point on the outer periphery of the main surface to the center of the main surface.
  • the "shape when the main surface does not form a geometric circular shape” includes the length of all line segments extending from any point on the outer periphery of the main surface to the center of the main surface of the GaN single crystal substrate. This also includes shapes that are not necessarily the same due to the shape of the GaN single crystal that is the raw material.
  • the gallium nitride single crystal substrate according to this embodiment is a GaN single crystal substrate including a first main surface and a second main surface.
  • the diameter of the GaN single crystal substrate is 50 mm or more.
  • the first main surface is a gallium polar surface
  • the second main surface is a nitrogen polar surface.
  • the first main surface and the second main surface have circular shapes.
  • the (0001) plane of the GaN single crystal constituting the substrate is a spherical curved surface that is convex from the first main surface side to the second main surface side, and has a radius of curvature of 6 m or more. Additionally, the first major surface has a plurality of pit marks.
  • the density of the pit traces is 0.1 pieces/cm 2 or more and 100 pieces/cm 2 or less.
  • the radius of curvature of the (0001) plane of the GaN single crystal constituting the substrate is as large as 6 m or more, so that the characteristics of each region of the first main surface are uniform without variation. , thereby improving device characteristics.
  • the reason why the radius of curvature of the (0001) plane of the GaN single crystal constituting the substrate can be increased to 6 m or more is as follows. That is, in the present disclosure, the present inventors grew a GaN single crystal constituting the GaN single crystal substrate using the HVPE method including the following first growth conditions and second growth conditions.
  • the first growth conditions described above are for the purpose of obtaining a GaN single crystal layer in which pits are formed at a density of more than 100 pits/cm 2 on the growth surface. These are the conditions for growing a GaN single crystal layer (first layer) under the following conditions: gallium chloride gas partial pressure, ammonia gas partial pressure, growth temperature, and growth rate.
  • the above second growth conditions are such that a predetermined chloride concentration is applied to the first layer in order to obtain a GaN single crystal layer in which pits are formed on the growth surface at a density of 0.1 pits/cm 2 to 100 pits/cm 2 .
  • the conditions are a gallium gas partial pressure, an ammonia gas partial pressure, a growth temperature, and a growth rate to grow a GaN single crystal layer (second layer).
  • growth surface refers to the surface of the GaN single crystal located in the growth direction (eg, [0001] direction) in which the GaN single crystal grows by performing the HVPE method.
  • the GaN single crystal (first layer) obtained under the above first growth conditions dislocations concentrate at the bottoms of the pits, and dislocations around the pits are reduced, so that the single crystal as a whole has a low dislocation level. can. Furthermore, the GaN single crystal (second layer) obtained under the second growth condition has pits remaining at the above-mentioned density on its growth surface, making it difficult for stress to occur. Warpage of the cut GaN single crystal can be suppressed. In particular, the GaN single crystal (second layer) inherits the dislocation density of the GaN single crystal (first layer), and as it grows, the dislocation density is further reduced. Therefore, the GaN single crystal cut out from the GaN single crystal (second layer) can be characterized by suppressed warpage and low dislocation.
  • the GaN single crystal has low dislocations and its warpage is suppressed.
  • the radius of curvature of the surface can be increased to 6 m or more.
  • the diameter of the GaN single crystal substrate is 50 mm or more.
  • the diameter of the GaN single crystal substrate is preferably 50 mm or more and 155 mm or less.
  • the diameter of GaN single crystal substrate 1 is preferably 2 to 6 inches.
  • the size (diameter) shall be determined by assuming that it has a diameter.
  • FIG. 1 is a schematic cross-sectional view illustrating a gallium nitride single crystal substrate according to this embodiment.
  • gallium nitride single crystal substrate 1 includes a first main surface 11 and a second main surface 21.
  • the first main surface 11 is a gallium polar surface
  • the second main surface 21 is a nitrogen polar surface. That is, first main surface 11 is the main surface of gallium nitride single crystal substrate 1 located on the [0001] direction side of the gallium nitride single crystal that constitutes this.
  • the second main surface 21 is a main surface located on the [000-1] direction side of the gallium nitride single crystal constituting the gallium nitride single crystal substrate 1.
  • the gallium nitride single crystal substrate 1 has a plurality of pit traces on the first main surface 11.
  • the polarity of the region corresponding to the pit trace on the first main surface 11 is preferably gallium polarity.
  • the pit traces will be described later.
  • the (0001) plane 31 of the GaN single crystal constituting the substrate has a spherical shape that is convex from the first main surface 11 side to the second main surface 21 side. It is a curved surface with a radius of curvature of 6 m or more.
  • the (0001) plane 31 has a radius of curvature of 11 m or more. This makes the characteristics of each region of the first main surface 11 uniform without variation, thereby improving device characteristics.
  • a "spherical curved surface” that is convex from the first main surface 11 side to the second main surface 21 side refers to whether or not the curved surface exhibits a strictly spherical surface.
  • it means a curved surface that is convex from the first main surface 11 side toward the center of the second main surface 21 side. Therefore, in this specification, the radius of curvature of the (0001) plane 31 of the GaN single crystal is not an exact value that can be obtained when the curved surface exhibits a strictly spherical surface, but an approximate value that can be obtained by the following method. is shown as
  • FIG. 2 relates to the gallium nitride single crystal substrate according to the present embodiment, and shows measurement points used in XRD analysis to determine the radius of curvature of the (0001) plane of the GaN single crystal constituting the substrate (i.e. measurement points irradiated with X-rays).
  • a GaN single crystal substrate 1 to be measured is prepared, for example, by obtaining a GaN single crystal substrate 1 having a first main surface 11 and a second main surface according to a manufacturing method described later.
  • Analysis using an X-ray diffraction method is performed on this GaN single crystal substrate 1 under the following conditions. Specifically, XRD analysis under the following conditions was performed at a measurement point M0 at the center O of the first main surface 11 of the GaN single crystal substrate 1, and at a point 5 mm inside from each outer peripheral end in the [1-100] direction from the center O.
  • tilt angle refers to a straight line (vector) extending in a direction parallel to the ⁇ 0001> direction of the GaN single crystal, and the above-mentioned five measurement points M0, M1, M2 on the first main surface 11, It means the intersection angle with the normal (vector) to the first main surface 11 in each of M3 and M4.
  • the inclination angle at the measurement point M0 obtained from the XRD analysis and the four measurement points M1, M2, M3, and M4 located 5 mm inside from each outer peripheral edge in the [1-100] direction and the [11-20] direction.
  • Numerical values (curvature radius values) corresponding to the four radii of curvature are calculated from each of the inclination angles at , based on a conventionally known formula using trigonometric functions. That is, the first radius of curvature value is calculated from each inclination angle at the measurement point M0 and measurement point M1 based on the above calculation formula, and the second radius of curvature value is calculated from each inclination angle at the measurement point M0 and measurement point M2 in the same way.
  • a third radius of curvature value from each inclination angle at the measurement point M0 and measurement point M3, and a fourth radius of curvature value from each inclination angle at the measurement point M0 and measurement point M4, respectively. calculate.
  • the value obtained by averaging the four radius of curvature values is calculated using the (0001) plane 31 of the GaN single crystal in the GaN single crystal substrate. It can be found as the radius of curvature of
  • the conditions of the XRD analysis used to determine the radius of curvature are as follows. Note that the diffraction plane is a (0002) plane. This is because the (0001) plane does not appear due to forbidden reflection under the following conditions.
  • the above inclination angle is determined by rotating the GaN single crystal substrate 1 to be measured in the ⁇ direction ( ⁇ scan) under the following conditions, and obtaining X-ray diffraction peaks at a total of 5 points from the above measurement point M0 to measurement point M4. By specifying the respective diffraction angles, it is possible to determine based on the diffraction angles.
  • the first main surface has a plurality of pit traces.
  • the density of the pit traces is 0.1 pieces/cm 2 or more and 100 pieces/cm 2 or less.
  • the density of the pit traces is preferably 1 piece/cm 2 or more and 100 pieces/cm 2 or less. This allows the radius of curvature of the (0001) plane of the GaN single crystal constituting the GaN single crystal substrate to be 6 m or more.
  • pit in the term “pit trace” refers to a gap between the so-called facet structures on the growth plane when a GaN single crystal is grown using the (0001) plane as the growth plane by the HVPE method. A concavity formed by being surrounded by an inverted hexagonal pyramid or an inverted dodecagonal pyramid. Furthermore, “pit traces” refer to regions on the first main surface corresponding to pits formed on the growth surface when the first main surface of the GaN single crystal substrate is observed using a fluorescence microscope. This refers to an approximately regular hexagonal or approximately regular dodecagonal image that appears as a trace of the pit.
  • the first main surface is the main surface on the [0001] direction side of the GaN single crystal substrate, as described above, by performing surface processing such as grinding, polishing, and dry etching on the growth surface. It can be obtained as a gallium polar plane. Details of the "pit traces" in the GaN single crystal substrate according to this embodiment will be described below with reference to FIGS. 3 to 6.
  • FIG. 3 is an explanatory diagram illustrating the reason why pit traces exist in the gallium nitride single crystal substrate according to the present embodiment.
  • FIG. 4 is a schematic diagram schematically showing the distribution of pit traces existing on the first main surface of the gallium nitride single crystal substrate according to the present embodiment.
  • FIG. 5 is a photograph substituted for a drawing showing a fluorescence microscopic image of pit traces.
  • FIG. 6 is a photograph substituted for a drawing, which is an enlarged fluorescence microscopic image of the pit trace shown in FIG.
  • the GaN single-crystal substrate according to the present embodiment is produced by passing through a manufacturing process including the following growth conditions using the HVPE method, as explained in the section [Manufacturing method of gallium nitride single-crystal substrate] described below.
  • a manufacturing process including the following growth conditions using the HVPE method, as explained in the section [Manufacturing method of gallium nitride single-crystal substrate] described below.
  • the manufacturing process includes first growth conditions that reduce dislocations around the pits by concentrating dislocations at the bottoms of the pits, and growing GaN single crystals while controlling the ratio of filling the pits with GaN single crystals. and a second growth condition.
  • first growth conditions that reduce dislocations around the pits by concentrating dislocations at the bottoms of the pits, and growing GaN single crystals while controlling the ratio of filling the pits with GaN single crystals.
  • a second growth condition In particular, as shown by the double-dashed line in FIG.
  • the growth surface (hereinafter, the growth surface of the second layer is also referred to as "second growth surface”) has pits P at a density of 0.1 pits/cm 2 or more and 100 pits/cm 2 or less.
  • the GaN single crystal 100 shown by the two-dot chain line in FIG. 3 represents a state in which it has been separated from the underlying substrate by conventionally known means after the growth process under the second growth condition has been performed.
  • the first main surface 11 and the second main surface 21 shown by solid lines in FIG. A GaN single crystal substrate 1 can be obtained.
  • the first main surface 11 of this GaN single crystal substrate 1 is observed using a fluorescence microscope, a plurality of There are pit traces T.
  • the pit traces T on the first main surface 11 correspond to the pits P formed on the second growth surface 10, so the density of the pit traces T on the first main surface 11 is equal to the density of the pits P.
  • it is 0.1 pieces/cm 2 or more and 100 pieces/cm 2 or less.
  • the pit traces T on the first main surface 11 exhibit a distribution as shown in FIG.
  • the radius of curvature of the (0001) plane of the GaN single crystal can be set to 6 m or more.
  • the stress generated in the GaN single crystal 100 causes the radius of curvature of the (0001) plane of the GaN single crystal forming the GaN single crystal substrate 1 to be 6 m or more. It becomes difficult to do so. If the density of pit traces T exceeds 100 pieces/cm 2 , the dislocation density increases due to the large number of pits in the GaN single crystal constituting the GaN single crystal substrate 1, so it is difficult to improve device characteristics. It becomes difficult.
  • the pit trace T has a substantially regular hexagonal shape or a substantially regular dodecagonal shape, as shown in FIGS. 5 and 6.
  • the diameter of the pit trace T is preferably 200 ⁇ m or less. This prevents dislocations from excessively concentrating on the pits in the GaN single crystal corresponding to the pit traces T, making it easy to improve device characteristics.
  • the diameter of the pit trace T is more preferably 100 ⁇ m or less.
  • the lower limit of the diameter of the pit trace T is not particularly limited, but in view of obtaining this type of GaN single crystal substrate 1, it is realistic to set it to 5 ⁇ m or more.
  • the "diameter" of the pit trace T shall mean the distance between two points that are farthest apart on the outline of the substantially regular hexagonal shape or the substantially regular dodecagonal shape of the pit trace T.
  • a measurement method for identifying both the pit trace and its diameter in a GaN single crystal substrate will be described. It has been known that the concentration of impurities is different between the region where pit traces exist and the other regions on the gallium polar plane of the main surface of a GaN single crystal substrate manufactured using the above-mentioned HVPE method. It will be done. For this reason, by using the above-mentioned fluorescence microscope image mapping measurement and irradiating the first main surface, which is the gallium polar surface, with fluorescence having a wavelength under the following conditions, the first main surface can be measured using the density of the impurity as an index. It becomes possible to identify the upper pit trace and its diameter.
  • a GaN single-crystal substrate to be measured is prepared by obtaining a GaN single-crystal substrate having a first main surface and a second main surface, for example, according to a manufacturing method described later.
  • the first main surface of the GaN single crystal substrate was scanned using a fluorescence microscope image mapping device (for example, product name: "LEICA DM6000M", manufactured by Leica) under the following conditions and with a field of view of 2.5 mm. Observe at a magnification of x1.9 mm. The above observation is carried out by moving the GaN single crystal substrate so that there is no overlap and setting a complete field of view, covering the entire first main surface.
  • that field of view shall be excluded from the targets for specifying both the pit trace and its diameter. This is because the region near the outer periphery of the GaN single crystal substrate is usually not used as a material for semiconductor devices.
  • the conditions for the fluorescence microscopic image mapping measurement are as follows. Irradiation light: Ultraviolet excitation using a mercury lamp (wavelength 365 nm) Fluorescence wavelength range: 365-650nm Temperature: room temperature (25°C).
  • the density and diameter of pit traces per cm 2 on the first main surface of the GaN single crystal substrate can be determined from the number of pit traces identified in each field of view and their diameters.
  • the maximum value of the dislocation density on the first main surface of the GaN single crystal substrate according to this embodiment is preferably 3.0 ⁇ 10 6 /cm 2 or less.
  • the maximum value of the dislocation density on the first main surface of the GaN single crystal substrate is more preferably 2.5 ⁇ 10 6 /cm 2 or less, and preferably 2.0 ⁇ 10 6 /cm 2 or less. More preferred. As a result, it is possible to achieve low dislocations on the first main surface of a GaN single crystal substrate in which the radius of curvature of the (0001) plane of the GaN single crystal that constitutes the substrate is as large as 6 m or more.
  • dislocations and “dislocation density” refer to “defects” which are threading dislocations identified by applying multiphoton excitation photoluminescence to the first main surface, and “defects” which are threading dislocations identified by applying multiphoton excitation photoluminescence to the first main surface, and The number of pieces per 1 cm 2 of the main surface of 1.
  • the above-mentioned “defects” appear as dark spots when the first main surface of the GaN single crystal substrate is observed using a multiphoton excitation microscope or the like.
  • the above-mentioned “defect” is not academically synonymous with dislocation, it can be regarded as equivalent to dislocation in this technical field.
  • the number of defects per 1 cm 2 of the first main surface can be determined by the following method. First, a GaN single crystal substrate is manufactured by a manufacturing method described later. Next, the first main surface of the GaN single crystal substrate is observed using a multiphoton excitation microscope. The above observation can be performed by forming an image on the CCD with a 5x objective lens. In this case, the size of one field of view is 2.5 mm x 2.0 mm, so the defects that appear in the enlarged image of the central part (size of 0.1 mm x 0.1 mm) are counted and this is calculated as a unit. Convert it to the area of 1 cm 2 (that is, multiply by 10,000).
  • a high magnification image can be obtained by increasing the magnification of the objective lens to 100 times, and defects in the central part (0.1 mm x 0.1 mm size) of the high magnification image can be detected. and convert it to the size of 1 cm 2 , which is the unit area.
  • the "number of defects per 1 cm 2 of the first main surface" in the observed field of view can be determined. Note that the magnification of the objective lens when imaging defects is preferably changed as appropriate so that the number of defects per field of view is approximately 100, for example.
  • the number of defects mentioned above per 1 cm 2 of the first main surface is calculated by moving the GaN single crystal substrate so that there are no duplications and setting a complete field of view, covering the entire main surface. .
  • that field of view shall be excluded from the calculation of the number of defects per 1 cm 2 of the first main surface. This is because the region near the outer periphery of a GaN single crystal substrate has large variations in the number of defects from substrate to substrate, and is usually a region that is not used as a material for semiconductor devices.
  • the maximum value of dislocation density in the GaN single crystal substrate (first main surface) can be determined.
  • the method for manufacturing a gallium nitride single crystal substrate (GaN single crystal substrate) is preferably a method for manufacturing a GaN single crystal substrate having the above-described first main surface and second main surface.
  • the above manufacturing method includes a step of preparing a base substrate having a gallium nitride film disposed on at least a portion of the surface thereof, and growing a gallium nitride single crystal in the gallium nitride film under first growth conditions.
  • the growth surface of the first layer has a pit density of more than 100 pits/cm 2 .
  • the growth surface of the second layer has a pit density of 0.1 pits/cm 2 or more and 100 pits/cm 2 or less.
  • the first growth conditions are a gallium chloride gas partial pressure of 0.1 kPa or more and 20 kPa or less, an ammonia gas partial pressure of 0.5 kPa or more and 50 kPa or less, a growth temperature of 900°C or more and 1100°C or less, and a growth rate of 10 ⁇ m/hour or more and 300 ⁇ m or less. It has a growth rate of less than /hour.
  • the second growth conditions are a gallium chloride gas partial pressure of 1 kPa or more and 50 kPa or less, an ammonia gas partial pressure of 1 kPa or more and 100 kPa or less, a growth temperature of 900°C or more and 1100°C or less, and a growth temperature of 50 ⁇ m/hour or more and 500 ⁇ m/hour or less. growth rate.
  • the growth temperature under the first growth condition is lower than the growth temperature under the second growth condition.
  • the first growth conditions are a gallium chloride gas partial pressure of 1 kPa or more and 5 kPa or less, an ammonia gas partial pressure of 5 kPa or more and 20 kPa or less, a growth temperature of 950° C. or more and 1050° C. or less, and 10 ⁇ m/hour or more and 200 ⁇ m/hour or less. It is preferable to have a growth rate of .
  • the second growth conditions are a gallium chloride gas partial pressure of 3 kPa or more and 10 kPa or less, an ammonia gas partial pressure of 5 kPa or more and 50 kPa or less, a growth temperature of 1000°C or more and 1100°C or less, and a growth temperature of 50 ⁇ m/hour or more and 400 ⁇ m/hour or less. It is preferable to have a growth rate. By using a manufacturing method having such characteristics, it is possible to obtain a GaN single crystal substrate in which the characteristics of each region of the first main surface are uniform without variation, and the device characteristics can be improved.
  • the method for manufacturing a GaN single crystal substrate described above preferably includes steps as shown in the flowchart of FIG. 7, for example, from the viewpoint of manufacturing a GaN single crystal substrate having the above-mentioned effects with a high yield.
  • FIG. 7 is a flowchart illustrating an example of a method for manufacturing a gallium nitride single crystal substrate according to this embodiment.
  • the method for manufacturing the GaN single crystal substrate includes step S10 (first step) of preparing a base substrate on which a gallium nitride film is disposed on at least a portion of the surface, and a step of first growing a GaN single crystal in the gallium nitride film.
  • Step S20 (second step) of forming a first layer on the gallium nitride film by growing it under conditions, and growing the GaN single crystal under second growth conditions in the first layer.
  • the first step is step S10 of preparing a base substrate on which a gallium nitride film is disposed on at least a portion of the surface. This process will be explained below using FIG. 8.
  • FIG. 8 is a schematic cross-sectional diagram illustrating how a mask is placed on a base substrate in order to perform the step of forming a first layer on a gallium nitride film in the method for manufacturing a gallium nitride single crystal substrate according to the present embodiment. It is a diagram. As shown in FIG.
  • the first step consists of a growth substrate 41 and a gallium nitride film (hereinafter also referred to as "GaN film") 42 disposed on at least a part of the surface of the growth substrate 41.
  • Base substrate 40 is prepared.
  • the material of the growth substrate 41 is not particularly limited as long as it is a material that allows the growth of the GaN film 42.
  • a heterogeneous substrate using a material different from GaN (different material) such as a sapphire substrate or a gallium arsenide (GaAs) substrate can be prepared, and a homogeneous substrate using GaN (the same material) can be prepared. You can also prepare.
  • the growth substrate 41 includes an aluminum nitride (AlN) substrate, a silicon carbide (SiC) substrate, a zirconium boride (ZrB 2 ) substrate, a silicon oxide/aluminum oxide (SiO 2 /Al 2 O 3 ) sintered body substrate, A molybdenum (Mo) substrate or the like may also be used.
  • AlN aluminum nitride
  • SiC silicon carbide
  • ZrB 2 zirconium boride
  • SiO 2 /Al 2 O 3 silicon oxide/aluminum oxide
  • Mo molybdenum
  • a mask 43 may be disposed on the GaN film 42 of the base substrate 40 to suppress generation of an excessive number of dislocations in the GaN single crystal that will be the first layer to be described later.
  • the mask 43 can be formed on the GaN film 42 using a conventionally known method.
  • the pattern of the mask 43 is not particularly limited as long as it is a pattern that can suppress generation of an excessive number of dislocations in the GaN single crystal.
  • the pattern of the mask 43 can be a conventionally known pattern, such as a grid, dot or stripe pattern formed by alternately arranging shielding parts and openings. I can do it.
  • the mask 43 can be formed, for example, by the following method.
  • a chemical vapor deposition film for example, a silicon-based chemical vapor deposition film
  • a plasma CVD Chemical Vapor Deposition
  • a resist patterned by photolithography is formed on the chemical vapor deposition film, and etching is performed using the resist as an etching mask, thereby forming the mask 43.
  • the second step is a step S20 in which a first layer is formed on the GaN film by growing a GaN single crystal under first growth conditions.
  • the aim is to obtain a GaN single crystal (first layer) having a pit density exceeding 100 pits/ cm2 on the growth surface, and the growth surface (hereinafter referred to as , the growth surface in the first layer is also referred to as "first growth surface"), and the first growth conditions are such that dislocations are reduced around the pits by concentrating dislocations at the bottoms of the pits. Execute the adopted HVPE method.
  • the HVPE method based on the first growth conditions can be performed, for example, in the following manner. First, a base substrate is placed on a quartz sample holder in a hot wall reactor, and at least the GaN film in the base substrate is heated to about 1000°C. Next, gallium chloride gas is generated by spraying hydrogen chloride (HCl) gas with hydrogen (H 2 ) gas as a carrier gas onto metal Ga installed in an upstream boat in the reactor. Furthermore, ammonia gas is introduced into the reactor.
  • HCl hydrogen chloride
  • H 2 hydrogen
  • the crystal can be grown under the following first growth conditions.
  • the thickness of the GaN single crystal (first layer) can be adjusted by controlling the amount or time of supply of gallium chloride gas and ammonia gas.
  • the specific first growth conditions are as follows. Gallium chloride gas partial pressure: 0.1-20kPa Ammonia gas partial pressure: 0.5-50kPa Growth temperature: 900-1100°C Growth rate: 10-300 ⁇ m/hour V/III (ammonia gas/gallium chloride gas) ratio: 1-10.
  • the gallium chloride gas partial pressure under the first growth condition is preferably 1 to 5 kPa, and the ammonia gas partial pressure is preferably 5 to 20 kPa.
  • the growth temperature under the first growth condition is preferably 950 to 1050°C, and the growth rate is preferably 10 to 200 ⁇ m/hour.
  • the gallium chloride gas partial pressure under the first growth condition is more preferably 2 to 4 kPa, and the ammonia gas partial pressure is more preferably 10 to 15 kPa.
  • the growth temperature under the first growth condition is more preferably 950 to 1000° C., and the growth rate is more preferably 20 to 100 ⁇ m/hour. Note that the growth temperature under the first growth condition is lower than the growth temperature under the second growth condition, which will be described later.
  • FIG. 9 is a schematic cross-sectional view illustrating how a first layer (GaN single crystal) is formed on a gallium nitride film in the method for manufacturing a gallium nitride single crystal substrate according to the present embodiment.
  • a first layer 44 made of GaN single crystal and having a thickness of 0.05 to 0.5 mm can be formed on the mask 43.
  • the first growth surface 5 of the first layer 44 has many pits P, and the pit density exceeds 100/cm 2 .
  • the pit density on the first growth surface 5 of the first layer 44 can be determined in the same manner as the method for determining the "pit trace density" described above.
  • the third step is step S30 of forming a second layer on the first layer by growing the GaN single crystal under second growth conditions in the first layer.
  • the purpose is to obtain a GaN single crystal (second layer) having a pit density of 0.1 to 100 pits/cm 2 on the growth surface;
  • the HVPE method employing second growth conditions for controlling and reducing the pit density is performed on the first layer having the pit density on the first growth surface.
  • the HVPE method based on the above second growth conditions is the same as the HVPE method based on the above first growth conditions, except for the specific gas partial pressure, growth temperature and growth rate conditions based on the second growth conditions described below. This can be done according to the guidelines.
  • a GaN single crystal (second layer) can be grown on the first layer, specifically on the first growth surface side of the first layer.
  • the thickness of the GaN single crystal (second layer) can be adjusted by controlling the amount or time of supply of gallium chloride gas and ammonia gas.
  • the specific second growth conditions are as follows. Gallium chloride gas partial pressure: 1-50kPa Ammonia gas partial pressure: 1-100kPa Growth temperature: 900-1100°C Growth rate: 50 to 500 ⁇ m/hour V/III (ammonia gas/gallium chloride gas) ratio: 1 to 5 However, as described above, the growth temperature under the second growth condition is set higher than the growth temperature under the first growth condition.
  • the gallium chloride gas partial pressure under the second growth condition is preferably 3 to 10 kPa, and the ammonia gas partial pressure is preferably 5 to 50 kPa.
  • the growth temperature under the first growth condition is preferably 1000 to 1100°C, and the growth rate is preferably 50 to 400 ⁇ m/hour.
  • the gallium chloride gas partial pressure under the second growth condition is more preferably 3 to 10 kPa, and the ammonia gas partial pressure is more preferably 5 to 50 kPa.
  • the growth temperature under the second growth condition is more preferably 1020 to 1080°C, and the growth rate is more preferably 50 to 300 ⁇ m/hour.
  • FIG. 10 is a schematic cross-sectional view illustrating how a second layer (GaN single crystal) is formed on the first layer in the method for manufacturing a gallium nitride single crystal substrate according to the present embodiment.
  • a second layer 45 made of GaN single crystal and having a thickness of 1 to 10 mm can be formed on the first layer 44.
  • the second growth surface 10 of the second layer 45 has a pit density of 0.1 to 100/cm 2 by controlling the number of pits P.
  • the pit density is preferably 1 pit/cm 2 or more and 100 pits/cm 2 or less.
  • the pit density on the second growth surface 10 of the second layer 45 can also be determined in the same manner as the method for determining the "pit trace density" described above.
  • the fourth step is step S40 of obtaining the GaN single crystal substrate by cutting out the second layer.
  • this step referring to FIG. 10, first, in a structure including a growth substrate 41, a GaN film 42, a mask 43, a first layer 44, and a second layer 45, the first layer 44 side of the second layer 45 is ground. do.
  • the growth substrate 41, the underlying substrate including the GaN film 42, the mask 43, and the first layer 44 can be separated from the structure.
  • a disk-shaped GaN single crystal is cut out with a predetermined thickness from the ingot made of the second layer 45.
  • the surface of the GaN single crystal substrate is flattened by grinding, and then both or at least one of polishing and dry etching is performed. Thereby, a GaN single crystal substrate having a first main surface and a second main surface can be obtained.
  • the GaN single crystal substrate has a plurality of pit traces in a region on the first main surface corresponding to the pits formed on the second growth surface 10 of the second layer 45. That is, the density of the pit traces corresponds to the pit density of the second growth surface 10 of the second layer 45, and is 0.1 pieces/cm 2 or more and 100 pieces/cm 2 or less (see also FIG. 3).
  • the GaN single crystal substrate according to this embodiment can be manufactured.
  • the (0001) plane of the GaN single crystal constituting the substrate is a spherical curved surface that is convex from the first main surface side to the second main surface side, And it can have a radius of curvature of 6 m or more. Therefore, by the above manufacturing method, since the radius of curvature of the (0001) plane of the GaN single crystal is large, the characteristics of each region of the first main surface are uniform without variation, so that a GaN single crystal with improved device characteristics can be obtained. A substrate can be obtained.
  • Example 1 Production of a GaN single crystal substrate with a diameter of 50.8 mm (2 inches)]
  • a base substrate was prepared by obtaining a commercially available sapphire substrate with a diameter of 50.8 mm and forming a GaN film on the sapphire substrate using the MOCVD method.
  • the plane orientation of the main surface of the GaN film was a (0001) plane.
  • a mask having a structure in which shielding portions and opening portions were alternately repeated was formed on the GaN film side of the base substrate.
  • a plasma CVD method is applied to the GaN film side of the base substrate to form a chemical vapor deposited film (thickness 200 nm) made of silicon oxide, and then a resist patterned by photolithography is applied on the chemical vapor deposited film.
  • a mask was formed by etching using the resist as an etching mask.
  • a GaN single crystal (first layer) having a so-called facet structure was grown in the GaN film of the base substrate through the opening of the mask under the following first growth conditions. Specifically, a base substrate was placed on a quartz sample holder in a hot wall reactor, and after heating the inside of the reactor to 980°C, a metal Ga was placed in a boat on the upstream side of the reactor. Then, gallium chloride gas was generated and supplied by spraying HCl gas, and then ammonia gas was supplied into the reactor. Further, the reactor was maintained at 980° C. for 2.5 hours.
  • the partial pressure of gallium chloride gas was 3.0 ⁇ 10 3 Pa, and the partial pressure of ammonia gas was 12 ⁇ 10 3 Pa.
  • the growth rate of the growth surface (first growth surface) of the GaN single crystal was set to 40 ⁇ m/hour.
  • a GaN single crystal (first layer) was obtained whose growth plane (first growth plane) was the (0001) plane and whose thickness was 0.1 mm as measured with a stylus-type film thickness meter.
  • the pit density on the growth surface measured by the method described above exceeded 100 pits/cm 2 .
  • Gallium chloride gas is generated by spraying hydrogen chloride (HCl) gas with hydrogen (H 2 ) gas as a carrier gas onto metal Ga installed in an upstream boat in the reactor.
  • a GaN single crystal (second layer) was grown on the first growth surface of the first layer under the following second growth conditions. Specifically, after heating the inside of the reactor to 1030°C, 1 mass of HCl gas was applied to the first growth surface of the first layer placed on a quartz sample holder in a hot wall reactor. Gallium chloride gas and iron chloride gas, which were generated by reacting with Ga to which % of Fe was added, and ammonia gas were supplied into the reactor. Further, the reactor was maintained at 1030° C. for 37.5 hours.
  • the second growth conditions include a gallium chloride gas partial pressure of 4.0 ⁇ 10 3 Pa, an iron chloride gas partial pressure of 1/100 of the gallium chloride gas, and an ammonia gas partial pressure of 8.0 ⁇ 10 3 Pa. 3 Pa. Further, the growth rate of the GaN single crystal growth surface (second growth surface) was set to 80 ⁇ m/hour. Thereafter, the temperature inside the reactor was lowered to room temperature, and a GaN single crystal (second layer) was obtained on the first layer. The second layer had a (0001) growth surface (second growth surface) and a thickness of 3 mm as measured with a stylus-type film thickness meter. Furthermore, the pit density on the second growth surface measured by the method described above was 0.1 pits/cm 2 .
  • ⁇ 4th step> In the structure including the base substrate, the mask, the first layer, and the second layer, by grinding the first layer side (one of the two main surfaces and the side that becomes the nitrogen polar surface) of the second layer. Then, the second layer was separated from the underlying substrate, GaN film, and mask. Furthermore, a disk-shaped GaN single crystal was cut out at a predetermined thickness from the ingot made of the second layer. Subsequently, the surfaces of the GaN single crystal (both the gallium polar surface and the nitrogen polar surface) were flattened by grinding, and then polished. As described above, a GaN single crystal substrate of Example 1 having a diameter of 50.8 mm (2 inches), a thickness of 350 ⁇ m, and a circular first main surface and a second main surface was manufactured.
  • Example 2 Production of a GaN single crystal substrate with a diameter of 101.6 mm (4 inches)]
  • a commercially available sapphire substrate with a diameter of 101.6 mm was obtained, and a GaN film was formed on the sapphire substrate by MOCVD, the growth temperature, growth rate, and gallium chloride gas of the first growth conditions in the second step.
  • the partial pressure and ammonia gas partial pressure, and the growth temperature, growth rate, gallium chloride gas partial pressure, and ammonia gas partial pressure of the second growth conditions in the third step were changed as shown in Table 1.
  • a GaN single crystal substrate of Example 2 having a diameter of 101.6 mm (4 inches), a thickness of 450 ⁇ m, and a circular first main surface and a second main surface was manufactured.
  • the thicknesses (mm) of the first layer and second layer in Sample 2 are shown in Table 1.
  • the pit density on the first growth surface of Sample 2 measured by the method described above was over 100 pits/cm 2
  • the pit density on the second growth surface was 0.2 pits/cm 2 .
  • Examples 3 to 7 Production of GaN single crystal substrates with a diameter of 101.6 mm (4 inches)] Growth temperature, growth rate, gallium chloride gas partial pressure and ammonia gas partial pressure under the first growth conditions in the second step, and growth temperature, growth rate, gallium chloride gas partial pressure and ammonia gas under the second growth conditions in the third step.
  • a second main surface having a diameter of 101.6 mm (4 inches), a thickness of 450 ⁇ m, and a circular first main surface and a second main surface was prepared in the same manner as Sample 2 except that the partial pressure was changed as shown in Table 1.
  • GaN single crystal substrates of Samples 3 to 7 were manufactured, respectively. The thicknesses (mm) of the first layer and second layer in Samples 3 to 7 are shown in Table 1.
  • the pit density on the first growth surface of Samples 3 to 7 measured by the method described above exceeded 100 pits/cm 2 .
  • the pit density on the second growth surface in Sample 3 is 0.5/cm 2
  • the pit density on the second growth surface in Sample 4 is 1/cm 2
  • the pit density on the second growth surface in Sample 5 was 2.55 pits/cm 2
  • the pit density on the second growth surface in Sample 6 was 10 pits/cm 2
  • the pit density on the second growth surface in Sample 7 was 100 pits/cm 2 .
  • Example 8 Production of a GaN single crystal substrate with a diameter of 152.4 mm (6 inches)]
  • a commercially available sapphire substrate with a diameter of 152.4 mm was obtained, and a GaN film was formed on the sapphire substrate by MOCVD, the growth temperature, growth rate, and gallium chloride gas of the first growth conditions in the second step.
  • the partial pressure and ammonia gas partial pressure, and the growth temperature, growth rate, gallium chloride gas partial pressure, and ammonia gas partial pressure of the second growth conditions in the third step were changed as shown in Table 1.
  • a GaN single crystal substrate of sample 8 having a diameter of 152.4 mm (6 inches), a thickness of 675 ⁇ m, and a circular first main surface and a second main surface was manufactured.
  • the thicknesses (mm) of the first layer and second layer in Sample 8 are shown in Table 1.
  • the pit density on the first growth surface of sample 8 measured by the method described above was over 100 pits/cm 2
  • the pit density on the second growth surface was 90 pits/cm 2 .
  • Example 11 and Sample 12 Production of 50.8 mm (2 inch) diameter GaN single crystal substrate] Growth temperature, growth rate, gallium chloride gas partial pressure and ammonia gas partial pressure under the first growth conditions in the second step, and growth temperature, growth rate, gallium chloride gas partial pressure and ammonia gas under the second growth conditions in the third step.
  • a circular first main surface and a second main surface with a diameter of 50.8 mm (2 inches) and a thickness of 350 ⁇ m were prepared in the same manner as Sample 1 except that the partial pressure was changed as shown in Table 1.
  • GaN single crystal substrates of Sample 11 and Sample 12 were manufactured. The thicknesses (mm) of the first layer and second layer in Sample 11 and Sample 12 are shown in Table 1.
  • the pit density on the first growth surface of Samples 11 and 12 measured by the method described above exceeded 100 pits/cm 2 .
  • the pit density on the second growth surface in sample 11 was 0.05 pits/cm 2
  • the pit density on the second growth surface in sample 12 was 300 pits/cm 2 .
  • Example 13 Production of a GaN single crystal substrate with a diameter of 50.8 mm (2 inches)]
  • the density of pit-embedded regions is 1.0 x 10 -2 pieces.
  • a GaN single crystal substrate was manufactured so that the number of particles/cm 2 or more and 0.9 pieces/cm 2 or less was obtained, and this was used as the GaN single crystal substrate of sample 13.
  • a silicon (Si)-doped gallium nitride layer is formed as the first stage of growth (corresponding to the "second step" in this specification).
  • a GaN single crystal having a multilayer structure in which 20 undoped gallium nitride layers (thickness: 700 nm) and undoped gallium nitride layers (thickness: 500 nm) were grown alternately was manufactured.
  • a second stage of growth (corresponding to the "third step" in this specification), after growing a GaN single crystal that will become an undoped gallium nitride layer (thickness 0.2 mm), a Si-doped gallium nitride layer (thickness A GaN single crystal with a thickness of 3 mm) was grown.
  • the GaN single crystal is separated from the base substrate, and surface processing is performed on the GaN single crystal (corresponding to the "fourth step" in this specification), so that the diameter is 50.8 mm (2 inches).
  • a GaN single crystal substrate of sample 13 having a thickness of 350 ⁇ m and a circular shape was manufactured.
  • the conditions regarding the growth temperature, growth rate, various gas partial pressures, etc. in the first and second stages of growth are as shown in Table 1.
  • the thicknesses (mm) of the first layer and second layer in Sample 13 are shown in Table 1.
  • the pit density on the first growth surface of sample 13 measured by the method described above was over 100 pits/cm 2
  • the pit density on the second growth surface was 0.9 pits/cm 2 .
  • Example 14 Production of a GaN single crystal substrate with a diameter of 50.8 mm (2 inches)]
  • the density of pit-embedded regions is 1 piece/cm 2 or more.
  • a GaN single crystal substrate was manufactured so that the number of GaN single crystals was 9 pieces/cm 2 or less, and this was used as a GaN single crystal substrate of sample 14.
  • a GaN single crystal to become a Si-doped gallium nitride layer was grown directly on the base substrate by referring to Patent Document 1 mentioned above (in this specification). This corresponds to the "third step.” Therefore, in sample 14, crystal growth corresponding to the "second step” in this specification is not performed.) Thereafter, the GaN single crystal is separated from the base substrate, and surface processing is performed on the GaN single crystal (corresponding to the "fourth step” in this specification), so that the diameter is 50.8 mm (2 inches).
  • a GaN single crystal substrate of sample 14 having a thickness of 350 ⁇ m and a circular shape was manufactured.
  • the conditions regarding the growth temperature, growth rate, various gas partial pressures, etc. in the first and second stages of growth are as shown in Table 1.
  • the thickness (mm) of the second layer in sample 14 is shown in Table 1. Further, the density of the pit-embedded region in Sample 14 was 1.9 pits/cm 2 .
  • Example 15 Production of a GaN single crystal substrate with a diameter of 50.8 mm (2 inches)]
  • a GaN single crystal is manufactured so that the pit density (corresponding to the density of "pits" in this specification) is 10 pieces/cm 2 or less.
  • a GaN single crystal substrate of Sample 15 was obtained by manufacturing a GaN single crystal substrate from the GaN single crystal.
  • the first stage of growth corresponding to the "second step” in this specification
  • the second stage of growth corresponding to (corresponding to the "third step” in Table 1)
  • a GaN single crystal was grown under conditions such as growth temperature, growth rate, various gas partial pressures, and V/III ratio as shown in Table 1.
  • the GaN single crystal is separated from the underlying substrate and subjected to surface processing (corresponding to the "fourth step" in this specification), resulting in a circular shape with a diameter of 50.8 mm (2 inches) and a thickness of 350 ⁇ m.
  • a GaN single crystal substrate of Sample 15 was manufactured.
  • the thicknesses (mm) of the first layer and second layer in sample 15 are shown in Table 1.
  • the pit density on the first growth surface of sample 15 measured by the method described above was over 100 pits/cm 2
  • the pit density on the second growth surface was 1 pit/cm 2 .
  • the radius of curvature of the (0001) plane of the GaN single crystal constituting the substrate is as large as 6 m or more, so that the characteristics are uniform in each region of the first main surface. It is suggested. Furthermore, the density of pit traces in the GaN single crystal substrates of Samples 1 to 8 is between 0.1 pieces/cm 2 and 100 pieces/cm 2 , so there are no pit traces in the GaN single crystal constituting the GaN single crystal substrates. The dislocation density does not become high due to the large number of dislocations.
  • the radius of curvature of the (0001) plane of the GaN single crystal constituting the substrates was 5 m or less.
  • the density of pit traces was 300 pieces/cm 2 and exceeded 100 pieces/cm 2 .
  • the GaN single crystal substrate according to this example can provide good device characteristics because the in-plane specific resistance value is uniform without variation.
  • Gallium nitride single crystal substrate GaN single crystal substrate
  • 5 First growth surface 10 Second growth surface, 100 Gallium nitride single crystal (GaN single crystal)
  • 11 First main surface 21 Second main surface, 31 (0001) plane
  • 40 base substrate 41 growth substrate, 42 gallium nitride film (GaN film), 43 mask, M0 to M4 measurement points, P pit, T pit trace, S10 step of preparing base substrate S20 GaN film Step of forming a first layer on the top, S30 Step of forming a second layer on the first layer, S40 Step of obtaining a GaN single crystal substrate.

Abstract

This gallium nitride single crystal substrate comprises a first main surface and a second main surface. The diameter of the gallium nitride single crystal substrate is 50 mm or more. The first main surface is a gallium polar face, and the second main surface is a nitrogen polar face. The first main surface and the second main surface have a circular shape. In the gallium nitride single crystal substrate, the (0001) plane of the gallium nitride single crystal constituting the same is a spherical curved surface that is convex from the first main surface side toward the second main surface side and has a curvature radius of 6 m or more. The first main surface has a plurality of pit marks, and the density of the pit marks is 0.1/cm2 to 100/cm2 inclusive.

Description

窒化ガリウム単結晶基板およびその製造方法Gallium nitride single crystal substrate and its manufacturing method
 本開示は、窒化ガリウム単結晶基板およびその製造方法に関する。 The present disclosure relates to a gallium nitride single crystal substrate and a method for manufacturing the same.
 窒化物半導体デバイスの形成に有用な窒化ガリウム単結晶基板の一つとして、窒化ガリウム単結晶のC面(以下、「(0001)面」とも記す)と平行または略平行な2つの主表面を有するC面窒化ガリウム単結晶基板(以下、これを単に「GaN単結晶基板」とも記す)が公知である。C面GaN単結晶基板の上記2つの主表面とは、それぞれ[0001]方向側の主表面であるガリウム極性面、および[000-1]方向側の主表面である窒素極性面をいう。C面GaN単結晶基板においては通常、上記ガリウム極性面上に各種の窒化物半導体デバイスが形成される。C面GaN単結晶基板は、一般に塩化ガリウム(GaCl)ガスおよびアンモニア(NH3)ガスを用いたHVPE(Hydride Vapor Phase Epitaxy)法を適用することにより得られる窒化ガリウム単結晶(以下、「GaN単結晶」とも記す)から製造される。なお上記HVPE法によって、C面を成長面としてGaN単結晶を成長させた場合、上記成長面にピットと呼ばれる逆六角錐形状の凹みが形成されることが知られる。 One of the gallium nitride single crystal substrates useful for forming nitride semiconductor devices has two main surfaces that are parallel or substantially parallel to the C plane (hereinafter also referred to as the "(0001) plane") of the gallium nitride single crystal. A C-plane gallium nitride single crystal substrate (hereinafter also simply referred to as a "GaN single crystal substrate") is well known. The two main surfaces of the C-plane GaN single crystal substrate refer to the gallium polar plane, which is the main surface on the [0001] direction side, and the nitrogen polar plane, which is the main surface on the [000-1] direction side, respectively. In a C-plane GaN single crystal substrate, various nitride semiconductor devices are usually formed on the gallium polar plane. C-plane GaN single crystal substrates are generally made of gallium nitride single crystals (hereinafter referred to as "GaN single crystals") obtained by applying the HVPE (Hydride Vapor Phase Epitaxy) method using gallium chloride (GaCl) gas and ammonia (NH 3 ) gas. (also referred to as "crystal"). It is known that when a GaN single crystal is grown using the C-plane as a growth surface by the HVPE method, inverted hexagonal pyramid-shaped depressions called pits are formed on the growth surface.
 下記非特許文献1は、上記HVPE法を用い、上記ピットを残存させてGaN単結晶を得た場合、当該GaN単結晶は、結晶の構造欠陥である転位が上記ピットの底に集中することによって、上記ピットの周辺においては上記転位が低減することを報告している。特開2016-074549号公報(特許文献1)および国際公開第2005/050709号(特許文献2)は、上記HVPEを用いて窒化ガリウム単結晶を得る過程において、所定の成長条件によって成長面に転位が集中する上記ピットを形成した後、他の成長条件によって上記ピットのほぼすべてをGaN単結晶で埋込むことにより、低転位密度としたGaN単結晶基板を製造することを提案している。 The following non-patent document 1 discloses that when a GaN single crystal is obtained by using the HVPE method and leaving the pits, the GaN single crystal is caused by dislocations, which are structural defects of the crystal, concentrating at the bottom of the pits. reported that the dislocations are reduced around the pits. JP2016-074549A (Patent Document 1) and International Publication No. 2005/050709 (Patent Document 2) disclose that in the process of obtaining a gallium nitride single crystal using the above HVPE, dislocations are generated on the growth plane under predetermined growth conditions. It is proposed that after forming the pits in which GaN is concentrated, almost all of the pits are filled with GaN single crystal under other growth conditions to produce a GaN single crystal substrate with a low dislocation density.
特開2016-074549号公報Japanese Patent Application Publication No. 2016-074549 国際公開第2005/050709号International Publication No. 2005/050709
 本開示に係る窒化ガリウム単結晶基板は、第1の主表面および第2の主表面を備えた窒化ガリウム単結晶基板であって、上記窒化ガリウム単結晶基板の直径は、50mm以上であり、上記第1の主表面は、ガリウム極性面であり、上記第2の主表面は、窒素極性面であり、上記第1の主表面および上記第2の主表面は、円形状を有し、上記窒化ガリウム単結晶基板において、これを構成する窒化ガリウム単結晶の(0001)面は、上記第1の主表面側から上記第2の主表面側へ向かって凸となる球面状の湾曲面であり、かつ6m以上の曲率半径を有し、上記第1の主表面は、複数のピット痕跡を有し、上記ピット痕跡の密度は、0.1個/cm2以上100個/cm2以下である。 A gallium nitride single crystal substrate according to the present disclosure is a gallium nitride single crystal substrate comprising a first main surface and a second main surface, wherein the diameter of the gallium nitride single crystal substrate is 50 mm or more, and the gallium nitride single crystal substrate has a diameter of 50 mm or more. The first main surface is a gallium polar surface, the second main surface is a nitrogen polar surface, the first main surface and the second main surface have a circular shape, and the nitride In the gallium single crystal substrate, the (0001) plane of the gallium nitride single crystal constituting the substrate is a spherical curved surface that is convex from the first main surface side to the second main surface side, and has a radius of curvature of 6 m or more, the first main surface has a plurality of pit traces, and the density of the pit traces is 0.1 pieces/cm 2 or more and 100 pieces/cm 2 or less.
 本開示に係る窒化ガリウム単結晶基板の製造方法は、第1の主表面および第2の主表面を備えた窒化ガリウム単結晶基板の製造方法であって、表面の少なくとも一部に窒化ガリウム膜を配置した下地基板を準備する工程と、上記窒化ガリウム膜において、窒化ガリウム単結晶を第1成長条件の下で成長させることにより、上記窒化ガリウム膜上に第1層を形成する工程と、上記第1層において、上記窒化ガリウム単結晶を第2成長条件の下で成長させることにより、上記第1層上に第2層を形成する工程と、上記第2層を切り出すことによって上記窒化ガリウム単結晶基板を得る工程と、を含み、上記第1層の成長面は、100個/cm2を超えるピット密度を有し、上記第2層の成長面は、0.1個/cm2以上100個/cm2以下のピット密度を有し、
 上記第1成長条件は、
  0.1kPa以上20kPa以下の塩化ガリウムガス分圧と、
  0.5kPa以上50kPa以下のアンモニアガス分圧と、
  900℃以上1100℃以下の成長温度と、
  10μm/時以上300μm/時以下の成長速度とを有し、
 上記第2成長条件は、
  1kPa以上50kPa以下の塩化ガリウムガス分圧と、
  1kPa以上100kPa以下のアンモニアガス分圧と、
  900℃以上1100℃以下の成長温度と、
  50μm/時以上500μm/時以下の成長速度とを有し、
 上記第1成長条件の成長温度は、上記第2成長条件の成長温度よりも低い。
A method for manufacturing a gallium nitride single crystal substrate according to the present disclosure is a method for manufacturing a gallium nitride single crystal substrate having a first main surface and a second main surface, the method comprising forming a gallium nitride film on at least a portion of the surface. a step of forming a first layer on the gallium nitride film by growing a gallium nitride single crystal under first growth conditions in the gallium nitride film; in the first layer, forming a second layer on the first layer by growing the gallium nitride single crystal under second growth conditions; and forming the gallium nitride single crystal by cutting out the second layer. obtaining a substrate, the growth surface of the first layer has a pit density of more than 100 pits/cm2, and the growth surface of the second layer has a pit density of 0.1 pits/ cm2 or more and 100 pits/cm2 or more. / cm2 or less, having a pit density of
The above first growth condition is
A gallium chloride gas partial pressure of 0.1 kPa or more and 20 kPa or less,
Ammonia gas partial pressure of 0.5 kPa or more and 50 kPa or less,
A growth temperature of 900°C or higher and 1100°C or lower,
has a growth rate of 10 μm/hour or more and 300 μm/hour or less,
The above second growth condition is
Gallium chloride gas partial pressure of 1 kPa or more and 50 kPa or less,
Ammonia gas partial pressure of 1 kPa or more and 100 kPa or less,
A growth temperature of 900°C or higher and 1100°C or lower,
has a growth rate of 50 μm/hour or more and 500 μm/hour or less,
The growth temperature under the first growth condition is lower than the growth temperature under the second growth condition.
図1は、本実施形態に係る窒化ガリウム単結晶基板を説明する断面模式図である。FIG. 1 is a schematic cross-sectional view illustrating a gallium nitride single crystal substrate according to this embodiment. 図2は、本実施形態に係る窒化ガリウム単結晶基板に関し、これを構成するGaN単結晶の(0001)面の曲率半径を求めるためのXRD解析に用いる測定箇所(つまりX線を照射する測定点の位置)について説明する説明図である。FIG. 2 relates to the gallium nitride single crystal substrate according to the present embodiment, and shows measurement points used in XRD analysis to determine the radius of curvature of the (0001) plane of the GaN single crystal constituting the substrate (i.e. measurement points irradiated with X-rays). FIG. 図3は、本実施形態に係る窒化ガリウム単結晶基板にピット痕跡が存する理由について説明する説明図である。FIG. 3 is an explanatory diagram illustrating the reason why pit traces exist in the gallium nitride single crystal substrate according to the present embodiment. 図4は、本実施形態に係る窒化ガリウム単結晶基板の第1の主表面に存するピット痕跡の分布を模式的に表した模式図である。FIG. 4 is a schematic diagram schematically showing the distribution of pit traces existing on the first main surface of the gallium nitride single crystal substrate according to the present embodiment. 図5は、ピット痕跡の蛍光顕微鏡像を示す図面代用写真である。FIG. 5 is a photograph substituted for a drawing showing a fluorescence microscopic image of pit traces. 図6は、図5のピット痕跡の蛍光顕微鏡像を拡大した図面代用写真である。FIG. 6 is a photograph substituted for a drawing, which is an enlarged fluorescence microscopic image of the pit trace shown in FIG. 図7は、本実施形態に係る窒化ガリウム単結晶基板の製造方法の一例を示すフローチャートである。FIG. 7 is a flowchart illustrating an example of a method for manufacturing a gallium nitride single crystal substrate according to this embodiment. 図8は、本実施形態に係る窒化ガリウム単結晶基板の製造方法において、窒化ガリウム膜上に第1層を形成する工程を実行するためにマスクを下地基板上に配置した様子を説明する断面模式図である。FIG. 8 is a schematic cross-sectional diagram illustrating how a mask is placed on a base substrate in order to perform the step of forming a first layer on a gallium nitride film in the method for manufacturing a gallium nitride single crystal substrate according to the present embodiment. It is a diagram. 図9は、本実施形態に係る窒化ガリウム単結晶基板の製造方法において、窒化ガリウム膜上に第1層(GaN単結晶)を形成した様子を説明する断面模式図である。FIG. 9 is a schematic cross-sectional view illustrating how a first layer (GaN single crystal) is formed on a gallium nitride film in the method for manufacturing a gallium nitride single crystal substrate according to the present embodiment. 図10は、本実施形態に係る窒化ガリウム単結晶基板の製造方法において、第1層上に第2層(GaN単結晶)を形成した様子を説明する断面模式図である。FIG. 10 is a schematic cross-sectional view illustrating how a second layer (GaN single crystal) is formed on the first layer in the method for manufacturing a gallium nitride single crystal substrate according to the present embodiment.
 [本開示が解決しようとする課題]
 上記非特許文献1、特許文献1および特許文献2は、いずれも主表面が低転位化されたGaN単結晶基板を提供することに注目している。とりわけ特許文献1および特許文献2は、上述のように転位が集中するピットを成長面に形成した後、他の成長条件によって上記ピットのほぼすべてにGaN単結晶を埋込むことにより、低転位化することを提案している。しかしながら上記ピットをGaN単結晶で埋込むと、ピット底に集中していた転位が周辺に拡散することによって応力(とりわけ引張応力)が発生するため、インゴットから切り出したGaN単結晶が反る、つまりGaN単結晶の(0001)面が湾曲するという現象が起こる。
[Problems that this disclosure seeks to solve]
Non-Patent Document 1, Patent Document 1, and Patent Document 2 mentioned above all focus on providing a GaN single-crystal substrate whose main surface has low dislocations. In particular, Patent Document 1 and Patent Document 2 disclose that after forming pits where dislocations are concentrated on the growth surface as described above, dislocations are reduced by filling almost all of the pits with GaN single crystal using other growth conditions. I am proposing to do so. However, when the pits are filled with GaN single crystals, the dislocations concentrated at the bottom of the pits diffuse to the periphery, generating stress (particularly tensile stress), which causes the GaN single crystals cut from the ingot to warp. A phenomenon occurs in which the (0001) plane of the GaN single crystal is curved.
 反ったGaN単結晶からは、その表面を研磨する等の表面加工によって平らな主表面を有するGaN単結晶基板を得ることができるが、当該GaN単結晶基板は、上述のようにGaN単結晶の(0001)面が湾曲しているため、上記主表面の領域毎に特性が変化する恐れがあり、もってデバイス特性に悪影響が及ぶ可能性がある。したがって、主表面の低転位化と、GaN単結晶の反りの抑制との両者を実現することによってデバイス特性を向上させることが可能なGaN単結晶基板は未だ得られておらず、その開発が切望されている。 A GaN single crystal substrate having a flat main surface can be obtained from a warped GaN single crystal by surface processing such as polishing the surface. Since the (0001) plane is curved, the characteristics may change for each region of the main surface, which may adversely affect the device characteristics. Therefore, a GaN single crystal substrate that can improve device characteristics by achieving both low dislocations on the main surface and suppression of warping of the GaN single crystal has not yet been obtained, and its development is highly desired. has been done.
 以上の点に鑑み、本開示は、GaN単結晶の反りを抑制することによってGaN単結晶の(0001)面の曲率半径を大きくし、もってデバイス特性を向上させることが可能な窒化ガリウム単結晶基板、およびその製造方法を提供することを目的とする。 In view of the above points, the present disclosure provides a gallium nitride single crystal substrate that can increase the radius of curvature of the (0001) plane of the GaN single crystal by suppressing warpage of the GaN single crystal, thereby improving device characteristics. , and a manufacturing method thereof.
 [本開示の効果]
 上記によれば、GaN単結晶の反りを抑制することによってGaN単結晶の(0001)面の曲率半径を大きくし、もってデバイス特性を向上させることが可能な窒化ガリウム単結晶基板、およびその製造方法を提供することができる。
[Effects of this disclosure]
According to the above, a gallium nitride single crystal substrate that can increase the radius of curvature of the (0001) plane of the GaN single crystal by suppressing warpage of the GaN single crystal, thereby improving device characteristics, and a method for manufacturing the same can be provided.
 [実施形態の概要]
 まず、本開示の実施形態の概要について説明する。本発明者らは、上記課題を解決するために鋭意検討を重ね、本開示を完成させた。まず本発明者らは、GaN単結晶を上記HVPE法を用いて成長させる際の成長条件に着目した。具体的には、(0001)面である成長面に数多くのピットを形成させ、当該ピットの底に転位を集中させることによって上記ピットの周辺の転位を低減させる第1成長条件と、上記ピットをGaN単結晶で埋込む比率を制御しながら窒化ガリウム単結晶を成長させる第2成長条件を含む成長工程を採用することによって、GaN単結晶のインゴットを製造した。この場合、上記第2成長条件によってGaN単結晶の成長面に上記ピットが所定の密度で残るGaN単結晶のインゴットが得られた。さらに上記インゴットから切り出したGaN単結晶は、その反りが抑えられることを知見した。とりわけ反りが抑えられたGaN単結晶から、曲率半径が6m以上となる平らな(0001)面を有するGaN単結晶からなるGaN単結晶基板を得ることに到達し、本開示を完成させた。
[Overview of embodiment]
First, an overview of an embodiment of the present disclosure will be described. The present inventors have made extensive studies to solve the above problems and have completed the present disclosure. First, the present inventors focused on the growth conditions when growing a GaN single crystal using the above HVPE method. Specifically, a first growth condition in which many pits are formed on a growth surface that is a (0001) plane and dislocations are concentrated at the bottom of the pits to reduce dislocations around the pits; A GaN single crystal ingot was manufactured by employing a growth process including second growth conditions for growing a gallium nitride single crystal while controlling the filling ratio with the GaN single crystal. In this case, a GaN single crystal ingot in which the pits remained at a predetermined density on the growth surface of the GaN single crystal was obtained under the second growth conditions. Furthermore, it has been found that warping of the GaN single crystal cut from the above ingot can be suppressed. In particular, the present disclosure was completed by obtaining a GaN single crystal substrate made of GaN single crystal with a flat (0001) plane with a radius of curvature of 6 m or more from a GaN single crystal with suppressed warpage.
 次に、本開示の実施態様を列記して説明する。
 [1]本開示の一態様に係る窒化ガリウム単結晶基板は、第1の主表面および第2の主表面を備えた窒化ガリウム単結晶基板であって、上記窒化ガリウム単結晶基板の直径は、50mm以上であり、上記第1の主表面は、ガリウム極性面であり、上記第2の主表面は、窒素極性面であり、上記第1の主表面および上記第2の主表面は、円形状を有し、上記窒化ガリウム単結晶基板において、これを構成する窒化ガリウム単結晶の(0001)面は、上記第1の主表面側から上記第2の主表面側へ向かって凸となる球面状の湾曲面であり、かつ6m以上の曲率半径を有し、上記第の1主表面は、複数のピット痕跡を有し、上記ピット痕跡の密度は、0.1個/cm2以上100個/cm2以下である。このような特徴を有する窒化ガリウム単結晶基板は、上記第1の主表面の領域毎の特性がバラツキなく均一となるため、デバイス特性を向上させることができる。
Next, embodiments of the present disclosure will be listed and described.
[1] A gallium nitride single crystal substrate according to one aspect of the present disclosure is a gallium nitride single crystal substrate including a first main surface and a second main surface, and the diameter of the gallium nitride single crystal substrate is 50 mm or more, the first main surface is a gallium polar surface, the second main surface is a nitrogen polar surface, and the first main surface and the second main surface are circular. In the gallium nitride single crystal substrate, the (0001) plane of the gallium nitride single crystal constituting the substrate has a spherical shape that is convex from the first main surface side to the second main surface side. and has a radius of curvature of 6 m or more, the first main surface has a plurality of pit marks, and the density of the pit marks is 0.1 pieces/cm 2 or more and 100 pieces/cm 2 or more. cm2 or less. A gallium nitride single crystal substrate having such characteristics has uniform characteristics in each region of the first main surface, so that device characteristics can be improved.
 [2]上記ピット痕跡の直径は、200μm以下であり、上記第1の主表面における上記ピット痕跡に相当する領域の極性は、ガリウム極性であることが好ましい。これにより上記第1の主表面上の上記ピット痕跡に相当する領域に転位が過剰に集中することを避けることができるので、当該ピット痕跡に相当する領域にデバイスを形成することが可能となる。 [2] The diameter of the pit trace is preferably 200 μm or less, and the polarity of the region corresponding to the pit trace on the first main surface is preferably gallium polarity. This makes it possible to avoid excessive concentration of dislocations in the region corresponding to the pit traces on the first main surface, thereby making it possible to form a device in the region corresponding to the pit traces.
 [3]上記(0001)面は、11m以上の曲率半径を有することが好ましい。これにより、デバイス特性をより向上させることができる。 [3] The (0001) plane preferably has a radius of curvature of 11 m or more. Thereby, device characteristics can be further improved.
 [4]上記ピット痕跡の密度は、1個/cm2以上100個/cm2以下であることが好ましい。これにより、デバイス特性をより向上させることができる。 [4] The density of the pit traces is preferably 1 piece/cm 2 or more and 100 pieces/cm 2 or less. Thereby, device characteristics can be further improved.
 [5]上記窒化ガリウム単結晶基板の直径は、50mm以上155mm以下であることが好ましい。これにより上記直径が50mm以上155mm以下である窒化ガリウム単結晶基板において、デバイス特性を向上させることができる。 [5] The diameter of the gallium nitride single crystal substrate is preferably 50 mm or more and 155 mm or less. Thereby, device characteristics can be improved in the gallium nitride single crystal substrate having a diameter of 50 mm or more and 155 mm or less.
 [6]本開示の一態様に係る窒化ガリウム単結晶基板の製造方法は、第1の主表面および第2の主表面を備えた窒化ガリウム単結晶基板の製造方法であって、表面の少なくとも一部に窒化ガリウム膜を配置した下地基板を準備する工程と、上記窒化ガリウム膜において、窒化ガリウム単結晶を第1成長条件の下で成長させることにより、上記窒化ガリウム膜上に第1層を形成する工程と、上記第1層において、上記窒化ガリウム単結晶を第2成長条件の下で成長させることにより、上記第1層上に第2層を形成する工程と、上記第2層を切り出すことによって上記窒化ガリウム単結晶基板を得る工程と、を含み、上記第1層の成長面は、100個/cm2を超えるピット密度を有し、上記第2層の成長面は、0.1個/cm2以上100個/cm2以下のピット密度を有し、上記第1成長条件は、0.1kPa以上20kPa以下の塩化ガリウムガス分圧と、0.5kPa以上50kPa以下のアンモニアガス分圧と、900℃以上1100℃以下の成長温度と、10μm/時以上300μm/時以下の成長速度とを有し、上記第2成長条件は、1kPa以上50kPa以下の塩化ガリウムガス分圧と、1kPa以上100kPa以下のアンモニアガス分圧と、900℃以上1100℃以下の成長温度と、50μm/時以上500μm/時以下の成長速度とを有し、上記第1成長条件の成長温度は、上記第2成長条件の成長温度よりも低い。このような特徴を有する窒化ガリウム単結晶基板の製造方法により、上記第1の主表面の領域毎の特性がバラツキなく均一となってデバイス特性を向上させることが可能な窒化ガリウム単結晶基板を得ることができる。 [6] A method for manufacturing a gallium nitride single crystal substrate according to one aspect of the present disclosure is a method for manufacturing a gallium nitride single crystal substrate having a first main surface and a second main surface, the method comprising: forming a first layer on the gallium nitride film by preparing a base substrate on which a gallium nitride film is disposed, and growing a gallium nitride single crystal under first growth conditions in the gallium nitride film; forming a second layer on the first layer by growing the gallium nitride single crystal under second growth conditions in the first layer; and cutting out the second layer. obtaining the gallium nitride single crystal substrate by, the growth surface of the first layer having a pit density of more than 100 pits/cm 2 , and the growth surface of the second layer having a pit density of more than 0.1 pits/cm 2 . The first growth condition is a gallium chloride gas partial pressure of 0.1 kPa or more and 20 kPa or less , and an ammonia gas partial pressure of 0.5 kPa or more and 50 kPa or less. , a growth temperature of 900° C. or more and 1100° C. or less, and a growth rate of 10 μm/hour or more and 300 μm/hour or less, and the second growth conditions include a gallium chloride gas partial pressure of 1 kPa or more and 50 kPa or less, and 1 kPa or more and 100 kPa or less. It has the following ammonia gas partial pressure, a growth temperature of 900°C or more and 1100°C or less, and a growth rate of 50 μm/hour or more and 500 μm/hour or less, and the growth temperature of the first growth condition is the same as the second growth condition. lower than the growth temperature of By the method of manufacturing a gallium nitride single crystal substrate having such characteristics, a gallium nitride single crystal substrate is obtained in which the characteristics of each region of the first main surface are uniform without variation and device characteristics can be improved. be able to.
 [7]上記第1成長条件は、1kPa以上5kPa以下の塩化ガリウムガス分圧と、5kPa以上20kPa以下のアンモニアガス分圧と、950℃以上1050℃以下の成長温度と、10μm/時以上200μm/時以下の成長速度とを有し、上記第2成長条件は、3kPa以上10kPa以下の塩化ガリウムガス分圧と、5kPa以上50kPa以下のアンモニアガス分圧と、1000℃以上1100℃以下の成長温度と、50μm/時以上400μm/時以下の成長速度とを有することが好ましい。これにより、上記第1の主表面の領域毎の特性をよりバラツキなく均一とすることができる。 [7] The first growth conditions are a gallium chloride gas partial pressure of 1 kPa or more and 5 kPa or less, an ammonia gas partial pressure of 5 kPa or more and 20 kPa or less, a growth temperature of 950°C or more and 1050°C or less, and 10 μm/hour or more and 200 μm/hour or more. The second growth conditions include a gallium chloride gas partial pressure of 3 kPa or more and 10 kPa or less, an ammonia gas partial pressure of 5 kPa or more and 50 kPa or less, and a growth temperature of 1000°C or more and 1100°C or less. , and a growth rate of 50 μm/hour or more and 400 μm/hour or less. This makes it possible to make the characteristics of each region of the first main surface more uniform with less variation.
 [実施形態の詳細]
 以下、本開示に係る一実施形態(以下、「本実施形態」とも記す)についてさらに詳細に説明するが、本開示はこれらに限定されるものではない。以下では図面を参照しながら説明する場合があるが、本明細書および図面において同一または対応する要素に同一の符号を付すものとし、それらについて同じ説明は繰り返さない。さらに図面においては、各構成要素を理解しやすくするために縮尺を適宜調整して示しており、図面に示される各構成要素の縮尺と実際の構成要素の縮尺とは必ずしも一致しない。
[Details of embodiment]
Hereinafter, one embodiment (hereinafter also referred to as "this embodiment") according to the present disclosure will be described in more detail, but the present disclosure is not limited thereto. Although the following description may be made with reference to the drawings, the same or corresponding elements in this specification and the drawings will be given the same reference numerals, and the same description will not be repeated. Further, in the drawings, the scale of each component is adjusted appropriately to make it easier to understand, and the scale of each component shown in the drawings does not necessarily match the scale of the actual component.
 本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。さらに、本明細書において化合物などを化学式で表す場合、原子比を特に限定しないときは従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるべきではない。たとえば「GaN」と表記する場合、GaNを構成する原子数の比は、従来公知のあらゆる原子比が含まれるものとする。このことは、「GaN」以外の化合物の記載についても同様である。 In this specification, the notation in the format "A to B" means the upper and lower limits of the range (i.e., from A to B), and when there is no unit described in A and only in B, The units of and the units of B are the same. Furthermore, when a compound or the like is expressed by a chemical formula in this specification, it includes all conventionally known atomic ratios unless the atomic ratio is specifically limited, and should not necessarily be limited to only those in the stoichiometric range. For example, when expressed as "GaN", the ratio of the number of atoms constituting GaN includes all conventionally known atomic ratios. This also applies to the description of compounds other than "GaN".
 本明細書においてGaN単結晶基板は、上述した所謂「C面GaN単結晶基板」であり、C面((0001)面)と平行または略平行な2つの主表面として第1の主表面および第2の主表面を有する。このうち第1の主表面は、[0001]方向側の主表面であって、ガリウム極性面である。第2の主表面は、[000-1]方向側の主表面であって、窒素極性面である。上記GaN単結晶基板は、第1の主表面上に各種の窒化物半導体デバイスが形成される場合がある。また本明細書において「面内」という用語にて用いられる「面」とは、以下において特記する場合を除いて、上記の「第1の主表面」を意味する。本明細書においてGaN単結晶基板の直径が「50mm」であると記す場合、上記直径は50mm前後(50~55.5mm程度)であることを意味し、あるいは2インチであることを意味する。上記直径が「100mm」であると記す場合、上記直径は100mm前後(95~105mm程度)であることを意味し、あるいは4インチであることを意味する。上記直径が「150mm」であると記す場合、上記直径は150mm前後(145~155mm程度)であることを意味し、あるいは6インチであることを意味する。なお上記主表面の直径は、ノギス等の従来公知の外径測定器を用いることにより測定することができる。 In this specification, the GaN single crystal substrate is the so-called "C-plane GaN single-crystal substrate" mentioned above, and has two main surfaces parallel or substantially parallel to the C-plane ((0001) plane), the first main surface and the second main surface. It has two main surfaces. Among these, the first main surface is the main surface on the [0001] direction side, and is a gallium polar surface. The second main surface is the main surface on the [000-1] direction side and is a nitrogen polar surface. Various nitride semiconductor devices may be formed on the first main surface of the GaN single crystal substrate. Further, in this specification, the "plane" used in the term "in-plane" means the above-mentioned "first main surface" unless otherwise specified below. In this specification, when it is stated that the diameter of the GaN single crystal substrate is "50 mm", it means that the diameter is around 50 mm (about 50 to 55.5 mm), or it means that it is 2 inches. When the above-mentioned diameter is described as "100 mm", it means that the above-mentioned diameter is around 100 mm (about 95 to 105 mm), or 4 inches. When the above-mentioned diameter is described as "150 mm", it means that the above-mentioned diameter is around 150 mm (about 145 to 155 mm), or 6 inches. Note that the diameter of the main surface can be measured using a conventionally known outer diameter measuring device such as a caliper.
 上記GaN単結晶基板の第1の主表面および第2の主表面は、「円形状」を有する。本明細書において当該主表面の形状を表す「円形状」には、幾何学的な円形状が含まれるほか、上記主表面の外周にノッチ、オリエンテーションフラット(以下、「OF」とも記す)またはインデックスフラット(以下、「IF」とも記す)の少なくともいずれかが形成されることにより、主表面が幾何学的な円形状を形成しない場合の形状が含まれる。ここで「主表面が幾何学的な円形状を形成しない場合の形状」とは、主表面の外周上の任意の点から上記主表面の中心まで延びる線分のうち、上記ノッチ、OFおよびIF上の任意の点から主表面の中心まで延びる線分において長さが短くなる場合の形状を意味する。さらに「主表面が幾何学的な円形状を形成しない場合の形状」には、主表面の外周上の任意の点から上記主表面の中心まで延びる線分すべての長さが、GaN単結晶基板の原料となるGaN単結晶の形状に起因して、同一になるとは限らない場合の形状も含まれる。 The first main surface and the second main surface of the GaN single crystal substrate have a "circular shape". In this specification, the "circular shape" expressing the shape of the main surface includes a geometric circular shape, as well as a notch, an orientation flat (hereinafter also referred to as "OF"), or an index on the outer periphery of the main surface. By forming at least one of flats (hereinafter also referred to as "IF"), shapes in which the main surface does not form a geometric circular shape are included. Here, "the shape when the main surface does not form a geometric circular shape" refers to the notch, OF, and IF of the line segment extending from any point on the outer periphery of the main surface to the center of the main surface. It means a shape in which the length of a line segment extending from any point above to the center of the main surface becomes shorter. Furthermore, the "shape when the main surface does not form a geometric circular shape" includes the length of all line segments extending from any point on the outer periphery of the main surface to the center of the main surface of the GaN single crystal substrate. This also includes shapes that are not necessarily the same due to the shape of the GaN single crystal that is the raw material.
 本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また結晶学上の指数が負であることは、通常、“-(バー)”を数字の上に付すことによって表現されるが、本明細書では数字の前に負の符号を付している。 In the crystallographic descriptions in this specification, individual orientations are indicated by [], collective orientations are indicated by <>, individual planes are indicated by (), and collective planes are indicated by {}, respectively. Also, the fact that the crystallographic index is negative is usually expressed by adding a "- (bar)" above the number, but in this specification, a negative sign is added in front of the number. .
 〔窒化ガリウム単結晶基板〕
 本実施形態に係る窒化ガリウム単結晶基板は、第1の主表面および第2の主表面を備えたGaN単結晶基板である。上記GaN単結晶基板の直径は、50mm以上である。上記第1の主表面は、ガリウム極性面であり、上記第2の主表面は、窒素極性面である。上記第1の主表面および上記第2の主表面は、円形状を有する。上記GaN単結晶基板において、これを構成するGaN単結晶の(0001)面は、上記第1の主表面側から上記第2の主表面側へ向かって凸となる球面状の湾曲面であり、かつ6m以上の曲率半径を有する。さらに第1の主表面は、複数のピット痕跡を有する。上記ピット痕跡の密度は、0.1個/cm2以上100個/cm2以下である。このような特徴を有するGaN単結晶基板は、これを構成するGaN単結晶の(0001)面の曲率半径が6m以上と大きいため、上記第1の主表面の領域毎の特性がバラツキなく均一となり、もってデバイス特性を向上させることができる。
[Gallium nitride single crystal substrate]
The gallium nitride single crystal substrate according to this embodiment is a GaN single crystal substrate including a first main surface and a second main surface. The diameter of the GaN single crystal substrate is 50 mm or more. The first main surface is a gallium polar surface, and the second main surface is a nitrogen polar surface. The first main surface and the second main surface have circular shapes. In the GaN single crystal substrate, the (0001) plane of the GaN single crystal constituting the substrate is a spherical curved surface that is convex from the first main surface side to the second main surface side, and has a radius of curvature of 6 m or more. Additionally, the first major surface has a plurality of pit marks. The density of the pit traces is 0.1 pieces/cm 2 or more and 100 pieces/cm 2 or less. In a GaN single crystal substrate having such characteristics, the radius of curvature of the (0001) plane of the GaN single crystal constituting the substrate is as large as 6 m or more, so that the characteristics of each region of the first main surface are uniform without variation. , thereby improving device characteristics.
 本実施形態に係るGaN単結晶基板において、これを構成するGaN単結晶の(0001)面の曲率半径を、6m以上と大きくすることができる理由は、次のとおりである。すなわち本開示において本発明者らは、上記GaN単結晶基板を構成するGaN単結晶に関し、次の第1成長条件および第2成長条件を含むHVPE法により成長させた。上記第1成長条件は、成長面に100個/cm2を超える密度でピットが形成されたGaN単結晶層を得る目的で、下地基板の表面の少なくとも一部に配置した窒化ガリウム膜において、所定の塩化ガリウムガス分圧、アンモニアガス分圧、成長温度および成長速度でGaN単結晶層(第1層)を成長させる条件である。上記第2成長条件は、成長面に0.1個/cm2以上100個/cm2以下の密度でピットが形成されたGaN単結晶層を得る目的で、上記第1層において、所定の塩化ガリウムガス分圧、アンモニアガス分圧、成長温度および成長速度でGaN単結晶層(第2層)を成長させる条件である。ここで本明細書において「成長面」とは、上記HVPE法を実行することによってGaN単結晶が成長していく成長方向(たとえば[0001]方向)に位置する上記GaN単結晶の表面をいう。 In the GaN single crystal substrate according to this embodiment, the reason why the radius of curvature of the (0001) plane of the GaN single crystal constituting the substrate can be increased to 6 m or more is as follows. That is, in the present disclosure, the present inventors grew a GaN single crystal constituting the GaN single crystal substrate using the HVPE method including the following first growth conditions and second growth conditions. The first growth conditions described above are for the purpose of obtaining a GaN single crystal layer in which pits are formed at a density of more than 100 pits/cm 2 on the growth surface. These are the conditions for growing a GaN single crystal layer (first layer) under the following conditions: gallium chloride gas partial pressure, ammonia gas partial pressure, growth temperature, and growth rate. The above second growth conditions are such that a predetermined chloride concentration is applied to the first layer in order to obtain a GaN single crystal layer in which pits are formed on the growth surface at a density of 0.1 pits/cm 2 to 100 pits/cm 2 . The conditions are a gallium gas partial pressure, an ammonia gas partial pressure, a growth temperature, and a growth rate to grow a GaN single crystal layer (second layer). Here, in this specification, the term "growth surface" refers to the surface of the GaN single crystal located in the growth direction (eg, [0001] direction) in which the GaN single crystal grows by performing the HVPE method.
 上記第1成長条件により得られるGaN単結晶(第1層)は、上記ピットの底に転位が集中し、かつ上記ピットの周辺の転位が低減することによって単結晶全体として低転位化することができる。さらに上記第2成長条件により得られるGaN単結晶(第2層)は、その成長面に上述した密度でピットが残存するため、応力が発生しづらく、もって上記GaN単結晶(第2層)から切り出したGaN単結晶の反りを抑えることができる。とりわけ上記GaN単結晶(第2層)は、上記GaN単結晶(第1層)の転位密度を引き継ぎ、かつ成長に伴って更に低転位化される。したがって上記GaN単結晶(第2層)から切り出したGaN単結晶は、その反りが抑えられるとともに低転位であるという特徴を備えることができる。 In the GaN single crystal (first layer) obtained under the above first growth conditions, dislocations concentrate at the bottoms of the pits, and dislocations around the pits are reduced, so that the single crystal as a whole has a low dislocation level. can. Furthermore, the GaN single crystal (second layer) obtained under the second growth condition has pits remaining at the above-mentioned density on its growth surface, making it difficult for stress to occur. Warpage of the cut GaN single crystal can be suppressed. In particular, the GaN single crystal (second layer) inherits the dislocation density of the GaN single crystal (first layer), and as it grows, the dislocation density is further reduced. Therefore, the GaN single crystal cut out from the GaN single crystal (second layer) can be characterized by suppressed warpage and low dislocation.
 以上から本開示においては、第1成長条件および第2成長条件を採用したHVPE法を用いてGaN単結晶を製造することにより、低転位であって、かつその反りが抑えられるために、(0001)面の曲率半径を6m以上と大きくすることができる。これにより、上記GaN単結晶から第1の主表面の領域毎の特性がバラツキなく均一であるGaN単結晶基板を得ることができ、もって上記GaN単結晶基板においてデバイス特性を向上させることができる。 From the above, in the present disclosure, by manufacturing a GaN single crystal using the HVPE method employing the first growth condition and the second growth condition, the GaN single crystal has low dislocations and its warpage is suppressed. ) The radius of curvature of the surface can be increased to 6 m or more. Thereby, it is possible to obtain a GaN single crystal substrate in which the characteristics of each region of the first main surface are uniform without variation from the GaN single crystal, thereby improving device characteristics in the GaN single crystal substrate.
 (直径)
 上記GaN単結晶基板の直径は、50mm以上である。上記GaN単結晶基板の直径は、50mm以上155mm以下であることが好ましい。換言すれば、GaN単結晶基板1の直径は、2~6インチであることが好ましい。ここで上記直径については、上記基板がOF、IF等の影響によって幾何学的な円形状とはならない場合の形状であっても、当該基板は上記OF、IF等が形成される前の円形状を有するとみなして、その大きさ(直径)を求めるものとする。
(diameter)
The diameter of the GaN single crystal substrate is 50 mm or more. The diameter of the GaN single crystal substrate is preferably 50 mm or more and 155 mm or less. In other words, the diameter of GaN single crystal substrate 1 is preferably 2 to 6 inches. Here, regarding the above-mentioned diameter, even if the above-mentioned substrate does not have a geometric circular shape due to the influence of OF, IF, etc., the substrate has a circular shape before the above-mentioned OF, IF, etc. are formed. The size (diameter) shall be determined by assuming that it has a diameter.
 <第1の主表面および第2の主表面>
 (ガリウム極性面および窒素極性面)
 図1は、本実施形態に係る窒化ガリウム単結晶基板を説明する断面模式図である。図1に示すように、本実施形態に係る窒化ガリウム単結晶基板1は、第1の主表面11および第2の主表面21を備える。第1の主表面11は、ガリウム極性面であり、第2の主表面21は、窒素極性面である。つまり第1の主表面11は、窒化ガリウム単結晶基板1において、これを構成する窒化ガリウム単結晶の[0001]方向側に位置する主表面である。第2の主表面21は、窒化ガリウム単結晶基板1において、これを構成する窒化ガリウム単結晶の[000-1]方向側に位置する主表面である。上記窒化ガリウム単結晶基板1においては、第1の主表面11上に複数のピット痕跡を有する。とりわけ上記第1の主表面11における上記ピット痕跡に相当する領域の極性は、ガリウム極性であることが好ましい。換言すれば、上記第1の主表面11における上記ピット痕跡に相当する領域は、その製造工程において転位の集中等によって窒素極性面に反転することなく、ガリウム極性面で維持されることが好ましい。これにより第1の主表面11の領域が、ピット痕跡である領域か否かに関わらず、第1の主表面11上に各種の窒化物半導体デバイスを形成することが可能となる。なおピット痕跡については後述する。
<First main surface and second main surface>
(Gallium polar surface and nitrogen polar surface)
FIG. 1 is a schematic cross-sectional view illustrating a gallium nitride single crystal substrate according to this embodiment. As shown in FIG. 1, gallium nitride single crystal substrate 1 according to this embodiment includes a first main surface 11 and a second main surface 21. The first main surface 11 is a gallium polar surface, and the second main surface 21 is a nitrogen polar surface. That is, first main surface 11 is the main surface of gallium nitride single crystal substrate 1 located on the [0001] direction side of the gallium nitride single crystal that constitutes this. The second main surface 21 is a main surface located on the [000-1] direction side of the gallium nitride single crystal constituting the gallium nitride single crystal substrate 1. The gallium nitride single crystal substrate 1 has a plurality of pit traces on the first main surface 11. In particular, the polarity of the region corresponding to the pit trace on the first main surface 11 is preferably gallium polarity. In other words, it is preferable that the region corresponding to the pit trace on the first main surface 11 be maintained as a gallium polar plane without being reversed to a nitrogen polar plane due to concentration of dislocations or the like during the manufacturing process. This makes it possible to form various nitride semiconductor devices on the first main surface 11 regardless of whether the region of the first main surface 11 is a pit trace region or not. The pit traces will be described later.
 ((0001)面)
 図1示すようにGaN単結晶基板1において、これを構成するGaN単結晶の(0001)面31は、第1の主表面11側から第2の主表面21側へ向かって凸となる球面状の湾曲面であり、かつ6m以上の曲率半径を有する。上記(0001)面31は、11m以上の曲率半径を有することが好ましい。これにより第1の主表面11の領域毎の特性がバラツキなく均一となり、もってデバイス特性を向上させることができる。
((0001) plane)
As shown in FIG. 1, in the GaN single crystal substrate 1, the (0001) plane 31 of the GaN single crystal constituting the substrate has a spherical shape that is convex from the first main surface 11 side to the second main surface 21 side. It is a curved surface with a radius of curvature of 6 m or more. Preferably, the (0001) plane 31 has a radius of curvature of 11 m or more. This makes the characteristics of each region of the first main surface 11 uniform without variation, thereby improving device characteristics.
 ここで本明細書において第1の主表面11側から第2の主表面21側へ向かって凸となる「球面状の湾曲面」とは、当該湾曲面が厳密な球面を呈するかどうかを問わず、第1の主表面11側から第2の主表面21側の中心へ向かって凸状となる湾曲した面であることを意味する。このため本明細書においてGaN単結晶の(0001)面31の曲率半径は、上記湾曲面が厳密な球面を呈する場合に求めることができる厳密値ではなく、次のような方法によって求められる近似値として示される。 Here, in this specification, a "spherical curved surface" that is convex from the first main surface 11 side to the second main surface 21 side refers to whether or not the curved surface exhibits a strictly spherical surface. First, it means a curved surface that is convex from the first main surface 11 side toward the center of the second main surface 21 side. Therefore, in this specification, the radius of curvature of the (0001) plane 31 of the GaN single crystal is not an exact value that can be obtained when the curved surface exhibits a strictly spherical surface, but an approximate value that can be obtained by the following method. is shown as
 以下、上記GaN単結晶基板におけるGaN単結晶の(0001)面31の曲率半径を求める方法について、図2に基づいて説明する。図2は、本実施形態に係る窒化ガリウム単結晶基板に関し、これを構成するGaN単結晶の(0001)面の曲率半径を求めるためのXRD解析に用いる測定箇所(つまりX線を照射する測定点の位置)について説明する説明図である。なお上記「XRD解析」とは、X線回折法を用いた解析の略記である。 Hereinafter, a method for determining the radius of curvature of the (0001) plane 31 of the GaN single crystal in the GaN single crystal substrate will be explained based on FIG. 2. FIG. 2 relates to the gallium nitride single crystal substrate according to the present embodiment, and shows measurement points used in XRD analysis to determine the radius of curvature of the (0001) plane of the GaN single crystal constituting the substrate (i.e. measurement points irradiated with X-rays). FIG. Note that the above-mentioned "XRD analysis" is an abbreviation for analysis using X-ray diffraction method.
 まず、たとえば後述する製造方法に従って第1の主表面11および第2の主表面を備えるGaN単結晶基板1を得ることにより、測定対象とするGaN単結晶基板1を準備する。このGaN単結晶基板1に対し下記条件の下でX線回折法を用いた解析(XRD解析)を実行する。具体的には、下記条件のXRD解析を、当該GaN単結晶基板1の第1の主表面11の中心Oの測定点M0、上記中心Oから[1-100]方向の各外周端から5mm内側の2点の測定点M1およびM2、および上記中心Oから[11-20]方向の各外周端から5mm内側の2点の測定点M3およびM4の合計5点に対して実行することにより、上記5点におけるGaN単結晶の(0001)面に対する傾斜角を測定する。ここで上記「傾斜角」とは、GaN単結晶の<0001>方向と平行な方向に延びる直線(ベクトル)と、第1の主表面11状の上記5点の測定点M0、M1、M2、M3およびM4それぞれにおける第1の主表面11に対する法線(ベクトル)との交差角を意味する。 First, a GaN single crystal substrate 1 to be measured is prepared, for example, by obtaining a GaN single crystal substrate 1 having a first main surface 11 and a second main surface according to a manufacturing method described later. Analysis using an X-ray diffraction method (XRD analysis) is performed on this GaN single crystal substrate 1 under the following conditions. Specifically, XRD analysis under the following conditions was performed at a measurement point M0 at the center O of the first main surface 11 of the GaN single crystal substrate 1, and at a point 5 mm inside from each outer peripheral end in the [1-100] direction from the center O. By performing the above measurement for a total of 5 points, 2 measurement points M1 and M2, and 2 measurement points M3 and M4 5 mm inside from each outer peripheral edge in the [11-20] direction from the center O. The inclination angle with respect to the (0001) plane of the GaN single crystal at five points is measured. Here, the above-mentioned "tilt angle" refers to a straight line (vector) extending in a direction parallel to the <0001> direction of the GaN single crystal, and the above-mentioned five measurement points M0, M1, M2 on the first main surface 11, It means the intersection angle with the normal (vector) to the first main surface 11 in each of M3 and M4.
 次いで、上記XRD解析から得られる上記測定点M0における傾斜角と、[1-100]方向および[11-20]方向の各外周端から5mm内側の4点の測定点M1、M2、M3およびM4における傾斜角それぞれとから、4つの曲率半径に対応する数値(曲率半径値)を、三角関数を用いた従来公知の計算式に基づいて算出する。つまり上記測定点M0および測定点M1における各傾斜角から上記の計算式に基づいて第1の曲率半径値を算出し、同じ要領にて上記測定点M0および測定点M2における各傾斜角から第2の曲率半径値を、上記測定点M0および測定点M3における各傾斜角から第3の曲率半径値を、ならびに上記測定点M0および測定点M4における各傾斜角から第4の曲率半径値を、それぞれ算出する。最後に、上記4つの曲率半径値(第1の曲率半径値~第4の曲率半径値)を平均化することにより得た数値を、上記GaN単結晶基板におけるGaN単結晶の(0001)面31の曲率半径として求めることができる。 Next, the inclination angle at the measurement point M0 obtained from the XRD analysis and the four measurement points M1, M2, M3, and M4 located 5 mm inside from each outer peripheral edge in the [1-100] direction and the [11-20] direction. Numerical values (curvature radius values) corresponding to the four radii of curvature are calculated from each of the inclination angles at , based on a conventionally known formula using trigonometric functions. That is, the first radius of curvature value is calculated from each inclination angle at the measurement point M0 and measurement point M1 based on the above calculation formula, and the second radius of curvature value is calculated from each inclination angle at the measurement point M0 and measurement point M2 in the same way. A third radius of curvature value from each inclination angle at the measurement point M0 and measurement point M3, and a fourth radius of curvature value from each inclination angle at the measurement point M0 and measurement point M4, respectively. calculate. Finally, the value obtained by averaging the four radius of curvature values (first radius of curvature value to fourth radius of curvature value) is calculated using the (0001) plane 31 of the GaN single crystal in the GaN single crystal substrate. It can be found as the radius of curvature of
 上記曲率半径を求めるのに用いるXRD解析の条件は、以下のとおりである。なお回折面は、(0002)面である。下記条件において(0001)面は、禁制反射によって現れないためである。上記傾斜角は、測定対象とするGaN単結晶基板1を、下記条件の下でθ方向に回転(ωスキャン)し、上記測定点M0~測定点M4の合計5点におけるX線回折ピークが得られる回折角度をそれぞれ特定することにより、当該回折角度に基づいて求めることができる。
解析装置: 商品名(品番)「X’pert PRO MDR」、PANalytical社製
X線光源: Cu-Kα線(波長:1.5405Å)
第1の主表面へのX線入射角: θ(17.28°)
入射スリット幅:0.1mm×0.1mm
モノクロメータ・コリメータ結晶:4個のGe(220)結晶を使用。
The conditions of the XRD analysis used to determine the radius of curvature are as follows. Note that the diffraction plane is a (0002) plane. This is because the (0001) plane does not appear due to forbidden reflection under the following conditions. The above inclination angle is determined by rotating the GaN single crystal substrate 1 to be measured in the θ direction (ω scan) under the following conditions, and obtaining X-ray diffraction peaks at a total of 5 points from the above measurement point M0 to measurement point M4. By specifying the respective diffraction angles, it is possible to determine based on the diffraction angles.
Analysis device: Product name (product number) "X'pert PRO MDR", manufactured by PANalytical X-ray light source: Cu-Kα ray (wavelength: 1.5405 Å)
X-ray incident angle on the first main surface: θ (17.28°)
Incidence slit width: 0.1mm x 0.1mm
Monochromator/collimator crystal: Uses 4 Ge(220) crystals.
 (ピット痕跡)
 上記第1の主表面は、複数のピット痕跡を有する。上記ピット痕跡の密度は、0.1個/cm2以上100個/cm2以下である。上記ピット痕跡の密度は、1個/cm2以上100個/cm2以下であることが好ましい。これによりGaN単結晶基板を構成するGaN単結晶の(0001)面の曲率半径を6m以上とすることができる。
(Pit trace)
The first main surface has a plurality of pit traces. The density of the pit traces is 0.1 pieces/cm 2 or more and 100 pieces/cm 2 or less. The density of the pit traces is preferably 1 piece/cm 2 or more and 100 pieces/cm 2 or less. This allows the radius of curvature of the (0001) plane of the GaN single crystal constituting the GaN single crystal substrate to be 6 m or more.
 本明細書において「ピット痕跡」という用語中の「ピット」とは、上記HVPE法によって(0001)面を成長面としてGaN単結晶を成長させた場合の上記成長面において、所謂ファセット構造の間に囲まれることによって形成される逆六角錐形状または逆十二角錐形状の凹みをいう。さらに「ピット痕跡」とは、上記GaN単結晶基板の第1の主表面を蛍光顕微鏡を用いて観察した場合において、上記成長面に形成されたピットに対応する上記第1の主表面上の領域に、上記ピットの痕跡として現れる略正六角形状または略正十二角形状の像をいう。ここで上記第1の主表面は、上記成長面に対し研削、研磨、ドライエッチング等の表面加工を実行することにより、上述のようにGaN単結晶基板における[0001]方向側の主表面であるガリウム極性面として得ることができる。以下、本実施形態に係るGaN単結晶基板における「ピット痕跡」の詳細について、図3~図6を参照しつつ説明する。 In this specification, the term "pit" in the term "pit trace" refers to a gap between the so-called facet structures on the growth plane when a GaN single crystal is grown using the (0001) plane as the growth plane by the HVPE method. A concavity formed by being surrounded by an inverted hexagonal pyramid or an inverted dodecagonal pyramid. Furthermore, "pit traces" refer to regions on the first main surface corresponding to pits formed on the growth surface when the first main surface of the GaN single crystal substrate is observed using a fluorescence microscope. This refers to an approximately regular hexagonal or approximately regular dodecagonal image that appears as a trace of the pit. Here, the first main surface is the main surface on the [0001] direction side of the GaN single crystal substrate, as described above, by performing surface processing such as grinding, polishing, and dry etching on the growth surface. It can be obtained as a gallium polar plane. Details of the "pit traces" in the GaN single crystal substrate according to this embodiment will be described below with reference to FIGS. 3 to 6.
 図3は、本実施形態に係る窒化ガリウム単結晶基板にピット痕跡が存する理由について説明する説明図である。図4は、本実施形態に係る窒化ガリウム単結晶基板の第1の主表面に存するピット痕跡の分布を模式的に表した模式図である。図5は、ピット痕跡の蛍光顕微鏡像を示す図面代用写真である。図6は、図5のピット痕跡の蛍光顕微鏡像を拡大した図面代用写真である。 FIG. 3 is an explanatory diagram illustrating the reason why pit traces exist in the gallium nitride single crystal substrate according to the present embodiment. FIG. 4 is a schematic diagram schematically showing the distribution of pit traces existing on the first main surface of the gallium nitride single crystal substrate according to the present embodiment. FIG. 5 is a photograph substituted for a drawing showing a fluorescence microscopic image of pit traces. FIG. 6 is a photograph substituted for a drawing, which is an enlarged fluorescence microscopic image of the pit trace shown in FIG.
 本実施形態に係るGaN単結晶基板は、後述する〔窒化ガリウム単結晶基板の製造方法〕の項目において説明するように、HVPE法を用いた次の成長条件を含む製造工程を経ることによってGaN単結晶を得ることにより、当該GaN単結晶からなるGaN単結晶基板として得ることができる。上記製造工程は、ピットの底に転位を集中させることによって上記ピットの周辺の転位を低減させる第1成長条件と、上記ピットをGaN単結晶で埋込む比率を制御しながらGaN単結晶を成長させる第2成長条件とを含む。とりわけ図3中の2点鎖線で示すように、上記第2成長条件を経ることにより得られるGaN単結晶100(後述する〔窒化ガリウム単結晶基板の製造方法〕の項目における「第2層」に相当するもの)は、成長面(以下、第2層の成長面を「第2成長面」とも記す)10に0.1個/cm2以上100個/cm2以下の密度でピットPを有する。ここで図3において2点鎖線で示すGaN単結晶100は、第2成長条件による成長工程が実行された後に従来公知の手段により下地基板から切り離された状態を表している。 The GaN single-crystal substrate according to the present embodiment is produced by passing through a manufacturing process including the following growth conditions using the HVPE method, as explained in the section [Manufacturing method of gallium nitride single-crystal substrate] described below. By obtaining the crystal, a GaN single crystal substrate made of the GaN single crystal can be obtained. The manufacturing process includes first growth conditions that reduce dislocations around the pits by concentrating dislocations at the bottoms of the pits, and growing GaN single crystals while controlling the ratio of filling the pits with GaN single crystals. and a second growth condition. In particular, as shown by the double-dashed line in FIG. The growth surface (hereinafter, the growth surface of the second layer is also referred to as "second growth surface") has pits P at a density of 0.1 pits/cm 2 or more and 100 pits/cm 2 or less. . Here, the GaN single crystal 100 shown by the two-dot chain line in FIG. 3 represents a state in which it has been separated from the underlying substrate by conventionally known means after the growth process under the second growth condition has been performed.
 さらに、GaN単結晶100の第2成長面10に対し研削、研磨、ドライエッチング等の表面加工を実行することにより、図3において実線で示す第1の主表面11および第2の主表面21を備えるGaN単結晶基板1を得ることができる。このGaN単結晶基板1は、第1の主表面11を蛍光顕微鏡を用いて観察した場合、第2成長面10に形成されたピットPに対応する第1の主表面11上の領域に、複数のピット痕跡Tを存する。とりわけ第1の主表面11上のピット痕跡Tは、第2成長面10に形成されたピットPに対応するので、第1の主表面11におけるピット痕跡Tの密度は、上記ピットPの密度に対応して0.1個/cm2以上100個/cm2以下となる。たとえば第1の主表面11においてピット痕跡Tは、図4に示すような分布を示す。上記ピット痕跡Tの密度が上述した範囲である場合、上述のようにGaN単結晶100に応力が発生しづらく、もってGaN単結晶100から切り出すことにより得たGaN単結晶基板1において、これを構成するGaN単結晶の(0001)面の曲率半径を6m以上とすることができる。ピット痕跡Tの密度が0.1個/cm2未満である場合、GaN単結晶100に発生した応力によって、GaN単結晶基板1を構成するGaN単結晶の(0001)面の曲率半径を6m以上とすることが困難となる。ピット痕跡Tの密度が100個/cm2を超える場合、GaN単結晶基板1を構成するGaN単結晶中のピットの多さに起因して転位密度が高くなるため、デバイス特性を向上させることが困難となる。 Furthermore, by performing surface processing such as grinding, polishing, and dry etching on the second growth surface 10 of the GaN single crystal 100, the first main surface 11 and the second main surface 21 shown by solid lines in FIG. A GaN single crystal substrate 1 can be obtained. When the first main surface 11 of this GaN single crystal substrate 1 is observed using a fluorescence microscope, a plurality of There are pit traces T. In particular, the pit traces T on the first main surface 11 correspond to the pits P formed on the second growth surface 10, so the density of the pit traces T on the first main surface 11 is equal to the density of the pits P. Correspondingly, it is 0.1 pieces/cm 2 or more and 100 pieces/cm 2 or less. For example, the pit traces T on the first main surface 11 exhibit a distribution as shown in FIG. When the density of the pit traces T is within the above-mentioned range, it is difficult to generate stress in the GaN single crystal 100 as described above. The radius of curvature of the (0001) plane of the GaN single crystal can be set to 6 m or more. When the density of pit traces T is less than 0.1 pieces/cm 2 , the stress generated in the GaN single crystal 100 causes the radius of curvature of the (0001) plane of the GaN single crystal forming the GaN single crystal substrate 1 to be 6 m or more. It becomes difficult to do so. If the density of pit traces T exceeds 100 pieces/cm 2 , the dislocation density increases due to the large number of pits in the GaN single crystal constituting the GaN single crystal substrate 1, so it is difficult to improve device characteristics. It becomes difficult.
 ここでピット痕跡Tは、図5および図6に示すように略正六角形状または略正十二角形状を有する。ピット痕跡Tの直径は、200μm以下であることが好ましい。これによりピット痕跡Tに対応するGaN単結晶中のピットに転位が過剰に集中することがないため、デバイス特性を向上させることが容易となる。ピット痕跡Tの直径は、100μm以下であることがより好ましい。ピット痕跡Tの直径の下限については、特に制限されないがこの種のGaN単結晶基板1を得ることに鑑みれば、5μm以上であることが現実的である。本明細書においてピット痕跡Tの「直径」とは、ピット痕跡Tの略正六角形状または略正十二角形状の外郭線上において、最も離れた2点間の距離を意味するものとする。 Here, the pit trace T has a substantially regular hexagonal shape or a substantially regular dodecagonal shape, as shown in FIGS. 5 and 6. The diameter of the pit trace T is preferably 200 μm or less. This prevents dislocations from excessively concentrating on the pits in the GaN single crystal corresponding to the pit traces T, making it easy to improve device characteristics. The diameter of the pit trace T is more preferably 100 μm or less. The lower limit of the diameter of the pit trace T is not particularly limited, but in view of obtaining this type of GaN single crystal substrate 1, it is realistic to set it to 5 μm or more. In this specification, the "diameter" of the pit trace T shall mean the distance between two points that are farthest apart on the outline of the substantially regular hexagonal shape or the substantially regular dodecagonal shape of the pit trace T.
 以下、GaN単結晶基板におけるピット痕跡とその直径との両者を特定するための測定方法(以下、「蛍光顕微鏡像マッピング測定」とも記す)について説明する。上記HVPE法を用いて製造されたGaN単結晶からなるGaN単結晶基板の主表面のうち、ガリウム極性面においてはピット痕跡が存する領域とその他の領域とで不純物の濃度が異なることが従来より知られる。このため上記蛍光顕微鏡像マッピング測定を用い、ガリウム極性面である第1の主表面上に対し下記条件の波長の蛍光を照射することにより、上記不純物の濃度の濃淡を指標として第1の主表面上のピット痕跡およびその直径を特定することが可能となる。 Hereinafter, a measurement method (hereinafter also referred to as "fluorescence microscope image mapping measurement") for identifying both the pit trace and its diameter in a GaN single crystal substrate will be described. It has been known that the concentration of impurities is different between the region where pit traces exist and the other regions on the gallium polar plane of the main surface of a GaN single crystal substrate manufactured using the above-mentioned HVPE method. It will be done. For this reason, by using the above-mentioned fluorescence microscope image mapping measurement and irradiating the first main surface, which is the gallium polar surface, with fluorescence having a wavelength under the following conditions, the first main surface can be measured using the density of the impurity as an index. It becomes possible to identify the upper pit trace and its diameter.
 まず、たとえば後述する製造方法に従って第1の主表面および第2の主表面を備えるGaN単結晶基板を得ることにより、測定対象とするGaN単結晶基板を準備する。次に上記GaN単結晶基板の第1の主表面を、蛍光顕微鏡像マッピング装置(たとえば商品名:「LEICA DM6000M」、ライカ社製)を用い、下記条件、かつ1視野の大きさが2.5mm×1.9mmとなる倍率にて観察する。上記の観察は、GaN単結晶基板を移動させること等によって重複がないように、かつ余すところなく視野を設定し、第1の主表面の全面すべてを対象とする。たとえばGaN単結晶基板の直径が105mmである場合、視野の総数は41×54(=2214視野)である。ただし、1視野内に第1の主表面の外周およびその外側が現れる場合、当該視野についてはピット痕跡とその直径との両者を特定する対象から除外するものとする。GaN単結晶基板の外周近傍の領域は、通常、半導体デバイスの材料として用いられない領域となるからである。 First, a GaN single-crystal substrate to be measured is prepared by obtaining a GaN single-crystal substrate having a first main surface and a second main surface, for example, according to a manufacturing method described later. Next, the first main surface of the GaN single crystal substrate was scanned using a fluorescence microscope image mapping device (for example, product name: "LEICA DM6000M", manufactured by Leica) under the following conditions and with a field of view of 2.5 mm. Observe at a magnification of x1.9 mm. The above observation is carried out by moving the GaN single crystal substrate so that there is no overlap and setting a complete field of view, covering the entire first main surface. For example, when the diameter of the GaN single crystal substrate is 105 mm, the total number of fields of view is 41×54 (=2214 fields of view). However, if the outer periphery of the first main surface and its outside appear within one field of view, that field of view shall be excluded from the targets for specifying both the pit trace and its diameter. This is because the region near the outer periphery of the GaN single crystal substrate is usually not used as a material for semiconductor devices.
 上記蛍光顕微鏡像マッピング測定の各条件は、次のとおりである。
照射光:水銀ランプによる紫外励起(波長365nm)
蛍光波長領域:365~650nm
温度:室温(25℃)。
The conditions for the fluorescence microscopic image mapping measurement are as follows.
Irradiation light: Ultraviolet excitation using a mercury lamp (wavelength 365 nm)
Fluorescence wavelength range: 365-650nm
Temperature: room temperature (25°C).
 以上により、各視野にて特定したピット痕跡の個数とその直径から、GaN単結晶基板の第1の主表面におけるピット痕跡の1cm2当たりの密度および直径を求めることができる。 As described above, the density and diameter of pit traces per cm 2 on the first main surface of the GaN single crystal substrate can be determined from the number of pit traces identified in each field of view and their diameters.
 (転位密度)
 本実施形態に係るGaN単結晶基板の第1の主表面における転位密度の最大値は、3.0×106/cm2以下であることが好ましい。上記GaN単結晶基板の第1の主表面における転位密度の最大値は、2.5×106/cm2以下であることがより好ましく、2.0×106/cm2以下であることがさらに好ましい。これにより、自らを構成するGaN単結晶の(0001)面の曲率半径が6m以上と大きいGaN単結晶基板に対し、第1の主表面の低転位化を実現することができる。
(dislocation density)
The maximum value of the dislocation density on the first main surface of the GaN single crystal substrate according to this embodiment is preferably 3.0×10 6 /cm 2 or less. The maximum value of the dislocation density on the first main surface of the GaN single crystal substrate is more preferably 2.5×10 6 /cm 2 or less, and preferably 2.0×10 6 /cm 2 or less. More preferred. As a result, it is possible to achieve low dislocations on the first main surface of a GaN single crystal substrate in which the radius of curvature of the (0001) plane of the GaN single crystal that constitutes the substrate is as large as 6 m or more.
 本明細書において「転位」および「転位密度」とは、第1の主表面に対し多光子励起フォトルミネッセンス法を適用することにより識別される貫通転位である「欠陥」、および「当該欠陥の第1の主表面1cm2当たりの個数」をそれぞれ意味する。上記「欠陥」は、多光子励起顕微鏡等によりGaN単結晶基板の第1の主表面を観察した場合に暗点として現れる。上記「欠陥」は、学術的には転位と同義ではないが、本技術分野において転位と等価なものとして捉えることができる。 In this specification, "dislocations" and "dislocation density" refer to "defects" which are threading dislocations identified by applying multiphoton excitation photoluminescence to the first main surface, and "defects" which are threading dislocations identified by applying multiphoton excitation photoluminescence to the first main surface, and The number of pieces per 1 cm 2 of the main surface of 1. The above-mentioned "defects" appear as dark spots when the first main surface of the GaN single crystal substrate is observed using a multiphoton excitation microscope or the like. Although the above-mentioned "defect" is not academically synonymous with dislocation, it can be regarded as equivalent to dislocation in this technical field.
 さらに上記欠陥の第1の主表面1cm2当たりの個数は、次の方法により求めることができる。まず後述する製造方法によりGaN単結晶基板を製造する。次にGaN単結晶基板の第1の主表面を、多光子励起顕微鏡を用いて観察する。上記の観察は、対物レンズ5倍でCCD上に結像することにより行うことができる。この場合、1視野の大きさが2.5mm×2.0mmとなるため、その中央部分(0.1mm×0.1mmのサイズ)の拡大した画像に現れた欠陥をカウントし、かつこれを単位面積となる1cm2の大きさに換算する(すなわち10000倍する)。ただし、拡大した上記画像の画質が悪い場合、上記対物レンズの倍率を100倍とすることによって高倍率画像を得、当該高倍率画像の中央部分(0.1mm×0.1mmのサイズ)の欠陥をカウントし、かつこれを単位面積となる1cm2の大きさに換算する。以上により、観察した視野の「欠陥の第1の主表面1cm2当たりの個数」を求めることができる。なお、欠陥を撮像するときの対物レンズの倍率は、たとえば1視野あたりの欠陥の数が100個程度になるように適宜変えることが好ましい。上記欠陥の第1の主表面1cm2当たりの個数は、GaN単結晶基板を移動させること等によって重複がないように、かつ余すところなく視野を設定し、主表面の全面すべてを対象として算出する。ただし、1視野内に第1の主表面の外周およびその外側が現れる場合、当該視野については欠陥の第1の主表面1cm2当たりの個数を算出する対象から除外するものとする。GaN単結晶基板の外周近傍の領域は、基板毎に欠陥の数の変動が大きく、かつ通常、半導体デバイスの材料として用いられない領域となるからである。 Further, the number of defects per 1 cm 2 of the first main surface can be determined by the following method. First, a GaN single crystal substrate is manufactured by a manufacturing method described later. Next, the first main surface of the GaN single crystal substrate is observed using a multiphoton excitation microscope. The above observation can be performed by forming an image on the CCD with a 5x objective lens. In this case, the size of one field of view is 2.5 mm x 2.0 mm, so the defects that appear in the enlarged image of the central part (size of 0.1 mm x 0.1 mm) are counted and this is calculated as a unit. Convert it to the area of 1 cm 2 (that is, multiply by 10,000). However, if the image quality of the enlarged image is poor, a high magnification image can be obtained by increasing the magnification of the objective lens to 100 times, and defects in the central part (0.1 mm x 0.1 mm size) of the high magnification image can be detected. and convert it to the size of 1 cm 2 , which is the unit area. As described above, the "number of defects per 1 cm 2 of the first main surface" in the observed field of view can be determined. Note that the magnification of the objective lens when imaging defects is preferably changed as appropriate so that the number of defects per field of view is approximately 100, for example. The number of defects mentioned above per 1 cm 2 of the first main surface is calculated by moving the GaN single crystal substrate so that there are no duplications and setting a complete field of view, covering the entire main surface. . However, if the outer periphery of the first main surface and the outside thereof appear within one field of view, that field of view shall be excluded from the calculation of the number of defects per 1 cm 2 of the first main surface. This is because the region near the outer periphery of a GaN single crystal substrate has large variations in the number of defects from substrate to substrate, and is usually a region that is not used as a material for semiconductor devices.
 以上により、各視野にて求めた欠陥の第1の主表面1cm2当たりの個数から、GaN単結晶基板における欠陥の第1の主表面1cm2当たりの個数の面内分布を把握することができ、もってGaN単結晶基板(第1の主表面)における転位密度の最大値を求めることができる。 As described above, it is possible to grasp the in-plane distribution of the number of defects per 1 cm 2 of the first main surface in the GaN single crystal substrate from the number of defects per 1 cm 2 of the first main surface determined in each field of view. , the maximum value of dislocation density in the GaN single crystal substrate (first main surface) can be determined.
 〔窒化ガリウム単結晶基板の製造方法〕
 本実施形態に係る窒化ガリウム単結晶基板(GaN単結晶基板)の製造方法は、上述した第1の主表面および第2の主表面を備えたGaN単結晶基板の製造方法であることが好ましい。上記製造方法は、表面の少なくとも一部に窒化ガリウム膜を配置した下地基板を準備する工程と、上記窒化ガリウム膜において、窒化ガリウム単結晶を第1成長条件の下で成長させることにより、上記窒化ガリウム膜上に第1層を形成する工程と、上記第1層において、上記窒化ガリウム単結晶を第2成長条件の下で成長させることにより、上記第1層上に第2層を形成する工程と、上記第2層を切り出すことによって上記窒化ガリウム単結晶基板を得る工程と、を含む。上記第1層の成長面は、100個/cm2を超えるピット密度を有する。上記第2層の成長面は、0.1個/cm2以上100個/cm2以下のピット密度を有する。上記第1成長条件は、0.1kPa以上20kPa以下の塩化ガリウムガス分圧と、0.5kPa以上50kPa以下のアンモニアガス分圧と、900℃以上1100℃以下の成長温度と、10μm/時以上300μm/時以下の成長速度とを有する。上記第2成長条件は、1kPa以上50kPa以下の塩化ガリウムガス分圧と、1kPa以上100kPa以下のアンモニアガス分圧と、900℃以上1100℃以下の成長温度と、50μm/時以上500μm/時以下の成長速度とを有する。上記第1成長条件の成長温度は、上記第2成長条件の成長温度よりも低い。
[Method for manufacturing gallium nitride single crystal substrate]
The method for manufacturing a gallium nitride single crystal substrate (GaN single crystal substrate) according to this embodiment is preferably a method for manufacturing a GaN single crystal substrate having the above-described first main surface and second main surface. The above manufacturing method includes a step of preparing a base substrate having a gallium nitride film disposed on at least a portion of the surface thereof, and growing a gallium nitride single crystal in the gallium nitride film under first growth conditions. a step of forming a first layer on the gallium film; and a step of forming a second layer on the first layer by growing the gallium nitride single crystal under second growth conditions in the first layer. and obtaining the gallium nitride single crystal substrate by cutting out the second layer. The growth surface of the first layer has a pit density of more than 100 pits/cm 2 . The growth surface of the second layer has a pit density of 0.1 pits/cm 2 or more and 100 pits/cm 2 or less. The first growth conditions are a gallium chloride gas partial pressure of 0.1 kPa or more and 20 kPa or less, an ammonia gas partial pressure of 0.5 kPa or more and 50 kPa or less, a growth temperature of 900°C or more and 1100°C or less, and a growth rate of 10 μm/hour or more and 300 μm or less. It has a growth rate of less than /hour. The second growth conditions are a gallium chloride gas partial pressure of 1 kPa or more and 50 kPa or less, an ammonia gas partial pressure of 1 kPa or more and 100 kPa or less, a growth temperature of 900°C or more and 1100°C or less, and a growth temperature of 50 μm/hour or more and 500 μm/hour or less. growth rate. The growth temperature under the first growth condition is lower than the growth temperature under the second growth condition.
 とりわけ上記第1成長条件は、1kPa以上5kPa以下の塩化ガリウムガス分圧と、5kPa以上20kPa以下のアンモニアガス分圧と、950℃以上1050℃以下の成長温度と、10μm/時以上200μm/時以下の成長速度とを有することが好ましい。上記第2成長条件は、3kPa以上10kPa以下の塩化ガリウムガス分圧と、5kPa以上50kPa以下のアンモニアガス分圧と、1000℃以上1100℃以下の成長温度と、50μm/時以上400μm/時以下の成長速度とを有することが好ましい。このような特徴を有する製造方法により、上記第1の主表面の領域毎の特性がバラツキなく均一となってデバイス特性を向上させることが可能なGaN単結晶基板を得ることができる。 In particular, the first growth conditions are a gallium chloride gas partial pressure of 1 kPa or more and 5 kPa or less, an ammonia gas partial pressure of 5 kPa or more and 20 kPa or less, a growth temperature of 950° C. or more and 1050° C. or less, and 10 μm/hour or more and 200 μm/hour or less. It is preferable to have a growth rate of . The second growth conditions are a gallium chloride gas partial pressure of 3 kPa or more and 10 kPa or less, an ammonia gas partial pressure of 5 kPa or more and 50 kPa or less, a growth temperature of 1000°C or more and 1100°C or less, and a growth temperature of 50 μm/hour or more and 400 μm/hour or less. It is preferable to have a growth rate. By using a manufacturing method having such characteristics, it is possible to obtain a GaN single crystal substrate in which the characteristics of each region of the first main surface are uniform without variation, and the device characteristics can be improved.
 上記GaN単結晶基板の製造方法は、上述した効果を有するGaN単結晶基板を歩留まりよく製造する観点から、たとえば図7のフローチャートに示すような工程を有することが好ましい。図7は、本実施形態に係る窒化ガリウム単結晶基板の製造方法の一例を示すフローチャートである。すなわち上記GaN単結晶基板の製造方法は、表面の少なくとも一部に窒化ガリウム膜を配置した下地基板を準備する工程S10(第1工程)と、上記窒化ガリウム膜において、GaN単結晶を第1成長条件の下で成長させることにより、上記窒化ガリウム膜上に第1層を形成する工程S20(第2工程)と、上記第1層において、上記GaN単結晶を第2成長条件の下で成長させることにより、上記第1層上に第2層を形成する工程S30(第3工程)と、上記第2層を切り出すことによって上記GaN単結晶基板を得る工程S40(第4工程)とを含む。以下、各工程について順に説明する。 The method for manufacturing a GaN single crystal substrate described above preferably includes steps as shown in the flowchart of FIG. 7, for example, from the viewpoint of manufacturing a GaN single crystal substrate having the above-mentioned effects with a high yield. FIG. 7 is a flowchart illustrating an example of a method for manufacturing a gallium nitride single crystal substrate according to this embodiment. In other words, the method for manufacturing the GaN single crystal substrate includes step S10 (first step) of preparing a base substrate on which a gallium nitride film is disposed on at least a portion of the surface, and a step of first growing a GaN single crystal in the gallium nitride film. Step S20 (second step) of forming a first layer on the gallium nitride film by growing it under conditions, and growing the GaN single crystal under second growth conditions in the first layer. This includes a step S30 (third step) of forming a second layer on the first layer, and a step S40 (fourth step) of obtaining the GaN single crystal substrate by cutting out the second layer. Each step will be explained in order below.
 <第1工程>
 第1工程は、表面の少なくとも一部に窒化ガリウム膜を配置した下地基板を準備する工程S10である。以下、本工程を、図8を用いて説明する。図8は、本実施形態に係る窒化ガリウム単結晶基板の製造方法において、窒化ガリウム膜上に第1層を形成する工程を実行するためにマスクを下地基板上に配置した様子を説明する断面模式図である。図8に示すように、第1工程においては、成長用基板41と、成長用基板41の表面の少なくとも一部に配置される窒化ガリウム膜(以下、「GaN膜」とも記す)42とからなる下地基板40が準備される。成長用基板41の材質としては、GaN膜42を成長させることができる材質である限り特に制限されない。たとえば成長用基板41としてはサファイア基板、ヒ化ガリウム(GaAs)基板などのGaNとは異なる材料(異種材料)を用いた異種基板を準備することができ、GaN(同種材料)を用いた同種基板を準備することもできる。その他、成長用基板41としては窒化アルミニウム(AlN)基板、炭化ケイ素(SiC)基板、ホウ化ジルコニウム(ZrB2)基板、酸化ケイ素/酸化アルミニウム(SiO2/Al23)焼結体基板、モリブデン(Mo)基板などを適用することもできる。これらの成長用基板41は、市場から入手することができ、あるいは従来公知の方法により製造することができる。GaN膜42については、これをMOCVD(有機金属化学気相堆積)法等の従来公知の方法により成長用基板41の少なくとも一部の表面上に配置することができる。
<First step>
The first step is step S10 of preparing a base substrate on which a gallium nitride film is disposed on at least a portion of the surface. This process will be explained below using FIG. 8. FIG. 8 is a schematic cross-sectional diagram illustrating how a mask is placed on a base substrate in order to perform the step of forming a first layer on a gallium nitride film in the method for manufacturing a gallium nitride single crystal substrate according to the present embodiment. It is a diagram. As shown in FIG. 8, the first step consists of a growth substrate 41 and a gallium nitride film (hereinafter also referred to as "GaN film") 42 disposed on at least a part of the surface of the growth substrate 41. Base substrate 40 is prepared. The material of the growth substrate 41 is not particularly limited as long as it is a material that allows the growth of the GaN film 42. For example, as the growth substrate 41, a heterogeneous substrate using a material different from GaN (different material) such as a sapphire substrate or a gallium arsenide (GaAs) substrate can be prepared, and a homogeneous substrate using GaN (the same material) can be prepared. You can also prepare. In addition, the growth substrate 41 includes an aluminum nitride (AlN) substrate, a silicon carbide (SiC) substrate, a zirconium boride (ZrB 2 ) substrate, a silicon oxide/aluminum oxide (SiO 2 /Al 2 O 3 ) sintered body substrate, A molybdenum (Mo) substrate or the like may also be used. These growth substrates 41 can be obtained from the market or manufactured by conventionally known methods. The GaN film 42 can be disposed on at least a portion of the surface of the growth substrate 41 by a conventionally known method such as MOCVD (metal organic chemical vapor deposition).
 さらに下地基板40のGaN膜42上には、後述する第1層となるGaN単結晶に、過剰数の転位が発生することを抑制するためのマスク43が配置される場合がある。マスク43は、従来公知の方法を用いてGaN膜42上に形成することができる。ここでマスク43のパターンは、上記GaN単結晶に過剰に多数の転位が発生することを抑制することができるパターンである限り特に制限されない。マスク43のパターンは、従来公知のパターンを採用することができ、たとえば遮蔽部と開口部とが交互に配置されることによって形成される格子状、水玉状またはストライプ状のパターン等を例示することができる。さらにマスク43は、たとえば次の方法により形成することができる。まず下地基板40の表面全面にプラズマCVD(Chemical Vapor Deposition)法等により化学蒸着膜(たとえばシリコン系の化学蒸着膜)を形成する。その後、当該化学蒸着膜上にフォトリソグラフィー法によりパターニングされたレジストを形成し、当該レジストをエッチングマスクとしたエッチングを行うことによってマスク43を形成することができる。 Further, a mask 43 may be disposed on the GaN film 42 of the base substrate 40 to suppress generation of an excessive number of dislocations in the GaN single crystal that will be the first layer to be described later. The mask 43 can be formed on the GaN film 42 using a conventionally known method. Here, the pattern of the mask 43 is not particularly limited as long as it is a pattern that can suppress generation of an excessive number of dislocations in the GaN single crystal. The pattern of the mask 43 can be a conventionally known pattern, such as a grid, dot or stripe pattern formed by alternately arranging shielding parts and openings. I can do it. Furthermore, the mask 43 can be formed, for example, by the following method. First, a chemical vapor deposition film (for example, a silicon-based chemical vapor deposition film) is formed on the entire surface of the base substrate 40 by a plasma CVD (Chemical Vapor Deposition) method or the like. Thereafter, a resist patterned by photolithography is formed on the chemical vapor deposition film, and etching is performed using the resist as an etching mask, thereby forming the mask 43.
 <第2工程>
 第2工程は、上記GaN膜において、GaN単結晶を第1成長条件の下で成長させることにより、上記GaN膜上に第1層を形成する工程S20である。本工程においては、100個/cm2を超えるピット密度を成長面に有するGaN単結晶(第1層)を得ることを目的とし、上記GaN膜に対し、(0001)面である成長面(以下、第1層における成長面を「第1成長面」とも記す)に数多くのピットを形成し、当該ピットの底に転位を集中させることによって上記ピットの周辺の転位を低減させる第1成長条件を採用したHVPE法を実行する。
<Second process>
The second step is a step S20 in which a first layer is formed on the GaN film by growing a GaN single crystal under first growth conditions. In this process, the aim is to obtain a GaN single crystal (first layer) having a pit density exceeding 100 pits/ cm2 on the growth surface, and the growth surface (hereinafter referred to as , the growth surface in the first layer is also referred to as "first growth surface"), and the first growth conditions are such that dislocations are reduced around the pits by concentrating dislocations at the bottoms of the pits. Execute the adopted HVPE method.
 上記第1成長条件に基づくHVPE法は、たとえば次の要領により行うことができる。まず、ホットウォール型反応炉内の石英製の試料ホルダ上に下地基板を設置し、この下地基板中の少なくともGaN膜を1000℃程度になるまで加熱する。次に、上記反応炉内の上流側ボート内に設置した金属Gaに対し、水素(H2)ガスをキャリアガスとして塩化水素(HCl)ガスを吹き付けることにより塩化ガリウムガスを生成する。さらに上記反応炉内にアンモニアガスを導入する。続いて、上記塩化ガリウムガスおよびアンモニアガスを、水素ガスをキャリアガスとして下地基板中のGaN膜にマスクの開口部を介して供給することにより、下地基板のマスクが形成された側に、GaN単結晶を次の第1成長条件にて成長させることができる。上記GaN単結晶(第1層)の厚みは、塩化ガリウムガスおよびアンモニアガスを供給する量、または時間を制御することにより調整することができる。 The HVPE method based on the first growth conditions can be performed, for example, in the following manner. First, a base substrate is placed on a quartz sample holder in a hot wall reactor, and at least the GaN film in the base substrate is heated to about 1000°C. Next, gallium chloride gas is generated by spraying hydrogen chloride (HCl) gas with hydrogen (H 2 ) gas as a carrier gas onto metal Ga installed in an upstream boat in the reactor. Furthermore, ammonia gas is introduced into the reactor. Subsequently, by supplying the above-mentioned gallium chloride gas and ammonia gas to the GaN film in the base substrate through the opening of the mask using hydrogen gas as a carrier gas, a GaN film is formed on the side of the base substrate where the mask is formed. The crystal can be grown under the following first growth conditions. The thickness of the GaN single crystal (first layer) can be adjusted by controlling the amount or time of supply of gallium chloride gas and ammonia gas.
 具体的な第1成長条件は、次のとおりである。
塩化ガリウムガス分圧:0.1~20kPa
アンモニアガス分圧:0.5~50kPa
成長温度:900~1100℃
成長速度:10~300μm/時
V/III(アンモニアガス/塩化ガリウムガス)比:1~10。
The specific first growth conditions are as follows.
Gallium chloride gas partial pressure: 0.1-20kPa
Ammonia gas partial pressure: 0.5-50kPa
Growth temperature: 900-1100℃
Growth rate: 10-300 μm/hour V/III (ammonia gas/gallium chloride gas) ratio: 1-10.
 ここで上記第1成長条件における上記塩化ガリウムガス分圧は、1~5kPaであることが好ましく、上記アンモニアガス分圧は、5~20kPaであることが好ましい。上記第1成長条件における上記成長温度は、950~1050℃であることが好ましく、上記成長速度は、10~200μm/時であることが好ましい。 Here, the gallium chloride gas partial pressure under the first growth condition is preferably 1 to 5 kPa, and the ammonia gas partial pressure is preferably 5 to 20 kPa. The growth temperature under the first growth condition is preferably 950 to 1050°C, and the growth rate is preferably 10 to 200 μm/hour.
 さらに上記第1成長条件における上記塩化ガリウムガス分圧は、2~4kPaであることがより好ましく、上記アンモニアガス分圧は、10~15kPaであることがより好ましい。上記第1成長条件における上記成長温度は、950~1000℃であることがより好ましく、上記成長速度は、20~100μm/時であることがより好ましい。なお、上記第1成長条件の成長温度については、後述する第2成長条件の成長温度よりも低くするものとする。 Further, the gallium chloride gas partial pressure under the first growth condition is more preferably 2 to 4 kPa, and the ammonia gas partial pressure is more preferably 10 to 15 kPa. The growth temperature under the first growth condition is more preferably 950 to 1000° C., and the growth rate is more preferably 20 to 100 μm/hour. Note that the growth temperature under the first growth condition is lower than the growth temperature under the second growth condition, which will be described later.
 図9は、本実施形態に係る窒化ガリウム単結晶基板の製造方法において、窒化ガリウム膜上に第1層(GaN単結晶)を形成した様子を説明する断面模式図である。図9に示すように第2工程により、マスク43上に0.05~0.5mmの厚みを有するGaN単結晶からなる第1層44を形成することができる。上記第1層44の第1成長面5は、ピットPを数多く有し、ピット密度としては100個/cm2を超える。ここで第1層44の第1成長面5のピット密度は、上述した「ピット痕跡の密度」を求める方法と同じ要領によって求めることができる。 FIG. 9 is a schematic cross-sectional view illustrating how a first layer (GaN single crystal) is formed on a gallium nitride film in the method for manufacturing a gallium nitride single crystal substrate according to the present embodiment. As shown in FIG. 9, in the second step, a first layer 44 made of GaN single crystal and having a thickness of 0.05 to 0.5 mm can be formed on the mask 43. The first growth surface 5 of the first layer 44 has many pits P, and the pit density exceeds 100/cm 2 . Here, the pit density on the first growth surface 5 of the first layer 44 can be determined in the same manner as the method for determining the "pit trace density" described above.
 <第3工程>
 第3工程は、上記第1層において、上記GaN単結晶を第2成長条件の下で成長させることにより、上記第1層上に第2層を形成する工程S30である。本工程においては、0.1個/cm2以上100個/cm2以下のピット密度を成長面に有するGaN単結晶(第2層)を得ることを目的とし、100個/cm2を超えるピット密度を第1成長面に有する上記第1層に対し、そのピット密度を制御および低減する第2成長条件を採用したHVPE法を実行する。
<3rd process>
The third step is step S30 of forming a second layer on the first layer by growing the GaN single crystal under second growth conditions in the first layer. In this process , the purpose is to obtain a GaN single crystal (second layer) having a pit density of 0.1 to 100 pits/cm 2 on the growth surface; The HVPE method employing second growth conditions for controlling and reducing the pit density is performed on the first layer having the pit density on the first growth surface.
 上記第2成長条件に基づくHVPE法は、下記の第2成長条件に基づく具体的なガス分圧、ならびに成長温度および成長速度の各条件を除いて、上記第1成長条件に基づくHVPE法と同じ要領により行うことができる。これにより上記第1層上、具体的には上記第1層の第1成長面側に、GaN単結晶(第2層)を成長させることができる。上記GaN単結晶(第2層)の厚みは、塩化ガリウムガスおよびアンモニアガスを供給する量、または時間を制御することにより調整することができる。 The HVPE method based on the above second growth conditions is the same as the HVPE method based on the above first growth conditions, except for the specific gas partial pressure, growth temperature and growth rate conditions based on the second growth conditions described below. This can be done according to the guidelines. Thereby, a GaN single crystal (second layer) can be grown on the first layer, specifically on the first growth surface side of the first layer. The thickness of the GaN single crystal (second layer) can be adjusted by controlling the amount or time of supply of gallium chloride gas and ammonia gas.
 具体的な第2成長条件は、次のとおりである。
塩化ガリウムガス分圧:1~50kPa
アンモニアガス分圧:1~100kPa
成長温度:900~1100℃
成長速度:50~500μm/時
V/III(アンモニアガス/塩化ガリウムガス)比:1~5
ただし上述のように、第2成長条件の成長温度については、上記第1成長条件の成長温度よりも高くするものとする。
The specific second growth conditions are as follows.
Gallium chloride gas partial pressure: 1-50kPa
Ammonia gas partial pressure: 1-100kPa
Growth temperature: 900-1100℃
Growth rate: 50 to 500 μm/hour V/III (ammonia gas/gallium chloride gas) ratio: 1 to 5
However, as described above, the growth temperature under the second growth condition is set higher than the growth temperature under the first growth condition.
 ここで上記第2成長条件における上記塩化ガリウムガス分圧は、3~10kPaであることが好ましく、上記アンモニアガス分圧は、5~50kPaであることが好ましい。上記第1成長条件における上記成長温度は、1000~1100℃であることが好ましく、上記成長速度は、50~400μm/時であることが好ましい。 Here, the gallium chloride gas partial pressure under the second growth condition is preferably 3 to 10 kPa, and the ammonia gas partial pressure is preferably 5 to 50 kPa. The growth temperature under the first growth condition is preferably 1000 to 1100°C, and the growth rate is preferably 50 to 400 μm/hour.
 さらに上記第2成長条件における上記塩化ガリウムガス分圧は、3~10kPaであることがより好ましく、上記アンモニアガス分圧は、5~50kPaであることがより好ましい。上記第2成長条件における上記成長温度は、1020~1080℃であることがより好ましく、上記成長速度は、50~300μm/時であることがより好ましい。 Furthermore, the gallium chloride gas partial pressure under the second growth condition is more preferably 3 to 10 kPa, and the ammonia gas partial pressure is more preferably 5 to 50 kPa. The growth temperature under the second growth condition is more preferably 1020 to 1080°C, and the growth rate is more preferably 50 to 300 μm/hour.
 図10は、本実施形態に係る窒化ガリウム単結晶基板の製造方法において、第1層上に第2層(GaN単結晶)を形成した様子を説明する断面模式図である。図10に示すように第3工程により、第1層44上に1~10mmの厚みを有するGaN単結晶からなる第2層45を形成することができる。上記第2層45の第2成長面10は、ピットPの数が制御されることにより、ピット密度としては0.1個/cm2以上100個/cm2以下となる。上記ピット密度は1個/cm2以上100個/cm2以下であることが好ましい。ここで第2層45の第2成長面10のピット密度も、上述した「ピット痕跡の密度」を求める方法と同じ要領によって求めることができる。 FIG. 10 is a schematic cross-sectional view illustrating how a second layer (GaN single crystal) is formed on the first layer in the method for manufacturing a gallium nitride single crystal substrate according to the present embodiment. As shown in FIG. 10, in the third step, a second layer 45 made of GaN single crystal and having a thickness of 1 to 10 mm can be formed on the first layer 44. The second growth surface 10 of the second layer 45 has a pit density of 0.1 to 100/cm 2 by controlling the number of pits P. The pit density is preferably 1 pit/cm 2 or more and 100 pits/cm 2 or less. Here, the pit density on the second growth surface 10 of the second layer 45 can also be determined in the same manner as the method for determining the "pit trace density" described above.
 <第4工程>
 第4工程は、上記第2層を切り出すことにより上記GaN単結晶基板を得る工程S40である。本工程では、図10を参照し、まず成長用基板41、GaN膜42、マスク43、第1層44および第2層45を含む構造体において、第2層45の第1層44側を研削する。これにより上記構造体から成長用基板41、GaN膜42を含む下地基板、マスク43、ならびに第1層44を切り離すことができる。さらに、第2層45からなるインゴットから所定の厚みにて円盤状のGaN単結晶を切り出す。当該GaN単結晶基板の表面を研削により平坦化し、続いて研磨およびドライエッチングの両方または少なくともいずれかを行う。これにより、第1の主表面および第2の主表面を備えたGaN単結晶基板を得ることができる。上記GaN単結晶基板は、第2層45の第2成長面10に形成されたピットに対応する第1の主表面上の領域に、複数のピット痕跡を存する。つまり上記ピット痕跡の密度は、第2層45の第2成長面10のピット密度に対応し、0.1個/cm2以上100個/cm2以下である(図3も参照のこと)。
<4th step>
The fourth step is step S40 of obtaining the GaN single crystal substrate by cutting out the second layer. In this step, referring to FIG. 10, first, in a structure including a growth substrate 41, a GaN film 42, a mask 43, a first layer 44, and a second layer 45, the first layer 44 side of the second layer 45 is ground. do. As a result, the growth substrate 41, the underlying substrate including the GaN film 42, the mask 43, and the first layer 44 can be separated from the structure. Furthermore, a disk-shaped GaN single crystal is cut out with a predetermined thickness from the ingot made of the second layer 45. The surface of the GaN single crystal substrate is flattened by grinding, and then both or at least one of polishing and dry etching is performed. Thereby, a GaN single crystal substrate having a first main surface and a second main surface can be obtained. The GaN single crystal substrate has a plurality of pit traces in a region on the first main surface corresponding to the pits formed on the second growth surface 10 of the second layer 45. That is, the density of the pit traces corresponds to the pit density of the second growth surface 10 of the second layer 45, and is 0.1 pieces/cm 2 or more and 100 pieces/cm 2 or less (see also FIG. 3).
 <作用効果>
 以上の工程により、本実施形態に係るGaN単結晶基板を製造することができる。上記GaN単結晶基板において、これを構成するGaN単結晶の(0001)面は、上記第1の主表面側から上記第2の主表面側へ向かって凸となる球面状の湾曲面であり、かつ6m以上の曲率半径を有することができる。もって上記製造方法により、GaN単結晶の(0001)面の曲率半径が大きいために、第1の主表面の領域毎の特性がバラツキなく均一となることから、デバイス特性を向上させたGaN単結晶基板を得ることができる。
<Effect>
Through the above steps, the GaN single crystal substrate according to this embodiment can be manufactured. In the GaN single crystal substrate, the (0001) plane of the GaN single crystal constituting the substrate is a spherical curved surface that is convex from the first main surface side to the second main surface side, And it can have a radius of curvature of 6 m or more. Therefore, by the above manufacturing method, since the radius of curvature of the (0001) plane of the GaN single crystal is large, the characteristics of each region of the first main surface are uniform without variation, so that a GaN single crystal with improved device characteristics can be obtained. A substrate can be obtained.
 以下、実施例を挙げて本開示をより詳細に説明するが、本開示はこれらに限定されるものではない。本実施例では、以下のGaN単結晶基板の製造方法を実行することにより、GaN単結晶基板の試料をそれぞれ1枚得た。 Hereinafter, the present disclosure will be described in more detail with reference to Examples, but the present disclosure is not limited thereto. In this example, one sample of each GaN single crystal substrate was obtained by carrying out the following GaN single crystal substrate manufacturing method.
 〔試料1:直径50.8mm(2インチ)GaN単結晶基板の製造〕
 <第1工程>
 市販の直径50.8mmのサファイア基板を入手し、当該サファイア基板上にMOCVD法を用いてGaN膜を形成することにより、下地基板を準備した。上記GaN膜の主表面の面方位は(0001)面であった。続いて上記下地基板のGaN膜側に、遮蔽部と開口部とが交互に繰り返される構造を有するマスクを形成した。具体的には、下地基板のGaN膜側にプラズマCVD法を適用し、酸化ケイ素からなる化学蒸着膜(厚み200nm)を形成した後、上記化学蒸着膜上にフォトリソグラフィー法によりパターニングされたレジストを形成し、当該レジストをエッチングマスクとしてエッチングを行うことによりマスクを形成した。
[Sample 1: Production of a GaN single crystal substrate with a diameter of 50.8 mm (2 inches)]
<First step>
A base substrate was prepared by obtaining a commercially available sapphire substrate with a diameter of 50.8 mm and forming a GaN film on the sapphire substrate using the MOCVD method. The plane orientation of the main surface of the GaN film was a (0001) plane. Subsequently, a mask having a structure in which shielding portions and opening portions were alternately repeated was formed on the GaN film side of the base substrate. Specifically, a plasma CVD method is applied to the GaN film side of the base substrate to form a chemical vapor deposited film (thickness 200 nm) made of silicon oxide, and then a resist patterned by photolithography is applied on the chemical vapor deposited film. A mask was formed by etching using the resist as an etching mask.
 <第2工程>
 HVPE法を適用することによって下地基板の上記GaN膜において、上記マスクの開口部を介して所謂ファセット構造を有するGaN単結晶(第1層)を、次の第1成長条件にて成長させた。具体的には、ホットウォール型反応炉内の石英製の試料ホルダ上に下地基板を設置し、上記反応炉内を980℃まで加熱後、上記反応炉内の上流側ボート内に設置した金属Gaに対し、HClガスを吹き付けることによって塩化ガリウムガスを生成して供給し、続いてアンモニアガスを上記反応炉内に供給した。さらに上記反応炉を980℃にて2.5時間保持した。上記第1成長条件としては、塩化ガリウムガス分圧を3.0×103Paとし、アンモニアガス分圧を12×103Paとした。さらにGaN単結晶の成長面(第1成長面)の成長速度を40μm/時間とした。以上により、成長面(第1成長面)が(0001)面であり、触針式の膜厚計で測定した厚さが0.1mmのGaN単結晶(第1層)を得た。さらに上述した方法により測定した成長面におけるピット密度は、100個/cm2を超えた。上記反応炉内の上流側ボート内に設置した金属Gaに対し、水素(H2)ガスをキャリアガスとして塩化水素(HCl)ガスを吹き付けることにより塩化ガリウムガスを生成する。
<Second process>
By applying the HVPE method, a GaN single crystal (first layer) having a so-called facet structure was grown in the GaN film of the base substrate through the opening of the mask under the following first growth conditions. Specifically, a base substrate was placed on a quartz sample holder in a hot wall reactor, and after heating the inside of the reactor to 980°C, a metal Ga was placed in a boat on the upstream side of the reactor. Then, gallium chloride gas was generated and supplied by spraying HCl gas, and then ammonia gas was supplied into the reactor. Further, the reactor was maintained at 980° C. for 2.5 hours. As the first growth conditions, the partial pressure of gallium chloride gas was 3.0×10 3 Pa, and the partial pressure of ammonia gas was 12×10 3 Pa. Further, the growth rate of the growth surface (first growth surface) of the GaN single crystal was set to 40 μm/hour. As a result, a GaN single crystal (first layer) was obtained whose growth plane (first growth plane) was the (0001) plane and whose thickness was 0.1 mm as measured with a stylus-type film thickness meter. Furthermore, the pit density on the growth surface measured by the method described above exceeded 100 pits/cm 2 . Gallium chloride gas is generated by spraying hydrogen chloride (HCl) gas with hydrogen (H 2 ) gas as a carrier gas onto metal Ga installed in an upstream boat in the reactor.
 <第3工程>
 HVPE法を引き続き適用することにより、上記第1層の第1成長面において、GaN単結晶(第2層)を次の第2成長条件にて成長させた。具体的には、ホットウォール型反応炉内の石英製の試料ホルダ上に設置された上記第1層の第1成長面に対し、上記反応炉内を1030℃まで加熱後、HClガスを1質量%のFeを添加したGaと反応させることにより生成した塩化ガリウムガスおよび塩化鉄ガスと、アンモニアガスとを上記反応炉内へ供給した。さらに上記反応炉を1030℃にて37.5時間保持した。上記第2成長条件としては、塩化ガリウムガス分圧を4.0×103Paとし、塩化鉄ガス分圧を上記塩化ガリウムガスの100分の1とし、アンモニアガス分圧を8.0×103Paとした。さらにGaN単結晶の成長面(第2成長面)の成長速度を80μm/時間とした。その後、上記反応炉内を室温まで降温し、上記第1層上にGaN単結晶(第2層)を得た。第2層は、成長面(第2成長面)が(0001)面であり、触針式の膜厚計で測定した厚さが3mmであった。さらに上述した方法により測定した第2成長面におけるピット密度は、0.1個/cm2であった。
<3rd process>
By continuing to apply the HVPE method, a GaN single crystal (second layer) was grown on the first growth surface of the first layer under the following second growth conditions. Specifically, after heating the inside of the reactor to 1030°C, 1 mass of HCl gas was applied to the first growth surface of the first layer placed on a quartz sample holder in a hot wall reactor. Gallium chloride gas and iron chloride gas, which were generated by reacting with Ga to which % of Fe was added, and ammonia gas were supplied into the reactor. Further, the reactor was maintained at 1030° C. for 37.5 hours. The second growth conditions include a gallium chloride gas partial pressure of 4.0×10 3 Pa, an iron chloride gas partial pressure of 1/100 of the gallium chloride gas, and an ammonia gas partial pressure of 8.0×10 3 Pa. 3 Pa. Further, the growth rate of the GaN single crystal growth surface (second growth surface) was set to 80 μm/hour. Thereafter, the temperature inside the reactor was lowered to room temperature, and a GaN single crystal (second layer) was obtained on the first layer. The second layer had a (0001) growth surface (second growth surface) and a thickness of 3 mm as measured with a stylus-type film thickness meter. Furthermore, the pit density on the second growth surface measured by the method described above was 0.1 pits/cm 2 .
 <第4工程>
 上記下地基板、マスク、第1層および第2層を含む構造体において、第2層の第1層側(2つの主表面の一方であって、窒素極性面となる側)を研削することにより、当該第2層を下地基板、GaN膜およびマスクおよびから切り離した。さらに、上記第2層からなるインゴットから所定の厚みにて円盤状のGaN単結晶を切り出した。続いて当該GaN単結晶の表面(ガリウム極性面および窒素極性面の両者)を研削により平坦化し、続いて研磨を行った。以上により、直径50.8mm(2インチ)、厚み350μmで、円形状の第1の主表面および第2の主表面を備える実施例1のGaN単結晶基板を製造した。
<4th step>
In the structure including the base substrate, the mask, the first layer, and the second layer, by grinding the first layer side (one of the two main surfaces and the side that becomes the nitrogen polar surface) of the second layer. Then, the second layer was separated from the underlying substrate, GaN film, and mask. Furthermore, a disk-shaped GaN single crystal was cut out at a predetermined thickness from the ingot made of the second layer. Subsequently, the surfaces of the GaN single crystal (both the gallium polar surface and the nitrogen polar surface) were flattened by grinding, and then polished. As described above, a GaN single crystal substrate of Example 1 having a diameter of 50.8 mm (2 inches), a thickness of 350 μm, and a circular first main surface and a second main surface was manufactured.
 〔試料2:直径101.6mm(4インチ)GaN単結晶基板の製造〕
 第1工程において市販の直径101.6mmのサファイア基板を入手し、当該サファイア基板上にMOCVD法によりGaN膜を形成したこと、第2工程における第1成長条件の成長温度、成長速度、塩化ガリウムガス分圧およびアンモニアガス分圧、ならびに第3工程における第2成長条件の成長温度、成長速度、塩化ガリウムガス分圧およびアンモニアガス分圧を表1に示すとおりに変更したこと以外、試料1と同じ要領によって、直径101.6mm(4インチ)、厚み450μmで、円形状の第1の主表面および第2の主表面を備える実施例2のGaN単結晶基板を製造した。試料2における第1層および第2層の厚み(mm)については、表1に示した。上述した方法により測定した試料2における第1成長面のピット密度は100個/cm2を超え、第2成長面におけるピット密度は0.2個/cm2であった。
[Sample 2: Production of a GaN single crystal substrate with a diameter of 101.6 mm (4 inches)]
In the first step, a commercially available sapphire substrate with a diameter of 101.6 mm was obtained, and a GaN film was formed on the sapphire substrate by MOCVD, the growth temperature, growth rate, and gallium chloride gas of the first growth conditions in the second step. Same as sample 1 except that the partial pressure and ammonia gas partial pressure, and the growth temperature, growth rate, gallium chloride gas partial pressure, and ammonia gas partial pressure of the second growth conditions in the third step were changed as shown in Table 1. According to the procedure, a GaN single crystal substrate of Example 2 having a diameter of 101.6 mm (4 inches), a thickness of 450 μm, and a circular first main surface and a second main surface was manufactured. The thicknesses (mm) of the first layer and second layer in Sample 2 are shown in Table 1. The pit density on the first growth surface of Sample 2 measured by the method described above was over 100 pits/cm 2 , and the pit density on the second growth surface was 0.2 pits/cm 2 .
 〔試料3~試料7:直径101.6mm(4インチ)GaN単結晶基板の製造〕
 第2工程における第1成長条件の成長温度、成長速度、塩化ガリウムガス分圧およびアンモニアガス分圧、ならびに第3工程における第2成長条件の成長温度、成長速度、塩化ガリウムガス分圧およびアンモニアガス分圧を表1に示すとおりに変更したこと以外、試料2と同じ要領によって、直径101.6mm(4インチ)、厚み450μmで、円形状の第1の主表面および第2の主表面を備える試料3~試料7のGaN単結晶基板をそれぞれ製造した。試料3~試料7における第1層および第2層の厚み(mm)については、表1に示した。上述した方法により測定した試料3~試料7における第1成長面のピット密度は100個/cm2を超えた。試料3における第2成長面におけるピット密度は0.5個/cm2であり、試料4における第2成長面におけるピット密度は1個/cm2であり、試料5における第2成長面におけるピット密度は2.55個/cm2であり、試料6における第2成長面におけるピット密度は10個/cm2であり、試料7における第2成長面におけるピット密度は100個/cm2であった。
[Samples 3 to 7: Production of GaN single crystal substrates with a diameter of 101.6 mm (4 inches)]
Growth temperature, growth rate, gallium chloride gas partial pressure and ammonia gas partial pressure under the first growth conditions in the second step, and growth temperature, growth rate, gallium chloride gas partial pressure and ammonia gas under the second growth conditions in the third step. A second main surface having a diameter of 101.6 mm (4 inches), a thickness of 450 μm, and a circular first main surface and a second main surface was prepared in the same manner as Sample 2 except that the partial pressure was changed as shown in Table 1. GaN single crystal substrates of Samples 3 to 7 were manufactured, respectively. The thicknesses (mm) of the first layer and second layer in Samples 3 to 7 are shown in Table 1. The pit density on the first growth surface of Samples 3 to 7 measured by the method described above exceeded 100 pits/cm 2 . The pit density on the second growth surface in Sample 3 is 0.5/cm 2 , the pit density on the second growth surface in Sample 4 is 1/cm 2 , and the pit density on the second growth surface in Sample 5 was 2.55 pits/cm 2 , the pit density on the second growth surface in Sample 6 was 10 pits/cm 2 , and the pit density on the second growth surface in Sample 7 was 100 pits/cm 2 .
 〔実施例8:直径152.4mm(6インチ)GaN単結晶基板の製造〕
 第1工程において市販の直径152.4mmのサファイア基板を入手し、当該サファイア基板上にMOCVD法によりGaN膜を形成したこと、第2工程における第1成長条件の成長温度、成長速度、塩化ガリウムガス分圧およびアンモニアガス分圧、ならびに第3工程における第2成長条件の成長温度、成長速度、塩化ガリウムガス分圧およびアンモニアガス分圧を表1に示すとおりに変更したこと以外、試料1と同じ要領によって、直径152.4mm(6インチ)、厚み675μmで、円形状の第1の主表面および第2の主表面を備える試料8のGaN単結晶基板を製造した。試料8における第1層および第2層の厚み(mm)については、表1に示した。上述した方法により測定した試料8における第1成長面のピット密度は100個/cm2を超え、第2成長面におけるピット密度は90個/cm2であった。
[Example 8: Production of a GaN single crystal substrate with a diameter of 152.4 mm (6 inches)]
In the first step, a commercially available sapphire substrate with a diameter of 152.4 mm was obtained, and a GaN film was formed on the sapphire substrate by MOCVD, the growth temperature, growth rate, and gallium chloride gas of the first growth conditions in the second step. Same as sample 1 except that the partial pressure and ammonia gas partial pressure, and the growth temperature, growth rate, gallium chloride gas partial pressure, and ammonia gas partial pressure of the second growth conditions in the third step were changed as shown in Table 1. According to the procedure, a GaN single crystal substrate of sample 8 having a diameter of 152.4 mm (6 inches), a thickness of 675 μm, and a circular first main surface and a second main surface was manufactured. The thicknesses (mm) of the first layer and second layer in Sample 8 are shown in Table 1. The pit density on the first growth surface of sample 8 measured by the method described above was over 100 pits/cm 2 , and the pit density on the second growth surface was 90 pits/cm 2 .
 〔試料11および試料12:直径50.8mm(2インチ)GaN単結晶基板の製造〕
 第2工程における第1成長条件の成長温度、成長速度、塩化ガリウムガス分圧およびアンモニアガス分圧、ならびに第3工程における第2成長条件の成長温度、成長速度、塩化ガリウムガス分圧およびアンモニアガス分圧を表1に示すとおりに変更したこと以外、試料1と同じ要領によって、直径50.8mm(2インチ)、厚み350μmで、円形状の第1の主表面および第2の主表面を備える試料11および試料12のGaN単結晶基板をそれぞれ製造した。試料11および試料12における第1層および第2層の厚み(mm)については、表1に示した。上述した方法により測定した試料11および試料12における第1成長面のピット密度は100個/cm2を超えた。試料11における第2成長面におけるピット密度は0.05個/cm2であり、試料12における第2成長面におけるピット密度は300個/cm2であった。
[Sample 11 and Sample 12: Production of 50.8 mm (2 inch) diameter GaN single crystal substrate]
Growth temperature, growth rate, gallium chloride gas partial pressure and ammonia gas partial pressure under the first growth conditions in the second step, and growth temperature, growth rate, gallium chloride gas partial pressure and ammonia gas under the second growth conditions in the third step. A circular first main surface and a second main surface with a diameter of 50.8 mm (2 inches) and a thickness of 350 μm were prepared in the same manner as Sample 1 except that the partial pressure was changed as shown in Table 1. GaN single crystal substrates of Sample 11 and Sample 12 were manufactured. The thicknesses (mm) of the first layer and second layer in Sample 11 and Sample 12 are shown in Table 1. The pit density on the first growth surface of Samples 11 and 12 measured by the method described above exceeded 100 pits/cm 2 . The pit density on the second growth surface in sample 11 was 0.05 pits/cm 2 , and the pit density on the second growth surface in sample 12 was 300 pits/cm 2 .
 〔試料13:直径50.8mm(2インチ)GaN単結晶基板の製造〕
 上記特許文献1において実施例1として開示されるGaN単結晶基板の製法に関する記載にしたがって、ピット埋込領域(本明細書における「ピット痕跡」に相当)の密度が1.0×10-2個/cm2以上0.9個/cm2以下となるようにGaN単結晶基板を製造し、これを試料13のGaN単結晶基板とした。
[Sample 13: Production of a GaN single crystal substrate with a diameter of 50.8 mm (2 inches)]
According to the description of the method for manufacturing a GaN single crystal substrate disclosed as Example 1 in Patent Document 1, the density of pit-embedded regions (corresponding to "pit traces" in this specification) is 1.0 x 10 -2 pieces. A GaN single crystal substrate was manufactured so that the number of particles/cm 2 or more and 0.9 pieces/cm 2 or less was obtained, and this was used as the GaN single crystal substrate of sample 13.
 試料13のGaN単結晶基板の製造においては、上記特許文献1を参照することにより、成長の第1段階(本明細書における「第2工程」に相当)として、シリコン(Si)ドープ窒化ガリウム層(厚み700nm)とアンドープ窒化ガリウム層(厚み500nm)を交互に20層ずつ成長させた多層構造を有するGaN単結晶を製造した。さらに、成長の第2段階(本明細書における「第3工程」に相当)として、アンドープ窒化ガリウム層(厚み0.2mm)となるGaN単結晶を成長させた後、Siドープ窒化ガリウム層(厚み3mm)となるGaN単結晶を成長させた。 In manufacturing the GaN single crystal substrate of Sample 13, referring to Patent Document 1 mentioned above, a silicon (Si)-doped gallium nitride layer is formed as the first stage of growth (corresponding to the "second step" in this specification). A GaN single crystal having a multilayer structure in which 20 undoped gallium nitride layers (thickness: 700 nm) and undoped gallium nitride layers (thickness: 500 nm) were grown alternately was manufactured. Furthermore, as a second stage of growth (corresponding to the "third step" in this specification), after growing a GaN single crystal that will become an undoped gallium nitride layer (thickness 0.2 mm), a Si-doped gallium nitride layer (thickness A GaN single crystal with a thickness of 3 mm) was grown.
 その後、上記GaN単結晶を上記下地基板から切り離し、かつ上記GaN単結晶に対して表面加工を実行する(本明細書における「第4工程」に相当)ことにより、直径50.8mm(2インチ)、厚み350μm、かつ円形状である試料13のGaN単結晶基板を製造した。なお、上記成長の第1段階および第2段階における成長温度、成長速度、および各種のガス分圧等に関する条件は、表1に示すとおりである。さらに試料13における第1層および第2層の厚み(mm)については、表1に示した。上述した方法により測定した試料13における第1成長面のピット密度は100個/cm2を超え、第2成長面におけるピット密度は0.9個/cm2であった。 Thereafter, the GaN single crystal is separated from the base substrate, and surface processing is performed on the GaN single crystal (corresponding to the "fourth step" in this specification), so that the diameter is 50.8 mm (2 inches). A GaN single crystal substrate of sample 13 having a thickness of 350 μm and a circular shape was manufactured. The conditions regarding the growth temperature, growth rate, various gas partial pressures, etc. in the first and second stages of growth are as shown in Table 1. Furthermore, the thicknesses (mm) of the first layer and second layer in Sample 13 are shown in Table 1. The pit density on the first growth surface of sample 13 measured by the method described above was over 100 pits/cm 2 , and the pit density on the second growth surface was 0.9 pits/cm 2 .
 〔試料14:直径50.8mm(2インチ)GaN単結晶基板の製造〕
 上記特許文献1において比較例1として開示されるGaN単結晶基板の製法に関する記載にしたがって、ピット埋込領域(本明細書における「ピット痕跡」に相当)の密度が1個/cm2以上1.9個/cm2以下となるようにGaN単結晶基板を製造し、これを試料14のGaN単結晶基板とした。
[Sample 14: Production of a GaN single crystal substrate with a diameter of 50.8 mm (2 inches)]
According to the description of the method for manufacturing a GaN single crystal substrate disclosed as Comparative Example 1 in Patent Document 1, the density of pit-embedded regions (corresponding to "pit traces" in this specification) is 1 piece/cm 2 or more. A GaN single crystal substrate was manufactured so that the number of GaN single crystals was 9 pieces/cm 2 or less, and this was used as a GaN single crystal substrate of sample 14.
 試料14のGaN単結晶基板の製造においては、上記特許文献1を参照することにより下地基板上に直接、Siドープ窒化ガリウム層(厚み3mm)となるGaN単結晶を成長させた(本明細書における「第3工程」に相当。したがって試料14において、本明細書における「第2工程」に相当する結晶成長は実行されない)。その後、上記GaN単結晶を上記下地基板から切り離し、かつ上記GaN単結晶に対して表面加工を実行する(本明細書における「第4工程」に相当)ことにより、直径50.8mm(2インチ)、厚み350μm、かつ円形状である試料14のGaN単結晶基板を製造した。なお、上記成長の第1段階および第2段階における成長温度、成長速度、および各種のガス分圧等に関する条件は、表1に示すとおりである。なお試料14における第2層の厚み(mm)については、表1に示した。また試料14におけるピット埋込領域の密度は1.9個/cm2であった。 In manufacturing the GaN single crystal substrate of sample 14, a GaN single crystal to become a Si-doped gallium nitride layer (thickness: 3 mm) was grown directly on the base substrate by referring to Patent Document 1 mentioned above (in this specification). This corresponds to the "third step." Therefore, in sample 14, crystal growth corresponding to the "second step" in this specification is not performed.) Thereafter, the GaN single crystal is separated from the base substrate, and surface processing is performed on the GaN single crystal (corresponding to the "fourth step" in this specification), so that the diameter is 50.8 mm (2 inches). A GaN single crystal substrate of sample 14 having a thickness of 350 μm and a circular shape was manufactured. The conditions regarding the growth temperature, growth rate, various gas partial pressures, etc. in the first and second stages of growth are as shown in Table 1. The thickness (mm) of the second layer in sample 14 is shown in Table 1. Further, the density of the pit-embedded region in Sample 14 was 1.9 pits/cm 2 .
 〔試料15:直径50.8mm(2インチ)GaN単結晶基板の製造〕
 上記特許文献2において開示されるGaN単結晶基板の製造方法に関する記載にしたがって、ピット密度(本明細書における「ピット」の密度に相当)が10個/cm2以下なるようにGaN単結晶を製造し、さらに当該GaN単結晶からGaN単結晶基板を製造することにより、試料15のGaN単結晶基板を得た。
[Sample 15: Production of a GaN single crystal substrate with a diameter of 50.8 mm (2 inches)]
According to the description regarding the method for manufacturing a GaN single crystal substrate disclosed in Patent Document 2 above, a GaN single crystal is manufactured so that the pit density (corresponding to the density of "pits" in this specification) is 10 pieces/cm 2 or less. Then, a GaN single crystal substrate of Sample 15 was obtained by manufacturing a GaN single crystal substrate from the GaN single crystal.
 試料15のGaN単結晶基板の製造においては、上記特許文献2を参照することにより、成長の第1段階(本明細書における「第2工程」に相当)および成長の第2段階(本明細書における「第3工程」に相当)として、表1に示すとおりの成長温度、成長速度、および各種のガス分圧、ならびにV/III比等の条件にてGaN単結晶を成長させた。 In manufacturing the GaN single crystal substrate of sample 15, the first stage of growth (corresponding to the "second step" in this specification) and the second stage of growth (corresponding to (corresponding to the "third step" in Table 1), a GaN single crystal was grown under conditions such as growth temperature, growth rate, various gas partial pressures, and V/III ratio as shown in Table 1.
 その後、上記GaN単結晶を下地基板から切り離し、かつ表面加工を実行する(本明細書における「第4工程」に相当)ことにより、直径50.8mm(2インチ)、厚み350μm、かつ円形状である試料15のGaN単結晶基板を製造した。試料15における第1層および第2層の厚み(mm)については、表1に示した。上述した方法により測定した試料15における第1成長面のピット密度は100個/cm2を超え、第2成長面におけるピット密度は1個/cm2であった。 Thereafter, the GaN single crystal is separated from the underlying substrate and subjected to surface processing (corresponding to the "fourth step" in this specification), resulting in a circular shape with a diameter of 50.8 mm (2 inches) and a thickness of 350 μm. A GaN single crystal substrate of Sample 15 was manufactured. The thicknesses (mm) of the first layer and second layer in sample 15 are shown in Table 1. The pit density on the first growth surface of sample 15 measured by the method described above was over 100 pits/cm 2 , and the pit density on the second growth surface was 1 pit/cm 2 .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 〔GaN単結晶基板の評価〕
 試料1~試料8および試料11~試料15のGaN単結晶基板に対し、上述した方法に基づいて、第1の主表面のピット痕跡の密度(個/cm2)、上記GaN単結晶基板を構成するGaN単結晶の(0001)面の曲率半径(m)、上記ピット痕跡の直径(μm)、および転位密度の最大値(個/cm2)を算出した。結果を表2に示す。なお第1の主表面のピット痕跡の密度(個/cm2)は、第2成長面におけるピット密度(個/cm2)と同じ値となる。試料1~試料8が実施例であり、試料11~試料15が比較例である。
[Evaluation of GaN single crystal substrate]
For the GaN single crystal substrates of Samples 1 to 8 and Samples 11 to 15, the density of pit traces (pieces/cm 2 ) on the first main surface and the configuration of the GaN single crystal substrates were determined based on the method described above. The radius of curvature (m) of the (0001) plane of the GaN single crystal, the diameter (μm) of the pit trace, and the maximum value of the dislocation density (pieces/cm 2 ) were calculated. The results are shown in Table 2. Note that the density of pit traces (pieces/cm 2 ) on the first main surface has the same value as the pit density (pieces/cm 2 ) on the second growth surface. Samples 1 to 8 are examples, and samples 11 to 15 are comparative examples.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 〔考察〕
 試料1~試料8のGaN単結晶基板は、これを構成するGaN単結晶の(0001)面の曲率半径が6m以上と大きく、もって第1の主表面の領域毎に特性が均一となるものと示唆される。さらに試料1~試料8のGaN単結晶基板は、ピット痕跡の密度が0.1個/cm2以上100個/cm2以下であるので、GaN単結晶基板を構成するGaN単結晶中のピットの多さに起因して転位密度が高くなることもない。一方、試料11および試料13~試料15のGaN単結晶基板は、これを構成するGaN単結晶の(0001)面の曲率半径が5m以下であった。試料12のGaN単結晶基板は、ピット痕跡の密度が300個/cm2であって100個/cm2を超えた。
[Consideration]
In the GaN single crystal substrates of Samples 1 to 8, the radius of curvature of the (0001) plane of the GaN single crystal constituting the substrate is as large as 6 m or more, so that the characteristics are uniform in each region of the first main surface. It is suggested. Furthermore, the density of pit traces in the GaN single crystal substrates of Samples 1 to 8 is between 0.1 pieces/cm 2 and 100 pieces/cm 2 , so there are no pit traces in the GaN single crystal constituting the GaN single crystal substrates. The dislocation density does not become high due to the large number of dislocations. On the other hand, in the GaN single crystal substrates of Sample 11 and Samples 13 to 15, the radius of curvature of the (0001) plane of the GaN single crystal constituting the substrates was 5 m or less. In the GaN single crystal substrate of sample 12, the density of pit traces was 300 pieces/cm 2 and exceeded 100 pieces/cm 2 .
 したがって本実施例に係るGaN単結晶基板は、面内の比抵抗値がバラツキなく均一であることにより、良好なデバイス特性を供することができると示唆される。 Therefore, it is suggested that the GaN single crystal substrate according to this example can provide good device characteristics because the in-plane specific resistance value is uniform without variation.
 以上のように本開示の実施形態および実施例について説明を行ったが、上述の各実施形態および実施例の構成を適宜組み合わせることも当初から予定している。 Although the embodiments and examples of the present disclosure have been described above, it is planned from the beginning to combine the configurations of the above-described embodiments and examples as appropriate.
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態及び実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed herein are illustrative in all respects and should not be considered restrictive. The scope of the present invention is indicated by the claims rather than the embodiments and examples described above, and it is intended that equivalent meanings to the claims and all changes within the scope are included.
 1 窒化ガリウム単結晶基板(GaN単結晶基板)、5 第1成長面、10 第2成長面、100 窒化ガリウム単結晶(GaN単結晶)、11 第1の主表面、21 第2の主表面、31 (0001)面、40 下地基板、41 成長用基板、42 窒化ガリウム膜(GaN膜)、43 マスク、M0~M4 測定点、P ピット、T ピット痕跡、S10 下地基板を準備する工程 S20 GaN膜上に第1層を形成する工程、S30 第1層上に第2層を形成する工程、S40 GaN単結晶基板を得る工程。 1 Gallium nitride single crystal substrate (GaN single crystal substrate), 5 First growth surface, 10 Second growth surface, 100 Gallium nitride single crystal (GaN single crystal), 11 First main surface, 21 Second main surface, 31 (0001) plane, 40 base substrate, 41 growth substrate, 42 gallium nitride film (GaN film), 43 mask, M0 to M4 measurement points, P pit, T pit trace, S10 step of preparing base substrate S20 GaN film Step of forming a first layer on the top, S30 Step of forming a second layer on the first layer, S40 Step of obtaining a GaN single crystal substrate.

Claims (7)

  1.  第1の主表面および第2の主表面を備えた窒化ガリウム単結晶基板であって、
     前記窒化ガリウム単結晶基板の直径は、50mm以上であり、
     前記第1の主表面は、ガリウム極性面であり、
     前記第2の主表面は、窒素極性面であり、
     前記第1の主表面および前記第2の主表面は、円形状を有し、
     前記窒化ガリウム単結晶基板において、これを構成する窒化ガリウム単結晶の(0001)面は、前記第1の主表面側から前記第2の主表面側へ向かって凸となる球面状の湾曲面であり、かつ6m以上の曲率半径を有し、
     前記第1の主表面は、複数のピット痕跡を有し、
     前記ピット痕跡の密度は、0.1個/cm2以上100個/cm2以下である、窒化ガリウム単結晶基板。
    A gallium nitride single crystal substrate comprising a first main surface and a second main surface,
    The diameter of the gallium nitride single crystal substrate is 50 mm or more,
    the first main surface is a gallium polar surface,
    The second main surface is a nitrogen polar surface,
    The first main surface and the second main surface have a circular shape,
    In the gallium nitride single crystal substrate, the (0001) plane of the gallium nitride single crystal constituting the substrate is a spherical curved surface that is convex from the first main surface side to the second main surface side. and has a radius of curvature of 6 m or more,
    The first main surface has a plurality of pit traces,
    The gallium nitride single crystal substrate has a density of the pit traces of 0.1 pieces/cm 2 or more and 100 pieces/cm 2 or less.
  2.  前記ピット痕跡の直径は、200μm以下であり、
     前記第1の主表面における前記ピット痕跡に相当する領域の極性は、ガリウム極性である、請求項1に記載の窒化ガリウム単結晶基板。
    The diameter of the pit trace is 200 μm or less,
    The gallium nitride single crystal substrate according to claim 1, wherein the polarity of the region corresponding to the pit trace on the first main surface is gallium polarity.
  3.  前記(0001)面は、11m以上の曲率半径を有する、請求項1または請求項2に記載の窒化ガリウム単結晶基板。 The gallium nitride single crystal substrate according to claim 1 or 2, wherein the (0001) plane has a radius of curvature of 11 m or more.
  4.  前記ピット痕跡の密度は、1個/cm2以上100個/cm2以下である、請求項1から請求項3のいずれか1項に記載の窒化ガリウム単結晶基板。 The gallium nitride single crystal substrate according to any one of claims 1 to 3, wherein the density of the pit traces is 1 piece/cm 2 or more and 100 pieces/cm 2 or less.
  5.  前記窒化ガリウム単結晶基板の直径は、50mm以上155mm以下である、請求項1から請求項4のいずれか1項に記載の窒化ガリウム単結晶基板。 The gallium nitride single crystal substrate according to any one of claims 1 to 4, wherein the gallium nitride single crystal substrate has a diameter of 50 mm or more and 155 mm or less.
  6.  第1の主表面および第2の主表面を備えた窒化ガリウム単結晶基板の製造方法であって、
     表面の少なくとも一部に窒化ガリウム膜を配置した下地基板を準備する工程と、
     前記窒化ガリウム膜において、窒化ガリウム単結晶を第1成長条件の下で成長させることにより、前記窒化ガリウム膜上に第1層を形成する工程と、
     前記第1層において、前記窒化ガリウム単結晶を第2成長条件の下で成長させることにより、前記第1層上に第2層を形成する工程と、
     前記第2層を切り出すことによって前記窒化ガリウム単結晶基板を得る工程と、を含み、
     前記第1層の成長面は、100個/cm2を超えるピット密度を有し、
     前記第2層の成長面は、0.1個/cm2以上100個/cm2以下のピット密度を有し、
     前記第1成長条件は、
      0.1kPa以上20kPa以下の塩化ガリウムガス分圧と、
      0.5kPa以上50kPa以下のアンモニアガス分圧と、
      900℃以上1100℃以下の成長温度と、
      10μm/時以上300μm/時以下の成長速度とを有し、
     前記第2成長条件は、
      1kPa以上50kPa以下の塩化ガリウムガス分圧と、
      1kPa以上100kPa以下のアンモニアガス分圧と、
      900℃以上1100℃以下の成長温度と、
      50μm/時以上500μm/時以下の成長速度とを有し、
     前記第1成長条件の成長温度は、前記第2成長条件の成長温度よりも低い、窒化ガリウム単結晶基板の製造方法。
    A method for manufacturing a gallium nitride single crystal substrate having a first main surface and a second main surface, the method comprising:
    preparing a base substrate with a gallium nitride film disposed on at least a portion of the surface;
    forming a first layer on the gallium nitride film by growing a gallium nitride single crystal under first growth conditions in the gallium nitride film;
    forming a second layer on the first layer by growing the gallium nitride single crystal under second growth conditions in the first layer;
    obtaining the gallium nitride single crystal substrate by cutting out the second layer,
    The growth surface of the first layer has a pit density of more than 100 pits/cm 2 ,
    The growth surface of the second layer has a pit density of 0.1 pits/cm 2 or more and 100 pits/cm 2 or less,
    The first growth condition is
    A gallium chloride gas partial pressure of 0.1 kPa or more and 20 kPa or less,
    Ammonia gas partial pressure of 0.5 kPa or more and 50 kPa or less,
    A growth temperature of 900°C or higher and 1100°C or lower,
    has a growth rate of 10 μm/hour or more and 300 μm/hour or less,
    The second growth condition is
    Gallium chloride gas partial pressure of 1 kPa or more and 50 kPa or less,
    Ammonia gas partial pressure of 1 kPa or more and 100 kPa or less,
    A growth temperature of 900°C or higher and 1100°C or lower,
    has a growth rate of 50 μm/hour or more and 500 μm/hour or less,
    A method for manufacturing a gallium nitride single crystal substrate, wherein the growth temperature under the first growth condition is lower than the growth temperature under the second growth condition.
  7.  前記第1成長条件は、
      1kPa以上5kPa以下の塩化ガリウムガス分圧と、
      5kPa以上20kPa以下のアンモニアガス分圧と、
      950℃以上1050℃以下の成長温度と、
      10μm/時以上200μm/時以下の成長速度とを有し、
     前記第2成長条件は、
      3kPa以上10kPa以下の塩化ガリウムガス分圧と、
      5kPa以上50kPa以下のアンモニアガス分圧と、
      1000℃以上1100℃以下の成長温度と、
      50μm/時以上400μm/時以下の成長速度とを有する、請求項6に記載の窒化ガリウム単結晶基板の製造方法。
    The first growth condition is
    A gallium chloride gas partial pressure of 1 kPa or more and 5 kPa or less,
    Ammonia gas partial pressure of 5 kPa or more and 20 kPa or less,
    A growth temperature of 950°C or more and 1050°C or less,
    has a growth rate of 10 μm/hour or more and 200 μm/hour or less,
    The second growth condition is
    Gallium chloride gas partial pressure of 3 kPa or more and 10 kPa or less,
    Ammonia gas partial pressure of 5 kPa or more and 50 kPa or less,
    A growth temperature of 1000°C or more and 1100°C or less,
    The method for manufacturing a gallium nitride single crystal substrate according to claim 6, having a growth rate of 50 μm/hour or more and 400 μm/hour or less.
PCT/JP2022/019935 2022-05-11 2022-05-11 Gallium nitride single crystal substrate and method for producing same WO2023218558A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023507779A JP7409556B1 (en) 2022-05-11 2022-05-11 Gallium nitride single crystal substrate and its manufacturing method
PCT/JP2022/019935 WO2023218558A1 (en) 2022-05-11 2022-05-11 Gallium nitride single crystal substrate and method for producing same
TW112113252A TW202347827A (en) 2022-05-11 2023-04-10 Gallium nitride single crystal substrate and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019935 WO2023218558A1 (en) 2022-05-11 2022-05-11 Gallium nitride single crystal substrate and method for producing same

Publications (1)

Publication Number Publication Date
WO2023218558A1 true WO2023218558A1 (en) 2023-11-16

Family

ID=88730022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019935 WO2023218558A1 (en) 2022-05-11 2022-05-11 Gallium nitride single crystal substrate and method for producing same

Country Status (3)

Country Link
JP (1) JP7409556B1 (en)
TW (1) TW202347827A (en)
WO (1) WO2023218558A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102307A (en) * 1999-09-28 2001-04-13 Sumitomo Electric Ind Ltd CRYSTAL GROWING METHOD FOR SINGLE-CRYSTAL GaN, AND SINGLE-CRYSTAL GaN SUBSTRATE AND MANUFACTURING METHOD THEREOF
JP2009519202A (en) * 2005-12-12 2009-05-14 キーマ テクノロジーズ, インク. Group III nitride product and method for producing the same
JP2010070430A (en) * 2008-09-22 2010-04-02 Sumitomo Electric Ind Ltd Conductive nitride semiconductor substrate and method for manufacturing the same
JP2011213512A (en) * 2010-03-31 2011-10-27 Nichia Corp Method for manufacturing gallium nitride semiconductor substrate
JP2019029568A (en) * 2017-08-01 2019-02-21 株式会社サイオクス Method for manufacturing semiconductor laminate and method for manufacturing nitride crystal substrate
JP2020203811A (en) * 2019-06-17 2020-12-24 パナソニックIpマネジメント株式会社 Method for manufacturing nitride semiconductor crystal, and nitride semiconductor crystal substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6497886B2 (en) 2014-10-03 2019-04-10 古河機械金属株式会社 Self-supporting substrate and method for manufacturing self-supporting substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102307A (en) * 1999-09-28 2001-04-13 Sumitomo Electric Ind Ltd CRYSTAL GROWING METHOD FOR SINGLE-CRYSTAL GaN, AND SINGLE-CRYSTAL GaN SUBSTRATE AND MANUFACTURING METHOD THEREOF
JP2009519202A (en) * 2005-12-12 2009-05-14 キーマ テクノロジーズ, インク. Group III nitride product and method for producing the same
JP2010070430A (en) * 2008-09-22 2010-04-02 Sumitomo Electric Ind Ltd Conductive nitride semiconductor substrate and method for manufacturing the same
JP2011213512A (en) * 2010-03-31 2011-10-27 Nichia Corp Method for manufacturing gallium nitride semiconductor substrate
JP2019029568A (en) * 2017-08-01 2019-02-21 株式会社サイオクス Method for manufacturing semiconductor laminate and method for manufacturing nitride crystal substrate
JP2020203811A (en) * 2019-06-17 2020-12-24 パナソニックIpマネジメント株式会社 Method for manufacturing nitride semiconductor crystal, and nitride semiconductor crystal substrate

Also Published As

Publication number Publication date
JP7409556B1 (en) 2024-01-09
JPWO2023218558A1 (en) 2023-11-16
TW202347827A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
TW417315B (en) GaN single crystal substrate and its manufacture method of the same
WO2016140074A1 (en) Method for manufacturing group-iii nitride semiconductor crystal substrate
US10822718B2 (en) Method for producing aluminum nitride single crystal substrate
JP6916835B2 (en) Chamfering Silicon Carbide Substrate and Chamfering Method
JP4930081B2 (en) GaN crystal substrate
JP7107951B2 (en) Group III nitride single crystal substrate
JP2006290697A (en) Nitride semiconductor substrate and its manufacturing method
JP5949064B2 (en) GaN bulk crystal
WO2013147203A1 (en) Periodic table group 13 metal nitride crystals and method for manufacturing periodic table group 13 metal nitride crystals
WO2013058352A1 (en) Group iii nitride semiconductor crystal
JP6669157B2 (en) C-plane GaN substrate
WO2021132491A1 (en) Group iii nitride single-crystal substrate and method for manufacturing same
JP2013177256A (en) Periodic table group 13 metal nitride substrate
JP7409556B1 (en) Gallium nitride single crystal substrate and its manufacturing method
CN106536794B (en) Gallium nitride substrate
JP5230522B2 (en) Manufacturing method of laminated body and semiconductor device having the laminated body
JPH0687691A (en) Production of diamond and diamond single crystal substrate used in the same
JP2013212945A (en) Method for producing group 13 nitride crystal and group 13 nitride crystal
US20210317597A1 (en) Nitride semiconductor substrate, method for manufacturing nitride semiconductor substrate, and laminate structure
JP7207440B2 (en) n-type GaN crystal, GaN wafer, and method for manufacturing GaN crystal, GaN wafer, and nitride semiconductor device
WO2023210696A1 (en) N-type gan substrate and n-type gan crystal
Pan et al. Effect of grain coalescence on dislocation and stress in GaN films grown on nanoscale patterned sapphire substrates
WO2023127454A1 (en) Method for producing group iii nitride single crystal substrate and aluminum nitride single crystal substrate
JP6916719B2 (en) Method for producing Group III nitride single crystal laminate and Group III nitride single crystal laminate
Mogilatenko et al. Growth of c-Plane GaN Films on (100) γ-LiAlO 2 by Hydride Vapour Phase Epitaxy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941638

Country of ref document: EP

Kind code of ref document: A1