WO2023217992A1 - Reflective glazing comprising a chromium layer - Google Patents

Reflective glazing comprising a chromium layer Download PDF

Info

Publication number
WO2023217992A1
WO2023217992A1 PCT/EP2023/062668 EP2023062668W WO2023217992A1 WO 2023217992 A1 WO2023217992 A1 WO 2023217992A1 EP 2023062668 W EP2023062668 W EP 2023062668W WO 2023217992 A1 WO2023217992 A1 WO 2023217992A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
glazing according
glazing
chromium
stack
Prior art date
Application number
PCT/EP2023/062668
Other languages
French (fr)
Inventor
Sacha ABADIE
Paula GONZALEZ DIAZ
Pedro ENRIQUEZ FERNANDEZ
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Publication of WO2023217992A1 publication Critical patent/WO2023217992A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3636Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing silicon, hydrogenated silicon or a silicide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3639Multilayers containing at least two functional metal layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens

Definitions

  • the present invention relates to glazing comprising a stack of layers of metallic appearance reflecting visible light and capable of withstanding thermal treatments of the annealing, bending, thermal quenching type.
  • Such glazing comprises on a glass substrate a coating 10 comprising an essentially metallic layer reflecting a major part of the visible light, most often in silver or alternatively in another metal such as chrome. Most often this reflective layer is encapsulated in the stack by dielectric materials to protect it from corrosion. Glazing coated with such a stack of layers having this fundamental structure are known in different embodiments. In other cases of use, for example for covering walls or facades, for aesthetic reasons, the emphasis here is placed more on the reflective properties of the stack of layers.
  • Glazing having a high metallic reflection and a relatively low light transmission are thus very decorative.
  • they are often used for cladding walls, facades (as glazing or facade paving) as mirror elements, as semi-transparent mirrors or as decorative glass plates. They can also be provided with an additional decorative impression and are most often used in tempered and/or curved (curved) form. If they are used as monolithic glass panes, the surface layer is exposed without any protection to the atmosphere, so that it must have a particularly high resistance capacity against the atmospheric influences but also sufficient resistance to scratches, essential in particular for cleaning operations.
  • the 5 coated glass substrates intended for these applications are conventionally prestressed by thermal tempering, i.e. say heated to a temperature above 500°C, 550°C or even 600°C and then very quickly cooled.
  • thermal tempering i.e. say heated to a temperature above 500°C, 550°C or even 600°C and then very quickly cooled.
  • the stack of thin reflective layers described above must be able to overcome this thermal stress without damage.
  • coated glass glazing must not be disturbed as a result.
  • the dielectric base layer consists of a material based on SiO2, Al 2 O 3, SiON, Si 3 N 4 or AlN or a mixture of at least two of these materials.
  • the use of a base layer of silicon nitride is to be preferred because it protects the chromium layer better than another layer such as oxide. silicon.
  • the upper layer according to this publication can be based on silicon, silicon nitride or aluminum nitride. It is indicated in this publication that the thickness of this layer is between 2 and 20 nm, so as to limit the color in reflection of the glazing, particularly on the coating side. New glazing is now being sought with a light transmission significantly lower than that covered by EP 0962 429, and in particular less than 1%, or even less than 0.5%. To obtain such glazing, the applicant company thickened the chrome layer, based on the stacks described in this publication. Such thickening leads to a drop in light transmission but together with an increase in the visibility of defects such as corrosion points as described subsequently in the 10 examples.
  • the invention thus aims to develop glazing having a light reflection RL of the glass greater than 45% and preferably greater than 50% and a light transmission TL less than 1%, and preferably less than 0.5%, and comprising a stack of 15 reflective layers with a metallic appearance, having high resistance to scratching and corrosion and high thermal stability, such that it can withstand heat treatment at a temperature above 500°C, in particular quenching, a bending or other, without the appearance of corrosion points (pinholes) and whose coloring is substantially neutral in reflection on the glass side (a* and b* less than 5 in absolute value and if possible negative in the Lab system) and very little color on the stacking side (in particular a value of b* less than or equal to 6 to avoid too marked yellow coloring), after said heat treatment.
  • the present invention relates to reflective glazing capable of withstanding heat treatment, in particular of the annealing, bending and/or quenching type, said glazing comprising a glass substrate and a stack of layers deposited on one of the faces 30 of said substrate glassmaker, said stack successively comprising, from the surface of said substrate: - a layer comprising silicon oxide with a thickness of between 15 and 35 nm, - a metallic layer based on chromium Cr, with a thickness of between 45 and 65 nm, - a layer comprising silicon nitride, of thickness greater than 20 nm and less than 30 nm, - a layer consisting essentially of a metal chosen from titanium, zirconium, silicon or mixtures thereof, with a thickness greater than 1 nm and less than 3 nm.
  • the metal layer comprises more than 80% by weight of chromium, and preferably more than 90% by weight of chromium.
  • the metallic layer consists essentially of chromium.
  • the metal layer consists of an alloy of chromium with at least one other metallic element, in which chromium represents more than 50% by weight of said alloy, said at least one element being preferably chosen from Al and/or Si.
  • the metal layer consists of a CrAl alloy preferably comprising 20-25% by weight of Al, a CrSi alloy comprising 15 to 49% by weight of Si, or a CrAlSi alloy comprising 70-80% in weight of Cr.
  • the layer comprising silicon oxide has a thickness of between 21 and 29 nm.
  • the chromium-based metal layer has a thickness of between 50 and 60 nm.
  • the layer comprising silicon nitride has a thickness of between 21 and 28 nanometers, preferably between 21 and 25 nm.
  • the stack includes only one layer based on chrome. - Stacking does not include silver or gold layers. - The stack does not include any metallic layers other than that based on chrome.
  • the layer comprising silicon oxide is directly in contact with the surface of the glass substrate and directly in contact with the chromium-based layer.
  • the chromium-based layer is directly in contact with the layer comprising silicon nitride.
  • 35 - The layer consisting essentially of titanium, zirconium or silicon is directly in contact with the layer comprising silicon nitride.
  • the layer consisting essentially of titanium, zirconium or silicon is the last layer of the stack. - said stack only comprises the layer comprising silicon oxide, the layer based on chromium, the layer comprising silicon nitride and the layer consisting essentially of a metal chosen from titanium, zirconium, silicon or their mixtures.
  • the light transmission of said coated glazing is less than 10 to 1%, preferably less than 0.5%.
  • the light reflection on the uncoated side of the stack is greater than 45%, preferably greater than 50%.
  • the stack of layers is in the form of a discontinuous coating, of the decoration or weft type.
  • a layer of opaque color, in particular of the paint or enamel type, covers the areas of the glazing free from stacking.
  • Said glazing is annealed, curved and/or tempered.
  • -said glazing is monolithic.
  • the layer comprising silicon nitride mainly comprises silicon and nitrogen as main constituents.
  • silicon and nitrogen together represent more than 50%, more than 60% or even more than 70% or even more than 80% of the atoms present in a layer, or even more than 90% of the atoms present in a layer.
  • said layers comprising silicon nitride are essentially made up of silicon and nitrogen and optionally of at least one element chosen from aluminum, boron or zirconium, preferably aluminum, apart from inevitable impurities.
  • Said layers comprising silicon nitride are in principle free of oxygen except for unavoidable impurities, for example they comprise less than 5 mole% of elemental oxygen, in particular less than 1 mole% of elemental oxygen.
  • said layer has an N/Si ratio greater than 1.25 and are stoichiometric or substantially stoichiometric layers, preferably substantially stoichiometric.
  • stoichiometric we mean that the N/Si ratio is equal to 1.33 for these nitride layers based on silicon, corresponding to the compound Si3N4.
  • substantially stoichiometric we mean for example that the value measured for this Si3N4 compound differs by less than 5% from this theoretical value.
  • the layers comprising silicon nitride according to the invention are obtained by a magnetron-assisted cathode sputtering process from a metallic silicon target which may comprise a minor quantity of another element such as aluminum and/or zirconium, for example around 8 atomic% of aluminum, in a reactive atmosphere containing nitrogen.
  • the layer comprising silicon oxide mainly comprises silicon and oxygen as main constituents.
  • silicon and oxygen together represent more than 50%, more than 60% or even more than 70% or even more than 80% of the atoms present in a layer, or even more than 90% of the atoms present in a layer.
  • said layers comprising silicon oxide consist essentially of silicon and oxygen and optionally of at least one element chosen from aluminum, boron or zirconium, preferably aluminum, with 30 impurities inevitable near.
  • the layers comprising silicon oxide according to the invention are obtained by a magnetron-assisted cathode sputtering process from a metallic silicon target which may comprise a minor quantity of another element such as aluminum and/or zirconium, for example around 8 atomic% of aluminum, in a reactive atmosphere containing oxygen.
  • the silicon target is the same as that used to obtain the silicon nitride layer described previously.
  • the reflective functional layer is based on chrome. It preferably consists essentially of chromium, or even consists of chromium, apart from inevitable impurities. It can alternatively be based on an alloy comprising mainly chromium, in particular more than 50% chromium by weight, preferably more than 60% by weight, or even more than 70% by weight or even more than 80% by weight and in a very preferred more than 90% weight of chromium. 10 This concerns in particular a binary chromium-aluminum alloy CrAl, with a mass content of 10% to 40% aluminum, in particular 20 to 25% by weight of aluminum.
  • chromium-silicon alloy Cr-Si
  • Cr-Si chromium-silicon alloy
  • the upper layer of metal with a thickness greater than 1 nm and less than 3 nm consists essentially of a metal chosen from Ti, Zr, Si or their mixtures. Preferably the thickness of this layer is between 1.5 nm and 2.5 nm.
  • the atomic sum of these three elements can represent more than 90%, or even more than 95% of the atoms in the layer (except oxygen).
  • the layer consists essentially of Ti.
  • this layer is at least partially oxidized to the corresponding oxide.
  • a layer of Ti is ultimately present in the stack in the form of TiOx, after quenching.
  • the glazing according to the invention is constituted by a glass substrate on which the layers of the stack are deposited and are said to be “bombable”, and/or “tempenable”, that is to say that they can undergo such a heat treatment. without significant modification of their appearance (particularly in terms of corrosion and colorimetry).
  • the stacks of layers according to the invention are advantageously deposited on the glass substrates following known reactive cathode sputtering processes assisted by a magnetic field in industrial continuous coating installations.
  • the coated glazing can then be subjected to a usual tempering process, without the stack of layers significantly losing its desired optical and aesthetic properties, in particular its colors in reflection.
  • an additional layer can be applied, for example a layer of continuous color in particular opaque, on the coated side, possibly for aesthetic purposes or to manufacture opaque glazing of the type lightens.
  • This layer can also be made of paint or enamel, obtained by baking an enamelling composition in a known manner.
  • the cooking operation can advantageously be linked to the annealing, bending or quenching operation of the glass substrate carrying the stack. The two operations can thus be concomitant.
  • the conditions for depositing the stack are as follows: On an industrial vacuum coating installation, 4 mm thick Planiclear TM clear float glass substrates are coated using a conventional cathode sputtering process assisted by a magnetic field, to obtain the following stack of layers: Glass - 15 nm Si3N4 - 55 nm Cr - 3 nm Si3N4 - 3 nm Ti
  • the SiO2 layer is sputtered in DMS mode (Dual-Magnetron-Sputter mode), with two cathodes and an alternating current under a reactive atmosphere from a Si target with a working gas composed of Ar/O2, and the Si3N4 layer under a reactive atmosphere from a Si target with a working gas composed of Ar/N2, according to well-known techniques in the domain.
  • Example 2 (comparative) In this example, we increased the thickness of the silicon nitride layer deposited above the chrome layer: We proceed in the same way as for example 1 to obtain the glazing following: Glass - 22 nm Si3N4 - 55 nm Cr - 23 nm Si3N4 – 2 nm of Ti Example 3 (according to the invention) In this example, we proceed in the same way as for example 1 to obtain the glazing following: Glass - 22 nm SiO2 - 55 nm Cr - 23 nm Si3N4 - 2 nm of Ti Example 4 (comparative) In this example, we proceed in the same way as for example 1 to obtain the following glazing: Glass - 22 nm SiO 2 - 55 nm Cr - 23 nm Si 3N4 - 2 nm of Ti Example 4 (comparative) In this example, we proceed in the same way as for example 1 to obtain the following glazing: Glass - 22 nm SiO 2 - 55 nm Cr
  • Optical quality The measurement of the transmission of the layer system in the visible spectral zone TL, of the reflection in the spectral zone visible RL (according to illuminant D65) according to standard ISO9050 (2003).
  • the coordinates a* and b* are determined in the CIELAB colorimeter system (L, a*, b*).
  • - Mechanical resistance the scratch resistance of the coatings was measured using a SCRATCH HARDNESS TESTER 413 device supplied by the company Erichsen according to the following protocol: The sample is mounted on a rotating table (number of revolutions in the standard version: 5 min -1 ).
  • the test tool is attached to a load arm with an adjustable weight that allows the pressure of the tool to be adjusted to the sample (load range 0 to 10 N).
  • the resistance of the sample to this effect is assessed visually using the scratch track.
  • the sample is considered suitable for marketing if there is no no visible scratches with a load of 1 N and low visibility of scratches at 3 and 5N.
  • - Quenching corrosion test the number of corrosion points is observed visually after quenching. We define 3 levels 5 of occurrence: ++: very numerous points of corrosion (pinholes) +: a few visible points of corrosion 0: no visible points of corrosion 10
  • the results of the tests carried out to evaluate the properties of the layers are collected in the following Table I, in which the results of the tests on the coated glazing after the tempering treatment are reported.
  • Comparative Example 2 further shows that a thicker underlayer based on silicon nitride leads to a marked and undesirable yellow appearance of the glazing in reflection on the stacking side (value of b* much greater than 6).
  • Comparative Examples 4 and 5 show the importance of selecting the thickness of the layer between 1 and 3 nm: thus a thickness of 3 nm leads to an undesirable marked yellow appearance of the glazing in reflection on the stacking side whereas a layer of 1 nm does not provide sufficient mechanical strength of the stack.
  • Comparison of comparative example 7 with example 3 according to the invention also shows that an additional metallic layer of Ti above the layer of silicon nitride in the stack only very slightly modifies the value b * in reflection on the stacking side, but only if its thickness does not reach 3 nanometers (comparative example 4).
  • Comparative Example 6 shows that too much thickness of the silicon nitride layer above the reflective chromium layer of chromium also leads to an undesirable marked yellow appearance of the glazing in reflection on the stacking side (b* much higher to 6).
  • the substrate provided with the stack of layers is preferably made of glass, and can be used as monolithic or incorporated glazing in a laminated glazing or multiple insulating glazing structure. It can remain transparent or be opaque, and be continuous or present patterns. 5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

The invention relates to a reflective glazing capable of withstanding heat treatment, in particular annealing, bending and/or tempering, the glazing comprising a glass substrate and a stack of layers including a layer comprising silicon oxide having a thickness of between 15 and 35 nm, a metal layer based on chromium Cr having a thickness of between 45 and 65 nm, a layer comprising silicon nitride having a thickness of more than 20 nm and less than 30 nm and a layer consisting essentially of a metal chosen from titanium, zirconium, silicon or mixtures thereof, which metal has a thickness of more than 1 nm and less than 3 nm.

Description

Description Titre : VITRAGE REFLECHISSANT COMPRENANT UNE COUCHE DE CHROME. 5 La présente invention concerne un vitrage comportant un empilement de couches d’aspect métallique réfléchissant la lumière visible et apte à supporter des traitements thermiques du type recuit, bombage, trempe thermique. Un tel vitrage comporte sur un substrat verrier un revêtement 10 comprenant une couche essentiellement métallique réfléchissant une majeure partie de la lumière visible, le plus souvent en argent ou alternativement en un autre métal tel que le chrome. Le plus souvent cette couche réfléchissante est encapsulée dans l’empilement par des matériaux diélectriques pour la protéger de la corrosion. 15 Les vitrages revêtus par un tel empilement de couches possédant cette structure fondamentale sont connus dans différentes formes de réalisation. Dans d’autres cas d’utilisation, par exemple pour le revêtement de murs ou de façades, pour des raisons d’esthétique, l'accent est mis ici davantage sur les propriétés réfléchissantes de 20 l’empilement de couches. Dans de nombreux cas, on souhaite une réflexion d’aspect métallique, mais on préfère cependant souvent une réflexion atténuée avec une transmission de lumière très réduite. Des vitrages ayant une réflexion métallique élevée et une 25 transmission lumineuse relativement faible sont ainsi très décoratifs. Dans l'architecture, ils sont souvent utilisés pour l'habillement de parois, de façades (comme vitrages ou pavements de façade) en tant qu'éléments de miroir, en tant que miroirs semi- transparents ou en tant que plaques décoratives en verre. Ils peuvent 30 également être pourvus d'une impression de décoration supplémentaire et sous le plus souvent utilisés sous forme trempée et/ou courbée (bombée). S’ils sont utilisés en tant que vitres en verre monolithiques, la couche superficielle est exposée sans protection quelconque à l'atmosphère, de sorte qu'elle doit présenter une 35 capacité de résistance particulièrement élevée vis-à-vis des influences atmosphériques mais également une résistance suffisante à la rayure, indispensable notamment pour les opérations de nettoyage. Pour des raisons de sécurité et/ou en vue de l'augmentation de leur résistance à la flexion et aux impacts, les 5 substrats en verre revêtus destinés à ces cas d'application sont classiquement précontraints par trempe thermique, c'est-à-dire chauffées à une température supérieure à 500°C, 550°C ou même 600°C et ensuite très rapidement refroidis. L’empilement de couches minces réfléchissant décrit précédemment doit pouvoir surmonter sans 10 dommages cette sollicitation thermique. En particulier ses propriétés esthétiques, optiques voire thermiques ou énergétiques, des vitrages en verre revêtus ne doivent pas être perturbées de ce fait. En particulier, il est important que ces vitrages conservent après une telle trempe des couleurs relativement neutres, du côté 15 du côté de la face de verre non revêtue (appelée face côté verre) mais aussi du côté de l’empilement de couches (appelée face côté empilement), que la résistance chimique et physique soit suffisante pour résister aux agressions extérieures. De façon primordiale, il est également indispensable que les opérations de trempe 20 n’aboutissent pas à l’apparition de points de corrosion (souvent appelés pinholes dans le domaine.) Il a déjà été décrit par la société déposante, dans la publication EP 0 962 429 A1, un vitrage semi-transparent de transmission lumineuses comprise entre 2 et 4% présentant une résistance thermique 25 élevée. Dans le cas de cet empilement de couches connu, la couche de base diélectrique se compose d’un matériau à base de SiO2, de Al2O3, de SiON, de Si3N4 ou de AlN ou bien d'un mélange d'au moins deux de ces matériaux. Parmi tous ces matériaux, il est indiqué en paragraphe [0028] que l’utilisation d’une couche de base en nitrure 30 de silicium est à privilégier car elle protège mieux la couche de chrome qu’une autre couche tel que l’oxyde de silicium. La couche supérieure selon cette publication peut être à base de silicium, de nitrure de silicium ou de nitrure d’aluminium. Il est indiqué dans cette publication que l’épaisseur de cette couche est 35 comprise entre 2 et 20 nm, de manière à limiter la couleur en réflexion du vitrage, notamment côté revêtement. Il est maintenant recherché de nouveaux vitrages présentant une transmission lumineuse sensiblement plus basse que celle faisant l’objet de EP 0962 429, et en particulière inférieure à 1%, ou même inférieure à 0,5%. Pour obtenir de tels vitrages il a été procédé 5 par la société déposante à un épaississement de la couche de chrome, sur la base des empilements décrits dans cette publication. Un tel épaississement conduit à une baisse de la transmission lumineuse mais conjointement à une augmentation de la visibilité des défauts tels que les points de corrosion comme décrit par la suite dans les 10 exemples. L’invention a ainsi pour but de développer un vitrage ayant une réflexion lumineuse RL du verre supérieure à 45% et de préférence supérieure à 50% et une transmission lumineuse TL inférieure à 1%, et de préférence inférieure à 0,5%, et comprenant un empilement de 15 couches réfléchissant d’aspect métallique, présentant une résistance à la rayure et à la corrosion élevée et une stabilité thermique élevée, telles qu’il puisse supporter un traitement thermique à une température supérieure à 500°C notamment une trempe, un bombage ou autre, sans l’apparition de points de corrosion (pinholes) et dont 20 la coloration est sensiblement neutre en réflexion côté verre (a* et b* inférieurs à 5 en valeur absolue et si possible négatifs dans le système Lab) et très peu coloré côté empilement (en particulier une valeur de b* inférieur ou égal à 6 pour éviter une coloration jaune trop marquée), après ledit traitement thermique. 25 Plus particulièrement, la présente invention se rapporte à un vitrage réfléchissant apte à supporter un traitement thermique, notamment du type recuit, bombage et/ou trempe, ledit vitrage comprenant un substrat verrier et un empilement de couches déposé sur une des faces 30 dudit substrat verrier, ledit empilement comprenant successivement, depuis la surface dudit substrat: - une couche comprenant de l’oxyde de silicium d’épaisseur comprise entre 15 et 35 nm, - une couche métallique à base de chrome Cr, d’épaisseur 35 comprise entre 45 et 65 nm, - une couche comprenant du nitrure de silicium, d’épaisseur supérieure à 20 nm et inférieure à 30 nm, - une couche constituée essentiellement d’un métal choisi parmi le titane, le zirconium, le silicium ou leurs mélanges, d’épaisseur supérieure à 1 nm et inférieure à 3 nm. 5 Selon des modes préférés mais non limitatifs de la présente invention, qui peuvent bien entendu le cas échéant être combinés entre eux : - La couche métallique comprend plus de 80% poids de chrome, et de préférence plus de 90% poids de chrome. 10 - La couche métallique est constituée essentiellement de chrome. - La couche métallique est constituée d’un alliage de chrome avec au moins un autre élément métallique, dans lequel le chrome représente plus de 50% poids dudit alliage, ledit au moins un élément étant choisi de préférence parmi Al et/ou Si. 15 - La couche métallique est constituée d’un alliage CrAl comportant de préférence 20-25% en poids d’Al, d’un alliage CrSi comportant 15 à 49% en poids de Si, ou d’un alliage CrAlSi comportant 70-80% en poids de Cr. - La couche comprenant de l’oxyde de silicium présente une 20 épaisseur comprise entre 21 et 29 nm. - La couche métallique à base de chrome présente une épaisseur comprise entre 50 et 60 nm. - La couche comprenant du nitrure de silicium présente une épaisseur comprise entre 21 et 28 nanomètres, de préférence comprise 25 entre 21 et 25 nm. - L’empilement ne comprend qu’une seule couche à base de chrome. - L’empilement ne comprend pas de couches en argent ou en or. - L’empilement ne comprend pas de couches métalliques autre que celle à base de chrome. 30 - La couche comprenant de l’oxyde de silicium est directement au contact de la surface du substrat verrier et directement au contact de la couche à base de chrome. - La couche à base de chrome est directement au contact de la couche comprenant du nitrure de silicium. 35 - La couche constituée essentiellement de titane, de zirconium ou de silicium est directement au contact de la couche comprenant du nitrure de silicium. - La couche constituée essentiellement de titane, de zirconium ou de silicium est la dernière couche de l’empilement. - ledit empilement ne comprend que la couche comprenant de 5 l’oxyde de silicium, la couche à base de chrome, la couche comprenant le nitrure de silicium et la couche constituée essentiellement d’un métal choisi parmi le titane, le zirconium, le silicium ou leurs mélanges. - La transmission lumineuse dudit vitrage revêtu est inférieure 10 à 1%, de préférence est inférieure à 0,5%. - La réflexion lumineuse du côté non revêtu de l’empilement est supérieure à 45%, de préférence supérieure à 50%. - L’empilement de couches est sous forme d’un revêtement discontinu, du type décor ou trame. 15 - Une couche de couleur opaque, notamment du type peinture ou email, recouvre les zones du vitrage exemptes de l’empilement. - Ledit vitrage est recuit, bombé et/ou trempé. -ledit vitrage est monolithique. 20 La couche comprenant du nitrure de silicium comprend majoritairement du silicium et de l’azote comme constituants principaux. En particulier, le silicium et l’azote représentent ensemble plus de 50%, plus de 60% voire plus de 70% ou même plus de 80% des atomes présents dans une couche, voire plus de 90% des atomes présents dans 25 une couche. De préférence, lesdites couches comprenant du nitrure de silicium sont essentiellement constituées de silicium et d’azote et optionnellement d’au moins un élément choisi parmi l’aluminium, le bore ou le zirconium, de préférence l’aluminium, aux impuretés inévitables près. Lesdites couches comprenant du nitrure de silicium 30 sont en principe exempte d’oxygène aux impuretés inévitables près, par exemple elles comprennent moins de 5% molaire d’oxygène élémentaire, en particulier moins de 1% molaire d’oxygène élémentaire. De préférence, ladite couche présente un ratio N/Si supérieur à 1,25 et sont des couches stœchiométrique ou sensiblement 35 stœchiométrique, de préférence sensiblement stœchiométrique. Par « stœchiométrique », on entend que le ratio N/Si est égal à 1,33 pour ces couches de nitrure à base de silicium, correspondant au composé Si3N4. Par « sensiblement stœchiométrique », on entend par exemple que la valeur mesurée pour ce composé Si3N4 diffère de moins de 5% de cette valeur théorique. 5 En effet, il convient de noter que les couches comprenant du nitrure de silicium selon l’invention sont obtenues par un procédé de pulvérisation cathodique assistée par magnétron à partir d’une cible silicium métallique pouvant comprendre une quantité mineure d’un autre élément tel que l’aluminium et/ou le zirconium, par exemple 10 autour de 8% atomique d’aluminium, dans une atmosphère réactive contenant de l’azote. Dans un tel cas, le ratio N/Si peut varier sensiblement de la valeur théorique 1,33 (= 4/3) (correspondant au composé défini Si3N4) en tenant compte des stœchiométries des composés définis AlN et Si3N4. A titre d’exemple, pour une couche de 15 nitrure de silicium comprenant un peu d’aluminium, obtenue avec la cible décrite précédemment (8% d’aluminium), le ratio N/Si de la couche stœchiométrique correspond théoriquement à une formulation : 92% (SiN1,33) / 8% (AlN) soit un ratio N/Si de 1,41 (sur la base d’une formule théorique 0,92 SiN1,33 0,08 AlN, soit un ratio : N/Si 20 = [(0,92×1,33+0,08×1)/(0,92)] = 1,41). De même la couche comprenant de l’oxyde de silicium comprend majoritairement du silicium et de l’oxygène comme constituants principaux. En particulier, le silicium et l’oxygène représentent ensemble plus de 50%, plus de 60% voire plus de 70% ou même plus de 25 80% des atomes présents dans une couche, voire plus de 90% des atomes présents dans une couche. De préférence, lesdites couches comprenant de l’oxyde de silicium sont essentiellement constituées de silicium et d’oxygène et optionnellement d’au moins un élément choisi parmi l’aluminium, le bore ou le zirconium, de préférence l’aluminium, aux 30 impuretés inévitables près. Les couches comprenant de l’oxyde de silicium selon l’invention sont obtenues par un procédé de pulvérisation cathodique assistée par magnétron à partir d’une cible silicium métallique pouvant comprendre une quantité mineure d’un autre élément tel que l’aluminium et/ou le zirconium, par exemple 35 autour de 8% atomique d’aluminium, dans une atmosphère réactive contenant de l’oxygène. En particulier la cible en silicium est la même que celle utilisée pour l’obtention de la couche de nitrure de silicium décrite précédemment. La couche fonctionnelle réfléchissante est à base de chrome. Elle est de préférence constituée essentiellement de chrome, voire même 5 est constituée de chrome, aux impuretés inévitables près. Elle peut alternativement être à base d’un alliage comprenant majoritairement du chrome, en particulier plus de 50% de chrome en poids, de préférence plus 60% poids, voire plus de 70% poids ou même plus de 80% poids et de manière très préférée plus de 90% poids de chrome. 10 Il s’agit notamment d’alliage binaire chrome-aluminium CrAl, avec un taux massique de 10% à 40% en aluminium, en particulier de 20 à 25% en poids d’aluminium. Il s’agit aussi d’alliage chrome-silicium, Cr- Si, avec de préférence au moins 5 à 10% en poids de silicium, notamment entre 5 et 49% en poids de silicium. Il peut s’agir aussi 15 d’alliage tri-composants comme l’alliage Cr-Al-Si, comportant de préférence au moins 60% en poids de chrome, notamment entre 70 et 80% en poids de chrome. La couche supérieure de métal d’épaisseur supérieure à 1 nm et inférieure à 3 nm est constituée essentiellement d’un métal choisi 20 parmi Ti, Zr, Si ou leurs mélanges. De préférence l’épaisseur de cette couche est comprise entre 1,5 nm et 2,5 nm. Par exemple, la somme atomique de ces trois éléments peut représenter plus de 90%, voire plus de 95% des atomes de la couche (hormis l’oxygène). De préférence la couche est constituée essentiellement de Ti. Lors d’une 25 étape de chauffage telle qu’une trempe, un bombage ou un recuit, cette couche est au moins partiellement oxydée en l’oxyde correspondant. Ainsi, une couche de Ti est au final présente dans l’empilement sous forme de TiOx, après une trempe. Les empilements de couches selon l'invention permettent de remplir 30 dans une large mesure toutes les exigences précitées, le résultat souhaité se produisant par l’action combinée des différentes couches de l’empilement. Le vitrage selon l’invention est constitué par un substrat verrier sur lequel on dépose les couches de l’empilement est dit 35 « bombable », et/ou « trempable », c’est à dire qu’ils peuvent subir un tel traitement thermique sans modification significative de leur aspect (en particulier en terme de corrosion et de colorimétrie). Les empilements de couches selon l'invention sont avantageusement déposés sur les substrat verriers suivant les procédés connus de pulvérisation cathodique réactive assistés par un champ magnétique 5 dans des installations industrielles de revêtement en continu. Les vitrages revêtus peuvent ensuite être soumis à un procédé de trempe habituel, sans que l’empilement de couches ne perde de façon significative ses propriétés optiques et esthétiques souhaitées, en particulier ses couleurs en réflexion. 10 Après le dépôt de l’empilement de couches suivant l’invention, on peut appliquer une couche supplémentaire, par exemple une couche de couleur continue notamment opaque, sur le côté revêtu, éventuellement dans un but esthétique ou pour fabriquer des vitrages opaques du type allège. Cette couche peut également être en peinture 15 ou en émail, obtenu par cuisson d’une composition d’émaillage de façon connue. Dans ce cas, on peut avantageusement lier l’opération de cuisson à l’opération de recuit, bombage ou trempe du substrat verrier porteur de l’empilement. Les deux opérations peuvent ainsi être concomitantes. 20 L’invention et ses avantages sont illustrés par les exemples suivants : ^ Exemple de référence (selon EP0962429) 25 L’exemple de référence est l’exemple 4 de la publication antérieure EP0962429 A1, qui décrit le vitrage suivant : Verre - 15 nm Si3N4 - 35 nm Cr - 3 nm Si3N4 - 3 nm Ti, où le Ti est, après la trempe, au moins partiellement oxydé en oxyde de titane TiOx. 30 Exemple 1 (comparatif) Dans cet exemple on synthétise un vitrage identique à l’exemple de référence mais dans lequel l’épaisseur de la couche de chrome est augmentée jusqu’à 55 nm. 35 Les conditions du dépôt de l’empilement sont les suivantes : Sur une installation industrielle de revêtement sous vide, des substrats en verre clair flotté Planiclear ™ de 4 mm d’épaisseur sont revêtus suivant un procédé classique de pulvérisation cathodique assistée par un champ magnétique, pour l’obtention de l’empilement de couches suivant : Verre - 15 nm Si3N4 - 55 nm Cr - 3 nm Si3N4 - 3 nm de Ti La couche de SiO2 est pulvérisée en mode DMS (mode Dual- Magnetron-Sputter), avec deux cathodes et un courant alternatif sous atmosphère réactive à partir d’une cible à Si avec un gaz de travail composé d’Ar/O2, et la couche de Si3N4 sous atmosphère réactive à partir d’une cible à Si avec un gaz de travail composé d’Ar/N2, selon les techniques bien connues dans le domaine. La couche de Cr est obtenue par pulvérisation d’une cible constituée de Cr dans une atmosphère constituée d’argon. La couche supérieure de Ti est obtenue par pulvérisation d’une cible constituée de Ti dans une atmosphère constituée d’argon. Exemple 2 (comparatif) Dans cet exemple, on a augmenté l’épaisseur de la couche de nitrure de silicium déposée au-dessus de la couche de chrome : On procède de la même manière que pour l’exemple 1 pour l’obtention du vitrage suivant : Verre - 22 nm Si3N4 - 55 nm Cr - 23 nm Si3N4 – 2 nm de Ti Exemple 3 (selon l’invention) Dans cet exemple, on procède de la même manière que pour l’exemple 1 pour l’obtention du vitrage suivant : Verre - 22 nm SiO2 - 55 nm Cr - 23 nm Si3N4 - 2 nm de Ti Exemple 4 (comparatif) Dans cet exemple, on procède de la même manière que pour l’exemple 1 pour l’obtention du vitrage suivant : Verre - 22 nm SiO2 - 55 nm Cr - 23 nm Si3N4 - 3 nm de Ti Exemple 5 (comparatif) Dans cet exemple, on procède de la même manière que pour l’exemple 1 pour l’obtention du vitrage suivant : Verre - 22 nm SiO2 - 55 nm Cr - 23 nm Si3N4 - 1 nm de Ti Exemple 6 (comparatif) Dans cet exemple, on procède de la même manière que pour l’exemple 1 pour l’obtention du vitrage suivant : Verre - 22 nm SiO2 - 55 nm Cr - 30 nm Si3N4 - 2 nm de Ti Exemple 7 (comparatif) Dans cet exemple, on procède de la même manière que pour l’exemple 1 pour l’obtention du vitrage suivant : Verre - 22 nm SiO2 - 55 nm Cr - 23 nm Si3N4 Les vitrages ainsi revêtus sont trempés thermiquement dans une installation industrielle de trempe, par chauffage à une température d’environ 650°C et refroidissement rapide par soufflage d’air froid selon les techniques habituelles. Les vitrages sont ensuite soumis aux tests suivants pour permettre de déterminer leur résistance à la trempe et leur potentiel utilisation : - Qualité optique : La mesure de la transmission du système de couche dans la zone spectrale du visible TL, de la réflexion dans la zone spectrale du visible RL (selon l’illuminant D65) selon la norme ISO9050 (2003). Les coordonnées a* et b* sont déterminées dans le système de colorimètre (L, a*, b*) CIELAB. - Résistance mécanique: la résistance à la rayure des revêtements a été mesurée à l’aide d’un dispositif SCRATCH HARDNESS TESTER 413 fourni par la société Erichsen selon le protocole suivant : L'échantillon est monté sur une table rotative (nombre de tours dans la version standard : 5 min-1). L'outil de test est fixé à un bras de charge avec un poids réglable qui permet d'ajuster la pression de l'outil à l'échantillon (plage de charge de 0 à 10 N). La résistance de l'échantillon à cet effet est évaluée visuellement à l'aide de la piste de grattage. L’échantillon est considéré comme apte à une commercialisation si il n’y a pas de rayures visibles avec une charge de 1 N et une faible visibilité des rayures à 3 et 5N. - Test de corrosion à la trempe : le nombre de points de corrosion est observé visuellement après la trempe. On définit 3 niveaux 5 d’occurrence : ++ : très nombreux points de corrosion (pinholes) + : quelques points de corrosion visibles 0 : aucun point de corrosion visible 10 Les résultats des tests effectués pour l’évaluation des propriétés des couches sont rassemblés dans le tableau I suivant, dans lequel sont rapportés les résultats des tests sur les vitrages revêtus après le traitement de trempe. Description Title: REFLECTIVE GLASS INCLUDING A CHROME LAYER. The present invention relates to glazing comprising a stack of layers of metallic appearance reflecting visible light and capable of withstanding thermal treatments of the annealing, bending, thermal quenching type. Such glazing comprises on a glass substrate a coating 10 comprising an essentially metallic layer reflecting a major part of the visible light, most often in silver or alternatively in another metal such as chrome. Most often this reflective layer is encapsulated in the stack by dielectric materials to protect it from corrosion. Glazing coated with such a stack of layers having this fundamental structure are known in different embodiments. In other cases of use, for example for covering walls or facades, for aesthetic reasons, the emphasis here is placed more on the reflective properties of the stack of layers. In many cases, a metallic appearance reflection is desired, but we often prefer an attenuated reflection with very reduced light transmission. Glazing having a high metallic reflection and a relatively low light transmission are thus very decorative. In architecture, they are often used for cladding walls, facades (as glazing or facade paving) as mirror elements, as semi-transparent mirrors or as decorative glass plates. They can also be provided with an additional decorative impression and are most often used in tempered and/or curved (curved) form. If they are used as monolithic glass panes, the surface layer is exposed without any protection to the atmosphere, so that it must have a particularly high resistance capacity against the atmospheric influences but also sufficient resistance to scratches, essential in particular for cleaning operations. For safety reasons and/or with a view to increasing their resistance to bending and impacts, the 5 coated glass substrates intended for these applications are conventionally prestressed by thermal tempering, i.e. say heated to a temperature above 500°C, 550°C or even 600°C and then very quickly cooled. The stack of thin reflective layers described above must be able to overcome this thermal stress without damage. In particular its aesthetic, optical or even thermal or energetic properties, coated glass glazing must not be disturbed as a result. In particular, it is important that these glazings retain relatively neutral colors after such tempering, on the side of the uncoated glass face (called the glass side face) but also on the side of the stack of layers (called the glass side). stacking side), that the chemical and physical resistance is sufficient to resist external attacks. Above all, it is also essential that the quenching operations 20 do not lead to the appearance of corrosion points (often called pinholes in the field.) It has already been described by the applicant company, in the publication EP 0 962 429 A1, a semi-transparent glazing with a light transmission of between 2 and 4% having high thermal resistance. In the case of this known stack of layers, the dielectric base layer consists of a material based on SiO2, Al 2 O 3, SiON, Si 3 N 4 or AlN or a mixture of at least two of these materials. Among all these materials, it is indicated in paragraph [0028] that the use of a base layer of silicon nitride is to be preferred because it protects the chromium layer better than another layer such as oxide. silicon. The upper layer according to this publication can be based on silicon, silicon nitride or aluminum nitride. It is indicated in this publication that the thickness of this layer is between 2 and 20 nm, so as to limit the color in reflection of the glazing, particularly on the coating side. New glazing is now being sought with a light transmission significantly lower than that covered by EP 0962 429, and in particular less than 1%, or even less than 0.5%. To obtain such glazing, the applicant company thickened the chrome layer, based on the stacks described in this publication. Such thickening leads to a drop in light transmission but together with an increase in the visibility of defects such as corrosion points as described subsequently in the 10 examples. The invention thus aims to develop glazing having a light reflection RL of the glass greater than 45% and preferably greater than 50% and a light transmission TL less than 1%, and preferably less than 0.5%, and comprising a stack of 15 reflective layers with a metallic appearance, having high resistance to scratching and corrosion and high thermal stability, such that it can withstand heat treatment at a temperature above 500°C, in particular quenching, a bending or other, without the appearance of corrosion points (pinholes) and whose coloring is substantially neutral in reflection on the glass side (a* and b* less than 5 in absolute value and if possible negative in the Lab system) and very little color on the stacking side (in particular a value of b* less than or equal to 6 to avoid too marked yellow coloring), after said heat treatment. 25 More particularly, the present invention relates to reflective glazing capable of withstanding heat treatment, in particular of the annealing, bending and/or quenching type, said glazing comprising a glass substrate and a stack of layers deposited on one of the faces 30 of said substrate glassmaker, said stack successively comprising, from the surface of said substrate: - a layer comprising silicon oxide with a thickness of between 15 and 35 nm, - a metallic layer based on chromium Cr, with a thickness of between 45 and 65 nm, - a layer comprising silicon nitride, of thickness greater than 20 nm and less than 30 nm, - a layer consisting essentially of a metal chosen from titanium, zirconium, silicon or mixtures thereof, with a thickness greater than 1 nm and less than 3 nm. 5 According to preferred but non-limiting embodiments of the present invention, which can of course if necessary be combined with each other: - The metal layer comprises more than 80% by weight of chromium, and preferably more than 90% by weight of chromium. 10 - The metallic layer consists essentially of chromium. - The metal layer consists of an alloy of chromium with at least one other metallic element, in which chromium represents more than 50% by weight of said alloy, said at least one element being preferably chosen from Al and/or Si. - The metal layer consists of a CrAl alloy preferably comprising 20-25% by weight of Al, a CrSi alloy comprising 15 to 49% by weight of Si, or a CrAlSi alloy comprising 70-80% in weight of Cr. - The layer comprising silicon oxide has a thickness of between 21 and 29 nm. - The chromium-based metal layer has a thickness of between 50 and 60 nm. - The layer comprising silicon nitride has a thickness of between 21 and 28 nanometers, preferably between 21 and 25 nm. - The stack includes only one layer based on chrome. - Stacking does not include silver or gold layers. - The stack does not include any metallic layers other than that based on chrome. 30 - The layer comprising silicon oxide is directly in contact with the surface of the glass substrate and directly in contact with the chromium-based layer. - The chromium-based layer is directly in contact with the layer comprising silicon nitride. 35 - The layer consisting essentially of titanium, zirconium or silicon is directly in contact with the layer comprising silicon nitride. - The layer consisting essentially of titanium, zirconium or silicon is the last layer of the stack. - said stack only comprises the layer comprising silicon oxide, the layer based on chromium, the layer comprising silicon nitride and the layer consisting essentially of a metal chosen from titanium, zirconium, silicon or their mixtures. - The light transmission of said coated glazing is less than 10 to 1%, preferably less than 0.5%. - The light reflection on the uncoated side of the stack is greater than 45%, preferably greater than 50%. - The stack of layers is in the form of a discontinuous coating, of the decoration or weft type. 15 - A layer of opaque color, in particular of the paint or enamel type, covers the areas of the glazing free from stacking. - Said glazing is annealed, curved and/or tempered. -said glazing is monolithic. The layer comprising silicon nitride mainly comprises silicon and nitrogen as main constituents. In particular, silicon and nitrogen together represent more than 50%, more than 60% or even more than 70% or even more than 80% of the atoms present in a layer, or even more than 90% of the atoms present in a layer. . Preferably, said layers comprising silicon nitride are essentially made up of silicon and nitrogen and optionally of at least one element chosen from aluminum, boron or zirconium, preferably aluminum, apart from inevitable impurities. Said layers comprising silicon nitride are in principle free of oxygen except for unavoidable impurities, for example they comprise less than 5 mole% of elemental oxygen, in particular less than 1 mole% of elemental oxygen. Preferably, said layer has an N/Si ratio greater than 1.25 and are stoichiometric or substantially stoichiometric layers, preferably substantially stoichiometric. By “stoichiometric”, we mean that the N/Si ratio is equal to 1.33 for these nitride layers based on silicon, corresponding to the compound Si3N4. By “substantially stoichiometric”, we mean for example that the value measured for this Si3N4 compound differs by less than 5% from this theoretical value. 5 Indeed, it should be noted that the layers comprising silicon nitride according to the invention are obtained by a magnetron-assisted cathode sputtering process from a metallic silicon target which may comprise a minor quantity of another element such as aluminum and/or zirconium, for example around 8 atomic% of aluminum, in a reactive atmosphere containing nitrogen. In such a case, the N/Si ratio can vary significantly from the theoretical value 1.33 (= 4/3) (corresponding to the defined compound Si3N4) taking into account the stoichiometries of the defined compounds AlN and Si3N4. As an example, for a layer of silicon nitride comprising a little aluminum, obtained with the target described above (8% aluminum), the N/Si ratio of the stoichiometric layer theoretically corresponds to a formulation: 92% (SiN1.33) / 8% (AlN) i.e. an N/Si ratio of 1.41 (based on a theoretical formula 0.92 SiN1.33 0.08 AlN, i.e. a ratio: N/Si 20 = [(0.92×1.33+0.08×1)/(0.92)] = 1.41). Likewise, the layer comprising silicon oxide mainly comprises silicon and oxygen as main constituents. In particular, silicon and oxygen together represent more than 50%, more than 60% or even more than 70% or even more than 80% of the atoms present in a layer, or even more than 90% of the atoms present in a layer. . Preferably, said layers comprising silicon oxide consist essentially of silicon and oxygen and optionally of at least one element chosen from aluminum, boron or zirconium, preferably aluminum, with 30 impurities inevitable near. The layers comprising silicon oxide according to the invention are obtained by a magnetron-assisted cathode sputtering process from a metallic silicon target which may comprise a minor quantity of another element such as aluminum and/or zirconium, for example around 8 atomic% of aluminum, in a reactive atmosphere containing oxygen. In particular the silicon target is the same as that used to obtain the silicon nitride layer described previously. The reflective functional layer is based on chrome. It preferably consists essentially of chromium, or even consists of chromium, apart from inevitable impurities. It can alternatively be based on an alloy comprising mainly chromium, in particular more than 50% chromium by weight, preferably more than 60% by weight, or even more than 70% by weight or even more than 80% by weight and in a very preferred more than 90% weight of chromium. 10 This concerns in particular a binary chromium-aluminum alloy CrAl, with a mass content of 10% to 40% aluminum, in particular 20 to 25% by weight of aluminum. It is also a chromium-silicon alloy, Cr-Si, with preferably at least 5 to 10% by weight of silicon, in particular between 5 and 49% by weight of silicon. It may also be a three-component alloy such as the Cr-Al-Si alloy, preferably comprising at least 60% by weight of chromium, in particular between 70 and 80% by weight of chromium. The upper layer of metal with a thickness greater than 1 nm and less than 3 nm consists essentially of a metal chosen from Ti, Zr, Si or their mixtures. Preferably the thickness of this layer is between 1.5 nm and 2.5 nm. For example, the atomic sum of these three elements can represent more than 90%, or even more than 95% of the atoms in the layer (except oxygen). Preferably the layer consists essentially of Ti. During a heating step such as quenching, bending or annealing, this layer is at least partially oxidized to the corresponding oxide. Thus, a layer of Ti is ultimately present in the stack in the form of TiOx, after quenching. The stacks of layers according to the invention make it possible to fulfill to a large extent all of the aforementioned requirements, the desired result being produced by the combined action of the different layers of the stack. The glazing according to the invention is constituted by a glass substrate on which the layers of the stack are deposited and are said to be "bombable", and/or "tempenable", that is to say that they can undergo such a heat treatment. without significant modification of their appearance (particularly in terms of corrosion and colorimetry). The stacks of layers according to the invention are advantageously deposited on the glass substrates following known reactive cathode sputtering processes assisted by a magnetic field in industrial continuous coating installations. The coated glazing can then be subjected to a usual tempering process, without the stack of layers significantly losing its desired optical and aesthetic properties, in particular its colors in reflection. 10 After deposition of the stack of layers according to the invention, an additional layer can be applied, for example a layer of continuous color in particular opaque, on the coated side, possibly for aesthetic purposes or to manufacture opaque glazing of the type lightens. This layer can also be made of paint or enamel, obtained by baking an enamelling composition in a known manner. In this case, the cooking operation can advantageously be linked to the annealing, bending or quenching operation of the glass substrate carrying the stack. The two operations can thus be concomitant. 20 The invention and its advantages are illustrated by the following examples: ^ Reference example (according to EP0962429) 25 The reference example is example 4 of the previous publication EP0962429 A1, which describes the following glazing: Glass - 15 nm Si3N4 - 35 nm Cr - 3 nm Si3N4 - 3 nm Ti, where the Ti is, after quenching, at least partially oxidized to titanium oxide TiOx. Example 1 (comparative) In this example, glazing identical to the reference example is synthesized but in which the thickness of the chromium layer is increased to 55 nm. 35 The conditions for depositing the stack are as follows: On an industrial vacuum coating installation, 4 mm thick Planiclear ™ clear float glass substrates are coated using a conventional cathode sputtering process assisted by a magnetic field, to obtain the following stack of layers: Glass - 15 nm Si3N4 - 55 nm Cr - 3 nm Si3N4 - 3 nm Ti The SiO2 layer is sputtered in DMS mode (Dual-Magnetron-Sputter mode), with two cathodes and an alternating current under a reactive atmosphere from a Si target with a working gas composed of Ar/O2, and the Si3N4 layer under a reactive atmosphere from a Si target with a working gas composed of Ar/N2, according to well-known techniques in the domain. The Cr layer is obtained by sputtering a target made of Cr in an atmosphere made of argon. The upper layer of Ti is obtained by sputtering a target made of Ti in an atmosphere made of argon. Example 2 (comparative) In this example, we increased the thickness of the silicon nitride layer deposited above the chrome layer: We proceed in the same way as for example 1 to obtain the glazing following: Glass - 22 nm Si3N4 - 55 nm Cr - 23 nm Si3N4 – 2 nm of Ti Example 3 (according to the invention) In this example, we proceed in the same way as for example 1 to obtain the glazing following: Glass - 22 nm SiO2 - 55 nm Cr - 23 nm Si3N4 - 2 nm of Ti Example 4 (comparative) In this example, we proceed in the same way as for example 1 to obtain the following glazing: Glass - 22 nm SiO 2 - 55 nm Cr - 23 nm Si 3 N 4 - 3 nm of Ti Example 5 (comparative) In this example, we proceed in the same way as for the example 1 to obtain the following glazing: Glass - 22 nm SiO2 - 55 nm Cr - 23 nm Si3N4 - 1 nm of Ti Example 6 (comparative) In this example, we proceed in the same way as for example 1 for the obtaining the following glazing: Glass - 22 nm SiO2 - 55 nm Cr - 30 nm Si3N4 - 2 nm of Ti Example 7 (comparative) In this example, we proceed in the same way as for example 1 to obtain the following glazing: Glass - 22 nm SiO2 - 55 nm Cr - 23 nm Si3N4 The glazing thus coated is thermally tempered in an industrial tempering installation, by heating to a temperature of approximately 650°C and rapid cooling by blowing cold air according to usual techniques. The glazing is then subjected to the following tests to determine their resistance to tempering and their potential use: - Optical quality: The measurement of the transmission of the layer system in the visible spectral zone TL, of the reflection in the spectral zone visible RL (according to illuminant D65) according to standard ISO9050 (2003). The coordinates a* and b* are determined in the CIELAB colorimeter system (L, a*, b*). - Mechanical resistance: the scratch resistance of the coatings was measured using a SCRATCH HARDNESS TESTER 413 device supplied by the company Erichsen according to the following protocol: The sample is mounted on a rotating table (number of revolutions in the standard version: 5 min -1 ). The test tool is attached to a load arm with an adjustable weight that allows the pressure of the tool to be adjusted to the sample (load range 0 to 10 N). The resistance of the sample to this effect is assessed visually using the scratch track. The sample is considered suitable for marketing if there is no no visible scratches with a load of 1 N and low visibility of scratches at 3 and 5N. - Quenching corrosion test: the number of corrosion points is observed visually after quenching. We define 3 levels 5 of occurrence: ++: very numerous points of corrosion (pinholes) +: a few visible points of corrosion 0: no visible points of corrosion 10 The results of the tests carried out to evaluate the properties of the layers are collected in the following Table I, in which the results of the tests on the coated glazing after the tempering treatment are reported.
[Table 1] Test Exemple Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7 ) s R e e e O
Figure imgf000013_0001
*données EP0962429 NM : non mesuré Les résultats des tests montrent que la stabilité de l’empilement, en particulier son niveau de corrosion et sa colorimétrie, n’est pas affectée par le traitement de trempe thermique décrit précédemment uniquement pour l’exemple 3 selon l’invention, c'est-à-dire dans lequel les épaisseurs et les matériaux utilisés dans l’empilement sont sélectionnés selon les critères définis précédemment, et tels que reportés dans les revendications qui suivent. Dans le détail, on peut voir dans le tableau qui précède que l’utilisation d’une couche d’oxyde de silicium en dessous de la couche de chrome est beaucoup plus efficace pour prévenir l’apparition de points de corrosion du type « pinholes ». Sans lier une telle constatation à une quelconque théorie, il est possible que de tels défauts étaient déjà présents dans l’exemple 4 de EP0962429 avec une épaisseur de chrome de 35 nm comme décrit dans l’exemple comparatif mais n’étaient pas détectables visuellement, en raison d’une TL supérieure à 2%. Ainsi les exemples 1 et 2 comparatifs, qui comprennent une sous-couche à base de nitrure de silicium, présentent 5 de tels défauts, au contraire des couches dont la sous-couche est à base d’oxyde de silicium. L’exemple 1 comparatif montre en particulier que l’épaississement de la couche de chrome dans l’exemple selon EP 0962429 conduit à l’apparition visuelle de très nombreux points de corrosion, rendant un tel produit invendable. 10 L’exemple 2 comparatif montre en outre qu’une sous couche plus épaisse à base de nitrure de silicium conduit à un aspect jaune marqué et indésirable du vitrage en réflexion côté empilement (valeur de b* très supérieure à 6). Les exemples 3 à 7, par comparaison avec les exemples 1 et 2, montrent 15 de façon inattendue que la combinaison d’une sous couche comprenant de l’oxyde de silicium et d’une surcouche comprenant du nitrure de silicium d’épaisseur supérieure à 20 nm permet de prévenir efficacement la formation desdits points de corrosion. Les exemples 4 et 5 comparatifs montrent l’importance de sélectionner 20 l’épaisseur de la couche entre 1 et 3 nm : ainsi une épaisseur de 3 nm conduit à un aspect jaune marqué indésirable du vitrage en réflexion côté empilement alors qu’une couche de 1 nm ne permet pas une résistance mécanique suffisante de l’empilement. La comparaison de l’exemple comparatif 7 avec l’exemple 3 selon 25 l’invention montre également qu’une couche métallique supplémentaire de Ti au-dessus de la couche de nitrure de silicium dans l’empilement ne modifie que très faiblement la valeur b* en réflexion côté empilement, mais seulement si son épaisseur n’atteint pas 3 nanomètres (exemple comparatif 4). 30 L’exemple 6 comparatif montre qu’une trop forte épaisseur de la couche de nitrure de silicium au-dessus de la couche de chrome réfléchissante de chrome conduit également à un aspect jaune marqué indésirable du vitrage en réflexion côté empilement (b* très supérieur à 6). 35 Le substrat muni de l’empilement de couches est de préférence en verre, et peut être utilisé comme vitrage monolithique ou incorporé dans une structure de vitrage feuilleté ou de vitrage multiple isolant. Il peut rester transparent ou être opacifié, et être continu ou présenter des motifs. 5
[Table 1] Test Example Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7 ) s R eee O
Figure imgf000013_0001
*data EP0962429 NM: not measured The test results show that the stability of the stack, in particular its corrosion level and its colorimetry, is not affected by the thermal quenching treatment described previously only for example 3 according to the invention, that is to say in which the thicknesses and the materials used in the stack are selected according to the criteria defined previously, and as reported in the claims which follow. In detail, we can see in the table above that the use of a layer of silicon oxide below the layer of chromium is much more effective in preventing the appearance of corrosion points such as “pinholes”. . Without linking such an observation to any theory, it is possible that such defects were already present in example 4 of EP0962429 with a chromium thickness of 35 nm as described in the comparative example but were not visually detectable, due to a TL greater than 2%. Thus, comparative examples 1 and 2, which include an underlayer based on silicon nitride, exhibit such defects, unlike layers whose underlayer is based on silicon oxide. Comparative Example 1 shows in particular that the thickening of the chrome layer in the example according to EP 0962429 leads to the visual appearance of very numerous points of corrosion, making such a product unsaleable. 10 Comparative Example 2 further shows that a thicker underlayer based on silicon nitride leads to a marked and undesirable yellow appearance of the glazing in reflection on the stacking side (value of b* much greater than 6). Examples 3 to 7, by comparison with Examples 1 and 2, unexpectedly show that the combination of an underlayer comprising silicon oxide and an overlayer comprising silicon nitride with a thickness greater than 20 nm makes it possible to effectively prevent the formation of said corrosion points. Comparative Examples 4 and 5 show the importance of selecting the thickness of the layer between 1 and 3 nm: thus a thickness of 3 nm leads to an undesirable marked yellow appearance of the glazing in reflection on the stacking side whereas a layer of 1 nm does not provide sufficient mechanical strength of the stack. Comparison of comparative example 7 with example 3 according to the invention also shows that an additional metallic layer of Ti above the layer of silicon nitride in the stack only very slightly modifies the value b * in reflection on the stacking side, but only if its thickness does not reach 3 nanometers (comparative example 4). 30 Comparative Example 6 shows that too much thickness of the silicon nitride layer above the reflective chromium layer of chromium also leads to an undesirable marked yellow appearance of the glazing in reflection on the stacking side (b* much higher to 6). 35 The substrate provided with the stack of layers is preferably made of glass, and can be used as monolithic or incorporated glazing in a laminated glazing or multiple insulating glazing structure. It can remain transparent or be opaque, and be continuous or present patterns. 5

Claims

Revendications 1. Vitrage réfléchissant apte à supporter un traitement thermique, notamment du type recuit, bombage et/ou trempe, ledit 5 vitrage comprenant un substrat verrier et un empilement de couches déposé sur une des faces dudit substrat verrier, ledit empilement comprenant successivement, depuis la surface dudit substrat: - une couche comprenant de l’oxyde de silicium d’épaisseur omprise entre 15 et 35 nm, - une couche métallique à base de chrome Cr, d’épaisseur omprise entre 45 et 65 nm, - une couche comprenant du nitrure de silicium, d’épaisseur upérieure à 20 nm et inférieure à 30 nm, - une couche constituée essentiellement d’un métal choisi parmi e titane, le zirconium, le silicium ou leurs mélanges, d’épaisseur upérieure à 1 nm et inférieure à 3 nm. Claims 1. Reflective glazing capable of withstanding heat treatment, in particular of the annealing, bending and/or quenching type, said glazing comprising a glass substrate and a stack of layers deposited on one of the faces of said glass substrate, said stack comprising successively, from the surface of said substrate: - a layer comprising silicon oxide with a thickness between 15 and 35 nm, - a metallic layer based on chromium Cr, with a thickness between 45 and 65 nm, - a layer comprising silicon nitride, with a thickness greater than 20 nm and less than 30 nm, - a layer consisting essentially of a metal chosen from titanium, zirconium, silicon or their mixtures, with a thickness greater than 1 nm and less than 3nm.
2. Vitrage selon la revendication 1, dans lequel la couche étallique est constituée essentiellement de chrome. 2. Glazing according to claim 1, in which the metal layer consists essentially of chromium.
3. Vitrage selon la revendication 1, dans lequel la couche étallique est constituée d’un alliage de chrome avec au moins un utre élément métallique, dans lequel le chrome représente plus de 0% poids dudit alliage, ledit au moins un élément étant choisi de référence parmi Al et/ou Si. 3. Glazing according to claim 1, in which the metal layer consists of an alloy of chromium with at least one other metallic element, in which the chromium represents more than 0% by weight of said alloy, said at least one element being chosen from reference among Al and/or Si.
4. Vitrage selon la revendication 1, dans lequel la couche étallique est constituée d’un alliage CrAl comportant de préférence 0-25% en poids d’Al, d’un alliage CrSi comportant 15 à 49% en poids e Si, ou d’un alliage CrAlSi comportant 70-80% en poids de Cr. 4. Glazing according to claim 1, in which the metal layer consists of a CrAl alloy preferably comprising 0-25% by weight of Al, of a CrSi alloy comprising 15 to 49% by weight of Si, or d a CrAlSi alloy comprising 70-80% by weight of Cr.
5. Vitrage selon l’une des revendications précédentes, dans equel la couche comprenant de l’oxyde de silicium présente une paisseur comprise entre 21 et 29 nm. 5. Glazing according to one of the preceding claims, in which the layer comprising silicon oxide has a thickness of between 21 and 29 nm.
6. Vitrage selon l’une des revendications précédentes, dans equel la couche métallique à base de chrome présente une épaisseur omprise entre 50 et 60 nm. 6. Glazing according to one of the preceding claims, in which the chromium-based metal layer has a thickness of between 50 and 60 nm.
7. Vitrage selon l’une des revendications précédentes dans equel la couche comprenant du nitrure de silicium présente une épaisseur comprise entre 21 et 28 nanomètres, de préférence comprise entre 21 et 25 nm. 7. Glazing according to one of the preceding claims in which the layer comprising silicon nitride has a thickness between 21 and 28 nanometers, preferably between 21 and 25 nm.
8. Vitrage selon l’une des revendications précédentes dans lequel l’empilement ne comprend qu’une seule couche à base de chrome. 58. Glazing according to one of the preceding claims in which the stack comprises only a single layer based on chrome. 5
9. Vitrage selon l’une des revendications précédentes dans lequel la couche comprenant de l’oxyde de silicium est directement au contact de la surface du substrat verrier et directement au ontact de la couche à base de chrome. 9. Glazing according to one of the preceding claims in which the layer comprising silicon oxide is directly in contact with the surface of the glass substrate and directly in contact with the chromium-based layer.
10. Vitrage selon l’une des revendications précédentes dans equel la couche à base de chrome est directement au contact de la ouche comprenant du nitrure de silicium. 10. Glazing according to one of the preceding claims in which the chromium-based layer is directly in contact with the layer comprising silicon nitride.
11. Vitrage selon l’une des revendications précédentes dans equel la couche constituée essentiellement de titane, de zirconium u de silicium est directement au contact de la couche comprenant u nitrure de silicium. 11. Glazing according to one of the preceding claims in which the layer consisting essentially of titanium, zirconium or silicon is directly in contact with the layer comprising silicon nitride.
12. Vitrage selon l’une des revendications précédentes dans equel la couche constituée essentiellement de titane, de zirconium u de silicium est la dernière couche de l’empilement. 12. Glazing according to one of the preceding claims in which the layer consisting essentially of titanium, zirconium or silicon is the last layer of the stack.
13. Vitrage selon l’une des revendications précédentes dans equel ledit empilement ne comprend que la couche comprenant de ’oxyde de silicium, la couche à base de chrome, la couche comprenant e nitrure de silicium et la couche constituée essentiellement d’un étal choisi parmi le titane, le zirconium, le silicium ou leurs élanges. 13. Glazing according to one of the preceding claims in which said stack only comprises the layer comprising silicon oxide, the layer based on chromium, the layer comprising silicon nitride and the layer consisting essentially of a chosen metal among titanium, zirconium, silicon or their mixtures.
14. Vitrage selon l’une des revendications précédentes dans equel la transmission lumineuse est inférieure à 1%, de préférence st inférieure à 0,5%. 14. Glazing according to one of the preceding claims in which the light transmission is less than 1%, preferably less than 0.5%.
15. Vitrage selon l’une des revendications précédentes dans equel la réflexion lumineuse du côté non revêtu de l’empilement est upérieure à 45%, de préférence supérieure à 50%. 15. Glazing according to one of the preceding claims in which the light reflection on the uncoated side of the stack is greater than 45%, preferably greater than 50%.
16. Vitrage selon 1’une des revendications précédentes, dans equel l’empilement de couches est sous forme d’un revêtement iscontinu, du type décor ou trame. 16. Glazing according to one of the preceding claims, in which the stack of layers is in the form of an iscontinuous coating, of the decoration or frame type.
17. Vitrage selon la revendication précédente, dans lequel une ouche de couleur opaque recouvre les zones du vitrage exemptes de ’empilement. 17. Glazing according to the preceding claim, in which a layer of opaque color covers the areas of the glazing free from stacking.
18. Vitrage selon l’une des revendications précédentes, caractérisé en ce qu’il est recuit, bombé et/ou trempé. 18. Glazing according to one of the preceding claims, characterized in that it is annealed, curved and/or tempered.
19. Vitrage selon l’une des revendications précédentes, caractérisé en ce qu’il est monolithique. 5 19. Glazing according to one of the preceding claims, characterized in that it is monolithic. 5
PCT/EP2023/062668 2022-05-13 2023-05-11 Reflective glazing comprising a chromium layer WO2023217992A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2204559 2022-05-13
FR2204559A FR3135456B1 (en) 2022-05-13 2022-05-13 REFLECTIVE GLAZING INCLUDING A CHROME COATING.

Publications (1)

Publication Number Publication Date
WO2023217992A1 true WO2023217992A1 (en) 2023-11-16

Family

ID=82942917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/062668 WO2023217992A1 (en) 2022-05-13 2023-05-11 Reflective glazing comprising a chromium layer

Country Status (2)

Country Link
FR (1) FR3135456B1 (en)
WO (1) WO2023217992A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4048039A (en) * 1975-03-07 1977-09-13 Balzers Patent Und Beteiligungs-Ag Method of producing a light transmitting absorbing coating on substrates
EP0962429A1 (en) 1998-06-06 1999-12-08 Saint-Gobain Vitrage Glazing coated with a stack of reflecting metallic layers
WO2017191655A1 (en) * 2016-05-06 2017-11-09 Saint-Gobain Glass France Reflective glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4048039A (en) * 1975-03-07 1977-09-13 Balzers Patent Und Beteiligungs-Ag Method of producing a light transmitting absorbing coating on substrates
EP0962429A1 (en) 1998-06-06 1999-12-08 Saint-Gobain Vitrage Glazing coated with a stack of reflecting metallic layers
WO2017191655A1 (en) * 2016-05-06 2017-11-09 Saint-Gobain Glass France Reflective glass

Also Published As

Publication number Publication date
FR3135456A1 (en) 2023-11-17
FR3135456B1 (en) 2024-10-18

Similar Documents

Publication Publication Date Title
EP1047644B1 (en) Glazing provided with a low emissive stack of layers
EP2828215B1 (en) Solar control glazing
EP2603469B1 (en) Glass panel having sun-shielding properties
FR2949774A1 (en) MATERIAL COMPRISING A GLASS SUBSTRATE COATED WITH A THIN FILM STACK
FR2927897A1 (en) ANTISOLAR GLAZING HAVING IMPROVED LUMINOUS TRANSMISSION COEFFICIENT.
EP3347321B1 (en) Glazing comprising a functional coating
FR2858975A1 (en) Transparent substrate incorporating a stack of thin layers with reflective properties to infrared and/or solar radiation for glazing applications
WO2015145073A1 (en) Glazing provided with a thin-layer stack for solar protection
WO2002042234A1 (en) Transparent substrate having a stack of thin metallic reflection layers
FR3021966A1 (en) GLAZING FOR SOLAR PROTECTION WITH THIN FILM COATINGS
EP0962429B1 (en) Glazing coated with a stack of reflecting metallic layers
WO2021170959A1 (en) Solar-control glazing comprising a layer of titanium nitride
WO2013057425A1 (en) Solar control glazing comprising a layer of an alloy containing nicu
EP3419827B1 (en) Article comprising a protective top layer based on mixed oxide of zirconium and aluminum
EP3237348B1 (en) Glazing comprising a protective coating
WO2023217992A1 (en) Reflective glazing comprising a chromium layer
FR3102984A1 (en) Sun protection glazing with low internal reflection
FR3092107A1 (en) SUBSTRATE EQUIPPED WITH A STACKING WITH THERMAL PROPERTIES AND ABSORBENT LAYER
WO2021123618A1 (en) Photocatalytic glazing comprising a titanium nitride-based layer
FR3101077A1 (en) Insulating glazing comprising a thin chromium-based layer
FR3101344A1 (en) Glazing comprising a sunscreen stack and a protective coating comprising yttrium
EP3419946B1 (en) Solar control glazing comprising a layer of a nicucr alloy
WO2022144519A1 (en) Solar control glazing comprising a thin film of nickel-chromium alloy and a thin film of sub-stoichiometric silicon nitride in nitrogen
WO2023203192A1 (en) Solar control glazing panel comprising a single functional titanium nitride layer
WO2024013059A1 (en) Solar protection glazing with blue external reflection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23726361

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024021546

Country of ref document: BR