WO2023216456A1 - 一种车载智能终端的天线系统及方法 - Google Patents

一种车载智能终端的天线系统及方法 Download PDF

Info

Publication number
WO2023216456A1
WO2023216456A1 PCT/CN2022/114117 CN2022114117W WO2023216456A1 WO 2023216456 A1 WO2023216456 A1 WO 2023216456A1 CN 2022114117 W CN2022114117 W CN 2022114117W WO 2023216456 A1 WO2023216456 A1 WO 2023216456A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
antenna
vehicle
signal
antennas
Prior art date
Application number
PCT/CN2022/114117
Other languages
English (en)
French (fr)
Inventor
瞿三朗
樊博
朱沛
Original Assignee
上海麦腾物联网技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海麦腾物联网技术有限公司 filed Critical 上海麦腾物联网技术有限公司
Publication of WO2023216456A1 publication Critical patent/WO2023216456A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3822Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving specially adapted for use in vehicles

Definitions

  • the present invention relates to the field of automotive antenna communication technology, and in particular to an antenna system and method for a vehicle-mounted intelligent terminal.
  • Vehicle-mounted smart terminals support more and more communication standards, and the types of antennas required are becoming more and more diverse, such as cellular antennas (supporting 3G, 4G, and 5G communications), GNSS antennas, BLE antennas, WIFI antennas, and V2X antennas , UWB antenna, etc.
  • the purpose of the present invention is to provide an antenna system and method for a vehicle-mounted intelligent terminal, which requires only a small number of main function antennas and can simultaneously provide signals in corresponding frequency bands for the 5G module, UWB module, and V2X module of the vehicle-mounted intelligent terminal. It overcomes the problems of mutual coupling of traditional vehicle-mounted cellular antennas and poor angular performance of V2X communication parts, and saves the installation cost of the antenna.
  • the present invention provides an antenna system for a vehicle-mounted intelligent terminal.
  • the vehicle-mounted intelligent terminal at least includes a 5G module, a V2X module and a UWB module.
  • the 5G module is used to implement 5G operation of the vehicle in a cellular network.
  • Communication the V2X module is used to realize vehicle-to-vehicle communication in the Internet of Vehicles
  • the UWB module performs vehicle key positioning through the UWB base station
  • the antenna system includes:
  • main function antennas are respectively installed at different positions of the vehicle; the main function antennas are used to send and receive multi-band wireless signals;
  • a plurality of frequency dividers respectively correspond to the plurality of main function antennas; the frequency divider divides the multi-band wireless signals received by the corresponding main function antennas into multiple signals; the multiple signals include respective The first signal, the second signal, and the third signal corresponding to the working frequency band of the 5G module, UWB module, and V2X module; the corresponding first signal, the second signal, and the third signal are respectively provided through the frequency divider.
  • the 5G module, UWB module, and V2X module To the 5G module, UWB module, and V2X module; the 5G module, UWB module, and V2X module also sequentially transmit wireless signals in their respective working frequency bands through the corresponding frequency divider and main functional antenna.
  • the distance between any two main function antennas is greater than; is the wavelength of the multi-band wireless signal at the lowest frequency point; the multiple main function antennas are divided into multiple groups; each group of main function antennas contains multiple main function antennas. Antennas, multiple main function antennas of the same group are arranged on both sides of the car body; at least two sets of main function antennas are arranged front and rear.
  • the V2X module includes multiple V2X interfaces; the antenna system also includes multiple intra-group switches, one intra-group switch corresponds to one V2X interface and a group of main function antennas; the same group Each main function antenna is connected to the corresponding V2X interface through the corresponding frequency divider;
  • the intra-group switching switch Based on multiple intra-group switching signals sent by the switching control unit, the intra-group switching switch enables multiple main functional antennas in the same group to establish corresponding paths with the V2X module respectively.
  • the switching control unit is an application processor integrated in the V2X module; the V2X module detects the signal strength of multiple channels corresponding to the V2X interface, and the switching control unit sends signals to the group based on the detection results of the V2X module.
  • the switch sends the corresponding intra-group switching signal to enable the V2X interface to work on the channel with the strongest signal strength among the corresponding multiple channels.
  • the switching control unit is an application processor integrated in the 5G module; the V2X module detects the signal strength of multiple channels corresponding to the V2X interface, and sends the detection results to the switching control unit; the switching control unit Based on the detection results, a corresponding intra-group switching signal is sent to the intra-group switching switch to realize that the V2X interface operates on a path with the strongest signal strength among the corresponding multiple paths.
  • the switching control unit is a vehicle processor integrated in the vehicle intelligent terminal; the V2X module detects the signal strength of multiple channels corresponding to the V2X interface, and sends the detection results to the switching control unit through the 5G module ; The switching control unit sends a corresponding intra-group switching signal to the intra-group switching switch based on the detection result, so that the V2X interface works on a path with the strongest signal strength among the corresponding multiple paths.
  • the vehicle-mounted intelligent terminal also includes a WIFI module and a BLE module;
  • the antenna system also includes a WIFI antenna, a BLE antenna, and a GNSS antenna;
  • the WIFI antenna and BLE antenna are integrated in the vehicle-mounted intelligent terminal and are respectively connected with signals
  • the GNSS antenna is set on the roof of the car and is connected to the 5G module with signals;
  • the 5G module obtains the vehicle position through the GNSS antenna, and selects V2X based on the obtained electronic map and the vehicle position The default path for interface work;
  • the 5G module also detects the signal strength of each path in real time, and controls the switch within the group to switch from the default path to the path with the strongest signal strength among the corresponding multiple paths.
  • the antenna system of the vehicle-mounted intelligent terminal also includes an Ecall antenna and a first switch; the Ecall antenna is integrated in the vehicle-mounted intelligent terminal; the first switch is connected to the 5G module, the Ecall antenna, and multiple branch points.
  • a frequency divider in the frequency converter the first switching switch implements the corresponding main function antenna to connect to the 5G module through the corresponding frequency divider signal based on the first switching signal sent by the 5G module; when the 5G module does not receive any signal from For the signal of any main functional antenna, the 5G module sends a second switching signal to the first switching switch; the first switching switch implements the Ecall antenna signal to connect to the 5G module based on the second switching signal.
  • the present invention also provides a communication method for the antenna system according to the present invention, including the steps:
  • the frequency divider divides the multi-band wireless signal received by the corresponding main function antenna into the corresponding first signal, second signal, and third signal, and provides them to the 5G module, UWB module, and V2X module respectively;
  • the switching control unit controls the switching switches in the group to perform sequential actions to realize that multiple main functional antennas corresponding to the V2X interface establish corresponding channels with the V2X module respectively;
  • the V2X module detects the signal strength of multiple channels corresponding to the V2X interface; the switching control unit sends the corresponding intra-group switching signal based on the detection results detected by the V2X module, so that the V2X interface operates with the strongest signal strength among the corresponding multiple channels. of a pathway.
  • the switching control unit is an application processor or vehicle processor integrated in the vehicle intelligent terminal; the application processor is integrated in the V2X module or 5G module;
  • the switching control unit is an application processor integrated in the 5G module, the detection results are sent to the switching control unit through the V2X module;
  • the V2X module sends the detection result to the switching control unit through the 5G module.
  • the antenna system and method of the vehicle-mounted intelligent terminal of the present invention have the following beneficial effects:
  • the multi-band wireless signal obtained by the main functional antenna is divided by a frequency divider to realize the simultaneous operation of the 5G module, V2X module and UWB module.
  • the main function antenna Through the main function antenna, the cellular antenna, V2X antenna, and UWB antenna in the prior art can be shared, which greatly reduces the number and types of antennas arranged on the car body, and greatly reduces the design and installation costs of the antennas; the present invention solves the problem
  • the existing external antennas (antennas arranged on the vehicle body) have strict requirements on the installation location, and the shortage of installation locations on the vehicle body makes the arrangement of external antennas difficult;
  • the distance between any two main functional antennas is greater than a quarter wavelength of the lowest frequency point of the multi-band wireless signal, which solves the problem of serious mutual coupling caused by the small spacing of traditional Cellular antennas; by The invention ensures the performance of the main functional antenna and improves the uplink and downlink rates of cellular communication.
  • the antenna system of the present invention solves the problem that the traditional V2X antenna pattern is affected by the vehicle body and has partial angle performance differences, which affects the communication distance;
  • the GNSS antenna is arranged on the roof of the car to ensure that the maximum radiation direction of the antenna points to the sky to ensure high-precision positioning;
  • the E-Call antenna, WIFI antenna and BLE antenna in the present invention adopt the built-in antenna of the vehicle-mounted smart terminal, which can ensure normal use by users and also reduce production costs.
  • Figure 1 is a schematic diagram of the antenna layout of a vehicle-mounted smart terminal
  • Figure 2 is a schematic diagram of the antenna layout of another vehicle-mounted smart terminal
  • Figure 3 is a schematic diagram of the antenna layout of another vehicle-mounted smart terminal
  • FIG. 4 is a schematic diagram of the antenna system of the vehicle-mounted intelligent terminal of the present invention.
  • FIG. 5 is a schematic diagram of the connection between the V2X module, the switch in the group, and the triplexer in the embodiment of the present invention
  • Figure 6 is a schematic diagram of the operation of the switch in the control group through the V2X module in one embodiment
  • Figure 7 is a schematic diagram of the operation of the switch in the control group through the 5G module in another embodiment
  • Figure 8 is a schematic diagram of the operation of the switch in the group controlled by the vehicle processor in another embodiment
  • Figure 9 is a schematic diagram of the first switch connecting the Ecall antenna and 5G module
  • Figure 10 is a flow chart of the communication method of the present invention.
  • Figure 11 is a flow chart for realizing that the V2X interface works on the strongest signal path by controlling the switch in the group through the V2X module in one embodiment
  • FIG. 12 is a flow chart of another embodiment in which the V2X interface operates on the strongest signal path by controlling the switch within the group through the 5G module;
  • FIG 13 is a flow chart of another embodiment in which the vehicle processor controls the switch in the group to realize the V2X interface working on the path with the strongest signal.
  • the working frequency band of Cellular antenna is 700MHz ⁇ 5000MHz, which is used to support 3G, 4G and 5G communications of cellular networks.
  • Cellular antennas usually include: 5G main antenna, 5G secondary antenna, and multiple MIMO antennas (supporting 5G communication).
  • the working frequency band of the V2X antenna is 5905MHz ⁇ 5925MHz, which is used to support vehicle-to-vehicle communication of the Internet of Vehicles.
  • the working frequency band of the UWB (Ultra Wide Band) antenna is 6000MHz ⁇ 8500MHz, which serves as a UWB base station to position the vehicle.
  • UWB Ultra Wide Band
  • the car key carries a positioning tag.
  • the tag transmits pulses to each base station at a certain frequency and accurately calculates the position of the positioning tag through a certain algorithm (this is existing technology. No further details will be given here).
  • GNSS Global Navigation Satellite System
  • E-Call antennas for car emergency call systems
  • WIFI Wireless Fidelity
  • BLE Bluetooth Low Energy
  • the GNSS antenna is used to position the vehicle.
  • FIGS 1 to 3 respectively show three antenna systems used in vehicle-mounted intelligent terminals in the prior art.
  • Each of the three antenna systems includes at least four Cellular antennas (5G main antenna, 5G secondary antenna, MIMO-1 antenna, MIMO-2 antenna), two V2X antennas (V2X-1 antenna and V2X-2 antenna respectively).
  • antenna 5G main antenna, 5G secondary antenna, MIMO-1 antenna, MIMO-2 antenna), two V2X antennas (V2X-1 antenna and V2X-2 antenna respectively).
  • antenna 4 UWB antennas (respectively UWB-1 antenna ⁇ UWB-4 antenna), BLE antenna, two WIFI antennas (respectively WIFI-1 antenna and WIFI-2 antenna).
  • each antenna in the antenna system is designed independently.
  • Each antenna in the antenna system is arranged as follows:
  • a1) Set the 5G main antenna, 5G secondary antenna, GNSS antenna, and WIFI-1 antenna in the first antenna box on the roof of the car.
  • Each antenna in the first antenna box is connected to the vehicle-mounted intelligent terminal through radio frequency cables.
  • V2X-1 antenna is placed at the base of the interior mirror, and the V2X-2 antenna is placed on the rear bumper. Both the V2X-1 antenna and the V2X-2 antenna are connected to the vehicle-mounted smart terminal through radio frequency cables.
  • the BLE antenna (not shown in Figure 1) adopts the built-in antenna design of the vehicle-mounted smart terminal; or an external BLE antenna box is attached to the back of the vehicle-mounted smart terminal to place the BLE antenna, and the BLE antenna is connected to the vehicle-mounted smart terminal through a radio frequency cable.
  • Each antenna in the antenna system in Figure 2 adopts an independent design.
  • Each antenna in the antenna system is arranged as follows:
  • b1) Four Cellular antennas, GNSS antenna, V2X-2 antenna, BLE antenna, and two WIFI antennas are designed as an antenna box/shark fin; the antenna box/shark fin is arranged on the roof of the car and connected to the vehicle through radio frequency cables Intelligent Terminal.
  • V2X-1 antenna is placed at the base of the endoscope and connected to the vehicle-mounted smart terminal through a radio frequency cable.
  • each antenna is arranged as follows:
  • c1) 4 cellular antennas, BLE antenna, and 2 WIFI are integrated and designed inside the vehicle-mounted smart terminal.
  • V2X-1 antenna is placed at the base of the endoscope and connected to the vehicle-mounted smart terminal through a radio frequency cable.
  • the GNSS antenna is arranged on the roof of the car and connected to the vehicle-mounted smart terminal through radio frequency cables.
  • the antenna system of the above-mentioned vehicle-mounted smart terminal has the following shortcomings:
  • the two V2X antennas are arranged in front and rear, which requires extremely high omnidirectionality of the V2X antennas.
  • the direction pattern is affected by the car body, and there is a difference in performance at some angles, which affects the communication distance.
  • the present invention provides an antenna system for a vehicle-mounted intelligent terminal.
  • the vehicle-mounted intelligent terminal at least includes a 5G module 2, a V2X module 4, a UWB module 3, a WIFI & BLE module 6, and a vehicle processor.
  • Processor is referred to as VP).
  • the 5G module 2 is used to realize the vehicle's 5G communication in the cellular network
  • the V2X module 4 is used to realize the vehicle's vehicle-to-vehicle communication in the Internet of Vehicles
  • the UWB module 3 performs vehicle key positioning through the UWB base station.
  • the WIFI module and the BLE module are integrated together. In other embodiments, the two modules can also be set up separately.
  • the antenna system of the present invention includes: multiple main function antennas, GNSS antenna 10, multiple WIFI antennas, BLE antenna 7, Ecall antenna 9, multiple frequency dividers, multiple intra-group switches, and a First toggle switch.
  • the plurality of main functional antennas are respectively arranged at different positions of the vehicle.
  • the main functional antenna is used to send and receive multi-band wireless signals.
  • this embodiment includes four main functional antennas, namely ANT1 to ANT4.
  • the 4 main function antennas are divided into two groups, each group contains 2 main function antennas.
  • the two groups of main function antennas are arranged front and back (along the length direction of the car body).
  • the main function antennas of the same group are respectively arranged on both sides of the car body (the body left side and right side of the body).
  • ANT1 and ANT4 are divided into a group and are respectively arranged on the two rearview mirrors (that is, ANT1 and ANT4 are respectively arranged at the left front and right front positions of the vehicle body.
  • ANT2 and ANT3 are divided into another group, respectively arranged on both sides of the rear bumper (that is, ANT2 and ANT3 are respectively arranged at the left and right rear positions of the vehicle body. This is only an example and should not be used as a limitation of the present invention) .
  • the plurality of frequency dividers respectively correspond to the plurality of main functional antennas.
  • the multi-band wireless signal received by the corresponding main functional antenna is divided into multiple signals through a frequency divider.
  • the multiple signals include a first signal (frequency band is 700MHz ⁇ 5000MHz), a second signal (frequency band is 6000MHz ⁇ 8500MHz), and a third signal (frequency band is 5905MHz ⁇ 5925MHz).
  • the corresponding first signal, second signal, and third signal are provided to the 5G module 2, UWB module 3, and V2X module 4 respectively through the frequency divider.
  • 5G module 2, UWB module 3, and V2X module 4 also sequentially transmit wireless signals in their respective working frequency bands through corresponding frequency dividers and main functional antennas.
  • the distance between any two main functional antennas is greater than; is the wavelength of the multi-band wireless signal at the lowest frequency point. That is to say, the minimum frequency of multi-power wireless signals is 700MHZ, and the distance between any two main functional antennas is at least greater than 107mm, which effectively prevents mutual coupling between any two main functional antennas.
  • the uplink and downlink rates of the signal are guaranteed.
  • the frequency divider in this embodiment is a triplexer, which corresponds to the main functional antennas ANT1 to ANT4 respectively.
  • the triplexer 1 includes interfaces t0 ⁇ t3, where the interface t0 is used to connect the corresponding main functional antenna.
  • the 5G module 2 in this embodiment includes interfaces b0 ⁇ b8, of which the interfaces b1 ⁇ b4 are respectively connected to the interfaces t1 of the four triplexers 1, and are used to implement the main functional antennas ANT1 ⁇ ANT4 and the 5G module.
  • Group 2 performs signal interaction.
  • Interfaces b5 to b8 are used for data interaction with vehicle processor 5, WIFI&BLE module 6, V2X module 4, and UWB module 3 respectively.
  • ANT1 is used as the 5G main antenna
  • ANT3 is used as the 5G secondary antenna
  • ANT2 and ANT4 are used as two MIMO antennas respectively, truly realizing spatial diversity, reducing mutual coupling between antennas, and realizing High-speed transmission of 5G signals.
  • the UWB module 3 in this embodiment includes interfaces port0 ⁇ port4, where the interfaces port1 ⁇ port4 are respectively connected to the interfaces t2 of the four triplexers 1, and are used to implement the main functional antennas ANT1 ⁇ ANT4 and the UWB module. Group 3 performs signal interaction.
  • the four main functional antennas are used as four UWB antennas respectively.
  • the V2X module 4 includes multiple V2X interfaces, and one V2X interface corresponds to a group of main functional antennas and a switch within the group. Each main functional antenna in the same group is connected to the corresponding V2X interface through the corresponding triplexer 1.
  • the V2X module 4 includes two V2X interfaces, which are respectively used to implement two sets of main functional antennas to interact with the V2X module 4 in signals.
  • the two V2X interfaces are interfaces V1 and V2 respectively.
  • the main functional antennas ANT1 and ANT4 correspond to the interface V1
  • the main functional antennas ANT2 and ANT3 correspond to the interface V2.
  • the intra-group switching switch enables multiple main functional antennas in the same group to establish corresponding paths with the V2X module based on multiple intra-group switching signals sent by the switching control unit.
  • this embodiment includes two intra-group switches, namely the first intra-group switch Switch1 and the second intra-group switch Switch2. Radio frequency switches can be used as switches within the group.
  • the switch in the first group includes interfaces s11, s12, and s13.
  • the interfaces s11 and s12 are respectively connected to the t3 interface corresponding to the two triplexers 1, and the interface s13 is connected to the interface V1.
  • the switch Switch2 in the second group includes interfaces s21, s22, and s23.
  • the interfaces s21 and s22 are respectively connected to the t3 interfaces corresponding to the two triplexers 1, and the interface s23 is connected to the interface V2.
  • the first intra-group switching switch Switch1 based on the first intra-group switching signal sent by the switching control unit, the first intra-group switching switch Switch1 realizes the interface s13 to connect to the interface s11, so that the main functional antenna ANT1 and the V2X module 4 establish a first path (at this time the interface V1 works on the first pass).
  • the first intra-group switching switch Switch1 is also based on the second intra-group switching signal sent by the switching control unit to realize the interface s13 to connect the interface s12, and the main functional antenna ANT4 and the V2X module 4 establish a second path (also known as the interface V1 works in the second path).
  • the second intra-group switch Switch2 implements the interface s23 to connect to the interface s21, so that the main functional antenna ANT2 and the V2X module 4 establish a third path (also called the interface V2 works in the third channel).
  • the second group intra-group switching switch Switch2 is also based on the fourth intra-group switching signal sent by the switching control unit to realize the interface s23 to connect the interface s22, and the main functional antenna ANT3 and the V2X module 4 establish a fourth path (also known as the interface V2 works in the fourth path).
  • the V2X module 4 will continuously detect the signal strength of the path where the V2X interface is located.
  • the switching control unit is configured to regularly control the switching switches in the group to perform a series of actions according to a built-in algorithm, so that each main functional antenna corresponding to the switching switch in the group establishes a corresponding path with the V2X module 4 respectively. , therefore the V2X module 4 can separately detect the signal strengths of multiple channels corresponding to the V2X interface.
  • the time interval between two adjacent series of actions may be 10 seconds (this is only an example and should not be used as a limitation of the present invention).
  • the above series of actions are performed by switching the switch in the control group controlled by the switching control unit.
  • the switching control unit switches the switch Switch1 in the first group based on the detection results of the first and second paths by the V2X module 4. Send the corresponding intra-group switching signal to realize that the interface V1 works on the channel with stronger signal strength among the first and second channels.
  • the switching control unit switches the switch Switch2 in the second group based on the detection results of the third and fourth channels by the V2X module 4. Send the corresponding intra-group switching signal to enable the V2 interface to work on one of the third and fourth paths with stronger signal strength.
  • the switching control unit in this embodiment is an application processor 41 integrated in the V2X module 4 .
  • the switching control unit is an application processor 21 integrated in the 5G module 2 .
  • the V2X module 4 detects the signal strength of multiple channels corresponding to the V2X interface, and sends the detection results to the application processor 21 in the 5G module 2; the application processor 21 sends signals to the group based on the detection results of the V2X module 4.
  • the switch sends the corresponding intra-group switching signal to enable the V2X interface to work on the channel with the strongest signal strength among the corresponding multiple channels.
  • the switching control unit is a vehicle processor 5 integrated in the vehicle intelligent terminal.
  • the V2X module 4 detects the signal strength of multiple channels corresponding to the V2X interface, and sends the detection results to the vehicle processor 5 through the 5G module 2; the vehicle processor 5 sends the corresponding signal to the switch in the group based on the detection results. Switch signals within the group to enable the V2X interface to work on the channel with the strongest signal strength among the corresponding multiple channels.
  • the switching control unit can be set in the V2X module 4, 5G module 2, and vehicle processor 5 according to actual needs. There are no limitations in the present invention.
  • each main functional antenna can be used as a V2X antenna.
  • the main functional antennas in the same group are arranged on both sides of the vehicle body respectively, which expands the angular range of the pattern.
  • the present invention includes two WIFI antennas, namely WIFI-1 antenna 81 and WIFI-2 antenna 82.
  • WIFI-1 antenna 81, WIFI-2 antenna 82, and BLE antenna 7 are all connected to the WIFI & BLE module 6 via signals.
  • the WIFI-1 antenna 81, the WIFI-2 antenna 82, and the BLE antenna 7 adopt the built-in antennas of the vehicle-mounted intelligent terminal and are arranged around the motherboard of the vehicle-mounted intelligent terminal, which can ensure normal use by users and at the same time reduce production costs.
  • the GNSS antenna 10 is installed on the roof of the car, and its signal is connected to the 5G module 2 .
  • the 5G module 2 obtains the vehicle position through the GNSS antenna 10, and selects the V2X interface based on the obtained electronic map (obtained from the outside through the main functional antenna, or stored in the 5G module, which is not limited by the present invention) and the vehicle position.
  • the switching control unit can be the application processor in the 5G module.
  • the 5G module 2 detects the signal strength of each channel in real time and is ready to switch to the strongest signal channel at any time. For example, when the 5G module 2 determines that the right side of the vehicle is a cliff or a lake, the 5G module sends an instruction signal through the switching control unit 21 . Based on the command signal, the switching control unit 21 drives the switching switch Switch1 in the first group to realize that the interface V1 operates on the path where the main functional antenna ANT1 on the left side is located. The switching control unit 21 also drives the switch Switch2 in the second group based on the command signal, so that the interface V2 operates on the path where the main functional antenna ANT3 on the left side is located. At the same time, the switching control unit will also switch the switch in the group from the default path to the corresponding strongest signal path based on the actual signal strength of each path (that is, ensuring that the V2X interface can work on the path with the strongest signal) .
  • the Ecall antenna 9 is integrated around the main board of the vehicle-mounted smart terminal.
  • the first switch Switch3 includes interfaces s31, s32, and s33.
  • the interface s31 is connected to the interface b1 of the 5G module 2
  • the interface s32 is connected to the Ecall antenna 9
  • the interface s33 is connected to the interface t1 of a frequency divider (as shown in Figure 4, in this embodiment, the frequency divider corresponds to the main functional antenna ANT1) .
  • the first switching switch realizes the connection of the interface s31 to the s33, and the main functional antenna ANT1 is connected to the 5G module 2 through the corresponding frequency divider signal.
  • the 5G module 2 When the 5G module 2 does not receive a signal from any main functional antenna, the 5G module 2 sends a second switching signal to the first switching switch; the first switching switch implements interface s31 to connect to s32 based on the second switching signal, Ecall The signal of antenna 9 is connected to 5G module 2.
  • the first switching switch may use a radio frequency switch.
  • the present invention also provides a communication method, as shown in Figure 10, used in the antenna system of the present invention, including the steps:
  • the frequency divider divides the multi-band wireless signal received by the corresponding main function antenna into the corresponding first signal, second signal, and third signal, and provides them to the 5G module 2, UWB module 3, and V2X respectively.
  • the switching control unit controls the switching switches in the group to perform a series of actions to realize that multiple main functional antennas corresponding to the V2X interface establish corresponding channels with the V2X module 4 in sequence; the V2X module 4 detects multiple antennas corresponding to the V2X interface. The signal strength of the channel; the switching control unit sends the corresponding intra-group switching signal based on the detection result of the V2X module 4, so that the V2X interface works on the channel with the strongest signal strength among the corresponding multiple channels.
  • the switching control unit is an application processor 41 integrated in the V2X module 4 .
  • the above step H2 includes:
  • H211 and V2X module 4 control the switch Switches1 in the first group to establish the first and second channels respectively, and control the switch Switches2 in the second group to establish the third and fourth channels respectively;
  • V2X module 4 detects the signal strength of the first to fourth channels
  • H213 and V2X module 4 control the switch Switches1 in the first group and the switch Switches2 in the second group based on their detection results, so that the interface V1 works on one of the first and second channels with stronger signal strength, and the interface V2 Work on the channel with stronger signal strength among the third and fourth channels.
  • the switching control unit is an application processor integrated in the 5G module 2 .
  • the above step H2 includes:
  • the application processor 21 in the 5G module 2 controls the switch Switches1 in the first group to establish the first and second channels respectively, and controls the switch Switches2 in the second group to establish the third and fourth channels respectively;
  • V2X module 4 detects the signal strength of the first to fourth channels
  • V2X module 4 sends the detection results to the application processor 21;
  • the application processor 21 compares the signal strengths of the first and second paths, and controls the action of the switch Switches1 in the first group based on the comparison result, so that the interface V1 works on the path with stronger signal strength among the first and second paths. ;
  • the application processor 21 compares the signal strengths of the third and fourth channels, and controls the action of the switch Switches2 in the second group based on the comparison result, so that the interface V2 works on the channel with stronger signal strength among the third and fourth channels.
  • the switching control unit is a vehicle-mounted processor built into the vehicle-mounted intelligent terminal board.
  • the above step H2 includes:
  • the vehicle processor 5 controls the switch Switches1 in the first group to establish the first and second channels respectively, and controls the switch Switches2 in the second group to establish the third and fourth channels respectively;
  • V2X module 4 detects the signal strength of the first to fourth channels
  • H233 and V2X module 4 send each signal strength to the application processor in 5G module 2;
  • the application processor in the 5G module sends each signal strength to the vehicle processor 5;
  • the vehicle processor 5 compares the signal strengths of the first and second channels, and controls the action of the switch Switches1 in the first group based on the comparison result, so that the interface V1 works on the channel with stronger signal strength among the first and second channels. ; The vehicle processor 5 compares the signal strengths of the third and fourth channels, and controls the action of the switch Switches2 in the second group based on the comparison result, so that the interface V2 works on the channel with stronger signal strength among the third and fourth channels.
  • the multi-band wireless signal obtained by the main functional antenna is divided by a frequency divider to realize the simultaneous operation of 5G module 2, V2X module 4 and UWB module 3.
  • the main function antenna the cellular antenna, V2X antenna, and UWB antenna in the prior art can be shared, which greatly reduces the number and types of antennas arranged on the car body, and greatly reduces the design and installation costs of the antennas; the present invention solves the problem
  • the existing external antennas (antennas arranged on the vehicle body) have strict requirements on the installation location, and the shortage of installation locations on the vehicle body makes the arrangement of external antennas difficult;
  • the distance between any two main functional antennas is greater than a quarter wavelength of the lowest frequency point of the multi-band wireless signal, which solves the problem of serious mutual coupling caused by the small spacing of traditional Cellular antennas; through the present invention It ensures the performance of the main functional antenna and improves the uplink and downlink rates of cellular communications.
  • the E-Call antenna 9, WIFI-1 antenna 81, WIFI-2 antenna 82, and BLE antenna 7 in the present invention adopt built-in antennas of the vehicle-mounted intelligent terminal and are arranged around the motherboard of the vehicle-mounted intelligent terminal, which can ensure the normal use of the user while also reducing the cost of the vehicle. production costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种车载智能终端的天线系统,所述车载智能终端至少包含5G模组、V2X模组和UWB模组,所述天线系统包含:多根主功能天线,分别设置在车辆的不同位置;所述主功能天线具备收发功能;多个分频器,分别对应所述多根主功能天线,所述分频器将对应主功能天线接收的多频段无线信号分频为第一信号、第二信号、第三信号,并分别提供给所述5G模组、UWB模组、V2X模组;5G模组、UWB模组、V2X模组还通过对应的分频器、主功能天线发送各自工作频段的无线信号。本发明还提供一种通讯方法。通过本发明能够减少天线的数量并使5G模组、UWB模组、V2X模组同时工作,降低了在车身设置天线的难度,并能防止产生互耦现象。

Description

一种车载智能终端的天线系统及方法
本申请要求申请日为2022年5月7日的中国专利申请2022104910212的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及汽车天线通信技术领域,特别涉及一种车载智能终端的天线系统及方法。
背景技术
全球车联网应用目前已进入加速发展阶段,车联网服务需求逐渐加大,越来越多的汽车安装了车载智能终端。车载智能终端所支持的通信制式也越来越多,所需要的天线种类也越来越多样化,如Cellular天线(支持3G,4G,5G通信),GNSS天线,BLE天线,WIFI天线,V2X天线,UWB天线等。
天线的增多势必会导致传统的鲨鱼鳍天线盒或者平板天线盒尺寸增大,天线盒内狭小的空间也会导致盒内各天线之间隔离度变差,使得天线性能达不到指标要求。目前车身结构的多样化,也为布置天线带来了新的问题,例如全景天窗的车型没有地方安装传统的鲨鱼鳍天线。
如何设计一种车载智能终端的天线系统,使得在有限的空间内确保天线性能不受影响、保证车载智能终端各模块的正常工作、完美兼容整车造型设计,已经成了迫切需要解决的问题。
发明内容
本发明的目的是提供一种车载智能终端的天线系统及方法,仅需设置少量的主功能天线,能够同时为车载智能终端的5G模组、UWB模组、V2X模组提供对应频段的信号。克服了传统车载Cellular天线 互耦、V2X通信部分角度性能差的问题,并且节约了天线的安装成本。
为了达到上述目的,本发明提供一种车载智能终端的天线系统,所述车载智能终端至少包含5G模组、V2X模组和UWB模组,所述5G模组用于实现车辆在蜂窝网络进行5G通讯,所述V2X模组用于实现车辆在车联网进行车-车通讯,所述UWB模组通过UWB基站进行车钥匙定位,所述天线系统包含:
多根主功能天线,分别设置在车辆的不同位置;所述主功能天线用于收发多频段无线信号;
多个分频器,分别对应所述多根主功能天线;所述分频器将对应主功能天线接收的所述多频段无线信号分频为多个信号;所述多个信号包含分别与所述5G模组、UWB模组、V2X模组工作频段对应的第一信号、第二信号、第三信号;通过所述分频器将对应的第一信号、第二信号、第三信号分别提供给5G模组、UWB模组、V2X模组;5G模组、UWB模组、V2X模组还依序通过对应的分频器、主功能天线发送各自工作频段的无线信号。
可选的,任意两根主功能天线之间的间距大于;为多频段无线信号在最低频点的波长;所述多根主功能天线分为多组;每组主功能天线包含多根主功能天线,同组的多跟主功能天线分别布置在车身两侧;至少两组主功能天线前后布置。
可选的,所述V2X模组包含多个V2X接口;所述天线系统还包含多个组内切换开关,一个所述组内切换开关对应一个所述V2X接口、一组主功能天线;同组的各个主功能天线分别通过对应分频器连接对应的V2X接口;
组内切换开关基于切换控制单元发送的多个组内切换信号,实现同组的多个主功能天线分别与V2X模组建立对应的通路。
可选的,所述切换控制单元为集成在V2X模组内的应用处理器;V2X模组检测与V2X接口对应的多个通路的信号强度,切换控制单元基于V2X模组的检测结果向组内切换开关发送对应的组内切换信号,实现V2X接口工作在对应多个通路中具有最强信号强度的一个通路。
可选的,所述切换控制单元为集成在5G模组内的应用处理器;V2X模组检测与V2X接口对应的多个通路的信号强度,并将检测结果发送给切换控制单元;切换控制单元基于所述检测结果向组内切换开关发送对应的组内切换信号,实现V2X接口工作在对应多个通路中具有最强信号强度的一个通路。
可选的,所述切换控制单元为集成在车辆智能终端内的车辆处理器;V2X模组检测与V2X接口对应的多个通路的信号强度,并通过5G模组将检测结果发送给切换控制单元;切换控制单元基于所述检测结果向组内切换开关发送对应的组内切换信号,实现V2X接口工作在对应多个通路中具有最强信号强度的一个通路。
可选的,车载智能终端还包含WIFI模组、BLE模组;所述天线系统还包含WIFI天线、BLE天线、GNSS天线;所述WIFI天线、BLE天线集成在车载智能终端内,且分别信号连接所述WIFI模组、BLE模组;所述GNSS天线设置在车顶,并信号连接5G模组;5G模组通过GNSS天线获取车辆位置,并基于获取的电子地图和所述车辆位置,选择V2X接口工作的默认通路;5G模组还实时检测各通路的信号强度,控制组内切换开关从所述默认通路切换到对应多个通路中具有最强信号强度的一个通路。
可选的,所述车载智能终端的天线系统还包含Ecall天线和第一切换开关;所述Ecall天线集成在车载智能终端内;所述第一切换开关连接5G模组、Ecall天线、多个分频器中的一个分频器;第一切换 开关基于5G模组发送的第一切换信号,实现对应的主功能天线通过对应的分频器信号连接5G模组;当5G模组未接收到来自任一主功能天线的信号,5G模组向第一切换开关发送第二切换信号;第一切换开关基于所述第二切换信号实现Ecall天线信号连接5G模组。
本发明还提供一种通讯方法,用于如本发明所述的天线系统,包含步骤:
分频器将对应主功能天线接收的多频段无线信号分频为对应的第一信号、第二信号、第三信号,并分别提供给所述5G模组、UWB模组、V2X模组;
切换控制单元控制组内切换开关进行序列动作,实现与V2X接口对应的多根主功能天线分别与V2X模组建立对应的通路;
V2X模组检测与V2X接口对应的多个通路的信号强度;切换控制单元基于V2X模组检测的检测结果发送对应的组内切换信号,使V2X接口工作在对应多个通路中具有最强信号强度的一个通路。
可选的,所述切换控制单元为集成在车辆智能终端内的应用处理器或车辆处理器;所述应用处理器集成在V2X模组或5G模组内;
若切换控制单元为集成在5G模组内的应用处理器,通过V2X模组将检测结果发送给切换控制单元;
若切换控制单元为所述车辆处理器,V2X模组通过5G模组将检测结果发送给切换控制单元。
与现有技术相比,本发明的车载智能终端的天线系统及方法具有以下有益效果:
1)本发明中,通过分频器对主功能天线获取的多频段无线信号进行分频,实现5G模组、V2X模组、UWB模组同时工作。通过主功能天线实现了将现有技术中的Cellular天线、V2X天线、UWB天线进行共用,大大减少了在车身布置的天线数量和种类,大大降低了 天线的设计和安装成本;通过本发明解决了现有的外置天线(布置在车身的天线)对安装位置要求苛刻、外置天线在车身因安装位置紧缺导致布置困难的问题;
2)本发明中,任意两个主功能天线之间的间距大于多频段无线信号在最低频点的四分之一波长,解决了传统Cellular天线布置间距小,导致互耦较为严重的问题;通过本发明保证了主功能天线的性能,提升了蜂窝通信的上行和下行速率。
3)通过本发明的天线系统,解决了传统V2X天线方向图受车身影响,有部分角度性能交差,影响通信距离的问题;
4)本发明中将GNSS天线布置在车顶,保证该天线的最大辐射方向指向天空,为实现高精度定位保驾护航;
5)本发明中的E-Call天线,WIFI天线,BLE天线采用车载智能终端内置天线,即可以保证用户正常使用,同时也降低了生产成本。
附图说明
为了更清楚地说明本发明技术方案,下面将对描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一个实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图:
图1为一种车载智能终端的天线布置示意图;
图2为另一种车载智能终端的天线布置示意图;
图3为另一种车载智能终端的天线布置示意图;
图4为本发明车载智能终端的天线系统示意图;
图5为本发明实施例中,V2X模组、组内切换开关、三工器连接示意图;
图6为一个实施例中,通过V2X模组控制组内切换开关工作示意图;
图7为另一个实施例中,通过5G模组控制组内切换开关工作示意图;
图8为另一个实施例中,通过车辆处理器控制组内切换开关工作示意图;
图9为第一切换开关连接Ecall天线、5G模组示意图;
图10为本发明通讯方法的流程图;
图11为一个实施例中,通过V2X模组控制组内切换开关,实现V2X接口工作在信号最强通路的流程图;
图12为另一个实施例中,通过5G模组控制组内切换开关,实现V2X接口工作在信号最强通路的流程图;
图13为另一个实施例中,通过车辆处理器控制组内切换开关,实现V2X接口工作在信号最强通路的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
随着车联网的发展以及车载智能终端的普遍使用,在车身上通常会布置Cellular天线、V2X天线,UWB天线。Cellular天线的工作频段为700MHz~5000MHz,用于支持蜂窝网络的3G、4G、5G通信。Cellular天线通常包含:5G主天线、5G副天线、多个MIMO天线(支持5G通讯)。所述V2X天线的工作频段为5905MHz~5925MHz,用于支持车联网的车-车通信。
所述UWB(Ultra Wide Band超宽带)天线的工作频段为 6000MHz~8500MHz,其作为UWB基站对车辆进行定位。基于UWB基站定位时,需要将4根UWB天线分别设置在车身上的4个不同位置,并防止4根UWB天线因间距过小而产生互耦。4根UWB天线作为4个已知坐标的基站,车钥匙带定位标签,该标签按照一定频率分别向各基站发射脉冲,并通过一定的算法精确的计算定位标签的位置(此为现有技术,在此不做赘述)。
在一些车辆上还会布置GNSS(Global Navigation Satellite System全球导航卫星系统)天线、E-Call天线(用于汽车紧急呼叫系统)、WIFI天线和BLE(Bluetooh Low Energy蓝牙低能耗)天线。其中,GNSS天线用于对车辆进行定位。
图1至图3分别示出了三种在现有技术中,用于车载智能终端的天线系统。该三种天线系统均至少包含:4根Cellular天线(分别为5G主天线、5G副天线、MIMO-1天线,MIMO-2天线)、两根V2X天线(分别为V2X-1天线和V2X-2天线)、4根UWB天线(分别为UWB-1天线~UWB-4天线)、BLE天线、两根WIFI天线(分别为WIFI-1天线和WIFI-2天线)。
如图1所示天线系统中的各个天线均采用独立设计,该天线系统中的各个天线按照如下方式布置:
a1)将5G主天线、5G副天线、GNSS天线、WIFI-1天线设置在车顶的第一天线盒内。第一天线盒中的各个天线通过射频线缆连接车载智能终端。
a2)将两根MIMO天线(分别为MIMO-1天线,MIMO-2天线)、WIFI-2天线设置在仪表台上方的第二天线盒内。第二天线盒中的各个天线与车载智能终端通过射频线缆连接。
a3)4根UWB天线分别布置在车身四个不同的位置(图1中布置在两个后视镜上以及车尾两侧),且均通过射频线缆连接车载智能 终端。
a4)V2X-1天线布置在内视镜底座位置,V2X-2天线布置在后保险杠上,V2X-1天线、V2X-2天线均通过射频线缆连接车载智能终端。
a5)BLE天线(图1中未示出)采用车载智能终端内置天线设计;或者在车载智能终端的背面贴一个外置的BLE天线盒放置BLE天线,BLE天线通过射频线缆连接车载智能终端。
图2中的天线系统中的各个天线均采用独立设计,该天线系统中的各个天线按照如下方式布置:
b1)四根Cellular天线、GNSS天线、V2X-2天线、BLE天线、两根WIFI天线被设计为一个天线盒/鲨鱼鳍;该天线盒/鲨鱼鳍布置在车顶位置并通过射频线缆连接车载智能终端。
b2)4根UWB天线分别布置在车身四个不同的位置(图2中分别布置在两个后视镜上以及车尾两侧),且均通过射频线缆连接车载智能终端。
b3)V2X-1天线布置在内视镜底座位置,并通过射频线缆连接车载智能终端。
图3所示天线系统中,部分天线集成设计在车载智能终端内部,部分天线布置在车身不同位置并通过射频线缆连接车载智能终端。图3所示的天线系统中,各个天线按照如下方式布置:
c1)4根cellular天线、BLE天线、2根WIFI集成设计在车载智能终端内部。
c2)V2X-1天线布置在内视镜底座位置,并通过射频线缆连接车载智能终端。
c3)4根UWB天线分别布置在车身不同位置,并通过射频线缆连接车载智能终端。
c4)GNSS天线布置在车顶,并通过射频线缆连接车载智能终端。
上述车载智能终端的天线系统存在以下缺点:
1)4根Cellular天线之间的间距较小,互耦较为严重,会影响5G网络的上行和下载速率。
2)两根V2X天线采用前、后布置方式,对V2X天线的全向性要求极高,方向图受车身影响,有部分角度性能交差,影响通信距离。
3)天线种类多,设计和安装成本高。
本发明提供一种车载智能终端的天线系统,如图4所示,所述车载智能终端至少包含5G模组2、V2X模组4、UWB模组3、WIFI&BLE模组6、车辆处理器(Vehicle Processor简称为VP)。所述5G模组2用于实现车辆在蜂窝网络进行5G通讯,所述V2X模组4用于实现车辆在车联网进行车-车通讯,所述UWB模组3通过UWB基站进行车钥匙定位。本实施例中,将WIFI模组和BLE模组集成在一起,其他实施例中,该两个模组也可以分别设置。
如图4所示,本发明的天线系统包含:多跟主功能天线、GNSS天线10、多根WIFI天线、BLE天线7、Ecall天线9、多个分频器,多个组内切换开关,一个第一切换开关。
所述多根主功能天线,分别设置在车辆的不同位置。主功能天线用于收发多频段无线信号。如图4所示,本实施例中,包含4根主功能天线,分别为ANT1~ANT4。该4根主功能天线被分为两组,每组包含2根主功能天线,两组主功能天线前后布置(沿车身的长度方向),同组的主功能天线分别布置在车身两侧(车身左侧和车身右侧)。本实施例中ANT1和ANT4分为一组,分别布置在两个后视镜上(也即ANT1、ANT4分别设置在车身的左前、右前位置,此仅作为示例,不应作为本发明的限制);ANT2和ANT3分为另一组,分别布置在车尾保险杠两侧(也即ANT2、ANT3分别设置在车身的左后、右后位置,此仅作为示例,不应作为本发明的限制)。
所述多个分频器,分别对应所述多根主功能天线。通过分频器将对应主功能天线接收的所述多频段无线信号分频为多个信号。所述多个信号包含第一信号(频段为700MHz~5000MHz)、第二信号(频段为6000MHz~8500MHz)、第三信号(频段为5905MHz~5925MHz)。通过所述分频器将对应的第一信号、第二信号、第三信号分别提供给所述5G模组2、UWB模组3、V2X模组4。其中,5G模组2、UWB模组3、V2X模组4还依序通过对应的分频器、主功能天线发送各自工作频段的无线信号。
本发明中,任意两根主功能天线之间的间距大于;为多频段无线信号在最低频点的波长。也即是说,多功率无线信号的最低频率为700MHZ,任意两根主功能天线的间距至少大于107mm,有效的防止任意两根主功能天线之间产生互耦。保证了信号的上行、下行速率。
如图4所示,本实施例的分频器为三工器1(triplexer),分别对应主功能天线ANT1~ANT4。所述三工器1包含接口t0~t3,其中接口t0用于连接对应的主功能天线。
如图4所示,本实施例中的5G模组2包含接口b0~b8,其中接口b1~b4分别连接4个三工器1的接口t1,用于实现主功能天线ANT1~ANT4与5G模组2进行信号交互。接口b5~b8分别用于与车辆处理器5、WIFI&BLE模组6、V2X模组4、UWB模组3进行数据交互。对于5G模组2来说,ANT1用作5G主天线,ANT3用作5G副天线,ANT2、ANT4分别用作两根MIMO天线,真正实现了空间分集,减小了天线之间的互耦,实现了5G信号的高速率传输。
如图4所示,本实施例中的UWB模组3包含接口port0~port4,其中接口port1~port4分别连接4个三工器1的接口t2,用于实现主功能天线ANT1~ANT4与UWB模组3进行信号交互。对于UWB模组3来说,4根主功能天线分别用作4根UWB天线。
所述V2X模组4包含多个V2X接口,一个V2X接口对应一组主功能天线、一个组内切换开关。同组的各个主功能天线分别通过对应的三工器1连接对应的V2X接口。
如图4、图5所示,本实施例中V2X模组4包含两个V2X接口,分别用于实现两组主功能天线分别与V2X模组4进行信号交互。所述两个V2X接口分别为接口V1、V2。主功能天线ANT1、ANT4对应接口V1,主功能天线ANT2、ANT3对应接口V2。
所述组内切换开关基于切换控制单元发送的多个组内切换信号,实现同组的多个主功能天线分别与V2X模组建立对应的通路。如图4、图5所示,本实施例中,包含两个组内切换开关,分别为第一组内切换开关Switch1和第二组内切换开关Switch2。组内切换开关可以使用射频开关。
如图5所示,第一组内切换开关包含接口s11、s12、s13,接口s11、s12分别连接对应两个三工器1的t3接口,接口s13连接接口V1。第二组内切换开关Switch2包含接口s21、s22、s23,接口s21、s22分别连接对应两个三工器1的t3接口,接口s23连接接口V2。
本实施例中,第一组内切换开关Switch1基于切换控制单元发送的第一组内切换信号,实现接口s13连通接口s11,使得主功能天线ANT1与V2X模组4建立第一通路(此时接口V1工作在第一通路)。第一组内切换开关Switch1还基于切换控制单元发送的第二组内切换信号,实现接口s13连通接口s12,主功能天线ANT4与V2X模组4建立第二通路(也称接口V1工作在第二通路)。
本实施例中,第二组内切换开关Switch2基于切换控制单元发送的第三组内切换信号,实现接口s23连通接口s21,使得主功能天线ANT2与V2X模组4建立第三通路(也称接口V2工作在第三通路)。第二组内切换开关Switch2还基于切换控制单元发送的第四组内切换 信号,实现接口s23连通接口s22,主功能天线ANT3与V2X模组4建立第四通路(也称接口V2工作在第四通路)。
V2X模组4会持续检测V2X接口所在通路的信号强度。在一个实施例中,切换控制单元被配置为根据内置的算法,定时控制组内切换开关进行系列动作,使与该组内切换开关对应的各个主功能天线分别与V2X模组4建立对应的通路,因此V2X模组4可以分别检测与V2X接口对应的多个通路的信号强度。相邻两次所述系列动作的时间间隔可以是10秒(此仅作为示例,不应作为本发明的限制)。或者在另一个实施例中,当V2X接口所在通路的信号强度小于设定的阈值时,通过切换控制单元控制组内切换开关进行上述系列动作。
当V2X模组4检测到与接口V1对应的第一、第二通路的信号强度,切换控制单元基于V2X模组4对第一、第二通路的检测结果,通过向第一组内切换开关Switch1发送对应的组内切换信号,实现接口V1工作在第一、第二通路中具有较强信号强度的一个通路。当V2X模组4检测到与接口V2对应的第三、第四通路的信号强度,切换控制单元基于V2X模组4对第三、第四通路的检测结果,通过向第二组内切换开关Switch2发送对应的组内切换信号,实现V2接口工作在第三、第四通路中具有较强信号强度的一个通路。
如图6所示,本实施例中的切换控制单元为集成在V2X模组4内的应用处理器41。
在另一个实施例中,如图7所示,切换控制单元为集成在5G模组2内的应用处理器21。V2X模组4检测与V2X接口对应的多个通路的信号强度,并将检测结果发送给5G模组2内的应用处理器21;该应用处理器21基于V2X模组4的检测结果向组内切换开关发送对应的组内切换信号,实现V2X接口工作在对应多个通路中具有最强信号强度的一个通路。
在另一个实施例中,如图8所示,切换控制单元为集成在车辆智能终端内的车辆处理器5。V2X模组4检测与V2X接口对应的多个通路的信号强度,并通过5G模组2将检测结果发送给车辆处理器5;车辆处理器5基于所述检测结果向组内切换开关发送对应的组内切换信号,实现V2X接口工作在对应多个通路中具有最强信号强度的一个通路。
切换控制单元可以根据实际需求设置在V2X模组4、5G模组2、车辆处理器5。本发明中不做限制。
现有技术中只有两根V2X天线,V2X天线的方向图受车身影响,有部分角度性能交差,影响通信距离。本发明中,每根主功能天线都可以作为V2X天线,同组的主功能天线分别布置在车身两侧,扩大了方向图的角度范围,并通过选择同组主功能天线中具有最强信号的一个与V2X模组4进行信号交互。保证了V2X模组4获取的第三信号(也即V2X信号)的质量。
如图4所示,本发明中包含两根WIFI天线,分别为WIFI-1天线81、WIFI-2天线82。WIFI-1天线81、WIFI-2天线82、BLE天线7均信号连接所述WIFI&BLE模组6。本发明中,WIFI-1天线81、WIFI-2天线82、BLE天线7采用车载智能终端内置天线,布置在车载智能终端主板周边,即可以保证用户正常使用,同时也降低了生产成本
本实施例中将所述GNSS天线10设置在车顶,其信号连接5G模组2。通过将GNSS天线10布置在车顶,保证该天线的最大辐射方向指向天空,为实现高精度定位保驾护航。5G模组2通过GNSS天线10获取车辆位置,并基于获取的电子地图(通过主功能天线从外界获取,或存储在5G模组内,本发明不做限制)和所述车辆位置,选择V2X接口工作的默认通路。此时切换控制单元可以是5G模组内的应用处理器。5G模组2实时检测各通路的信号强度,做好随时 切换到最强信号通路的准备。例如,当5G模组2判断车辆右侧是悬崖或者是湖泊,则5G模组通过切换控制单元21发送指令信号。切换控制单元21基于该指令信号,驱动第一组内切换开关Switch1,实现接口V1工作在左侧的主功能天线ANT1所在的通路。切换控制单元21还基于该指令信号,驱动第二组内切换开关Switch2,实现接口V2工作在左侧的主功能天线ANT3所在的通路。同时,切换控制单元还会基于各通路的实际信号强度,使得组内切换开关从所述默认通路切换至对应的最强信号通路(也即,保证V2X接口能够工作在具有最强信号的通路)。
所述Ecall天线9集成在车载智能终端主板周边。如图9所示,所述第一切换开关Switch3包含接口s31、s32、s33。其中接口s31连接5G模组2的接口b1,接口s32连接Ecall天线9,接口s33连接一个分频器的接口t1(如图4所示,本实施例中该分频器对应主功能天线ANT1)。第一切换开关基于5G模组2发送的第一切换信号,实现接口s31连通s33,主功能天线ANT1通过对应的分频器信号连接5G模组2。当5G模组2未接收到来自任一主功能天线的信号,5G模组2向第一切换开关发送第二切换信号;第一切换开关基于所述第二切换信号实现接口s31连通s32,Ecall天线9信号连接5G模组2。本实施例中,第一切换开关可以使用射频开关。
本发明还提供一种通讯方法,如图10所示,用于如本发明所述的天线系统,包含步骤:
H1、分频器将对应主功能天线接收的多频段无线信号分频为对应的第一信号、第二信号、第三信号,并分别提供给所述5G模组2、UWB模组3、V2X模组4;
H2、切换控制单元控制组内切换开关进行系列动作,实现与V2X接口对应的多根主功能天线分别依序与V2X模组4建立对应的通路; V2X模组4检测与V2X接口对应的多个通路的信号强度;切换控制单元基于V2X模组4检测的检测结果发送对应的组内切换信号,使V2X接口工作在对应多个通路中具有最强信号强度的一个通路。
在一个实施例中,如图6所示,所述切换控制单元为集成在V2X模组4的应用处理器41。如图11所示,上述步骤H2包含:
H211、V2X模组4控制第一组内切换开关Switches1分别建立第一、第二通路,并控制第二组内切换开关Switches2分别建立第三、第四通路;
H212、V2X模组4检测第一至第四通路的信号强度;
H213、V2X模组4基于其检测结果控制第一组内切换开关Switches1、第二组内切换开关Switches2,实现接口V1工作在第一、第二通路中具有较强信号强度的一个通路,接口V2工作在第三、第四通路中具有较强信号强度的一个通路。
在另一个实施例中,如图7所示,切换控制单元为集成在5G模组2内的应用处理器。如图12所示,上述步骤H2包含:
H221、5G模组2内的应用处理器21控制第一组内切换开关Switches1分别建立第一、第二通路,并控制第二组内切换开关Switches2分别建立第三、第四通路;
H222、V2X模组4检测第一至第四通路的信号强度;
H223、V2X模组4把检测结果发送给应用处理器21;
H224、应用处理器21比较第一、第二通路的信号强度,基于比较结果控制第一组内切换开关Switches1动作,实现接口V1工作在第一、第二通路中具有较强信号强度的一个通路;应用处理器21比较第三、第四通路的信号强度,基于比较结果控制第二组内切换开关Switches2动作,实现接口V2工作在第三、第四通路中具有较强信号强度的一个通路。
在另一个实施例中,如图8所示,切换控制单元为车载智能终端板卡上内置的车载处理器。如图13所示,上述步骤H2包含:
H231、车辆处理器5控制第一组内切换开关Switches1分别建立第一、第二通路,并控制第二组内切换开关Switches2分别建立第三、第四通路;
H232、V2X模组4检测第一至第四通路的信号强度;
H233、V2X模组4把各信号强度发送给5G模组2内的应用处理器;
H234、5G模组内的应用处理器将各信号强度发送给车辆处理器5;
H235、车辆处理器5比较第一、第二通路的信号强度,基于比较结果控制第一组内切换开关Switches1动作,实现接口V1工作在第一、第二通路中具有较强信号强度的一个通路;车辆处理器5比较第三、第四通路的信号强度,基于比较结果控制第二组内切换开关Switches2动作,实现接口V2工作在第三、第四通路中具有较强信号强度的一个通路。
本发明中,通过分频器对主功能天线获取的多频段无线信号进行分频,实现5G模组2、V2X模组4、UWB模组3同时工作。通过主功能天线实现了将现有技术中的Cellular天线、V2X天线、UWB天线进行共用,大大减少了在车身布置的天线数量和种类,大大降低了天线的设计和安装成本;通过本发明解决了现有的外置天线(布置在车身的天线)对安装位置要求苛刻、外置天线在车身因安装位置紧缺导致布置困难的问题;
本发明中,任意两个主功能天线之间的间距大于多频段无线信号在最低频点的四分之一波长,解决了传统Cellular天线布置间距小,导致互耦较为严重的问题;通过本发明保证了主功能天线的性能,提 升了蜂窝通信的上行和下行速率。
本发明中的E-Call天线9,WIFI-1天线81、WIFI-2天线82、BLE天线7采用车载智能终端内置天线,布置在车载智能终端主板周边,即可以保证用户正常使用,同时也降低了生产成本。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种车载智能终端的天线系统,所述车载智能终端至少包含5G模组、V2X模组和UWB模组,所述5G模组用于实现车辆在蜂窝网络进行5G通讯,所述V2X模组用于实现车辆在车联网进行车-车通讯,所述UWB模组通过UWB基站对车钥匙自带的定位标签进行定位,其特征在于,所述天线系统包含:
    多根主功能天线,分别设置在车辆的不同位置;所述主功能天线用于收发多频段无线信号;
    多个分频器,分别对应所述多根主功能天线;所述分频器将对应主功能天线接收的所述多频段无线信号分频为多个信号;所述多个信号包含分别与所述5G模组、UWB模组、V2X模组工作频段对应的第一信号、第二信号、第三信号;通过所述分频器将对应的第一信号、第二信号、第三信号分别提供给5G模组、UWB模组、V2X模组;5G模组、UWB模组、V2X模组还通过对应的分频器、主功能天线发送各自工作频段的无线信号。
  2. 如权利要求1所述的车载智能终端的天线系统,其特征在于,任意两根主功能天线之间的间距大于
    Figure PCTCN2022114117-appb-100001
    λ为多频段无线信号在最低频点的波长;所述多根主功能天线分为多组;每组主功能天线包含多根主功能天线,同组的多根主功能天线分别布置在车身两侧;至少两组主功能天线前后布置。
  3. 如权利要求2所述的车载智能终端的天线系统,其特征在于,所述V2X模组包含多个V2X接口;所述天线系统还包含多个组内切换开关,一个所述组内切换开关对应一个所述V2X接口、一组主功能天线;同组的各个主功能天线分别通过对应分频器连接对应的V2X接口;
    组内切换开关基于切换控制单元发送的多个组内切换信号,实现 同组的多个主功能天线分别与V2X模组建立对应的通路。
  4. 如权利要求3所述的车载智能终端的天线系统,其特征在于,所述切换控制单元为集成在V2X模组内的应用处理器;V2X模组检测与V2X接口对应的多个通路的信号强度,切换控制单元基于V2X模组的检测结果向组内切换开关发送对应的组内切换信号,实现V2X接口工作在对应多个通路中具有最强信号强度的一个通路。
  5. 如权利要求3所述的车载智能终端的天线系统,其特征在于,所述切换控制单元为集成在5G模组内的应用处理器;V2X模组检测与V2X接口对应的多个通路的信号强度,并将检测结果发送给切换控制单元;切换控制单元基于所述检测结果向组内切换开关发送对应的组内切换信号,实现V2X接口工作在对应多个通路中具有最强信号强度的一个通路。
  6. 如权利要求3所述的车载智能终端的天线系统,其特征在于,所述切换控制单元为集成在车辆智能终端内的车辆处理器;V2X模组检测与V2X接口对应的多个通路的信号强度,并通过5G模组将检测结果发送给切换控制单元;切换控制单元基于所述检测结果向组内切换开关发送对应的组内切换信号,实现V2X接口工作在对应多个通路中具有最强信号强度的一个通路。
  7. 如权利要求5所述的车载智能终端的天线系统,其特征在于,车载智能终端还包含WIFI模组、BLE模组;所述天线系统还包含WIFI天线、BLE天线、GNSS天线;所述WIFI天线、BLE天线集成在车载智能终端内,且分别信号连接所述WIFI模组、BLE模组;所述GNSS天线设置在车顶,并信号连接5G模组;5G模组通过GNSS天线获取车辆位置,并基于获取的电子地图和所述车辆位置,选择V2X接口工作的默认通路;5G模组还实时检测各通路的信号强度,控制组内切换开关从所述默认通路切换到对应多个通路中具有最强 信号强度的一个通路。
  8. 如权利要求1所述的车载智能终端的天线系统,其特征在于,还包含Ecall天线和第一切换开关;所述Ecall天线集成在车载智能终端内;所述第一切换开关连接5G模组、Ecall天线、多个分频器中的一个分频器;第一切换开关基于5G模组发送的第一切换信号,实现对应的主功能天线通过对应的分频器信号连接5G模组;当5G模组未接收到来自任一主功能天线的信号,5G模组向第一切换开关发送第二切换信号;第一切换开关基于所述第二切换信号实现Ecall天线信号连接5G模组。
  9. 一种通讯方法,用于如权利要求1至8任一所述的天线系统,其特征在于,包含步骤:
    分频器将对应主功能天线接收的多频段无线信号分频为对应的第一信号、第二信号、第三信号,并分别提供给所述5G模组、UWB模组、V2X模组;
    切换控制单元控制组内切换开关进行序列动作,实现与V2X接口对应的多根主功能天线分别与V2X模组建立对应的通路;
    V2X模组检测与V2X接口对应的多个通路的信号强度;切换控制单元基于V2X模组检测的检测结果发送对应的组内切换信号,使V2X接口工作在对应多个通路中具有最强信号强度的一个通路。
  10. 如权利要求9所述的通讯方法,其特征在于,所述切换控制单元为集成在车辆智能终端内的应用处理器或车辆处理器;所述应用处理器集成在V2X模组或5G模组内;
    若切换控制单元为集成在5G模组内的应用处理器,通过V2X模组将检测结果发送给切换控制单元;
    若切换控制单元为所述车辆处理器,V2X模组通过5G模组将检测结果发送给切换控制单元。
PCT/CN2022/114117 2022-05-07 2022-08-23 一种车载智能终端的天线系统及方法 WO2023216456A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210491021.2 2022-05-07
CN202210491021 2022-05-07

Publications (1)

Publication Number Publication Date
WO2023216456A1 true WO2023216456A1 (zh) 2023-11-16

Family

ID=88729575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114117 WO2023216456A1 (zh) 2022-05-07 2022-08-23 一种车载智能终端的天线系统及方法

Country Status (1)

Country Link
WO (1) WO2023216456A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103281108A (zh) * 2013-04-26 2013-09-04 北京北交恒通技术有限公司 车载智能天线
CN104158580A (zh) * 2014-07-15 2014-11-19 清华大学 一种增强移动终端信号的车载式移动通信方法
US20170054204A1 (en) * 2015-08-21 2017-02-23 Laird Technologies, Inc. V2x antenna systems
CN111082824A (zh) * 2019-12-16 2020-04-28 东软睿驰汽车技术(沈阳)有限公司 一种车载单元
CN214428764U (zh) * 2020-12-04 2021-10-19 惠州市德赛西威智能交通技术研究院有限公司 一种共用天线设备
CN114785367A (zh) * 2022-06-22 2022-07-22 上海麦腾物联网科技有限公司 一种车载智能终端的天线系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103281108A (zh) * 2013-04-26 2013-09-04 北京北交恒通技术有限公司 车载智能天线
CN104158580A (zh) * 2014-07-15 2014-11-19 清华大学 一种增强移动终端信号的车载式移动通信方法
US20170054204A1 (en) * 2015-08-21 2017-02-23 Laird Technologies, Inc. V2x antenna systems
CN111082824A (zh) * 2019-12-16 2020-04-28 东软睿驰汽车技术(沈阳)有限公司 一种车载单元
CN214428764U (zh) * 2020-12-04 2021-10-19 惠州市德赛西威智能交通技术研究院有限公司 一种共用天线设备
CN114785367A (zh) * 2022-06-22 2022-07-22 上海麦腾物联网科技有限公司 一种车载智能终端的天线系统及方法

Similar Documents

Publication Publication Date Title
CN114785367B (zh) 一种车载智能终端的天线系统及方法
CN101517924B (zh) 用于在蜂窝网络中提供专用容量的系统和方法
US20140254440A1 (en) Tdd repeater for a wireless network and method for operating said repeater
US8032134B2 (en) Beamforming with global positioning and orientation systems
US20050208900A1 (en) Co-existing BluetoothTM and wireless local area networks
JP2019504552A (ja) 車両用mimo通信システム
CN112821919B (zh) 射频系统及电子设备
US10205249B2 (en) Diversified antenna system for vehicle-to-vehicle or vehicle-to-infrastructure communication
CN113573318B (zh) 频谱使用方法、系统、天线和网络设备
CN101553955A (zh) 倾斜相关的波束形状系统
CN109150208B (zh) 一种增强移动通信基站空天覆盖能力的装置
CN101179325B (zh) 隧道用无线信号匀点分布装置
WO2023216456A1 (zh) 一种车载智能终端的天线系统及方法
CN100373694C (zh) 可调整的无线通讯装置及其控制方法
CN102710826B (zh) 移动终端数据业务和语音业务复用天线系统及实现方法
US10382096B2 (en) Information communication device, information communication system, and information communication method
EP1746735A1 (en) Antenna control arrangement and method
KR20100037666A (ko) 멀티 스탠바이 휴대 단말기
CN207250702U (zh) 一种车载通信设备天线方向性的定位管控优化系统
CN214851265U (zh) 一种相控阵天线、分布式相控阵天线和v2x路侧单元
CN115378444A (zh) 射频系统和通信设备
CN112600595B (zh) 一种隧道漏缆通信系统
CN115347929A (zh) 一种车载设备天线切换方法和系统
CN210405657U (zh) 复用天线总成、蓝牙系统及车辆
CN1105427C (zh) 蜂窝无线电话基站的公共本机振荡器的总线仲裁器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941397

Country of ref document: EP

Kind code of ref document: A1