WO2023217116A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2023217116A1
WO2023217116A1 PCT/CN2023/092932 CN2023092932W WO2023217116A1 WO 2023217116 A1 WO2023217116 A1 WO 2023217116A1 CN 2023092932 W CN2023092932 W CN 2023092932W WO 2023217116 A1 WO2023217116 A1 WO 2023217116A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
information
path
channel
downlink channel
Prior art date
Application number
PCT/CN2023/092932
Other languages
English (en)
French (fr)
Inventor
徐剑标
刘永
毕晓艳
孙欢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023217116A1 publication Critical patent/WO2023217116A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communication, and more specifically, to communication methods and communication devices in the field of communication.
  • MIMO Multiple-input and multi-output
  • a typical channel detection method is: the base station (BS) transmits downlink signals equivalent to the number of its antennas or logical ports.
  • the pilot signal is sent to the terminal equipment; the terminal equipment estimates the downlink channel state information (CSI) based on the above-mentioned downlink pilot signal, and quantizes it and feeds it back to the BS; the BS performs downlink based on the quantized downlink CSI fed back by the terminal equipment. precoded.
  • CSI downlink channel state information
  • MIMO technology usually uses a large number of BS antennas or logical ports, and the corresponding downlink pilot overhead and uplink feedback overhead are large. How to reduce the downlink pilot overhead and uplink feedback overhead in MIMO technology has become a bottleneck problem.
  • Embodiments of the present application provide a communication method and communication device, which can reduce downlink pilot overhead and uplink feedback overhead.
  • a communication method includes: a terminal device obtains first indication information and obtains downlink channel information.
  • the first indication information is used to indicate a first path parameter, and the first path
  • the domain parameter is a path parameter shared by the first uplink channel and the first downlink channel.
  • the first uplink channel and the first downlink channel are channels for communication between the network device and the terminal device.
  • the downlink The channel information is sent through M antenna ports among the N antenna ports of the network device, where 1 ⁇ M ⁇ N, and M and N are both positive integers; the terminal device is based on the first path parameter and the downlink channel information to estimate the second path parameter; the terminal device sends second indication information, the second indication information is used to indicate the second path parameter, the first path parameter and the The second path parameters are used for channel reconstruction of the first downlink channel.
  • the above-mentioned antenna port may also be called an antenna unit.
  • first indication information and second indication information may indicate the first path parameter and the second path parameter in the form of a mapping table, or may also indicate the first path parameter in the form of an index. parameters and second radius parameters, etc.
  • the terminal device obtains the downlink channel information delivered by some antenna ports of the network device, and combines the path parameters shared by the uplink channel and the downlink channel provided by the network device to estimate that the downlink channel and the uplink channel are not shared.
  • the path parameters, and the path parameters that are not shared by the downlink channel and the uplink channel can be fed back to the network equipment.
  • the overhead of downlink signaling and the overhead of uplink feedback signaling can be reduced.
  • the first radial parameter includes at least one of a power coefficient, a direction angle, and a Doppler factor of the first uplink channel.
  • the power coefficient, direction angle, and Doppler factor of the first uplink channel are path parameters that can be shared by the first uplink channel and the first downlink channel of the network equipment and the terminal equipment; and, when the first uplink channel When there are multiple paths, each path has its own corresponding power coefficient, direction angle, and Doppler factor.
  • the network equipment in the embodiment of the present application can estimate the specific values of the power coefficient, direction angle, and Doppler factor of the first uplink channel based on MLE, MAP, SBL and other methods, which can improve the accuracy of the terminal equipment in estimating the second path parameters. .
  • the second radial parameter includes: an initial phase of the first downlink channel.
  • the above-mentioned initial phase of the first downlink channel is a path parameter that cannot be shared by the first uplink channel and the first downlink channel of the network equipment and the terminal equipment; and, when the first downlink channel has multiple paths At this time, each path has its own corresponding initial phase value.
  • the method before the terminal device obtains the above-mentioned first indication information, the method further includes: the terminal device sends uplink channel information, and the first indication information is based on The uplink channel information is determined.
  • the terminal device sends uplink channel information to the network device, and the terminal device sends the uplink channel information to the network device equal to the number of the UE's own antenna ports (which can be as simple as one port) to the base station, which can reduce signaling overhead.
  • the above-mentioned first indication information is determined based on the uplink channel information, and further includes: the terminal device sends first parameter information, the first parameter information is used to indicate For the parameters of the antenna array of the terminal device, the above-mentioned first indication information may be determined based on the above-mentioned uplink channel information, the above-mentioned first parameter information, and the second parameter information, and the second parameter information is used to indicate the parameters of the antenna array of the network device.
  • the terminal device sends the parameters of its own antenna array to the network device, so that when estimating the first path parameters, the network device can refer to the parameters of the terminal device's antenna array and the network device's own antenna array parameters, thereby obtaining a more accurate first path parameter.
  • a diameter domain parameter A diameter domain parameter.
  • the parameters of the antenna array include: at least one of the topology of the antenna array, the spacing between elements, the pattern of elements, and the polarization form.
  • the above-mentioned first parameter information includes: at least one of the topology, element spacing, element pattern, and polarization form of the antenna array of the terminal device;
  • the above-mentioned second parameter information includes: the topology of the antenna array of the network device. , at least one of the elements spacing, element pattern, and polarization form.
  • the topology of the above-mentioned antenna array may be a line array topology, an area array topology, a circular array topology, etc. of the antenna array.
  • the network device estimates the first path parameters with reference to the antenna array parameters of the terminal device and the network device's own antenna array parameters, the more reference information included in the antenna array parameters, the more accurate the first path parameters will be obtained.
  • the terminal device before the terminal device estimates the second path parameter according to the first path parameter and the downlink channel information, the terminal device further includes: The device obtains the above-mentioned second parameter information; the terminal device obtains the above-mentioned second parameter information according to the above-mentioned first path parameter, the above-mentioned downlink channel information, the above-mentioned first parameter information, The above-mentioned second parameter information estimates the above-mentioned second radial parameter.
  • the terminal device may refer to the parameters of the antenna array of the terminal device and the antenna array parameters of the network device itself, thereby obtaining more accurate second radial parameters.
  • the method further includes: the terminal device acquiring third indication information, the third indication information being used to indicate the reflection of the reconfigurable smart surface RIS array Coefficient, the RIS array is used to reflect signals between the terminal device and the network device.
  • the terminal device can obtain the reflection coefficient of the RIS array through signaling, and further can obtain more accurate downlink channel information by combining the reflection coefficient of the RIS array.
  • the above-mentioned first indication information is also used to indicate the first path parameter, the third path parameter, and the fifth path parameter.
  • the third path parameter The domain parameter is a path domain parameter shared by the second uplink channel and the second downlink channel.
  • the second uplink channel and the second downlink channel are channels for communication between the network device and the RIS array.
  • the fifth path The domain parameters are path domain parameters common to the third uplink channel and the third downlink channel, which are channels for communication between the RIS array and the terminal device.
  • the network device can not only indicate the first path parameter of the direct channel between the network device and the terminal device to the terminal device, but can also indicate the third parameter of the reflection channel between the network device and the RIS array, and between the RIS array and the terminal device.
  • the radial parameters and the fifth radial parameter are indicated to the terminal equipment, so that the terminal equipment can estimate the unshared downlink channels of the uplink channels and downlink channels of each channel based on the shared radial parameters of the uplink channels and downlink channels of each channel respectively. radial parameters.
  • the second indication information is also used to indicate the second radial parameter, the fourth radial parameter and the sixth radial parameter, and the fourth radial parameter
  • the path parameter is determined by the terminal device based on the third path parameter and the downlink channel information
  • the sixth path parameter is determined by the terminal device based on the fifth path parameter and the downlink channel information.
  • the above-mentioned fourth path parameter is a path parameter that is not shared between the second downlink channel and the second uplink channel between the network device and the RIS array.
  • the above-mentioned sixth path parameter is a path parameter between the RIS array and the terminal equipment. Path parameters that are not shared between the third downlink channel and the third uplink channel.
  • the fourth path parameter is determined by the terminal device based on the third path parameter and the downlink channel information, and further includes: the fourth path parameter is determined by the terminal device based on the third path parameter and the downlink channel information.
  • the domain parameter is determined by the terminal device based on the third path parameter, the downlink channel information, and the reflection coefficient of the RIS array, and the sixth path parameter is determined by the terminal device based on the fifth path parameter and
  • the determination of the downlink channel information further includes: the sixth path parameter is determined by the terminal device based on the fifth path parameter, the downlink channel information, and the reflection coefficient of the RIS array.
  • the terminal equipment estimates the fourth radial parameter and the sixth radial parameter, it can obtain a more accurate estimate by referring to the reflection coefficient of the RIS array.
  • a communication method includes: a network device obtains uplink channel information; the network device estimates a first path parameter based on the uplink channel information, and the first path parameter is a first Path parameters shared by the uplink channel and the first downlink channel, which are channels for communication between the network device and the terminal device; the network device sends a first indication information, and sends downlink channel information through M antenna ports among the N antenna ports of the network device, and the first indication information is used to indicate the first path parameter, where 1 ⁇ M ⁇ N, M , N are both positive integers; the network device obtains the second indication information, and the The second indication information is used to indicate a second path parameter, and the second path parameter is determined based on the first path parameter and the downlink channel information; the network device determines the second path parameter based on the first path parameter and the downlink channel information.
  • the second path parameters are used to perform channel reconstruction on the first downlink channel.
  • the above-mentioned antenna port may also be called an antenna unit.
  • first indication information and second indication information may indicate the first path parameter and the second path parameter in the form of a mapping table, or may also indicate the first path parameter in the form of an index. parameters and second radius parameters, etc.
  • the network device uses the estimated path parameters shared by the uplink channel and the downlink channel as a reference to send downlink channel information on some of its antenna ports, which can reduce the downlink signaling overhead; at the same time, the network device Obtaining feedback on the path parameters of the downlink channel from the terminal equipment can reduce the overhead of uplink feedback signaling.
  • the first radial parameter includes at least one of a power coefficient, a direction angle, and a Doppler factor of the first uplink channel.
  • the power coefficient, direction angle, and Doppler factor of the first uplink channel are path parameters that can be shared by the first uplink channel and the first downlink channel of the network equipment and the terminal equipment; and, when the first uplink channel When there are multiple paths, each path has its own corresponding power coefficient, direction angle, and Doppler factor.
  • the network device of the embodiment of the present application can be based on the Bayesian criterion for maximum likelihood estimation (maximum likelihood estimation, MLE), maximum posterior probability (maximum a posteriori, MAP), and sparse Bayesian learning (sparse bayessian learning, SBL). Estimating the specific values of the power coefficient, direction angle, and Doppler factor of the first uplink channel through other methods can improve the accuracy of the reconstruction of the first downlink channel information matrix.
  • MLE maximum likelihood estimation
  • MAP maximum posterior probability
  • SBL sparse Bayesian learning
  • the second path parameters include: an initial phase of the first downlink channel.
  • the above-mentioned initial phase of the first downlink channel is a path parameter that cannot be shared by the first uplink channel and the first downlink channel of the network equipment and the terminal equipment; and, when the first downlink channel has multiple paths At this time, each path has its own corresponding initial phase value.
  • the network device estimating the first path parameters based on the uplink channel information further includes: the network device obtains the first parameter information, and the third A parameter information is used to indicate parameters of the antenna array of the terminal device; the network device estimates the first path parameter based on the uplink channel information, the second parameter information and the first parameter information, and the third The second parameter information is used to indicate parameters of the antenna array of the network device.
  • the network device can obtain a more accurate first radial parameter by referring to the parameters of the antenna array of the terminal device and the antenna array parameters of the network device itself.
  • the parameters of the antenna array include: at least one of the topology of the antenna array, the element spacing, the element pattern, and the polarization form.
  • the above-mentioned first parameter information includes: at least one of the topology, element spacing, element pattern, and polarization form of the antenna array of the terminal device;
  • the above-mentioned second parameter information includes: the topology of the antenna array of the network device. , at least one of the elements spacing, element pattern, and polarization form.
  • the topology of the above-mentioned antenna array may be a line array topology, an area array topology, a circular array topology, etc. of the antenna array.
  • the network device refers to the parameters of the antenna array of the terminal device and the antenna array parameters of the network device itself for estimation.
  • the more reference information included in the antenna array parameters the more accurate the first-radius parameters will be obtained.
  • the method further includes: the network device obtains third parameter information, the third parameter information is used to indicate the antenna of the reconfigurable smart surface RIS array Parameters of the array; the network device sends third indication information according to the third parameter information, the third indication information is used to indicate the reflection coefficient of the RIS array, and the RIS array is used to reflect the network device and signals between the terminal devices.
  • the network device can set the appropriate RIS array reflection coefficient for the RIS array after obtaining the antenna array parameters of the RIS array.
  • the network device or the terminal device can estimate the channel path parameters between the RIS array and the network device, and between the RIS array and the terminal device.
  • the method further includes: the network device estimating the first path parameter, the third path parameter, the fifth path parameter according to the uplink channel information.
  • the third path parameter is a path parameter shared by the second uplink channel and the second downlink channel.
  • the second uplink channel and the second downlink channel are used for communication between the network device and the RIS array.
  • the fifth path parameter is a path parameter shared by the third uplink channel and the third downlink channel
  • the third uplink channel and the third downlink channel are between the RIS array and the terminal equipment. communication channel.
  • the network device can not only estimate the common path parameters of the first uplink channel and the first downlink channel based on MLE, MAP, SBL and other methods, but also estimate the third path between the network device and the RIS array based on MLE, MAP, SBL and other methods.
  • the first indication information is also used to indicate the first radial parameter, the third radial parameter and the fifth radial parameter.
  • the network device indicates to the terminal device the path parameters shared by the uplink channel and the downlink channel between the network device and the terminal device, between the network device and the RIS array, and between the RIS array and the terminal device, so that the terminal device can use the above-mentioned
  • the path parameters shared by the uplink channel and the downlink channel of each channel are used to estimate the specific path parameters of the downlink channel of each channel.
  • the network device estimates the first path parameter, the third path parameter, and the fifth path parameter according to the uplink channel information, further including: The network device estimates the first radial parameters, the The third diameter parameter and the fifth diameter parameter.
  • the network equipment estimates the path parameters shared by the uplink channel and the downlink channel between the network equipment and the terminal equipment, between the network equipment and the RIS array, and between the RIS array and the terminal equipment, it refers to the parameters of the antenna array of the terminal equipment,
  • the antenna array parameters of the network device itself, the antenna array parameters of the RIS array, and the reflection coefficient of the RIS array will result in more accurate first, third, and fifth radial parameters.
  • the second indication information is also used to indicate the second radial parameter, the fourth radial parameter and the sixth radial parameter, and the fourth radial parameter
  • the path parameter is determined based on the third path parameter and the downlink channel information
  • the sixth path parameter is determined based on the fifth path parameter and the downlink channel information.
  • the above-mentioned fourth path parameter is a path parameter that is not shared by the second downlink channel and the second uplink channel between the network device and the RIS array.
  • the above-mentioned sixth path parameter is a path parameter between the RIS array and the terminal equipment. Path parameters that are not shared between the third downlink channel and the third uplink channel.
  • the network device performs channel reconstruction on the first downlink channel according to the first path parameter and the second path parameter, and further The method includes: the network device performs channel reconstruction on the second downlink channel according to the above-mentioned third path parameter and the above-mentioned fourth path parameter, and the network device performs channel reconstruction on the above-mentioned fifth path parameter and the above-mentioned sixth path parameter.
  • the above third downlink channel performs channel reconstruction.
  • the method before the network device obtains the uplink channel information, or before the network device sends the downlink channel information, the method further includes: the network device sends a fourth instruction to the above-mentioned RIS array. information, the fourth indication information is used to instruct the RIS array to turn off the signal reflection function.
  • the method further The method includes: the network device sends fifth instruction information to the above-mentioned RIS array, and the fifth instruction information is used to instruct the RIS array to turn on the signal reflection function.
  • the network equipment can separate the direct channel between the network equipment and the terminal equipment, the uplink channel and the downlink channel of the reflection channel between the network equipment and the RIS array, and between the RIS array and the terminal equipment.
  • the detection is decoupled, thereby improving the accuracy of channel detection.
  • a communication device configured to obtain first indication information and obtain downlink channel information.
  • the first indication information is used to indicate a first path parameter
  • the The first path parameter is a path parameter shared by the first uplink channel and the first downlink channel, and the first uplink channel and the first downlink channel are channels for communication between the network device and the terminal device,
  • the downlink channel information is sent through M antenna ports among the N antenna ports of the network device, where 1 ⁇ M ⁇ N, M and N are both positive integers
  • the processing unit is configured to perform the processing according to the first A path parameter and the downlink channel information estimate a second path parameter
  • the communication unit is further configured to send second indication information, the second indication information is used to indicate the second path parameter, and the third A radial parameter and the second radial parameter are used for channel reconstruction of the first downlink channel.
  • the above-mentioned antenna port may also be called an antenna unit.
  • first indication information and second indication information may indicate the first path parameter and the second path parameter in the form of a mapping table, or may also indicate the first path parameter in the form of an index. parameters and second radius parameters, etc.
  • the path area that is not shared by the downlink channel and the uplink channel can be estimated. parameters, and feed back the path parameters that are not shared by the downlink channel and the uplink channel to the network equipment.
  • the first radial parameter includes at least one of a power coefficient, a direction angle, and a Doppler factor of the first uplink channel.
  • the power coefficient, direction angle, and Doppler factor of the first uplink channel are path parameters that can be shared by the first uplink channel and the first downlink channel of the network equipment and the terminal equipment; and, when the first uplink channel When there are multiple paths, each path has its own corresponding power coefficient, direction angle, and Doppler factor.
  • the embodiments of the present application can estimate the specific values of the power coefficient, direction angle, and Doppler factor of the first uplink channel based on methods such as MLE, MAP, and SBL, which can improve the accuracy of the estimation of the second radial parameters.
  • the second path parameter includes: an initial phase of the first downlink channel.
  • the above-mentioned initial phase of the first downlink channel is a path parameter that cannot be shared by the first uplink channel and the first downlink channel of the network equipment and the terminal equipment; and, when the first downlink channel has multiple paths At this time, each path has its own corresponding initial phase value.
  • the communication unit before the communication unit is used to obtain the above-mentioned first indication information, the communication unit is further used to send uplink channel information, and the above-mentioned first indication information is based on the determined by the above uplink channel information.
  • the terminal device sends uplink channel information equal to the number of the terminal device's own antenna ports (which can be as simple as one port) to the network device, which can reduce signaling overhead.
  • the above-mentioned first indication information is determined based on the uplink channel information, including: the communication unit is also configured to send first parameter information, the first parameter The information is used to indicate parameters of the antenna array of the terminal device.
  • the above-mentioned first indication information may be determined based on the above-mentioned uplink channel information, the above-mentioned first parameter information, and the second parameter information.
  • the second parameter information is used to indicate the antenna of the network device. Array parameters.
  • the terminal device sends the parameters of its own antenna array to the network device, so that when estimating the first path parameters, the network device can refer to the parameters of the terminal device's antenna array and the network device's own antenna array parameters, thereby obtaining a more accurate first path parameter.
  • a diameter domain parameter A diameter domain parameter.
  • the parameters of the antenna array include: at least one of the topology of the antenna array, the element spacing, the element pattern, and the polarization form.
  • the above-mentioned first parameter information includes: at least one of the topology, element spacing, element pattern, and polarization form of the antenna array of the terminal device;
  • the above-mentioned second parameter information includes: the topology of the antenna array of the network device. , at least one of the elements spacing, element pattern, and polarization form.
  • the topology of the above-mentioned antenna array may be a line array topology, an area array topology, a circular array topology, etc. of the antenna array.
  • the more reference information included in the antenna array parameters the more accurate the first radial parameters and the second radial parameters will be obtained.
  • the processing unit is configured to estimate a second path parameter based on the first path parameter and the downlink channel information, further including: the communication unit It is also used to obtain the above-mentioned second parameter information, and the processing unit is further used to estimate the above-mentioned second radial parameter based on the above-mentioned first radial parameter, the above-mentioned downlink channel information, the above-mentioned first parameter information, and the above-mentioned second parameter information.
  • the communication unit is also used to obtain third indication information, the third indication information is used to indicate the reflection coefficient of the reconfigurable smart surface RIS array, so The RIS array is used to reflect signals between the terminal device and the network device.
  • the terminal device can obtain the reflection coefficient of the RIS array through signaling, and further can obtain more accurate downlink channel information by combining the reflection coefficient of the RIS array.
  • the above-mentioned first indication information is also used to indicate the first path parameter, the third path parameter, and the fifth path parameter.
  • the third path parameter The domain parameter is a path domain parameter shared by the second uplink channel and the second downlink channel.
  • the second uplink channel and the second downlink channel are channels for communication between the network device and the RIS array.
  • the fifth path The domain parameter is the path domain parameter shared by the third uplink channel and the third downlink channel.
  • the third uplink channel and the third downlink channel are communication channels between the RIS array and the terminal device.
  • the above technical solution can not only indicate the first path parameter of the direct channel between the network equipment and the terminal equipment to the terminal equipment, but also can indicate the reflection channel between the network equipment and the RIS array, and between the RIS array and the terminal equipment.
  • the third path parameter and the fifth path parameter are indicated to the terminal equipment, so that the terminal equipment can estimate the non-shared uplink channel and downlink channel of each channel based on the shared path parameters of the uplink channel and downlink channel of each channel respectively.
  • Path parameters of the downlink channel can not only indicate the first path parameter of the direct channel between the network equipment and the terminal equipment to the terminal equipment, but also can indicate the reflection channel between the network equipment and the RIS array, and between the RIS array and the terminal equipment.
  • the third path parameter and the fifth path parameter are indicated to the terminal equipment, so that the terminal equipment can estimate the non-shared uplink channel and downlink channel of each channel based on the shared path parameters of the uplink channel and downlink channel of each channel respectively.
  • Path parameters of the downlink channel can not only indicate
  • the second indication information is also used to indicate the second radial parameter, the fourth radial parameter and the sixth radial parameter, and the fourth radial parameter
  • the path parameter is determined based on the third path parameter and the downlink channel information
  • the sixth path parameter is determined based on the fifth path parameter and the downlink channel information.
  • the above-mentioned fourth path parameter is a path parameter that is not shared between the second downlink channel and the second uplink channel between the network device and the RIS array.
  • the above-mentioned sixth path parameter is a path parameter between the RIS array and the terminal equipment. Path parameters that are not shared between the third downlink channel and the third uplink channel.
  • the fourth path parameter is determined based on the third path parameter and the downlink channel information, and further includes: the fourth path parameter is determined based on the third path parameter, the downlink channel information, and the reflection coefficient of the RIS array, and the sixth path parameter is determined based on the fifth path parameter and the downlink channel information, It also includes: the sixth path parameter is determined based on the fifth path parameter, the downlink channel information, and the reflection coefficient of the RIS array.
  • a communication device in a fourth aspect, includes: a communication unit configured to obtain uplink channel information; and a processing unit configured to estimate first path parameters based on the uplink channel information.
  • the first path parameter is The parameter is a path parameter shared by the first uplink channel and the first downlink channel, and the first uplink channel and the first downlink channel are channels for communication between network equipment and terminal equipment; the above communication unit is also used to Send first indication information, and send downlink channel information through M antenna ports among the N antenna ports of the network device, where the first indication information is used to indicate the first path parameter, where 1 ⁇ M ⁇ N, M and N are both positive integers; the above-mentioned communication unit is also used to obtain second indication information, the second indication information is used to indicate the second path parameter, the second path parameter is based on the first A path parameter and the downlink channel information are determined; the processing unit is further configured to perform channel reconstruction on the first downlink channel according to the first path parameter and the second path parameter.
  • the above-mentioned antenna port may also be called an antenna unit.
  • first indication information and second indication information may indicate the first path parameter and the second path parameter in the form of a mapping table, or may also indicate the first path parameter in the form of an index. parameters and second radius parameters, etc.
  • downlink channel information is sent to some of all antenna ports of the network device, which can reduce downlink signaling overhead; at the same time, the terminal device The path parameters of the downlink channel fed back to the network equipment can also be reduced.
  • the first radial parameter includes at least one of a power coefficient, a direction angle, and a Doppler factor of the first uplink channel.
  • the power coefficient, direction angle, and Doppler factor of the above-mentioned first uplink channel are the differences between network equipment and terminal equipment. Path parameters that can be shared by the first uplink channel and the first downlink channel; and when the first uplink channel has multiple paths, each path has its own corresponding power coefficient, direction angle, and Doppler factor.
  • the network equipment in the embodiment of the present application can estimate the specific values of the power coefficient, direction angle, and Doppler factor of the first uplink channel based on methods such as MLE, MAP, and SBL, which can improve the accuracy of the first downlink channel information matrix reconstruction. Spend.
  • the second path parameter includes: an initial phase of the first downlink channel.
  • the above-mentioned initial phase of the first downlink channel is a path parameter that cannot be shared by the first uplink channel and the first downlink channel of the network equipment and the terminal equipment; and, when the first downlink channel has multiple paths At this time, each path has its own corresponding initial phase value.
  • the communication unit is further configured to obtain first parameter information, where the first parameter information is used to indicate parameters of the antenna array of the terminal device;
  • the processing unit is further configured to estimate the first path parameters according to the uplink channel information, second parameter information and the first parameter information, where the second parameter information is used to indicate parameters of the antenna array of the network device.
  • the parameters of the antenna array include: at least one of the topology of the antenna array, the element spacing, the element pattern, and the polarization form.
  • the above-mentioned first parameter information includes: at least one of the topology, element spacing, element pattern, and polarization form of the antenna array of the terminal device;
  • the above-mentioned second parameter information includes: the topology of the antenna array of the network device. , at least one of the elements spacing, element pattern, and polarization form.
  • the topology of the above-mentioned antenna array may be a line array topology, an area array topology, a circular array topology, etc. of the antenna array.
  • the more reference information included in the antenna array parameters the more accurate the first radial parameters will be obtained.
  • the communication unit is further configured to obtain third parameter information, where the third parameter information is used to indicate parameters of the antenna array of the reconfigurable smart surface RIS array. , and the communication unit sends third indication information according to the third parameter information, the third indication information is used to indicate the reflection coefficient of the RIS array, the RIS array is used to reflect the network device and the signals between terminal devices.
  • the network device After obtaining the antenna array parameters of the RIS array, the network device can set the appropriate RIS array reflection coefficient for the RIS array.
  • the processing unit can estimate the channel path parameters between the RIS array and the network equipment, and between the RIS array and the terminal equipment.
  • the method further includes: the processing unit is further configured to estimate the first path parameter, the third path parameter according to the uplink channel information, The fifth path parameter.
  • the third path parameter is a path parameter shared by the second uplink channel and the second downlink channel.
  • the second uplink channel and the second downlink channel are the network equipment and the RIS array. channel for communication between each other, the fifth radial parameter is a radial parameter shared by the third uplink channel and the third downlink channel, and the third uplink channel and the third downlink channel are the RIS array and the Channel for communication between terminal devices.
  • Network equipment can not only estimate the first uplink channel and the first downlink channel based on methods such as MLE, MAP, SBL, etc.
  • the shared path parameters can also be estimated based on methods such as MLE, MAP, SBL, etc.
  • the shared path parameters of the second uplink channel and the second downlink channel between the network device and the RIS array, and the relationship between the RIS array and the terminal equipment can be estimated.
  • the first indication information is also used to indicate the first radial parameter, the third radial parameter, and the fifth radial parameter.
  • the processing unit can use the above-mentioned channels based on The path parameters shared by the uplink channel and the downlink channel are used to estimate the specific path parameters of the downlink channel of each channel.
  • the processing unit is further configured to estimate the first path parameter, the third path parameter, and the fifth path parameter according to the uplink channel information
  • the method includes: the processing unit is further configured to estimate the first path according to the uplink channel information, the first parameter information, the second parameter information, the third parameter information and the reflection coefficient of the RIS array. domain parameters, the third path parameters, and the fifth path parameters.
  • the antenna array parameters of the terminal device By referring to the antenna array parameters of the terminal device, the antenna array parameters of the network device itself, the antenna array parameters of the RIS array, and the reflection coefficient of the RIS array, more accurate first radial parameters, third radial parameters, and fifth radial parameters can be obtained. Radial parameters.
  • the second indication information is also used to indicate the second radial parameter, the fourth radial parameter and the sixth radial parameter, and the fourth The path parameter is determined based on the third path parameter and the downlink channel information, and the sixth path parameter is determined based on the fifth path parameter and the downlink channel information.
  • the above-mentioned fourth path parameter is a path parameter that is not shared by the second downlink channel and the second uplink channel between the network device and the RIS array.
  • the above-mentioned sixth path parameter is a path parameter between the RIS array and the terminal equipment. Path parameters that are not shared between the third downlink channel and the third uplink channel.
  • the above-mentioned processing unit is further configured to perform channel reconstruction on the above-mentioned second downlink channel according to the above-mentioned third path parameter and the above-mentioned fourth path parameter, and, the above-mentioned The processing unit is further configured to perform channel reconstruction on the third downlink channel according to the fifth path parameter and the sixth path parameter.
  • the communication unit before the communication unit obtains uplink channel information, or before the communication unit sends downlink channel information, the communication unit is further configured to send a message to the above-mentioned RIS array.
  • the fourth indication information is used to instruct the RIS array to turn off the signal reflection function.
  • the processing unit estimates the first radial parameter, or after the processing unit obtains the above-mentioned second indication information indicating the second radial parameter,
  • the communication unit is further configured to send fifth instruction information to the above-mentioned RIS array, where the fifth instruction information is used to instruct the RIS array to turn on the signal reflection function.
  • the uplink and downlink channels of the direct channel between the network equipment and the terminal equipment, the reflection channel between the network equipment and the RIS array, and the reflection channel between the RIS array and the terminal equipment can be detected.
  • Decoupling can improve the accuracy of channel detection.
  • a communication device may be a terminal device, or a component of the terminal device (such as a processor, a chip or a chip system), or may be logic that can realize all or part of the functions of the terminal device. mold block or software.
  • the device has the function of realizing the above first aspect and various possible implementation modes. This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device includes: a communication unit and a processing unit.
  • the communication unit may be at least one of a transceiver, a receiver, and a transmitter.
  • the communication unit may include a radio frequency circuit or an antenna.
  • the processing unit may be a processor.
  • the device further includes a storage unit, which may be a memory, for example. When a storage unit is included, the storage unit is used to store programs or instructions.
  • the processing unit is connected to the storage unit, and the processing unit can execute programs, instructions, or instructions from other sources stored in the storage unit, so that the device performs the above-mentioned first aspect and the communication methods of various possible implementations.
  • the device can be a terminal device.
  • the chip when the device is a chip, the chip includes: a communication unit and a processing unit.
  • the communication unit may be, for example, an input/output interface, pins or circuits on the chip.
  • the processing unit may be a processor, for example.
  • the processing unit can execute instructions to cause the chip in the network device to perform the above-mentioned first aspect, as well as any possible implemented communication method.
  • the processing unit can execute instructions in the storage unit, and the storage unit can be a storage module within the chip, such as a register, cache, etc.
  • the storage unit can also be located within the communication device but outside the chip, such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM), etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above places can be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above-mentioned
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Various aspects of communication methods are programmed for execution on integrated circuits.
  • the sixth aspect provides a communication device.
  • the device may be a network device, or a component of the network device (such as a processor, a chip or a chip system), or may be logic that can realize all or part of the network device functions.
  • module or software The device has the function of realizing the above second aspect and various possible implementation modes. This function can be implemented by hardware, or it can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device includes: a communication unit and a processing unit.
  • the communication unit may be, for example, at least one of a transceiver, a receiver, and a transmitter, and the communication unit may include a radio frequency circuit or an antenna.
  • the processing unit may be a processor.
  • the device further includes a storage unit, which may be a memory, for example.
  • a storage unit is used to store programs or instructions.
  • the processing unit is connected to the storage unit, and the processing unit can execute programs, instructions or instructions from other sources stored in the storage unit, so that the device performs the above-mentioned second aspect, or the method of any one thereof.
  • the chip when the device is a chip, the chip includes: a communication unit and a processing unit.
  • the communication unit may be, for example, an input/output interface, a pin or a circuit on the chip.
  • the processing unit may be a processor, for example.
  • the processing module can execute programs or instructions to cause the chip in the terminal device to execute the above-mentioned second aspect, as well as any possible implemented communication method.
  • the processing unit can execute instructions in the storage unit, and the storage unit can be a storage module within the chip, such as a register, cache, etc.
  • the storage unit can also be located within the communication device but outside the chip, such as a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM), etc.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above places can be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above-mentioned
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Various aspects of communication methods are programmed for execution on integrated circuits.
  • a computer storage medium is provided.
  • Program code is stored in the computer storage medium.
  • the program code is used to instruct execution of the first aspect, the second aspect and any possible implementation manner of the first aspect and the second aspect. instructions in the method.
  • An eighth aspect provides a computer program product containing computer instructions or computer code, which when run on a computer causes the computer to execute the above first aspect, the second aspect and any possible implementation of the first aspect and the second aspect. method in.
  • a communication system in a ninth aspect, includes a device having functions to implement the methods and various possible designs of the above-mentioned first aspect and a device having functions to implement the methods and various possible designs of the above-mentioned second aspect. installation.
  • the device having the functions of implementing the methods and various possible designs of the above-mentioned first aspect may be a network device
  • the device having the functions of implementing the methods and various possible designs of the above-mentioned second aspect may be a terminal device.
  • FIG. 1 is a schematic diagram of an example of the communication system of the present application.
  • Figure 2 is a schematic diagram of a CSI detection and feedback scheme in MIMO technology provided by this application.
  • Figure 3 is a schematic diagram of a CSI detection and feedback scheme in another MIMO technology provided by this application.
  • Figure 4 is a schematic diagram of an example of the RIS-assisted MIMO communication system provided by this application.
  • Figure 5 is a schematic diagram of a CSI detection and feedback scheme in another MIMO technology provided by this application.
  • Figure 6 is a schematic diagram of a CSI detection and feedback scheme in another MIMO technology provided by this application.
  • Figure 7 is a schematic diagram of a CSI detection and feedback scheme in another MIMO technology provided by this application.
  • FIG. 8 is a schematic block diagram of an example of a communication device of the present application.
  • Figure 9 is a schematic block diagram of another example of the communication device of the present application.
  • GSM global system for mobile communications
  • EDGE enhanced data rate for global mobile communications evolution
  • CDMA2000 code division multiple access 2000
  • WCDMA wideband code division multiple access
  • WCDMA wideband code division multiple access
  • TD-SCDMA time division synchronization code division multiple access
  • N-LoT narrow band internet of things
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX fifth 5th generation
  • 5G fifth 5th generation
  • NR new radio
  • the terminal equipment may also be called user equipment (User Equipment, UE), access terminal, subscriber unit (subscriber unit), user station, mobile station, mobile station, remote station , remote terminal, mobile device, user terminal, terminal, wireless communications device, user agent or user device.
  • UE User Equipment
  • access terminal User Equipment
  • subscriber unit subscriber unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile device user terminal
  • terminal wireless communications device
  • wireless communications device user agent or user device.
  • the terminal device can be a station (ST) in the WLAN, a cellular phone, a cordless phone, a smartphone, a wireless data card, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop ( Wireless Local Loop (WLL) station, Personal Digital Assistant (PDA) device, tablet computer, laptop computer, machine type communication terminal, wireless modem, handheld device with wireless communication function, vehicle-mounted device, wearable Equipment, computing equipment or other processing equipment connected to a wireless modem, such as terminal equipment in a 5G network or terminal equipment in a future evolved Public Land Mobile Network (Public Land Mobile Network, PLMN) network, etc.
  • ST station
  • PLMN Public Land Mobile Network
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • the terminal device may also be a terminal device in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • Its main technical feature is to transfer items through communication technology. Connect with the network to realize an intelligent network of human-computer interconnection and physical-object interconnection.
  • a base station is a device deployed in a wireless access network to provide wireless communication functions for terminal equipment.
  • BS can also be called access network equipment, network equipment or base station equipment.
  • a base station can be an access network device and other equipment used to communicate with terminal devices.
  • a base station can also be an access point in a WLAN.
  • gNB can also be an evolutionary base station (eNB or eNodeB) in LTE, or a relay station or access point, or a vehicle-mounted device, a wearable device, and an access network device (radio access network, RAN) or access network equipment in future evolved PLMN networks, etc.
  • a wireless communication system is usually composed of cells, each cell includes a base station, and the base station provides communication services to multiple terminal devices.
  • the base station includes a base band unit (BBU) and a remote radio unit (RRU).
  • BBU base band unit
  • RRU remote radio unit
  • the BBU and RRU can be placed in different places or in the same computer room.
  • the RRU is placed remotely in an area with high call traffic, and the BBU is placed in the central computer room.
  • the RRU and BBU can also be different components under the same rack.
  • the terminal device communicates with the base station through the transmission resources (for example, frequency domain resources, spectrum resources) used by the cell.
  • the cell can be a cell corresponding to the base station.
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cells here can include: metro cells, micro cells, pico cells, femto cells, etc., these small cells It has the characteristics of small coverage and low transmission power, and is suitable for providing high-speed data transmission services.
  • the terminal device or the access network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as Central Processing Unit (CPU), Memory Management Unit (MMU) and memory (also called main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, such as Linux operating system, Unix operating system, Android operating system, iOS operating system or windows operating system, etc.
  • This application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide according to the embodiment of the present application.
  • the execution subject of the method provided by the embodiment of the present application can be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • various aspects or features of embodiments of the present application may be implemented as methods, apparatus, or articles of manufacture using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer-readable device, carrier or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (such as hard disks, floppy disks or tapes, etc.), optical disks (such as compact disks (Compact Disc, CD), Digital Versatile Disc (DVD) etc.), smart cards and flash memory devices (e.g., Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drives, etc.).
  • magnetic storage devices such as hard disks, floppy disks or tapes, etc.
  • optical disks such as compact disks (Compact Disc, CD), Digital Versatile Disc (DVD) etc.
  • smart cards and flash memory devices e.g., Erasable Programmable Read-Only Memory (EPROM), cards, sticks or key drives, etc.
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • the application program that executes the communication method of the embodiment of the present application is used to control the receiving end device to complete the received data.
  • the application program of the corresponding action can be a different application program.
  • FIG. 1 is a schematic diagram of a system 100 that can be applied to the communication method according to the embodiment of the present application.
  • the system 100 includes a base station 102 , which may include one antenna or multiple antennas, such as antennas 104 , 106 , 108 , 110 , 112 and 114 .
  • the base station 102 may additionally include a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art will understand that each of them may include multiple components related to signaling transmission and reception (such as processors, modulators, multiplexers). , demodulator, demultiplexer or antenna, etc.).
  • Base station 102 may communicate with multiple terminal devices (eg, terminal device 116 and terminal device 122). However, it is understood that base station 102 may communicate with any number of terminal devices similar to terminal device 116 or terminal device 122.
  • Terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable device for communicating over wireless communication system 100 equipment.
  • terminal device 116 communicates with antennas 112 and 114 , where antennas 112 and 114 transmit information to terminal device 116 via a downlink channel (also referred to as a forward link) 118 and via an uplink channel (also referred to as a reverse link).
  • the link) 120 receives information from the terminal device 116.
  • terminal device 122 communicates with antennas 104 and 106 , which transmit information to terminal device 122 via downlink channel 124 and receive information from terminal device 122 via uplink channel 126 .
  • the downlink channel 118 may use a different frequency band than the uplink channel 120 , and the downlink channel 124 may use a different frequency band than the uplink channel 126 .
  • FDD frequency division duplex
  • the downlink channel 118 and the uplink channel 120 may use a common frequency band
  • the downlink channel 124 and the uplink channel 126 may use a common frequency band.
  • Each antenna (or group of antennas) and/or area designed for communication is referred to as a sector of base station 102 .
  • the antenna group may be designed to communicate with terminal devices in a sector of the base station 102 coverage area.
  • a base station can transmit signals to all terminal devices in its corresponding sector through a single antenna or multi-antenna transmit diversity.
  • the transmit antenna of base station 102 may also utilize beamforming to improve the signal-to-noise ratio of forward links 118 and 124.
  • base station 102 utilizes beamforming to transmit signals to terminal devices 116 and 122 randomly dispersed within the relevant coverage area, adjacent Mobile devices in the cell will experience less interference.
  • the base station 102, the terminal device 116, or the terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
  • the wireless communication transmitting device may encode the data for transmission.
  • the wireless communication sending device may obtain (eg generate, receive from other communication devices, or save in a memory, etc.) a certain number of data bits to be sent to the wireless communication receiving device through the channel.
  • data bits may be contained in a transport block (or multiple transport blocks) of data, which may be segmented to produce multiple code blocks.
  • the communication system 100 may be a PLMN network, a D2D network, an M2M network, an IoT network, or other networks.
  • Figure 1 is only a simplified schematic diagram of an example.
  • the network may also include other base stations, which are not shown in Figure 1 .
  • the base station side can use the uplink channel estimation results for downlink transmission after estimating the uplink channel.
  • each terminal device only needs to send a pilot signal equal to the number of its own antenna ports (which can be as simple as one port) to the base station for the base station to estimate the uplink and downlink channels, regardless of the base station.
  • the number of antenna ports This is because all base station antenna ports receive the same pilot, so the base station can use a single uplink pilot transmission to estimate the channel for each of its antenna ports.
  • the properties of the downlink channel can be completely different from those of the uplink channel, and the estimated uplink channel cannot be used for downlink transmission.
  • the downlink channel needs to be estimated in the downlink direction, that is, the downlink channel needs to be estimated on the terminal equipment side, and then the downlink channel estimation result needs to be fed back to the base station on the uplink channel.
  • each antenna port needs to send a downlink pilot signal.
  • the channel estimation overhead in FDD increases with the number of base station transmit antennas, while the channel estimation overhead in TDD only increases with the number of simultaneous terminal devices.
  • MIMO is an important technical means for wireless communication systems to improve system capacity and spectrum efficiency.
  • MIMO technology usually uses a large number of base station antennas or logical ports, and the corresponding downlink pilot overhead and uplink feedback overhead are large. How to reduce the downlink pilot overhead and uplink feedback overhead in MIMO technology has become a bottleneck problem.
  • the embodiments of the present application take MIMO technology as an example to explain the technical solution of the present application.
  • this application provides a CSI detection and feedback solution in MIMO technology.
  • the network device in each embodiment of the present application is exemplified by a BS, and the terminal device is exemplified by a UE.
  • step S212 the UE sends the uplink channel information to the BS.
  • the uplink channel information may be uplink channel pilot information.
  • This application takes the uplink channel information as uplink channel pilot information as an example for description.
  • Step S212 can avoid the problem of excessive pilot overhead for downlink channel detection when MIMO technology is used. Regardless of whether the uplink channel and the downlink channel are reciprocal, step S212 can be that the UE side sends the uplink channel pilot information to the BS side, and the UE sends to the BS side a number equal to the number of the UE's own antenna ports (can be as simple as one port) The pilot information is given to the BS for the BS to estimate the first path parameters.
  • the first path parameter is a path parameter shared by the uplink channel and the downlink channel between the BS and the UE.
  • Step S214 The BS can estimate the common path parameters of the uplink channel and the downlink channel with the UE based on the uplink channel pilot reception information.
  • the first path parameter of the uplink channel estimated by the BS can be used as the channel estimate of the downlink channel.
  • the first path parameter includes the power coefficient, direction angle, Doppler factor, etc. of each path of the uplink channel.
  • the above-mentioned power coefficient, direction angle, and Doppler factor include the power coefficient, direction angle, and Doppler factor of each path.
  • Step S216 The BS sends first indication information to the UE, where the first indication information is used to indicate the above-mentioned first path parameter to the UE.
  • the first indication information may indicate the first path parameter in the form of a mapping table, or may indicate the first path parameter in the form of an index.
  • step S2128 the BS sends downlink channel information to the UE.
  • the downlink channel information may be downlink channel pilot information.
  • This application will illustrate that the downlink channel information is downlink channel pilot information.
  • the downlink channel pilot information is sparsely sent by the BS in the spatial dimension, and the number of sending ports is significantly less than the number of antennas of the BS.
  • the BS only needs to send the above downlink channel pilot information to the UE on N antenna ports, where 1 ⁇ N ⁇ M.
  • the above-mentioned antenna port can also be said to be an antenna unit.
  • the BS uses the first path parameter as a reference to send downlink channel pilot information to the UE on some antenna ports of the BS.
  • the above downlink channel pilot information and the above first path parameter are used by the UE to estimate the second path parameter.
  • the second path parameter is a path parameter of the downlink channel between the BS and the UE that is different from the uplink channel, that is, the second path parameter is different from the uplink channel.
  • Downlink channel pilot information is used to estimate downlink specific channel state (specific CSI) path parameters.
  • Step S220 The UE estimates a specific downlink channel state path parameter based on the above-mentioned first path parameter and uplink channel pilot reception information, that is, estimates a second path parameter.
  • the downlink specific channel state parameters include an initial phase.
  • the above-mentioned initial phase includes the initial phase of each path.
  • Step S222 The UE sends second indication information to the BS, where the second indication information is used to indicate the estimated second path parameter.
  • the second indication information may indicate the second path parameter in the form of a mapping table, or may indicate the second path parameter in the form of an index.
  • Step S224 The BS performs channel reconstruction on the downlink channel between the BS and the UE based on the first estimated path parameter and the second path parameter estimated by the UE.
  • the BS reconstructs the downlink channel full information matrix based on the specific radial parameter values estimated in the above steps S214 and S220.
  • this embodiment can not only avoid the problem of large pilot overhead for downlink channel detection and large uplink channel feedback overhead, but also improve the accuracy of downlink channel estimation.
  • this application provides another CSI detection and feedback solution in MIMO technology.
  • the terminal device in each embodiment of the present application is exemplified by taking a UE.
  • step S310 the UE sends first parameter information to the BS, where the first parameter information indicates the antenna array parameters of the UE.
  • the antenna array parameter of the UE is referred to as antenna array parameter #A.
  • the UE may send the antenna array parameter #A to the BS in a signaling manner.
  • the antenna array parameter #A includes at least one of the topology of the UE's antenna array, element spacing, element pattern, and polarization form; wherein the topology of the antenna array includes line array topology, area array topology, and circular array topology. Array topology etc.
  • Step S312 The UE sends uplink channel pilot information to the BS at multiple times t1 to tn of symbol granularity.
  • the BS receives the uplink channel pilot information sent by the UE at several times t1 to tn of symbol granularity.
  • Step S314 The BS estimates the first path parameters of the uplink channel and downlink channel between the BS and the UE based on the received antenna array parameter #A, the uplink sounding pilot reception information and the BS's own antenna array parameters, denoted as common Radial parameter #1.
  • the antenna array parameter of the BS itself is referred to as antenna array parameter #B.
  • the antenna array parameter #B includes: at least one of the topology of the BS's antenna array, element spacing, element pattern, and polarization form; wherein the topology of the antenna array includes line array topology, area array topology, Circular array topology, etc.
  • the common path parameter #1 of the uplink channel and the downlink channel is the same and shared.
  • the above-mentioned common path parameter #1 includes: power coefficient, direction angle, Doppler factor, etc. of each path in the uplink channel.
  • the direction angle may be the incident angle of the receiving array and the exit angle of the transmitting array for each path in the uplink channel.
  • the estimation method used for BS to estimate the common radial parameter #1 includes maximum likelihood estimation (MLE) based on Bayesian criterion, maximum a posteriori probability (maximum a posteriori, MAP), sparse Bayesian learning (sparse bayessian learning, SBL) and other methods.
  • MLE maximum likelihood estimation
  • MAP maximum a posteriori probability
  • SBL sparse Bayesian learning
  • the following uses the MLE method as an example:
  • the BS receives the uplink channel pilot information sent by the UE at multiple times t1 ⁇ tn of symbol granularity.
  • the uplink channel pilot reception information on the BS side can be expressed as:
  • N L represents the number of multipath channels
  • p m , ⁇ m , v m respectively represent the power coefficient, initial phase, Doppler factor, receiving array incident angle, and transmitting array exit angle of the mth path, Indicates the incident angle of the receiving array or the exit angle of the transmitting array as array steering vector at .
  • antenna array parameter #A the aforementioned antenna array parameter #A or antenna array parameter #B.
  • its array steering vector can be determined by the following formula:
  • represents the array spacing
  • N represents the array number
  • the BS combines the uplink channel pilot reception information at multiple times from t1 to tn:
  • the BS estimates the path parameters shared by the uplink channel and the downlink channel according to the MLE method based on the combined uplink channel pilot reception information, that is, the above-mentioned common path parameter #1:
  • the value of public diameter parameter #1 can be obtained: wait.
  • the above-mentioned common path parameter #1 can be discretized by determining the distribution range through the corresponding prior information to reduce the estimation complexity.
  • the distribution range of the Doppler factor v can be determined based on the moving speed of the application scene.
  • the above third step can also directly estimate all the parameters required to reconstruct the full information matrix of the downlink channel, including wait.
  • Step S316 The BS calculates the estimated value of common path parameter #1 The value is sent to the UE.
  • the BS sends second parameter information to the UE, where the second parameter information indicates the antenna array parameter of the BS, that is, the above-mentioned antenna array parameter #B.
  • Step S318 The BS sends downlink channel pilot information to the UE on some antennas in the spatial dimension.
  • the downlink channel pilot information can be a channel state information parameter reference signal (CSIP-RS).
  • CSIP-RS channel state information parameter reference signal
  • This kind of CSIP-RS is a code that is far smaller than the number of antennas or antenna ports transmitted by the BS.
  • a new type of time-frequency sparse pilot whose time domain period exceeds the channel coherence time.
  • the magnitude of the downlink channel pilot information sent by the BS is significantly smaller than the number of BS antennas.
  • the BS does not need to send the above-mentioned downlink channel pilot information equivalent to its number of antennas or logical ports, which can reduce the downlink pilot overhead on the BS side.
  • the downlink channel pilot information sent by the BS may be sent from the BS array antenna at regular intervals, or It may be sent at unequal intervals, and this application does not limit this.
  • the pilot codebook construction methods of the above CSI-HP-RS pilot information can be the following three:
  • the first one Sampling N p ports at regular intervals from the N bs -dimensional BS array antenna to transmit CSI-HP-RS pilot information.
  • the pilot codebook of RS pilot information can be expressed as:
  • X T represents the transpose matrix of the downlink channel pilot information matrix X
  • the vertical direction of X T represents the resource element (RE) dimension
  • the horizontal direction of X T represents the antenna dimension.
  • the pilot codebook can be expressed as:
  • X T represents the transpose matrix X of the downlink channel pilot transmission information matrix X
  • the vertical direction of X T represents the RE dimension
  • the horizontal direction of X T represents the antenna dimension
  • the pilot codebook of the information can be expressed as:
  • X T represents the transpose matrix X of the downlink channel pilot transmission information matrix X
  • the vertical direction of X T represents the RE dimension
  • the horizontal direction of X T represents the antenna dimension
  • Step S320 The UE can estimate the second path parameter between the BS and the UE based on the downlink pilot information and the common path parameter #1.
  • the second path parameter can represent the downlink channel path parameter between the BS and the UE. , recorded as downlink channel path parameter #1.
  • the UE can also estimate the downlink channel path parameter #1 based on the downlink pilot information, the common path parameter #1, and the antenna array parameter #A.
  • the UE can also estimate the downlink channel path parameter #1 based on the downlink pilot information, the common path parameter #1, the antenna array parameter #A, and the antenna array parameter #B.
  • the estimated downlink channel path parameter #1 when the downlink channel path parameter #1 is estimated in combination with the antenna array parameter #A and/or the antenna array parameter #B, the estimated downlink channel path parameter #1 will be more accurate.
  • the downlink channel path parameter #1 may include an initial phase.
  • the estimation method used by the UE to estimate the downlink channel path parameter #1 includes MLE, MAP, SBL and other methods based on the Bayesian criterion.
  • the following uses the MLE method as an example:
  • the UE receives the downlink channel pilot information sent by the BS at several times t1 ⁇ tn of symbol granularity.
  • the downlink channel pilot reception information can be expressed as:
  • Y ( t ) represents N ue m , respectively represent the power coefficient, initial phase, Doppler factor, receiving array incident angle, and transmitting array exit angle of the mth path, Indicates the incident angle of the receiving array or the exit angle of the transmitting array as array steering vector at .
  • antenna array parameter #A the aforementioned antenna array parameter #A or antenna array parameter #B.
  • its array steering vector can be determined by the following formula:
  • represents the array spacing
  • N represents the array number
  • the UE In the second step, the UE combines the downlink channel pilot reception information at multiple times from t1 to tn:
  • the UE estimates the downlink channel path parameter #1 according to the MLE method based on the combined downlink channel pilot reception information:
  • Step S322 The UE sends the downlink channel path parameter #1 obtained above to the BS.
  • Step S324 The BS determines value and downlink channel domain parameter #1 value, reconstruct the full channel information matrix of the downlink channel between the BS and the UE, here the full channel information matrix of the downlink channel between the BS and the UE is recorded as the full information matrix of the downlink channel #1.
  • one method for the BS to construct the full information matrix #1 of the downlink channel is as follows:
  • the first step is to obtain the parameters of each path.
  • the parameters are classified with each path as a unit.
  • Each unit includes its own independent parameters, that is, the known parameters calculated in the above steps. and other parameters.
  • the second step is to construct each path component. According to the parameters of each path
  • the array response corresponding to the direction angle of each path, the Doppler time-varying phase spin corresponding to the Doppler factor of each path, the initial phase complex value of each path, etc. are generated respectively.
  • the third step is to reconstruct the full information matrix of the time-varying downlink channel based on the initial phase complex value corresponding to the initial phase of each path, the array response corresponding to the direction angle of each path, and the time-varying phase rotation corresponding to the Doppler factor of each path. #1.
  • the UE only needs to send an uplink channel pilot signal equal to the number of its own antenna ports (which can be as simple as one port) to the BS, so that the BS can estimate the common path parameters. #1.
  • the BS only needs to sparsely send the downlink channel pilot information and the above-mentioned common path parameter #1 to the UE in the spatial dimension, without considering the number of antenna ports of the BS, which can greatly reduce the downlink channel Pilot overhead.
  • the UE only needs to feed back the downlink channel path parameter #1 to the BS, and the amount of uplink feedback is reduced.
  • this embodiment can estimate the common path parameter #1 before aliasing of each path and the downlink channel path parameter #1. Based on this, the full information matrix #1 of the downlink channel can be constructed, which can improve the accuracy of channel estimation.
  • the reflected beam can be manipulated to aim at the UE in the blind area and dynamically track it. This is equivalent to creating a virtual line-of-sight path and expanding the coverage of the BS. .
  • RIS reconfigurable intelligent surface
  • the signal transmission environment is relatively simple, there is often a lack of independent multi-path channels to transmit signals, making it difficult to achieve sufficient multi-stream transmission.
  • the signal propagation path can be artificially increased to better realize multi-stream transmission and improve the throughput of hotspot UEs.
  • this application provides a CSI detection and feedback solution for a RIS array-assisted MIMO system (RIS-MIMO).
  • RIS-MIMO RIS array-assisted MIMO system
  • Figure 4 shows a schematic diagram of the reflection channel between the BS and the RIS array, between the RIS array and the UE, and the direct channel between the BS and the UE in the RIS-MIMO system.
  • the reflection channel between the BS and the RIS array can be recorded as channel #2
  • the reflection channel between the RIS array and the UE can be recorded as channel #3
  • the direct channel between the BS and the UE can be recorded as channel # 1.
  • channel #2 and channel #3 may also be called reflection channels. Call channel #1 the direct channel.
  • Figure 5 shows a schematic diagram of a CSI detection and feedback method in a RIS-MIMO system where the uplink channel and the downlink channel have reciprocity.
  • Step S510 The UE sends the antenna array parameter #A to the BS.
  • Step S512 The RIS array sends third parameter information to the BS, where the third parameter information indicates the antenna array parameters of the RIS array.
  • the antenna array parameters of the RIS array are referred to as antenna array parameters #C.
  • the antenna array parameter #C includes: at least one of the topology of the RIS antenna array, element spacing, element pattern, and polarization form; wherein the topology of the antenna array includes line array topology, area array topology, Circular array topology, etc.
  • Step S514 After receiving the antenna array parameter #C, the BS sets the reflection coefficient of the RIS array according to the antenna array parameter #C.
  • the reflection coefficient of the RIS array is used to indicate that the RIS array reflects the uplink signals and downlink signals passing through channel #2 and channel #3 with different reflection coefficients at different times.
  • the BS side or the UE side can estimate the channel #2 and channel #3. Channel status information.
  • Step S516 The BS sends third indication information to the RIS array at multiple times t1 to tn of symbol granularity, which is recorded as indication information #1.
  • This indication information #1 is used to instruct the RIS array to pass channel #2 with different reflection coefficients. Reflected with the uplink signal and downlink signal of channel #3.
  • Step S518 The UE sends uplink channel pilot information to the BS at multiple times t1 to tn of symbol granularity.
  • the BS receives the uplink channel pilot information sent by the UE at multiple times t1 to tn of symbol granularity.
  • the uplink channel pilot information is not only directly sent to the BS through channel #1, but also transmitted through channel #2, reflected by the RIS array, and sent to the BS through channel #3.
  • Step S520 the BS estimates the first radial parameter of channel #1 based on the antenna array parameter #B, the reflection coefficient of the RIS array, and the received antenna array parameter #A, antenna array parameter #C, and uplink channel pilot reception information. , the third path parameter of channel #2, and the fifth path parameter of channel #3.
  • the first path parameter of channel #1 is denoted as common path parameter #1
  • the third path parameter of channel #2 is denoted as common path parameter #2
  • the fifth path parameter of channel #3 is denoted as common path parameter #2
  • the diameter parameter is denoted as public diameter parameter #3.
  • the estimated common radial parameters #2 include equal parameters; estimated common radial parameters #3 include equal parameters; estimated common radial parameters #1 include and other parameters.
  • step S3144 The method by which the BS estimates the common path parameter #1, the common path parameter #2, and the common path parameter #3 is similar to step S314, and will not be described again here.
  • Step S522 The BS reconstructs the downlink full channel information matrix of each channel of channel #1, channel #2, and channel #3 based on the estimated common path parameter #1, common path parameter #2, and common path parameter #3. #1, downlink full channel information matrix #2, downlink full channel information matrix #3.
  • step S324 The construction method of the full channel information matrix of each channel is similar to step S324 and will not be described again here.
  • the antenna array parameter #C of the RIS array is transferred to the BS, and the BS instructs the RIS array to reflect the signal with different reflection coefficients at different times; at the same time, the BS can use the antenna array parameter #A, the antenna array parameter #B, Antenna array parameter #C and the uplink channel pilot information sent by the UE are used to estimate the path parameters of the uplink channels of channel #1, channel #2, and channel #3, and the path parameters of the uplink channel are used for downlink transmission.
  • Channel #3 reflection channel matrix can reduce downlink channel pilot resource overhead.
  • Figure 6 shows a schematic diagram of the CSI detection and feedback method in the RIS-MIMO system.
  • steps S610 to S618 reference may be made to steps S510 to S518, which will not be described again here.
  • Step S620 the BS estimates channel #1, channel #2, and channel #1 respectively based on the antenna array parameter #B, the reflection coefficient of the RIS array, and the received antenna array parameter #A, antenna array parameter #C, and uplink channel pilot reception information.
  • the common path parameter #2 of the above-mentioned channel #2 includes and other parameters; the public path parameter #3 of the above channel #3 includes and other parameters; the public path parameter #1 of the above channel #1 includes and other parameters.
  • step S3144 The method by which the BS estimates the common path parameter #1, the common path parameter #2, and the common path parameter #3 of the channel #1, channel #2, and channel #3 is similar to step S314, and will not be described again here.
  • Step S622 the BS sends the above estimated common path parameter #1, common path parameter #2, common path parameter #3, and reflection coefficient of the RIS array of channel #1, channel #2, and channel #3 to the UE. .
  • the BS also sends the antenna array parameter #B to the UE.
  • Step S624 The BS sparsely sends downlink channel pilot information to the UE in the spatial dimension.
  • the downlink channel pilot information can be CSIP-RS.
  • This CSIP-RS is a new type of time-frequency sparse code whose code is much smaller than the number of antennas or antenna ports transmitted by the BS, and the time domain period exceeds the channel coherence time. pilot.
  • the pilot codebook construction method of the CSI-HP-RS pilot information is as described above and will not be described again here.
  • the BS not only directly sends the downlink channel pilot information to the UE through channel #1, but also simultaneously delivers the downlink channel pilot information through channel #2, and then sends it to the UE through channel #3 after being reflected by the RIS array.
  • the magnitude of the downlink channel pilot information sent by the BS is significantly smaller than the number of antenna ports of the BS.
  • the BS does not need to send downlink pilot information equivalent to its number of antennas or logical ports, which can reduce the downlink channel pilot information on the BS side. overhead.
  • the reason why the downlink channel pilot information delivered by the BS is significantly smaller than the number of antenna ports of the BS is because the BS also delivers common path parameters of the uplink channel and downlink channel.
  • This common path parameter can be used as a reference for the BS side, so that the BS side can send the above-mentioned downlink channel pilot information on some of its antenna ports.
  • the above downlink channel pilot information sent by the BS may be sent from the BS array antenna at regular intervals or may be sent at unequal intervals, which is not limited in this application.
  • Step S626 The UE estimates channel #1 based on the downlink channel pilot reception information, common path parameter #1, common path parameter #2, common path parameter #3, antenna array parameter #A, and the reflection coefficient of the RIS array.
  • the second path parameter of channel #1 is denoted as downlink channel path parameter #1
  • the fourth path parameter of channel #2 is denoted as downlink channel path parameter #2
  • the fourth path parameter of channel #2 is denoted as downlink channel path parameter #2
  • the sixth path parameter is denoted as downlink channel path parameter #3.
  • the downlink channel path parameter #1, the downlink channel path parameter #2, and the downlink channel path parameter #3 all include parameter initial phases.
  • the estimation methods used by the UE to estimate the downlink channel path parameter #1, the downlink channel path parameter #2, and the downlink channel path parameter #3 include MLE, MAP, SBL and other methods.
  • MLE MLE
  • MAP MAP
  • SBL SBL
  • Step S628 The UE sends the estimated downlink channel path parameter #1, downlink channel path parameter #2, and downlink channel path parameter #3 to the BS.
  • Step S630 The BS obtains the above-mentioned public path parameter #1 and downlink channel parameter #1 of channel #1, public path parameter #2 of channel #2, downlink channel path parameter #2, and channel #3.
  • Common path parameter #3 and downlink channel path parameter #3 respectively reconstruct the downlink full channel information matrix #1 of channel #1, the downlink full channel information matrix #2 of channel #2, and the downlink full channel information of channel #3. Matrix #3.
  • step S324 the method for the BS to construct the downlink all-channel information matrix #1, the downlink all-channel information matrix #2, and the downlink all-channel information matrix #3 refers to step S324, which will not be described again here.
  • the UE only needs to send an uplink channel pilot signal equal to the number of its own antenna ports (which can be as simple as one port) to the BS, so that the BS can estimate the reflected channel and direct channel.
  • an uplink channel pilot signal equal to the number of its own antenna ports (which can be as simple as one port) to the BS, so that the BS can estimate the reflected channel and direct channel.
  • Common path parameters in the channel that account for most of the channel's overhead resources.
  • the BS can use the common path parameters of each channel as a reference to send downlink channel pilot information that is significantly smaller than the number of BS antennas, without considering the number of antenna ports of the BS, which can greatly reduce downlink pilot information. overhead.
  • the UE only needs to feed back to the BS the downlink channel path parameters of the reflection channel and the direct channel, which account for a small portion of the channel overhead, and the amount of uplink feedback is reduced.
  • this embodiment reconstructs the downlink full channel information matrix based on the specific parameters before aliasing of the reflection channel and the direct channel, which can improve the accuracy of channel estimation.
  • the common path parameter #1, the common path parameter #2, and the common path parameter #3 are coupled together and estimated by the BS, and the downlink channel path parameter #1, the downlink channel path parameter Parameter #2 and downlink channel path parameter #3 are coupled together and estimated by the UE side.
  • This application provides a method that can be separately estimated by decoupling the common path parameters of the reflection channel and the direct channel and the downlink channel path parameters. The embodiment is shown in Figure 7.
  • steps S710 to S716, refer to steps S510 to S516, which will not be described again here.
  • the instruction information #2 is used to instruct the RIS to turn off the reflection function.
  • Step S720 The UE sends uplink channel pilot information to the BS at multiple times t1 to tn of symbol granularity.
  • the BS receives the uplink channel pilot information sent by the UE at multiple times t1 to tn of symbol granularity.
  • the uplink channel pilot information is not only directly sent to the BS through channel #1, but also transmitted through channel #2, reflected by the RIS array, and sent to the BS through channel #3.
  • Step S722 The BS estimates the common path parameter #1 of the channel #1 based on the antenna array parameter #B, the antenna array parameter #A, and the uplink channel pilot reception information.
  • the above-mentioned public path parameter #1 includes and other parameters.
  • step S314 the method by which the BS estimates the above-mentioned common path parameter #1 is similar to step S314, and will not be described again here.
  • Step S724 The BS sends the estimated common path parameter #1 of the direct channel to the UE.
  • the BS also sends the antenna array parameter #B to the UE.
  • Step S726 The BS sends instruction information #3 to the RIS array.
  • the instruction information #3 is used to instruct the RIS array to enable the reflection function.
  • Step S728 The BS estimates the common path parameter #2 of channel #2 and the common path parameter #3 of channel #3 based on the antenna array parameter #C and the common path parameter #1 of channel #1.
  • the BS can also combine the antenna array parameter #A to estimate the common path parameter #2 of channel #2 and the common path parameter #3 of channel #3, so that the common path parameters obtained will be more accurate.
  • the common path parameter #2 of the above-mentioned channel #2 includes and other parameters; the public path parameter #3 of the above channel #3 includes and other parameters.
  • step S3144 The method by which the BS estimates the common path parameter #1, the common path parameter #2, and the common path parameter #3 of the channel #1, channel #2, and channel #3 is similar to step S314, and will not be described again here.
  • Step S730 The BS sends the estimated common path parameter #2 of channel #2 and the estimated common path parameter #3 of channel #3 to the UE.
  • Step S732 The BS sends instruction information #2 to the RIS array.
  • the instruction information #2 is used to instruct the RIS array to turn off the reflection function.
  • Step S734 The BS sparsely sends downlink channel pilot information to the UE in the spatial dimension.
  • the downlink channel pilot information can be CSIP-RS.
  • This CSIP-RS is a new type of time-frequency sparse code whose code is much smaller than the number of antennas or antenna ports transmitted by the BS, and the time domain period exceeds the channel coherence time. pilot.
  • the pilot codebook construction method of the CSI-HP-RS pilot information is as described above and will not be described again here.
  • the magnitude of the downlink channel pilot information sent by the BS is significantly smaller than the number of antenna ports of the BS.
  • the BS does not need to send downlink pilot information equivalent to its number of antennas or logical ports, which can reduce the downlink pilot overhead on the BS side. .
  • the detection downlink specific path parameter pilot information sent by the BS may be sent from the BS array antenna at regular intervals, or may be sent at unequal intervals, which is not limited in this application.
  • Step S736 The UE estimates the downlink channel path parameter #1 of the channel #1 based on the downlink channel pilot reception information, the common path parameter #1, and the antenna array parameter #A.
  • the downlink channel path parameter #1 includes an initial phase.
  • the estimation method used by the UE to estimate the downlink channel path parameter #1 includes MLE, MAP, SBL and other methods based on the Bayesian criterion.
  • MLE MLE
  • MAP MAP
  • SBL SBL
  • other methods based on the Bayesian criterion For the estimation method, refer to step S320, which will not be described again here.
  • Step S738 The UE sends the estimated downlink channel path parameter #1 to the BS.
  • Step S740 the BS sends instruction information #3 to the RIS array.
  • the instruction information #3 is used to instruct the RIS array to enable the reflection function.
  • Step S742 The UE estimates the downlink channel path parameter #2 of channel #2 and the downlink channel of channel #3 based on the downlink channel pilot information, downlink channel path parameter #1, antenna array parameter #A, and antenna array parameter #C. Radial parameter #3.
  • the UE may combine the obtained common path parameter #1, common path parameter #2, and common path parameter #3 to estimate more accurate downlink channel path parameter #2 and downlink channel path parameter #3.
  • the downlink channel path parameter #2 and the downlink channel path parameter #3 estimated by the UE in combination with the antenna array parameter #B will be more accurate.
  • the downlink channel path parameter #2 and the downlink channel path parameter #3 include the initial phases of channel #2 and channel #3.
  • the estimation methods used by the UE to estimate the downlink channel path parameter #2 and the downlink channel path parameter #3 include MLE, MAP, SBL and other methods based on the Bayesian criterion.
  • MLE MLE
  • MAP MAP
  • SBL SBL
  • other methods based on the Bayesian criterion For the estimation method, refer to step S320, which will not be described again here.
  • Step S744 The UE sends the estimated downlink channel path parameter #2 and downlink channel path parameter #3 to the BS.
  • Step S746 The BS obtains the above-mentioned public path parameter #1 and downlink channel path parameter #1 of channel #1, The public path parameter #2 and downlink channel path parameter #2 of channel #2, the common path parameter #3 and downlink channel path parameter #3 of channel #3, respectively reconstruct the downlink full channel information matrix of channel #1 #1, downlink full channel information matrix #2 of channel #2, and downlink full channel information matrix #3 of channel #3.
  • step S324 the method for the BS to construct the downlink all-channel information matrix #1, the downlink all-channel information matrix #2, and the downlink all-channel information matrix #3 refers to step S324, which will not be described again here.
  • the UE only needs to send an uplink pilot signal equal to the number of its own antenna ports (which can be as simple as one port) to the BS, so that the BS can estimate the reflected channel and direct channel respectively.
  • an uplink pilot signal equal to the number of its own antenna ports (which can be as simple as one port) to the BS, so that the BS can estimate the reflected channel and direct channel respectively.
  • Common path parameters in the channel that account for most of the channel's overhead resources.
  • the BS can use the common path parameters of each channel as a reference to send downlink channel pilot information that is significantly smaller than the number of BS antennas, without considering the number of antenna ports of the BS, which can greatly reduce downlink pilot information. overhead.
  • the UE only needs to feed back to the BS the downlink channel path parameters of the reflection channel and the direct channel, which account for a small portion of the channel overhead, and the amount of uplink feedback is reduced.
  • the BS in this embodiment can instruct the RIS reflection function to turn on or off, thereby decoupling the detection of the channel's common path parameters and the downlink channel path parameters, and improving the accuracy of channel detection.
  • FIG. 8 shows a schematic block diagram of a communication device 800 for sending signals according to an embodiment of the present application.
  • the communication device 800 may correspond to (for example, may be configured in or itself is) the above-mentioned FIG. 2, FIG. 3, FIG. 5.
  • the RS, RIS array, and UE described in the methods of Figures 6 and 7, and each module or unit in the communication device 800 for sending signals is used to perform the methods of Figures 2, 3, 5, 6, and 7 respectively.
  • detailed descriptions of each action or process performed by the RS, RIS array, and UE are omitted here.
  • the device 800 may be an RS, RIS array, or UE.
  • the device 800 may include: a processor and a transceiver, and the processor and the transceiver are communicatively connected.
  • the device also It includes a memory that is communicatively connected to the processor.
  • the processor, the memory and the transceiver can be connected in communication, the memory can be used to store instructions, and the processor can be used to execute the instructions stored in the memory to control the transceiver to send information or signals.
  • the communication unit in the device 800 shown in FIG. 8 may correspond to the transceiver, and the processing unit in the device 800 shown in FIG. 8 may correspond to the processor.
  • the device 800 may be a chip (or chip system) installed in an RS, RIS array, or UE.
  • the device 800 may include: a processor and an input/output interface.
  • the processor It can be communicatively connected to the transceiver of the RS, RIS array, and UE through the input and output interface.
  • the device also includes a memory, and the memory is communicatively connected to the processor.
  • the processor, the memory and the transceiver can be connected in communication, the memory can be used to store instructions, and the processor can be used to execute the instructions stored in the memory to control the transceiver to send information or signals.
  • the communication unit in the device 800 shown in FIG. 8 may correspond to the input and output interface
  • the processing unit in the device 800 shown in FIG. 8 may correspond to the processor
  • Figure 9 shows a schematic block diagram of a signal receiving device 900 according to an embodiment of the present application.
  • the signal receiving device 90 can correspond to (for example, can be configured to implement) the above-mentioned Figures 2, 3, 5, 6,
  • each action or process performed by the UE here, To avoid redundancy, its detailed description is omitted.
  • the device 900 may be an RS, RIS array, or UE.
  • the device 900 may include: a processor and a transceiver, and the processor and the transceiver are communicatively connected.
  • the device also It includes a memory that is communicatively connected to the processor.
  • the processor, the memory and the transceiver can be connected in communication, the memory can be used to store instructions, and the processor can be used to execute the instructions stored in the memory to control the transceiver to receive information or signals.
  • the communication unit in the device 900 shown in FIG. 9 may correspond to the transceiver, and the processing unit in the device 900 shown in FIG. 9 may correspond to the processor.
  • the device 900 may be a chip (or chip system) installed in an RS, RIS array, or UE.
  • the device 900 may include: a processor and an input/output interface.
  • the processor It can be communicatively connected with the transceiver of the network device through the input and output interface.
  • the device also includes a memory, and the memory is communicatively connected with the processor.
  • the processor, the memory and the transceiver can be connected in communication, the memory can be used to store instructions, and the processor can be used to execute the instructions stored in the memory to control the transceiver to receive information or signals.
  • the communication unit in the device 900 shown in FIG. 9 may correspond to the input interface
  • the processing unit in the device 900 shown in FIG. 9 may correspond to the processor.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc. that can store program code. code medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和通信装置,该方法包括:终端设备获取第一指示信息和下行信道信息,该第一指示信息用于指示第一径域参数,第一径域参数是第一上行信道和第一下行信道共用的径域参数,所述第一上行信道和所述第一下行信道是网络设备和所述终端设备之间通信的信道;终端设备根据所述第一径域参数和所述下行信道信息估计第二径域参数,并将该第二径域参数发送给网络设备;上述第一径域参数和上述第二径域参数用于网络设备重构上述第一下行信道。本申请实施例不仅能够可以减少MIMO技术中的下行信道导频开销以及上行信道反馈开销,而且可以提升下行信道估计的准确度。

Description

通信方法和通信装置
本申请要求于2022年05月12日提交中国国家知识产权局、申请号为202210512904.7、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及通信领域中的通信方法和通信装置。
背景技术
多输入多输出(multi-input and multi-output,MIMO)是无线通信系统提升系统容量及频谱效率的重要技术手段。现有MIMO技术中,对于上下行信道不具互易性的场景(例如,FDD系统),一种典型的信道探测方法是:基站(base station,BS)发射与其天线数或者逻辑端口数相当的下行导频信号给终端设备;终端设备根据上述的下行导频信号估计下行信道状态信息(channel state information,CSI),并进行量化后反馈给BS;BS根据终端设备反馈的量化后的下行CSI进行下行预编码。但是MIMO技术通常用到的BS天线数或者逻辑端口数较多,对应的下行导频开销以及上行反馈开销较大,如何减少MIMO技术中的下行导频开销以及上行反馈开销已成为瓶颈问题。
发明内容
本申请实施例提供一种通信的方法和通信装置,能够减少下行导频开销以及上行反馈开销。
第一方面,提供了一种通信的方法,该方法包括:终端设备获取第一指示信息,并获取下行信道信息,所述第一指示信息用于指示第一径域参数,所述第一径域参数是第一上行信道和第一下行信道共用的径域参数,所述第一上行信道和所述第一下行信道是网络设备和所述终端设备之间通信的信道,所述下行信道信息是通过所述网络设备的N个天线端口中的M个天线端口发送的,其中,1≤M<N,M、N均为正整数;所述终端设备根据所述第一径域参数和所述下行信道信息估计第二径域参数;所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第二径域参数,所述第一径域参数和所述第二径域参数用于所述第一下行信道的信道重构。
具体地,上述天线端口也可以称为天线单元。
作为示例而非限定,上述的第一指示信息与第二指示信息可以通过映射表的方式去指示第一径域参数与第二径域参数,或者也可以通过索引的方式去指示第一径域参数与第二径域参数等。
本申请实施例中,终端设备获取网络设备部分天线端口下发的下行信道信息,并结合网络设备提供的上行信道和下行信道共用的径域参数,估计出下行信道和上行信道不共用 的径域参数,并将下行信道和上行信道不共用的径域参数反馈给网络设备即可。通过本申请实施例可以减少下行信令的开销和上行反馈信令的开销。
结合第一方面,在第一方面的某些实现方式中,所述第一径域参数包括所述第一上行信道的功率系数、方向角、多普勒因子中的至少一种。
应理解,上述第一上行信道的功率系数、方向角、多普勒因子是网络设备和终端设备的第一上行信道和第一下行信道可以共用的径域参数;并且,当第一上行信道有多条径道时,每条径道都有各自对应的功率系数、方向角、多普勒因子。
本申请实施例的网络设备可以基于MLE、MAP、SBL等方法估计出第一上行信道的功率系数、方向角、多普勒因子的具体数值,可以提升终端设备估计第二径域参数的准确度。
结合第一方面,在第一方面的某些实现方式中,所述第二径域参数包括:所述第一下行信道的初相。
应理解,上述第一下行信道的初相是网络设备和终端设备的第一上行信道和第一下行信道不可以共用的径域参数;并且,当第一下行信道有多条径道时,每条径道都有各自对应的初相值。
结合第一方面,在第一方面的某些实现方式中,终端设备在获取上述第一指示信息之前,所述方法还包括:所述终端设备发送上行信道信息,所述第一指示信息是基于所述上行信道信息确定的。
由终端设备向网络设备发送上行信道信息,并且终端设备向网络设备发送等于UE自身天线端口的数目(可以简单到一个端口)的上行信道信息给基站,可以减少信令的开销。
结合第一方面,在第一方面的某些实现方式中,上述第一指示信息是基于所述上行信道信息确定的,还包括:终端设备发送第一参数信息,该第一参数信息用于指示终端设备的天线阵列的参数,上述第一指示信息可以是基于上述上行信道信息、上述第一参数信息、第二参数信息确定的,该第二参数信息用于指示网络设备的天线阵列的参数。
终端设备将自身的天线阵列的参数发送给网络设备,使得网络设备在估计第一径域参数时,可以参考终端设备的天线阵列的参数以及网络设备自身的天线阵列参数,从而得到更准确的第一径域参数。
结合第一方面,在第一方面的某些实现方式中,上述天线阵列的参数包括:天线阵列的拓扑形态、阵子间距、阵子方向图、极化形态中的至少一项。
具体地,上述第一参数信息包括:终端设备的天线阵列的拓扑形态、阵子间距、阵子方向图、极化形态中的至少一项;上述第二参数信息包括:网络设备的天线阵列的拓扑形态、阵子间距、阵子方向图、极化形态中的至少一项。
其中,上述天线阵列的拓扑形态可以是天线阵列的线阵列拓扑、面阵列拓扑、圆阵列拓扑等。
网络设备参考终端设备的天线阵列的参数以及网络设备自身的天线阵列参数估计第一径域参数时,天线阵列参数中包括的可参考信息越多,会得到更准确的第一径域参数。
结合第一方面,在第一方面的某些实现方式中,所述终端设备根据所述第一径域参数和所述下行信道信息估计所述第二径域参数之前,还包括:所述终端设备获取上述第二参数信息;所述终端设备根据上述第一径域参数、上述下行信道信息、上述第一参数信息、 上述第二参数信息估计上述第二径域参数。
终端设备在估计第二径域参数时,可以参考终端设备的天线阵列的参数以及网络设备自身的天线阵列参数,从而得到更准确的第二径域参数。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述终端设备获取第三指示信息,所述第三指示信息用于指示可重配智能表面RIS阵列的反射系数,所述RIS阵列用于反射所述终端设备和所述网络设备之间的信号。
终端设备可以通过信令的方式获取RIS阵列的反射系数,进一步地可以结合RIS阵列的反射系数得到更准确的下行信道的信息。
结合第一方面,在第一方面的某些实现方式中,上述第一指示信息还用于指示所述第一径域参数、第三径域参数、第五径域参数,所述第三径域参数是第二上行信道和第二下行信道共用的径域参数,所述第二上行信道和所述第二下行信道是所述网络设备和RIS阵列之间通信的信道,所述第五径域参数是第三上行信道和第三下行信道共用的径域参数,所述第三上行信道和所述第三下行信道是所述RIS阵列和所述终端设备之间通信的信道。
网络设备不仅可以将网络设备与终端设备之间的直达信道的第一径域参数指示给终端设备,也可以将网络设备与RIS阵列之间、RIS阵列与终端设备之间的反射信道的第三径域参数与第五径域参数指示给终端设备,以供终端设备分别根据各个信道的上行信道和下行信道的共用的径域参数去估计各个信道的上行信道和下行信道的不共用的下行信道的径域参数。
结合第一方面,在第一方面的某些实现方式中,所述第二指示信息还用于指示所述第二径域参数、第四径域参数和第六径域参数,所述第四径域参数是所述终端设备根据第三径域参数和所述下行信道信息确定的,所述第六径域参数是所述终端设备根据第五径域参数和所述下行信道信息确定的。
应理解,上述第四径域参数是网络设备与RIS阵列之间的第二下行信道与第二上行信道不共用的径域参数,同样地,上述第六径域参数是RIS阵列与终端设备之间的第三下行信道与第三上行信道不共用的径域参数。
结合第一方面,在第一方面的某些实现方式中,上述第四径域参数是所述终端设备根据第三径域参数和所述下行信道信息确定的,还包括:所述第四径域参数是所述终端设备根据第三径域参数、所述下行信道信息、RIS阵列的反射系数确定的,以及,上述第六径域参数是所述终端设备根据所述第五径域参数和所述下行信道信息确定的,还包括:所述第六径域参数是所述终端设备根据所述第五径域参数、所述下行信道信息、所述RIS阵列的反射系数确定的。
终端设备在估计第四径域参数与第六径域参数时,通过参考RIS阵列的反射系数可以得到更准确的估计值。
第二方面,提供了一种通信的方法,该方法包括:网络设备获取上行信道信息;所述网络设备根据所述上行信道信息估计第一径域参数,所述第一径域参数是第一上行信道和第一下行信道共用的径域参数,所述第一上行信道和所述第一下行信道是所述网络设备和终端设备之间通信的信道;所述网络设备发送第一指示信息,并通过所述网络设备的N个天线端口中的M个天线端口发送下行信道信息,所述第一指示信息用于指示所述第一径域参数,其中,1≤M<N,M、N均为正整数;所述网络设备获取第二指示信息,所述第 二指示信息用于指示第二径域参数,所述第二径域参数是基于所述第一径域参数和所述下行信道信息确定的;所述网络设备根据所述第一径域参数和所述第二径域参数,对所述第一下行信道进行信道重构。
具体地,上述天线端口也可以称为天线单元。
作为示例而非限定,上述的第一指示信息与第二指示信息可以通过映射表的方式去指示第一径域参数与第二径域参数,或者也可以通过索引的方式去指示第一径域参数与第二径域参数等。
本申请实施例中,网络设备以估计的上行信道和下行信道共用的径域参数作为参考,在其全部天线端口的部分天线端口发送下行信道信息,可以减少下行信令的开销;同时,网络设备获取来自终端设备的下行信道的径域参数的反馈,可以减少上行反馈信令的开销。
结合第二方面,在第二方面的某些实现方式中,所述第一径域参数包括所述第一上行信道的功率系数、方向角、多普勒因子中的至少一种。
应理解,上述第一上行信道的功率系数、方向角、多普勒因子是网络设备和终端设备的第一上行信道和第一下行信道可以共用的径域参数;并且,当第一上行信道有多条径道时,每条径道都有各自对应的功率系数、方向角、多普勒因子。
本申请实施例的网络设备可以基于贝叶斯准则的最大似然估计(maximum likelihood estimation,MLE)、最大后验概率(maximum a posteriori,MAP)、稀疏贝叶斯学习(sparse bayessian learning,SBL)等方法估计出第一上行信道的功率系数、方向角、多普勒因子的具体数值,可以提升第一下行信道信息矩阵重构的准确度。
结合第二方面,在第二方面的某些实现方式中,所述第二径域参数包括:所述第一下行信道的初相。
应理解,上述第一下行信道的初相是网络设备和终端设备的第一上行信道和第一下行信道不可以共用的径域参数;并且,当第一下行信道有多条径道时,每条径道都有各自对应的初相值。
结合第二方面,在第二方面的某些实现方式中,所述网络设备根据所述上行信道信息估计所述第一径域参数还包括:所述网络设备获取第一参数信息,所述第一参数信息用于指示所述终端设备的天线阵列的参数;所述网络设备根据所述上行信道信息、第二参数信息以及所述第一参数信息估计所述第一径域参数,所述第二参数信息用于指示所述网络设备的天线阵列的参数。
所述网络设备在估计第一径域参数时,通过参考终端设备的天线阵列的参数以及网络设备自身的天线阵列参数,会得到更准确的第一径域参数。
结合第二方面,在第二方面的某些实现方式中,所述天线阵列的参数包括:天线阵列的拓扑形态、阵子间距、阵子方向图、极化形态中的至少一项。
具体地,上述第一参数信息包括:终端设备的天线阵列的拓扑形态、阵子间距、阵子方向图、极化形态中的至少一项;上述第二参数信息包括:网络设备的天线阵列的拓扑形态、阵子间距、阵子方向图、极化形态中的至少一项。
其中,上述天线阵列的拓扑形态可以是天线阵列的线阵列拓扑、面阵列拓扑、圆阵列拓扑等。
网络设备参考终端设备的天线阵列的参数以及网络设备自身的天线阵列参数估计第 一径域参数时,天线阵列参数中包括的可参考信息越多,会得到更准确的第一径域参数。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述网络设备获取第三参数信息,所述第三参数信息用于指示可重配智能表面RIS阵列的天线阵列的参数;所述网络设备根据所述第三参数信息发送第三指示信息,所述第三指示信息用于指示所述RIS阵列的反射系数,所述RIS阵列用于反射所述网络设备和所述终端设备之间的信号。
网络设备可以在获取RIS阵列的天线阵列参数后,为RIS阵列设置合适的RIS阵列反射系数。RIS阵列对网络设备和终端设备之间的信号进行反射时,可以由网络设备或终端设备对RIS阵列与网络设备、RIS阵列与终端设备之间的信道径域参数进行估计。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述网络设备根据所述上行信道信息估计所述第一径域参数、第三径域参数、第五径域参数,所述第三径域参数是第二上行信道和第二下行信道共用的径域参数,所述第二上行信道和所述第二下行信道是所述网络设备和RIS阵列之间通信的信道,所述第五径域参数是第三上行信道和第三下行信道共用的径域参数,所述第三上行信道和所述第三下行信道是所述RIS阵列和所述终端设备之间通信的信道。
网络设备不仅可以基于MLE、MAP、SBL等方法估计第一上行信道与第一下行信道的共用的径域参数,还可以基于MLE、MAP、SBL等方法估计网络设备与RIS阵列之间的第二上行信道与第二下行信道的共用的径域参数,以及估计RIS阵列与终端设备之间的第三上行信道与第三下行信道的共用的径域参数。
结合第二方面,在第二方面的某些实现方式中,上述第一指示信息还用于指示上述第一径域参数、上述第三径域参数以及上述第五径域参数。
网络设备通过将网络设备与终端设备之间、网络设备与RIS阵列之间、RIS阵列和终端设备之间的上行信道和下行信道共用的径域参数指示给终端设备,以供终端设备可以基于上述各个信道的上行信道和下行信道共用的径域参数去估计各个信道的下行信道的特定的径域参数。
结合第二方面,在第二方面的某些实现方式中,所述网络设备根据所述上行信道信息估计所述第一径域参数、第三径域参数、第五径域参数,还包括:所述网络设备根据所述上行信道信息、所述第一参数信息、所述第二参数信息、所述第三参数信息以及所述RIS阵列的反射系数估计所述第一径域参数、所述第三径域参数、所述第五径域参数。
网络设备在估计网络设备与终端设备之间、网络设备与RIS阵列之间、RIS阵列和终端设备之间的上行信道和下行信道共用的径域参数时,通过参考终端设备的天线阵列的参数、网络设备自身的天线阵列参数、RIS阵列的天线阵列参数以及RIS阵列的反射系数,会得到更准确的第一径域参数、第三径域参数、第五径域参数。
结合第二方面,在第二方面的某些实现方式中,所述第二指示信息还用于指示所述第二径域参数、第四径域参数和第六径域参数,所述第四径域参数是基于所述第三径域参数和所述下行信道信息确定的,所述第六径域参数是基于所述第五径域参数和所述下行信道信息确定的。
应理解,上述第四径域参数是是网络设备与RIS阵列之间的第二下行信道与第二上行信道不共用的径域参数,同样地,上述第六径域参数是RIS阵列与终端设备之间的第三下行信道与第三上行信道不共用的径域参数。
结合第二方面,在第二方面的某些实现方式中,上述网络设备根据所述第一径域参数和所述第二径域参数,对所述第一下行信道进行信道重构,还包括:网络设备根据上述第三径域参数和上述第四径域参数,对上述第二下行信道进行信道重构,以及,网络设备根据上述第五径域参数和上述第六径域参数,对上述第三下行信道进行信道重构。
结合第二方面,在第二方面的某些实现方式中,网络设备获取上行信道信息之前,或者,网络设备发送下行信道信息之前,所述方法还包括:网络设备向上述RIS阵列发送第四指示信息,该第四指示信息用于指示RIS阵列关闭信号反射功能。
结合第二方面,在第二方面的某些实现方式中,网络设备估计第一径域参数之后,或者网络设备获取用于指示第二径域参数的上述第二指示信息之后,所述方法还包括:网络设备向上述RIS阵列发送第五指示信息,该第五指示信息用于指示RIS阵列开启信号反射功能。
网络设备通过指示RIS阵列关闭或者开启反射信号的功能,可以将网络设备与终端设备之间直达信道与网络设备与RIS阵列之间、RIS阵列和终端设备之间反射信道的上行信道和下行信道的探测进行解耦,从而可以提升信道探测的精度。
第三方面,提供了一种通信的装置,该装置包括:通信单元,用于获取第一指示信息,并获取下行信道信息,所述第一指示信息用于指示第一径域参数,所述第一径域参数是第一上行信道和第一下行信道共用的径域参数,所述第一上行信道和所述第一下行信道是网络设备和所述终端设备之间通信的信道,所述下行信道信息是通过所述网络设备的N个天线端口中的M个天线端口发送的,其中,1≤M<N,M、N均为正整数;处理单元,用于根据所述第一径域参数和所述下行信道信息估计第二径域参数;所述通信单元还用于发送第二指示信息,所述第二指示信息用于指示所述第二径域参数,所述第一径域参数和所述第二径域参数用于所述第一下行信道的信道重构。
具体地,上述天线端口也可以称为天线单元。
作为示例而非限定,上述的第一指示信息与第二指示信息可以通过映射表的方式去指示第一径域参数与第二径域参数,或者也可以通过索引的方式去指示第一径域参数与第二径域参数等。
本申请实施例中,通过获取网络设备部分天线端口下发的下行信道信息,并结合网络设备提供的上行信道和下行信道共用的径域参数,可以估计出下行信道和上行信道不共用的径域参数,并将下行信道和上行信道不共用的径域参数反馈给网络设备即可。通过本申请实施例可以减少下行信令的开销和上行反馈信令的开销。
结合第三方面,在第三方面的某些实现方式中,所述第一径域参数包括所述第一上行信道的功率系数、方向角、多普勒因子中的至少一种。
应理解,上述第一上行信道的功率系数、方向角、多普勒因子是网络设备和终端设备的第一上行信道和第一下行信道可以共用的径域参数;并且,当第一上行信道有多条径道时,每条径道都有各自对应的功率系数、方向角、多普勒因子。
本申请实施例的可以基于MLE、MAP、SBL等方法估计出第一上行信道的功率系数、方向角、多普勒因子的具体数值,可以提升第二径域参数的估计的准确度。
结合第三方面,在第三方面的某些实现方式中,所述第二径域参数包括:所述第一下行信道的初相。
应理解,上述第一下行信道的初相是网络设备和终端设备的第一上行信道和第一下行信道不可以共用的径域参数;并且,当第一下行信道有多条径道时,每条径道都有各自对应的初相值。
结合第三方面,在第三方面的某些实现方式中,所述通信单元用于获取上述第一指示信息之前,所述通信单元还用于发送上行信道信息,上述第一指示信息是基于所述上行信道信息确定的。
由终端设备向网络设备发送等于终端设备自身天线端口的数目(可以简单到一个端口)的上行信道信息给网络设备,可以减少信令的开销。
结合第三方面,在第三方面的某些实现方式中,上述第一指示信息是基于所述上行信道信息确定的,包括:所述通信单元还用于发送第一参数信息,该第一参数信息用于指示终端设备的天线阵列的参数,上述第一指示信息可以是基于上述上行信道信息、上述第一参数信息、第二参数信息确定的,该第二参数信息用于指示网络设备的天线阵列的参数。
终端设备将自身的天线阵列的参数发送给网络设备,使得网络设备在估计第一径域参数时,可以参考终端设备的天线阵列的参数以及网络设备自身的天线阵列参数,从而得到更准确的第一径域参数。
结合第三方面,在第三方面的某些实现方式中,上述天线阵列的参数包括:天线阵列的拓扑形态、阵子间距、阵子方向图、极化形态中的至少一项。
具体地,上述第一参数信息包括:终端设备的天线阵列的拓扑形态、阵子间距、阵子方向图、极化形态中的至少一项;上述第二参数信息包括:网络设备的天线阵列的拓扑形态、阵子间距、阵子方向图、极化形态中的至少一项。
其中,上述天线阵列的拓扑形态可以是天线阵列的线阵列拓扑、面阵列拓扑、圆阵列拓扑等。
天线阵列参数中包括的可参考信息越多,会得到更准确的第一径域参数以及第二径域参数。
结合第三方面,在第三方面的某些实现方式中,所述处理单元用于根据所述第一径域参数和所述下行信道信息估计第二径域参数,还包括:所述通信单元还用于获取上述第二参数信息,以及所述处理单元还用于根据上述第一径域参数、上述下行信道信息、上述第一参数信息、上述第二参数信息估计上述第二径域参数。
在估计第二径域参数时,可以参考终端设备的天线阵列的参数以及网络设备自身的天线阵列参数,从而得到更准确的第二径域参数。
结合第三方面,在第三方面的某些实现方式中,所述通信单元还用于获取第三指示信息,所述第三指示信息用于指示可重配智能表面RIS阵列的反射系数,所述RIS阵列用于反射所述终端设备和所述网络设备之间的信号。
终端设备可以通过信令的方式获取RIS阵列的反射系数,进一步地可以结合RIS阵列的反射系数得到更准确的下行信道的信息。
结合第三方面,在第三方面的某些实现方式中,上述第一指示信息还用于指示所述第一径域参数、第三径域参数、第五径域参数,所述第三径域参数是第二上行信道和第二下行信道共用的径域参数,所述第二上行信道和所述第二下行信道是所述网络设备和RIS阵列之间通信的信道,所述第五径域参数是第三上行信道和第三下行信道共用的径域参数, 所述第三上行信道和所述第三下行信道是所述RIS阵列和所述终端设备之间通信的信道。
上述的技术方案不仅可以将网络设备与终端设备之间的直达信道的第一径域参数指示给终端设备,也可以将网络设备与RIS阵列之间、RIS阵列与终端设备之间的反射信道的第三径域参数与第五径域参数指示给终端设备,以供终端设备分别根据各个信道的上行信道和下行信道的共用的径域参数去估计各个信道的上行信道和下行信道的不共用的下行信道的径域参数。
结合第三方面,在第三方面的某些实现方式中,所述第二指示信息还用于指示所述第二径域参数、第四径域参数和第六径域参数,所述第四径域参数是基于第三径域参数和所述下行信道信息确定的,所述第六径域参数是基于第五径域参数和所述下行信道信息确定的。
应理解,上述第四径域参数是网络设备与RIS阵列之间的第二下行信道与第二上行信道不共用的径域参数,同样地,上述第六径域参数是RIS阵列与终端设备之间的第三下行信道与第三上行信道不共用的径域参数。
结合第三方面,在第三方面的某些实现方式中,上述第四径域参数是基于所述第三径域参数和所述下行信道信息确定的,还包括:所述第四径域参数是基于所述第三径域参数、所述下行信道信息、RIS阵列的反射系数确定的,以及,上述第六径域参数是基于所述第五径域参数和所述下行信道信息确定的,还包括:所述第六径域参数是基于所述第五径域参数、所述下行信道信息、所述RIS阵列的反射系数确定的。
在估计第四径域参数与第六径域参数时,通过参考RIS阵列的反射系数可以得到更准确的估计值。
第四方面,提供了一种通信的装置,该装置包括:通信单元,用于获取上行信道信息;处理单元,用于根据所述上行信道信息估计第一径域参数,所述第一径域参数是第一上行信道和第一下行信道共用的径域参数,所述第一上行信道和所述第一下行信道是网络设备和终端设备之间通信的信道;上述通信单元还用于发送第一指示信息,并通过所述网络设备的N个天线端口中的M个天线端口发送下行信道信息,所述第一指示信息用于指示所述第一径域参数,其中,1≤M<N,M、N均为正整数;上述通信单元还用于获取第二指示信息,所述第二指示信息用于指示第二径域参数,所述第二径域参数是基于所述第一径域参数和所述下行信道信息确定的;上述处理单元还用于根据所述第一径域参数和所述第二径域参数,对所述第一下行信道进行信道重构。
具体地,上述天线端口也可以称为天线单元。
作为示例而非限定,上述的第一指示信息与第二指示信息可以通过映射表的方式去指示第一径域参数与第二径域参数,或者也可以通过索引的方式去指示第一径域参数与第二径域参数等。
本申请实施例中,以估计的上行信道和下行信道共用的径域参数作为参考,在网络设备的全部天线端口的部分天线端口发送下行信道信息,可以减少下行信令的开销;同时,终端设备向网络设备反馈的下行信道的径域参数也可以减少。
结合第四方面,在第四方面的某些实现方式中,所述第一径域参数包括所述第一上行信道的功率系数、方向角、多普勒因子中的至少一种。
应理解,上述第一上行信道的功率系数、方向角、多普勒因子是网络设备和终端设备 的第一上行信道和第一下行信道可以共用的径域参数;并且,当第一上行信道有多条径道时,每条径道都有各自对应的功率系数、方向角、多普勒因子。
本申请实施例的网络设备可以基于MLE、MAP、SBL等方法估计出第一上行信道的功率系数、方向角、多普勒因子的具体数值,可以提升第一下行信道信息矩阵重构的准确度。
结合第四方面,在第四方面的某些实现方式中,所述第二径域参数包括:所述第一下行信道的初相。
应理解,上述第一下行信道的初相是网络设备和终端设备的第一上行信道和第一下行信道不可以共用的径域参数;并且,当第一下行信道有多条径道时,每条径道都有各自对应的初相值。
结合第四方面,在第四方面的某些实现方式中,所述通信单元还用于获取第一参数信息,所述第一参数信息用于指示所述终端设备的天线阵列的参数;所述处理单元还用于根据所述上行信道信息、第二参数信息以及所述第一参数信息估计所述第一径域参数,所述第二参数信息用于指示所述网络设备的天线阵列的参数。
通过参考终端设备的天线阵列的参数以及网络设备自身的天线阵列参数,会得到更准确的第一径域参数。
结合第四方面,在第四方面的某些实现方式中,所述天线阵列的参数包括:天线阵列的拓扑形态、阵子间距、阵子方向图、极化形态中的至少一项。
具体地,上述第一参数信息包括:终端设备的天线阵列的拓扑形态、阵子间距、阵子方向图、极化形态中的至少一项;上述第二参数信息包括:网络设备的天线阵列的拓扑形态、阵子间距、阵子方向图、极化形态中的至少一项。
其中,上述天线阵列的拓扑形态可以是天线阵列的线阵列拓扑、面阵列拓扑、圆阵列拓扑等。
参考终端设备的天线阵列的参数以及网络设备自身的天线阵列参数估计第一径域参数时,天线阵列参数中包括的可参考信息越多,会得到更准确的第一径域参数。
结合第四方面,在第四方面的某些实现方式中,所述通信单元还用于获取第三参数信息,所述第三参数信息用于指示可重配智能表面RIS阵列的天线阵列的参数,以及所述通信单元根据所述第三参数信息发送第三指示信息,所述第三指示信息用于指示所述RIS阵列的反射系数,所述RIS阵列用于反射所述网络设备和所述终端设备之间的信号。
在获取RIS阵列的天线阵列参数后,网络设备可以为RIS阵列设置合适的RIS阵列反射系数。RIS阵列对网络设备和终端设备之间的信号进行反射时,可以由处理单元对RIS阵列与网络设备、RIS阵列与终端设备之间的信道径域参数进行估计。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:所述处理单元还用于根据所述上行信道信息估计所述第一径域参数、第三径域参数、第五径域参数,所述第三径域参数是第二上行信道和第二下行信道共用的径域参数,所述第二上行信道和所述第二下行信道是所述网络设备和RIS阵列之间通信的信道,所述第五径域参数是第三上行信道和第三下行信道共用的径域参数,所述第三上行信道和所述第三下行信道是所述RIS阵列和所述终端设备之间通信的信道。
网络设备不仅可以基于MLE、MAP、SBL等方法估计第一上行信道与第一下行信道 的共用的径域参数,还可以基于MLE、MAP、SBL等方法估计网络设备与RIS阵列之间的第二上行信道与第二下行信道的共用的径域参数,以及估计RIS阵列与终端设备之间的第三上行信道与第三下行信道的共用的径域参数。
结合第四方面,在第四方面的某些实现方式中,上述第一指示信息还用于指示上述第一径域参数、上述第三径域参数以及上述第五径域参数。
通过将网络设备与终端设备之间、网络设备与RIS阵列之间、RIS阵列和终端设备之间的上行信道和下行信道共用的径域参数指示给处理单元,以供处理单元可以基于上述各个信道的上行信道和下行信道共用的径域参数去估计各个信道的下行信道的特定的径域参数。
结合第四方面,在第四方面的某些实现方式中,所述处理单元还用于根据所述上行信道信息估计所述第一径域参数、第三径域参数、第五径域参数,包括:所述处理单元还用于根据所述上行信道信息、所述第一参数信息、所述第二参数信息、所述第三参数信息以及所述RIS阵列的反射系数估计所述第一径域参数、所述第三径域参数、所述第五径域参数。
通过参考终端设备的天线阵列的参数、网络设备自身的天线阵列参数、RIS阵列的天线阵列参数以及RIS阵列的反射系数,会得到更准确的第一径域参数、第三径域参数、第五径域参数。
结合第四方面,在第四方面的某些实现方式中,所述第二指示信息还用于指示所述第二径域参数、第四径域参数和第六径域参数,所述第四径域参数是基于所述第三径域参数和所述下行信道信息确定的,所述第六径域参数是基于所述第五径域参数和所述下行信道信息确定的。
应理解,上述第四径域参数是是网络设备与RIS阵列之间的第二下行信道与第二上行信道不共用的径域参数,同样地,上述第六径域参数是RIS阵列与终端设备之间的第三下行信道与第三上行信道不共用的径域参数。
结合第四方面,在第四方面的某些实现方式中,上述处理单元还用于根据上述第三径域参数和上述第四径域参数对上述第二下行信道进行信道重构,以及,上述处理单元还用于根据上述第五径域参数和上述第六径域参数对上述第三下行信道进行信道重构。
结合第四方面,在第四方面的某些实现方式中,所述通信单元获取上行信道信息之前,或者,所述通信单元发送下行信道信息之前,所述通信单元还用于向上述RIS阵列发送第四指示信息,该第四指示信息用于指示RIS阵列关闭信号反射功能。
结合第四方面,在第四方面的某些实现方式中,所述处理单元估计第一径域参数之后,或者所述处理单元获取用于指示第二径域参数的上述第二指示信息之后,所述通信单元单元还用于向上述RIS阵列发送第五指示信息,该第五指示信息用于指示RIS阵列开启信号反射功能。
通过指示RIS阵列关闭或者开启反射信号的功能,可以将网络设备与终端设备之间直达信道与网络设备与RIS阵列之间、RIS阵列和终端设备之间反射信道的上行信道和下行信道的探测进行解耦,从而可以提升信道探测的精度。
第五方面,提供了一种通信的装置,该装置可以是终端设备,也可以是终端设备的部件(例如处理器、芯片或芯片系统),还可以是能实现全部或部分终端设备功能的逻辑模 块或软件。该装置具有实现上述第一方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:通信单元和处理单元,所述通信单元可以是收发器、接收器、发射器中的至少一种,该通信单元可以包括射频电路或天线。该处理单元可以是处理器。可选地,所述装置还包括存储单元,该存储单元例如可以是存储器。当包括存储单元时,该存储单元用于存储程序或指令。该处理单元与该存储单元连接,该处理单元可以执行该存储单元存储的程序、指令或源自其他的指令,以使该装置执行上述第一方面,及各种可能的实现方式的通信方法。在本设计中,该装置可以为终端设备。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:通信单元和处理单元,通信单元例如可以是该芯片上的输入/输出接口、管脚或电路等。处理单元例如可以是处理器。该处理单元可执行指令,以使该网络设备内的芯片执行上述第一方面,以及任意可能的实现的通信方法。可选地,该处理单元可以执行存储单元中的指令,该存储单元可以为芯片内的存储模块,如寄存器、缓存等。该存储单元还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第六方面,提供了一种通信的装置,该装置可以是网络设备,也可以是网络设备的部件(例如处理器、芯片或芯片系统),还可以是能实现全部或部分网络设备功能的逻辑模块或软件。该装置具有实现上述第二方面,及各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的设计中,该装置包括:通信单元和处理单元。所述通信单元例如可以是收发器、接收器、发射器中的至少一种,该通信单元可以包括射频电路或天线。该处理单元可以是处理器。
可选地,所述装置还包括存储单元,该存储单元例如可以是存储器。当包括存储单元时,该存储单元用于存储程序或指令。该处理单元与该存储单元连接,该处理单元可以执行该存储单元存储的程序、指令或源自其他的指令,以使该装置执行上述第二方面,或其任意一项的方法。
在另一种可能的设计中,当该装置为芯片时,该芯片包括:通信单元和处理单元。通信单元例如可以是该芯片上的输入/输出接口、管脚或电路等。处理单元例如可以是处理器。该处理模块可执行程序或指令,以使该终端设备内的芯片执行上述第二方面,以及任意可能的实现的通信方法。
可选地,该处理单元可以执行存储单元中的指令,该存储单元可以为芯片内的存储模块,如寄存器、缓存等。该存储单元还可以是位于通信设备内,但位于芯片外部,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述各方面通信方法的程序执行的集成电路。
第七方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面、第二方面及第一方面、第二方面任意可能的实现方式中的方法的指令。
第八方面,提供了一种包含计算机指令或计算机代码的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面、第二方面及第一方面、第二方面任意可能的实现方式中的方法。
第九方面,提供了一种通信系统,该通信系统包括具有实现上述第一方面的各方法及各种可能设计的功能的装置和具有实现上述第二方面的各方法及各种可能设计的功能的装置。其中,具有实现上述第一方面的各方法及各种可能设计的功能的装置可以是网络设备,具有实现上述第二方面的各方法及各种可能设计的功能的装置可以是终端设备。
具体地,其他方面的有益效果可以参考第一方面、第二方面描述的有益效果。
附图说明
图1为本申请的通信系统的一例的示意性图。
图2为本申请提供的一种MIMO技术中的CSI探测及反馈方案的示意性图。
图3为本申请提供的另一种MIMO技术中的CSI探测及反馈方案的示意性图。
图4为本申请提供的RIS辅助MIMO通信系统的一例的示意性图。
图5为本申请提供的另一种MIMO技术中的CSI探测及反馈方案的示意性图。
图6为本申请提供的另一种MIMO技术中的CSI探测及反馈方案的示意性图。
图7为本申请提供的另一种MIMO技术中的CSI探测及反馈方案的示意性图。
图8为本申请通信装置的一例的示意性框图。
图9为本申请通信装置的另一例的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、增强型数据速率全球移动通信演进(enhanced data rate for GSM evolution,EDGE)系统、码分多址2000(code division multiple access,CDMA2000)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、时分同步码分多址(time division synchronization code division multiple access,TD-SCDMA)系统、窄带物联网系统(narrow band internet of things,NB-LoT)、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR),以及未来通信系统中。
作为示例而非限定,在本申请实施例中,终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话(cellular phone)、无绳电话、智能手机、无线数据卡、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、平板型电脑、膝上型电脑、机器类型通信终端、无线调制解调器、具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,例如,5G网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(Internet of Things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
作为示例而非限定,在本申请实施例中,基站(base station,BS)是一种部署在无线接入网中为终端设备提供无线通信功能的装置。BS也可以称为接入网设备、网络设备或者基站设备。
在采用不同的无线接入技术的系统中,具备基站功能的名称可能会有所不同,例如,基站可以是接入网设备等用于与终端设备通信的设备,基站也可以是WLAN中的接入点(access point,AP),GSM或CDMA中的基站(base transceiver station,BTS),也可以是WCDMA中的基站(nodeB,NB),或者是新型无线系统(new radio,NR)系统中的gNB,还可以是LTE中的演进型基站(evolutional node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的接入网设备(radio access network,RAN)或者未来演进的PLMN网络中的接入网设备等。
另外,在本申请实施例中,无线通信系统通常由小区组成,每个小区包括一个基站,基站向多个终端设备提供通信服务。其中基站包括基带单元(base band unit,BBU)和远程射频单元(remote radio unit,RRU),BBU和RRU可以放置在不同的地方,也可以放置在同一机房。例如,RRU拉远放置在高话务量的区域,BBU放置在中心机房。RRU和BBU也可以为一个机架下的不同部件。终端设备通过小区使用的传输资源(例如,频域资源、频谱资源)与基站进行通信,该小区可以是基站对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区 具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备或接入网设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(Central Processing Unit,CPU)、内存管理单元(Memory Management Unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(Process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
此外,本申请实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(Compact Disc,CD)、数字通用盘(Digital Versatile Disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
需要说明的是,在本申请实施例中,在应用层可以运行多个应用程序,此情况下,执行本申请实施例的通信方法的应用程序与用于控制接收端设备完成所接收到的数据所对应的动作的应用程序可以是不同的应用程序。
图1是能够适用本申请实施例通信方法的系统100的示意图。如图1所示,该系统100包括基站102,基站102可包括1个天线或多个天线,例如,天线104、106、108、110、112和114。另外,基站102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信令发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
基站102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,基站102可以与类似于终端设备116或终端设备122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过下行信道(也称为前向链路)118向终端设备116发送信息,并通过上行信道(也称为反向链路)120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过下行信道124向终端设备122发送信息,并通过上行信道126从终端设备122接收信息。
例如,在频分双工(frequency division duplex,FDD)系统中,例如,下行信道118 可与上行信道120使用不同的频带,下行信道124可与上行信道126使用不同的频带。
再例如,在时分双工(time division duplex,TDD)系统和全双工(full duplex)系统中,下行信道118和上行信道120可使用共同频带,下行信道124和上行信道126可使用共同频带。
被设计用于通信的每个天线(或者由多个天线组成的天线组)和/或区域称为基站102的扇区。例如,可将天线组设计为与基站102覆盖区域的扇区中的终端设备通信。基站可以通过单个天线或多天线发射分集向其对应的扇区内所有的终端设备发送信号。在基站102通过前向链路118和124分别与终端设备116和122进行通信的过程中,基站102的发射天线也可利用波束成形来改善前向链路118和124的信噪比。此外,与基站通过单个天线或多天线发射分集向它所有的终端设备发送信号的方式相比,在基站102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,基站102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是PLMN网络、D2D网络、M2M网络、IoT网络或者其它网络,图1只是举例的简化示意图,网络中还可以包括其他基站,图1中未予以画出。
在TDD系统中,因为上下行信道具有互易性,所以基站侧估计完上行信道即可使用上行信道估计的结果进行下行传输。
也就是说,在TDD系统中,每个终端设备只需要发送等于其自身天线端口的数目(可以简单到一个端口)的导频信号给基站,以供基站进行上下行信道估计,而不考虑基站的天线端口的数目。这是因为所有基站天线端口都接收到相同的导频,因此,基站可以使用单个上行导频传输来估计其每个天线端口的信道。
但是,在FDD系统中,因为上下行信道使用的频率不同,所以下行信道中的性质可以与上行信道完全不同,不可以将估计的上行信道用于下行传输。
所以说,在FDD系统中需要在下行方向上估计下行信道,即需要在终端设备侧估计下行信道,然后在上行信道上向基站反馈下行信道估计的结果。
由于在FDD模式下,下行信道是在终端设备侧估计的,因此每个天线端口都需要发送下行导频信号。结果,FDD中的信道估计开销随着基站发射天线的数目而增大,而TDD中的信道估计开销仅随着同时终端设备的数目而增大。
MIMO是无线通信系统提升系统容量及频谱效率的重要技术手段。MIMO技术通常用到的基站天线数或者逻辑端口数较多,对应的下行导频开销以及上行反馈开销较大,如何减少MIMO技术中的下行导频开销以及上行反馈开销已成为瓶颈问题。
作为示例而非限定,本申请实施例以MIMO技术为例来解释说明本申请的技术方案。
下面,本申请提供一种MIMO技术中的CSI探测及反馈方案。
需要说明的是,作为示例而非限定,本申请各实施例的网络设备以BS进行举例说明,终端设备以UE进行举例说明。
对于上下行信道不具有互易性的场景,步骤S212,UE向BS发送上行信道信息。
具体地,作为示例而非限定,该上行信道信息可以是上行信道导频信息,本申请以上行信道信息为上行信道导频信息为例进行说明。
步骤S212可以避免在使用MIMO技术时,下行信道探测的导频开销过大的问题。不论上行信道和下行信道是否具有互易性,步骤S212都可以是由UE侧向BS侧发送上行信道导频信息,并且UE向BS侧发送等于UE自身天线端口的数目(可以简单到一个端口)的导频信息给BS,以供BS估计第一径域参数。
具体地,该第一径域参数是BS和UE之间的上行信道和下行信道共用的径域参数。
步骤S214,BS根据上行信道导频接收信息可以估计出与UE之间的上行信道和下行信道的的共用的径域参数。
也就是说,BS估计得到的上行信道的第一径域参数可以用作下行信道的信道估计。
具体地,该第一径域参数包括上行信道各径道的功率系数、方向角、多普勒因子等。
应理解,当上行信道有多条径道时,上述的功率系数、方向角、多普勒因子包括每条径道的功率系数、方向角、多普勒因子。
步骤S216,BS向UE发送第一指示信息,该第一指示信息用于向UE指示上述第一径域参数。
具体地,作为示例而非限定,该第一指示信息可以是通过映射表的方式去指示第一径域参数,或者可以是通过索引的方式去指示第一径域参数。
另外地,步骤S218,BS向UE发送下行信道信息。
具体地,作为示例而非限定,该下行信道信息可以是下行信道导频信息,本申请以下行信道信息为下行信道导频信息为例进行说明。
具体地,该下行信道导频信息是BS在空域维度上稀疏发送的,发送的端口数明显少于BS的天线数。
示例性地,若BS有M个天线端口,则BS只需要在N个天线端口上向UE发送上述下行信道导频信息,其中,1≤N<M。
另外地,上述天线端口也可以说成是天线单元。
也可以理解为,BS是以第一径域参数作为参考,在BS的部分天线端口向UE发送下行信道导频信息。
上述下行信道导频信息与上述第一径域参数用于UE估计第二径域参数,该第二径域参数是BS与UE之间的下行信道不同于上行信道的径域参数,也即该下行信道导频信息用于估计下行特定的信道状态(specific CSI)径域参数。
步骤S220,UE基于上述第一径域参数、上行信道导频接收信息估计下行特定的信道状态径域参数,即估计第二径域参数。
具体地,该下行特定的信道状态径域参数包括初相。
应理解,当下行信道有多条径道时,上述的初相包括每条径道的初相。
步骤S222,UE向BS发送第二指示信息,该第二指示信息用于指示上述估计出来的第二径域参数。
具体地,作为示例而非限定,该第二指示信息可以是通过映射表的方式去指示第二径域参数,或者可以是通过索引的方式去指示第二径域参数。
步骤S224,BS基于上述估计出来的第一径域参数和上述UE估计出来的第二径域参数,对BS和UE之间的下行信道进行信道重构。
具体地,BS根据上述步骤S214和步骤S220估计出来的具体的径域参数数值,重构下行信道全信息矩阵。
本实施例相对于现有技术来说,不仅可以避免下行信道探测的导频开销较大以及上行信道反馈开销较大的问题,而且可以提升下行信道估计的准确性。
下面,本申请提供另一种MIMO技术中的CSI探测及反馈方案。
需要说明的是,作为示例而非限定,本申请各实施例的终端设备以UE进行举例说明。
对于上下行信道不具有互易性的场景,步骤S310,UE向BS发送第一参数信息,该第一参数信息指示的是UE的天线阵列参数。这里,将UE的天线阵列参数记作天线阵列参数#A。
具体地,UE可以是以信令的方式向BS发送天线阵列参数#A。
具体地,天线阵列参数#A包括UE的天线阵列的拓扑形态、阵子间距、阵子方向图、极化形态中的至少一项;其中,天线阵列的拓扑形态包括线阵列拓扑、面阵列拓扑、圆阵列拓扑等。
应理解,天线阵列参数#A中包括的上述信息越多,信道估计会越准确。
步骤S312,UE在符号粒度的多个时刻t1~tn向BS发送上行信道导频信息。BS在符号粒度的若干时刻t1~tn接收UE发送的上行信道导频信息。
步骤S314,BS根据接收到的天线阵列参数#A、上行探测导频接收信息以及BS自身的天线阵列参数去估计BS跟UE之间的上行信道和下行信道的第一径域参数,记作公共径域参数#1。这里,将BS自身的天线阵列参数记作天线阵列参数#B。
具体地,天线阵列参数#B包括:BS的天线阵列的拓扑形态、阵子间距、阵子方向图、极化形态中的至少一项;其中,天线阵列的拓扑形态包括线阵列拓扑、面阵列拓扑、圆阵列拓扑等。
应理解,天线阵列参数#B中包括的信息越多,信道估计会越准确。
不论是上下行信道是否具有互易性,上行信道和下行信道的公共径域参数#1都是相同的、共用的。
具体地,上述公共径域参数#1包括:上行信道中各个径道的功率系数、方向角、多普勒因子等。该方向角可以是上行信道中各个径道的接收阵列入射角和发射阵列出射角。
具体地,作为示例而非限定,用于BS估计公共径域参数#1的估计方法包括基于贝叶斯准则的最大似然估计(maximum likelihood estimation,MLE)、最大后验概率(maximum a posteriori,MAP)、稀疏贝叶斯学习(sparse bayessian learning,SBL)等方法。
作为示例而非限定,下面以MLE方法为例进行说明:
第一步,BS在符号粒度的多个时刻t1~tn接收UE发送的上行信道导频信息,BS侧的上行信道导频接收信息可以表示为:
其中,表示Nbs×Nue维上行信道矩阵,X表示Nue×Nue维上行探测导频发送信息、Y(t)表示Nbs×Nue维上行探测导频接收信息,Z表示Nbs×Nbs维加性噪声,NL表示多径道数,pm、θm、vm分别表示第m条径道的功率系数、初相、多普勒因子、接收阵列入射角、发射阵列出射角,表示接收阵列入射角或发射阵列出射角为时的阵列导向向量。
具体地,可以由前述天线阵列参数#A或天线阵列参数#B确定,以单极化均匀线性阵列为例,其阵列导向向量可由下式确定:
其中,Δ表示阵子间距,N表示阵子数。
第二步,BS将t1~tn多个时刻的上行信道导频接收信息进行合并:
第三步,BS根据合并后的上行信道导频接收信息,按照MLE方法估计上行信道和下行信道共用的径域参数,即上述的公共径域参数#1:
通过上式,可以得出公共径域参数#1的值:等。
另外地,上述公共径域参数#1可以通过对应的先验信息确定分布范围进行离散化,以降低估计复杂度。例如,可以根据应用场景移动速度确定多普勒因子v的分布范围。
需要说明的是,对于上行信道和下行信道具有互易性的场景,上述第三步也可以直接估计出重构下行信道的全信息矩阵需要的所有参数,包括等。
步骤S316,BS将估计出的公共径域参数#1的值值发送给UE。
可选地,BS向UE发送第二参数信息,该第二参数信息指示的是BS的天线阵列参数,即上述的天线阵列参数#B。
步骤S318,BS在空域维度的部分天线上向UE发送下行信道导频信息。
具体地,该下行信道导频信息可以为信道状态信息参数参考信号(channel state information parameter reference signal,CSIP-RS),这种CSIP-RS是一种码长远小于BS发射的天线数或天线端口数、时域周期超过信道相干时间的一种新型时频稀疏导频。
具体地,BS发送的下行信道导频信息的数量级显著小于BS天线数量。
BS不需要发送与其天线数或者逻辑端口数相当的上述下行信道导频信息,可以降低BS侧的下行导频开销。
另外地,BS发送的该下行信道导频信息可以是从BS阵列天线中等间隔进行发送,也 可以是不等间隔发送,本申请对此不作限定。
作为示例而非限定,上述CSI-HP-RS导频信息的导频码本构造方法可以为以下三种:
第一种:从Nbs维的BS阵列天线中等间隔抽样出Np个端口进行发射CSI-HP-RS导频信息,以Nbs=4、Np=2为例,对应的CSI-HP-RS导频信息的导频码本可表示为:
其中,XT表示下行信道导频信息矩阵X的转置矩阵,XT的竖向表示资源格(resource element,RE)维度,XT的横向表示天线维度。
第二种:在Nbs维的BS阵列天线中均发射CSI-HP-RS导频信息,码字间保持正交,以Nbs=4为例,对应的CSI-HP-RS导频信息的导频码本可表示为:
其中,XT表示下行信道导频发送信息矩阵X的转置矩阵,XT的竖向表示RE维度,XT的横向表示天线维度。
第三种:在Nbs维的BS阵列天线中均发射CSI-HP-RS导频信息,码字间不一定保持正交,以Nbs=4为例,对应的CSI-HP-RS导频信息的导频码本可表示为:
其中,XT表示下行信道导频发送信息矩阵X的转置矩阵,XT的竖向表示RE维度,XT的横向表示天线维度。
步骤S320,UE可以根据下行导频信息、公共径域参数#1去估计BS与UE之间的第二径域参数,该第二径域参数可以表示BS与UE之间的下行信道径域参数,记作下行信道径域参数#1。
可选地,UE还可以根据下行导频信息、公共径域参数#1以及天线阵列参数#A去估计下行信道径域参数#1。
可选地,UE还可以根据下行导频信息、公共径域参数#1、天线阵列参数#A以及天线阵列参数#B去估计下行信道径域参数#1。
应理解,当结合天线阵列参数#A和/或天线阵列参数#B去估计下行信道径域参数#1时,估计的下行信道径域参数#1会更准确。
具体地,该下行信道径域参数#1可以包括初相。
具体地,作为示例而非限定,用于UE估计下行信道径域参数#1的估计方法包括基于贝叶斯准则的MLE、MAP、SBL等方法。
作为示例而非限定,下面以MLE方法为例进行说明:
第一步,UE在符号粒度的若干时刻t1~tn接收BS发送的下行信道导频信息,该下行信道导频接收信息可以表示为:
其中,表示Nue×Nbs维下行信道矩阵,X表示Nbs×Np维下行探测 导频发送信息、Y(t)表示Nue×Np维下行探测导频接收信息,Z表示Nue×Nue维加性噪声,NL表示多径道数,pm、θm、vm分别表示第m条径道的功率系数、初相、多普勒因子、接收阵列入射角、发射阵列出射角,表示接收阵列入射角或发射阵列出射角为时的阵列导向向量。
具体地,可以由前述天线阵列参数#A或天线阵列参数#B确定,以单极化均匀线性阵列为例,其阵列导向向量可由下式确定:
其中,Δ表示阵子间距,N表示阵子数。
第二步,UE将t1~tn多个时刻的下行信道导频接收信息进行合并:
第三步,UE根据合并后的下行信道导频接收信息,按照MLE方法估计下行信道径域参数#1:
通过上式,可以得出下行信道径域参数#1,即可以得出初相值。
步骤S322,UE将上述得到的下行信道径域参数#1发送给BS。
步骤S324,BS根据上述公共径域参数#1值以及下行信道径域参数#1值,重构BS与UE之间的下行信道的全信道信息矩阵,这里将BS与UE之间的下行信道的全信道信息矩阵记作下行信道的全信息矩阵#1。
作为示例而非限定,BS构造下行信道的全信息矩阵#1的一种方法如下所示:
第一步,获取各径道参数。以各径道为单元进行参数归类,每个单元均包括各自独立的参数,即包括上述各步骤算出来的已知的等参数。
第二步,构造各径道分量。根据各径道参数分别生成各径道方向角对应的阵列响应、各径道多普勒因子对应的多普勒时变相旋、各径道的初相复值等。
(1)各径道方向角对应的阵列响应:
①BS侧各径道方向角对应的阵列响应:
径道1:
径道2:
...
径道NL
②UE侧各径道方向角对应的阵列响应:
径道1:
径道2:
径道NL
(2)各径道多普勒因子对应的多普勒时变相旋:
径道1:
径道2:
径道NL
(3)各径道初相对应的初相复值:
径道1:
径道2:
径道NL
第三步,根据各径道初相对应的初相复值、各径道方向角对应的阵列响应、各径道多普勒因子对应的时变相旋,重构时变下行信道的全信息矩阵#1。
下行信道的全信息矩阵#1:
通过上述实施例的技术方案,首先,本实施例中UE只需要发送等于其自身天线端口的数目(可以简单到一个端口)的上行信道导频信号给BS,以供BS估计出公共径域参数#1。
其次,本实施例中BS只需要在空域维度上向UE稀疏发送下行信道导频信息与上述公共径域参数#1即可,而不需要考虑BS的天线端口的数目,可以极大地降低下行信道导频开销。
再其次,本实施例中UE只需向BS反馈下行信道径域参数#1,上行反馈数量减少。
最后,本实施例可以估计出各径道混叠前的公共径域参数#1以及下行信道径域参数#1,据此构造下行信道的全信息矩阵#1,可以提升信道估计的准确性。
另外,当BS和UE之间有不可逾越的障碍物时,它们之间就是非视距信道,如果信号传播环境单一,缺乏反射径道的话,UE所能接收到的信号是非常微弱的。若有可重配智能表面(reconfigurable intelligent surface,RIS)阵列辅助,可以操控反射波束,对准位于盲区的UE并动态跟踪,这就相当于创建了虚拟的视距路径,扩展了BS的覆盖范围。
另外地,当信号传输的环境较为简单时,往往缺乏独立的多径道去传输信号,难以实现足够的多流传输。通过RIS阵列的反射,可以人为增加信号传播路径,更好地实现多流传输,提升热点UE的吞吐量等。
下面,本申请提供一种RIS阵列辅助的MIMO系统(RIS-MIMO)的CSI探测及反馈方案。
如图4所示,图4示出了RIS-MIMO系统中BS与RIS阵列之间、RIS阵列与UE之间的反射信道以及BS与UE之间的直达信道的示意图。
为了简便起见,可以将BS与RIS阵列之间的反射信道记作信道#2,将RIS阵列与UE之间的反射信道记作信道#3,将BS与UE之间的直达信道记作信道#1。
另外,也可以将信道#2和信道#3称为反射信道。将信道#1称为直达信道。
对于上行信道和下行信道具有互易性的场景,只需要估计上行信道即可使用上行信道估计的结果进行下行传输。图5示出了RIS-MIMO系统中上行信道和下行信道具有互易性的一种CSI的探测及反馈的方法示意图。
步骤S510,UE向BS发送天线阵列参数#A。
步骤S512,RIS阵列向BS发送第三参数信息,该第三参数信息指示的是RIS阵列的天线阵列参数。这里,将RIS阵列的天线阵列参数记作天线阵列参数#C。
具体地,天线阵列参数#C包括:RIS的天线阵列的拓扑形态、阵子间距、阵子方向图、极化形态中的至少一项;其中,天线阵列的拓扑形态包括线阵列拓扑、面阵列拓扑、圆阵列拓扑等。
应理解,天线阵列参数#C中包括的上述信息越多,信道#2的径域参数与信道#3的径域参数的估计会越准确。
步骤S514,BS接收到天线阵列参数#C之后,会根据天线阵列参数#C设置RIS阵列的反射系数。
具体地,RIS阵列的反射系数用于指示RIS阵列在不同的时刻以不同的反射系数对通过信道#2和信道#3的上行信号和下行信号进行反射。
应理解,当RIS阵列在不同的时刻以不同的反射系数对通过信道#2和信道#3的上行信号和下行信号进行反射时,BS侧或UE侧才可以估计信道#2和信道#3的信道状态信息。
步骤S516,BS在符号粒度的多个时刻t1~tn向RIS阵列发送第三指示信息,记作指示信息#1,该指示信息#1用于指示RIS阵列以不同的反射系数对通过信道#2和信道#3的上行信号和下行信号进行反射。
步骤S518,UE在符号粒度的多个时刻t1~tn向BS发送上行信道导频信息。BS在符号粒度的多个时刻t1~tn接收UE发送的上行信道导频信息。
具体地,该上行信道导频信息不仅通过信道#1直接发送给BS,也会通过信道#2、再经过RIS阵列反射,通过信道#3发送给BS。
步骤S520,BS根据天线阵列参数#B、RIS阵列的反射系数、以及接收到的天线阵列参数#A、天线阵列参数#C、上行信道导频接收信息去估计信道#1的第一径域参数、信道#2的第三径域参数、信道#3的第五径域参数。
这里,为了简便起见,将信道#1的第一径域参数记作公共径域参数#1,将信道#2的第三径域参数记作公共径域参数#2,信道#3的第五径域参数记作公共径域参数#3。
具体地,估计的公共径域参数#2包括等参数;估计的公共径域参数#3包括等参数;估计的公共径域参数#1包括 等参数。
BS估计公共径域参数#1、公共径域参数#2、公共径域参数#3的方法同步骤S314类似,此处不再赘述。
步骤S522,BS根据估计的公共径域参数#1、公共径域参数#2、公共径域参数#3,分别重构信道#1、信道#2、信道#3各个信道的下行全信道信息矩阵#1、下行全信道信息矩阵#2、下行全信道信息矩阵#3。
各个信道的全信道信息矩阵的构造方法同步骤S324类似,此处不再赘述。
本实施例将RIS阵列的天线阵列参数#C传递给BS,由BS指示RIS阵列在不同的时刻以不同的反射系数来反射信号;同时BS可以根据天线阵列参数#A、天线阵列参数#B、天线阵列参数#C以及UE发送的上行信道导频信息去估计信道#1、信道#2、信道#3的上行信道的径域参数,并将上行信道的径域参数用作下行传输,相比于BS直接估计信道#2、 信道#3反射信道矩阵来说可以降低下行信道导频资源开销。
对于上下行信道不具有互易性的场景,图6示出了RIS-MIMO系统中CSI的探测及反馈的方法示意图。
步骤S610~步骤S618可参照步骤S510~步骤S518,此处不再赘述。
步骤S620,BS根据天线阵列参数#B、RIS阵列的反射系数、以及接收到的天线阵列参数#A、天线阵列参数#C、上行信道导频接收信息分别去估计信道#1、信道#2、信道#3的公共径域参数#1、公共径域参数#2、公共径域参数#3。
具体地,上述信道#2的公共径域参数#2包括等参数;上述信道#3的公共径域参数#3包括等参数;上述信道#1的公共径域参数#1包括等参数。
BS估计信道#1、信道#2、信道#3的公共径域参数#1、公共径域参数#2、公共径域参数#3的方法同步骤S314类似,此处不再赘述。
步骤S622,BS将上述估计出的信道#1、信道#2、信道#3的公共径域参数#1、公共径域参数#2、公共径域参数#3、RIS阵列的反射系数发送给UE。
可选地,BS将天线阵列参数#B也发给UE。
步骤S624,BS在空域维度向UE稀疏发送下行信道导频信息。
具体地,该下行信道导频信息可以为CSIP-RS,这种CSIP-RS是一种码长远小于BS发射的天线数或天线端口数、时域周期超过信道相干时间的一种新型时频稀疏导频。
该CSI-HP-RS导频信息的导频码本构造方法如前文所述,此处不再赘述。
具体地,BS不仅通过信道#1向UE直接发送该下行信道导频信息,还同时通过信道#2下发该下行信道导频信息,经过RIS阵列反射后通过信道#3发送给UE。
具体地,BS发送的该下行信道导频信息的数量级显著小于BS的天线端口数,并不需要BS发送与其天线数或者逻辑端口数相当的下行导频信息,可以降低BS侧的下行信道导频开销。
应理解,之所以BS下发的下行信道导频信息的数量级显著小于BS的天线端口数,是因为BS同时也下发了上行信道和下行信道的公共径域参数。该公共径域参数可以作为BS侧的一种参考,使得BS侧在其部分天线端口上发送上述下行信道导频信息即可。
另外地,BS发送的上述下行信道导频信息可以是从BS阵列天线中等间隔进行发送,也可以是不等间隔发送,本申请对此不作限定。
步骤S626,UE根据下行信道导频接收信息、公共径域参数#1、公共径域参数#2、公共径域参数#3、天线阵列参数#A以及RIS阵列的反射系数去分别估计信道#1的第二径域参数、信道#2的第四径域参数、信道#3的第六径域参数。
这里为了简便起见,将信道#1的第二径域参数记作下行信道径域参数#1,将信道#2的第四径域参数记作下行信道径域参数#2,将信道#3的第六径域参数记作下行信道径域参数#3。
具体地,该下行信道径域参数#1、下行信道径域参数#2、下行信道径域参数#3均包括参数初相
具体地,作为示例而非限定,用于UE估计下行信道径域参数#1、下行信道径域参数#2、下行信道径域参数#3的估计方法包括基于贝叶斯准则的MLE、MAP、SBL等方法。 估计方法参照步骤S320,此处不再赘述。
步骤S628,UE将估计得到的下行信道径域参数#1、下行信道径域参数#2、下行信道径域参数#3发送给BS。
步骤S630,BS根据上述得到的信道#1的公共径域参数#1和下行信道径域参数#1、信道#2的公共径域参数#2和下行信道径域参数#2、信道#3的公共径域参数#3和下行信道径域参数#3,分别重构信道#1的下行全信道信息矩阵#1、信道#2的下行全信道信息矩阵#2、信道#3的下行全信道信息矩阵#3。
具体地,BS构造下行全信道信息矩阵#1、下行全信道信息矩阵#2、下行全信道信息矩阵#3的方法参照步骤S324,此处不再赘述。
通过上述实施例的技术方案,首先,本实施例中UE只需要发送等于其自身天线端口的数目(可以简单到一个端口)的上行信道导频信号给BS,以供BS估计出反射信道和直达信道中占信道大部分开销资源的公共径域参数。
其次,本实施例中BS可以将各信道的公共径域参数作为参考,发送显著小于BS天线数的下行信道导频信息,而不需要考虑BS的天线端口的数目,可以极大地降低下行导频开销。
再其次,本实施例中UE只需向BS反馈反射信道和直达信道的占信道小部分开销的下行信道径域参数即可,上行反馈数量减少。
最后,本实施例是根据反射信道和直达信道混叠前的具体参数重构的下行全信道信息矩阵,可以提升信道估计的准确性。
上文提供的实施例中的公共径域参数#1、公共径域参数#2、公共径域参数#3是耦合在一起由BS估计的,并且下行信道径域参数#1、下行信道径域参数#2、下行信道径域参数#3是耦合在一起由UE侧估计的,本申请提供一种可以通过将反射信道、直达信道的公共径域参数和下行信道径域参数解耦来单独估计的实施例,如图7所示。
步骤S710~步骤S716参照步骤S510~步骤S516,此处不再赘述。
步骤S718,BS向RIS发送指示信息#2,该指示信息#2用于指示RIS关闭反射功能。
步骤S720,UE在符号粒度的多个时刻t1~tn向BS发送上行信道导频信息。BS在符号粒度的多个时刻t1~tn接收UE发送的上行信道导频信息。
具体地,该上行信道导频信息不仅通过信道#1直接发送给BS,也会通过信道#2、再经过RIS阵列反射,通过信道#3发送给BS。
步骤S722,BS根据天线阵列参数#B、天线阵列参数#A、上行信道导频接收信息去估计信道#1的公共径域参数#1。
具体地,上述公共径域参数#1包括等参数。
具体地,BS估计上述公共径域参数#1的方法同步骤S314类似,此处不再赘述。
步骤S724,BS将估计出的上述直达信道的公共径域参数#1发送给UE。
可选地,BS将天线阵列参数#B也发给UE。
步骤S726,BS向RIS阵列发送指示信息#3,该指示信息#3用于指示RIS阵列开启反射功能。
步骤S728,BS根据天线阵列参数#C、上述信道#1的公共径域参数#1估计信道#2的公共径域参数#2以及信道#3的公共径域参数#3。
可选地,BS还可以结合天线阵列参数#A去估计信道#2的公共径域参数#2和信道#3的公共径域参数#3,这样得出来的公共径域参数会更准确。
具体地,上述信道#2的公共径域参数#2包括等参数;上述信道#3的公共径域参数#3包括等参数。
BS估计信道#1、信道#2、信道#3的公共径域参数#1、公共径域参数#2、公共径域参数#3的方法同步骤S314类似,此处不再赘述。
步骤S730,BS将估计出的信道#2的公共径域参数#2和信道#3的公共径域参数#3发送给UE。
步骤S732,BS向RIS阵列发送指示信息#2,该指示信息#2用于指示RIS阵列关闭反射功能。
步骤S734,BS在空域维度上向UE稀疏发送下行信道导频信息。
具体地,该下行信道导频信息可以为CSIP-RS,这种CSIP-RS是一种码长远小于BS发射的天线数或天线端口数、时域周期超过信道相干时间的一种新型时频稀疏导频。
该CSI-HP-RS导频信息的导频码本构造方法如前文所述,此处不再赘述。
具体地,BS发送的该下行信道导频信息的数量级显著小于BS的天线端口数,并不需要BS发送与其天线数或者逻辑端口数相当的下行导频信息,可以降低BS侧的下行导频开销。
另外地,BS发送的探测下行特定的径域参数导频信息可以是从BS阵列天线中等间隔进行发送,也可以是不等间隔发送,本申请对此不作限定。
步骤S736,UE根据下行信道导频接收信息、公共径域参数#1、天线阵列参数#A去估计信道#1的下行信道径域参数#1。
具体地,该下行信道径域参数#1包括初相。
具体地,作为示例而非限定,用于UE估计下行信道径域参数#1的估计方法包括基于贝叶斯准则的MLE、MAP、SBL等方法。估计方法参照步骤S320,此处不再赘述。
步骤S738,UE将估计得到的下行信道径域参数#1发送给BS。
步骤S740,BS向RIS阵列发送指示信息#3,该指示信息#3用于指示RIS阵列开启反射功能。
步骤S742,UE根据下行信道导频信息、下行信道径域参数#1、天线阵列参数#A、天线阵列参数#C去估计信道#2的下行信道径域参数#2和信道#3的下行信道径域参数#3。
可选地,UE可以结合获得的公共径域参数#1、公共径域参数#2、公共径域参数#3去估计更准确的下行信道径域参数#2和下行信道径域参数#3。
可选地,UE结合天线阵列参数#B估计出的下行信道径域参数#2和下行信道径域参数#3会更加准确。
具体地,该下行信道径域参数#2和下行信道径域参数#3包括信道#2和信道#3的初相。
具体地,作为示例而非限定,用于UE估计下行信道径域参数#2和下行信道径域参数#3的估计方法包括基于贝叶斯准则的MLE、MAP、SBL等方法。估计方法参照步骤S320,此处不再赘述。
步骤S744,UE将估计得到的下行信道径域参数#2和下行信道径域参数#3发送给BS。
步骤S746,BS根据上述得到的信道#1的公共径域参数#1和下行信道径域参数#1、 信道#2的公共径域参数#2和下行信道径域参数#2、信道#3的公共径域参数#3和下行信道径域参数#3,分别重构信道#1的下行全信道信息矩阵#1、信道#2的下行全信道信息矩阵#2、信道#3的下行全信道信息矩阵#3。
具体地,BS构造下行全信道信息矩阵#1、下行全信道信息矩阵#2、下行全信道信息矩阵#3的方法参照步骤S324,此处不再赘述。
通过上述实施例的技术方案,首先,本实施例中UE只需要发送等于其自身天线端口的数目(可以简单到一个端口)的上行导频信号给BS,以供BS分别估计出反射信道和直达信道中占信道大部分开销资源的公共径域参数。
其次,本实施例中BS可以将各信道的公共径域参数作为参考,发送显著小于BS天线数的下行信道导频信息,而不需要考虑BS的天线端口的数目,可以极大地降低下行导频开销。
再其次,本实施例中UE只需向BS反馈反射信道和直达信道的占信道小部分开销的下行信道径域参数即可,上行反馈数量减少。
最后,本实施例的BS可以指示RIS反射功能的开启与关闭,从而可以将信道的公共径域参数和下行信道径域参数的探测解耦,提升信道探测的准确度。
需要说明的是,上述各实施例的各步骤数字的大小并不能对各步骤实施的先后顺序作出限定,必要的时候可以根据实施的目的对各步骤的实施顺序作出一定的调整。
根据前述方法,图8示出了本申请实施例的发送信号的通信装置800的示意性框图,该通信装置800可以对应(例如,可以配置于或本身即为)上述图2、图3、图5、图6、图7方法描述的RS、RIS阵列、UE,并且,发送信号的通信装置800中各模块或单元分别用于执行上述图2、图3、图5、图6、图7方法中RS、RIS阵列、UE所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本申请实施例中,该装置800可以为RS、RIS阵列、UE,此情况下,该装置800可以包括:处理器和收发器,处理器和收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
此情况下,图8所示的装置800中的通信单元可以对应该收发器,图8所示的装置800中的处理单元可以对应该处理器。
在本申请实施例中,该装置800可以为安装在RS、RIS阵列、UE中的芯片(或者说,芯片系统),此情况下,该装置800可以包括:处理器和输入输出接口,处理器可以通过输入输出接口与RS、RIS阵列、UE的收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
此情况下,图8所示的装置800中的通信单元可以对应该输入输出接口,图8所示的装置800中的处理单元可以对应该处理器。
图9示出了本申请实施例的接收信号的装置900的示意性框图,该接收信号的装置90可以对应(例如,可以配置用于实现)上述图2、图3、图5、图6、图7方法中描绘的RS、RIS阵列、UE,并且,接收信号的装置900中各模块或单元分别用于执行上述图2、图3、图5、图6、图7方法中RS、RIS阵列、UE所执行的各动作或处理过程,这里, 为了避免赘述,省略其详细说明。
在本申请实施例中,该装置900可以为RS、RIS阵列、UE,此情况下,该装置900可以包括:处理器和收发器,处理器和收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器接收信息或信号。
此情况下,图9所示的装置900中的通信单元可以对应该收发器,图9所示的装置900中的处理单元可以对应该处理器。
在本申请实施例中,该装置900可以为安装在RS、RIS阵列、UE中的芯片(或者说,芯片系统),此情况下,该装置900可以包括:处理器和输入输出接口,处理器可以通过输入输出接口与网络设备的收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器接收信息或信号。
此情况下,图9所示的装置900中的通信单元可以对应输入输入接口,图9所示的装置900中的处理单元可以对应该处理器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代 码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (53)

  1. 一种通信的方法,其特征在于,所述方法包括:
    终端设备获取第一指示信息,并获取下行信道信息,所述第一指示信息用于指示第一径域参数,所述第一径域参数是第一上行信道和第一下行信道共用的径域参数,所述第一上行信道和所述第一下行信道是网络设备和所述终端设备之间通信的信道,所述下行信道信息是通过所述网络设备的N个天线端口中的M个天线端口发送的,其中,M小于N,并且M大于或等于1,M、N均为正整数;
    所述终端设备根据所述第一径域参数和所述下行信道信息估计第二径域参数;
    所述终端设备发送第二指示信息,所述第二指示信息用于指示所述第二径域参数,所述第一径域参数和所述第二径域参数用于所述第一下行信道的信道重构。
  2. 根据权利要求1所述的方法,其特征在于,所述第一径域参数包括以下至少一种:
    所述第一上行信道的功率系数、方向角、多普勒因子。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二径域参数包括:所述第一下行信道的初相。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述终端设备获取第一指示信息之前,所述方法还包括:
    所述终端设备发送上行信道信息,所述第一指示信息是基于所述上行信道信息确定的。
  5. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备发送第一参数信息,所述第一参数信息用于指示所述终端设备的天线阵列的参数,所述第一指示信息是基于所述终端设备向所述网络设备发送的上行信道信息、所述第一参数信息、第二参数信息生成的,所述第二参数信息用于指示所述网络设备的天线阵列的参数。
  6. 根据权利要求5所述的方法,其特征在于,所述天线阵列的参数包括:
    天线阵列的拓扑形态、阵子间距、阵子方向图、极化形态中的至少一项。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述终端设备根据所述第一径域参数和所述下行信道信息估计所述第二径域参数之前,还包括:
    所述终端设备获取第二参数信息;
    所述终端设备根据所述第一径域参数、所述下行信道信息、所述第一参数信息、所述第二参数信息估计所述第二径域参数。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备获取第三指示信息,所述第三指示信息用于指示可重配智能表面RIS阵列的反射系数,所述RIS阵列用于反射所述终端设备和所述网络设备之间的信号。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一指示信息还用于指示所述第一径域参数、第三径域参数、第五径域参数,所述第三径域参数是第二上行信道和第二下行信道共用的径域参数,所述第二上行信道和所述第二下行信道是所述网络设备和RIS阵列之间通信的信道,所述第五径域参数是第三上行信道和第三下行信道共用的径域参数,所述第三上行信道和所述第三下行信道是所述RIS阵列和所述终端设备之间 通信的信道。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第二指示信息还用于指示所述第二径域参数、第四径域参数和第六径域参数,所述第四径域参数是所述终端设备根据第三径域参数和所述下行信道信息确定的,所述第六径域参数是是所述终端设备根据第五径域参数和所述下行信道信息确定的。
  11. 根据权利要求10所述的方法,其特征在于,所述第四径域参数是所述终端设备根据第三径域参数和所述下行信道信息确定的,包括:所述第四径域参数是所述终端设备根据第三径域参数、所述下行信道信息、RIS阵列的反射系数确定的,以及,
    所述第六径域参数是是所述终端设备根据第五径域参数和所述下行信道信息确定的,包括:所述第六径域参数是是所述终端设备根据第五径域参数、所述下行信道信息、所述RIS阵列的反射系数确定的。
  12. 一种通信的方法,其特征在于,所述方法包括:
    网络设备获取上行信道信息;
    所述网络设备根据所述上行信道信息估计第一径域参数,所述第一径域参数是第一上行信道和第一下行信道共用的径域参数,所述第一上行信道和所述第一下行信道是所述网络设备和终端设备之间通信的信道;
    所述网络设备发送第一指示信息,并通过所述网络设备的N个天线端口中的M个天线端口发送下行信道信息,所述第一指示信息用于指示所述第一径域参数,其中,M小于N,并且M大于或等于1,M、N均为正整数;
    所述网络设备获取第二指示信息,所述第二指示信息用于指示第二径域参数,所述第二径域参数是基于所述第一径域参数和所述下行信道信息确定的;
    所述网络设备根据所述第一径域参数和所述第二径域参数,对所述第一下行信道进行信道重构。
  13. 根据权利要求12所述的方法,其特征在于,所述第一径域参数包括以下至少一种:
    所述第一上行信道的功率系数、方向角、多普勒因子。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第二径域参数包括:所述第一下行信道的初相。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,所述网络设备根据所述上行信道信息估计所述第一径域参数还包括:
    所述网络设备获取第一参数信息,所述第一参数信息用于指示所述终端设备的天线阵列的参数;
    所述网络设备根据所述上行信道信息、第二参数信息以及所述第一参数信息估计所述第一径域参数,所述第二参数信息用于指示所述网络设备的天线阵列的参数。
  16. 根据权利要求15所述的方法,其特征在于,所述天线阵列的参数包括:
    天线阵列的拓扑形态、阵子间距、阵子方向图、极化形态中的至少一项。
  17. 根据权利要12至16中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备获取第三参数信息,所述第三参数信息用于指示可重配智能表面RIS阵列的所述天线阵列的参数;
    所述网络设备根据所述第三参数信息发送第三指示信息,所述第三指示信息用于指示所述RIS阵列的反射系数,所述RIS阵列用于反射所述网络设备和所述终端设备之间的信号。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述上行信道信息估计所述第一径域参数、第三径域参数、第五径域参数,所述第三径域参数是第二上行信道和第二下行信道共用的径域参数,所述第二上行信道和所述第二下行信道是所述网络设备和RIS阵列之间通信的信道,所述第五径域参数是第三上行信道和第三下行信道共用的径域参数,所述第三上行信道和所述第三下行信道是所述RIS阵列和所述终端设备之间通信的信道。
  19. 根据权利要求18所述的方法,其特征在于,所述第一指示信息还用于指示所述第一径域参数、所述第三径域参数以及所述第五径域参数。
  20. 根据权利要求18或19所述的方法,其特征在于,所述网络设备根据所述上行信道信息估计所述第一径域参数、第三径域参数、第五径域参数,还包括:
    所述网络设备根据所述上行信道信息、所述第一参数信息、所述第二参数信息、所述第三参数信息以及所述RIS阵列的的反射系数估计所述第一径域参数、第三径域参数、第五径域参数。
  21. 根据权利要求18至20中任一项所述的方法,其特征在于,所述第二指示信息还用于指示所述第二径域参数、第四径域参数、第六径域参数,所述第四径域参数是基于所述第三径域参数和所述下行信道信息确定的,所述第六径域参数是基于所述第五径域参数和所述下行信道信息确定的。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据所述第三径域参数和所述第四径域参数,对所述第二下行信道进行信道重构,以及
    所述网络设备根据所述第五径域参数和所述第六径域参数,对所述第三下行信道进行信道重构。
  23. 根据权利要求17至22中任一项所述的方法,其特征在于,所述网络设备获取上行信道信息之前,或者,所述网络设备发送下行信道信息之前,所述方法还包括:
    所述网络设备向所述RIS阵列发送第四指示信息,所述第四指示信息用于指示所述RIS阵列关闭信号反射功能。
  24. 根据权利要求17至23中任一项所述的方法,其特征在于,所述网络设备估计第一径域参数之后,或者,所述网络设备获取第二指示信息之后,所述方法还包括:
    所述网络设备向所述RIS阵列发送第五指示信息,所述第五指示信息用于指示所述RIS阵列开启信号反射功能。
  25. 一种通信的装置,其特征在于,包括:
    通信单元,用于获取第一指示信息,并获取下行信道信息,所述第一指示信息用于指示第一径域参数,所述第一径域参数是第一上行信道和第一下行信道共用的径域参数,所述第一上行信道和所述第一下行信道是网络设备和终端设备之间通信的信道,所述下行信道信息是通过所述网络设备的N个天线端口中的M个天线端口发送的,其中,M小于N,并且M大于或等于1,M、N均为正整数;
    处理单元,用于根据所述第一径域参数和所述下行信道信息估计第二径域参数;
    所述通信单元还用于发送第二指示信息,所述第二指示信息用于指示所述第二径域参数,所述第一径域参数和所述第二径域参数用于所述第一下行信道的信道重构。
  26. 根据权利要求25所述的装置,其特征在于,所述第一径域参数包括以下至少一种:
    所述第一上行信道的功率系数、方向角、多普勒因子。
  27. 根据权利要求25或26所述的装置,其特征在于,所述第二径域参数包括:所述第一下行信道的初相。
  28. 根据权利要求25至27中任一项所述的装置,其特征在于,所述通信单元用于获取第一指示信息之前,所述通信单元还用于发送上行信道信息,所述第一指示信息是基于所述上行信道信息确定的。
  29. 根据权利要求25至27中任一项所述的装置,其特征在于,
    所述通信单元还用于发送第一参数信息,所述第一参数信息用于指示所述终端设备的天线阵列的参数,所述第一指示信息是基于所述终端设备向所述网络设备发送的上行信道信息、所述第一参数信息、第二参数信息确定的,所述第二参数信息用于指示所述网络设备的天线阵列的参数。
  30. 根据权利要求29所述的装置,其特征在于,所述天线阵列的参数包括:
    天线阵列的拓扑形态、阵子间距、阵子方向图、极化形态中的至少一项。
  31. 根据权利要求25至30中任一项所述的装置,其特征在于,所述处理单元用于根据所述第一径域参数和所述下行信道信息估计所述第二径域参数,还包括:
    所述通信单元还用于获取所述第二参数信息,以及,所述处理单元还用于根据所述第一径域参数、所述下行信道信息、所述第一参数信息、所述第二参数信息估计所述第二径域参数。
  32. 根据权利要求25至31中任一项所述的装置,其特征在于,所述通信单元还用于获取第三指示信息,所述第三指示信息用于指示可重配智能表面RIS阵列的反射系数,所述RIS阵列用于反射所述终端设备和所述网络设备之间的信号。
  33. 根据权利要求25至32中任一项所述的装置,其特征在于,所述第一指示信息还用于指示所述第一径域参数、第三径域参数、第五径域参数,所述第三径域参数是第二上行信道和第二下行信道共用的径域参数,所述第二上行信道和所述第二下行信道是所述网络设备和RIS阵列之间通信的信道,所述第五径域参数是第三上行信道和第三下行信道共用的径域参数,所述第三上行信道和所述第三下行信道是所述RIS阵列和所述终端设备之间通信的信道。
  34. 根据权利要求25至33中任一项所述的装置,其特征在于,所述第二指示信息还用于指示所述第二径域参数、第四径域参数和第六径域参数,所述第四径域参数是所述终端设备根据第三径域参数和所述下行信道信息确定的,所述第六径域参数是是所述终端设备根据第五径域参数和所述下行信道信息确定的。
  35. 根据权利要求34所述的装置,其特征在于,所述第四径域参数是所述终端设备根据第三径域参数和所述下行信道信息确定的,包括:所述第四径域参数是所述终端设备根据第三径域参数、所述下行信道信息、RIS阵列的反射系数确定的,以及,
    所述第六径域参数是是所述终端设备根据第五径域参数和所述下行信道信息确定的,包括:所述第六径域参数是是所述终端设备根据第五径域参数、所述下行信道信息、所述RIS阵列的反射系数确定的。
  36. 一种通信的装置,其特征在于,包括:
    通信单元,用于获取上行信道信息;
    处理单元,用于根据所述上行信道信息估计第一径域参数,所述第一径域参数是第一上行信道和第一下行信道共用的径域参数,所述第一上行信道和所述第一下行信道是网络设备和终端设备之间通信的信道;
    所述通信单元还用于发送第一指示信息,并用于通过所述网络设备的N个天线端口中的M个天线端口发送下行信道信息,所述第一指示信息用于指示所述第一径域参数,其中,M小于N,并且M大于或等于1,M、N均为正整数;
    所述通信单元还用于获取第二指示信息,所述第二指示信息用于指示第二径域参数,所述第二径域参数是基于所述第一径域参数和所述下行信道信息确定的;
    所述处理单元还用于根据所述第一径域参数和所述第二径域参数,对所述第一下行信道进行信道重构。
  37. 根据权利要求36所述的装置,其特征在于,所述第一径域参数包括以下至少一种:
    所述第一上行信道的功率系数、方向角、多普勒因子。
  38. 根据权利要求36或37所述的装置,其特征在于,所述第二径域参数包括:所述第一下行信道的初相。
  39. 根据权利要求36至38中任一项所述的装置,其特征在于,所述处理单元用于根据所述上行信道信息估计所述第一径域参数还包括:
    所述通信单元还用于获取第一参数信息,所述第一参数信息用于指示所述终端设备的天线阵列的参数;
    所述处理单元还用于根据所述上行信道信息、第二参数信息以及所述第一参数信息估计所述第一径域参数,所述第二参数信息用于指示所述网络设备的天线阵列的参数。
  40. 根据权利要求39所述的装置,其特征在于,所述天线阵列的参数包括:
    天线阵列的拓扑形态、阵子间距、阵子方向图、极化形态中的至少一项。
  41. 根据权利要求36至40中任一项所述的装置,其特征在于,所述通信单元还用于获取第三参数信息,所述第三参数信息用于指示可重配智能表面RIS阵列的所述天线阵列的参数,以及所述通信单元还用于根据所述第三参数信息发送第三指示信息,所述第三指示信息用于指示所述RIS阵列的反射系数,所述RIS阵列用于反射所述网络设备和所述终端设备之间的信号。
  42. 根据权利要求39至41中任一项所述的装置,其特征在于,所述处理单元还用于根据所述上行信道信息估计所述第一径域参数、第三径域参数、第五径域参数,所述第三径域参数是第二上行信道和第二下行信道共用的径域参数,所述第二上行信道和所述第二下行信道是所述网络设备和RIS阵列之间通信的信道,所述第五径域参数是第三上行信道和第三下行信道共用的径域参数,所述第三上行信道和所述第三下行信道是所述RIS阵列和所述终端设备之间通信的信道。
  43. 根据权利要求42所述的装置,其特征在于,所述第一指示信息还用于指示所述第一径域参数、所述第三径域参数以及所述第五径域参数。
  44. 根据权利要求42或43所述的装置,其特征在于,所述处理单元还用于根据所述上行信道信息估计所述第一径域参数、第三径域参数、第五径域参数,还包括:所述处理单元还用于根据所述上行信道信息、所述第一参数信息、所述第二参数信息、所述第三参数信息以及所述RIS阵列的的反射系数估计所述第一径域参数、第三径域参数、第五径域参数。
  45. 根据权利要求42至44中任一项所述的装置,其特征在于,所述第二指示信息还用于指示所述第二径域参数、第四径域参数、第六径域参数,所述第四径域参数是基于所述第三径域参数和所述下行信道信息确定的,所述第六径域参数是基于所述第五径域参数和所述下行信道信息确定的。
  46. 根据权利要求45所述的装置,其特征在于,所述处理单元还用于根据所述第三径域参数和所述第四径域参数,对所述第二下行信道进行信道重构,以及
    所述处理单元还用于根据所述第五径域参数和所述第六径域参数,对所述第三下行信道进行信道重构。
  47. 根据权利要求41至46中任一项所述的装置,其特征在于,所述通信单元用于获取上行信道信息之前,或者,所述通信单元用于发送下行信道信息之前,所述通信单元还用于向所述RIS阵列发送第四指示信息,所述第四指示信息用于指示所述RIS阵列关闭信号反射功能。
  48. 根据权利要求41至47中任一项所述的装置,其特征在于,所述处理单元用于估计第一径域参数之后,或者,所述通信单元用于获取第二指示信息之后,所述通信单元还用于向所述RIS阵列发送第五指示信息,所述第五指示信息用于指示所述RIS阵列开启信号反射功能。
  49. 一种通信装置,其特征在于,包括:
    处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行如权利要求1至11中任一项或权利要求12-24中任一项所述的通信的方法。
  50. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至11中任一项或权利要求12-24中任一项所述的通信的方法。
  51. 一种计算机程序产品,其特征在于,包括计算机程序代码,当所述计算机程序代码被运行时,实现如权利要求1至11中任一项或权利要求12-24中任一项所述的通信方法。
  52. 一种通信装置,其特征在于,所述通信装置包括用于执行如权利要求1至11中任一项或权利要求12-24中任一项所述的通信的方法的逻辑电路和输入输出接口。
  53. 一种通信系统,其特征在于,所述通信系统包括如权利要求25-35中任一项所述的装置,和/或,所述通信系统包括如权利要求36-48中任一项所述的装置。
PCT/CN2023/092932 2022-05-12 2023-05-09 通信方法和通信装置 WO2023217116A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210512904.7 2022-05-12
CN202210512904.7A CN117119603A (zh) 2022-05-12 2022-05-12 通信方法和通信装置

Publications (1)

Publication Number Publication Date
WO2023217116A1 true WO2023217116A1 (zh) 2023-11-16

Family

ID=88729717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092932 WO2023217116A1 (zh) 2022-05-12 2023-05-09 通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN117119603A (zh)
WO (1) WO2023217116A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110430147A (zh) * 2019-07-15 2019-11-08 东南大学 一种面向fdd系统的信道跟踪方法
EP3657745A1 (en) * 2014-07-16 2020-05-27 LG Electronics Inc. Method and device for estimating channel in wireless communication system
CN111356171A (zh) * 2018-12-21 2020-06-30 华为技术有限公司 一种信道状态信息csi上报的配置方法和通信装置
CN112039807A (zh) * 2020-08-31 2020-12-04 中兴通讯股份有限公司 下行信道估计方法、装置、通信设备和存储介质
CN113746509A (zh) * 2020-05-28 2021-12-03 维沃移动通信有限公司 信道信息的处理方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3657745A1 (en) * 2014-07-16 2020-05-27 LG Electronics Inc. Method and device for estimating channel in wireless communication system
CN111356171A (zh) * 2018-12-21 2020-06-30 华为技术有限公司 一种信道状态信息csi上报的配置方法和通信装置
CN110430147A (zh) * 2019-07-15 2019-11-08 东南大学 一种面向fdd系统的信道跟踪方法
CN113746509A (zh) * 2020-05-28 2021-12-03 维沃移动通信有限公司 信道信息的处理方法及装置
CN112039807A (zh) * 2020-08-31 2020-12-04 中兴通讯股份有限公司 下行信道估计方法、装置、通信设备和存储介质

Also Published As

Publication number Publication date
CN117119603A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
EP2979410B1 (en) Channel estimation in wireless communications with beamforming
JP7332717B2 (ja) ビーム選択システムおよび方法
US10797913B2 (en) Reciprocity based FDD FD-MIMO DL channel CSI acquisition
US11902957B2 (en) Multi-user coordinated transmission in cellular systems
WO2019037745A1 (zh) 用于确定信道状态信息的方法和装置
US20230308141A1 (en) Communication Method, Device, and System
CN113676234A (zh) 具有长传播延迟的ntn中的增强csi反馈
WO2018219328A1 (zh) 一种天线端口映射方法及网络设备
WO2013087024A1 (zh) 发射信号的方法和基站
WO2022028711A1 (en) Apparatus for csi reporting overhead reduction via joint csi report quantization and encoding
WO2023217116A1 (zh) 通信方法和通信装置
US11784853B2 (en) Channel measurement method and communication apparatus
CN110417523B (zh) 信道估计方法和装置
US20230319750A1 (en) Signal synchronization for over-the-air aggregation in a federated learning framework
WO2018228286A1 (zh) 参考信号指示方法、参考信号确定方法及设备
WO2022067844A1 (en) Accumulation of pucch repetitions to increase the reliability of pucch reception
WO2022067846A1 (en) Pucch repetition to increase the reliability of pucch transmission
CN115244863A (zh) 更新的方法和通信装置
WO2024093447A1 (en) Preparation procedure for ltm
WO2024093275A1 (en) Transmission configuration indicator state pool
WO2024087120A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024093655A1 (en) Uplink data split triggered by delay status
US12022469B2 (en) PUCCH repetition to increase the reliability of PUCCH transmission
WO2023236612A1 (zh) 波束信息的确定方法、装置及通信设备
WO2023125296A1 (zh) 用于传输参考信号的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802886

Country of ref document: EP

Kind code of ref document: A1