WO2023216458A1 - Production process for hydrogenation of o-phenylenediamine - Google Patents

Production process for hydrogenation of o-phenylenediamine Download PDF

Info

Publication number
WO2023216458A1
WO2023216458A1 PCT/CN2022/114156 CN2022114156W WO2023216458A1 WO 2023216458 A1 WO2023216458 A1 WO 2023216458A1 CN 2022114156 W CN2022114156 W CN 2022114156W WO 2023216458 A1 WO2023216458 A1 WO 2023216458A1
Authority
WO
WIPO (PCT)
Prior art keywords
add
phenylenediamine
hydrogen
production process
minutes
Prior art date
Application number
PCT/CN2022/114156
Other languages
French (fr)
Chinese (zh)
Inventor
黄中桂
方革新
谢君
姚尚喜
江美玲
孙叶萍
殷金红
方正贵
杨华
齐永发
Original Assignee
杨镭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杨镭 filed Critical 杨镭
Publication of WO2023216458A1 publication Critical patent/WO2023216458A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention belongs to the technical field of o-phenylenediamine synthesis, and specifically relates to a production process of hydrogenation reduction of o-phenylenediamine.
  • 1,2-phenylenediamine also known as o-phenylenediamine
  • o-phenylenediamine is an organic compound with the chemical formula C6H8N2. It is a colorless monoclinic crystal at room temperature and becomes darker in air and sunlight. Slightly soluble in cold water, easily soluble in ethanol, ether and chloroform. It is an intermediate for dyes, pesticides, auxiliaries, photosensitive materials, etc., used in the manufacture of polyamide, polyurethane, carbendazim and thiophanate, reduced red GG, level dyeing Agent, anti-aging agent MB, and also used to prepare developers, surfactants, etc.
  • the existing o-phenylenediamine synthesis method uses o-nitroaniline and sodium sulfide as raw materials to synthesize o-phenylenediamine. After the reduction reaction is completed, the crude o-phenylenediamine is obtained through crystallization and centrifugation. The product content is 92%. Each ton of product produces waste water. 6 tons; product content is low, energy consumption is high, and the amount of three wastes is large.
  • the present invention provides a production process for hydrogenation and reduction of o-phenylenediamine.
  • a production process for hydrogenation and reduction of o-phenylenediamine including the following steps:
  • the porous catalyst includes the following steps:
  • the triblock copolymer is used as the template guiding agent and the phenolic prepolymer is used as the carbon source.
  • a porous carrier is formed.
  • the skeleton shrinks and forms a porous structure. It is a carbon microstructure with a porous structure. ball, and then use the impregnation method to load the active component Pd on the porous carrier.
  • the contact area with the reaction system is increased, and the catalytic performance of the catalyst is further improved, thereby making o-phenylenediamine have the effect of Higher yield.
  • porous carrier includes the following steps:
  • the phenolic prepolymer includes the following steps:
  • the present invention is a production process of o-phenylenediamine hydrogenation and reduction.
  • the hydrogenation method is used to reduce o-nitroaniline to produce o-phenylenediamine.
  • the product content is more than 99.5%. After reduction, it is directly used in liquid distillation.
  • One ton of product produces 0.36 tons of waste water; the product content is significantly increased, energy consumption is reduced, and the amount of three wastes is greatly reduced; the invention also prepares a porous catalyst, using triblock copolymer as a template guide agent, and the phenolic prepolymer is carbon Source, after high-temperature roasting and carbonization, a porous carrier is formed.
  • the skeleton shrinks and forms a porous structure, so it is a carbon microsphere with a porous structure.
  • the active component Pd is then loaded on the porous carrier using an impregnation method.
  • the porous catalyst includes the following steps:
  • the porous catalyst includes the following steps:
  • the porous catalyst includes the following steps:
  • a production process for hydrogenation and reduction of o-phenylenediamine including the following steps:
  • a production process for hydrogenation and reduction of o-phenylenediamine including the following steps:
  • a production process for hydrogenation and reduction of o-phenylenediamine including the following steps:
  • This comparative example uses o-nitroaniline and sodium sulfide as raw materials to synthesize o-phenylenediamine.
  • o-nitroaniline reacts with sodium sulfide solution at a pressure of 100kPa and a reaction temperature of 105°C. The reaction time is 3 hours to obtain o-phenylenediamine. After detection The yield of o-phenylenediamine was 92%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided is a production process for hydrogenation of o-phenylenediamine, comprising the following steps: adding a porous catalyst to an autoclave, adding o-nitroaniline and methanol in sequence, introducing hydrogen to replace the air in the autoclave three times, then heating to 100 °C, introducing hydrogen to 1.5 MPa, stirring at a constant speed of 1000 r/min, maintaining the system pressure at 0.8 MPa, incubating for 100 min for reaction, rectifying to give o-phenylenediamine, wherein the ratio of o-nitroaniline to methanol is controlled at 50 g:300 mL.

Description

一种邻苯二胺加氢还原的生产工艺A production process for hydrogenation and reduction of o-phenylenediamine 技术领域Technical field
本发明属于邻苯二胺合成技术领域,具体地,涉及一种邻苯二胺加氢还原的生产工艺。The invention belongs to the technical field of o-phenylenediamine synthesis, and specifically relates to a production process of hydrogenation reduction of o-phenylenediamine.
背景技术Background technique
1 ,2‑苯二胺,又名邻苯二胺,是一种有机化合物,化学式为C6H8N2,常温下为无色单斜晶体,在空气和日光中颜色变深。微溶于冷水,易溶于乙醇、乙醚和氯仿,是染料、农药、助剂、感光材料等的中间体,用于制造聚酰胺、聚氨酯、多菌灵和托布津、还原大红GG、匀染剂、防老剂MB,还用于制备显影剂、表面活性剂等。1,2-phenylenediamine, also known as o-phenylenediamine, is an organic compound with the chemical formula C6H8N2. It is a colorless monoclinic crystal at room temperature and becomes darker in air and sunlight. Slightly soluble in cold water, easily soluble in ethanol, ether and chloroform. It is an intermediate for dyes, pesticides, auxiliaries, photosensitive materials, etc., used in the manufacture of polyamide, polyurethane, carbendazim and thiophanate, reduced red GG, level dyeing Agent, anti-aging agent MB, and also used to prepare developers, surfactants, etc.
现有邻苯二胺合成方法以邻硝基苯胺,硫化钠为原料合成邻苯二胺,还原反应完成后经过结晶、离心制得粗品邻苯二胺,产品含量92%,每吨产品产生废水6吨;产品含量低,能耗高,三废量大。The existing o-phenylenediamine synthesis method uses o-nitroaniline and sodium sulfide as raw materials to synthesize o-phenylenediamine. After the reduction reaction is completed, the crude o-phenylenediamine is obtained through crystallization and centrifugation. The product content is 92%. Each ton of product produces waste water. 6 tons; product content is low, energy consumption is high, and the amount of three wastes is large.
技术问题technical problem
为了解决上述技术问题,本发明提供一种邻苯二胺加氢还原的生产工艺。In order to solve the above technical problems, the present invention provides a production process for hydrogenation and reduction of o-phenylenediamine.
技术解决方案Technical solutions
本发明的目的可以通过以下技术方案实现:The object of the present invention can be achieved through the following technical solutions:
一种邻苯二胺加氢还原的生产工艺,包括如下步骤:A production process for hydrogenation and reduction of o-phenylenediamine, including the following steps:
将多孔催化剂加入高压釜中,依次加入邻硝基苯胺和甲醇,通入氢气置换高压釜内的空气三次,之后升温至100℃,充氢气至1 .5MPa,以1000r/min的转速匀速搅拌,维持体系压力0 .8MPa,保温反应100min,精馏,制得邻苯二胺,控制邻硝基苯胺和甲醇的用量比为50g∶300mL,多孔催化剂的用量为邻硝基苯胺重量的0 .1‑0 .15%;Add the porous catalyst to the autoclave, add o-nitroaniline and methanol in sequence, introduce hydrogen to replace the air in the autoclave three times, then raise the temperature to 100°C, fill with hydrogen to 1.5MPa, and stir at a constant speed of 1000r/min. Maintain the system pressure at 0.8MPa, perform a heat preservation reaction for 100 minutes, and perform distillation to obtain o-phenylenediamine. Control the dosage ratio of o-nitroaniline and methanol to 50g:300mL, and the dosage of porous catalyst is 0.1 of the weight of o-nitroaniline. -0.15%;
所述多孔催化剂包括如下步骤制成:The porous catalyst includes the following steps:
将PdCl2加入无水乙醇中,之后加入多孔载体,室温下匀速搅拌30min,之后转移至100℃烘箱中,干燥12h,升温至200℃,通入氮气和氢气,氮气的流速为100mL/min,氢气的流速为10mL/min,保温反应2h,制得多孔催化剂,控制PdCl2、多孔载体和无水乙醇的用量比为0 .01‑0 .02g∶1g∶10mL,氮气和氢气的体积和为烘箱体积的15%。Add PdCl2 to absolute ethanol, then add the porous carrier, stir at a constant speed for 30 minutes at room temperature, then transfer to a 100°C oven, dry for 12h, raise the temperature to 200°C, add nitrogen and hydrogen, the flow rate of nitrogen is 100mL/min, and hydrogen The flow rate is 10mL/min, and the reaction is kept for 2 hours to prepare a porous catalyst. Control the dosage ratio of PdCl2, porous carrier and absolute ethanol to 0.01-0 .02g:1g:10mL, the sum of the volumes of nitrogen and hydrogen is 15% of the oven volume.
将三嵌段共聚物作为模板导向剂,酚醛预聚体为碳源,经过高温焙烧碳化后形成多孔载体,碳化过程中骨架进行收缩,并且形成多孔结构,其为一种具有多孔结构的碳微球,之后采用浸渍法将活性组分Pd负载在多孔载体上,通过制成多孔结构,增加与反应体系的接触面积,进一步提高催化剂的催化性能,进而使得在更短时间内邻苯二胺具有更高的收率。The triblock copolymer is used as the template guiding agent and the phenolic prepolymer is used as the carbon source. After high-temperature roasting and carbonization, a porous carrier is formed. During the carbonization process, the skeleton shrinks and forms a porous structure. It is a carbon microstructure with a porous structure. ball, and then use the impregnation method to load the active component Pd on the porous carrier. By forming a porous structure, the contact area with the reaction system is increased, and the catalytic performance of the catalyst is further improved, thereby making o-phenylenediamine have the effect of Higher yield.
进一步地:所述多孔载体包括如下步骤制成:Further: the porous carrier includes the following steps:
将三嵌段共聚物加入无水乙醇中,匀速搅拌5min后加入酚醛预聚体的乙醇溶液,Add the triblock copolymer into absolute ethanol, stir at a constant speed for 5 minutes, and then add the ethanol solution of the phenolic prepolymer.
继续搅拌10min,制得混合液,将混合液转移至培养皿中,室温下静置8h,之后转移至100℃干燥箱中热聚24h,研磨成粉,加入650℃炭化炉中,氮气气氛下焙烧3h,制得多孔载体,控制三嵌段共聚物、酚醛预聚体的乙醇溶液和无水乙醇的用量比为1‑1 .5g∶5‑6g∶20mL。Continue stirring for 10 minutes to prepare a mixed solution. Transfer the mixed solution to a petri dish and let it stand at room temperature for 8 hours. Then transfer it to a 100°C drying oven for thermal polymerization for 24 hours. Grind it into powder and add it to a 650°C carbonization furnace under a nitrogen atmosphere. Calculate for 3 hours to prepare a porous carrier, and control the dosage ratio of the ethanol solution of the triblock copolymer, phenolic prepolymer and absolute ethanol to be 1-1.5g:5-6g:20mL.
进一步地:所述酚醛预聚体包括如下步骤制成:Further: the phenolic prepolymer includes the following steps:
将苯酚加入三口烧瓶中,加热至熔融,之后加入质量分数25%氢氧化钠水溶液,匀速搅拌并反应10min,缓慢滴加质量分数35%甲醛水溶液,升温至75℃,保温反应1h,反应结束后冷却至室温,滴加质量分数10%稀盐酸溶液调节pH,直至体系呈中性,减压脱水,加入无水乙醇中离心,除去氯化钠,制得酚醛预聚体,控制苯酚、氢氧化钠水溶液和甲醛水溶液的用量比为20g∶4 .15‑4 .25g∶35 .5mL。Add phenol into the three-necked flask, heat until melted, then add 25% mass fraction of sodium hydroxide aqueous solution, stir and react at a constant speed for 10 minutes, slowly add 35% mass fraction of formaldehyde aqueous solution dropwise, raise the temperature to 75°C, and keep the reaction for 1 hour. After the reaction is completed Cool to room temperature, add 10% mass fraction of dilute hydrochloric acid solution dropwise to adjust the pH until the system becomes neutral, dehydrate under reduced pressure, add absolute ethanol and centrifuge to remove sodium chloride to prepare phenolic prepolymer, control phenol and hydrogen oxidation The dosage ratio of sodium aqueous solution and formaldehyde aqueous solution is 20g:4.15-4.25g:35 .5mL.
有益效果beneficial effects
本发明的有益效果:Beneficial effects of the present invention:
本发明一种邻苯二胺加氢还原的生产工艺,使用加氢方法还原邻硝基苯胺制取邻苯二胺,产品含量99 .5%以上,还原后直接以液态方式精馏使用,每吨产品产生废水0 .36吨;产品含量明显提高,能耗降低,三废量大大减少;本发明还制备出一种多孔催化剂,将三嵌段共聚物作为模板导向剂,酚醛预聚体为碳源,经过高温焙烧碳化后形成多孔载体,碳化过程中骨架进行收缩,并且形成多孔结构,所以其为一种具有多孔结构的碳微球,之后采用浸渍法将活性组分Pd负载在多孔载体上,通过制成多孔结构,增加与反应体系的接触面积,进一步提高催化剂的催化性能,进而使得在更短时间内邻苯二胺具有更高的收率。The present invention is a production process of o-phenylenediamine hydrogenation and reduction. The hydrogenation method is used to reduce o-nitroaniline to produce o-phenylenediamine. The product content is more than 99.5%. After reduction, it is directly used in liquid distillation. One ton of product produces 0.36 tons of waste water; the product content is significantly increased, energy consumption is reduced, and the amount of three wastes is greatly reduced; the invention also prepares a porous catalyst, using triblock copolymer as a template guide agent, and the phenolic prepolymer is carbon Source, after high-temperature roasting and carbonization, a porous carrier is formed. During the carbonization process, the skeleton shrinks and forms a porous structure, so it is a carbon microsphere with a porous structure. The active component Pd is then loaded on the porous carrier using an impregnation method. By making a porous structure, the contact area with the reaction system is increased, and the catalytic performance of the catalyst is further improved, resulting in a higher yield of o-phenylenediamine in a shorter time.
本发明的最佳实施方式Best Mode of Carrying Out the Invention
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the embodiments of the present invention. Obviously, the described embodiments are only some, not all, of the embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.
 实施例1Example 1
所述多孔催化剂包括如下步骤制成:The porous catalyst includes the following steps:
将苯酚加入三口烧瓶中,加热至熔融,之后加入质量分数25%氢氧化钠水溶液,匀速搅拌并反应10min,缓慢滴加质量分数35%甲醛水溶液,升温至75℃,保温反应1h,反应结束后冷却至室温,滴加质量分数10%稀盐酸溶液调节pH,直至体系呈中性,减压脱水,加入无水乙醇中离心,除去氯化钠,制得酚醛预聚体,控制苯酚、氢氧化钠水溶液和甲醛水溶液的用量比为20g∶4 .15g∶35 .5mL。Add phenol into the three-necked flask, heat until melted, then add 25% mass fraction of sodium hydroxide aqueous solution, stir and react at a constant speed for 10 minutes, slowly add 35% mass fraction of formaldehyde aqueous solution dropwise, raise the temperature to 75°C, and keep the reaction for 1 hour. After the reaction is completed Cool to room temperature, add 10% mass fraction of dilute hydrochloric acid solution dropwise to adjust the pH until the system becomes neutral, dehydrate under reduced pressure, add absolute ethanol and centrifuge to remove sodium chloride to prepare phenolic prepolymer, control phenol and hydrogen oxidation The dosage ratio of sodium aqueous solution and formaldehyde aqueous solution is 20g:4.15g:35.5mL.
将三嵌段共聚物(Sigma公司)加入无水乙醇中,匀速搅拌5min后加入酚醛预聚体Add the triblock copolymer (Sigma Company) into absolute ethanol, stir at a constant speed for 5 minutes, and then add the phenolic prepolymer.
的乙醇溶液,继续搅拌10min,制得混合液,将混合液转移至培养皿中,室温下静置8h,之后转移至100℃干燥箱中热聚24h,研磨成粉,加入650℃炭化炉中,氮气气氛下焙烧3h,制得多孔载体,控制三嵌段共聚物、酚醛预聚体的乙醇溶液和无水乙醇的用量比为1g∶5g∶20mL。of ethanol solution, continue stirring for 10 minutes to prepare a mixed solution, transfer the mixed solution to a petri dish, let it stand at room temperature for 8 hours, then transfer it to a 100°C drying oven for heat polymerization for 24 hours, grind it into powder, and add it to a 650°C carbonization furnace. , calcined for 3 hours under a nitrogen atmosphere to prepare a porous carrier, and the dosage ratio of the ethanol solution of the triblock copolymer, phenolic prepolymer and absolute ethanol was controlled to 1g:5g:20mL.
将PdCl2加入无水乙醇中,之后加入多孔载体,室温下匀速搅拌30min,之后转移至100℃烘箱中,干燥12h,升温至200℃,通入氮气和氢气,氮气的流速为100mL/min,氢气的流速为10mL/min,保温反应2h,制得多孔催化剂,控制PdCl2、多孔载体和无水乙醇的用量比为0 .01g∶1g∶10mL,氮气和氢气的体积和为烘箱体积的15%。Add PdCl2 to absolute ethanol, then add the porous carrier, stir at a constant speed for 30 minutes at room temperature, then transfer to a 100°C oven, dry for 12h, raise the temperature to 200°C, add nitrogen and hydrogen, the flow rate of nitrogen is 100mL/min, and hydrogen The flow rate is 10mL/min, the heat preservation reaction is 2h, a porous catalyst is prepared, and the dosage ratio of PdCl2, porous carrier and absolute ethanol is controlled to 0 .01g:1g:10mL, the sum of the volumes of nitrogen and hydrogen is 15% of the oven volume.
实施例2Example 2
所述多孔催化剂包括如下步骤制成:The porous catalyst includes the following steps:
 将苯酚加入三口烧瓶中,加热至熔融,之后加入质量分数25%氢氧化钠水溶液,匀速搅拌并反应10min,缓慢滴加质量分数35%甲醛水溶液,升温至75℃,保温反应1h,反应结束后冷却至室温,滴加质量分数10%稀盐酸溶液调节pH,直至体系呈中性,减压脱水,加入无水乙醇中离心,除去氯化钠,制得酚醛预聚体,控制苯酚、氢氧化钠水溶液和甲醛水溶液的用量比为20g∶4 .20g∶35 .5mL。Add phenol into the three-necked flask, heat until melted, then add 25% mass fraction of sodium hydroxide aqueous solution, stir and react at a constant speed for 10 minutes, slowly add 35% mass fraction of formaldehyde aqueous solution dropwise, raise the temperature to 75°C, and keep the reaction for 1 hour. After the reaction is completed Cool to room temperature, add 10% mass fraction of dilute hydrochloric acid solution dropwise to adjust the pH until the system becomes neutral, dehydrate under reduced pressure, add absolute ethanol and centrifuge to remove sodium chloride to prepare phenolic prepolymer, control phenol and hydrogen oxidation The dosage ratio of sodium aqueous solution and formaldehyde aqueous solution is 20g:4.20g:35.5mL.
将三嵌段共聚物(Sigma公司)加入无水乙醇中,匀速搅拌5min后加入酚醛预聚体的乙醇溶液,继续搅拌10min,制得混合液,将混合液转移至培养皿中,室温下静置8h,之后转移至100℃干燥箱中热聚24h,研磨成粉,加入650℃炭化炉中,氮气气氛下焙烧3h,制得多孔载体,控制三嵌段共聚物、酚醛预聚体的乙醇溶液和无水乙醇的用量比为1 .2g∶5 .5g∶20mL。Add the triblock copolymer (Sigma Company) into absolute ethanol, stir for 5 minutes at a constant speed, add the ethanol solution of the phenolic prepolymer, and continue stirring for 10 minutes to prepare a mixed solution. Transfer the mixed solution to a petri dish and let stand at room temperature. Leave it for 8 hours, then transfer it to a 100°C drying oven for thermal polymerization for 24 hours, grind it into powder, add it to a 650°C carbonization furnace, and roast it for 3 hours under a nitrogen atmosphere to prepare a porous carrier. Control the ethanol content of the triblock copolymer and phenolic prepolymer. The dosage ratio of solution and absolute ethanol is 1.2g:5.5g:20mL.
将PdCl2加入无水乙醇中,之后加入多孔载体,室温下匀速搅拌30min,之后转移至100℃烘箱中,干燥12h,升温至200℃,通入氮气和氢气,氮气的流速为100mL/min,氢气的流速为10mL/min,保温反应2h,制得多孔催化剂,控制PdCl2、多孔载体和无水乙醇的用量比为0 .01g∶1g∶10mL,氮气和氢气的体积和为烘箱体积的15%。Add PdCl2 to absolute ethanol, then add the porous carrier, stir at a constant speed for 30 minutes at room temperature, then transfer to a 100°C oven, dry for 12h, raise the temperature to 200°C, add nitrogen and hydrogen, the flow rate of nitrogen is 100mL/min, and hydrogen The flow rate is 10mL/min, the heat preservation reaction is 2h, a porous catalyst is prepared, and the dosage ratio of PdCl2, porous carrier and absolute ethanol is controlled to 0 .01g:1g:10mL, the sum of the volumes of nitrogen and hydrogen is 15% of the oven volume.
实施例3Example 3
所述多孔催化剂包括如下步骤制成:The porous catalyst includes the following steps:
将苯酚加入三口烧瓶中,加热至熔融,之后加入质量分数25%氢氧化钠水溶液,匀速搅拌并反应10min,缓慢滴加质量分数35%甲醛水溶液,升温至75℃,保温反应1h,反应结束后冷却至室温,滴加质量分数10%稀盐酸溶液调节pH,直至体系呈中性,减压脱水,加入无水乙醇中离心,除去氯化钠,制得酚醛预聚体,控制苯酚、氢氧化钠水溶液和甲醛水溶液的用量比为20g∶4 .25g∶35 .5mL。Add phenol into the three-necked flask, heat until melted, then add 25% mass fraction of sodium hydroxide aqueous solution, stir and react at a constant speed for 10 minutes, slowly add 35% mass fraction of formaldehyde aqueous solution dropwise, raise the temperature to 75°C, and keep the reaction for 1 hour. After the reaction is completed Cool to room temperature, add 10% mass fraction of dilute hydrochloric acid solution dropwise to adjust the pH until the system becomes neutral, dehydrate under reduced pressure, add absolute ethanol and centrifuge to remove sodium chloride to prepare phenolic prepolymer, control phenol and hydrogen oxidation The dosage ratio of sodium aqueous solution and formaldehyde aqueous solution is 20g:4.25g:35.5mL.
将三嵌段共聚物(Sigma公司)加入无水乙醇中,匀速搅拌5min后加入酚醛预聚体的乙醇溶液,继续搅拌10min,制得混合液,将混合液转移至培养皿中,室温下静置8h,之后转移至100℃干燥箱中热聚24h,研磨成粉,加入650℃炭化炉中,氮气气氛下焙烧3h,制得多孔载体,控制三嵌段共聚物、酚醛预聚体的乙醇溶液和无水乙醇的用量比为1 .5g∶6g∶20mL。Add the triblock copolymer (Sigma Company) into absolute ethanol, stir for 5 minutes at a constant speed, add the ethanol solution of the phenolic prepolymer, and continue stirring for 10 minutes to prepare a mixed solution. Transfer the mixed solution to a petri dish and let stand at room temperature. Leave it for 8 hours, then transfer it to a 100°C drying oven for thermal polymerization for 24 hours, grind it into powder, add it to a 650°C carbonization furnace, and roast it for 3 hours under a nitrogen atmosphere to prepare a porous carrier. Control the ethanol content of the triblock copolymer and phenolic prepolymer. The dosage ratio of solution and absolute ethanol is 1.5g:6g:20mL.
将PdCl2加入无水乙醇中,之后加入多孔载体,室温下匀速搅拌30min,之后转移至100℃烘箱中,干燥12h,升温至200℃,通入氮气和氢气,氮气的流速为100mL/min,氢气的流速为10mL/min,保温反应2h,制得多孔催化剂,控制PdCl2、多孔载体和无水乙醇的用量比为0 .02g∶1g∶10mL,氮气和氢气的体积和为烘箱体积的15%。Add PdCl2 to absolute ethanol, then add the porous carrier, stir at a constant speed for 30 minutes at room temperature, then transfer to a 100°C oven, dry for 12h, raise the temperature to 200°C, add nitrogen and hydrogen, the flow rate of nitrogen is 100mL/min, and hydrogen The flow rate is 10mL/min, the heat preservation reaction is 2h, a porous catalyst is prepared, and the dosage ratio of PdCl2, porous carrier and absolute ethanol is controlled to 0 .02g:1g:10mL, the sum of the volumes of nitrogen and hydrogen is 15% of the oven volume.
实施例4Example 4
一种邻苯二胺加氢还原的生产工艺,包括如下步骤:A production process for hydrogenation and reduction of o-phenylenediamine, including the following steps:
将多孔催化剂加入高压釜中,依次加入邻硝基苯胺和甲醇,通入氢气置换高压釜内的空气三次,之后升温至100℃,充氢气至1 .5MPa,以1000r/min的转速匀速搅拌,维持体系压力0 .8MPa,保温反应100min,精馏,制得邻苯二胺,控制邻硝基苯胺和甲醇的用量比为50g∶300mL,多孔催化剂的用量为邻硝基苯胺重量的0 .1%,经检测,邻苯二胺的收率为99 .5%;Add the porous catalyst to the autoclave, add o-nitroaniline and methanol in sequence, introduce hydrogen to replace the air in the autoclave three times, then raise the temperature to 100°C, fill with hydrogen to 1.5MPa, and stir at a constant speed of 1000r/min. Maintain the system pressure at 0.8MPa, perform a heat preservation reaction for 100 minutes, and perform distillation to obtain o-phenylenediamine. Control the dosage ratio of o-nitroaniline and methanol to 50g:300mL, and the dosage of porous catalyst is 0.1 of the weight of o-nitroaniline. %, after testing, the yield of o-phenylenediamine is 99.5%;
实施例5Example 5
一种邻苯二胺加氢还原的生产工艺,包括如下步骤:A production process for hydrogenation and reduction of o-phenylenediamine, including the following steps:
将多孔催化剂加入高压釜中,依次加入邻硝基苯胺和甲醇,通入氢气置换高压釜内的空气三次,之后升温至100℃,充氢气至1 .5MPa,以1000r/min的转速匀速搅拌,维持体系压力0 .8MPa,保温反应100min,精馏,制得邻苯二胺,控制邻硝基苯胺和甲醇的用量比为50g∶300mL,多孔催化剂的用量为邻硝基苯胺重量的0 .12%,经检测,邻苯二胺的收率为99 .6%;Add the porous catalyst to the autoclave, add o-nitroaniline and methanol in sequence, introduce hydrogen to replace the air in the autoclave three times, then raise the temperature to 100°C, fill with hydrogen to 1.5MPa, and stir at a constant speed of 1000r/min. Maintain the system pressure at 0.8MPa, perform a heat preservation reaction for 100 minutes, and distill to obtain o-phenylenediamine. Control the dosage ratio of o-nitroaniline and methanol to 50g:300mL, and the dosage of porous catalyst is 0.12 of the weight of o-nitroaniline. %, after testing, the yield of o-phenylenediamine was 99.6%;
实施例6Example 6
一种邻苯二胺加氢还原的生产工艺,包括如下步骤:A production process for hydrogenation and reduction of o-phenylenediamine, including the following steps:
 将多孔催化剂加入高压釜中,依次加入邻硝基苯胺和甲醇,通入氢气置换高压釜内的空气三次,之后升温至100℃,充氢气至1 .5MPa,以1000r/min的转速匀速搅拌,维持体系压力0 .8MPa,保温反应100min,精馏,制得邻苯二胺,控制邻硝基苯胺和甲醇的用量比为50g∶300mL,多孔催化剂的用量为邻硝基苯胺重量的0 .15%,经检测,邻苯二胺的收率为99 .7%;Add the porous catalyst to the autoclave, add o-nitroaniline and methanol in sequence, introduce hydrogen to replace the air in the autoclave three times, then raise the temperature to 100°C, fill with hydrogen to 1.5MPa, and stir at a constant speed of 1000r/min. Maintain the system pressure at 0.8MPa, perform a heat preservation reaction for 100 minutes, and perform distillation to obtain o-phenylenediamine. Control the dosage ratio of o-nitroaniline and methanol to 50g:300mL, and the dosage of porous catalyst is 0.15 of the weight of o-nitroaniline. %, after testing, the yield of o-phenylenediamine was 99.7%;
对比例1Comparative example 1
本对比例以邻硝基苯胺,硫化钠为原料合成邻苯二胺,邻硝基苯胺与硫化钠溶液在压力100kPa、反应温度105℃下反应,反应时间3h,得到邻苯二胺,经检测邻苯二胺的收率为92%。This comparative example uses o-nitroaniline and sodium sulfide as raw materials to synthesize o-phenylenediamine. o-nitroaniline reacts with sodium sulfide solution at a pressure of 100kPa and a reaction temperature of 105°C. The reaction time is 3 hours to obtain o-phenylenediamine. After detection The yield of o-phenylenediamine was 92%.
在说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of the specification, reference to the terms "one embodiment," "example," "specific example," etc., means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one aspect of the invention. in an embodiment or example. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
以上内容仅仅是对本发明所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。The above contents are only examples and explanations of the present invention. Those skilled in the art may make various modifications or supplements to the described specific embodiments or substitute them in similar ways, as long as they do not deviate from the invention or exceed the rights of the present invention. The scope defined in the claims shall belong to the protection scope of the present invention.

Claims (6)

  1. 一种邻苯二胺加氢还原的生产工艺,其特征在于:包括如下步骤:A production process for hydrogenation and reduction of o-phenylenediamine, which is characterized in that it includes the following steps:
    将多孔催化剂加入高压釜中,依次加入邻硝基苯胺和甲醇,通入氢气置换高压釜内的空气三次,之后升温至100℃,充氢气至1 .5MPa,以1000r/min的转速匀速搅拌,维持体系压力0 .8MPa,保温反应100min,精馏,制得邻苯二胺,控制邻硝基苯胺和甲醇的用量比为50g∶300mL,多孔催化剂的用量为邻硝基苯胺重量的0 .1‑0 .15%;Add the porous catalyst to the autoclave, add o-nitroaniline and methanol in sequence, introduce hydrogen to replace the air in the autoclave three times, then raise the temperature to 100°C, fill with hydrogen to 1.5MPa, and stir at a constant speed of 1000r/min. Maintain the system pressure at 0.8MPa, perform a heat preservation reaction for 100 minutes, and perform distillation to obtain o-phenylenediamine. Control the dosage ratio of o-nitroaniline and methanol to 50g:300mL, and the dosage of porous catalyst is 0.1 of the weight of o-nitroaniline. -0.15%;
    所述多孔催化剂包括如下步骤制成:The porous catalyst includes the following steps:
    将PdCl2加入无水乙醇中,之后加入多孔载体,室温下匀速搅拌30min,之后转移至100℃烘箱中,干燥12h,升温至200℃,通入氮气和氢气,氮气的流速为100mL/min,氢气的流速为10mL/min,保温反应2h,制得多孔催化剂。Add PdCl2 to absolute ethanol, then add the porous carrier, stir at a constant speed for 30 minutes at room temperature, then transfer to a 100°C oven, dry for 12h, raise the temperature to 200°C, add nitrogen and hydrogen, the flow rate of nitrogen is 100mL/min, and hydrogen The flow rate was 10 mL/min, and the reaction was incubated for 2 h to prepare a porous catalyst.
  2. 根据权利要求1所述的一种邻苯二胺加氢还原的生产工艺,其特征在于:控制PdCl2、多孔载体和无水乙醇的用量比为0 .01‑0 .02g∶1g∶10mL,氮气和氢气的体积和为烘箱体积的15%。A production process for hydrogenation reduction of o-phenylenediamine according to claim 1, characterized in that: controlling the dosage ratio of PdCl2, porous carrier and absolute ethanol to 0.01-0.02g:1g:10mL, nitrogen The sum of the volumes of hydrogen and hydrogen is 15% of the oven volume.
  3. 根据权利要求1所述的一种邻苯二胺加氢还原的生产工艺,其特征在于:所述多孔载体包括如下步骤制成:A production process for o-phenylenediamine hydrogenation reduction according to claim 1, characterized in that: the porous carrier includes the following steps:
    将三嵌段共聚物加入无水乙醇中,匀速搅拌5min后加入酚醛预聚体的乙醇溶液,继续搅拌10min,制得混合液,将混合液转移至培养皿中,室温下静置8h,之后转移至100℃干燥箱中热聚24h,研磨成粉,加入650℃炭化炉中,氮气气氛下焙烧3h,制得多孔载体。Add the triblock copolymer into absolute ethanol, stir for 5 minutes at a constant speed, add the ethanol solution of the phenolic prepolymer, and continue stirring for 10 minutes to prepare a mixed solution. Transfer the mixed solution to a petri dish and let it stand at room temperature for 8 hours. Transfer to a 100°C drying oven and heat-polymerize for 24 hours, grind it into powder, add it to a 650°C carbonization furnace, and roast it for 3 hours under a nitrogen atmosphere to prepare a porous carrier.
  4. 根据权利要求3所述的一种邻苯二胺加氢还原的生产工艺,其特征在于:控制三嵌段共聚物、酚醛预聚体的乙醇溶液和无水乙醇的用量比为1‑1 .5g∶5‑6g∶20mL。A production process for hydrogenation reduction of o-phenylenediamine according to claim 3, characterized in that: the dosage ratio of the ethanol solution of the triblock copolymer, the phenolic prepolymer and the absolute ethanol is controlled to be 1-1. 5g:5-6g:20mL.
  5. 根据权利要求3所述的一种邻苯二胺加氢还原的生产工艺,其特征在于:所述酚醛预聚体包括如下步骤制成:A production process for o-phenylenediamine hydrogenation reduction according to claim 3, characterized in that: the phenolic prepolymer includes the following steps:
    将苯酚加入三口烧瓶中,加热至熔融,之后加入质量分数25%氢氧化钠水溶液,匀速搅拌并反应10min,缓慢滴加质量分数35%甲醛水溶液,升温至75℃,保温反应1h,反应结束后冷却至室温,滴加质量分数10%稀盐酸溶液调节pH,直至体系呈中性,减压脱水,加入无水乙醇中离心,除去氯化钠,制得酚醛预聚体。Add phenol into the three-necked flask, heat until melted, then add 25% mass fraction of sodium hydroxide aqueous solution, stir and react at a constant speed for 10 minutes, slowly add 35% mass fraction of formaldehyde aqueous solution dropwise, raise the temperature to 75°C, and keep the reaction for 1 hour. After the reaction is completed Cool to room temperature, add 10% mass fraction of dilute hydrochloric acid solution dropwise to adjust the pH until the system becomes neutral, dehydrate under reduced pressure, add absolute ethanol and centrifuge to remove sodium chloride to prepare phenolic prepolymer.
  6. 根据权利要求5所述的一种邻苯二胺加氢还原的生产工艺,其特征在于:控制苯酚、氢氧化钠水溶液和甲醛水溶液的用量比为20g∶4 .15‑4 .25g∶35 .5mL。A production process for hydrogenation reduction of o-phenylenediamine according to claim 5, characterized in that: the dosage ratio of phenol, sodium hydroxide aqueous solution and formaldehyde aqueous solution is controlled to 20g:4.15-4.25g:35. 5mL.
PCT/CN2022/114156 2022-05-10 2022-08-23 Production process for hydrogenation of o-phenylenediamine WO2023216458A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210508126.4A CN114685282B (en) 2022-05-10 2022-05-10 Production process for hydrogenation reduction of o-phenylenediamine
CN202210508126.4 2022-05-10

Publications (1)

Publication Number Publication Date
WO2023216458A1 true WO2023216458A1 (en) 2023-11-16

Family

ID=82144600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114156 WO2023216458A1 (en) 2022-05-10 2022-08-23 Production process for hydrogenation of o-phenylenediamine

Country Status (2)

Country Link
CN (1) CN114685282B (en)
WO (1) WO2023216458A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114685282B (en) * 2022-05-10 2023-04-07 安徽东至广信农化有限公司 Production process for hydrogenation reduction of o-phenylenediamine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3576876A (en) * 1964-12-18 1971-04-27 Monsanto Chem Australia Ltd Preparation of o-phenylenediamines
CN102976304A (en) * 2012-11-16 2013-03-20 同济大学 Preparation method of porous carbon nanosphere with controllable diameter
CN103012160A (en) * 2012-12-21 2013-04-03 江苏扬农化工集团有限公司 Preparation method of o-phenylenediamine
CN104058401A (en) * 2014-07-11 2014-09-24 北京科技大学 Preparation method of porous carbon microspheres
CN104744267A (en) * 2015-04-15 2015-07-01 西安凯立化工有限公司 Method for synthesizing o-phenylenediamine from ortho-nitroaniline by virtue of catalytic hydrogenation
CN109232271A (en) * 2018-09-11 2019-01-18 安徽东至广信农化有限公司 A method of catalysis reduction ortho-nitraniline prepares o-phenylenediamine
CN109395784A (en) * 2018-11-19 2019-03-01 中国科学院兰州化学物理研究所 A kind of preparation and application of the metallic catalyst of phenolic resin modification supported carrier
CN110694641A (en) * 2019-10-10 2020-01-17 西安凯立新材料股份有限公司 Method for preparing catalyst for nitro reduction and application
CN114685282A (en) * 2022-05-10 2022-07-01 安徽东至广信农化有限公司 Production process for hydrogenation reduction of o-phenylenediamine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3576876A (en) * 1964-12-18 1971-04-27 Monsanto Chem Australia Ltd Preparation of o-phenylenediamines
CN102976304A (en) * 2012-11-16 2013-03-20 同济大学 Preparation method of porous carbon nanosphere with controllable diameter
CN103012160A (en) * 2012-12-21 2013-04-03 江苏扬农化工集团有限公司 Preparation method of o-phenylenediamine
CN104058401A (en) * 2014-07-11 2014-09-24 北京科技大学 Preparation method of porous carbon microspheres
CN104744267A (en) * 2015-04-15 2015-07-01 西安凯立化工有限公司 Method for synthesizing o-phenylenediamine from ortho-nitroaniline by virtue of catalytic hydrogenation
CN109232271A (en) * 2018-09-11 2019-01-18 安徽东至广信农化有限公司 A method of catalysis reduction ortho-nitraniline prepares o-phenylenediamine
CN109395784A (en) * 2018-11-19 2019-03-01 中国科学院兰州化学物理研究所 A kind of preparation and application of the metallic catalyst of phenolic resin modification supported carrier
CN110694641A (en) * 2019-10-10 2020-01-17 西安凯立新材料股份有限公司 Method for preparing catalyst for nitro reduction and application
CN114685282A (en) * 2022-05-10 2022-07-01 安徽东至广信农化有限公司 Production process for hydrogenation reduction of o-phenylenediamine

Also Published As

Publication number Publication date
CN114685282A (en) 2022-07-01
CN114685282B (en) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2023216458A1 (en) Production process for hydrogenation of o-phenylenediamine
CN109704334B (en) Preparation method of lignin-based mesoporous carbon material
CN109092309A (en) A kind of preparation method for the catalyst preparing 5 hydroxymethyl furfural from cellulose
CN102875493A (en) Method for preparing epoxidized fatty acid methyl esters in continuous flow microchannel reactor
CN101654488A (en) Technique for preparing epoxy natural rubber
CN107262150B (en) A kind of preparation method of m-phenylene diamine (MPD) hydrolysis load-type solid acid catalyst
WO2016179974A1 (en) Two-step ethanol and 1-propanol preparation method using cellulose
CN110227551A (en) A kind of nucleocapsid catalyst ZIF-67@SiO of hydrophobically modified2The method for preparing cinnamyl alcohol for cinnamic acid transfer hydrogenation
CN102092708A (en) Method for preparing phenol-formaldehyde carbon aerogel in low alkali
CN108821941A (en) A kind of method that catalyzed conversion biomass prepares cyclopentanol or cyclopentanone
CN108855089A (en) A kind of ethylene glycol Hydrobon catalyst and preparation method thereof
CN111672530A (en) Preparation method of CuCo-N/C nano catalyst and application of CuCo-N/C nano catalyst in preparing lactic acid by catalytic oxidation of 1, 2-propylene glycol
CN106669737A (en) Preparation method of carbon/palladium/cobalt heterogeneous catalyst of magnetic core-shell structure
CN107952484B (en) Preparation method and application of Nafion film loaded rare earth metal catalyst
CN104162422B (en) Preparation method for alkaline carbonaceous carrier used for preparing furandicarboxylic acid
CN111841611B (en) Noble metal monatomic catalyst and preparation method assisted by using notch polyacid
CN104383949A (en) Catalyst for cyclopentanone synthesis, preparation method thereof and application of catalyst in cyclopentanone synthesis
WO2016180000A1 (en) Two-step ethylene glycol and 1,2-propylene glycol preparation method using cellulose
CN110013871B (en) Supported nickel phosphide-nickel/nitrogen-containing nano material composite catalyst and preparation method and application thereof
CN112717939A (en) Emulsion Ni/ZrO for catalytic hydrogenation upgrading of caprylic acid2Process for preparing catalyst
CN103007924B (en) Preparation method of catalyst
CN106745247B (en) A kind of vanadic acid silver nanotube assembles ball cluster
CN114410336A (en) Method for directly preparing long-chain alkane based on biomass levulinic acid
CN114292219A (en) Preparation method of 1, 1-dimethyl-3-hydroxybutyl hydroperoxide
CN109046332B (en) Photo-thermal catalytic hydrogenation catalyst, and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941399

Country of ref document: EP

Kind code of ref document: A1